

Radar Frequencies and Waveforms

12th Annual International Symposium on Advanced Radio Technologies

Michael Davis

Georgia Tech Research Institute Sensors and Electromagnetic Applications Laboratory

mike.davis@gtri.gatech.edu

Based on material created by Byron M. Keel, Ph.D., GTRI

Waveforms Extract "Target" Information

A radar system probes its environment with specially designed waveforms to identify and characterize targets of interest.

Detection

- For a given range, angle, and/or Doppler, decide if a target is or is not present.
- Example: Moving target indication (MTI) radar

Estimation

For a given range, angle, and/or Doppler, estimate

Example: Synthetic aperture radar (SAR) imaging

Overview

- Radar frequencies
- Radar waveform taxonomy
- CW: Measuring Doppler
- Single Pulse: Measuring range
- Ambiguity function
- Pulse compression waveforms (FM and PM)
- Coherent pulse trains

Radar Frequencies

Radar Bands

Radar Band	Frequency	
HF	3 – 30 MHz	
VHF	30 – 300 MHz	ge A ance
UHF	300 – 1000 MHz	EN FEN
L	1 – 2 GHz	FOP
S	2 -4 GHz	
С	4 – 8 GHz	
X	8 – 12 GHz	ב ∐ Air-to-Air
Ku	12 – 18 GHz	GN Gr
Ка	27 – 40 GHz	
mm (V & W)	40 – 300 GHz	

Munitions

Radar Waveform Taxonomy

Continuous Wave (CW) vs. Pulsed

- CW: Simultaneously transmit and receive
- Pulsed: Interleave transmit and receive periods

Continuous Wave (CW) vs. Pulsed

Continuous Wave	Pulsed
Requires separate transmit and receive antennas.	Same antenna is used for transmit and receive.
Isolation requirements limit transmit power.	Time-multiplexing relaxes isolation requirements to allow high power.
Radar has no blind ranges.	Radar has blind ranges due to "eclipsing" during transmit events.

Modulated vs. Unmodulated

- Modulation may be applied to each pulse (intrapulse modulation) or from pulse-to-pulse (interpulse modulation)
- Classes of Modulation
 - Amplitude
 - Phase
 - Frequency
 - Polarization

Phase Modulation

Measuring Doppler with CW Waveform

Measuring Doppler with a CW Radar

Georgia Research Tech Institute

CW Doppler Resolution

CW Doppler Processing

DFT processing

- Sample CW returns discretely in time
- Generate spectrum via Fourier analysis (e.g., FFT)
- Results in sinc shaped response
- Weighting can be applied to reduce Doppler sidelobes
 - SNR loss
 - Resolution degradation
- Sampling of DFT response a function of
 - Bin spacing
 - Frequency
- Zero padding reduces bin spacing; does not improve resolution

Measuring Range with a Single (Unmodulated) Pulse

Unmodulated Pulse

$$s(t) \triangleq \begin{cases} \sqrt{P_{\mathrm{TX}}} \sin(2\pi f_c t), & \text{for } t \in [0, T_{\mathrm{p}}) \\ 0, & \text{for } t \notin [0, T_{\mathrm{p}}) \end{cases}$$

The Matched Filter

• Observe a known signal, s(t), in noise

 $y\left(t\right) = As\left(t\right) + \eta\left(t\right)$

Apply matched filter to maximize signal-to-noise ratio (SNR)

$$z \triangleq \int_{-\infty}^{\infty} y(t) s^{*}(t) dt$$

= $A + \int_{-\infty}^{\infty} \eta(t) s^{*}(t) dt$ SNR = $\frac{A^{2}}{\sigma_{\eta}^{2}}$

assuming that signal has unit power, i.e., $\int_{-\infty}^{\infty} |s(t)|^2 dt = 1$

The Matched Filter

Waveform Range Response

function of the transmitted signal.

 $h(\tau) \triangleq \int_{-\infty}^{\infty} s(t-\tau) s^{*}(t) dt$

Range Resolution: Unmodulated Pulse

Ambiguity Function

Ambiguity Function

Range Response (No Uncompensated Doppler)

$$h(\tau) \triangleq \int_{-\infty}^{\infty} s(t-\tau) s^*(t) dt$$

Ambiguity Function

$$\chi(\tau, f_{\rm D}) \triangleq \int_{-\infty}^{\infty} s(t - \tau) e^{i2\pi f_{\rm D}t} s^*(t) dt$$

Doppler shift

The ambiguity function characterizes the filtered response when the received signal contains an *uncompensated* Doppler shift

Ambiguity Function for a Simple Pulse

$$x(t) = \frac{1}{\sqrt{\tau}}$$
 $0 \le t \le \tau$ Simple Pulse

$$A(t, f_d) = \left| \left(1 - \frac{|t|}{\tau} \right) \frac{\sin\left(\pi f_d \tau \left(1 - \frac{|t|}{\tau} \right) \right)}{\pi f_d \tau \left(1 - \frac{|t|}{\tau} \right)} \right| \quad |t| \le \tau$$

Simple Pulse Ambiguity Function

Zero Doppler Cut
$$A(t,0) = \left|1 - \frac{|t||}{\tau}\right| \quad |t| \le \tau$$

Zero Time-Delay Cut
$$A(0, f_d) = \left| \frac{\sin(\pi f_d \tau)}{\pi f_d \tau} \right| \quad |t| \le \tau$$

Zero Doppler Cut Zero Time-Delay Cut

Georgia

Research

Tech Institute

Improving Range Resolution with Pulse Compression

Limitations of the Unmodulated Pulse

For an unmodulated pulse there exists a coupling between range resolution and waveform energy

Pulse Compression

- Range response is the auto-correlation of the transmitted signal.
- To have "narrow" in range (time) domain, the waveform must have "wide" bandwidth in frequency domain
- The bandwidth of an unmodulated pulse of duration T_p is 1/ T_p
- Pulse Compression
 Use modulated pulses to get better range resolution.

Pulse Compression Waveforms

- Permit a de-coupling between range resolution and waveform energy.
- Apply modulation to increase bandwidth.
- Range resolution, Δ_R, improves as bandwidth, W, increases.

$$\Delta_{\rm R} = \frac{c}{2W}$$

SNR is unchanged if pulse width remains the same.

Linear Frequency Modulated (LFM) Waveforms

LFM Phase and Frequency Characteristics

Linear Frequency Modulated Waveforms

- LFM phase is quadratic
- Instantaneous frequency is defined as the time derivate of the phase
- The instantaneous frequency is linear

Components of LFM Spectrum

 $X(\omega) = |X(\omega)| \exp(j\theta(\omega)) \exp(j\phi(\omega))$ 3 Key Terms

MagnitudeQuadraticResidualResponsePhasePhase

 $|X(\omega)| \approx 1 \quad -\pi\beta \leq \omega \leq \pi\beta$ For <u>large</u> time-bandwidth products

 $\theta(\omega) = -\frac{1}{4\pi} \frac{\tau}{\beta} \omega^2$ Quadratic phase term

 $\phi(\omega) \approx \frac{\pi}{4}$ Residual phase term

$$X(\omega) \approx \exp\left(-j\frac{1}{4\pi}\frac{\tau}{\beta}\omega^2\right) -\pi\beta \le \omega \le \pi\beta$$

Reference: Cook, Bernfeld, "Radar Signals, An Introduction to Theory and Application", Artech House, 1993, p. 49

LFM Match Filtered Response

• For $\beta \tau \ge 20$, match filtered response approximates a sinc

- ~ -13 dB peak sidelobes $\delta t = \frac{1}{\beta}$ resolution in time $\delta r = \frac{c}{2\beta}$ range resolution
- Rayleigh resolution:

Rayleigh resolution equivalent to 4 dB width

Georgia Tech Institute

Amplitude Weighting

- Amplitude weighting
 - reduces peak sidelobe levels
 - reduces straddle loss
- Price paid
 - increased mainlobe width (degraded resolution)
 - loss in SNR (loss computable from weighting coefficients)

Taylor Weighting Function

	Peak Sidelobe Level (dB)								
	-20	-25	-30	-35	-40	-45	-50	-55	-60
nbar	SNR Loss (dB)								
2	-0.21	-0.38	-0.51						
3	-0.21	-0.45	-0.67	-0.85					
4	-0.18	-0.43	-0.69	-0.91	-1.11	-1.27			
5	-0.16	-0.41	-0.68	-0.93	-1.14	-1.33	-1.49		
6	-0.15	-0.39	-0.66	-0.92	-1.15	-1.35	-1.53	-1.68	
7	-0.15	-0.37	-0.65	-0.91	-1.15	-1.36	-1.54	-1.71	-1.85
8	-0.16	-0.36	-0.63	-0.90	-1.14	-1.36	-1.55	-1.72	-1.87
9	-0.16	-0.36	-0.63	-0.90	-1.14	-1.36	-1.55	-1.72	-1.87

	Peak Sidelobe Level (dB)								
	-20	-25	-30	-35	-40	-45	-50	-55	-60
nbar	4 dB Resolution Normalized by c/2								
2	1.15	1.19	1.21						
3	1.14	1.22	1.28	1.33					
4	1.12	1.22	1.29	1.36	1.42	1.46			
5	1.11	1.20	1.29	1.36	1.43	1.49	1.54		
6	1.10	1.19	1.28	1.36	1.43	1.50	1.56	1.61	
7	1.09	1.19	1.28	1.36	1.43	1.50	1.56	1.62	1.67
8	1.08	1.18	1.27	1.35	1.43	1.50	1.57	1.63	1.68

Georgia Research Tech Institute

Range Resolution and SAR Imagery

1 m resolution (> 150 MHz bandwidth)

10 cm resolution (> 1.5 GHz bandwidth)

Georgia Research Tech Institute Source: Sandia National Labs (www.sandia.gov)

Phase Coded Waveforms

Phase Code Waveforms

- Composed of concatenated sub-pulses (or chips)
- Chip-to-chip phase modulation applied to achieve desired compressed response (e.g., mainlobe, sidelobes, & Doppler tolerance)
- Phase modulation
 - Bi-phase codes (only 2 phase states)
 - Poly-phase codes (exhibit more than 2 phase states)

- Consists of N chips each with duration, τ_{chip}
- For appropriately chosen codes, the Rayleigh range resolution is equal to the chip width
- Energy in the waveform is proportional to the number of chips
- In general, sidelobe levels are inversely proportional to the number of chips

Barker Codes

+

- Perfect bi-phase aperiodic codes
- Belief that no Barker code exists above length 13
 - Has been proven for odd length sequences
- Barker codes are applied in radar applications
- Desire for longer codes however has driven the community to consider longer sub-optimum codes

Code Longth	Code Seguence	Deals Sidelaha Integrated Sidelah				
Coue Length	Coue sequence	I eak Sidelobe	Integrated Sidelobe			
		Level, dB	Levels, dB			
2	+-, ++	-6.0	-3.0			
3	++-	-9.5	-6.5			
4	++-+,+++-	-12.0	-6.0			
5	+++-+	-14.0	-8.0			
7	++++-	-16.9	-9.1			
11	++++-	-20.8	-10.8			
13	+++++++-+-+	-22.3	-11.5			

Longer code = Lower PSL

Minimum Peak Sidelobe Codes

- Binary codes yielding minimum peak sidelobes for a given sequence length
 - Identified through exhaustive searches
 - MPS codes identified through length 69
 - Peak sidelobe levels
 - = 1 for the Barker length sequences N = 2,3,4,5,7,11, &13
 - = 2 for N <= 28 (excluding Barker codes & N = 22,23,24,26,27)</p>
 - a = 3 for N = (22,23,24,26,27) & 29 <= N <= 48, and N = 51</p>
 - = 4 for N = 50, and 52 <= N <= 70
 - Does not ensure optimum integrated sidelobe level
- Nunn and Coxson (IEEE AES 2008) found codes with peak sidelobe levels
 - $\cdot = 4$ for N = 71 through 82
 - \cdot = 5 for N = 83 through 105
- Longer codes with low peak sidelobes have been identified (not necessarily optimum)

Doppler Intolerance of Bi-Phase Codes

- Bi-phase codes are Doppler intolerant
 - Mainlobe is not preserved
 - Sidelobes increase
- Waveform designed to limit maximum Doppler shift to ¼ cycle
 - Corresponds to 1 dB loss in peak amplitude
- Poly-phase, quadratic phase response required to achieve Doppler tolerance

1/4 Cycle of Doppler

Measuring Range and Doppler with Coherent Pulse Train

Coherent Pulse Train

Processing Doppler

- The Discrete Fourier Transform represents a bank of matched filters
- The filters are only applied at the zero time-delay lag $h(n) = \exp(j2\pi f_k nT) \qquad f_k = \frac{k}{N'} F_s \qquad \text{Note:} F_s = PRF$ $y(k) = \sum_{n=0}^{N-1} x(n) \exp\left(-j2\pi \frac{kF_s}{N'} nT_s\right) \quad k = 0, \dots, (N'-1), \quad N' \ge N$ $F_s T_s = 1$ N' filters Measured signal from N pulses $y(k) = \sum_{n=0}^{N-1} x(n) \exp\left(-j2\pi \frac{k}{N'}n\right) \quad k = 0, \dots, (N'-1), \quad N' \ge N$ Measured signal from N pulses N' filters Discrete Fourier Transform $f_k = \frac{k}{N'}F_s$

SNR Gain Associated with Doppler Processing

SNR Gain due to Doppler processing Often referred to as coherent processing gain

- Example of radar modes benefiting from coherent integration
 - **SAR:** 100s to 1000s of pulses (20 to 30 dB of SNR gain or more)
 - **GMTI:** 10s to 100s of pulses (10 to 20 dB of SNR gain or more)

Pulse-Doppler Design Considerations

Ambiguities

- Range
- Doppler
- Blind Zones
 - Range eclipsing occurs since radar cannot receive while transmitting.
 - Doppler blind zones occur when target is observed with same Doppler as clutter.

Pulsed Doppler Waveform Modes

Low PRF

- Range unambiguous
- Doppler ambiguous

High PRF

- Range ambiguous
- Doppler unambiguous
- Medium PRF
 - Range ambiguous
 - Doppler ambiguous
- Process multiple PRFs to
 - Resolve range and Doppler ambiguities
 Move range and Doppler blind zones

Summary

- Radar frequencies
- Radar waveform taxonomy
- CW: Measuring Doppler
- Single Pulse: Measuring range
- Ambiguity function
- Pulse compression waveforms (FM and PM)
- Coherent pulse trains