10.4 Motion in space

Let $r(t)=\langle f(t), g(t), h(t)\rangle$ be the position of the object
Length of curve $s(t)=\int_{0}^{t} \sqrt{\left[f^{\prime}(u)\right]^{2}+\left[g^{\prime}(u)\right]^{2}+\left[h^{\prime}(u)\right]^{2}} d u$
Speed of object, $\mathrm{s}^{\prime}(\mathrm{t})=\sqrt{\left[\mathrm{f}^{\prime}(\mathrm{t})\right]^{2}+\left[\mathrm{g}^{\prime}(\mathrm{t})\right]^{2}+\left[\mathrm{h}^{\prime}(\mathrm{t})\right]^{2}}$
$r^{\prime}(\mathrm{t})=\left\langle\mathrm{f}^{\prime}(\mathrm{t}), \mathrm{g}^{\prime}(\mathrm{t}), \mathrm{h}^{\prime}(\mathrm{t})\right\rangle$ is the velocity of the object
$r^{\prime \prime}(t)=\left\langle f^{\prime \prime}(t), g^{\prime \prime}(t), h^{\prime \prime}(t)\right\rangle$ is the acceleration of the object

Note: velocity is a vector, speed is a scalar i.e driving at 35 mph is the speed, driving at 35 mph going east is the velocity because it has a direction and is therefore a vector.

Ex. Find the velocity and position of an object at any time t, given its acceleration $a(t)=<6 t, 12 t+2$, $\left.e^{t}\right\rangle$, its initial velocity is $v(0)=<2,0,1>$ and its initial position is $r(0)=<0,3,5>$.

Ex. Find the force acting on an object moving along a circular path of radius b with constant angular speed.

One early use of calculus was to study projectile motion.

In this section we assume ideal projectile motion:
Constant force of gravity in a downward direction
Flat surface
No air resistance (usually)

We assume that the projectile is launched from the origin at time $t=0$ with initial velocity $\mathbf{v}_{\mathbf{0}}$.

Let $\mathrm{v}_{0}=\left|\mathbf{v}_{0}\right|$
then $\mathbf{v}_{0}=\left(\mathrm{v}_{0} \cos \alpha\right) \mathbf{i}+\left(\mathrm{v}_{0} \sin \alpha\right) \mathbf{j}$
The initial position is: $\mathbf{r}_{0}=0 \mathbf{i}+0 \mathbf{j}=0$

Newton's second law
of motion:
$\mathrm{f}=m a$
$\left.\mathrm{f}=\mathrm{m} \frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}\right\}$ Vertical acceleration

Newton's second law of motion:
$\mathrm{f}=m a$
$\mathrm{f}=\mathrm{m} \frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}$

The force of gravity is:
$\mathrm{f}=-\mathrm{mg} \mathbf{j}$
\uparrow
Force is in the downward direction

Newton's second law of motion:
$\mathrm{f}=m a$
$\mathrm{f}=\mathrm{m} \frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}$

The force of gravity is:

$$
\mathrm{f}=-\mathrm{mg} \mathbf{j}
$$

(\mathbf{J}
$m \frac{d^{2} r}{d t^{2}}=-m g j$

Newton's second law of motion:
$\mathrm{f}=m a$
$\mathrm{f}=\mathrm{m} \frac{\mathrm{d}^{2} r}{\mathrm{dt}^{2}}$

The force of gravity is:
$\mathrm{f}=-\mathrm{mg} \mathbf{j}$
$\mathrm{g}=32 \mathrm{ft} / \mathrm{s}^{2} \quad\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
$m \frac{d^{2} r}{{d t^{2}}^{2}}=-m g \mathbf{j}$

$$
\frac{\mathrm{d}^{2} \mathrm{r}}{\mathrm{dt}^{2}}=-g \mathbf{j}
$$

$$
\text { Initial conditions: } \mathrm{r}=\mathrm{r}_{0} \quad \frac{\mathrm{dr}}{\mathrm{dt}}=\mathrm{v}_{0} \quad \text { when } \mathrm{t}=0
$$

$$
\frac{\mathrm{dr}}{\mathrm{dt}}=-g t \mathbf{j}+\mathrm{v}_{0}
$$

$$
\overbrace{+\left(\mathrm{v}_{0} \cos \alpha\right) \mathrm{ti}+\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t} \mathbf{j}}^{\mathbf{r}=-\frac{1}{2} \mathrm{gt}{ }^{2} \mathbf{j}+\mathrm{v}_{0} \mathrm{t}+\mathbf{r}_{\mathbf{0}}}
$$

$$
\mathbf{r}=-\frac{1}{2} \mathrm{gt}^{2} \mathbf{j} \quad+\left(\mathrm{v}_{0} \cos \alpha\right) \mathrm{t} \mathbf{i}+\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t} \mathbf{j} \quad+0
$$

Vector equation for ideal projectile motion:

$$
\mathbf{r}=\left(\mathrm{v}_{0} \cos \alpha\right) \mathbf{t} \mathbf{i}+\left(\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}\right) \mathbf{j}
$$

$$
\mathbf{r}=\left(v_{0} \cos \alpha\right) \mathbf{t} \mathbf{i}+\left(\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}\right) \mathbf{j}
$$

Vector equation for ideal projectile motion:
$\mathbf{r}=\left(\mathrm{v}_{0} \cos \alpha\right) \mathbf{t} \mathbf{i}+\left(\left(\mathrm{v}_{0} \sin \alpha\right) \mathbf{t}-\frac{1}{2} \mathrm{gt}^{2}\right) \mathbf{j}$

Parametric equations for ideal projectile motion:
$x=\left(v_{0} \cos \alpha\right) t \quad y=\left(v_{0} \sin \alpha\right) t-\frac{1}{2} g t^{2}$

Example 1:

A projectile is fired at 60° and $500 \mathrm{~m} / \mathrm{sec}$. Where will it be 10 seconds later?

The maximum height of a projectile occurs when the vertical velocity equals zero.

$$
\begin{aligned}
& \frac{d y}{d t}=\mathrm{v}_{0} \sin \alpha-\mathrm{gt}=0 \\
& \frac{\mathrm{v}_{0} \sin \alpha}{g}=\mathrm{t} \\
& \frac{v_{o} \sin \alpha}{g}=t
\end{aligned}
$$

The maximum height of a projectile occurs when the vertical velocity equals zero.

$$
\begin{gathered}
\frac{d y}{d t}=\mathrm{v}_{0} \sin \alpha-\mathrm{gt}=0 \\
\mathrm{v}_{0} \sin \alpha-\mathrm{gt}=0 \\
\frac{\mathrm{v}_{0} \sin \alpha}{g}=\mathrm{t}
\end{gathered}
$$

We can substitute this expression into the formula for height to get the maximum height.

$$
\begin{gathered}
y=\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \\
y_{\max }=\left(\mathrm{v}_{0} \sin \alpha\right) \frac{\mathrm{v}_{0} \sin \alpha}{\mathrm{~g}}-\frac{1}{2} \mathrm{~g}\left(\frac{\mathrm{v}_{0} \sin \alpha}{\mathrm{~g}}\right)^{2} \\
y_{\max }=\frac{\left(\mathrm{v}_{0} \sin \alpha\right)^{2}}{\mathrm{~g}}-\frac{\left(\mathrm{v}_{0} \sin \alpha\right)^{2}}{2 \mathrm{~g}}
\end{gathered}
$$

$$
\begin{gathered}
y=\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \\
y_{\max }=\left(\mathrm{v}_{0} \sin \alpha\right) \frac{\mathrm{v}_{0} \sin \alpha}{\mathrm{~g}}-\frac{1}{2} \mathrm{~g}\left(\frac{\mathrm{v}_{0} \sin \alpha}{\mathrm{~g}}\right)^{2} \\
y_{\max }=\frac{\left(\mathrm{v}_{0} \sin \alpha\right)^{2}}{\mathrm{~g}}-\frac{\left(\mathrm{v}_{0} \sin \alpha\right)^{2}}{2 \mathrm{~g}} \\
\left.y_{\max }=\frac{\left(\mathrm{v}_{0} \sin \alpha\right)^{2}}{2 \mathrm{~g}}\right\} \underset{\text { height }}{\text { maximum }}
\end{gathered}
$$

When the height is zero: $\quad 0=\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$

When the height is zero: $\quad 0=\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}$
time at launch: $t=0 \quad \begin{aligned} & 0=t\left(\mathrm{v}_{0} \sin \alpha-\frac{1}{2} \mathrm{gt}\right) \\ & 0=\mathrm{v}_{0} \sin \alpha-\frac{1}{2} \mathrm{gt}\end{aligned}$
$\mathrm{v}_{0} \sin \alpha=\frac{1}{2} \mathrm{gt}$
$\underset{\text { (flight time) }}{\text { time at impact }}\left\{\mathrm{t}=\frac{2 \mathrm{v}_{0} \sin \alpha}{g}\right.$

If we take the expression for flight time and substitute it into the equation for x, we can find the range.

$$
\begin{gathered}
x=\mathrm{v}_{0} \cos \alpha \mathrm{t} \\
x=\mathrm{v}_{0} \cos \alpha \mathrm{t} \cdot \frac{2 \mathrm{v}_{0} \cos \alpha}{\mathrm{~g}}
\end{gathered}
$$

If we take the expression for flight time and substitute it into the equation for x, we can find the range.

$$
\left.\begin{array}{c}
x=\mathrm{v}_{0} \cos \alpha \mathrm{t} \\
x=\mathrm{v}_{0} \cos \alpha \cdot \frac{2 \mathrm{v}_{0} \sin \alpha}{\mathrm{~g}} \\
x=\frac{\mathrm{v}_{0}^{2}}{g} \cdot 2 \sin \alpha \cos \alpha \\
x=\frac{\mathrm{v}_{0}^{2}}{g} \cdot \sin 2 \alpha
\end{array}\right\} \text { Range }
$$

The range is maximum when $\sin (2 \alpha)$ is maximum.

$$
\left.\begin{array}{l}
\begin{array}{l}
\sin 2 \alpha=1 \\
2 \alpha=90^{\circ} \\
\alpha=45^{\circ}
\end{array} \begin{array}{l}
\text { Range is maximum } \\
\text { when the launch } \\
\text { angle is } 45^{\circ} .
\end{array} \\
x=\frac{\mathrm{v}_{0}^{2}}{g} \cdot \sin 2 \alpha
\end{array}\right\} \text { Range }
$$

If we start with the parametric equations for projectile motion, we can eliminate t to get y as a function of x.

If we start with the parametric equations for projectile motion, we can eliminate t to get y as a function of x.

$$
\begin{array}{cc}
x=\mathrm{v}_{0} \cos \alpha \mathrm{t} & y=\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2} \\
\frac{x}{\mathrm{v}_{0} \cos \alpha}=\mathrm{t} & y=\left(\mathrm{v}_{0} \sin \alpha\right) \frac{\mathrm{x}}{\mathrm{v}_{0} \cos \alpha}-\frac{1}{2} \mathrm{~g}\left(\frac{\mathrm{x}}{\mathrm{v}_{0} \cos \alpha}\right)^{2}
\end{array}
$$

This simplifies to:

$$
y=-\left(\frac{\mathrm{g}}{2 \mathrm{v}_{0}^{2} \cos ^{2} \alpha}\right) \mathrm{x}^{2}+x \tan \alpha
$$

which is the equation of a parabola.

If we start somewhere besides the origin, the equations become:

$$
x=\mathrm{x}_{0}+\left(\mathrm{v}_{0} \cos \alpha\right) \mathrm{t} \quad \mathrm{y}=\mathrm{y}_{0}+\left(\mathrm{v}_{0} \sin \alpha\right) \mathrm{t}-\frac{1}{2} \mathrm{gt}^{2}
$$

Example 4:

A baseball is hit from 3 feet above the ground with an initial velocity of $152 \mathrm{ft} / \mathrm{sec}$ at an angle of 20° from the horizontal. A gust of wind adds a component of $-8.8 \mathrm{ft} / \mathrm{sec}$ in the horizontal direction to the initial velocity.

These equations can be graphed on the TI-83 to model the path of the ball:

Floti Flote Fidts

2-8.8) $8=1$
サ1 т $3+152+5102$
G) T:

Yzt=
, \& 3 T=
Note that the calculator is in degrees.

Distance traveled about 442 ft

A projectile in 3D

A projectile of mass 1 kg is launched ground level toward the east at $200 \mathrm{~m} / \mathrm{s}$ at an angle $\pi / 6$ to the horizontal. If the spinning of the projectile applies a northerly Magnus force of 2 N to the projectile, find the landing location of the projectile and its speed at impact

