Transverse Beams

- Dead Load
- Steel Deck and Beam - 490 lb/ft ${ }^{3}$
- Rails - 490 lb/ft ${ }^{3}$
- Ballast - $120 \mathrm{lb} / \mathrm{ft}^{3}$
- Ties - $60 \mathrm{lb} / \mathrm{ft}^{3}$

Steel Deck and Beam

- Selected Beam W12x136
- 136 lb/ft (AISC Code)
- Deck
- $1 / 2$ inch thickness minimum (AREMA Code)
- $1 / 2$ in x $1 \mathrm{ft} / 12$ in x $2 \mathrm{ft} x 490 \mathrm{lb} / \mathrm{ft}^{3}=40.83 \mathrm{lb} / \mathrm{ft}$

Rails

- Spacing (AREMA Code)
- 56.5 in
- Locations of loads (centerline of tracks = centerline of bridge)
- $18 \mathrm{ft}-56.5 \mathrm{in} \times 1 \mathrm{ft} / 12 \mathrm{in}=$ 13.29 ft
- $13.29 \mathrm{ft} / 2=6.65 \mathrm{ft}$ (location of one track)
$-6.65 \mathrm{ft}+56.5 \mathrm{in} \times 1 \mathrm{ft} / 12 \mathrm{in}=$ 11.35 ft (location of the other track)
- $136 \mathrm{lb} / \mathrm{yd}$ (AREMA Code)
- $136 \mathrm{lb} / \mathrm{yd} \mathrm{x} 1 \mathrm{yd} / 3 \mathrm{ft} \times 2 \mathrm{ft}=$ 90.667 lb

IDS Project: Tom Wiest

1. Rail Area (square inch)	
Head	4.8187
Web	3.6375
Base	4.8702
Whole Rail	13.3263
2. Rail Weight (lb/yd) (based on specific gravity of rail steel = 7.84)	135.8826
3. Moment of Inertia about the neutral axis	94.20
4. Section modulus of the head	23.70
Section modulus of the base	28.20
5. Height of neutral axis above base	3.34
6. Lateral moment of inertia	14.44
7. Lateral section modulus of the head	9.83
Lateral section modulus of the base	4.82
8. Height of shear center above base	1.64
9. Torsional rigidity is 'KG' where \mathbf{G} is the modulus of rigidity and	6.24
$\mathrm{~K}=$ (error for K greater than 10%)	

Figure 4-1-5. 136 RE Rail Section ${ }^{1}$

IDS Project: RAILROAD BRIDGE DESIGN

Ballast

- Minimum ballast depth $=6$ inches below tie. (AREMA Code)
- Minimum ballast cover of tie $=4$ inches (AREMA Code)
- Total of 10 inches ballast
- Disregard the $1.75 \mathrm{ft}^{3}$ the tie takes up and the change in depth in the shoulders of ballast
- 10 in x $1 \mathrm{ft} / 12 \mathrm{in} \times 2 \mathrm{ft} \mathrm{x} 120 \mathrm{lb} / \mathrm{ft}=200 \mathrm{lb} / \mathrm{ft}$

Ties

- Use largest tie - 9 ft x 7 in x 9 in
- 7 in x 9 in $\mathrm{x} 1 \mathrm{ft}^{2} / 144 \mathrm{in}^{2}$ $\mathrm{x} 60 \mathrm{lb} / \mathrm{ft}^{3}=26.25 \mathrm{lb} / \mathrm{ft}$
- Find location of loads
- $18 \mathrm{ft}-9 \mathrm{ft}=9 \mathrm{ft}$
- $9 \mathrm{ft} / 2=4.5 \mathrm{ft}$ (Starts at $4.5 \mathrm{ft})$
$-4.5 \mathrm{ft}+9 \mathrm{ft}=13.5 \mathrm{ft}$ (Ends at 13.5 ft)

Cincinnati

Live Loads

- Live load applied to transverse beams (AREMA Code)
- Maximum axle weight $=80,000 \mathrm{lb}$
- Minimum axle spacing $=5 \mathrm{ft}$
- Transverse spacing $=2 \mathrm{ft}$
- Total 1.15AD/S
- $1.15 \times 80,000 \mathrm{lb} \times 2 \mathrm{ft} / 5 \mathrm{ft}=36,800 \mathrm{lb}$
- Applied at the top of each rail
- $36,800 \mathrm{lb} / 2=18,400 \mathrm{lb}$
- We know locations (6.65 ft and 11.35 ft)

Impact Load

- Percentage of live load applied
- Rocking, other forces
- Length $=18 \mathrm{ft}$
- Total 40 - $3 \mathrm{~L}^{2} / 1600$
- $40-3 \times 18^{2} / 1600=39.39 \%$
- . 3939 x 36,800 lb x 9 (ballast) $=13046 \mathrm{lb}$
- Applied at the top of each rail
- $13046 \mathrm{lb} / 2=6522 \mathrm{lb}$
- We know locations (6.65 ft and 11.35 ft)

Wind Load on Train

- $300 \mathrm{lb} / \mathrm{ft}$ at 8 ft height
$-300 \mathrm{lb} / \mathrm{ft} \times 2 \mathrm{ft}=600 \mathrm{lb}$
$-600 \mathrm{lb} \times 8 \mathrm{ft}=4800 \mathrm{lb}-\mathrm{ft}$
- $4800 \mathrm{lb}-\mathrm{ft} /(56.5 \mathrm{in} \mathrm{x} 1 \mathrm{ft} / 12 \mathrm{in})=1020 \mathrm{lb}$ (on one rail)
- -1020 lb on the other rail

Total Loading

- Dead Load
- Uniform Loads
- $136 \mathrm{lb} / \mathrm{ft}+41 \mathrm{lb} / \mathrm{ft}+200 \mathrm{lb} / \mathrm{ft}+26 \mathrm{lb} / \mathrm{ft}($ from 4.5 ft to 13.5 ft$)=403$ lb/ft
- Close enough to $400 \mathrm{lb} / \mathrm{ft}$
- Point Loads
- 90 lb at 6.65 ft and 11.35 ft
- Live Load
- Point Loads
- $18,400 \mathrm{lb}+6523 \mathrm{lb}+/-1020 \mathrm{lb}=25943 \mathrm{lb}$
- Close enough to 25943 lb at 6.65 ft and 11.35 ft

Sizing the Transverse Beam

- Find max moment based on load case
- 188,000 lb-ft

Transverse Moment Diagram

- Choose strength of steel to be used
- 70 ksi
- FOS adjustment $=70$ ksi $\times 0.55={ }_{1.6}$ 38.5 ksi (AREMA Code)
- Calculate section modulus
- $38.5 \mathrm{ksi}=188 \mathrm{k}-\mathrm{ft} / \mathrm{S}$
$-\mathrm{S}=58.6 \mathrm{in}^{3}$
- W12x136 has $S=64.2$ in 3
- Check deflection
- $0.2 \mathrm{in}<18 \mathrm{ft} \mathrm{x} 12 \mathrm{in} / \mathrm{ft} * 1 / 360$

Replacement Technologies

Self-propelled modular transporters (SPMT's) could allow for the bridge to be replaced in one piece.

The bridge is assembled somewhere near the existing bridge. The existing bridge is lifted and set down somewhere for demolition. Finally, the new bridge is set in place.

The current method used in most bridge replacement projects is to have lane closures while work is done overhead. A bridge could take several months to construct.

The use of SPMT's allow for the bridge to
 be replaced with road closures lasting for only a few days.

