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Abstract

Virtualization has become a magic bullet to increase

utilization, improve security, lower costs, and reduce

management overheads. In many scenarios, the number

of virtual machines consolidated onto a single processor

has grown even faster than the number of hardware threads.

This results in multiprogrammed virtualization where many

virtual machines time-share a single processor core. Such

fine-grain sharing comes at a cost; each time a virtual

machine gets scheduled by the hypervisor, it effectively

begins with a “cold” cache, since any cache blocks it

accessed in the past have likely been evicted by other virtual

machines.

Recently, cache restoration prefetchers have been shown

to reduce the cold cache effects caused by multiprogrammed

virtualization. However, these prefetchers waste large

amounts of bandwidth prefetching many useless blocks

and writing and reading metadata to and from memory.

Using block reuse based filtering, we enhance two existing

cache restoration prefetchers and reduce their bandwidth

overheads by 16% and 32%, with slowdowns of only 0.5%

and 0.6%.

We also propose a Region-Based Cache Restoration

Prefetcher (RECAP), which groups cache blocks into

coarse-grain regions of memory, and predicts which regions

contain useful blocks to prefetch the next time the current

virtual machine executes. Based on these predictions, and

using a simple compression technique that exploits spatial

locality, RECAP provides a robust prefetcher that improves

performance by up to 42% for some applications and

only uses 14% more bandwidth and 3.5% more power

than a stride prefetcher, on average. Compared to other

prefetchers designed for multiprogrammed virtualization,

RECAP provides comparable performance while using an

average of 12% to 27% less bandwidth, and reducing the

energy-delay product of the L2 cache and main memory by

12% to 13% on average.

1 Introduction

Server consolidation, virtual desktop infrastructure

(VDI) environments, and cloud computing trends dominate

the landscape of new server purchases. The growth of

these trends has led not only to a much wider adoption of

hardware virtualization, but also to an increasing number

of virtual instances, or partitions, being consolidated onto

each physical system. For example, IBM has reported

a case study of consolidating 3,900 servers onto only

30 mainframe systems [13] and a number of VMWare

case studies have reported consolidation ratios from 4:1

to 15:1 [24]. As another example, Botelho has suggested

that in VDI environments a good rule of thumb is to

combine six to eight virtual desktop instances per processor

core [2]. In the future, the number of partitions on each

machine is expected to continue to increase. Botelho

quotes Anne Skamarock, a research director at Focus

Consulting, as saying that customers, “are running 30 VM’s

per 8-core system and expect to increase that to 50 VMs

per system” [2]. Even with the increasing number of

hardware threads present in modern processors, such large

consolidation ratios result in each partition being assigned

only a fraction of a real hardware execution context.

Consolidating this many partitions onto a single system

generally requires some form of multiprogrammed virtu-

alization in which multiple partitions time-share a single

hardware thread. To meet QoS constraints and provide real-

time interactive response times, the execution interval for

each partition is kept relatively short. For instance, the

PowerVM partition manager will allocate some portion of

a 10 ms dispatch window to each active partition, such that

a system with five partitions, for example, might execute

each one for only 2 ms at a time within the window.
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VMWare case studies describe a number of scenarios that

require short response times for VDI environments used

with “mission critical” applications, e.g., in urgent care

departments in hostpitals [24].

Multiprogrammed virtualization incurs overheads each

time the hypervisor switches partitions, with much of this

slowdown coming from the loss of microarchitectural state

in the processor. While a partition is switched out, other

partitions pollute the processor’s caches, branch predictors,

and TLBs. By the time the first partition is subsequently

scheduled for its next execution interval, the intervening

partitions might have evicted all of its state, resulting in an

almost perpetual cold cache. While these effects could be

amortized by executing each partition for longer periods of

time, the need to maintain fast response times limits the

applicability of this solution. In this paper, we explore

alternative hardware mechanisms to reduce the performance

impact caused by the common cold cache problem created

by multiprogrammed virtualization.

Daly and Cain recently explored the effects of

multiprogrammed virtualization and found that it can

reduce performance by as much as 40% compared to

running applications in isolation [9], and our results show

slowdowns of up to 35% for some applications from

SPEC CPU 2000. To reduce this performance penalty,

Daly and Cain proposed the CRP prefetcher and Cui and

Sair proposed the GHL prefetcher [8]. However, both

of these prefetchers have significant bandwidth overheads

for wasted prefetches and for prefetcher metadata. We

propose two modified prefetchers, SCAN-HITS and GHL-HITS

that use block reuse based filtering to signficantly reduce

the bandwidth overheads without significantly reducing the

performance benefits.

Additionally, we propose RECAP, a Region-based

Cache Restoration Prefetcher, that exploits coarse-grain

patterns in an application’s memory access stream to

restore the cache working set after a partition switch with

little bandwidth overhead. RECAP uses a dual-grain

approach, tracking reuse of individual blocks within 4 KB

regions. This approach allows RECAP to effectively reduce

the number of useless prefetches, and also to efficiently

compress the list of block addresses to prefetch. RECAP

can track reuse either for an individual cache block or for

an entire region of memory. This reuse information is then

used to predict which blocks are most likely to experience

additional reuse after the next partition switch and are thus

most beneficial to prefetch.

Overall, RECAP achieves speedups of up to 42% for

some applications, with a mean speedup of 4.5% over a

stride prefetcher. The performance benefits out-weigh the

bandwidth and power overheads, resulting in an average 5%

reduction in the energy-delay product of the L2 cache and

main memory compared to a stride prefetcher. Compared to

previously proposed prefetchers that target the same cache

pollution problem, RECAP achieves the same or better

performance, while lowering the energy-delay product by

12% to 13% and reducing bandwidth by 12% to 27% less

bandwidth on average.

In summary, this paper makes the following contribu-

tions:

• It demonstrates that only prefetching reused cache blocks

signficiantly reduces the bandwidth overhead of cache

restoration prefetchers while only slightly reducing their

overall benefit.

• It shows that tracking a relatively small number of coarse-

grain regions can capture most of an application’s cache

working set.

• It demonstrates that tracking block reuse within regions

can effectively predict which blocks are most likely to be

useful to prefetch.

• It proposes RECAP, a bandwidth-efficient region-based

cache restoration prefetcher that provides better overall

performance improvement than previous solutions with

less power and bandwidth overhead.

Section 2 describes the slowdowns caused by multi-

programmed virtualization and the bandwidth overheads

that can result from naïve prefetching approaches. In

Section 3 we explain our experimental methodology and

how we model multiprogrammed virtualization. Section 4

describes two state-of-the-art prefetchers designed to

address problems with frequently switching partitions, and

illustrates their high bandwidth overheads. In Section 5, we

demonstrate an elegant optimization that reduces bandwidth

overhead for both previously proposed prefetchers without

significantly sacrificing performance. Section 6 describes

our new RECAP design and illustrates its benefits over

other prefetchers. The storage overheads of the various

prefetchers are compared in Section 7, and Section 8

describes some additional related work. Finally, Section 9

summarizes the benefits of RECAP and details some

possible future work.

2 Motivation

The cache pollution effects of multiprogramming

increase with deep cache hierarchies and larger cache

sizes [1]. For any cache, the maximum number of additional

misses that result from cache pollution is limited by the

cache capacity. For typical L1 caches, the performance

loss of 512 to 2048 additional cache misses is small even

with a relatively short interval of a few million cycles.

However, this section shows that performance losses can be

significant for typical higher level caches with 32K cache

blocks or more.

We constructed three workloads, each consisting of eight

partitions running different SPEC CPU 2000 applications.
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Simulation - 2 MB L2, partition switch every 1.25 ms

Real - 4 MB L3, context switch every 1 ms

Figure 1. Percentage slowdown for Spec CPU 2000

applications when run as part of multi-programmed

workload with 8 partitions compared to running in isolation.

We ran these workloads both on a real system and on a

detailed timing simulator to estimate the slowdown that

results from frequent partition switches. The simulated

system has a 2 MB L2 cache and models separate virtual

machines each allocated an equal portion of a 10 ms

dispatch window. The real system is a dual-core, 2.4 GHz

Intel® Xeon® CPU with a 4 MB L3 cache and with the

hardware prefetcher disabled. All applications were run in

a single Linux OS instance as real-time processes pinned to

the same core. We modified the Linux real-time scheduler

to perform context switches every 1 ms, the closest interval

possible to the 1.25 ms used in simulation.

Figure 1 shows the slowdown of each application in

the virtualized workloads compared to the same application

running in isolation for both the simulated and real systems.

On average, the applications experienced a slowdown of 9%

in the simulated environment and 11% on the real computer.

Some applications (galgel, mcf, twolf and vpr) incurred over

30% slowdowns as a result of cache pollution and other

effects of virtualization.

We expected that there would be differences in the

measured slowdown between the simulated and actual

systems, more so given that the core and memory

hierarchies are different. For most applications the results

from simulation and the real system are surprisingly

close, with simulation often underestimating the impact of

virtualization. The results also show that cache pollution

remains a problem even when the last level cache is 4 MB.

The rest of this work focuses on the simulated system with

a 2 MB L2 cache per core which is representative of server

class machines.

2.1 Overheads of Naïve Cache Restoration

An obvious way to reduce the effects of cache pollution

for these workloads might be to try to “preload” the cache

when the active partition switches. Just as the hypervisor

saves and restores all architecturally visible state, such as

the registers, the hypervisor or a hardware assist could save

and restore the L2 cache contents. A list of blocks that

ought to be restored will have to be saved as well.

Preloading the entire cache wastes off-chip bandwidth

in two ways: (1) by prefetching data blocks that will

not be used before evicted, and (2) by writing and

reading the list of cache blocks to prefetch. Past

work has shown that under normal operation, a block

is “dead” for an average of 86% of the time it resides

in the cache [14]. The frequent partition switches of

multiprogrammed virtualization exacerbate this problem by

evicting cache blocks that might otherwise simply have long

reuse intervals.

Figure 2 shows bandwidth overheads with naïve cache

restoration. For this experiment we flush the cache on every

partition switch. Bandwidth is normalized with respect

to that required when running the application in isolation

(lower bar). The bandwidth overhead includes preloading

blocks that were evicted due to multiprogramming and

later accessed again ( bar), and wasted bandwidth due to

prefetching “dead” blocks ( bar).

On average, multi-programming alone increases band-

width by 46%, but in the worst case it imposes more than

a 30× overhead. The naïve prefetcher further imposes an

average 51% overhead for prefetching useless blocks and

in the worst case, for vpr, the bandwidth wasted on over-

prefetching is more than 9× the bandwidth required when

running the application in isolation.

In addition to bandwidth used for prefetching blocks, any

prefetcher that attempts to preload the cache needs to use

some bandwidth to write a list of block addresses to main

memory so they can later be read back and the appropriate

prefetches can be issued. For our 2 MB L2 cache doing

so would require 15.6% additional bandwidth assuming 46

bit physical addresses, and 64 byte cache blocks. Figure 2

illustrates how signficiant this metadata overhead is ( bar).

For the worst case of vpr, the metadata bandwidth is more

than 6× the bandwidth of the standalone application.

In summary, multiprogrammed virtualization causes

cache polution that reduces performance by 9% on average

and more than 30% for several applications. Moreover,

naïve cache restoration increases bandwidth by 51% on

average and by more than 100% for several applications.
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Figure 2. Bandwidth overhead from multiprogrammed virtualization and naïve prefetching normalized to standalone bandwidth.

Table 1. Workload Descriptions

High-MPKI applu, art, equake, galgel, lucas, mcf, mgrid, swim

Mid-MPKI ammp, apsi, bzip2, gap, parser, twolf, vpr, wupwise

Low-MPKI crafty, eon, fma3d, gzip, mesa, perlbmk, sixtrack, vortex

Table 2. Processor core configuration

Processor Core 4 GHz UltraSPARC III ISA

8-stage, out-of-order

256-entry ROB, 64-entry LSQ

decode/issue/commit any 4 instrs/cycle

Branch Predictor 8K GShare, 16K bi-modal, and 16K selector

2K entry, 16-way BTB, 2 branches/cycle

Fetch Unit Up to 8 instrs/cycle, 32-entry fetch buffer

L1D/L1I 64 KB, 64 B blocks, 4-way, 1 cycle

Unified L2 2 MB, 16-way, inclusive of L1

3/12-cycle tag/data latency

Additional various designs, max 4 outstanding,

Prefetcher 32-entry write-back buffer

3 Methodology

In the following sections, all simulations modelled a

single-core, single-thread processor with the configuration

described in Table 2. The simulator is based on the

full-system simulator Flexus [12], which uses WindRiver

Simics [10], and includes a memory timing model based on

DRAMSim2 [20]. All simulated systems ran the Solaris 8

operating system.

Each virtualized workload consists of eight applications

chosen from the SPEC CPU 2000 benchmark suite, as

indicated in Table 1. We expect that cache miss rates

will have a large impact on the effectiveness of any cache

restoration prefetcher, so we have grouped the applications

based on the MPKI of the L2 caches for each application

running in isolation.

Switching between “virtual machines” is modelled by

stoping the Simics simulation of one application and

starting a new simulation for a different application. To

avoid overlapping address spaces for different applications,

we modify all physical addresses by mapping the virtual

machines to distinct portions of a 64 GB address space.

Each individual application is run for 5 million cycles

before switching to a new application. With a 4 GHz

clock, this represents eight partitions given equal share of a

10 ms scheduling interval [11]. Simulations were run for a

total of four billion cycles of execution (500 million cycles

per application). Functional simulations of an additional

2 billion instructions (250 million cycles per application)

were used to warm the branch predictor and cache state

before starting the timing simulations.

When measuring performance, we report the “Fair

Speedup” metric [6], calculated as the harmonic mean

speedup of the eight applications in each workload. For

bandwidth, we report the average of the normalized

bandwidth per instruction. All results are relative to the

baseline system running the same virtualized workload with

no hardware prefetcher.

The simulations used to measure the slowdown shown

earlier in Figure 1 ran each application in isolation for

500 million cycles after 250 million cycles of functional

warmup (the same total execution as one application in

the virtualized workloads). The simulated system included

a twelve-entry stride prefetcher for both the virtualized

workloads and the applications run in isolation.

3.1 Prefetcher Configurations

We model a stride prefetcher and a number of new

and existing cache restoration prefetchers described in the

following sections. Each prefetcher was configured to issue

prefetches to the L2 cache, and the number of outstanding

prefetches was limited to four to avoid excessive bandwidth

contention with demand accesses. All prefetchers used

a similar 32-entry write-back buffer when writing data to

memory. Except for the baseline, all configurations include



the same twelve-entry stride prefetcher located between the

L1 and L2 caches. The following sections briefly describe

the configuration of each prefetcher.

4 Previously Proposed Prefetchers

Two previous works have proposed prefetchers that

address the cache pollution problem caused by multipro-

grammed virtualization. Daly and Cain recently proposed

a cache restoration prefetcher (CRP1) [9], and Cui and Sair

have proposed a Global History List Prefetcher (GHL) [8].

Both prefetchers attempt to restore the entire cache contents

after a partition switch with little concern for the usefulness

of each prefetch.

4.1 Cache Restoration Prefetcher

CRP attempts to restore the cache contents across context

switches by recording addresses as cache blocks are evicted.

Then, on a partition switch, CRP prefetches all the blocks

belonging to the incoming partition that have been evicted

since that last time it ran. The hypervisor reserves a portion

of physical memory to store a list of evicted blocks for

each logical partition. To associate evicted blocks with the

partition that allocated them CRP stores a logical partition

id (LPID) with each cache block. CRP also maintains a

hardware table with the mappings from LPID to the location

of each prefetch list.

For a small number of partitions, or when most of

the partitions’ working sets can reside in the cache

simultaneously, CRP can use a small amount of bandwidth

to prefetch the few cache blocks that have been evicted.

However, when many partitions share the same processor,

all of a partition’s cache blocks will most likely be evicted

between consecutive execution intervals. This is what we

observe in our experiments where most partitions do not

have any blocks that survive between subsequent execution

intervals, and no partitions see more than 1.5% of the cache

blocks survive. In this scenario, CRP is comparable to

scanning the cache contents after a partition switch and

prefetching all cache blocks. Given this result, we use a

SCAN prefetcher to demonstrate the behavior of a CRP-like

prefetcher.

The SCAN prefetcher scans the entire cache and behaves

similarly to the naïve prefetcher described in Section 2.1.

As Figure 2 showed, this approach wastes significant

bandwidth with useless prefetches. To reduce the amount

of bandwidth wasted on useless and un-timely prefetches,

Daly and Cain recommend only prefetching at most half

of the cache contents. Following this recommendation, our

1The CRP acronym is used here for convenience, it was not proposed

by Daly and Cain.

simulations model a SCAN-8 prefetcher which scans eight

of the sixteen cache ways in MRU order. We explored

other options and found this design offered the best overall

average performance.

4.2 Global History List Prefetcher

GHL was proposed to improve performance when

multiprogramming creates frequent context switches. Con-

ceptually, GHL maintains a large LRU list of all blocks

present in the cache. On a partition switch the LRU list is

written to memory, and the next time the partition executes,

block addresses are read from the list in memory and blocks

are prefetched starting with the most recently accessed

blocks.

For large last level caches, a single LRU list would

impose a large hardware overhead. To avoid this, GHL

instead uses a smaller hardware LRU supplemented with a

large in-memory FIFO. The hardware LRU is implemented

as a double-linked list stored in SRAM. Block addresses are

written to the in-memory FIFO once they are evicted from

the LRU list. GHL also adds a pointer to each block in the

cache to identify its location in the LRU list.

In theory, the global history list improves the timelines of

prefetches by prioritizing the most recently accessed blocks.

However, separating the list into a small on-chip LRU

and an in-memory FIFO creates many duplicate entries

in the in-memory FIFO. For our workloads, on average

approximately half of the addresses stored by GHL were

redundant.

In this work, we scaled the GHL structures in proportion

to the size of the L2 cache size. All simulations use a 2K

entry on-chip LRU structure and a 30K in-memory FIFO.

4.3 Performance and Bandwidth

Figure 3 compares the speedup and bandwidth for

the multiprogrammed workloads when using just a stride

prefetcher, or a stride prefetcher combined with either a

GHL or SCAN-8 prefetcher. A breakdown of the amount

of memory bandwidth per instruction is shown for demand

misses ( ), useful prefetches ( ), wasted prefetches ( ),

and prefetcher metadata ( ). The bandwidth is measured

relative to the demand misses for the baseline system

with no prefetcher. The figure also shows speedup over

the baseline. Section 3 provides additional details of the

simulated processor, the workloads, and our evaluation

methodology.

GHL and SCAN-8 both increase bandwidth by over 50%.

While this may be less than the naïve approach it is still

significant. In the worst case, for the Low-MPKI workload,

SCAN-8 increases the bandwidth by 2.5× over the baseline

system while achieving only a 3.5% speedup.
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prefetches.

For GHL, meta-data increases the bandwidth per instruc-

tion by an average of 34%. This overhead is a result

of continual writes to memory as blocks are evicted from

the on-chip hardware LRU structure and added to the in-

memory FIFO.

SCAN-8 has a lower meta-data overhead since it only

writes the prefetch list to memory once for each context

switch. However, SCAN-8 incurs a larger overhead for

prefetching more useless cache blocks compared to GHL.

SCAN-8 prefetches half of each cache set (see Section 3.1),

so it consistently attempts to prefetch 1 MB of data for

workloads with sufficiently large working sets. GHL tracks

up to 32K cache blocks containing 2 MB of data, but the

majority of the block addresses are stored in an in-memory

FIFO that can contain many duplicate entries. As a result,

we found that for our workloads, GHL attempted to prefetch

fewer unique cache blocks on average than SCAN-8, even

though it could prefetch up to twice as much data in an ideal

scenario. Unfortunately, much of the extra data prefetched

by SCAN-8 was never used and resulted in an average

77% bandwidth overhead per instruction. These results

demonstrate the importance of new prefetching techniques

that reduce overhead by prefetching fewer useless blocks

and by using less bandwidth to read and write prefetcher

meta-data.

5 Eliminating Useless Prefetches

A significant portion of the overhead of cache restoration

prefetchers comes from prefetching useless blocks. A

filtering mechanism that predicts whether a block will be

useful could reduce this overhead. While an ideal predictor

would filter all useless blocks and only useless blocks, any

realistic predictor will filter some useful blocks and miss

some useless blocks. Thus, a good predictor needs to

balance among these two cases, be simple to implement,

and have low cost. This section proposes such a predictor.

To identify blocks that are likely to be useful to prefetch,

we use the intuition that history tends to repeat itself.

Specifically, we observe that blocks in the cache that have

experienced cache hits are likely to see additional reuse in

the future, while blocks that have never seen any cache hits

are less likely to experience future reuse. Although this may

not be true of all blocks, it can serve as a first-order filter to

predict which blocks are unlikely to be useful if they are

prefetched after a partition switch.

To illustrate the validity of this intuition, Figure 4 depicts

the contents of the cache right before a partition switch,

with each block being classified based on two criteria.

First, blocks are classed as being either Useful or Useless

depending on whether or not they would experience a cache

hit if they were still present in the cache the next time

the same partition executes, i.e., it would be useful to

prefetch these blocks. Second, blocks are classified based

on whether they have experienced any reuse while in the

cache. Blocks which have experienced a cache hit since the

last partition switch are indicated as having Block Reuse,

and blocks that have not experienced any cache hits in the

last-level cache have No Reuse.

The top ( ) and bottom ( ) portions of each bar validate

our intuition. On average blocks that experience reuse are

more likely to be useful prefetches ( ) rather than useless

prefetches ( ). Of course, not all applications follow this

trend, for instance most blocks with block reuse for swim

would be useless prefetches. However, on average 73% of

blocks with cache reuse would be useful to prefetch.

Based on this intuition and the trends shown in Figure 4,

we propose two new cache restoration prefetchers:

GHL-HITS This prefetcher works the same as the original

GHL prefetcher proposed by Cui and Sair [8], except

that block address are only recorded in the history list

when a cache hit occurs. Similarly, the LRU order is

only changed on cache hits. Cache misses have no

effect on the history list.

SCAN-8-HITS This prefetcher scans the cache after each

partition switch and records all of the blocks in

the cache that have experienced cache hits. Block

addresses are written to a prefetch list stored in a

reserved portion of main memory. The next time

that partition executes, the prefetch list is read from

memory and the blocks are prefetched into the cache.

Each block in the cache requires an additional reuse

bit to indicate which blocks have experienced cache

hits, and a partition id field to identify which partition

brought the block into the cache. This simplifies the

process of scanning the cache for outgoing blocks
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Figure 4. Breakdown of blocks stored in the cache at the end of a partition switch.
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Figure 5. Fair speedup and breakdown of per-instruction

memory bandwidth.

while simultaneously executing and prefetching blocks

for the new partition.

5.1 Reuse Filtering Benefits

Figure 5 shows that reuse-based filtering significantly

reduces the bandwidth overhead of the GHL and SCAN-8

prefetchers with only a small reduction in their benefits.

Switching from GHL to GHL-HITS reduces the bandwidth

overhead from 68% to 41% while only reducing the mean

speedup from 9.1% to 8.8%. Similarly, switching from

SCAN-8 to SCAN-8-HITS reduces the bandwidth overhead

from 91% to 31% while only reducing the mean speedup

from 10.9% to 10.2%.

In absolute terms, the savings when switching from

SCAN-8 to SCAN-8-HITS are as much as 1 GB/s for some

applications, and 0.43 GB/s on average. For GHL, the

savings of switching to GHL-HITS are as high as 1.16 GB/s

for some applications, with an average of 0.30 GB/s in

bandwidth savings across all applications. Note that for

the high-MPKI workload all cache restoration prefetchers

perform worse than the simple stride prefetcher which uses

less bandwidth and offers better performance.

Reuse-based filtering significantly reduces the amount of

bandwidth wasted on useless prefetches. However, it does

not reduce the amount of bandwidth required for reading

and writing the prefetcher meta-data. As the number of

useless prefetches is reduced, the meta-data becomes the

dominant source of bandwidth overhead. Assuming 46-bit

physical addresses and 64-byte cache blocks, every prefetch

incurs an overhead of 10 bytes of bandwidth to first write

the block address to memory and then read it back again

before it can be prefetched.

6 RECAP: Region-Based Cache Restoration

Prefetcher

To reduce the harmful effects of cache pollution caused

by multiprogrammed virtualization, we propose RECAP, a

region-based cache restoration prefetcher. RECAP attempts

to conserve bandwidth through two key mechanisms. First,

it uses a space-efficient representation of block addresses

when writing and reading the list of blocks to prefetch for a

partition. Second, it predicts which blocks are most likely to

be useful after a partition switch and only prefetches those

blocks. By conserving bandwidth, RECAP minimizes the

power consumption and contention for off-chip memory.

RECAP uses a simple, space-efficient representation of

the blocks to prefetch that reduces the metadata overhead

by 7× on average compared to the previous approaches.

RECAP groups data blocks into contiguous 4 KB regions of

memory2 and uses bit-vectors to identify individual blocks

within a given region. Assuming 64-byte cache blocks and

46-bit physical addresses, in the best-case scenario up to

2We use 4 KB regions because it is a common page size; we did not

explore other region sizes for this work.
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required for RECAP are highlighted in grey.

64 cache blocks can be identified using a 34-bit region tag

and a 64-bit vector for an overhead of 1.5 bits per block.

In practice, for the workloads studied the regions present

in the cache at the time of a partition switch contained an

average of 17 blocks each. This results in an overhead of

5.6 bits per block, seven times less than the 40 bits required

for simply listing the block addresses. Thus, RECAP’s

approach significantly reduces the bandwidth to read or

write a list of blocks to prefetch, and it also allows a

relatively small hardware structure to track a large number

of cache blocks to consider for potential prefetching.

The region-based design of RECAP enables two types of

reuse-based prefetch filtering. Similar to the GHL-HITS and

SCAN-HITS prefetchers proposed in Section 5, RECAP can

restrict prefetches to blocks that experience block reuse by

only track cache hits. In addition, RECAP can use a more

conservative filtering approach by prefetch blocks based on

region reuse which uses the intuition that nearby blocks

likely experience similar reuse patterns. By prefetching all

blocks that have been accessed from any region where at

least one block has experienced reuse, RECAP can prefetch

some additional blocks that would not have been prefetched

using strict block reuse filtering.

The remainder of this section overviews the RECAP de-

sign (Section 6.1), describes its key structures (Section 6.2),

details its operation (Section 6.3), and compares it against

other prefetchers (Section 6.4).

6.1 Highlevel Design of RECAP

RECAP exploits common behavior within coarse-grain

regions of memory to provide a space-efficient structure that

tracks a sub-set of memory blocks that are very likely to

be accessed after a partition switch. The block diagram in

Figure 6 illustrates how RECAP performs the following key

tasks:

1. Track accesses to individual blocks using the Region

Access Table.

2. Track either region reuse or individual block reuse.

3. Save selected regions in a Region Prefetch List in

memory when a partition is switched out.

4. Read the region prefetch list from memory, and issue

prefetches when a partition is rescheduled.

By combining coarse-grain and fine-grain information,

RECAP accomplishes these tasks with low memory and

bandwidth overhead and small hardware structures. With

the same basic design, RECAP can be adapted to prefetch

either all blocks, only blocks with block reuse, or only

blocks with region reuse.

6.2 RECAP Organization

As shown in Figure 6, RECAP consists of four key

components: a region access table (RAT), a set of region

prefetch lists (RPLs), a small write-back buffer, and a small

prefetch FIFO.

RECAP tracks regions using the region access table

(RAT). Each entry in this set-associative lookup structure

contains a region tag, a valid bit (V), an optional reuse bit

(R), and a presence vector containing one bit for each cache

block in a region. All designs explored in this work use

64 byte cache blocks and 4 KB regions, resulting in 64-

bit presence vectors. The size of the RAT is determined in

proportion to the size of the cache and the average amount

of spatial locality. Our design space explorations have

shown that a reasonable RAT contains two region entries

for every 4 KB of cache capacity. For a 2 MB cache, this

results in a 1024 entry RAT, which requires roughly 12 KB

of on-chip storage. This work uses an 8-way set-associative

RAT.

RECAP uses a set of region prefetch lists (RPLs) stored

in main memory. Each RPL contains a list of region

tag and presence vector pairs similar to the RAT entries.

The hypervisor, or partition manager, is responsible for

allocating RPLs in a reserved portion of main memory,

and for assigning one RPL for every partition that will use

the RECAP mechanism. The hypervisor should allocate

enough memory for each RPL so it can contain as many

entries as the RAT.

Finally, RECAP uses two small on-chip buffers. The

write-back buffer and prefetch FIFO both contain 64-byte

buffers used to pack and un-pack 98-bit RPL entries as they

are written to and read from main memory. This paper

conservatively used a 32 entry write-back buffer and a four

entry prefetch FIFO, which require a total of 2.25 KB of

on-chip storage.

6.3 RECAP Operation

The hypervisor, or partition manager, software is

responsible for initiating the operation of RECAP. When

RECAP is first activated, it resets all valid bits, reuse bits,

and presence vectors in the RAT.
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Figure 7. Fair speedup and breakdown of per-instruction memory bandwidth.

Each cache access searches the RAT for an entry with

a matching region tag. If none is found, then the least

recently used RAT entry (or an invalid entry, if one exists) is

allocated to track the encompassing region. Once an entry

has been selected, the corresponding presence vector bit is

set. If the access results in a cache hit, then the RAT entry’s

reuse bit is set. This procedure allows RECAP to prefetch

all blocks that have region reuse. To prefetch all blocks, the

same procedure is followed except no reuse bit is required.

To only prefetch blocks with block reuse, the reuse bit is not

required, and the process of accessing the RAT and setting

the presence bit is only performed for cache hits.

This process repeats for every demand request received

by the cache until the hypervisor initiates a partition switch.

On a partition switch, the hypervisor notifies RECAP and

provides the address of the RPLs for the outgoing and

incoming partitions, if they exist.

Once the hypervisor has finished these partition switch

operations, normal execution begins for the newly active

partition. In parallel with the execution of the new partition,

RECAP begins reading RPL entries in 64-byte blocks into

the prefetch FIFO. RECAP issues prefetches for all blocks

marked present in each RPL entry. As the blocks are

prefetched, RPL entries are removed from the FIFO and

new RPL entries are read from memory as space becomes

available. This process continues until all RPL entries

have been read and all prefetches have been issued. To

avoid excessive bandwidth use, RECAP limits the number

of outstanding prefetches.

While RECAP is issuing prefetches from the prefetch

FIFO, it simultaneously scans the RAT and writes the

contents to the RPL for the outgoing partition. RECAP

scans every entry in the RAT, and copies valid entries to

the write-back buffer. To prefetch only blocks with region

reuse, only RAT entries with their reuse bits set are copied,

otherwise all RAT entries are copied. The write-back buffer

collects entries into 64-byte blocks, and writes them back

to memory. To reduce memory contention, write-back

requests have a lower priority than demand requests.

Normally, any L2 cache accesses from the new partition

would update the RAT, causing contention with the process

of scanning and writing back the RAT entries. To avoid

this contention, RECAP discards any updates while it scans

the RAT. Once the scan completes, regular RAT operation

continues as described above. For the workloads studied

here, the scan process requires around 20K cycles on

average and less than 1% of RAT updates are discarded, and

no performance is lost as a result.

6.4 RECAP Performance and Bandwidth

We evaluate three RECAP designs: RECAP-ALL tracks

all block accesses, and RECAP-BLOCK and RECAP-

REGION implement block and region reuse filtering

resepectively. All three designs use a 1K-entry 8-way set-

associative RAT.

All three RECAP techniques out-perform the previously

proposed prefetchers and their reuse filtering enhanced

versions proposed in Section 5. This performance

advantage is in part the result of eliminating the metadata

overhead — all RECAP designs incur less than 2%

metadata overhead on average. RECAP-REGION offers the

best bandwidth-performance tradeoff as it provides the best

performance overall and uses only slightly more bandwidth

than RECAP-BLOCK. RECAP-REGION captures all of the

blocks with block reuse, and the additional blocks with

region reuse provide a small performance improvement and

only a small additional bandwidth overhead.
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Figure 8. Reduction in energy-delay product for the L2

cache and memory.

For the High-MPKI workloads, high bandwidth leads to

contention for the memory system and limits the potential

performance improvements. For this workload, previously

proposed techniques are not robust, incurring 1.3% to

2.7% performance losses compared to the stride prefetcher,

even when enhanced with reuse-based filtering. However,

RECAP-REGION is more robust and does not suffer from

this behavior. RECAP-REGION offers the best performance

for the Low-MPKI and Mid-MPKI workloads and is within

0.2% of the best performance for the High-MPKI workload.

6.5 RECAP Power Savings

The bandwidth savings from reuse-based filtering and

the RECAP design result in power savings in the L2 and

memory as illustrated by Figure 8. The L2 cache and

prefetcher power were estimated using CACTI 6.5 and we

used DRAMSim2 to estimate memory power.

Figure 8 shows the reduction in energy-delay product

(EDP) of the L2 cache and memory for all prefetchers

compared to the baseline system. Again, RECAP-REGION

and RECAP-BLOCK are the best designs, with both

reducing EDP by 15%. Past works are not robust and

increase the EDP for the Low-MPKI workload. Our

enhanced versions of these prefetchers do not suffer from

this behavior, but RECAP-REGION and RECAP-BLOCK

reduce EDP even further. Given the speedups shown in

Figure 7, we expect even larger reductions in EDP for the

system as a whole.

7 Storage Overheads

Table 3 describes the hardware overheads of the three

prefetcher configurations compared to the baseline L2 cache

with five state bits per cache line. We assume 46-bit

physical addresses and 3-bit partition IDs, where necessary,

and we ignore the small write-back buffer and prefetch

FIFO common to all designs (these structures increase the

total storage to 14.125 KB). CACTI 6.5 [19] was used

to estimate the area, dynamic energy and leakage power

for all structures assuming a 32nm feature size, including

the different configurations of L2 cache tag arrays. We

only show the estimates for RECAP-REGION since the

three RECAP designs only differ in their use of the reuse

bit, so RECAP-ALL and RECAP-BLOCK would have 128-

bytes less storage and slightly less energy and power

consumption. For the GHL, the dynamic energy assumes

that updating the LRU structure requires six accesses to read

and modify all the necessary entries in the doubly-linked

list.

The RECAP design presented here requires about one

fifth the area of GHL and only slightly more area than the

SCAN-8 prefetcher. RECAP uses significantly less leakage

power than the other designs, and less dynamic energy than

GHL. In addition to these power savings, RECAP saves

more energy by reducing the number of accesses to off-chip

memory .

Table 3. Hardware Overheads for Prefetchers
GHL SCAN-8 RECAP

Storage (KB) 75.25 12 11.625

Area (mm2) 0.143 0.0246 0.0290

Dynamic Energy (pJ) 49.4 3.33 6.66

Leakage Power (mW) 28.6 16.6 4.80

8 Related Work

Early research studying the effects of context-switch in-

duced cache pollution showed that significant performance

impact can occur; it also concluded that these detrimental

effects will get worse with increasing cache sizes and

levels of cache hierarchy [1, 18, 22]. More recently, a

thorough characterization of the cache misses due to context

switches demonstrated that a restored thread is likely to

evict its own lines from the previous context, because such

remaining lines are typically closer to the LRU position in

the stack [17]. To mitigate the impact of context switches on

cache misses, more sophisticated OS scheduling algorithms

were studied [15], especially for context switches due to I/O,

which are predominant in commercial applications.

Prior work on reducing activation and deactivation

latency of the threads focuses on restoring register state

on thread migration, and does not address the impact of

allowing caches to remain “cold” on thread restoration [4,

23].

Section 4 described two cache prefetchers that are

specifically targeted at the cold cache problem caused

by multiprogrammed virtualization [9], and other similar



scenarios [8]. Brown et al. have recently proposed a

related prefetcher that focuses on short running threads that

can result from new execution models such as speculative

multithreading and helper threads [3]. They proposed

prefetching a small number of recently accessed cache

blocks and regions of memory near the current stack pointer

and program counter. This approach was effective at

prefetching sufficient data, “to roughly transfer enough data

to cover the first 1,000 instructions” [3] after a thread

migration, but showed little benefit for execution intervals

of a million instructions or more, making this work ill-

suited to multiprogrammed virtualization environments.

RECAP is not the first work to use coarse-grain

information to improve prefetcher performance. Prior

works have proposed prefetchers based on tracking and

predicting the foot prints of “spatial regions” [5, 7, 16, 21].

However, unlike RECAP, the spatial regions are not tracked

with region addresses, and in fact, partition switches will

interrupt such spatial region tracking for a thread.

9 Conclusion

We propose the RECAP prefetcher to reduce the

cold cache effects caused by multithreaded virtualization.

RECAP exploits coarse-grain patterns in an application’s

memory access stream to restore the cache working

set after a partition switch with very little bandwidth

overhead. Compared to a system with only a stride

prefetcher, RECAP-REGION improves performance by a

mean of 4.5%, and up to 42% for some workloads.

These performance benefits come with average increases in

bandwidth of only 14% and result in an average reduction of

16% in the energy-delay product of the L2 cache and main

memory. RECAP’s hardware structures requires roughly

14.125 KB of on-chip storage.

Compared to other cache restoration prefetchers,

RECAP-REGION uses 12% and 27% less total bandwidth

than GHL and a CRP-like prefetcher, respectively, and

RECAP-REGION reduces the energy-delay product by 13%

and 12%.

We also propose two modified versions of existing

prefetchers that use block reuse filtering to significantly

reduce bandwidth overheads. These modified designs have

little or no hardware overhead and achieve speedups within

1% of the original designs. Our proposed GHL-HITS design

uses 16% less bandwidth and reduces the energy-delay

product by 3.6% compared to original GHL design. Our

proposed SCAN-8-HITS design uses 32% less bandwidth and

reduces the energy-delay product by 7% compared to a

SCAN-8 prefetcher.

One of the key shortcomings of all of the cache

restoration prefetchers discussed in this paper is that none

of them adapt dynamically to workload behaviors. Some

applications receive very little benefit from any amount of

prefetching, and other applications experience increasing

speedups with increasing amounts of prefetching. For

example, a SCAN-12 prefetcher that scans twelve cache

ways has a 5% speedup over SCAN-8 for vpr, but for most

other applications SCAN-12 has lower performance than

SCAN-8 due to the cache pollution and memory contention

caused by prefetching too many blocks. Thus, future work

might explore the potential for dynamic mechanisms to tune

how many blocks to prefetch for each application, rather

than simply prefetching all blocks that are predicted to be

useful.

Additional future work might examine ways for software

to exploit the RECAP mechanism. The RECAP mechanism

relies on the hypervisor to reserve a portion of physical

memory for each prefetch list and to control when to

prefetching occurs. Other software could potentially

leverage RECAP to act as a prefetcher for environments that

do not use multiprogrammed virtualization. In particular,

compilers might be able to leverage RECAP to perform

prefetching for applications that do not benefit from any

known prefetching techniques.
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