
Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 1

Racer - An Inference Engine
for the Semantic Web

Volker Haarslev

Concordia University

Department of Computer Science and
Software Enineering

http://www.cse.concordia.ca/~haarslev/

Collaboration with:
Ralf Möller, Hamburg University of Science and Technology

Basic Web Technology (1)

Uniform Resource Identifier (URI)
foundation of the Web

identify items on the Web

uniform resource locator (URL): special form of URI

Extensible Markup Language (XML)
send documents across the Web

allows anyone to design own document formats
(syntax)

can include markup to enhance meaning of
document’s content

machine readable

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 2

Basic Web Technology (2)

Resource Description Framework (RDF)
make machine-processable statements

triple of URIs: subject, predicate, object

intended for information from databases

Ontology Web Language (OWL)
based on

RDF

description logics (as part of automated reasoning)

syntax is XML

knowledge representation in the web

What is Knowledge Representation?

How would one argue that a
person is an uncle?
We might describe family
relationships by a relation

has_parent and its inverse
has_child

Now can can define an uncle
a person (Joe) is an uncle if
and only if

he is male
he has a parent (Jil) and this
parent has a second child
this child (Sue) is itself a
parent

Sue is called a sibling of Joe
and vice versa

Joe

Jil

Sue

?

has_parent has_child

has_child

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 3

Schemas and Ontologies for the Web

Usual assumption: data is nearly perfect
book rating with scale 1-10 instead of really_good,...,really _bad
conversion without meaning difficult
information newly tagged with has_author instead of creator_of

Even worse: URIs have no meaning
Solution: schemas and ontologies
RDF Schemas: author is subclass of contributor
Ontology Web Language (OWL)

add semantics: has_author is the inverse relation of creator_of
now we understand the meaning of has_author
has_author(book,author) ≡ creator_of(author,book)

OWL Variants

Three variants
OWL Full represents union of OWL syntax and RDF

gives you unrestricted expressive power

OWL DL restricted to decidable fragment of first-
order logic

syntactic variant of well-known description logic

OWL Lite restricted subset of OWL DL
“Easier to implement”

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 4

Why Description Logics?

Designed to represent knowledge

Based on formal semantics

Inference problems have to be decidable

Probably the most thoroughly understood set of
formalisms in all of knowledge representation

Computational space has been thoroughly mapped out

Wide variety of systems have been built
however, only very few highly optimized systems exist

Wide range of logics developed
from very simple (no disjunction, no full negation)
to very expressive (comparable to OWL)

Very tight coupling between theory and practice

Origins of Description Logics

Knowledge concerning persons, parents, etc.

Described as semantic network

Semantic networks without a sematics

Mothers are
always parents

Mothers are
always female

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 5

Description Logic System

TBox

ABox

Description
Language

Reasoning

KB

Architecture of a Description Logic System

Application
Programs

Rules

Description Languages: AL

Syntax Semantics
A AI ⊆ ΔI, A is a concept name
T TI = ΔI

® ®I = ∅
¬A ΔI \ AI
C » D CI ∩ DI

ÓR.C {x ∈ ΔI | Óy: (x,y) ∈ RI ⇒ y ∈ CI }
ÔR.T {x ∈ ΔI | Ôy ∈ ΔI : (x,y) ∈ RI}

R RI ⊆ ΔI x ΔI, R is a role name

Translation to first-order predicate logic possible
Declarative and compositional semantics preferred

Standard Tarski-style interpretation I = (ΔI, ·I)

person » female
person » Ôhas_child.T

person » ¬female

person » ∀has_child.®

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 6

More AL Family Members

Disjunction (U):
C « D CI ∪ DI

Full existential quantification (ε):
ÔR.C {x ∈ ΔI | Ôy ∈ ΔI : (x,y) ∈ RI ∧ y ∈ CI }

Number restrictions (N):
∃≥nR {x ∈ ΔI | ||{y | (x,y) ∈ RI}|| ≥ n}
∃≤nR {x ∈ ΔI | ||{y | (x,y) ∈ RI}|| ≤ n}

Full negation (C):
¬C ΔI \ CI

person » (∃≤1has_child « (∃≥3has_child » Ôhas_child.female))

DLs as Fragments of Predicate Logic

Any concept D as unary predicate with 1 free variable
Any role R as primitive binary predicate
ÔR.C corresponds to
Ôy. R(x,y) ∧ C(y)
∀R.C corresponds to
∀y. R(x,y) ⇒ C(y)
∃≥nR corresponds to
Ôy1,...,yn. R(x,y1) ∧...∧ R(x,yn) ∧ ∀i<j. yi≠yj

∃≤nR corresponds to
∀y1,...,yn+1. R(x,y1) ∧...∧ R(x,yn+1) ⇒ Ôi<j. yi=yj

Last two examples demonstrate advantage of variable-
free syntax

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 7

Inference Services

Consistency of class description
catch design errors
example: vegetarian eats meat

Subsumption between classes
example: a mother is always a parent

Taxonomy of class names (classification)
ordered by subsumption relationship
from very general to very specific

Consistency of individual descriptions
Is the knowledge specified for an individual joe consistent with other
known individuals and classes
joe (vegetarian) makes a reservation for a restaurant that offers only
meals containing meat

Find classes that match known instances
if susy is female and has a child, she is an instance of mother

OWL Class Constructors

XMLS datatypes as well as classes in ∀P.C and ∃P.C
E.g., ∀hasAge.nonNegativeInteger

Arbitrarily complex nesting of constructors
E.g., Person » ∀hasChild.(Doctor « ∃hasChild.Doctor)

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 8

OWL Axioms

Axioms (mostly) reducible to inclusion (≤)
C 7 D iff both C ≤ D and D ≤ C

OWL Examples: Simple Named Classes

Domain of wines
<owl:Class rdf:ID="Winery"/>
<owl:Class rdf:ID="Region"/>
<owl:Class rdf:ID="ConsumableThing"/>

<owl:Class rdf:ID="PotableLiquid">
<rdfs:subClassOf rdf:resource="#ConsumableThing"/>
...
</owl:Class>

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 9

Individuals

We declare an individual named CentralCoastRegion as
an instance of class Region

<Region rdf:ID="CentralCoastRegion"/>

Individual NameClass Name

Import of Ontologies

There exists an ontology about food containing class
grape

<owl:Class rdf:ID="Grape">
 ...
</owl:Class>
Class WineGrape is declared as subclass of class grape
imported from the food ontology

<owl:Class rdf:ID="WineGrape">
 <rdfs:subClassOf rdf:resource="&food;Grape"/>
</owl:Class>

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 10

<owl:Thing rdf:ID="LindemansBin65Chardonnay">
 <madeFromGrape rdf:resource="#ChardonnayGrape"/>
</owl:Thing>

Object Properties

We define an object property madeFromGrape
its domain is Wine

its range is WineGrape

<owl:ObjectProperty rdf:ID="madeFromGrape">
 <rdfs:domain rdf:resource="#Wine"/>
 <rdfs:range rdf:resource="#WineGrape"/>
</owl:ObjectProperty>

Individual LindemansBin65Chardonnay is related via property
madeFromGrape to indiviual ChardonnayGrape

Inference: instance of class Wine

Anonymous class for things with at least
one madeFromGrape property

Complex Classes

A more complete declaration of class Wine

<owl:Class rdf:ID="Wine">
 <rdfs:subClassOf rdf:resource="&food;PotableLiquid"/>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#madeFromGrape"/>
 <owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1
</owl:minCardinality>

 </owl:Restriction>
 </rdfs:subClassOf>
 ...
</owl:Class>

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 11

Racer: Reasoning with OWL

Based on sound and complete algorithms
Worst case complexity

high for OWL DL
reasonable for OWL Lite

Highly optimized reasoners required
average complexity usually ok

Supports multiple ontologies
Standalone server versions available for Linux and
Windows (with Java/C++ API)
Network based APIs supported (HTTP, TCP/IP)
RACER is still the only true reasoner for individuals
http://www.cse.concordia.ca/~haarslev/racer/

Agent Scenario

the rest of

email server

Web server

Desktop
computers

File server

router/firewall

print and other servers

other servers

print

Local area
network

email server

the Internet

 Agent Host
Environment Servers

Racer Servers

DL Server
(Racer Proxy)

Agent Home
"Listener"

racer.cse.concordia.ca:8088

vh.cse.concordia.ca:8080

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 12

Racer as OWL Reasoning Agent

Ontology
Tool

HTTP
HTML HTTP

OWL

Racer Server

Ontology Engineering

Application: Ontology Engineering

UMLS thesaurus (Unified Medical Language System)
Transformation into description logic
UMLS knowledge bases

200,000 class names, 80,000 property names

Optimization of ontology classification
topological sorting

achieving smart ordering for classification of class names

dealing with domain and range restrictions of properties
transformation of special kind of general axioms

clustering of nodes in the taxonomy
speed up from several days to ~10 hours
more optimizations and new processors: below 3 hours of CPU
time

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 13

Semantic Tower

Adapted from: Tim Berners-Lee,
The Semantic Web and
Challenges

OWL:
Ontology
Web Language

Racer:
OWL Reasoner

RICE: Racer Interactive Client Environment

Developed by R. Cornet, Amsterdam

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 14

OntoXpl: OWL Ontology Explorer

Developed by Y. Lu, Concordia University

Ontology about Family Relationships

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 15

Information about Class "Person"

OWL View of Class "Person"

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 16

OWL View of Class "Person"

nRQL: New Racer Query Language

Searching for complex role-filler graph structures in an ABox
Looking for a “Disney mouse”, who has nieces, and is a friend of
Mickey

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 17

2D Visualization of Subsumption Hierarchy (1)

Developed by A. Zarrad, 2004

2D Visualization of Subsumption Hierarchy (2)

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 18

3D Visualization of Subsumption Hierarchy (1)

Developed by P. Eid, 2005

3D Visualization of Subsumption Hierarchy (2)

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 19

Genomics: FungalWeb Ontology (1)

Developed by A. Shaban-Nejad

Genomics: FungalWeb Ontology (2)

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 20

Inference Services Based on Satisfiability

All concept inference services can be reduced to concept
satisfiability

We assume service sat(C, T), C a concept, T a TBox

subsumes(C, D, T) 7 ¬ sat(¬C » D, T)

C ≥ D holds ↔ ¬(C « ¬D) unsatisfiable ↔ ¬C » D unsatisfiable

equivalence(C, D, T) 7 subsumes(C, D, T) ∧

 subsumes(D, C, T)

disjoint(C, D, T) 7 ¬ sat(C » D, T)

World Description or ABox

How can we assert knowledge about individuals?

Assertional axioms
concept assertion for an individual a

a:C satisfied iff aI ∈ CI

example: elizabeth:mother

role assertion for two individuals a and b
(a,b):R satisfied iff (aI,bI) ∈ RI

example: (elizabeth,charles):has_child

Unique name assumption
Different names denote different individuals
aI ≠ bI

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 21

ABox Inference Services (1)

A collection of assertional axioms is called an ABox
(Assertional Box)
Satisfiability of assertions defined w.r.t.

ABox A
TBox T

Inference services
ABox satisfiability: Is the collection A of assertions satisfiable?

Instance checking: instance?(a,C,A)
Is a an instance of concept C or subsumes C the individual a?

ABox realization: compute for all individuals in A their most-
specific concept names w.r.t. TBox T

ABox Inference Services (2)

New basic inference service: ABox satisfiability

asat(A)

All other inference services can be reduced to asat
instance checking:
instance?(a,C,A) ≡ ¬asat(A ∪ {a:¬C})

concept satisfiability:
sat(C) ≡ asat({a:C})

concept subsumption:
subsumes(C,D) ≡ ¬sat(¬C » D) ≡ ¬asat({a:¬C » D})

Open world assumption

A = {andrew:male, (charles,andrew):has_child}

Does instance?(charles,∀has_child.male, A) hold?
No.

Why?

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 22

Completion Rules for the Logic ALC

Conjunction rule
if 1. a:C»D ∈ A, and

 2. {a:C, a:D} V A

then A' = A ∪ {a:C, a:D}

Disjunction rule
if 1. a:C«D ∈ A, and

 2. {a:C, a:D} ∩ A = ∅

then A' = A ∪ {a:C} or

 A' = A ∪ {a:D}

Role value restriction rule
if 1. a:∀R.C ∈ A, and

 2. ∃b ∈ O: (a,b):R ∈ A, and

 3. {b:C} ∉ A

then A' = A ∪ {b:C}

Role exists restriction rule
if 1. a:∃R.C ∈ A, and

 2. ¬∃b ∈ O: {(a,b):R, b:C} ⊆ A

then A' = A ∪ {(a,b):R, b:C}

 with b fresh in A

Clash trigger
{a:A, a:¬A} ⊆ A

Clash detection

After each rule application an
ABox A is checked for a

clash involving concept
names

No other clashes can occur

Can be generalized to
arbitrary concept expressions

A is not necessarily only a name

Rule expansion stops if a
clash is detected

Clash trigger
{a:A, a:¬A} ⊆ A

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 23

Conjunction rule

Decompose a binary
concept conjunction into
two separate parts that
are added to the ABox

Meaning of conditions
case 1 controls applicability

case 2 prevents cyclic rule
application

Conjunction rule
if 1. a:C»D ∈ A, and

 2. {a:C, a:D} V A

then A' = A ∪ {a:C, a:D}

Disjunction rule (non-deterministic)

Non-deterministically add
any of the disjuncts to the
ABox

Two alternative ABoxes
are possibly explored

Disjunction rule
if 1. a:C«D ∈ A, and

 2. {a:C, a:D} ∩ A = ∅

then A' = A ∪ {a:C} or

 A' = A ∪ {a:D}A (a:C«D)

A1=A∪{a:C} A2=A∪{a:D}

OR
Clashes eliminate
branches in the OR
tree

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 24

Maintain universal role restrictions

Propagate role value
restriction (C) to all
applicable role (R)
successors

Only applicable if role
successors can be found

Role value restriction rule
if 1. a:∀R.C ∈ A, and

 2. ∃b ∈ O: (a,b):R ∈ A, and

 3. {b:C} ∉ A

then A' = A ∪ {b:C}

Create role successors

Expand existential restrictions
create an appropriate role (R)
successor (new individual)

assert the qualification (C) to the
new successor

O is the set of all possible individual
names

New individual (b) is considered as
anonymous

not visible in original ABox

only needed for proof

part of a model

Only rule that creates new
individuals in an ABox

Role exists restriction rule
if 1. a:∃R.C ∈ A, and

 2. ¬∃b ∈ O: {(a,b):R, b:C} ⊆ A

then A' = A ∪ {(a,b):R, b:C}

 with b fresh in A

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 25

Completion Rules for the Logic ALC

Conjunction rule
if 1. a:C»D ∈ A, and

 2. {a:C, a:D} V A

then A' = A ∪ {a:C, a:D}

Disjunction rule
if 1. a:C«D ∈ A, and

 2. {a:C, a:D} ∩ A = ∅

then A' = A ∪ {a:C} or

 A' = A ∪ {a:D}

Role value restriction rule
if 1. a:∀R.C ∈ A, and

 2. ∃b ∈ O: (a,b):R ∈ A, and

 3. {b:C} ∉ A

then A' = A ∪ {b:C}

Role exists restriction rule
if 1. a:∃R.C ∈ A, and

 2. ¬∃b ∈ O: {(a,b):R, b:C} ⊆ A

then A' = A ∪ {(a,b):R, b:C}

 with b fresh in A

Clash trigger
{a:A, a:¬A} ⊆ A

Proof for Concept Satisfiability

A0 = {a: (¬female«¬person) » female » person » ...} (conjunction rule)

A1 = {a:¬female«¬person, a:female, a:person, ...} (disjunction rule)

A2 = {a:¬female«¬person, a:female, a:person, ..., a:¬female}

 (clash between a:female and a:¬female detected)

A1 = {a:¬female«¬person, a:female, a:person, ...} (disjunction rule)

A3 = {a:¬female«¬person, a:female, a:person, ..., a:¬person}

 (clash between a:person and a:¬person detected)

The concept ¬woman » mother is unsatisfiable

The concept woman subsumes the concept mother

Subsumes the concept woman the concept mother?

Is the concept ¬woman » mother unsatisfiable?

Application of completion rules

←

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 26

Completion Rules for the Logic ALC

Role value restriction rule
if 1. a:∀R.C ∈ A, and

 2. ∃b ∈ O: (a,b):R ∈ A, and

 3. {b:C} ∉ A

then A' = A ∪ {b:C}

Role exists restriction rule
if 1. a:∃R.C ∈ A, and

 2. ¬∃b ∈ O: {(a,b):R, b:C} ⊆ A

then A' = A ∪ {(a,b):R, b:C}

 with b fresh in A
Conjunction rule
if 1. a:C»D ∈ A, and

 2. {a:C, a:D} V A

then A' = A ∪ {a:C, a:D}

Disjunction rule
if 1. a:C«D ∈ A, and

 2. {a:C, a:D} ∩ A = ∅

then A' = A ∪ {a:C} or

 A' = A ∪ {a:D}

Clash trigger
{a:C, a:¬C} ⊆ A

Proof for Concept Satisfiability

A0 = {a:∀R.(¬A«¬B) » ∃R.A » ∃R.B} (conjunction rule)

A1 = {a:∀R.(¬A«¬B), a:∃R.A, a:∃R.B} (role exists restriction rule)

A2 = {(a,x):R, x:A, (a,y):R, y:B, a:∀R.(¬A«¬B), ...} (role value restriction rule)

A3 = {x:¬A«¬B, y:¬A«¬B, (a,x):R, x:A, (a,y):R, y:B, ...} (disjunction rule)

A4 = {x:¬A, x:¬A«¬B, y:¬A«¬B, (a,x):R, x:A, (a,y):R, y:B, ...}

 (clash between x:¬A and x:A detected)

A3 = {x:¬A«¬B, y:¬A«¬B, (a,x):R, x:A, (a,y):R, y:B, ...} (disjunction rule)

A5 = {x:¬B, x:¬A«¬B, y:¬A«¬B, (a,x):R, x:A, (a,y):R, y:B, ...} (disjunction rule)

A6 = {y:¬A, x:¬B, x:¬A«¬B, y:¬A«¬B, (a,x):R, x:A, (a,y):R, y:B, ...}

The concept ¬∃R.(A » B) » ∃R.A » ∃R.B is satisfiable
The concept ∃R.(A » B) does not subsume the concept ∃R.A » ∃R.B

Subsumes the concept ∃R.(A » B) the concept ∃R.A » ∃R.B ?

Is the concept ¬∃R.(A » B) » ∃R.A » ∃R.B unsatisfiable?

Application of completion rules

←

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 27

Adding axioms from TBox

Transform all axioms in TBox
into normal form

C1 ≤ D1, ..., Cn ≤ Dn gives
T ≤ ¬C1 « D1, ..., T ≤ ¬Cn « Dn

Combine all normalized
axioms into one axiom

T ≤ (¬C1 « D1) » ... » (¬Cn « Dn)

For each new individual a add
a:(¬C1 « D1) » ... » (¬Cn « Dn)

Simple (Trigger) Rules

Rules may have the form C ⇒ D
available in the Classic system

Operational semantics
forward chaining of rules

if a:C holds, a:D is added

Observe the difference to axioms
C ≤ D implies the contrapositive ¬D ≤ ¬C

this is not the case for rules
if a:¬D holds, a:¬C is NOT added

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 28

Two Reasoning views

Traditional view from knowledge engineering
defined concept express domain knowledge
primitive concepts express only necessary conditions
axioms ensure global consistency criteria
inferences services

taxonomy
unsatisfiable concepts

Theorem prover
domain knowledge is expressed as a set of arbitrary axioms
inference services

taxonomy gives no interesting information
unsatisfiable concepts
is a hypothesis implied by the set of axioms

Reasoning with Description Logics

RACER: Reasoner for ABoxes and Concept
Expressions Renamed

Based on sound and complete algorithms

Worst case complexity for many description logics
PSpace, e.g., the logic ALC

ExpTime, e.g., the logic ALC with general axioms

(N)ExpTime
the logic ALCQHIR+(D-) supported by RACER

the OWL logic (OWL DL)

Highly optimized reasoners required
average complexity usually much better

RACER is still the only optimized reasoner for ABoxes
←

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 29

Complexity of Concept Consistency

From: IJCAR Tutorial on Description Logics, Ian Horrocks, Ulrike Sattler

Selected Optimization Techniques

SAT reasoning
dependency-directed backtracking

semantic branching

caching

process qualified number restrictions with Simplex procedure

TBox reasoning
transformation of general axioms

classification order / clustering of nodes

fast test for non-subsumption: sound but incomplete

ABox reasoning
graph transformation

fast test for non-subsumption

data-flow techniques for realization

dependency-driven divide-and-conquer for instance checks

State of the art optimization techniques employed

Novel optimization techniques for

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 30

TBox Classification: Inserting a Concept

Insert new concept D into
existing taxonomy w.r.t
subsumption relationship

1. Top-search phase
traverse from top

determine parents of D
C1 and C2

SAT(¬C1»D), ..., SAT(¬Cn»D)

2. Bottom-search phase
traverse from bottom

determine children of D
C3 and C4

SAT(C1»¬D), ..., SAT(Cn»¬D)

1 2 3 4 nC1

⊥

Cn

⊥

D

...

⊥

1 2 nC1 Cn

D

⊥

...3 4

3 4

3 4

TBox Classification: Inserting a Concept

Insert new concept D into
existing taxonomy w.r.t
subsumption relationship

1. Top-search phase
traverse from top

determine parents of D
C1 and C2

SAT(¬C1»D), ..., SAT(¬Cn»D)

2. Bottom-search phase
traverse from bottom

determine children of D
C3 and C4

SAT(C1»¬D), ..., SAT(Cn»¬D)

1 2 nC1

⊥

Cn

D

⊥

...

1 2 3 4 nC1

⊥

Cn

⊥

D

...

Volker Haarslev
Department of Computer Science and Software Engineering
Concordia University, Montreal 31

Available Specifications: Primers

RDF Primer
URI: http://www.w3.org/TR/rdf-primer/

OWL Guide
URI: http://www.w3.org/TR/owl-guide/

RDF Test Cases
URI: http://www.w3.org/TR/rdf-testcases/

OWL Test Cases
URI: http://www.w3.org/TR/owl-test/

