
\square

Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-3 Proving Lines Parallel

3-3 Proving Lines Parallel

Teks Focus

TEKS (5)(C) Use the constructions of congruent segments, congruent angles, angle bisectors, and perpendicular bisectors to make conjectures about geometric relationships.
TEKS (1)(G) Display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
Additional TEKS (1)(F), (6)(A)

Vocabulary

- Flow proof - a form of proof in which arrows show the logical connections between the statements
- Justify - explain with logical reasoning. You can justify a mathematical argument.
- Argument - a set of statements put forth to show the truth or falsehood of a mathematical claim

essential understanding

You can use certain angle pairs to decide whether two lines are parallel.

For a proof of Theorem 3-5, see the Reference section on page 683

\square

Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-3 Proving Lines Parallel
take note
Theorem 3-6 Converse of the Same-Side Interior Angles Postulate
|lf two lines and a transversal form same-side interior angles that are supplementary, then the two lines are parallel.

You will prove Theorem 3-6 in the Got It for Problem 2.
Theorem 3-7 Converse of the Alternate Exterior Angles Theorem
Theorem

For a proof of Theorem 3-7, see Problem 1.

Proof Using a Flow Chart to Prove Theorem 3-7

Given: $\angle 1 \cong \angle 7$
Prove: $\ell \| m$

Know		Need	Plan	
$\cdot \angle 1 \cong \angle 7$ From the diagram you know - $\angle 1$ and $\angle 3$ are vertical - $\angle 5$ and $\angle 7$ are vertical - $\angle 1$ and $\angle 5$ are corresponding $\cdot \angle 3$ and $\angle 7$ are corresponding	One pair of prove $\ell \\| m$	ponding angles congruent to	Use a pair of congruent vertical angles to relate either $\angle 1$ or $\angle 7$ to its corresponding angle.	
$\angle 1 \cong \angle 7$				
Given	$\angle 3 \cong \angle 7$	$\ell \\| m$		
$\angle 3 \cong \angle 1$ Vertical s are \cong.	Transitive	If corresp. $\angle \Delta$ are \cong, then the lines are $\\|$.		

Page 102

Page \square GO

Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-3 Proving Lines Parallel

Problem 2

Identifying Parallel Lines
Which lines are parallel if $\angle \mathbf{1} \cong \angle \mathbf{2}$? Justify your answer.
$\angle 1$ and $\angle 2$ are corresponding angles. If $\angle 1 \cong \angle 2$, then $a \| b$ by the Converse of the Corresponding Angles Theorem.

Think

Which line is the transversal for $\angle 1$ and $\angle \mathbf{2}$?
Line m is the transversal because it forms one side of both angles.

Problem 3

TEKS Process Standard (1)(G)
Determining Whether Lines Are Parallel
The fence gate at the right is made up of pieces of wood arranged in various directions. Suppose $\angle 1 \cong \angle 2$. Are lines r and s parallel? Explain.

Yes, $r \| s . \angle 1$ and $\angle 2$ are alternate exterior angles. If two lines and a transversal form congruent alternate exterior angles, then the lines are parallel (Converse of the Alternate Exterior Angles Theorem).

Think

How do $\angle 1$ and $\angle 2$ relate to each other in the diagram?
$\angle 1$ and $\angle 2$ are both exterior angles and they lie on opposite sides of t.

Think

Work backward. Think about what must be true of the given angles for a and b to be parallel.

Page \square GO

Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-3 Proving Lines Parallel

PRACTICE and APPLICATION EXERCISES

Which lines or segments are parallel? Justify your answer.

2.

3.

5. Justify Mathematical Arguments (1)(G) Complete the flow chart below.

Given: $\angle 1$ and $\angle 3$ are supplementary.
Prove: $a \| b$

$\angle 1$ and $\angle 3$ are	d. ? ?	a\\|b
supplementary.	Supplements of the	e. ?
a. ?		

b. ?

Def. of linear pair
$\angle 1$ and $\angle 2$ are supplementary.
c. ?
6. Apply Mathematics (1)(A) Two workers paint lines for angled parking spaces. One worker paints a line so that $m \angle 1=65$. The other worker paints a line so that $m \angle 2=65$. Are their lines parallel? Explain.

Analyze Mathematical Relationships (1)(F) Find the value of x for which $\ell \| m$.

7.

\square GO

Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-3 Proving Lines Parallel

Justify Mathematical Arguments (1)(G) Use the given information to determine which lines, if any, are parallel. Justify each conclusion with a theorem or postulate.
9. $\angle 2$ is supplementary to $\angle 3$.
10. $\angle 1 \cong \angle 3$
11. $\angle 6$ is supplementary to $\angle 7$.
12. $\angle 9 \cong \angle 12$
13. $m \angle 7=65, m \angle 9=115$
14. $\angle 2 \cong \angle 10$
15. $\angle 1 \cong \angle 8$
16. $\angle 8 \cong \angle 6$
17. $\angle 11 \cong \angle 7$
18. $\angle 5 \cong \angle 10$

Proof 19. Write a paragraph proof.
Given: $\angle 2$ is supplementary to $\angle 7$.
Prove: $\ell \| m$

20. Explain Mathematical Ideas $(\mathbf{1})(\mathbf{G})$ If the rowing crew at the right strokes in unison, the oars sweep out angles of equal measure. Explain why the oars on each side of the shell stay parallel.

\square
\square
\square GO

Unit 1 Logical Arguments and Constructions; Proof and Congruence > Topic 3 Parallel and Perpendicular Lines > 3-3 Proving Lines Parallel

Use the diagram at the right below for Exercises 25-27.
25. Justify Mathematical Arguments (1)(G) If $\angle 1 \cong \angle 7$, what theorem or postulate can you use to show that $\ell \| n$?

Use a flow chart to write a proof.
Proof 26. Given: $\ell \| n, \angle 12 \cong \angle 8$
Prove: ${ }^{\|} \|$
Proof 27. Given: $j \| k, m \angle 8+m \angle 9=180$
Prove: $\ell \| n$

Which sides of quadrilateral PLAN must be parallel? Explain.
28. $m \angle P=72, m \angle L=108, m \angle A=72, m \angle N=108$
29. $m \angle P=59, m \angle L=37, m \angle A=143, m \angle N=121$
30. $m \angle P=67, m \angle L=120, m \angle A=73, m \angle N=100$
31. $m \angle P=56, m \angle L=124, m \angle A=124, m \angle N=56$

Proof 32. Write a two-column proof to prove the following: If a transversal intersects two parallel lines, then the bisectors of two corresponding angles are parallel.

TEXAS Test Practice

Use the diagram for Exercises 33 and 34.

A. 21
B. 23
C. 43
D. 53
34. If $c \| d$, what is $m \angle 1$?
F. 24
G. 44
H. 136
J. 146
35. Which of the following is always a valid conclusion for the hypothesis? If two angles are congruent, then _?
A. they are right angles
B. they share a vertex

C. they have the same measure

D. they are acute angles
36. What is the value of x in the diagram at the right?
F. $1 . \overline{6}$
G. 10
H. 17
J. 19

