
R / Bioconductor for High-Throughput Sequence Analysis

Martin Morgan1 Nicolas Delhomme2

29-30 October, 2012

1mtmorgan@fhcrc.org
2nicolas.delhomme@plantphys.umu.se

mailto:mtmorgan@fhcrc.org
mailto:nicolas.delhomme@plantphys.umu.se

Contents

1 Introduction to R / Bioconductor 2
1.1 Introduction . 2

1.1.1 This workshop . 2
1.1.2 Bioconductor . 2
1.1.3 High-throughput sequence analysis . 3
1.1.4 Statistical programming . 3
1.1.5 Bioconductor for high-throughput sequence analysis 5

1.2 R . 5
1.2.1 R data types . 6
1.2.2 Useful functions . 10
1.2.3 Packages . 14
1.2.4 Help . 15
1.2.5 Efficient scripts . 17
1.2.6 Warnings, errors, and debugging . 20
1.2.7 Resources . 20

2 Sequences and Short Reads 21
2.1 Ranges and Strings . 21

2.1.1 Genomic ranges . 21
2.1.2 Working with strings . 27

2.2 Reads and Alignments . 28
2.2.1 The pasilla data set . 28
2.2.2 Reads and the ShortRead package . 28
2.2.3 Alignments and the Rsamtools package . 32
2.2.4 Alignments and other Bioconductor packages . 38
2.2.5 Resources . 42

3 Annotation of Genes and Genomes 43
3.1 Annotation . 43

3.1.1 Gene-centric annotations with AnnotationDbi . 43
3.1.2 Genome-centric annotations with GenomicFeatures 45
3.1.3 Using biomaRt . 47

4 Estimating Expression over Genes and Exons 49
4.1 Counting reads over known genes and exons . 49

4.1.1 The alignments . 49
4.1.2 The annotation . 50
4.1.3 Discovering novel transcribed regions . 53

4.2 Using easyRNASeq . 55

5 Working with Called Variants 58
5.1 Annotation of Variants . 58

5.1.1 Variant call format (VCF) files . 58
5.1.2 Coding consequences . 60

1

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html

Chapter 1

Introduction to R / Bioconductor

1.1 Introduction

1.1.1 This workshop

This portion of the workshop introduces use of R [35] and Bioconductor [11] for analysis of high-
throughput sequence data. The workshop is structured as a series of short remarks followed by group
exercises. The exercises explore the diversity of tasks for which R / Bioconductor are appropriate, but
are far from comprehensive.

The goals of the workshop are to: (1) develop familiarity with R / Bioconductor software for high-
throughput analysis; (2) expose key statistical issues in the analysis of sequence data; and (3) provide
inspiration and a framework for further independent exploration. An approximate schedule is shown in
Table 1.1.

1.1.2 Bioconductor

Bioconductor is a collection of R packages for the analysis and comprehension of high-throughput genomic
data. Bioconductor started more than 10 years ago. It gained credibility for its statistically rigorous
approach to microarray pre-processing and analysis of designed experiments, and integrative and repro-
ducible approaches to bioinformatic tasks. There are now more than 600 Bioconductor packages for
expression and other microarrays, sequence analysis, flow cytometry, imaging, and other domains. The
Bioconductor web site provides installation, package repository, help, and other documentation.

The Bioconductor web site is at bioconductor.org. Features include:

• Introductory work flows.

• A manifest of Bioconductor packages arranged in BiocViews.

• Annotation (data bases of relevant genomic information, e.g., Entrez gene ids in model organisms,
KEGG pathways) and experiment data (containing relatively comprehensive data sets and their
analysis) packages.

• Mailing lists, including searchable archives, as the primary source of help.

• Course and conference information, including extensive reference material.

• General information about the project.

Table 1.1: Tentative schedule.

R / Bioconductor Introduction and Short Reads
R data types & functions; help; objects; essential packages, efficient programming.
Working with strings, reads and ranges.

Annotation of Genes and Variants
Common work flows; variants in and around genes, amino acid and coding conse-
quences.

2

http://bioconductor.org
bioconductor.org
http://bioconductor.org/help/workflows/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/packages/release/BiocViews.html
http://bioconductor.org/packages/release/data/annotation/
http://bioconductor.org/packages/release/data/experiment/
http://bioconductor.org/help/mailing-list/
http://bioconductor.org/help/course-materials/
http://bioconductor.org/about/

• Package developer resources, including guidelines for creating and submitting new packages.

Exercise 1
Scavenger hunt. Spend five minutes tracking down the following information.

a. From the Bioconductor web site, instructions for installing or updating Bioconductor packages.

b. A list of all packages in the current release of Bioconductor.

c. The URL of the Bioconductor mailing list subscription page.

Solution: Possible solutions from the Bioconductor web site are, e.g., http://bioconductor.org/

install/ (installation instructions), http://bioconductor.org/packages/release/bioc/ (current soft-
ware packages), http://bioconductor.org/help/mailing-list/ (mailing lists).

1.1.3 High-throughput sequence analysis

Recent technological developments introduce high-throughput sequencing approaches. A variety of ex-
perimental protocols and analysis work flows address gene expression, regulation, and encoding of genetic
variants. Experimental protocols produce a large number (tens of millions per sample) of short (e.g.,
35-150, single or paired-end) nucleotide sequences. These are aligned to a reference or other genome.
Analysis work flows use the alignments to infer levels of gene expression (RNA-seq), binding of regulatory
elements to genomic locations (ChIP-seq), or prevalence of structural variants (e.g., SNPs, short indels,
large-scale genomic rearrangements). Sample sizes range from minimal replication (e.g,. 2 samples per
treatment group) to thousands of individuals.

1.1.4 Statistical programming

Many academic and commercial software products are available; why would one use R and Bioconductor?
One answer is to ask about the demands high-throughput genomic data places on effective computational
biology software.

Effective computational biology software High-throughput questions make use of large data sets.
This applies both to the primary data (microarray expression values, sequenced reads, etc.) and also to
the annotations on those data (coordinates of genes and features such as exons or regulatory regions;
participation in biological pathways, etc.). Large data sets place demands on our tools that preclude
some standard approaches, such as spread sheets. Likewise, intricate relationships between data and
annotation, and the diversity of research questions, require flexibility typical of a programming language
rather than a narrowly-enabled graphical user interface.

Analysis of high-throughput data is necessarily statistical. The volume of data requires that it be
appropriately summarized before any sort of comprehension is possible. The data are produced by
advanced technologies, and these introduce artifacts (e.g., probe-specific bias in microarrays; sequence or
base calling bias in RNA-seq experiments) that need to be accommodated to avoid incorrect or inefficient
inference. Data sets typically derive from designed experiments, requiring a statistical approach both to
account for the design and to correctly address the large number of observed values (e.g., gene expression
or sequence tag counts) and small number of samples accessible in typical experiments.

Research needs to be reproducible. Reproducibility is both an ideal of the scientific method, and a
pragmatic requirement. The latter comes from the long-term and multi-participant nature of contempo-
rary science. An analysis will be performed for the initial experiment, revisited again during manuscript
preparation, and revisited during reviews or in determining next steps. Likewise, analyses typically
involve a team of individuals with diverse domains of expertise. Effective collaborations result when
it is easy to reproduce, perhaps with minor modifications, an existing result, and when sophisticated
statistical or bioinformatic analysis can be effectively conveyed to other group members.

Science moves very quickly. This is driven by the novel questions that are the hallmark of discovery,
and by technological innovation and accessibility. Rapidity of scientific development places significant
burdens on software, which must also move quickly. Effective software cannot be too polished, because

3

http://bioconductor.org/developers/
http://bioconductor.org/install/
http://bioconductor.org/install/
http://bioconductor.org/packages/release/bioc/
http://bioconductor.org/help/mailing-list/

that requires that the correct analyses are ‘known’ and that significant resources of time and money
have been invested in developing the software; this implies software that is tracking the trailing edge of
innovation. On the other hand, leading-edge software cannot be too idiosyncratic; it must be usable by
a wider audience than the creator of the software, and fit in with other software relevant to the analysis.

Effective software must be accessible. Affordability is one aspect of accessibility. Another is trans-
parent implementation, where the novel software is sufficiently documented and source code accessible
enough for the assumptions, approaches, practical implementation decisions, and inevitable coding errors
to be assessed by other skilled practitioners. A final aspect of affordability is that the software is actually
usable. This is achieved through adequate documentation, support forums, and training opportunities.

Bioconductor as effective computational biology software What features of R and Bioconductor
contribute to its effectiveness as a software tool?

Bioconductor is well suited to handle extensive data and annotation. Bioconductor ‘classes’ represent
high-throughput data and their annotation in an integrated way. Bioconductor methods use advanced
programming techniques or R resources (such as transparent data base or network access) to minimize
memory requirements and integrate with diverse resources. Classes and methods coordinate complicated
data sets with extensive annotation. Nonetheless, the basic model for object manipulation in R involves
vectorized in-memory representations. For this reason, particular programming paradigms (e.g., block
processing of data streams; explicit parallelism) or hardware resources (e.g., large-memory computers)
are sometimes required when dealing with extensive data.

R is ideally suited to addressing the statistical challenges of high-throughput data. Three examples
include the development of the ‘RMA’ and other normalization algorithm for microarray pre-processing,
use of moderated t-statistics for assessing microarray differential expression, and development of negative
binomial approaches to estimating dispersion read counts necessary for appropriate analysis of RNAseq
designed experiments.

Many of the ‘old school’ aspects of R and Bioconductor facilitate reproducible research. An analysis
is often represented as a text-based script. Reproducing the analysis involves re-running the script;
adjusting how the analysis is performed involves simple text-editing tasks. Beyond this, R has the notion
of a ‘vignette’, which represents an analysis as a LATEX document with embedded R commands. The
R commands are evaluated when the document is built, thus reproducing the analysis. The use of
LATEX means that the symbolic manipulations in the script are augmented with textual explanations and
justifications for the approach taken; these include graphical and tabular summaries at appropriate places
in the analysis. R includes facilities for reporting the exact version of R and associated packages used
in an analysis so that, if needed, discrepancies between software versions can be tracked down and their
importance evaluated. While users often think of R packages as providing new functionality, packages
are also used to enhance reproducibility by encapsulating a single analysis. The package can contain
data sets, vignette(s) describing the analysis, R functions that might have been written, scripts for key
data processing stages, and documentation (via standard R help mechanisms) of what the functions,
data, and packages are about.

The Bioconductor project adopts practices that facilitate reproducibility. Versions of R and Biocon-
ductor are released twice each year. Each Bioconductor release is the result of development, in a separate
branch, during the previous six months. The release is built daily against the corresponding version of
R on Linux, Mac, and Windows platforms, with an extensive suite of tests performed. The biocLite

function ensures that each release of R uses the corresponding Bioconductor packages. The user thus
has access to stable and tested package versions. R and Bioconductor are effective tools for reproducible
research.

R and Bioconductor exist on the leading portion of the software life cycle. Contributors are primarily
from academic institutions, and are directly involved in novel research activities. New developments are
made available in a familiar format, i.e., the R language, packaging, and build systems. The rich set
of facilities in R (e.g., for advanced statistical analysis or visualization) and the extensive resources in
Bioconductor (e.g., for annotation using third-party data such as Biomart or UCSC genome browser
tracks) mean that innovations can be directly incorporated into existing work flows. The ‘development’
branches of R and Bioconductor provide an environment where contributors can explore new approaches
without alienating their user base.

R and Bioconductor also fair well in terms of accessibility. The software is freely available. The source

4

Table 1.2: Selected Bioconductor packages for high-throughput sequence analysis.

Concept Packages
Data representation IRanges, GenomicRanges, GenomicFeatures, Biostrings,

BSgenome, girafe[41].
Input / output ShortRead[31] (fastq), Rsamtools (bam), rtracklayer (gff, wig, bed),

VariantAnnotation (vcf), R453Plus1Toolbox[21] (454).
Annotation GenomicFeatures, ChIPpeakAnno, VariantAnnotation.
Alignment Rsubread, Biostrings.
Visualization ggbio[44], Gviz.
Quality assessment qrqc, seqbias[18], ReQON , htSeqTools, TEQC [29], Rolexa, Short-

Read.
RNA-seq BitSeq[12], cqn[16], cummeRbund, DESeq[1], DEXSeq[2],

EDASeq[36], edgeR[37], gage,[28] goseq[45], iASeq, tweeDEseq.
ChIP-seq, etc. BayesPeak[5], baySeq, ChIPpeakAnno, chipseq, ChIPseqR, ChIP-

sim, CSAR,[33] DiffBind[38], MEDIPS, mosaics, NarrowPeaks, nu-
cleR[9], PICS[46], PING, REDseq, Repitools, TSSi.

Motifs BCRANK , cosmo, cosmoGUI , MotIV , seqLogo, rGADEM .
3C, etc. HiTC [40], r3Cseq.
Copy number cn.mops[20], CNAnorm[14], exomeCopy , seqgmentSeq.
Microbiome phyloseq,[34] DirichletMultinomial[17], clstutils, manta, mcaGUI .
Work flows ArrayExpressHTS, Genominator[4], easyRNASeq[8], oneChannel-

GUI , rnaSeqMap[24].
Database SRAdb.

code is easily and fully accessible for critical evaluation. The R packaging and check system requires that
all functions are documented. Bioconductor requires that each package contain vignettes to illustrate
the use of the software. There are very active R and Bioconductor mailing lists for immediate support,
and regular training and conference activities for professional development.

1.1.5 Bioconductor for high-throughput sequence analysis

Table 1.2 enumerates many of the packages available for sequence analysis. The table includes packages
for representing sequence-related data (e.g., GenomicRanges, Biostrings), as well as domain-specific
analysis such as RNA-seq (e.g., edgeR, DEXSeq), ChIP-seq (e.g,. ChIPpeakAnno, DiffBind), and SNPs
and copy number variation (e.g., genoset, ggtools, VariantAnnotation).

1.2 R

R is an open-source statistical programming language. It is used to manipulate data, to perform sta-
tistical analysis, and to present graphical and other results. R consists of a core language, additional
‘packages’ distributed with the R language, and a very large number of packages contributed by the
broader community. Packages add specific functionality to an R installation. R has become the primary
language of academic statistical analysis, and is widely used in diverse areas of research, government,
and industry.

R has several unique features. It has a surprisingly ‘old school’ interface: users type commands
into a console; scripts in plain text represent work flows; tools other than R are used for editing and
other tasks. R is a flexible programming language, so while one person might use functions provided
by R to accomplish advanced analytic tasks, another might implement their own functions for novel
data types. As a programming language, R adopts syntax and grammar that differ from many other
languages: objects in R are ‘vectors’, and functions are ‘vectorized’ to operate on all elements of the
object; R objects have ‘copy on change’ and ‘pass by value’ semantics, reducing unexpected consequences
for users at the expense of less efficient memory use; common paradigms in other languages, such as the
‘for’ loop, are encountered much less commonly in R. Many authors contribute to R, so there can be
a frustrating inconsistency of documentation and interface. R grew up in the academic community, so

5

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/girafe.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ggbio.html
http://bioconductor.org/packages/release/bioc/html/Gviz.html
http://bioconductor.org/packages/release/bioc/html/qrqc.html
http://bioconductor.org/packages/release/bioc/html/seqbias.html
http://bioconductor.org/packages/release/bioc/html/ReQON.html
http://bioconductor.org/packages/release/bioc/html/htSeqTools.html
http://bioconductor.org/packages/release/bioc/html/TEQC.html
http://bioconductor.org/packages/release/bioc/html/Rolexa.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/BitSeq.html
http://bioconductor.org/packages/release/bioc/html/cqn.html
http://bioconductor.org/packages/release/bioc/html/cummeRbund.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/EDASeq.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/gage.html
http://bioconductor.org/packages/release/bioc/html/goseq.html
http://bioconductor.org/packages/release/bioc/html/iASeq.html
http://bioconductor.org/packages/release/bioc/html/tweeDEseq.html
http://bioconductor.org/packages/release/bioc/html/BayesPeak.html
http://bioconductor.org/packages/release/bioc/html/baySeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/chipseq.html
http://bioconductor.org/packages/release/bioc/html/ChIPseqR.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/ChIPsim.html
http://bioconductor.org/packages/release/bioc/html/CSAR.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/MEDIPS.html
http://bioconductor.org/packages/release/bioc/html/mosaics.html
http://bioconductor.org/packages/release/bioc/html/NarrowPeaks.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/nucleR.html
http://bioconductor.org/packages/release/bioc/html/PICS.html
http://bioconductor.org/packages/release/bioc/html/PING.html
http://bioconductor.org/packages/release/bioc/html/REDseq.html
http://bioconductor.org/packages/release/bioc/html/Repitools.html
http://bioconductor.org/packages/release/bioc/html/TSSi.html
http://bioconductor.org/packages/release/bioc/html/BCRANK.html
http://bioconductor.org/packages/release/bioc/html/cosmo.html
http://bioconductor.org/packages/release/bioc/html/cosmoGUI.html
http://bioconductor.org/packages/release/bioc/html/MotIV.html
http://bioconductor.org/packages/release/bioc/html/seqLogo.html
http://bioconductor.org/packages/release/bioc/html/rGADEM.html
http://bioconductor.org/packages/release/bioc/html/HiTC.html
http://bioconductor.org/packages/release/bioc/html/r3Cseq.html
http://bioconductor.org/packages/release/bioc/html/cn.mops.html
http://bioconductor.org/packages/release/bioc/html/CNAnorm.html
http://bioconductor.org/packages/release/bioc/html/exomeCopy.html
http://bioconductor.org/packages/release/bioc/html/seqgmentSeq.html
http://bioconductor.org/packages/release/bioc/html/phyloseq.html
http://bioconductor.org/packages/release/bioc/html/DirichletMultinomial.html
http://bioconductor.org/packages/release/bioc/html/clstutils.html
http://bioconductor.org/packages/release/bioc/html/manta.html
http://bioconductor.org/packages/release/bioc/html/mcaGUI.html
http://bioconductor.org/packages/release/bioc/html/ArrayExpressHTS.html
http://bioconductor.org/packages/release/bioc/html/Genominator.html
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/oneChannelGUI.html
http://bioconductor.org/packages/release/bioc/html/rnaSeqMap.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/ChIPpeakAnno.html
http://bioconductor.org/packages/release/bioc/html/DiffBind.html
http://bioconductor.org/packages/release/bioc/html/genoset.html
http://bioconductor.org/packages/release/bioc/html/ggtools.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html

authors have not shied away from trying new approaches. Common statistical analysis functions are very
well-developed.

1.2.1 R data types

Opening an R session results in a prompt. The user types instructions at the prompt. Here is an example:

> ## assign values 5, 4, 3, 2, 1 to variable 'x'
> x <- c(5, 4, 3, 2, 1)

> x

[1] 5 4 3 2 1

The first line starts with a # to represent a comment; the line is ignored by R. The next line creates
a variable x. The variable is assigned (using <-, we could have used = almost interchangeably) a value.
The value assigned is the result of a call to the c function. That it is a function call is indicated by the
symbol named followed by parentheses, c(). The c function takes zero or more arguments, and returns
a vector. The vector is the value assigned to x. R responds to this line with a new prompt, ready for the
next input. The next line asks R to display the value of the variable x. R responds by printing [1] to
indicate that the subsequent number is the first element of the vector. It then prints the value of x.

R has many features to aid common operations. Entering sequences is a very common operation, and
expressions of the form 2:4 create a sequence from 2 to 4. Sub-setting one vector by another is enabled
with [. Here we create an integer sequence from 2 to 4, and use the sequence as an index to select the
second, third, and fourth elements of x

> x[2:4]

[1] 4 3 2

Index values can be repeated, and if outside the domain of x return the special value NA. Negative index
values remove elements from the vector. Logical and character vectors (described below) can also be
used for sub-setting.

R functions operate on variables. Functions are usually vectorized, acting on all elements of their
argument and obviating the need for explicit iteration. Functions can generate warnings when performing
suspect operations, or errors if evaluation cannot proceed; try log(-1).

> log(x)

[1] 1.61 1.39 1.10 0.69 0.00

Essential data types R has a number of standard data types, to represent integer, numeric (floating
point), complex, character, logical (Boolean), and raw (byte) data. It is possible to convert between
data types, and to discover the type or mode of a variable.

> c(1.1, 1.2, 1.3) # numeric

[1] 1.1 1.2 1.3

> c(FALSE, TRUE, FALSE) # logical

[1] FALSE TRUE FALSE

> c("foo", "bar", "baz") # character, single or double quote ok

[1] "foo" "bar" "baz"

> as.character(x) # convert 'x' to character

[1] "5" "4" "3" "2" "1"

6

> typeof(x) # the number 5 is numeric, not integer

[1] "double"

> typeof(2L) # append 'L' to force integer

[1] "integer"

> typeof(2:4) # ':' produces a sequence of integers

[1] "integer"

R includes data types particularly useful for statistical analysis, including factor to represent categories
and NA (used in any vector) to represent missing values.

> sex <- factor(c("Male", "Female", NA), levels=c("Female", "Male"))

> sex

[1] Male Female <NA>

Levels: Female Male

Lists, data frames, and matrices All of the vectors mentioned so far are homogeneous, consisting
of a single type of element. A list can contain a collection of different types of elements and, like all
vectors, these elements can be named to create a key-value association.

> lst <- list(a=1:3, b=c("foo", "bar"), c=sex)

> lst

$a

[1] 1 2 3

$b

[1] "foo" "bar"

$c

[1] Male Female <NA>

Levels: Female Male

Lists can be subset like other vectors to get another list, or subset with [[to retrieve the actual list
element; as with other vectors, sub-setting can use names

> lst[c(3, 1)] # another list

$c

[1] Male Female <NA>

Levels: Female Male

$a

[1] 1 2 3

> lst[["a"]] # the element itself, selected by name

[1] 1 2 3

A data.frame is a list of equal-length vectors, representing a rectangular data structure not unlike a
spread sheet. Each column of the data frame is a vector, so data types must be homogeneous within a
column. A data.frame can be subset by row or column, and columns can be accessed with $ or [[.

> df <- data.frame(age=c(27L, 32L, 19L),

+ sex=factor(c("Male", "Female", "Male")))

> df

7

age sex

1 27 Male

2 32 Female

3 19 Male

> df[c(1, 3),]

age sex

1 27 Male

3 19 Male

> df[df$age > 20,]

age sex

1 27 Male

2 32 Female

A matrix is also a rectangular data structure, but subject to the constraint that all elements are the
same type. A matrix is created by taking a vector, and specifying the number of rows or columns the
vector is to represent. On sub-setting, R coerces a single column data.frame or single row or column
matrix to a vector if possible; use drop=FALSE to stop this behavior.

> m <- matrix(1:12, nrow=3)

> m

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

> m[c(1, 3), c(2, 4)]

[,1] [,2]

[1,] 4 10

[2,] 6 12

> m[, 3]

[1] 7 8 9

> m[, 3, drop=FALSE]

[,1]

[1,] 7

[2,] 8

[3,] 9

An array is a data structure for representing Homogeneous, rectangular data in higher dimensions.

S3 and S4 classes More complicated data structures are represented using the ‘S3’ or ‘S4’ object
system. Objects are often created by functions (for example, lm, below), with parts of the object extracted
or assigned using accessor functions. The following generates 1000 random normal deviates as x, and
uses these to create another 1000 deviates y that are linearly related to x but with some error. We fit a
linear regression using a ‘formula’ to describe the relationship between variables, summarize the results
in a familiar ANOVA table, and access fit (an S3 object) for the residuals of the regression, using these
as input first to the var (variance) and then sqrt (square-root) functions. Objects can be interrogated
for their class.

8

> x <- rnorm(1000, sd=1)

> y <- x + rnorm(1000, sd=.5)

> fit <- lm(y ~ x) # formula describes linear regression

> fit # an 'S3' object

Call:

lm(formula = y ~ x)

Coefficients:

(Intercept) x

0.006 1.004

> anova(fit)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 1004 1004 4104 <2e-16 ***

Residuals 998 244 0

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

> sqrt(var(resid(fit))) # residuals accessor and subsequent transforms

[1] 0.49

> class(fit)

[1] "lm"

Many Bioconductor packages implement S4 objects to represent data. S3 and S4 systems are quite
different from a programmer’s perspective, but fairly similar from a user’s perspective: both systems en-
capsulate complicated data structures, and allow for methods specialized to different data types; accessors
are used to extract information from the objects.

Functions R functions accept arguments, and return values. Arguments can be required or optional.
Some functions may take variable numbers of arguments, e.g., the columns in a data.frame

> y <- 5:1

> log(y)

[1] 1.61 1.39 1.10 0.69 0.00

> args(log) # arguments 'x' and 'base'; see ?log

function (x, base = exp(1))

NULL

> log(y, base=2) # 'base' is optional, with default value

[1] 2.3 2.0 1.6 1.0 0.0

> try(log()) # 'x' required; 'try' continues even on error

> args(data.frame) # ... represents variable number of arguments

function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,

stringsAsFactors = default.stringsAsFactors())

NULL

9

Arguments can be matched by name or position. If an argument appears after ..., it must be named.

> log(base=2, y) # match argument 'base' by name, 'x' by position

[1] 2.3 2.0 1.6 1.0 0.0

A function such as anova is a generic that provides an overall signature but dispatches the actual
work to the method corresponding to the class(es) of the arguments used to invoke the generic. A generic
may have fewer arguments than a method, as with the S3 function anova and its method anova.glm.

> args(anova)

function (object, ...)

NULL

> args(anova.glm)

function (object, ..., dispersion = NULL, test = NULL)

NULL

The ... argument in the anova generic means that additional arguments are possible; the anova generic
hands these arguments to the method it dispatches to.

1.2.2 Useful functions

R has a very large number of functions. The following is a brief list of those that might be commonly
used and particularly useful.

dir, read.table (and friends), scan List files in a directory, read spreadsheet-like data into R, effi-
ciently read Homogeneous data (e.g., a file of numeric values) to be represented as a matrix.

c, factor, data.frame, matrix Create a vector, factor, data frame or matrix.
summary, table, xtabs Summarize, create a table of the number of times elements occur in a vector,

cross-tabulate two or more variables.
t.test, aov, lm, anova, chisq.test Basic comparison of two (t.test) groups, or several groups via anal-

ysis of variance / linear models (aov output is probably more familiar to biologists), or compare
simpler with more complicated models (anova); χ2 tests.

dist, hclust Cluster data.
plot Plot data.
ls, str, library, search List objects in the current (or specified) workspace, or peak at the structure of

an object; add a library to or describe the search path of attached packages.
lapply, sapply, mapply, aggregate Apply a function to each element of a list (lapply, sapply), to elements

of several lists (mapply), or to elements of a list partitioned by one or more factors (aggregate).
with Conveniently access columns of a data frame or other element without having to repeat the name

of the data frame.
match, %in% Report the index or existence of elements from one vector that match another.
split, cut Split one vector by an equal length factor, cut a single vector into intervals encoded as levels

of a factor.
strsplit, grep, sub Operate on character vectors, splitting it into distinct fields, searching for the oc-

currence of a patterns using regular expressions (see ?regex, or substituting a string for a regular
expression.

install.packages Install a package from an on-line repository into your R.
traceback, debug, browser Report the sequence of functions under evaluation at the time of the error;

enter a debugger when a particular function or statement is invoked.

See the help pages (e.g., ?lm) and examples (example(match)) for each of these functions

Exercise 2
This exercise uses data describing 128 microarray samples as a basis for exploring R functions. Covariates
such as age, sex, type, stage of the disease, etc., are in a data file pData.csv.

10

The following command creates a variable pdataFiles that is the location of a comma-separated value
(‘csv’) file to be used in the exercise. A csv file can be created using, e.g., ‘Save as...’ in spreadsheet
software.

> pdataFile <- system.file(package="EMBO2012", "extdata", "pData.csv")

Input the csv file using read.table, assigning the input to a variable pdata. Use dim to find out
the dimensions (number of rows, number of columns) in the object. Are there 128 rows? Use names or
colnames to list the names of the columns of pdata. Use summary to summarize each column of the data.
What are the data types of each column in the data frame?

A data frame is a list of equal length vectors. Select the ‘sex’ column of the data frame using [[or
$. Pause to explain to your neighbor why this sub-setting works. Since a data frame is a list, use sapply

to ask about the class of each column in the data frame. Explain to your neighbor what this produces,
and why.

Use table to summarize the number of males and females in the sample. Consult the help page ?table

to figure out additional arguments required to include NA values in the tabulation.
The mol.biol column summarizes molecular biological attributes of each sample. Use table to sum-

marize the different molecular biology levels in the sample. Use %in% to create a logical vector of the
samples that are either BCR/ABL or NEG. Subset the original phenotypic data to contain those samples that
are BCR/ABL or NEG.

After sub-setting, what are the levels of the mol.biol column? Set the levels to be BCR/ABL and NEG,
i.e., the levels in the subset.

One would like covariates to be similar across groups of interest. Use t.test to assess whether BCR/ABL
and NEG have individuals with similar age. To do this, use a formula that describes the response age in
terms of the predictor mol.biol. If age is not independent of molecular biology, what complications might
this introduce into subsequent analysis? Use

Solution: Here we input the data and explore basic properties.

> pdata <- read.table(pdataFile)

> dim(pdata)

[1] 128 21

> names(pdata)

[1] "cod" "diagnosis" "sex" "age"

[5] "BT" "remission" "CR" "date.cr"

[9] "t.4.11." "t.9.22." "cyto.normal" "citog"

[13] "mol.biol" "fusion.protein" "mdr" "kinet"

[17] "ccr" "relapse" "transplant" "f.u"

[21] "date.last.seen"

> summary(pdata)

cod diagnosis sex age BT remission

10005 : 1 1/15/1997 : 2 F :42 Min. : 5 B2 :36 CR :99

1003 : 1 1/29/1997 : 2 M :83 1st Qu.:19 B3 :23 REF :15

1005 : 1 11/15/1997: 2 NA's: 3 Median :29 B1 :19 NA's:14
1007 : 1 2/10/1998 : 2 Mean :32 T2 :15

1010 : 1 2/10/2000 : 2 3rd Qu.:46 B4 :12

11002 : 1 (Other) :116 Max. :58 T3 :10

(Other):122 NA's : 2 NA's :5 (Other):13

CR date.cr t.4.11. t.9.22.

CR :96 11/11/1997: 3 Mode :logical Mode :logical

DEATH IN CR : 3 1/21/1998 : 2 FALSE:86 FALSE:67

DEATH IN INDUCTION: 7 10/18/1999: 2 TRUE :7 TRUE :26

REF :15 12/7/1998 : 2 NA's :35 NA's :35

11

NA's : 7 1/17/1997 : 1

(Other) :87

NA's :31

cyto.normal citog mol.biol fusion.protein mdr

Mode :logical normal :24 ALL1/AF4:10 p190 :17 NEG :101

FALSE:69 simple alt. :15 BCR/ABL :37 p190/p210: 8 POS : 24

TRUE :24 t(9;22) :12 E2A/PBX1: 5 p210 : 8 NA's: 3

NA's :35 t(9;22)+other:11 NEG :74 NA's :95

complex alt. :10 NUP-98 : 1

(Other) :21 p15/p16 : 1

NA's :35

kinet ccr relapse transplant

dyploid:94 Mode :logical Mode :logical Mode :logical

hyperd.:27 FALSE:74 FALSE:35 FALSE:91

NA's : 7 TRUE :26 TRUE :65 TRUE :9

NA's :28 NA's :28 NA's :28

f.u date.last.seen

REL :61 1/7/1998 : 2

CCR :23 12/15/1997: 2

BMT / DEATH IN CR: 4 12/31/2002: 2

BMT / CCR : 3 3/29/2001 : 2

DEATH IN CR : 2 7/11/1997 : 2

(Other) : 7 (Other) :83

NA's :28 NA's :35

A data frame can be subset as if it were a matrix, or a list of column vectors.

> head(pdata[,"sex"], 3)

[1] M M F

Levels: F M

> head(pdata$sex, 3)

[1] M M F

Levels: F M

> head(pdata[["sex"]], 3)

[1] M M F

Levels: F M

> sapply(pdata, class)

cod diagnosis sex age BT

"factor" "factor" "factor" "integer" "factor"

remission CR date.cr t.4.11. t.9.22.

"factor" "factor" "factor" "logical" "logical"

cyto.normal citog mol.biol fusion.protein mdr

"logical" "factor" "factor" "factor" "factor"

kinet ccr relapse transplant f.u

"factor" "logical" "logical" "logical" "factor"

date.last.seen

"factor"

The number of males and females, including NA, is

12

> table(pdata$sex, useNA="ifany")

F M <NA>

42 83 3

An alternative version of this uses the with function: with(pdata, table(sex, useNA="ifany")).
The mol.biol column contains the following samples:

> with(pdata, table(mol.biol, useNA="ifany"))

mol.biol

ALL1/AF4 BCR/ABL E2A/PBX1 NEG NUP-98 p15/p16

10 37 5 74 1 1

A logical vector indicating that the corresponding row is either BCR/ABL or NEG is constructed as

> ridx <- pdata$mol.biol %in% c("BCR/ABL", "NEG")

We can get a sense of the number of rows selected via table or sum (discuss with your neighbor what sum

does, and why the answer is the same as the number of TRUE values in the result of the table function).

> table(ridx)

ridx

FALSE TRUE

17 111

> sum(ridx)

[1] 111

The original data frame can be subset to contain only BCR/ABL or NEG samples using the logical vector
ridx that we created.

> pdata1 <- pdata[ridx,]

The levels of each factor reflect the levels in the original object, rather than the levels in the subset
object, e.g.,

> levels(pdata$mol.biol)

[1] "ALL1/AF4" "BCR/ABL" "E2A/PBX1" "NEG" "NUP-98" "p15/p16"

These can be re-coded by updating the new data frame to contain a factor with the desired levels.

> pdata1$mol.biol <- factor(pdata1$mol.biol)

> table(pdata1$mol.biol)

BCR/ABL NEG

37 74

To ask whether age differs between molecular biology types, we use a formula age ~ mol.biol to
describe the relationship (‘age as a function of molecular biology’) that we wish to test

> with(pdata1, t.test(age ~ mol.biol))

Welch Two Sample t-test

data: age by mol.biol

t = 4.8, df = 69, p-value = 8.401e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

7.1 17.2

sample estimates:

mean in group BCR/ABL mean in group NEG

40 28

13

Table 1.3: Selected base and contributed packages.

Package Description
base Data input and essential manipulation; scripting and programming con-

cepts.
stats Essential statistical and plotting functions.
lattice, ggplot2 Approaches to advanced graphics.
methods ‘S4’ classes and methods.
parallel Facilities for parallel evaluation.

This summary can be visualize with, e.g., the boxplot function

> ## not evaluated

> boxplot(age ~ mol.biol, pdata1)

Molecular biology seem to be strongly associated with age; individuals in the NEG group are considerably
younger than those in the BCR/ABL group. We might wish to include age as a covariate in any subsequent
analysis seeking to relate molecular biology to gene expression.

1.2.3 Packages

Packages provide functionality beyond that available in base R. There are over 4000 packages in CRAN
(comprehensive R archive network) and more than 600 Bioconductor packages. Packages are contributed
by diverse members of the community; they vary in quality (many are excellent) and sometimes contain
idiosyncratic aspects to their implementation. Table 1.3 outlines key base packages and selected con-
tributed packages; see a local CRAN mirror (including the task views summarizing packages in different
domains) and Bioconductor for additional contributed packages.

The lattice package illustrates the value packages add to base R. lattice is distributed with R but
not loaded by default. It provides a very expressive way to visualize data. The following example plots
yield for a number of barley varieties, conditioned on site and grouped by year. Figure 1.1 is read from
the lower left corner. Note the common scales, efficient use of space, and not-too-pleasing default color
palette. The Morris sample appears to be mis-labeled for ‘year’, an apparent error in the original data.
Find out about the built-in data set used in this example with ?barley.

> library(lattice)

> plt <- dotplot(variety ~ yield | site, data = barley, groups = year,

+ xlab = "Barley Yield (bushels/acre)" , ylab=NULL,

+ key = simpleKey(levels(barley$year), space = "top",

+ columns=2),

+ aspect=0.5, layout = c(2,3))

> print(plt)

New packages can be added to an R installation using install.packages. A package is installed
only once per R installation, but needs to be loaded (with library) in each session in which it is used.
Loading a package also loads any package that it depends on. Packages loaded in the current session are
displayed with search. The ordering of packages returned by search represents the order in which the
global environment (where commands entered at the prompt are evaluated) and attached packages are
searched for symbols; it is possible for a package earlier in the search path to mask symbols later in the
search path; these can be disambiguated using ::.

> length(search())

[1] 10

> search()

14

http://cran.fhcrc.org
http://cran.fhcrc.org/web/views/
http://bioconductor.org

Figure 1.1: Variety yield conditional on site and grouped by year, for the barley data set.

[1] ".GlobalEnv" "package:lattice" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:base"

> base::log(1:3)

[1] 0.00 0.69 1.10

Exercise 3
Use the library function to load the EMBO2012 package. Use the sessionInfo function to verify that
you are using R version 2.15.1 and current packages, similar to those reported here. What other packages
were loaded along with EMBO2012?

Solution:

> library(EMBO2012)

> sessionInfo()

1.2.4 Help

Find help using the R help system. Start a web browser with

> help.start()

The ‘Search Engine and Keywords’ link is helpful in day-to-day use.

Manual pages Use manual pages to find detailed descriptions of the arguments and return values of
functions, and the structure and methods of classes. Find help within an R session as

> ?data.frame

> ?lm

> ?anova # a generic function

> ?anova.lm # an S3 method, specialized for 'lm' objects

15

S3 methods can be queried interactively. For S3,

> methods(anova)

[1] anova.glm anova.glmlist anova.lm anova.loess* anova.mlm

[6] anova.nls*

Non-visible functions are asterisked

> methods(class="glm")

[1] add1.glm* anova.glm confint.glm*

[4] cooks.distance.glm* deviance.glm* drop1.glm*

[7] effects.glm* extractAIC.glm* family.glm*

[10] formula.glm* influence.glm* logLik.glm*

[13] model.frame.glm nobs.glm* predict.glm

[16] print.glm residuals.glm rstandard.glm

[19] rstudent.glm summary.glm vcov.glm*

[22] weights.glm*

Non-visible functions are asterisked

It is often useful to view a method definition, either by typing the method name at the command line
or, for ‘non-visible’ methods, using getAnywhere:

> anova.lm

> getAnywhere("anova.loess")

Here we discover that the function head (which returns the first 6 elements of anything) defined in the
utils package, is an S3 generic (indicated by UseMethod) and has several methods. We use head to look
at the first six lines of the head method specialized for matrix objects.

> utils::head

function (x, ...)

UseMethod("head")

<bytecode: 0x103334f08>

<environment: namespace:utils>

> methods(head)

[1] head.data.frame* head.default* head.ftable* head.function*

[5] head.matrix head.table*

Non-visible functions are asterisked

> head(head.matrix)

1 function (x, n = 6L, ...)

2 {

3 stopifnot(length(n) == 1L)

4 n <- if (n < 0L)

5 max(nrow(x) + n, 0L)

6 else min(n, nrow(x))

S4 classes and generics are queried in a similar way to S3 classes and generics, but with different
syntax, as for the complement generic in the Biostrings package:

> library(Biostrings)

> showMethods(complement)

16

http://bioconductor.org/packages/release/bioc/html/Biostrings.html

Function: complement (package Biostrings)

x="DNAString"

x="DNAStringSet"

x="MaskedDNAString"

x="MaskedRNAString"

x="RNAString"

x="RNAStringSet"

x="XStringViews"

(Most) methods defined on the DNAStringSet class of Biostrings and available on the current search path
can be found with

> showMethods(class="DNAStringSet", where=search())

Obtaining help on S4 classes and methods requires syntax such as

> class ? DNAStringSet

> method ? "complement,DNAStringSet"

The specification of method and class in the latter must not contain a space after the comma. The
definition of a method can be retrieved as

> selectMethod(complement, "DNAStringSet")

Vignettes Vignettes, especially in Bioconductor packages, provide an extensive narrative describing
overall package functionality. Use

> vignette(package="EMBO2012")

to see, in your web browser, vignettes available in the EMBO2012 package. Vignettes usually consist
of text with embedded R code, a form of literate programming. The vignette can be read as a PDF
document, while the R source code is present as a script file ending with extension .R. The script file
can be sourced or copied into an R session to evaluate exactly the commands used in the vignette.

Exercise 4
Scavenger hunt. Spend five minutes tracking down the following information.

a. The package containing the library function.

b. The author of the alphabetFrequency function, defined in the Biostrings package.

c. A description of the GappedAlignments class.

d. The number of vignettes in the GenomicRanges package.

Solution: Possible solutions are found with the following R commands

> ?library

> library(Biostrings)

> ?alphabetFrequency

> class?GappedAlignments

> vignette(package="GenomicRanges")

1.2.5 Efficient scripts

There are often many ways to accomplish a result in R, but these different ways often have very dif-
ferent speed or memory requirements. For small data sets these performance differences are not that
important, but for large data sets (e.g., high-throughput sequencing; genome-wide association studies,
GWAS) or complicated calculations (e.g., bootstrapping) performance can be important. There are
several approaches to achieving efficient R programming.

17

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html

Easy solutions Several common performance bottlenecks often have easy solutions; these are outlined
here.

Text files often contain more information, for example 1000’s of individuals at millions of SNPs, when
only a subset of the data is required, e.g., during algorithm development. Reading in all the data can
be demanding in terms of both memory and time. A solution is to use arguments such as colClasses to
specify the columns and their data types that are required, and to use nrow to limit the number of rows
input. For example, the following ignores the first and fourth column, reading in only the second and
third (as type integer and numeric).

> ## not evaluated

> colClasses <-

+ c("NULL", "integer", "numeric", "NULL")

> df <- read.table("myfile", colClasses=colClasses)

R is vectorized, so traditional programming for loops are often not necessary. Rather than calculating
100000 random numbers one at a time, or squaring each element of a vector, or iterating over rows and
columns in a matrix to calculate row sums, invoke the single function that performs each of these
operations.

> x <- runif(100000); x2 <- x^2

> m <- matrix(x2, nrow=1000); y <- rowSums(m)

This often requires a change of thinking, turning the sequence of operations ‘inside-out’. For instance,
calculate the log of the square of each element of a vector by calculating the square of all elements,
followed by the log of all elements x2 <- x^2; x3 <- log(x2), or simply logx2 <- log(x^2).

It may sometimes be natural to formulate a problem as a for loop, or the formulation of the problem
may require that a for loop be used. In these circumstances the appropriate strategy is to pre-allocate
the result object, and to fill the result in during loop iteration.

> ## not evaluated

> result <- numeric(nrow(df))

> for (i in seq_len(nrow(df)))

+ result[[i]] <- some_calc(df[i,])

Some R operations are helpful in general, but misleading or inefficient in particular circumstances.
An example is the behavior of unlist when the list is named – R creates new names that have been
made unique. This can be confusing (e.g., when Entrez gene identifiers are ‘mangled’ to unintentionally
look like other identifiers) and expensive (when a large number of new names need to be created). Avoid
creating unnecessary names, e.g.,

> unlist(list(a=1:2)) # name 'a' becomes 'a1', 'a2'

a1 a2

1 2

> unlist(list(a=1:2), use.names=FALSE) # no names

[1] 1 2

Names can be very useful for avoiding book-keeping errors, but are inefficient for repeated look-ups; use
vectorized access or numeric indexing.

Moderate solutions Several solutions to inefficient code require greater knowledge to implement.
Using appropriate functions can greatly influence performance; it takes experience to know when an

appropriate function exists. For instance, the lm function could be used to assess differential expression
of each gene on a microarray, but the limma package implements this operation in a way that takes
advantage of the experimental design that is common to each probe on the microarray, and does so in a
very efficient manner.

18

> ## not evaluated

> library(limma) # microarray linear models

> fit <- lmFit(eSet, design)

Using appropriate algorithms can have significant performance benefits, especially as data becomes
larger. This solution requires moderate skills, because one has to be able to think about the complexity
(e.g., expected number of operations) of an algorithm, and to identify algorithms that accomplish the
same goal in fewer steps. For example, a naive way of identifying which of 100 numbers are in a set of
size 10 might look at all 100 × 10 combinations of numbers (i.e., polynomial time), but a faster way is
to create a ‘hash’ table of one of the set of elements and probe that for each of the other elements (i.e.,
linear time). The latter strategy is illustrated with

> x <- 1:100; s <- sample(x, 10)

> inS <- x %in% s

R is an interpreted language, and for very challenging computational problems it may be appropriate
to write critical stages of an analysis in a compiled language like C or Fortran, or to use an existing
programming library (e.g., the BOOST graph library) that efficiently implements advanced algorithms.
R has a well-developed interface to C or Fortran, so it is ‘easy’ to do this. This places a significant burden
on the person implementing the solution, requiring knowledge of two or more computer languages and
of the interface between them.

Measuring performance When trying to improve performance, one wants to ensure (a) that the new
code is actually faster than the previous code, and (b) both solutions arrive at the same, correct, answer.

The system.time function is a straight-forward way to measure the length of time a portion of code
takes to evaluate. Here we see that the use of apply to calculate row sums of a matrix is much less
efficient than the specialized rowSums function.

> m <- matrix(runif(200000), 20000)

> replicate(5, system.time(apply(m, 1, sum))[[1]])

[1] 0.087 0.089 0.078 0.072 0.074

> replicate(5, system.time(rowSums(m))[[1]])

[1] 0.001 0.001 0.001 0.000 0.001

Usually it is appropriate to replicate timings to average over vagaries of system use, and to shuffle the
order in which timings of alternative algorithms are calculated to avoid artifacts such as initial memory
allocation.

Speed is an important metric, but equivalent results are also needed. The functions identical and
all.equal provide different levels of assessing equivalence, with all.equal providing ability to ignore
some differences, e.g., in the names of vector elements.

> res1 <- apply(m, 1, sum)

> res2 <- rowSums(m)

> identical(res1, res2)

[1] TRUE

> identical(c(1, -1), c(x=1, y=-1))

[1] FALSE

> all.equal(c(1, -1), c(x=1, y=-1),

+ check.attributes=FALSE)

[1] TRUE

19

http://www.boost.org/

Two additional functions for assessing performance are Rprof and tracemem; these are mentioned only
briefly here. The Rprof function profiles R code, presenting a summary of the time spent in each part of
several lines of R code. It is useful for gaining insight into the location of performance bottlenecks when
these are not readily apparent from direct inspection. Memory management, especially copying large
objects, can frequently contribute to poor performance. The tracemem function allows one to gain insight
into how R manages memory; insights from this kind of analysis can sometimes be useful in restructuring
code into a more efficient sequence.

1.2.6 Warnings, errors, and debugging

R signals unexpected results through warnings and errors. Warnings occur when the calculation produces
an unusual result that nonetheless does not preclude further evaluation. For instance log(-1) results
in a value NaN (‘not a number’) that allows computation to continue, but at the same time signals an
warning

> log(-1)

[1] NaN

Warning message:

In log(-1) : NaNs produced

Errors result when the inputs or outputs of a function are such that no further action can be taken, e.g.,
trying to take the square root of a character vector

> sqrt("two")

Error in sqrt("two") : Non-numeric argument to mathematical function

Warnings and errors occurring at the command prompt are usually easy to diagnose. They can be
more enigmatic when occurring in a function, and exacerbated by sometimes cryptic (when read out of
context) error messages.

An initial step in coming to terms with errors is to simplify the problem as much as possible, aiming
for a ‘reproducible’ error. The reproducible error might involve a very small (even trivial) data set that
immediately provokes the error. Often the process of creating a reproducible example helps to clarify
what the error is, and what possible solutions might be.

Invoking traceback() immediately after an error occurs provides a ‘stack’ of the function calls that
were in effect when the error occurred. This can help understand the context in which the error occurred.
Knowing the context, one might use debug to enter into a browser (see ?browser) that allows one to step
through the function in which the error occurred.

It can sometimes be useful to use global options (see ?options) to influence what happens when
an error occurs. Two common global options are error and warn. Setting error=recover combines the
functionality of traceback and debug, allowing the user to enter the browser at any level of the call stack in
effect at the time the error occurred. Default error behavior can be restored with options(error=NULL).
Setting warn=2 causes warnings to be promoted to errors. For instance, initial investigation of an error
might show that the error occurs when one of the arguments to a function has value NaN. The error
might be accompanied by a warning message that the NaN has been introduced, but because warnings
are by default not reported immediately it is not clear where the NaN comes from. warn=2 means that
the warning is treated as an error, and hence can be debugged using traceback, debug, and so on.

Additional useful debugging functions include browser, trace, and setBreakpoint.
Fixme: tryCatch

1.2.7 Resources

Dalgaard [7] provides an introduction to statistical analysis with R. Kabaloff [19] provides a broad survey
of R. Matloff [30] introduces R programming concepts. Chambers [6] provides more advanced insights
into R. Gentleman [10] emphasizes use of R for bioinformatic programming tasks. The R web site
enumerates additional publications from the user community.

The RStudio environment provides a nice, cross-platform environment for working in R.

20

http://r-project.org
http://rstudio.org

Chapter 2

Sequences and Short Reads

2.1 Ranges and Strings

Many Bioconductor packages are available for analysis of high-throughput sequence data. This section
introduces two essential ways in which sequence data are manipulated. Ranges describe both aligned
reads and features of interest on the genome. Sets of DNA strings represent the reads themselves and
the nucleotide sequence of reference genomes. Key packages are summarized in Table 2.1.

2.1.1 Genomic ranges

Next-generation sequencing data consists of a large number of short reads. These are, typically, aligned
to a reference genome. Basic operations are performed on the alignment, asking e.g., how many reads
are aligned in a genomic range defined by nucleotide coordinates (e.g., in the exons of a gene), or how
many nucleotides from all the aligned reads cover a set of genomic coordinates. How is this type of data,
the aligned reads and the reference genome, to be represented in R in a way that allows for effective
computation?

The IRanges, GenomicRanges, and GenomicFeatures Bioconductor packages provide the essential
infrastructure for these operations; we start with the GRanges class, defined in GenomicRanges.

GRanges Instances of GRanges are used to specify genomic coordinates. Suppose we wish to represent
two D. melanogaster genes. The first is located on the positive strand of chromosome 3R, from position
19967117 to 19973212. The second is on the minus strand of the X chromosome, with ‘left-most’ base at
18962306, and right-most base at 18962925. The coordinates are 1-based (i.e., the first nucleotide on a

Table 2.1: Selected Bioconductor packages for representing and manipulating ranges, strings, and other
data structures.

Package Description
IRanges Defines important classes (e.g., IRanges, Rle) and methods (e.g., find-

Overlaps, countOverlaps) for representing and manipulating ranges of con-
secutive values. Also introduces DataFrame, SimpleList and other classes
tailored to representing very large data.

GenomicRanges Range-based classes tailored to sequence representation (e.g., GRanges,
GRangesList), with information about strand and sequence name.

GenomicFeatures Foundation for manipulating data bases of genomic ranges, e.g., repre-
senting coordinates and organization of exons and transcripts of known
genes.

Biostrings Classes (e.g., DNAStringSet) and methods (e.g., alphabetFrequency,
pairwiseAlignment) for representing and manipulating DNA and other
biological sequences.

BSgenome Representation and manipulation of large (e.g., whole-genome) sequences.

21

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html

chromosome is numbered 1, rather than 0), left-most (i.e., reads on the minus strand are defined to ‘start’
at the left-most coordinate, rather than the 5’ coordinate), and closed (the start and end coordinates are
included in the range; a range with identical start and end coordinates has width 1, a 0-width range is
represented by the special construct where the end coordinate is one less than the start coordinate).

A complete definition of these genes as GRanges is:

> genes <- GRanges(seqnames=c("3R", "X"),

+ ranges=IRanges(

+ start=c(19967117, 18962306),

+ end=c(19973212, 18962925)),

+ strand=c("+", "-"),

+ seqlengths=c(`3R`=27905053L, `X`=22422827L))

The components of a GRanges object are defined as vectors, e.g., of seqnames, much as one would
define a data.frame. The start and end coordinates are grouped into an IRanges instance. The optional
seqlengths argument specifies the maximum size of each sequence, in this case the lengths of chromosomes
3R and X in the ‘dm2’ build of the D. melanogaster genome. This data is displayed as

> genes

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] 3R [19967117, 19973212] +

[2] X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

For the curious, the gene coordinates and sequence lengths are derived from the org.Dm.eg.db package for
genes with Flybase identifiers FBgn0039155 and FBgn0085359, using the annotation facilities described
in section 3.1.

The GRanges class has many useful methods defined on it. Consult the help page

> ?GRanges

and package vignettes (especially ‘An Introduction to GenomicRanges’)

> vignette(package="GenomicRanges")

for a comprehensive introduction. A GRanges instance can be subset, with accessors for getting and
updating information.

> genes[2]

GRanges with 1 range and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1] X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

> strand(genes)

factor-Rle of length 2 with 2 runs

Lengths: 1 1

Values : + -

Levels(3): + - *

22

http://bioconductor.org/packages/release/data/annotation/html/org.Dm.eg.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Figure 2.1: Ranges

> width(genes)

[1] 6096 620

> length(genes)

[1] 2

> names(genes) <- c("FBgn0039155", "FBgn0085359")

> genes # now with names

GRanges with 2 ranges and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

FBgn0039155 3R [19967117, 19973212] +

FBgn0085359 X [18962306, 18962925] -

seqlengths:

3R X

27905053 22422827

strand returns the strand information in a compact representation called a run-length encoding, this
is introduced in greater detail below. The ‘names’ could have been specified when the instance was
constructed; once named, the GRanges instance can be subset by name like a regular vector.

As the GRanges function suggests, the GRanges class extends the IRanges class by adding information
about seqnames, strand, and other information particularly relevant to representing ranges that are on
genomes. The IRanges class and related data structures (e.g., RangedData) are meant as a more general
description of ranges defined in an arbitrary space. Many methods implemented on the GRanges class
are ‘aware’ of the consequences of genomic location, for instance treating ranges on the minus strand
differently (reflecting the 5’ orientation imposed by DNA) from ranges on the plus strand.

Operations on ranges The GRanges class has many useful methods from the IRanges class; some of
these methods are illustrated here. We use IRanges to illustrate these operations to avoid complexities
associated with strand and seqnames, but the operations are comparable on GRanges. We begin with a
simple set of ranges:

> ir <- IRanges(start=c(7, 9, 12, 14, 22:24),

+ end=c(15, 11, 12, 18, 26, 27, 28))

These and some common operations are illustrated in the upper panel of Figure 2.1 and summarized in
Table 2.2.

Methods on ranges can be grouped as follows:

23

Intra-range methods act on each range independently. These include flank, narrow, reflect, resize,
restrict, and shift, among others. An illustration is shift, which translates each range by the
amount specified by the shift argument. Positive values shift to the right, negative to the left;
shift can be a vector, with each element of the vector shifting the corresponding element of the
IRanges instance. Here we shift all ranges to the right by 5, with the result illustrated in the middle
panel of Figure 2.1.

> shift(ir, 5)

IRanges of length 7

start end width

[1] 12 20 9

[2] 14 16 3

[3] 17 17 1

[4] 19 23 5

[5] 27 31 5

[6] 28 32 5

[7] 29 33 5

Inter-range methods act on the collection of ranges as a whole. These include disjoin, reduce, gaps,
and range. An illustration is reduce, which reduces overlapping ranges into a single range, as
illustrated in the lower panel of Figure 2.1.

> reduce(ir)

IRanges of length 2

start end width

[1] 7 18 12

[2] 22 28 7

coverage is an inter-range operation that calculates how many ranges overlap individual positions.
Rather than returning ranges, coverage returns a compressed representation (run-length encoding)

> coverage(ir)

integer-Rle of length 28 with 12 runs

Lengths: 6 2 4 1 2 3 3 1 1 3 1 1

Values : 0 1 2 1 2 1 0 1 2 3 2 1

The run-length encoding can be interpreted as ‘a run of length 6 of nucleotides covered by 0 ranges,
followed by a run of length 2 of nucleotides covered by 1 range. . . ’.

Between methods act on two (or sometimes more) IRanges instances. These include intersect, setdiff,
union, pintersect, psetdiff, and punion.

The countOverlaps and findOverlaps functions operate on two sets of ranges. countOverlaps takes
its first argument (the query) and determines how many of the ranges in the second argument
(the subject) each overlaps. The result is an integer vector with one element for each member of
query. findOverlaps performs a similar operation but returns a more general matrix-like structure
that identifies each pair of query / subject overlaps. Both arguments allow some flexibility in the
definition of ‘overlap’.

Common operations on ranges are summarized in Table 2.2.

mcols and metadata The GRanges class (actually, most of the data structures defined or extending
those in the IRanges package) has two additional very useful data components. The mcols function allows
information on each range to be stored and manipulated (e.g., subset) along with the GRanges instance.
The element metadata is represented as a DataFrame, defined in IRanges and acting like a standard R
data.frame but with the ability to hold more complicated data structures as columns (and with element
metadata of its own, providing an enhanced alternative to the Biobase class AnnotatedDataFrame).

24

http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html
http://bioconductor.org/packages/release/bioc/html/Biobase.html

Table 2.2: Common operations on IRanges, GRanges and GRangesList .

Category Function Description
Accessors start, end, width Get or set the starts, ends and widths

names Get or set the names
mcols, metadata Get or set metadata on elements or object
length Number of ranges in the vector
range Range formed from min start and max end

Ordering <, <=, >, >=, ==, != Compare ranges, ordering by start then width
sort, order, rank Sort by the ordering
duplicated Find ranges with multiple instances
unique Find unique instances, removing duplicates

Arithmetic r + x, r - x, r * x Shrink or expand ranges r by number x

shift Move the ranges by specified amount
resize Change width, anchoring on start, end or mid
distance Separation between ranges (closest endpoints)
restrict Clamp ranges to within some start and end
flank Generate adjacent regions on start or end

Set operations reduce Merge overlapping and adjacent ranges
intersect, union, setdiff Set operations on reduced ranges
pintersect, punion, psetdiff Parallel set operations, on each x[i], y[i]
gaps, pgap Find regions not covered by reduced ranges
disjoin Ranges formed from union of endpoints

Overlaps findOverlaps Find all overlaps for each x in y

countOverlaps Count overlaps of each x range in y

nearest Find nearest neighbors (closest endpoints)
precede, follow Find nearest y that x precedes or follows
x %in% y Find ranges in x that overlap range in y

Coverage coverage Count ranges covering each position
Extraction r[i] Get or set by logical or numeric index

r[[i]] Get integer sequence from start[i] to end[i]

subsetByOverlaps Subset x for those that overlap in y

head, tail, rev, rep Conventional R semantics
Split, combine split Split ranges by a factor into a RangesList

c Concatenate two or more range objects

25

> mcols(genes) <- DataFrame(EntrezId=c("42865", "2768869"),

+ Symbol=c("kal-1", "CG34330"))

metadata allows addition of information to the entire object. The information is in the form of a list; any
data can be provided.

> metadata(genes) <-

+ list(CreatedBy="A. User", Date=date())

GRangesList The GRanges class is extremely useful for representing simple ranges. Some next-
generation sequence data and genomic features are more hierarchically structured. A gene may be
represented by several exons within it. An aligned read may be represented by discontinuous ranges of
alignment to a reference. The GRangesList class represents this type of information. It is a list-like data
structure, which each element of the list itself a GRanges instance. The gene FBgn0039155 contains
several exons, and can be represented as a list of length 1, where the element of the list contains a
GRanges object with 7 elements:

GRangesList of length 1:

$FBgn0039155

GRanges with 7 ranges and 2 metadata columns:

seqnames ranges strand | exon_id exon_name

<Rle> <IRanges> <Rle> | <integer> <character>

[1] chr3R [19967117, 19967382] + | 45515 <NA>

[2] chr3R [19970915, 19971592] + | 45516 <NA>

[3] chr3R [19971652, 19971770] + | 45517 <NA>

[4] chr3R [19971831, 19972024] + | 45518 <NA>

[5] chr3R [19972088, 19972461] + | 45519 <NA>

[6] chr3R [19972523, 19972589] + | 45520 <NA>

[7] chr3R [19972918, 19973212] + | 45521 <NA>

seqlengths:

chr3R

27905053

The GRangesList object has methods one would expect for lists (e.g., length, sub-setting). Many of
the methods introduced for working with IRanges are also available, with the method applied element-
wise.

The GenomicFeatures package Many public resources provide annotations about genomic features.
For instance, the UCSC genome browser maintains the ‘knownGene’ track of established exons, tran-
scripts, and coding sequences of many model organisms. The GenomicFeatures package provides a way
to retrieve, save, and query these resources. The underlying representation is as sqlite data bases, but
the data are available in R as GRangesList objects. The following exercise explores the GenomicFeatures
package and some of the functionality for the IRanges family introduced above.

Exercise 5
Load the TxDb.Dmelanogaster.UCSC.dm3.ensGene annotation package, and create an alias txdb point-
ing to the TranscriptDb object this class defines.

Extract all exon coordinates, organized by gene, using exonsBy. What is the class of this object? How
many elements are in the object? What does each element correspond to? And the elements of each
element? Use elementLengths and table to summarize the number of exons in each gene, for instance,
how many single-exon genes are there?

Select just those elements corresponding to flybase gene ids FBgn0002183, FBgn0003360, FBgn0025111,
and FBgn0036449. Use reduce to simplify gene models, so that exons that overlap are considered ‘the
same’.

Solution:

26

http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Dmelanogaster.UCSC.dm3.ensGene.html

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene # alias

> ex0 <- exonsBy(txdb, "gene")

> head(table(elementLengths(ex0)))

1 2 3 4 5 6

3182 2608 2070 1628 1133 886

> ids <- c("FBgn0002183", "FBgn0003360", "FBgn0025111", "FBgn0036449")

> ex <- reduce(ex0[ids])

Exercise 6
(Independent) Create a TranscriptDb instance from UCSC, using makeTranscriptDbFromUCSC.

Solution:

> txdb <- makeTranscriptDbFromUCSC("dm3", "ensGene")

> saveDb(txdb, "my.dm3.ensGene.txdb.sqlite")

2.1.2 Working with strings

Underlying the ranges of alignments and features are DNA sequences. The Biostrings package provides
tools for working with this data. The essential data structures are DNAString and DNAStringSet ,
for working with one or multiple DNA sequences. The Biostrings package contains additional classes
for representing amino acid and general biological strings. The BSgenome and related packages (e.g.,
BSgenome.Dmelanogaster.UCSC.dm3) are used to represent whole-genome sequences. The following
exercise explores these packages.

Exercise 7
The objective of this exercise is to calculate the GC content of the exons of a single gene, whose coordi-
nates are specified by the ex object of the previous exercise.

Load the BSgenome.Dmelanogaster.UCSC.dm3 data package, containing the UCSC representation
of D. melanogaster genome assembly dm3.

Extract the sequence name of the first gene of ex. Use this to load the appropriate D. melanogaster
chromosome.

Use Views to create views on to the chromosome that span the start and end coordinates of all exons.
The EMBO2012 package defines a helper function gcFunction (developed in a later exercise) to cal-

culate GC content. Use this to calculate the GC content in each of the exons.
Look at the helper function, and describe what it does.

Solution: Here we load the D. melanogaster genome, select a single chromosome, and create Views that
reflect the ranges of the FBgn0002183.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> nm <- as.character(unique(seqnames(ex[[1]])))

> chr <- Dmelanogaster[[nm]]

> v <- Views(chr, start=start(ex[[1]]), end=end(ex[[1]]))

Here is the helper function, available in the EMBO2012 package, to calculate GC content:

> gcFunction

function (x)

{

alf <- alphabetFrequency(x, as.prob = TRUE)

rowSums(alf[, c("G", "C")])

}

<environment: namespace:EMBO2012>

27

http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Dmelanogaster.UCSC.dm3.html

Table 2.3: Selected Bioconductor packages for sequence reads and alignments.

Package Description
ShortRead Defines the ShortReadQ class and functions for manipulating fastq files;

these classes rely heavily on Biostrings.
GenomicRanges GappedAlignments and GappedAlignmentPairs store single- and paired-

end aligned reads.
Rsamtools Provides access to BAM alignment and other large sequence-related files.
rtracklayer Input and output of bed, wig and similar files

The gcFunction is really straight-forward: it invokes the function alphabetFrequency from the Biostrings
package. This returns a simple matrix of exon × nucleotide probabilities. The row sums of the G and C

columns of this matrix are the GC contents of each exon.
The subject GC content is

> subjectGC <- gcFunction(v)

2.2 Reads and Alignments

The following sections introduce core tools for working with high-throughput sequence data; key packages
for representing reads and alignments are summarized in Table 2.3. This section focus on the reads
and alignments that are the raw material for analysis. Section 3.1 introduces resources for annotating
sequences.

2.2.1 The pasilla data set

As a running example, we use the pasilla data set, derived from [3]. The authors investigate conservation
of RNA regulation between D. melanogaster and mammals. Part of their study used RNAi and RNA-
seq to identify exons regulated by Pasilla (ps), the D. melanogaster ortholog of mammalian NOVA1 and
NOVA2. Briefly, their experiment compared gene expression as measured by RNAseq in S2-DRSC cells
cultured with, or without, a 444bp dsRNA fragment corresponding to the ps mRNA sequence. Their
assessment investigated differential exon use, but our worked example will focus on gene-level differences.

In this section we look at a subset of the ps data, corresponding to reads obtained from lanes of
their RNA-seq experiment, and to the same reads aligned to a D. melanogaster reference genome. Reads
were obtained from GEO and the Short Read Archive (SRA), and were aligned to the D. melanogaster
reference genome dm3 as described in the pasilla experiment data package.

2.2.2 Reads and the ShortRead package

Short read formats The Illumina GAII and HiSeq technologies generate sequences by measuring
incorporation of florescent nucleotides over successive PCR cycles. These sequencers produce output in
a variety of formats, but FASTQ is ubiquitous. Each read is represented by a record of four components:
The first and third lines (beginning with @ and + respectively) are unique identifiers. The identifier
produced by the sequencer typically includes a machine id followed by colon-separated information on
the lane, tile, x, and y coordinate of the read. The example illustrated here also includes the SRA
accession number, added when the data was submitted to the archive. The machine identifier could
potentially be used to extract information about batch effects. The spatial coordinates (lane, tile, x,
y) are often used to identify optical duplicates; spatial coordinates can also be used during quality
assessment to identify artifacts of sequencing, e.g., uneven amplification across the flow cell, though
these spatial effects are rarely pursued.

The second and fourth lines of the FASTQ record are the nucleotides and qualities of each cycle in the
read. This information is given in 5’ to 3’ orientation as seen by the sequencer. A letter N in the sequence
is used to signify bases that the sequencer was not able to call. The fourth line of the FASTQ record

28

http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

encodes the quality (confidence) of the corresponding base call. The quality score is encoded following
one of several conventions, with the general notion being that letters later in the visible ASCII alphabet

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNO
PQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

are of lower quality; this is developed further below. Both the sequence and quality scores may span
multiple lines.

Technologies other than Illumina use different formats to represent sequences. Roche 454 sequence
data is generated by ‘flowing’ labeled nucleotides over samples, with greater intensity corresponding to
longer runs of A, C, G, or T. This data is represented as a series of ‘flow grams’ (a kind of run-length en-
coding of the read) in Standard Flowgram Format (SFF). The Bioconductor package R453Plus1Toolbox
has facilities for parsing SFF files, but after quality control steps the data are frequently represented
(with some loss of information) as FASTQ. SOLiD technologies produce sequence data using a ‘color
space’ model. This data is not easily read in to R, and much of the error-correcting benefit of the color
space model is lost when converted to FASTQ; SOLiD sequences are not well-handled by Bioconductor
packages.

Short reads in R FASTQ files can be read in to R using the readFastq function from the ShortRead
package. Use this function by providing the path to a FASTQ file. There are sample data files available
in the EMBO2012 package, each consisting of 1 million reads from a lane of the Pasilla data set.

> fastqDir <- file.path(bigdata(), "fastq")

> fastqFiles <- dir(fastqDir, full=TRUE)

> fq <- readFastq(fastqFiles[1])

> fq

class: ShortReadQ

length: 657900 reads; width: 76 cycles

The data are represented as an object of class ShortReadQ .

> head(sread(fq), 3)

A DNAStringSet instance of length 3

width seq

[1] 76 AGGTCACTTGCCCTTTATTATTCGCTGACGCGCG...TCGTGCTATCGGACGCNGGCGCTANCACACGCA

[2] 76 ACCCGTTATGACAAGATCTCTCTTGTCCACCGTG...ACACCNTCTGTGCTACNAGGCGCGACGNTNCNG

[3] 76 AGCCCACACAGCACACCCCACAATGCACGCGTCA...GNTTCTGCACATACTTCNACGTCNCCGACACGC

> head(quality(fq), 3)

class: FastqQuality

quality:

A BStringSet instance of length 3

width seq

[1] 76 1=A4@05;7;=.8;@B<A.8515<??;1.;(5(;....9@+B###########!#######!########

[2] 76 5C################################...#####!##########!##########!#!#!#

[3] 76 .51B91.<7=B;8.%.(1@;(1(<@+B5''<.;....#!###############!#####!#########

> head(id(fq), 3)

A BStringSet instance of length 3

width seq

[1] 37 SRR074430.1 HWUSI-EASXXX:3:2:43:774/1

[2] 37 SRR074430.2 HWUSI-EASXXX:3:2:52:582/1

[3] 38 SRR074430.3 HWUSI-EASXXX:3:2:52:1215/1

The ShortReadQ class illustrates class inheritance. It extends the ShortRead class

29

http://bioconductor.org/packages/release/bioc/html/R453Plus1Toolbox.html
http://bioconductor.org/packages/release/bioc/html/ShortRead.html

> getClass("ShortReadQ")

Class "ShortReadQ" [package "ShortRead"]

Slots:

Name: quality sread id

Class: QualityScore DNAStringSet BStringSet

Extends:

Class "ShortRead", directly

Class ".ShortReadBase", by class "ShortRead", distance 2

Known Subclasses: "AlignedRead"

Methods defined on ShortRead are available for ShortReadQ .

> showMethods(class="ShortRead", where="package:ShortRead")

For instance, the width can be used to demonstrate that all reads consist of 76 nucleotides.

> table(width(fq))

76

657900

The alphabetByCycle function summarizes use of nucleotides at each cycle in a (equal width) ShortReadQ
or DNAStringSet instance.

> abc <- alphabetByCycle(sread(fq))

> abc[1:4, 1:8]

cycle

alphabet [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

A 63549 109402 124876 140919 155322 178279 82574 111608

C 303400 169804 212501 199667 173161 195572 191666 224396

G 167366 191188 164347 179011 173194 134686 126919 148676

T 115257 185342 153225 134014 153735 146956 254679 170428

FASTQ files are getting larger. A very common reason for looking at data at this early stage in the
processing pipeline is to explore sequence quality. In these circumstances it is often not necessary to
parse the entire FASTQ file. Instead create a representative sample. 1 million reads is a decent number.
As the file we are using only has about 660, 000 reads, in the following example, we select only a 100, 000.

> sampler <- FastqSampler(fastqFiles[1], 100000)

> yield(sampler) # sample of 100000 reads

class: ShortReadQ

length: 100000 reads; width: 76 cycles

A second common scenario is to pre-process reads, e.g., trimming low-quality tails, adapter sequences,
or artifacts of sample preparation. The FastqStreamer class can be used to ‘stream’ over the fastq files
in chunks, processing each chunk independently.

ShortRead contains facilities for quality assessment of FASTQ files. Here we generate a report from
a sample of 1 million reads from each of our files and display it in a web browser

> qas0 <- Map(function(fl, nm) {

+ fq <- FastqSampler(fl)

+ qa(yield(fq), nm)

+ }, fastqFiles,

30

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

+ sub("\\.fastq\\.gz", "", basename(fastqFiles)))

> qas <- do.call(rbind, qas0)

> rpt <- report(qas, dest=tempfile())

> browseURL(rpt)

Clearly these results are of poor quality. A report from the re-sequencing of the same sample (run
accession SRR074431 and SRR074461) is available

> rpt <- system.file("SRR074431_SRR074461_qa_report", "index.html", package="EMBO2012")

> browseURL(rpt)

Exercise 8
Use the helper function bigdata (defined in the EMBO2012 package) and the file.path and dir functions
to locate the subset of the SRR074431 fastq file from [3] (the file was obtained as described in the pasilla
experiment data package and in section 2.2.4).

Input the fastq files using readFastq from the ShortRead package.
Use alphabetFrequency to summarize the GC content of all reads (hint: use the sread accessor to

extract the reads, and the collapse=TRUE argument to the alphabetFrequency function). Using the helper
function gcFunction from the EMBO2012 package, draw a histogram of the distribution of GC frequencies
across reads.

Use alphabetByCycle to summarize the frequency of each nucleotide, at each cycle. Plot the results
using matplot, from the graphics package.

As an advanced exercise, and if on Mac or Linux, use the parallel package and mclapply to read and
summarize the GC content of reads in two files in parallel.

Solution: Discovery:

> dir(bigdata())

[1] "bam" "fastq" "fastq_subset" "multiplex"

> fls <- dir(file.path(bigdata(), "fastq"), full=TRUE)

Input:

> fq <- readFastq(fls[1])

GC content:

> alf0 <- alphabetFrequency(sread(fq), as.prob=TRUE, collapse=TRUE)

> sum(alf0[c("G", "C")])

[1] 0.55

A histogram of the GC content of individual reads is obtained with

> gc <- gcFunction(sread(fq))

> hist(gc)

Alphabet by cycle:

> abc <- alphabetByCycle(sread(fq))

> matplot(t(abc[c("A", "C", "G", "T"),]), type="l")

Advanced (Mac, Linux only): processing on multiple cores.

> library(parallel)

> gc0 <- mclapply(fls, function(fl) {

+ fq <- readFastq(fl)

+ gc <- gcFunction(sread(fq))

+ table(cut(gc, seq(0, 1, .05)))

+ })

> ## simplify list of length 2 to 2-D array

> gc <- simplify2array(gc0)

> matplot(gc, type="s")

31

http://bioconductor.org/packages/release/bioc/html/ShortRead.html

Exercise 9
Use quality to extract the quality scores of the short reads. Interpret the encoding qualitatively.

Convert the quality scores to a numeric matrix, using as. Inspect the numeric matrix (e.g., using
dim) and understand what it represents.

Use colMeans to summarize the average quality score by cycle. Use plot to visualize this.

Solution:

> head(quality(fq))

class: FastqQuality

quality:

A BStringSet instance of length 6

width seq

[1] 76 1=A4@05;7;=.8;@B<A.8515<??;1.;(5(;....9@+B###########!#######!########

[2] 76 5C################################...#####!##########!##########!#!#!#

[3] 76 .51B91.<7=B;8.%.(1@;(1(<@+B5''<.;....#!###############!#####!#########
[4] 76 36;9?CCA:8??%%<<'%8<B8(=@@?'<%?BCC...#!###!##########!######!##!######
[5] 76 .;;5=;%;)(9*0:C530;;##############...#########!#######################

[6] 76 0%1;AA;?=@A'%>B<C?%8'??@?/):@>!...#!###!#################!#!######!

> qual <- as(quality(fq), "matrix")

> dim(qual)

[1] 657900 76

> plot(colMeans(qual), type="b")

2.2.3 Alignments and the Rsamtools package

Most down-stream analysis of short read sequences is based on reads aligned to reference genomes. There
are many aligners available, including BWA [27, 26], Bowtie / Bowtie2 [22], and GSNAP; merits of these
are discussed in the literature. There are also alignment algorithms implemented in Bioconductor (e.g.,
matchPDict in the Biostrings package, and the Rsubread package); matchPDict is particularly useful for
flexible alignment of moderately sized subsets of data.

Alignment formats Most main-stream aligners produce output in SAM (text-based) or BAM format.
A SAM file is a text file, with one line per aligned read, and fields separated by tabs. Here is an example
of a single SAM line, split into fields.

> fl <- system.file("extdata", "ex1.sam", package="Rsamtools")

> strsplit(readLines(fl, 1), "\t")[[1]]

[1] "B7_591:4:96:693:509"

[2] "73"

[3] "seq1"

[4] "1"

[5] "99"

[6] "36M"

[7] "*"

[8] "0"

[9] "0"

[10] "CACTAGTGGCTCATTGTAAATGTGTGGTTTAACTCG"

[11] "<<<<<<<<<<<<<<<;<<<<<<<<<5<<<<<;:<;7"

[12] "MF:i:18"

[13] "Aq:i:73"

32

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bio-bwa.sourceforge.net/
http://bowtie-bio.sourceforge.net/
http://bowtie-bio.sourceforge.net/bowtie2/
http://research-pub.gene.com/gmap/
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/Rsubread.html

Table 2.4: Fields in a SAM record. From http://samtools.sourceforge.net/samtools.shtml

Field Name Value
1 QNAME Query (read) NAME
2 FLAG Bitwise FLAG, e.g., strand of alignment
3 RNAME Reference sequence NAME
4 POS 1-based leftmost POSition of sequence
5 MAPQ MAPping Quality (Phred-scaled)
6 CIGAR Extended CIGAR string
7 MRNM Mate Reference sequence NaMe
8 MPOS 1-based Mate POSition
9 ISIZE Inferred insert SIZE
10 SEQ Query SEQuence on the reference strand
11 QUAL Query QUALity
12+ OPT OPTional fields, format TAG:VTYPE:VALUE

[14] "NM:i:0"

[15] "UQ:i:0"

[16] "H0:i:1"

[17] "H1:i:0"

Fields in a SAM file are summarized in Table 2.4. We recognize from the FASTQ file the identifier
string, read sequence and quality. The alignment is to a chromosome ‘seq1’ starting at position 1. The
strand of alignment is encoded in the ‘flag’ field. The alignment record also includes a measure of mapping
quality, and a CIGAR string describing the nature of the alignment. In this case, the CIGAR is 36M,
indicating that the alignment consisted of 36 Matches or mismatches, with no indels or gaps; indels are
represented by I and D; gaps (e.g., from alignments spanning introns) by N.

BAM files encode the same information as SAM files, but in a format that is more efficiently parsed
by software; BAM files are the primary way in which aligned reads are imported in to R.

Aligned reads in R As introduced - c.f. section 2.2 - there are three different packages to read
alignments in R:

• ShortRead

• GenomicRanges

• Rsamtools

The last two will be described in more details in the next paragraphs.

GenomicRanges The readGappedAlignments function from the GenomicRanges package reads es-
sential information from a BAM file in to R. The result is an instance of the GappedAlignments class.
The GappedAlignments class has been designed to allow useful manipulation of many reads (e.g., 20
million) under moderate memory requirements (e.g., 4 GB).

> alnFile <- system.file("extdata", "ex1.bam", package="Rsamtools")

> aln <- readGappedAlignments(alnFile)

> head(aln, 3)

GappedAlignments with 3 alignments and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] seq1 + 36M 36 1 36 36

[2] seq1 + 35M 35 3 37 35

[3] seq1 + 35M 35 5 39 35

ngap

33

http://samtools.sourceforge.net/samtools.shtml
http://bioconductor.org/packages/release/bioc/html/ShortRead.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

<integer>

[1] 0

[2] 0

[3] 0

seqlengths:

seq1 seq2

1575 1584

The readGappedAlignments function takes an additional argument, param, allowing the user to specify
regions of the BAM file (e.g., known gene coordinates) from which to extract alignments.

A GappedAlignments instance is like a data frame, but with accessors as suggested by the column
names. It is easy to query, e.g., the distribution of reads aligning to each strand, the width of reads, or
the cigar strings

> table(strand(aln))

+ -

1647 1624

> table(width(aln))

30 31 32 33 34 35 36 38 40

2 21 1 8 37 2804 285 1 112

> head(sort(table(cigar(aln)), decreasing=TRUE))

35M 36M 40M 34M 33M 14M4I17M

2804 283 112 37 6 4

Exercise 10
Use bigdata, file.path and dir to obtain file paths to the BAM files. These are a subset of the aligned
reads, overlapping just four genes.

Input the aligned reads from one file using readGappedAlignments. Explore the reads, e.g., using table

or xtabs, to summarize which chromosome and strand the subset of reads is from.
The object ex created earlier contains coordinates of four genes. Use countOverlaps to first determine

the number of genes an individual read aligns to, and then the number of uniquely aligning reads
overlapping each gene. Since the RNAseq protocol was not strand-sensitive, set the strand of aln to *.

Write the sequence of steps required to calculate counts as a simple function, and calculate counts
on each file. On Mac or Linux, can you easily parallelize this operation?

Solution: We discover the location of files using standard R commands:

> fls <- dir(file.path(bigdata(), "bam"), ".bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Use readGappedAlignments to input data from one of the files, and standard R commands to explore the
data.

> ## input

> aln <- readGappedAlignments(fls[1])

> xtabs(~seqnames + strand, as.data.frame(aln))

strand

seqnames - +

2L 192058 229262

2LHet 1002 1119

2R 141811 165304

2RHet 21005 23100

3L 142042 162718

34

3LHet 25865 34553

3R 136564 151778

3RHet 23264 28042

4 6374 5986

dmel_mitochondrion_genome 7807 5599

U 59733 68172

Uextra 212680 263574

X 124124 137632

XHet 1432 1888

YHet 3507 3911

To count overlaps in regions defined in a previous exercise, load the regions.

> data(ex) # from an earlier exercise

Many RNA-seq protocols are not strand aware, i.e., reads align to the plus or minus strand regardless
of the strand on which the corresponding gene is encoded. Adjust the strand of the aligned reads to
indicate that the strand is not known.

> strand(aln) <- "*" # protocol not strand-aware

One important issue when counting reads is to make sure that the reference names in both the annotation
and the read files are identical.

Exercise 11
Check the reference name in both the ex and aln. If they are not similar, how could you correct them?

Solution: The names of both references are different; the read ones lack the ”chr” prefix and the
mitochondrion is called either ”dmel mitochondrion genome” or ”M”. It is essential to correct them to
be able to proceed.

> names(seqlengths(ex))

[1] "chr2L" "chr2LHet" "chr2R" "chr2RHet" "chr3L" "chr3LHet"

[7] "chr3R" "chr3RHet" "chr4" "chrU" "chrUextra" "chrX"

[13] "chrXHet" "chrYHet" "chrM"

> names(seqlengths(aln))

[1] "2L" "2LHet"

[3] "2R" "2RHet"

[5] "3L" "3LHet"

[7] "3R" "3RHet"

[9] "4" "U"

[11] "Uextra" "X"

[13] "XHet" "YHet"

[15] "dmel_mitochondrion_genome"

> levels(seqnames(aln)) <- paste("chr",

+ sub("dmel_mitochondrion_genome","M",

+ levels(seqnames(aln))),sep="")

For simplicity, we are interested in reads that align to only a single gene. Count the number of genes
a read aligns to. . .

> hits <- countOverlaps(aln, ex)

> table(hits)

hits

0 1 2

2380981 923 2

35

and reverse the operation to count the number of times each region of interest aligns to a uniquely
overlapping alignment.

> cnt <- countOverlaps(ex, aln[hits==1])

A simple function for counting reads and correcting the annotation is

> counter <-

+ function(filePath, range)

+ {

+ aln <- readGappedAlignments(filePath)

+ strand(aln) <- "*"

+ levels(seqnames(aln)) <- paste("chr",

+ sub("dmel_mitochondrion_genome","M",

+ levels(seqnames(aln))),sep="")

+ hits <- countOverlaps(aln, range)

+ countOverlaps(range, aln[hits==1])

+ }

This can be applied to all files using sapply

> counts <- sapply(fls, counter, ex)

The counts in one BAM file are independent of counts in another BAM file. This encourages us to count
reads in each BAM file in parallel, decreasing the length of time required to execute our program. On
Linux and Mac OS, a straight-forward way to parallelize this operation is:

> if (require(parallel))

+ simplify2array(mclapply(fls, counter, ex))

Rsamtools The GappedAlignments class inputs only some of the fields of a BAM file, and may not
be appropriate for all uses. In these cases the scanBam function in Rsamtools provides greater flexibility.
The idea is to view BAM files as a kind of data base. Particular regions of interest can be selected, and
the information in the selection restricted to particular fields. These operations are determined by the
values of a ScanBamParam object, passed as the named param argument to scanBam.

Exercise 12
Consult the help page for ScanBamParam, and construct an object that restricts the information returned
by a scanBam query to the aligned read DNA sequence. Your solution will use the what parameter to the
ScanBamParam function.

Use the ScanBamParam object to query a BAM file, and calculate the GC content of all aligned reads.
Summarize the GC content as a histogram (Figure 2.2).

Solution:

> param <- ScanBamParam(what="seq")

> seqs <- scanBam(fls[[1]], param=param)

> readGC <- gcFunction(seqs[[1]][["seq"]])

> hist(readGC)

Advanced Rsamtools usage The Rsamtools package has more advanced functionalities:

1. function to count, index, filter, sort BAM files

2. function to access the header only

3. the possibility to access SAM attributes (tags)

36

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html

Figure 2.2: GC content in aligned reads

4. manipulate the CIGAR string

5. create BAM libraries to represent a study set (BamViews)

6. . . .

Exercise 13
Find out the function that permit to scan the BAM header and retrieve the header of the first BAM file
in the bigdata() bam subfolder. What information does it contain?

Solution: It contains the reference sequence length and names as well as the name, version anc command
line of the tool used for performing the alignments.

> scanBamHeader(fls[1])

Exercise 14
The SAM/BAM format contains a tag: “NH” that defines the total number of valid alignments reported
for a read. How can you extract that information from the same first bam file and plot it as an histogram?

Solution:

> param <- ScanBamParam(tag="NH")

> nhs <- scanBam(fls[[1]], param=param)[[1]]tagNH

So it seems a majority of our reads have multiple alignments! Some filtering might be required.

Exercise 15
The CIGAR string contains interesting information, in particular, whether or not a given match contain
indels. Using the first bam file, can you get a matrix of all seven CIGAR operations? And find out the
intron size distribution?

37

Solution:

> param <- ScanBamParam(what="cigar")

> cigars <- scanBam(fls[[1]], param=param)[[1]]$cigar

> cigar.matrix <- cigarOpTable(cigars)

> intron.size <- cigar.matrix[,"N"]

> intron.size[intron.size>0]

> plot(density(intron.size[intron.size>0]))

> histogram(log10(intron.size[intron.size>0]),xlab="intron size (log10 bp)")

Exercise 16
Look up the documentation for the BamViews and using the leeBamViews, create a BamViews instance.
Afterwards, use some of the accessors of that object to access e.g. to view the file paths or the sample
names

Solution:

> library(leeBamViews)

> bpaths = dir(system.file("bam", package="leeBamViews"), full=TRUE, patt="bam$")

> gt<-do.call(rbind,strsplit(basename(bpaths),"_"))[,1]

> geno<-substr(gt,1,nchar(gt)-1)

> lane<-substr(gt,nchar(gt),nchar(gt))

> pd = DataFrame(geno=geno, lane=lane, row.names=paste(geno,lane,sep="."))

> bs1 = BamViews(bamPaths=bpaths, bamSamples=pd,

+ bamExperiment=list(annotation="org.Sc.sgd.db"))

> bamPaths(bs1)

> bamSamples(bs1)

Exercise 17
Finally, extract the coverage for the chromosome “Scchr13” 861250:863000 locus for every sample in the
bs1 object

Solution: sel <- GRanges(seqnames = ”Scchr13”, IRanges(start = 861250, end = 863000),strand=”+”)
covex = RleList(lapply(bamPaths(bs1), function(x) coverage(readGappedAlignments(x))[[1]]))

This offer an interesting way to process multiple sample at the same time when you’re interested in
a particular locus.

2.2.4 Alignments and other Bioconductor packages

In the following, an excerpt of additional functionalities offered by Bioconductor packages is presented.
It is far from being a complete overview, and as such only aims at giving a feel for what’s out there.

Retrieving data using SRAdb Most journals require the raw data to be deposited in a public
repository, such as GEO, SRA or ENA. The SRAdb package offers the possibility to list the content of
this archive, and to retrieve raw (fastq or sra) files.

Exercise 18
Using the pasilla package, retrieve the submission accession of that dataset (check out that package
vignette)

Solution:

> vignette(package="pasilla")

> vignette("create_objects")

> geo.acc <- "GEO: GSE18508"

38

http://bioconductor.org/packages/release/data/experiment/html/leeBamViews.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/sra
http://www.ebi.ac.uk/ena
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/pasilla.html

Now that we have the GEO ID, we need to convert it to an SRA ID. You can either use the GEO,
SRA or ENA website for this or if you are slightly familiar with SQL, just use the SRAdb package.

Exercise 19
Look into the SRAdb package vignette to figure out how to do this.

Solution: Accessing the vignette and reading it tells us

> library(SRAdb)

> vignette("SRAdb")

a. we need to download the SRAdb sqlfile

b. we need to create a connection to the locally downloaded database

c. we need to query that database with our submission alias: “GEO: GSE18508” to retrieve the SRA
submission accession.

The first step requires the download of a 150Mb compressed large file, so to limit the downloading
time, you could do it in groups of 3-4 persons

> sqlfile <- getSRAdbFile()

> sra_con <- dbConnect(SQLite(),sqlfile)

> sra.acc <- dbGetQuery(sra_con,paste("select submission_accession ",

+ "from submission ",

+ 'where submission_alias = "',
+ geo.acc,';"',sep=""))

The retrieved sra.acc is: “SRA010243”.

Now that we have that accession, the vignette tells us how to get every experiment, sample, run,
. . . associated with this submission accession.

Exercise 20
There are at least two possibilities to do so, one using an SQL query and the other one using a function
of the packages. What would be that function?

Solution: For those that like SQL:

> run.acc <- dbGetQuery(sra_con,paste("select run_accession ",

+ "from run ",

+ 'where submission_accession = "',
+ sra.acc,'";',sep=""))$run_accession

For those that like functions:

> sraConvert(sra.acc,sra_con=sra_con)

> run.acc <- sraConvert(sra.acc,"run",sra_con=sra_con)$run

Exercise 21
Now that we’ve got the list of runs, it would be interesting to get more information about the corre-
sponding fastq file.

Solution:

> info <- getFASTQinfo(run.acc,srcType="ftp")

And the final step would be to download the fastq file(s) of interest.

39

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/sra
http://www.ebi.ac.uk/ena
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html
http://bioconductor.org/packages/release/bioc/html/SRAdb.html

Exercise 22
Retrieve the shortest fastq file from that particular submission.

Solution:

> getSRAfile(in_acc=info[which.min(info[,"run.read.count"]),"run"],

+ sra_con, destDir = getwd(),

+ fileType = 'fastq', srcType = 'ftp')

Well, that’s almost it. As we are tidy people, we clean after ourselves.

> dbDisconnect(sra_con)

Demultiplexing using easyRNASeq Note: This section does not apply to all datasets but only to
multiplexed ones. Since the data we loaded so far into R was not multiplexed we will use a different
dataset here.

Nowadays, NGS machines produces so many reads (e.g. 40M for Illumina GAIIx, 100M for ABI
SOLiD4 and 160M for an Illumina HiSeq), that the coverage obtained per lane for the transcriptome of
organisms with small genomes, is very high. Sometimes it’s more valuable to sequence more samples with
lower coverage than sequencing only one to very high coverage, so techniques have been optimised for se-
quencing several samples in a single lane using 4-6bp barcodes to uniquely identify the sample within the
library[23]. This is called multiplexing and one can on average sequence 12 yeast samples at 30X coverage
in a single lane of an Illumina GenomeAnalyzer GAIIx (100bp read, single end). This approach is very
advantageous for researchers, especially in term of costs, but it adds an additional layer of pre-processing
that is not as trivial as one would think. Extracting the barcodes would be fairly straightforward, but
for the average 0.1-1 percent sequencing error rate that introduces a lot of multiplicity in the actual
barcodes present in the samples. A proper design of the barcodes, maximising the Hamming distance
[15] is an essential step for proper de-multiplexing.

The data we loaded into R in the previous section was not mutiplexed, so we now load a differ-
ent FASTQ file where the 4 different samples sequenced were identified by the barcodes ”ATGGCT”,
”TTGCGA”, ”ACACTG” and ”ACTAGC”.

> reads <- readFastq(file.path(bigdata(),"multiplex","multiplex.fq.gz"))

> # filter out reads with more than 2 Ns

> filter <- nFilter(threshold=2)

> reads <- reads[filter(reads)]

> # access the read sequences

> seqs <- sread(reads)

> # this is the length of your adapters

> barcodeLength <- 6

> # get the first 6 bases of each read

> seqs <- narrow(seqs, end=barcodeLength)

> seqs

> length(table(as.character(seqs)))

So it seems we have 1953 barcodes instead of 6 . . .

Exercise 23
Which barcode is most represented in this library? Plot the relative frequency of the top 20 barcodes.
Try:

• using the function table to count how many times each barcode occurs in the library, you can’t apply
this function to seqs directly you must convert it first to a character vector with the as.character
function

• sort the counts object you just created with the function sort, use decreasing=TRUE as an argument
for sort so that the elements are sorted from high to low (use sort(..., decreasing=TRUE))

40

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html

• look at the first element of your sorted counts object to find out with barcode is most represented

• find out what the relative frequency of each barcode is by dividing your counts object by the total
number of reads (the function sum might be useful)

• plot the relative frequency of the top 20 barcodes by adapting these function calls:

> # set up larger margins for the plot so we can read the barcode names

> par(mar=c(5, 5, 4, 2))

> barplot(..., horiz=T, las=1, col="orange")

Solution:

> barcount = sort(table(as.character(seqs)), decreasing=TRUE)

> barcount[1:10] # TTGCGA

> barcount = barcount/sum(barcount)

> par(mar=c(5, 5, 4, 2))

> barplot(barcount[1:20], horiz=TRUE, las=1, col="orange")

Exercise 24
The designed barcodes (”ATGGCT”, ”TTGCGA”, ”ACACTG” and ”ACTAGC”) seem to be equally dis-
tributed, what is the percentage of reads that cannot be assigned to a barcode?

Solution:

> signif((1-sum(barcount[1:4]))*100,digits=2) # ~6.4%

We will now iterate over the 4 barcodes, split the reads between them and save a new fastq file for
each:

> barcodes = c("ATGGCT", "TTGCGA", "ACACTG", "ACTAGC")

> # iterate through each of these top 10 adapters and write

> # output to fastq files

> for(barcode in barcodes) {

+ seqs <- sread(reads) # get sequence list

+ qual <- quality(reads) # get quality score list

+ qual <- quality(qual) # strip quality score type

+ mismatchVector <- 0 # allow no mismatches

+

+ # trim sequences looking for a 5' pattern

+ # gets IRanges object with trimmed coordinates

+ trimCoords <- trimLRPatterns(Lpattern=barcode,

+ subject=seqs, max.Lmismatch=mismatchVector, ranges=T)

+

+ # generate trimmed ShortReadQ object

+ seqs <- DNAStringSet(seqs, start=start(trimCoords),

+ end=end(trimCoords))

+ qual <- BStringSet(qual, start=start(trimCoords),

+ end=end(trimCoords))

+

+ # use IRanges coordinates to trim sequences and quality scores

+ qual <- SFastqQuality(qual) # reapply quality score type

+ trimmed <- ShortReadQ(sread=seqs, quality=qual, id=id(reads))

+

+ # rebuild reads object with trimmed sequences and quality scores

41

+ # keep only reads which trimmed the full barcode

+ trimmed <- trimmed[start(trimCoords) == barcodeLength + 1]

+

+ # write reads to Fastq file

+ outputFileName <- paste(barcode, ".fq", sep="")

+ writeFastq(trimmed, outputFileName)

+

+ # export filtered and trimmed reads to fastq file

+ print(paste("wrote", length(trimmed),

+ "reads to file", outputFileName))

+ }

You should have four new FASTQ files: ACACTG.fq, ACTAGC.fq ATGGCT.fq and TTGCGA.fq with
the reads (the barcodes have been trimmed) corresponding to each mutiplexed sampled. The next step
would be to align these reads against your reference genome.

Aligning reads using Rsubread

> library(Rsubread)

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> chr4 <- DNAStringSet(unmasked(Dmelanogaster[["chr4"]]))

> names(chr4) <- "chr4"

> writeXStringSet(chr4,file="dm3-chr4.fa")

> ## create the indexes

> dir.create("indexes")

> buildindex(basename=file.path("indexes","dm3-chr4"),

+ reference="dm3-chr4.fa")

> ## align the reads

> sapply(dir(pattern="*\\.fq$"),function(fil){

+ ## align

+ align(index=file.path("indexes","dm3-chr4"),

+ readfile1=sub("\\.fq$","",fil),

+ nsubreads=2,TH1=1,

+ output_file=sub("\\.fq$","\\.sam",fil)

+)

+

+ ## create bam files

+ asBam(file=sub("\\.fq$","\\.sam",fil),

+ destination=sub("\\.fq$","",fil),

+ indexDestination=TRUE)

+ })

And that’s it you have filtered, demultiplexed and aligned your reads!

2.2.5 Resources

There are extensive vignettes for Biostrings and GenomicRanges packages. A useful on-line resource is
from Thomas Girke’s group.

42

http://bioconductor.org/packages/release/bioc/html/Rsubread.html
http://bioconductor.org/packages/release/bioc/html/Biostrings.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://manuals.bioinformatics.ucr.edu/home/ht-seq

Chapter 3

Annotation of Genes and Genomes

3.1 Annotation

Bioconductor provides extensive annotation resources, summarized in Figure 3.1. These can be gene-,
or genome-centric. Annotations can be provided in packages curated by Bioconductor, or obtained from
web-based resources. Gene-centric AnnotationDbi packages include:

• Organism level: e.g. org.Mm.eg.db, Homo.sapiens.

• Platform level: e.g. hgu133plus2.db, hgu133plus2.probes, hgu133plus2.cdf .

• Homology level: e.g. hom.Dm.inp.db.

• System biology level: GO.db, KEGG.db, Reactome.db.

Examples of genome-centric packages include:

• GenomicFeatures, to represent genomic features, including constructing reproducible feature or
transcript data bases from file or web resources.

• Pre-built transcriptome packages, e.g. TxDb.Hsapiens.UCSC.hg19.knownGene based on the H.
sapiens UCSC hg19 knownGenes track.

• BSgenome for whole genome sequence representation and manipulation.

• Pre-built genomes, e.g., BSgenome.Hsapiens.UCSC.hg19 based on the H. sapiens UCSC hg19 build.

Web-based resources include

• biomaRt to query biomart resource for genes, sequence, SNPs, and etc.

• rtracklayer for interfacing with browser tracks, especially the UCSC genome browser.

3.1.1 Gene-centric annotations with AnnotationDbi

Organism-level (‘org’) packages contain mappings between a central identifier (e.g., Enterz gene ids) and
other identifiers (e.g. GenBank or Uniprot accession number, RefSeq id, etc.). The name of an org
package is always of the form org.<Sp>.<id>.db (e.g. org.Sc.sgd.db) where <Sp> is a 2-letter abbrevi-
ation of the organism (e.g. Sc for Saccharomyces cerevisiae) and <id> is an abbreviation (in lower-case)
describing the type of central identifier (e.g. sgd for gene identifiers assigned by the Saccharomyces
Genome Database, or eg for Entrez gene ids). The “How to use the ‘.db’ annotation packages” vignette
in the AnnotationDbi package (org packages are only one type of “.db” annotation packages) is a key
reference. The ‘.db’ and most other Bioconductor annotation packages are updated every 6 months.

Annotation packages contain an object named after the package itself. These objects are collectively
called AnnotationDb objects, with more specific classes named OrgDb, ChipDb or TranscriptDb objects.
Methods that can be applied to these objects include cols, keys, keytypes and select.

Exercise 25
What is the name of the org package for Drosophila? Load it. Display the OrgDb object for the
org.Dm.eg.db package. Use the cols method to discover which sorts of annotations can be extracted
from it.

43

http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html
http://bioconductor.org/packages/release/data/annotation/html/Homo.sapiens.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.db.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.probes.html
http://bioconductor.org/packages/release/data/annotation/html/hgu133plus2.cdf.html
http://bioconductor.org/packages/release/data/annotation/html/hom.Dm.inp.db.html
http://bioconductor.org/packages/release/bioc/html/GO.db.html
http://bioconductor.org/packages/release/bioc/html/KEGG.db.html
http://bioconductor.org/packages/release/bioc/html/Reactome.db.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/data/annotation/html/BSgenome.Hsapiens.UCSC.hg19.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org/
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html
http:://genome.ucsc.edu
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html
http://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html
http://bioconductor.org/packages/release/bioc/html/org.Dm.eg.db.html

GENE ID

PLATFORM
PKGS

GENE ID

ONTO ID’S

ORG
PKGS

GENE ID

ONTO ID

TRANSCRIPT
PKGS

SYSTEM
BIOLOGY

(GO, KEGG)

GENE ID

HOMOLOGY
PKGS

Figure 3.1: Annotation Packages: the big picture

Use the keys method to extract UNIPROT identifiers and then pass those keys in to the select

method in such a way that you extract the SYMBOL (gene symbol) and KEGG pathway information
for each.

Use select to retrieve the ENTREZ and SYMBOL identifiers of all genes in the KEGG pathway
00310.

Solution: The OrgDb object is named org.Dm.eg.db.

> cols(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

[26] "FLYBASECG" "FLYBASEPROT"

> keytypes(org.Dm.eg.db)

[1] "ENTREZID" "ACCNUM" "ALIAS" "CHR" "CHRLOC"

[6] "CHRLOCEND" "ENZYME" "MAP" "PATH" "PMID"

[11] "REFSEQ" "SYMBOL" "UNIGENE" "ENSEMBL" "ENSEMBLPROT"

[16] "ENSEMBLTRANS" "GENENAME" "UNIPROT" "GO" "EVIDENCE"

[21] "ONTOLOGY" "GOALL" "EVIDENCEALL" "ONTOLOGYALL" "FLYBASE"

[26] "FLYBASECG" "FLYBASEPROT"

> uniprotKeys <- head(keys(org.Dm.eg.db, keytype="UNIPROT"))

> cols <- c("SYMBOL", "PATH")

> select(org.Dm.eg.db, keys=uniprotKeys, cols=cols, keytype="UNIPROT")

UNIPROT SYMBOL PATH

1 Q8IRZ0 CG3038 <NA>

2 Q95RP8 CG3038 <NA>

3 Q95RU8 G9a 00310

4 Q9W5H1 CG13377 <NA>

5 P39205 cin <NA>

6 Q24312 ewg <NA>

44

Selecting UNIPROT and SYMBOL ids of KEGG pathway 00310 is very similar:

> kegg <- select(org.Dm.eg.db, "00310", c("UNIPROT", "SYMBOL"), "PATH")

> nrow(kegg)

[1] 36

> head(kegg, 3)

PATH UNIPROT SYMBOL

1 00310 Q95RU8 G9a

2 00310 Q9W5E0 Hmt4-20

3 00310 Q9W3N9 CG10932

Exercise 26
For convenience, the EMBO2012 package contains lrTest, an object representing the results of a RNA-
seq gene-level differential expression analysis of the pasilla RNA-seq data using the edgeR package (you
will create a similiar object later in the course, using DESeq and DEXSeq. The following code loads this
data and creates a ‘top table’ of the ten most differentially represented genes. This top table is then
coerced to a data.frame.

> library(edgeR)

> library(org.Dm.eg.db)

> data(lrTest)

> tt <- as.data.frame(topTags(lrTest))

Extract the Flybase gene identifiers (FLYBASE) from the row names of this table and map them to
their corresponding Entrez gene (ENTREZID) and symbol ids (SYMBOL) using select. Use merge to add the
results of select to the top table.

Solution:

> fbids <- rownames(tt)

> cols <- c("ENTREZID", "SYMBOL")

> anno <- select(org.Dm.eg.db, fbids, cols, "FLYBASE")

> ttanno <- merge(tt, anno, by.x=0, by.y="FLYBASE")

> dim(ttanno)

[1] 10 8

> head(ttanno, 3)

Row.names logConc logFC LR.statistic PValue FDR ENTREZID SYMBOL

1 FBgn0000071 -11 2.8 183 1.1e-41 1.1e-38 40831 Ama

2 FBgn0024288 -12 -4.7 179 7.1e-41 6.3e-38 45039 Sox100B

3 FBgn0033764 -12 3.5 188 6.8e-43 7.8e-40 <NA> <NA>

3.1.2 Genome-centric annotations with GenomicFeatures

Genome-centric packages are very useful for annotations involving genomic coordinates. It is straight-
forward, for instance, to discover the coordinates of coding sequences in regions of interest, and from
these retrieve corresponding DNA or protein coding sequences. Other examples of the types of operations
that are easy to perform with genome-centric annotations include defining regions of interest for counting
aligned reads in RNA-seq experiments and retrieving DNA sequences underlying regions of interest in
ChIP-seq analysis, e.g., for motif characterization.

45

http://bioconductor.org/packages/release/bioc/html/edgeR.html
http://bioconductor.org/packages/release/bioc/html/DESeq.html
http://bioconductor.org/packages/release/bioc/html/DEXSeq.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html

Exercise 27
Load the ‘transcript.db’ package relevant to the dm3 build of D. melanogaster. Use select and friends
to select the Flybase gene ids of the top table tt and the Flybase transcript names (TXNAME) and
Entrez gene identifiers (GENEID).

Use cdsBy to extract all coding sequences, grouped by transcript. Subset the coding sequences to
contain just the transcripts relevant to the top table. How many transcripts are there? What is the
structure of the first transcript’s coding sequence?

Load the ‘BSgenome’ package for the dm3 build of D. melanogaster. Use the coding sequences ranges
of the previous part of this exercise to extract the underlying DNA sequence, using the extractTran-

scriptsFromGenome function. Use Biostrings’ translate to convert DNA to amino acid sequences.

Solution: The following loads the relevant Transcript.db package, and creates a more convenient alias
to the TranscriptDb instance defined in the package.

> library(TxDb.Dmelanogaster.UCSC.dm3.ensGene)

> txdb <- TxDb.Dmelanogaster.UCSC.dm3.ensGene

We can discover available keys (using keys) and columns (cols) in txdb, and then use select to retrieve the
transcripts associated with each differentially expressed gene. The mapping between gene and transcript
is not one-to-one – some genes have more than one transcript.

> txnm <- select(txdb, fbids, "TXNAME", "GENEID")

> nrow(txnm)

[1] 19

> head(txnm, 3)

GENEID TXNAME

1 FBgn0039155 FBtr0084549

2 FBgn0039827 FBtr0085755

3 FBgn0039827 FBtr0085756

The TranscriptDb instances can be queried for data that is more structured than simple data frames,
and in particular return GRanges or GRangesList instances to represent genomic coordinates. These
queries are performed using cdsBy (coding sequence), transcriptsBy (transcripts), etc., where a function
argument by specifies how coding sequences or transcripts are grouped. Here we extract the coding
sequences grouped by transcript, returning the transcript names, and subset the resulting GRangesList
to contain just the transcripts of interest to us. The first transcript is composed of 6 distinct coding
sequence regions.

> cds <- cdsBy(txdb, "tx", use.names=TRUE)[txnm$TXNAME]

> length(cds)

[1] 19

> cds[1]

GRangesList of length 1:

$FBtr0084549

GRanges with 6 ranges and 3 metadata columns:

seqnames ranges strand | cds_id cds_name exon_rank

<Rle> <IRanges> <Rle> | <integer> <character> <integer>

[1] chr3R [19970946, 19971592] + | 39378 <NA> 2

[2] chr3R [19971652, 19971770] + | 39379 <NA> 3

[3] chr3R [19971831, 19972024] + | 39380 <NA> 4

[4] chr3R [19972088, 19972461] + | 39381 <NA> 5

[5] chr3R [19972523, 19972589] + | 39382 <NA> 6

[6] chr3R [19972918, 19973094] + | 39383 <NA> 7

46

http://bioconductor.org/packages/release/bioc/html/Biostrings.html

seqlengths:

chr2L chr2R chr3L chr3R ... chrXHet chrYHet chrUextra

23011544 21146708 24543557 27905053 ... 204112 347038 29004656

The following code loads the appropriate BSgenome package; the Dmelanogaster object refers to the
whole genome sequence represented in this package. The remaining steps extract the DNA sequence of
each transcript, and translates these to amino acid sequences. Issues of strand are handled correctly.

> library(BSgenome.Dmelanogaster.UCSC.dm3)

> txx <- extractTranscriptsFromGenome(Dmelanogaster, cds)

> length(txx)

[1] 19

> head(txx, 3)

A DNAStringSet instance of length 3

width seq names

[1] 1578 ATGGGCAGCATGCAAGTGGCGCT...TGCAGATCAAGTGCAGCGACTAG FBtr0084549

[2] 2760 ATGCTGCGTTATCTGGCGCTTTC...TTGCTGCCCCATTCGAACTTTAG FBtr0085755

[3] 2217 ATGGCACTCAAGTTTCCCACAGT...TTGCTGCCCCATTCGAACTTTAG FBtr0085756

> head(translate(txx), 3)

A AAStringSet instance of length 3

width seq

[1] 526 MGSMQVALLALLVLGQLFPSAVANGSSSYSSTST...VLDDSRNVFTFTTPKCENFRKRFPKLQIKCSD*

[2] 920 MLRYLALSEAGIAKLPRPQSRCYHSEKGVWGYKP...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

[3] 739 MALKFPTVKRYGGEGAESMLAFFWQLLRDSVQAN...YCGRCEAPTPATGIGKVHKREVDEIVAAPFEL*

3.1.3 Using biomaRt

The biomaRt package offers access to the online biomart resource. this consists of several data base
resources, referred to as ‘marts’. Each mart allows access to multiple data sets; the biomaRt package
provides methods for mart and data set discovery, and a standard method getBM to retrieve data.

Exercise 28
Load the biomaRt package and list the available marts. Choose the ensembl mart and list the datasets
for that mart. Set up a mart to use the ensembl mart and the hsapiens gene ensembl dataset.

A biomaRt dataset can be accessed via getBM. In addition to the mart to be accessed, this function
takes filters and attributes as arguments. Use filterOptions and listAttributes to discover values for
these arguments. Call getBM using filters and attributes of your choosing.

Solution:

> library(biomaRt)

> head(listMarts(), 3) ## list the marts

> head(listDatasets(useMart("ensembl")), 3) ## mart datasets

> ensembl <- ## fully specified mart

+ useMart("ensembl", dataset = "hsapiens_gene_ensembl")

> head(listFilters(ensembl), 3) ## filters

> myFilter <- "chromosome_name"

> head(filterOptions(myFilter, ensembl), 3) ## return values

> myValues <- c("21", "22")

> head(listAttributes(ensembl), 3) ## attributes

47

http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://www.biomart.org
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html

> myAttributes <- c("ensembl_gene_id","chromosome_name")

> ## assemble and query the mart

> res <- getBM(attributes = myAttributes, filters = myFilter,

+ values = myValues, mart = ensembl)

Use head(res) to see the results.

48

Chapter 4

Estimating Expression over Genes
and Exons

This chapter1 describes a RNA-Seq analysis use-case. RNA-Seq [32] was introduced as a new method
to perform Gene Expression Analysis, using the advantages of the high throughput of Next-Generation
Sequencing (NGS) machines.

4.1 Counting reads over known genes and exons

The goal of this use-case is to generate a count table for the selected genic features of interest, i.e. exons,
transcripts, gene models, etc.

To achieve this, we need to take advantage of all the steps performed previously in that document.

1. the alignments information has to be retrieved

2. the corresponding annotation need to be fetched

3. the read coverage per genic feature of interest determined

Exercise 29
Can you associate at least a Bioconductor package to every of these tasks?

Solution: There are numerous choices, as an example in the following we will go for the following set
of packages:

a. Rsamtools

b. BiomaRt

c. GenomicRanges

4.1.1 The alignments

This was introduced in section 2.2.3, page 32. In this section we will import the data using the Genom-
icRanges readGappedAlignments. This will create a GappedAlignments object that contains only the reads
that aligned to the genome.

Exercise 30
In the introduction of that chapter, we said we would be using the Rsamtools, why are we using Genom-
icRanges instead?

1The author want to thank Ângela Gonçalves for parts of the present chapter

49

http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/BiomaRt.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Solution: Because GenomicRanges readGappedAlignments function uses the Rsamtools scanBam function
internally and accept most of the parameters of that one.

Exercise 31
Using what was introduced in section 2.2.3, read in the first bam file from the bigdata() bam folder.
Remember that the protocol used was not strand-specific.

Solution: First we scan the bam directory:

> fls <- dir(file.path(bigdata(), "bam"), ".bam$", full=TRUE)

> names(fls) <- sub("_.*", "", basename(fls))

Then we read the first file:

> library(GenomicRanges)

> aln <- readGappedAlignments(fls[1])

> strand(aln) <- "*"

As we have seen, many of these reads actually align to multiple locations. In a first basic analysis -
to get a feel for the data - such reads could be ignored.

Exercise 32
Filter the multiple alignment reads. Think of the “NH” tag.

> param <- ScanBamParam(tag="NH")

> nhs <- scanBam(fls[[1]], param=param)[[1]]tagNH

> aln <- aln[nhs==1,]

Now that we have our alignment, let’s get the corrsponding genome annotation.

4.1.2 The annotation

To map the alignments to their respective features, we need to know the genome composition of the
studied organism, in our case D. melanogaster . As introduced in section 3.1, page 43, there are again
numerous possibilities to do this.

Exercise 33
Can you list other Bioconductor packages than biomaRt for doing this?

Solution: There are e.g. GenomicFeatures, rtracklayer, . . .

In this practical we will be using biomaRt to download the data from Ensembl. The biomaRt package
provides an interface to a growing collection of databases such as Ensembl, Uniprot and HapMap. In
this case we can use EnsemblMetazoa14 to retrieve the annotation for our organism:

> library(biomaRt)

> ensembl <- useMart(biomart="metazoa_mart_14",

+ dataset="dmelanogaster_eg_gene")

> fields = c("chromosome_name",

+ "strand",

+ "ensembl_gene_id",

+ "ensembl_exon_id",

+ "start_position",

+ "end_position",

+ "exon_chrom_start",

+ "exon_chrom_end")

> annot.df <- getBM(attributes=fields,

+ mart=ensembl)

50

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/packages/release/bioc/html/Rsamtools.html
http://bioconductor.org/packages/release/bioc/html/biomaRt.html
http://bioconductor.org/packages/release/bioc/html/GenomicFeatures.html
http://bioconductor.org/packages/release/bioc/html/rtracklayer.html

Now that we have retrieved the annotation, it is necessary to convert them into a format that we can
use for summarizing the read counts.

Exercise 34
Convert the obtained data.frame into a GRanges object. And do not forget to verify if the reference
name needs to be edited.

Solution: The alignment file and the annotation file have a common subset of reference name, so let’s
proceed.

> annot <- GRanges(seqnames = Rle(annot.df$chromosome_name),

+ ranges = IRanges(

+ start=annot.df$exon_chrom_start,

+ end = annot.df$exon_chrom_end),

+ strand = Rle(annot.df$strand),

+ exon = annot.df$ensembl_exon_id,

+ gene = annot.df$ensembl_gene_id)

> annot

The experimental protocol that generated this dataset did not retain strand information; therefore
we should set all strand locations in the annot object to the wildcard: * to be able to overlap reads with
the annotation later on:

> # check how the strand information is encoded

> strand(annot)

> # this object is compressed to save space

> # but like this it's difficult to visualise it

> # we can look at the first 10 exons:

> as.vector(strand(annot))[1:10]

> # change strand information to *

> strand(annot) <- "*"

> as.vector(strand(annot))[1:10]

Now that we have the alignments (aln object) and the genome annotation (annot object), we can
quantify gene expression by counting reads over all exons of a gene and summing them together. One
thing to keep in mind is that special care must be taken in dealing with reads that overlap more than one
feature (e.g. overlapping genes, isoforms), and thus might be counted several times in different features.
To deal with this we can use any of the approaches summarised in Figure 4.1:

The GenomicRanges summarizeOverlaps offer different possibilities to summarize reads per features:

> counts1 <- summarizeOverlaps(annot, aln, mode="Union")

> counts2 <- summarizeOverlaps(annot, aln, mode="IntersectionStrict")

> counts3 <- summarizeOverlaps(annot, aln, mode="IntersectionNotEmpty")

Exercise 35
Create a data.frame or a matrix of the results above and figure out if any differences can be observed.
E.g check for difference in the row standard deviation (using the apply and sd functions).

Solution:

> exonCountsTable <- data.frame(

+ union = assays(counts1)$counts,

+ intStrict = assays(counts2)$counts,

+ intNotEmpty = assays(counts3)$counts)

> rownames(exonCountsTable) <- elementMetadata(annot)$exon

> sds <- apply(exonCountsTable,1,sd)

> sum(sds!=0)

> sum(sds!=0)/length(sds)

> exonCountsTable[which.max(sds),]

> annot[which.max(sds),]

51

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Figure 4.1: Overlap modes; Image from the HTSeq package developed by Simon Anders.

So it appears that we have about 8, 300 cases where these counting generate different results (11% of the
total), and that the exon “FBgn0064225:2” shows the largest difference.

For a detailled analysis, it would be important to adequatly choose one of the intersection modes
above, however for the remainder of this section, we will use the “union” set. We can now finally sum
the exons together to get a vector of read counts per gene:

> exonCounts <- exonCountsTable[,"union"]

> # look at the counts of the first few exons

> head(exonCounts)

> # assign the name of the corresponding gene to each exon

> names(exonCounts) <- elementMetadata(annot)$gene

> head(exonCounts)

> # create a list in which each element corresponds to

> # all exons of the same gene

> splitCounts <- split(exonCounts, names(exonCounts))

> head(splitCounts)

> # sum the exons counts in each gene using the function sapply

> # sapply will sum the values in each element of the list

> geneCounts <- sapply(splitCounts, function(x) sum(x))

> head(geneCounts)

As before for reads aligning to multiple places in the genome, choosing to take the union when reads
overlap several features is a simplification we may not want to do. There are several methods that
probabilistically estimate the expression of overlapping features [25, 42, 43].

This concludes that section on counting reads per known features. In the next section, we will look
at how novel transcribed regions could be identified.

52

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

4.1.3 Discovering novel transcribed regions

One main advantage of RNA-seq experiments over microarrays is that they can be used to identify any
transcribed molecule, including unknown transcripts and isoforms, as well as other regulatory transcribed
elements. To identify such new elements, several methods are available to recrea te and annotate tran-
scripts, e.g. Cufflinks[42], Oases[39], Trinity[13], to mention some of them. We can use Bioconductor
tools as well, to identify loci and quantify counts without prior annotation knowledge.

Defining transcribed regions The process begins with calculating the coverage, using the method
from the GenomicRanges package:

> cover <- coverage(aln)

> cover

> # this object is compressed to save space

> # we can look at a section of chromosome say between 1000 and 3000

> # which gives us the number of read overlapping each of those bases

> as.vector(cover[[1]])[1000:3000]

Next, “islands” of expression can be formed using the slice function. The peak height for the islands
can be found using the viewMaxs function and the island widths can be found using the width function:

> islands <- slice(cover, 1)

> islandPeakHeight <- viewMaxs(islands)

> islandWidth <- width(islands)

While some more sophisticated approaches can be used to find exons de novo, we can use a simple
approach whereby we select islands whose maximum peak height is 2 or more and whose width is 114
bp (150%ofthereadsize) or more to be candidate exons. The elementLengths function shows how many
of these candidate exons appear on each chromosome:

> candidateExons <- islands[islandPeakHeight >= 2L & islandWidth >=114L]

> candidateExons[[1]]

Remember that we used an aligner which is capable of mapping reads across splice junctions in the
genome. For example:

> aln[94120,]

GappedAlignments with 1 alignment and 0 metadata columns:

seqnames strand cigar qwidth start end width

<Rle> <Rle> <character> <integer> <integer> <integer> <integer>

[1] 2L * 24M304N52M 76 17601125 17601504 380

ngap

<integer>

[1] 1

seqlengths:

2L ... dmel_mitochondrion_genome

23011544 ... 19517

has 24 bases aligned at coordinate 17,601,125 of chromosome 2L, then there is a gap of 304 bases and
the remainder 52 bases map again at coordinate 17,601,452 (the CIGAR string is 24M304N52M). The
GenomicRanges package is aware of this. Have a look at the coverage for that region:

> cover[["2L"]][17601125:17601504]

integer-Rle of length 380 with 3 runs

Lengths: 24 304 52

Values : 2 0 1

53

http://bioconductor.org/packages/release/bioc/html/GenomicRanges.html

Overlapping with known annotation We now want to find out if our candidate exons overlap with
any known annotation. For this we need to transform the candidateExons object into a GRanges object
like we did for the annotation. We will concentrate only on the chromosome “4”

> candidateExonRanges <- GRanges(seqname=Rle("4"),

+ ranges=candidateExons[["4"]], strand=Rle("*"))

We then use function countOverlaps (you could also use summarizeOverlaps) to find how many times
each candidate exon overlaps with the annotation:

> chr4 <- annot[seqnames(annot) == "4",]

> candidateOverlap <- countOverlaps(candidateExonRanges, chr4)

> # select only exons with an overlap count equal to 0

> nonoverlapExons <- GRanges(seqname=Rle("4"),

+ ranges=candidateExons[["4"]][candidateOverlap == 0], strand=Rle("*"))

> # compare the new list of exons with the previous

> nonoverlapExons

> candidateExonRanges

Exporting and visualising the novel regions The novel regions just defined are more conveniently
visualised alongside current annotation using a genome browser. The rtracklayer package provides useful
functions to import and export genomic annotation tracks in standard formats such as BED, GFF and
WIG, that can be loaded into web-based genome browsers such as UCSC and Ensembl:

> library(rtracklayer)

> # GRanges objects are easily exported to standard formats

> # using the rtracklayer package

> export(nonoverlapExons, "novelexons.bed")

The previous function produced a file novelexons.bed. Try visualising this file in EnsemblMetazoa by
following these instructions (extracted from the Ensembl help pages2):

1. access the Drosophila dmelanogaster EnsemblMetazoa website3

2. click on [Manage your data] in the side menu

3. click on “Upload Data”

4. enter the name for the track (e.g. novelexons) in the “Name for this upload (optional)” text box

5. select “Data format: BED”

6. click [Browse...] behind “Upload file:”

7. select the novelexons.bed file just created

8. click [Upload]

9. click “Go to first region with data”

Your data should now be shown as a new track on the “Region in detail” page.

This concludes the section on summarizing counts. As you could realize, juggling with the different
package for manipulating the alignment and annotation requires some coding. To facilitate this a number
of “workflow” package are available at Bioconductor. The next section gives a brief introduction of
easyRNASeq (a biased selection...)

2http://metazoa.ensembl.org/info/website/tutorials/Ensembl upload exercises.pdf
3http://metazoa.ensembl.org/Drosophila melanogaster/Info/Index

54

http://metazoa.ensembl.org/info/website/tutorials/Ensembl_upload_exercises.pdf
http://metazoa.ensembl.org/Drosophila_melanogaster/Info/Index
http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html

4.2 Using easyRNASeq

Let us redo what was done in the previous section. Note that most of the RNAseq object slots are optional.
However, it is advised to set them, especially the readLength and the organismName; to help having a
proper documentation of your analysis. The organismName slot is actually mandatory if you want to
get genomic annotation using biomaRt. In that case, you need to provide the name as specified in the
corresponding BSgenome package, i.e. “Dmelanogaster” for the BSgenome.Dmelanogaster.UCSC.dm3
package.

> ## load the library

> library("easyRNASeq")

> count.table <- easyRNASeq(filesDirectory=dirname(fls[1]),

+ filenames=basename(fls),

+ organism="Dmelanogaster",

+ readLength=76L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="bam",

+ gapped=TRUE,

+ count="exons")

> head(count.table)

> dim(count.table)

That is all. In one command, you got the count table for your 2 samples!

Warnings As you could see when running the previous example, warnings were emitted and quite
rightly so.

1. about the annotation: The annotation we are using here is redundant and this at two levels. First,
some exons overlap. These are alternative exons from different transcript isoforms. Second, the
annotation contains the information about all the possible different transcript isoforms. This means
that some exons are duplicated. Therefore counting by exons or transcripts using these annotation
will result in counting some of the reads several times. There might be reasons one might want
to do that, but as it is probably not what you want when performing an RNA-Seq analysis, the
warning is emitted. As this can be a very significant source of error, all the examples here will emit
this warning. The ideal solution is to provide an annotation object that contains no overlapping
features. The disjoin function from the IRanges package offers a way to achieve this.

2. about potential naming issue in the input file: It is (sadly) very frequent that the sequencing
facilities use different naming conventions for the chromosomes they report in the alignment files.
It is therefore very frequent that the annotation provided to easyRNASeq uses different chromosome
names than the alignment file. These warnings are there to inform you about this issue.

Details The easyRNASeq function currently accepts the following annotationMethods:

• “biomaRt” use biomaRt to retrieve the annotation

• “env” use a RangedData or GRanges class object present in the environment

• “gff” reads in a gff version 3 file

• “gtf” reads in a gtf file

• “rda” load an RData object. The object needs to be named gAnnot and of class RangedData or
GRanges.

55

http://bioconductor.org/packages/release/bioc/html/BSgenome.html
http://bioconductor.org/packages/release/bioc/html/IRanges.html

The reads can be read in from BAM files or any format supported by ShortRead.
The reads can be summarized by:

• exons

• features (any features such as introns, enhancers, etc.)

• transcripts

• geneModels (a geneModel is the set of non overlapping loci (i.e. synthetic exons) that represents
all the possible exons and UTRs of a gene. Such geneModels are essential when counting reads
as they ensure that no reads will be accounted for several times. E.g., a gene can have different
isoforms, using different exons, overlapping exons, in which case summarizing by exons might result
in counting a read several times, once per overlapping exon. N.B. Assessing differential expression
between transcripts, based on synthetic exons is something possible since the release 2.14 of R,
using the DEXSeq package available from Bioconductor.

The results can be exported in five different formats:

• count table (the default, a n (features) x m (samples) matrix).

• a DESeq [1] countDataSet class object. Useful to perform further analyses using the DESeq package.

• an edgeR [37] DGEList class object. Useful to perform further analyses using the edgeR package.

• an RNAseq class object. Useful for performing additional pre-processing without re-loading the
reads and annotations.

The obtained results can optionally be corrected as Reads per Kilobase of feature per Million reads
in the library (RPKM, [32]) or normalized using the DESeq or edgeR packages.

For more details and a complete overview of the easyRNASeq package capabilities, have a look at
the easyRNASeq vignette.

> vignette("easyRNASeq")

Exercise 36
From the same input files and annotations, generate an object of class SummarizedExperiment .

Solution:

> sumExp <- easyRNASeq(filesDirectory=dirname(fls[1]),

+ filenames=basename(fls),

+ organism="Dmelanogaster",

+ readLength=76L,

+ annotationMethod="rda",

+ annotationFile=system.file(

+ "data",

+ "gAnnot.rda",

+ package="RnaSeqTutorial"),

+ format="bam",

+ gapped=TRUE,

+ count="exons",

+ outputFormat="SummarizedExperiment")

See the GenomicRange package SummarizedExperiment class for more details on last three accessors
used in the following.

> ## the counts

> assays(sumExp)

> ## the sample info

> colData(sumExp)

> ## the 'features' info

> rowData(sumExp)

56

Caveats easyRNASeq is still under active development and as such still lacks some essential data
processing (e.g. strand specific sequencing is not yet supported). Have a look at the vignette for more
details.

57

http://bioconductor.org/packages/release/bioc/html/easyRNASeq.html

Chapter 5

Working with Called Variants

5.1 Annotation of Variants

A major product of DNASeq experiments are catalogs of called variants (e.g., SNPs, indels). We will use
the VariantAnnotation package to explore this type of data. Sample data included in the package are a
subset of chromosome 22 from the 1000 Genomes project. Variant Call Format (VCF; full description)
text files contain meta-information lines, a header line with column names, data lines with information
about a position in the genome, and optional genotype information on samples for each position.

5.1.1 Variant call format (VCF) files

Data are read from a VCF file and variants identified according to region such as coding, intron, inter-
genic, spliceSite etc. Amino acid coding changes are computed for the non-synonymous variants. SIFT
and PolyPhen databases provide predictions of how severely the coding changes affect protein function.

Data exploration

Exercise 37
The objective of this exercise is to compare the quality of called SNPs that are located in dbSNP, versus
those that are novel.

Locate the sample data in the file system. Explore the metadata (information about the content of
the file) using scanVcfHeader. Discover the ‘info’ fields VT (variant type), and RSQ (genotype imputation
quality).

Input the sample data using readVcf. You’ll need to specify the genome build (genome="hg19") on
which the variants are annotated. Take a peak at the rowData to see the genomic locations of each
variant.

dbSNP uses abbreviations such as ch22 to represent chromosome 22, whereas the VCF file uses 22.
Use rowData and renameSeqlevels to extract the row data of the variants, and rename the chromosomes.

The SNPlocs.Hsapiens.dbSNP.20101109 contains information about SNPs in a particular build of
dbSNP. Load the package, use the dbSNPFilter function to create a filter, and query the row data of the
VCF file for membership.

Create a data frame containing the dbSNP membership status and imputation quality of each SNP.
Create a density plot to illustrate the results.

Solution: Explore the header:

> library(VariantAnnotation)

> fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

> (hdr <- scanVcfHeader(fl))

class: VCFHeader

samples(5): HG00096 HG00097 HG00099 HG00100 HG00101

meta(1): fileformat

58

http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html
ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/20110521/
http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41
http://bioconductor.org/packages/release/data/annotation/html/SNPlocs.Hsapiens.dbSNP.20101109.html

fixed(1): ALT

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

> info(hdr)[c("VT", "RSQ"),]

DataFrame with 2 rows and 3 columns

Number Type Description

<character> <character> <character>

VT 1 String indicates what type of variant the line represents

RSQ 1 Float Genotype imputation quality from MaCH/Thunder

Input the data and peak at their locations:

> (vcf <- readVcf(fl, "hg19"))

class: VCF

dim: 10376 5

genome: hg19

exptData(1): header

fixed(4): REF ALT QUAL FILTER

info(22): LDAF AVGPOST ... VT SNPSOURCE

geno(3): GT DS GL

rownames(10376): rs7410291 rs147922003 ... rs144055359 rs114526001

rowData values names(1): paramRangeID

colnames(5): HG00096 HG00097 HG00099 HG00100 HG00101

colData names(1): Samples

> head(rowData(vcf), 3)

GRanges with 3 ranges and 1 metadata column:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

rs7410291 22 [50300078, 50300078] * | <NA>

rs147922003 22 [50300086, 50300086] * | <NA>

rs114143073 22 [50300101, 50300101] * | <NA>

seqlengths:

22

NA

Rename chromosome levels:

> rowData(vcf) <- renameSeqlevels(rowData(vcf), c("22"="ch22"))

Discover whether SNPs are located in dbSNP:

> library(SNPlocs.Hsapiens.dbSNP.20101109)

> snpFilt <- dbSNPFilter("SNPlocs.Hsapiens.dbSNP.20101109")

> inDbSNP <- snpFilt(rowData(vcf), subset=FALSE)

> table(inDbSNP)

inDbSNP

FALSE TRUE

6126 4250

Create a data frame summarizing SNP quality and dbSNP membership:

> metrics <-

+ data.frame(inDbSNP=inDbSNP, RSQ=info(vcf)$RSQ)

59

Figure 5.1: Quality scores of variants in dbSNP, compared to those not in dbSNP.

Table 5.1: Variant locations

Location Details
coding Within a coding region
fiveUTR Within a 5’ untranslated region
threeUTR Within a 3’ untranslated region
intron Within an intron region
intergenic Not within a transcript associated with a gene
spliceSite Overlaps any of the first or last 2 nucleotides of an intron

Finally, visualize the data, e.g., using ggplot2 (Figure 5.1).

> library(ggplot2)

> ggplot(metrics, aes(RSQ, fill=inDbSNP)) +

+ geom_density(alpha=0.5) +

+ scale_x_continuous(name="MaCH / Thunder Imputation Quality") +

+ scale_y_continuous(name="Density") +

+ theme(legend.position="top")

5.1.2 Coding consequences

Locating variants in and around genes Variant location with respect to genes can be identi-
fied with the locateVariants function. Regions are specified in the region argument and can be one
of the following constructors: CodingVariants(), IntronVariants(), FiveUTRVariants(), ThreeUTRVari-

ants(), IntergenicVariants(), SpliceSiteVariants(), or AllVariants(). Location definitions are shown
in Table 5.1.

Exercise 38
Load the TxDb.Hsapiens.UCSC.hg19.knownGene annotation package, and read in the chr22.vcf.gz

example file from the VariantAnnotation package.
Remembering to re-name sequence levels, use the locateVariants function to identify coding variants.
Summarize aspects of your data, e.g., did any coding variants match more than one gene? How many

coding variants are there per gene ID?

60

http://bioconductor.org/packages/release/data/annotation/html/TxDb.Hsapiens.UCSC.hg19.knownGene.html
http://bioconductor.org/packages/release/bioc/html/VariantAnnotation.html

Solution: Here we open the known genes data base, and read in the VCF file.

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> fl <- system.file("extdata", "chr22.vcf.gz", package="VariantAnnotation")

> vcf <- readVcf(fl, "hg19")

> vcf <- renameSeqlevels(vcf, c("22"="chr22"))

The next lines locate coding variants.

> rd <- rowData(vcf)

> loc <- locateVariants(rd, txdb, CodingVariants())

> head(loc, 3)

GRanges with 3 ranges and 5 metadata columns:

seqnames ranges strand | LOCATION QUERYID TXID

<Rle> <IRanges> <Rle> | <factor> <integer> <integer>

[1] chr22 [50301422, 50301422] * | coding 24 73482

[2] chr22 [50301476, 50301476] * | coding 25 73482

[3] chr22 [50301488, 50301488] * | coding 26 73482

CDSID GENEID

<integer> <character>

[1] 217009 79087

[2] 217009 79087

[3] 217009 79087

seqlengths:

chr22

NA

To answer gene-centric questions data can be summarized by gene regardless of transcript.

> ## Did any coding variants match more than one gene?

> splt <- split(loc$GENEID, loc$QUERYID)

> table(sapply(splt, function(x) length(unique(x)) > 1))

FALSE TRUE

956 15

> ## Summarize the number of coding variants by gene ID

> splt <- split(loc$QUERYID, loc$GENEID)

> head(sapply(splt, function(x) length(unique(x))), 3)

113730 1890 23209

22 15 30

Amino acid coding changes predictCoding computes amino acid coding changes for non-synonymous
variants. Only ranges in query that overlap with a coding region in subject are considered. Reference
sequences are retrieved from either a BSgenome or fasta file specified in seqSource. Variant sequences
are constructed by substituting, inserting or deleting values in the varAllele column into the reference
sequence. Amino acid codes are computed for the variant codon sequence when the length is a multiple
of 3.

The query argument to predictCoding can be a GRanges or VCF. When a GRanges is supplied the
varAllele argument must be specified. In the case of a VCF object, the alternate alleles are taken from
alt(<VCF>) and the varAllele argument is not specified.

The result is a modified query containing only variants that fall within coding regions. Each row
represents a variant-transcript match so more than one row per original variant is possible.

61

> library(BSgenome.Hsapiens.UCSC.hg19)

> coding <- predictCoding(vcf, txdb, seqSource=Hsapiens)

> coding[5:9]

GRanges with 5 ranges and 13 metadata columns:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

22:50301584 chr22 [50301584, 50301584] - | <NA>

rs114264124 chr22 [50302962, 50302962] - | <NA>

rs149209714 chr22 [50302995, 50302995] - | <NA>

22:50303554 chr22 [50303554, 50303554] - | <NA>

rs12167668 chr22 [50303561, 50303561] - | <NA>

varAllele CDSLOC PROTEINLOC QUERYID

<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>

22:50301584 A [777, 777] 259 28

rs114264124 A [698, 698] 233 57

rs149209714 C [665, 665] 222 58

22:50303554 G [652, 652] 218 73

rs12167668 A [645, 645] 215 74

TXID CDSID GENEID CONSEQUENCE REFCODON

<character> <integer> <character> <factor> <DNAStringSet>

22:50301584 73482 217009 79087 synonymous CCG

rs114264124 73482 217010 79087 nonsynonymous CGG

rs149209714 73482 217010 79087 nonsynonymous GGA

22:50303554 73482 217011 79087 nonsynonymous ATC

rs12167668 73482 217011 79087 synonymous CCG

VARCODON REFAA VARAA

<DNAStringSet> <AAStringSet> <AAStringSet>

22:50301584 CCA P P

rs114264124 CAG R Q

rs149209714 GCA G A

22:50303554 GTC I V

rs12167668 CCA P P

seqlengths:

chr22

NA

Using variant rs114264124 as an example, we see varAllele A has been substituted into the refCodon

CGG to produce varCodon CAG. The refCodon is the sequence of codons necessary to make the variant
allele substitution and therefore often includes more nucleotides than indicated in the range (i.e. the
range is 50302962, 50302962, width of 1). Notice it is the second position in the refCodon that has been
substituted. This position in the codon, the position of substitution, corresponds to genomic position
50302962. This genomic position maps to position 698 in coding region-based coordinates and to triplet
233 in the protein. This is a non-synonymous coding variant where the amino acid has changed from R

(Arg) to Q (Gln).
When the resulting varCodon is not a multiple of 3 it cannot be translated. The consequence is

considered a frameshift and varAA will be missing.

> coding[coding$CONSEQUENCE == "frameshift"]

GRanges with 1 range and 13 metadata columns:

seqnames ranges strand | paramRangeID

<Rle> <IRanges> <Rle> | <factor>

22:50317001 chr22 [50317001, 50317001] + | <NA>

varAllele CDSLOC PROTEINLOC QUERYID

<DNAStringSet> <IRanges> <CompressedIntegerList> <integer>

62

22:50317001 GCACT [808, 808] 270 359

TXID CDSID GENEID CONSEQUENCE REFCODON

<character> <integer> <character> <factor> <DNAStringSet>

22:50317001 72592 214765 79174 frameshift GCC

VARCODON REFAA VARAA

<DNAStringSet> <AAStringSet> <AAStringSet>

22:50317001 ACC A

seqlengths:

chr22

NA

SIFT and PolyPhen databases From predictCoding we identified the amino acid coding changes
for the non-synonymous variants. For this subset we can retrieve predictions of how damaging these
coding changes may be. SIFT (Sorting Intolerant From Tolerant) and PolyPhen (Polymorphism Pheno-
typing) are methods that predict the impact of amino acid substitution on a human protein. The SIFT
method uses sequence homology and the physical properties of amino acids to make predictions about
protein function. PolyPhen uses sequence-based features and structural information characterizing the
substitution to make predictions about the structure and function of the protein.

Collated predictions for specific dbSNP builds are available as downloads from the SIFT and PolyPhen
web sites. These results have been packaged into SIFT.Hsapiens.dbSNP132.db and PolyPhen.Hapiens.dbSNP131.db
and are designed to be searched by rsid. Variants that are in dbSNP can be searched with these database
packages. When working with novel variants, SIFT and PolyPhen must be called directly. See references
for home pages.

Identify the non-synonymous variants and obtain the rsids.

> nms <- names(coding)

> idx <- coding$CONSEQUENCE == "nonsynonymous"

> nonsyn <- coding[idx]

> names(nonsyn) <- nms[idx]

> rsids <- unique(names(nonsyn)[grep("rs", names(nonsyn), fixed=TRUE)])

Detailed descriptions of the database columns can be found with ?SIFTDbColumns and ?PolyPhenDbColumns.
Variants in these databases often contain more than one row per variant. The variant may have been
reported by multiple sources and therefore the source will differ as well as some of the other variables.

> library(SIFT.Hsapiens.dbSNP132)

> ## rsids in the package

> head(keys(SIFT.Hsapiens.dbSNP132), 3)

[1] "rs10000692" "rs10001580" "rs10002700"

> ## list available columns

> cols(SIFT.Hsapiens.dbSNP132)

[1] "RSID" "PROTEINID" "AACHANGE" "METHOD" "AA"

[6] "PREDICTION" "SCORE" "MEDIAN" "POSTIONSEQS" "TOTALSEQS"

> ## select a subset of columns

> ## a warning is thrown when a key is not found in the database

> subst <- c("RSID", "PREDICTION", "SCORE", "AACHANGE", "PROTEINID")

> sift <- select(SIFT.Hsapiens.dbSNP132, keys=rsids, cols=subst)

> head(sift, 3)

RSID PROTEINID AACHANGE PREDICTION SCORE

1 rs114264124 NP_077010 R233Q TOLERATED 0.59

2 rs114264124 NP_077010 R233Q TOLERATED 1.00

3 rs114264124 NP_077010 R233Q TOLERATED 0.20

63

PolyPhen provides predictions using two different training datasets and has considerable information
about 3D protein structure. See ?PolyPhenDbColumns or the PolyPhen web site listed in the references for
more details.

64

Bibliography

[1] S. Anders and W. Huber. Differential expression analysis for sequence count data. Genome Biology,
11:R106, 2010.

[2] S. Anders, A. Reyes, and W. Huber. Detecting differential usage of exons from rna-seq data. Genome
Research, 2012.

[3] A. N. Brooks, L. Yang, M. O. Duff, K. D. Hansen, J. W. Park, S. Dudoit, S. E. Brenner, and B. R.
Graveley. Conservation of an RNA regulatory map between Drosophila and mammals. Genome
Research, pages 193–202, 2011.

[4] J. Bullard, E. Purdom, K. D. Hansen, and S. Dudoit. Evaluation of statistical methods for nor-
malization and differential expression in mrna-seq experiments. BMC Bioinformatics, 11, 2010. R
package version 1.12.0.

[5] J. Cairns, C. Spyrou, R. Stark, M. L.Smith, A. G. Lynch, and S. Tavaré. Bayespeak - an r package
for analysing chip-seq data, bioinformatics. Bioinformatics, 27(5):714–714, 2011.

[6] J. M. Chambers. Software for Data Analysis: Programming with R. Springer, New York, 2008.

[7] P. Dalgaard. Introductory Statistics with R. Springer, 2nd edition, 2008.

[8] N. Delhomme, I. Padioleau, E. E. Furlong, and L. M. Steinmetz. easyrnaseq: a bioconductor package
for processing rna-seq data. Bioinformatics, in press:in press, 2012.

[9] O. Flores and M. Orozco. nucler: a package for non-parametric nucleosome positioning. Bioinfor-
matics, 27:2149–2150, 2011.

[10] R. Gentleman. R Programming for Bioinformatics. Computer Science & Data Analysis. Chapman
& Hall/CRC, Boca Raton, FL, 2008.

[11] R. C. Gentleman et al. Bioconductor: open software development for computational biology and
bioinformatics. Genome Biology 2010 11:202, 5(10):R80, Jan 2004.

[12] Glaus, Peter, Honkela, Antti, Rattray, and Magnus. Identifying differentially expressed transcripts
from rna-seq data with biological variation. Bioinformatics, 28(13):1721–1728, 2012.

[13] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit, X. Adiconis, L. Fan,
R. Raychowdhury, Q. Zeng, Z. Chen, E. Mauceli, N. Hacohen, A. Gnirke, N. Rhind, F. D. Palma,
B. W. Birren, C. Nusbaum, K. Lindblad-Toh, N. Friedman, and A. Regev. Full-length transcriptome
assembly from rna-seq data without a reference genome. Nat Biotechnol, 29(7):644–652, May 2011.

[14] A. Gusnanto, H. M. Wood, Y. Pawitan, P. Rabbitts, and S. Berri. Correcting for cancer genome size
and tumour cell content enables better estimation of copy number alterations from next-generation
sequence data. Bioinformatics, 28(1):40–7, Jan 2012.

[15] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical Journal,
XXIX(2):1–14, Nov 1950.

[16] K. D. Hansen, R. A. Irizarry, and Z. Wu. Removing technical variability in RNA-seq data using
conditional quantile normalization. Biostatistics, 13(2):204–216, 2012.

65

[17] I. Holmes, K. Harris, and C. Quince. Dirichlet multinomial mixtures: Generative models for micro-
bial metagenomics. PLoS ONE, 7(2):e30126, 02 2012.

[18] D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. A new approach to bias correction in rna-seq.
Bioinformatics, 28:921–928, 2012.

[19] R. Kabacoff. R in Action. Manning, 2010.

[20] G. Klambauer, K. Schwarzbauer, A. Mayr, A. Mitterecker, D.-A. Clevert, U. Bodenhofer, and
S. Hochreiter. cn.mops: Mixture of poissons for discovering copy number variations in next genera-
tion sequencing data with a low false discovery rate. Nucleic Acids Research, 40:e69, 2012.

[21] H.-U. Klein, C. Bartenhagen, A. Kohlmann, V. Grossmann, C. Ruckert, T. Haferlach, and M. Dugas.
R453plus1toolbox: an r/bioconductor package for analyzing roche 454 sequencing data. Bioinfor-
matics, 27(8):1162–1163, 2011.

[22] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biol., 10:R25, 2009.

[23] P. Lefrançois, G. M. Euskirchen, R. K. Auerbach, J. Rozowsky, T. Gibson, C. M. Yellman, M. Ger-
stein, and M. Snyder. Efficient yeast chip-seq using multiplex short-read dna sequencing. BMC
genomics, 10(1):37, Jan 2009.

[24] A. Leśniewska and M. J. Okoniewski. rnaseqmap: a bioconductor package for rna sequencing data
exploration. BMC Bioinformatics, 12:200, Jan 2011.

[25] B. Li, V. Ruotti, R. M. Stewart, J. A. Thomson, and C. N. Dewey. Rna-seq gene expression
estimation with read mapping uncertainty. Bioinformatics, 26(4):493–500, Feb 2010.

[26] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics, 25:1754–1760, Jul 2009.

[27] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics, 26:589–595, Mar 2010.

[28] Luo, Weijun, Friedman, Michael, Shedden, Kerby, Hankenson, Kurt, Woolf, and Peter. Gage:
generally applicable gene set enrichment for pathway analysis. BMC Bioinformatics, 10:161, 2009.

[29] E. L. M. Hummel, S. Bonnin and G. Roma. Teqc: an r-package for quality control in target capture
experiments. Bioinformatics, 2011.

[30] N. Matloff. The Art of R Programming. No Starch Pess, 2011.

[31] M. Morgan, S. Anders, M. Lawrence, P. Aboyoun, H. Pagès, and R. Gentleman. Shortread: a
bioconductor package for input, quality assessment and exploration of high-throughput sequence
data. Bioinformatics, 25:2607–2608, 2009.

[32] A. Mortazavi et al. Mapping and quantifying mammalian transcriptomes by rna-seq. Nature Meth-
ods, 5(7):621–8, Jul 2008.

[33] J. Muino, K. Kaufmann, R. van Ham, G. Angenent, and P. Krajewski. Chip-seq analysis in r (csar):
An r package for the statistical detection of protein-bound genomic regions. Plant Methods, 7(1),
2011.

[34] Pacific Symposium on Biocomputing. phyloseq: A Bioconductor Package for Handling and Analysis
of High-Throughput Phylogenetic Sequence Data, volume 17, 2011.

[35] R Development Core Team. R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-07-0.

[36] D. Risso, K. Schwartz, G. Sherlock, and S. Dudoit. GC-Content Normalization for RNA-Seq Data.
BMC Bioinformatics, 12(1):480, 2011.

66

[37] M. D. Robinson, D. J. McCarthy, and G. K. Smyth. edgeR: a Bioconductor package for differential
expression analysis of digital gene expression data. Bioinformatics, 26:139–140, Jan 2010.

[38] C. S. Ross-Innes et al. Differential oestrogen receptor binding is associated with clinical outcome in
breast cancer. Nature, 481:389–393, 2012.

[39] M. H. Schulz, D. R. Zerbino, M. Vingron, and E. Birney. Oases: robust de novo rna-seq assembly
across the dynamic range of expression levels. Bioinformatics, 28(8):1086–92, Apr 2012.

[40] N. Servant, B. R. Lajoie, E. P. Nora, L. Giorgetti, C.-J. Chen, E. Heard, J. Dekker, and E. Barillot.
Hitc: Exploration of high-throughput ’c’ experiments. Bioinformatics, 2012.

[41] J. Toedling, C. Ciaudo, O. Voinnet, E. Heard, and E. Barillot. girafe - an R/Bioconductor package for
functional exploration of aligned next-generation sequencing reads. Bioinformatics, 26:2902–2903,
2010.

[42] C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M. J. van Baren, S. L. Salzberg,
B. J. Wold, and L. Pachter. Transcript assembly and quantification by rna-seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol, 28(5):511–5, May 2010.

[43] E. Turro, S.-Y. Su, Â. Gonçalves, L. J. M. Coin, S. Richardson, and A. Lewin. Haplotype and
isoform specific expression estimation using multi-mapping rna-seq reads. Genome Biol, 12(2):R13,
Jan 2011.

[44] T. Yin, D. Cook, and M. Lawrence. ggbio: an r package for extending the grammar of graphics for
genomic data. Genome Biology, 13(8):R77, 2012.

[45] M. D. Young, M. J. Wakefield, G. K. Smyth, and A. Oshlack. Gene ontology analysis for rna-seq:
accounting for selection bias. Genome Biology, 11:R14, 2010.

[46] X. Zhang, G. Robertson, M. Krzywinski, K. Ning, A. Droit, S. Jones, and R. Gottardo. Pics:
Probabilistic inference for chip-seq. Biometrics, 66, 2010.

67

	Introduction to R / Bioconductor
	Introduction
	This workshop
	Bioconductor
	High-throughput sequence analysis
	Statistical programming
	Bioconductor for high-throughput sequence analysis

	R
	R data types
	Useful functions
	Packages
	Help
	Efficient scripts
	Warnings, errors, and debugging
	Resources

	Sequences and Short Reads
	Ranges and Strings
	Genomic ranges
	Working with strings

	Reads and Alignments
	The pasilla data set
	Reads and the ShortRead package
	Alignments and the Rsamtools package
	Alignments and other Bioconductor packages
	Resources

	Annotation of Genes and Genomes
	Annotation
	Gene-centric annotations with AnnotationDbi
	Genome-centric annotations with GenomicFeatures
	Using biomaRt

	Estimating Expression over Genes and Exons
	Counting reads over known genes and exons
	The alignments
	The annotation
	Discovering novel transcribed regions

	Using easyRNASeq

	Working with Called Variants
	Annotation of Variants
	Variant call format (VCF) files
	Coding consequences

