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Abstract

Analyzing track geometry defects is critical fofesand effective railway transportation. Repairihg
right number and type of track geo-defects can @gpfately reduce the probability of derailments.
Additionally, prioritized track geometry repair vkoreduces dynamic vehicle and track interactionsth
reducing the stress state of the railroad. In plaiper, we propose an analytical framework for ngkin
optimal geo-defect repair decisions by minimiziotat expected costs, which include potential deveit
costs and repair costs. Our major contributionike®rmulating and integrating the following thrdeta-
driven models: 1). A track deterioration model tody the degradation of Class Il geo-defects; A2).
survival model to assess the derailment risk asmetion of the track condition; 3). An optimizatiarodel
under uncertainty for track repair decisions. laltworld examples, compared with heuristic straegn
practice, our proposed models can reduce 20% dbthecomposite cost on average, and potentiaiyne

more for long track sections.

1. Introduction

In the United States, rail is a crucial mode ofggortation. According to the National Transpootati
Statistics report from the Bureau of Transportatitatistics [1], 42.7% of the United States freight
revenue ton-miles were carried by railroad; thigr@eents the largest portion of the inter-city ghei
market. Proper maintenance of the existing linesutph repair and renewal is critical to railroacigtion
and safety. In 2008, Class | railroads, definediras haul freight railroads with operating revenuds

$398.7 million or more [1], spent $7.52 billion tack maintenance [2].

Track maintenance activities can be categorized twb main groups: preventive maintenance and
corrective maintenance [3]. Preventive maintenasigge-planned and carried out to avoid future dsfe
whereas corrective maintenance repairs existingctiein the infrastructure. Most of the literaturehis
area describes preventive or planned maintenaneEl]J4due to its large scale of operation and high
complexity, whereas very few studies have addreseg@roblem of corrective or unplanned maintenance
[12-13], referred arack repair in this paper. Track repair is usually performgdtie local track master in
the network, and it is typically conducted on dethaAlthough corrective maintenance occurs on a
relatively small scale as compared to preventivénteaance, it can be crucial to repair severe track
defects because they may lead to catastrophic dexi@ilments, the consequences of which can include

death, injury, costs and the loss of public confae

Track defects have become the leading cause ofdidents in the United States since 2009. 658 of
1,890 (34.8%) train accidents were caused by tdaf&cts in 2009, incurring a $108.7 million losd][1
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According to the existing literature on track delgridon [15], these defects may be categorizedantoof
two groups: track structural defects and track gaoyrdefects. Track structural defects are gengifaden

the structural conditions of the track, which irt#uthe condition of the rail, sleeper, fasteningteys,
subgrade and drainage systems. On the other aokl,geometry defects (referred togae-defects in the
remainder of this paper) indicate severe ill-candiédd geometry parameters such as profile, alighmen
gauge, cant and twist [16], shown in Figure 1. idpel2 major geo-defect types pertaining to owaysns
are described in Table 1.

C
DRiGIN /

X = ProFiLe
Y = ALIGHMENT

h = CrossLEVEL frq':-
a = Gavee I )‘

Figure 1 Track geometry parameters [19]

Previous studies on track deterioration [15-18]ddivtrack segments into several shorter sections fo
analyzing summary statistics of raw geometry mesamants. The overall statistics provide a measure of
segment quality, called Track Quality Indices (TQIFQIs have been widely used for preventive
maintenance scheduling [1-2], since they providegh level assessment of railway track performance.
However, TQIs only provide an aggregate level pectand they cannot identify individual severe geo-
defects for track repair. According to the US FafldRailroad Administration (FRA) track safety
standards, individual defects whose amplitudes exkca certain tolerance level must be treated.
Traditionally, geometry cars generally classifyledefect by its severity as either Class | or ClagSlass
| defects are those in violation of the FRA traeiety standards, and railroads must fix these tiefec
within a certain time period after their discovenyelse they risk being fined. Class Il defects tase
whose amplitudes are currently below FRA limitsg &#imey may or may not meet the particular railmad'
own standards for repair. According to current ficag railroads fix Class | geo-defects immediatfiygr
inspection and they examine the Class Il defeetsiring them based on their field experience. dgimc
order to make track repair decisions, it is heagska existing railroads to address the followitingee
guestions: 1) how Class Il geo-defects deteriadrdte Class | defects; 2) how Class Il geo-defeéfisca

derailment risk; 3) how to prioritize and repaia€s Il geo-defects within a limited budget.
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Table 1 Geo-defect summary (in alphabetical order)

Defect Type Description

ALIGN ALIGN is the average of the left and rightartain chord alignment.

CANT Rail cant (angle) measure the amount of vertiteviation between two flat rails from
their designed value. (1 degree = 1/8” for all RE@ights, approximation)

DIP DIP is the largest change in elevation of teeaterline of the track within a certain
distance moving window. Dip may represent eithdepression or a hump in the track
and approximates the profile of the centerlineheftrack.

GAGE_C Gage Change is the difference in two gagdings up to a certain distance.

GAGE_TGHT | GAGE_TGHT measures how much tighter fsiemdard gage (56-1/2").

GAGE_W1 Gage is the distance between right andréf measured 5/8” below the railhead.
GAGE_WIDE measures how much wider from standare ¢&§-1/2"). The amplitude
of GAGE_WIDE plus 56-1/2" is equal to the actualck gage reading.

GAGE_W?2 Same as GAGE_W!1 for concrete

HARM_X Harmonic cross-level defect is two crdsgel deviations a certain distance apart in a
curve.

OVERELEV Over-elevation occurs when there is anesgive amount of elevation in a cunve
(overbalance) based on the degree of curvaturéhenooard track speed.

REV_X Reverse cross-level occurs when the rightisdow in a left-hand curve or the left rail
is low in a right-hand curve.

SUPER_X Super cross-level is cross-levelatlen or super-elevation measured at a singletpoin
in a curve.

SURF Uniformity of rail surface measured in shast@hces along the tread of the rails. Ralil
surface is measured over a 62-foot chord, the sahwed length as the FRA
specification

TWIST Twist is the difference between two crosslaneasurements a certain distance apart.

WARP Warp is the difference between two cross-lemeklevation measurements up to a
certain distance apatrt.

WEAR The Automated Rail Weight Identification SystéARWIS) identifies the rail weight
while the car is testing and measures the amouméad loss. The system measureg for
vertical head wear (VHW) and gage face wear (GF&/)rail.

XLEVEL Cross-level is the difference in elevatioetiveen the top surfaces of the rails at a

single point in a tangent track segment.

The main objective of this study is to proposeamiework for making optimal track geo-defect repair

decisions, in order to appropriately reduce théability of a derailment as well as its associatests.

Additionally, prioritized track geometry maintenaneduces dynamic vehicle and track interactioms th

reducing the stress state of the railroad. Our gge@ analytical framework for geo-defect repair

minimizes total expected costs, which include piaérderailment costs and repair costs. Our major

contribution is in formulating and integrating tfudlowing three models:

* A track deterioration model to study the degradatbClass Il geo-defects’ amplitudes
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* A survival model to assess the derailment risk fametion of the track condition

* An optimization model to optimize track repair dg#ons

2. Data Summary and Pre-processing

The field datasets from an existing railroad inelldyear traffic data, derailment data, and geeatafata
from January 2009 to December 2011. Since maintieaxeks carry most of the traffic, and derailments
associated with these tracks usually cost much thare other track types, we focus our analysisktmuga
2000 miles of main line tracks in this study. Imatpthere are 4,000 Class | defects and 27,008sQla
defects. The entire dataset was processed alohgpatial and temporal dimensions:

» Spatially, the rail network was originally defineg line segments (they usually connect two
cities), track numbers (0-8 for main line tracksyl anile post locations. Constructed in such a
fashion, the rail lines range from a few miles tntireds of miles. To generate consistent
spatial units and accommodate different modelingp@ses, we divide the main line network
further into two different levels of smaller segnrcalledots andsections. At the finer level
of granularity, each lot is 0.02 mile (about 10@ftJength, used for track deterioration analysis.
At a higher level, a continuous track segmentveddid into 2 mile long sections, used for track
derailment risk as well as geo-defect repair modeli

» Temporally, regular track geometry inspection ifgrened 3 to 6 times per year according to
characteristics of each track segment. Geo-defauds reported and updated after each
inspection run. When they occur in the same ingpecun window, different types of geo-

defects are aggregated to the level of an inspeatio.

3. The Track Deterioration Model

We develop a rail track deterioration model to espnt the causes and consequences of track
deterioration. The model takes various factors Etoount, including the current track conditionsl an
traffic information, and it has the capability toegdict future track conditions. Track deterioratin

captured by studying geo-defect amplitude charmgessured at each geometry inspection.

The statistical model constructs the relationsipsveen the effective parameters and the track
deterioration rate, while incorporating the undettacaused by the unknown factors and measurement
noise. By developing the statistical model, we abke to predict the deterioration of each geo-dedad

the risk of a Class Il geo-defect becoming Classthe future.
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To model track deterioration, we track the evoltad track defects. However, due to the lack of-geo
defect indices, it is not possible to track anytipalar geo-defect over time. We handle this sitmaby
tracking the condition of small track segments, rehesach segment contains very few geo-defectsafur e
inspection run. As the first step, we divide thacks into non-overlapping lots of equal length (nfii2s,

i.e., 105.6 feet. 90% of geo-defect lengths aretehthan 100 feet and about 50% geo-defect lerayins
about 30~40 feet. Then we aggregate the defecisspgction run for each defect type. We take the 90
percentile of the amplitude to represent the traegment condition for the inspection run under

consideration.
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]
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Figure 2 Geo-defect amplitude change rate (per fbaygifferent geo-defect
types and different factors (a) type GAGE_W?2 aiaffitr in MGT; (b) type
GAGE_W1 and traffic in number of cars

Data analysis suggests fitting different modelsdifferent defect types, since the model parameters
have varying effects on deterioration rate for edefect type (see Figure 2). We assume that gesetdef
get worse over time, i.e., defect amplitudes ireeeahen there is no maintenance work. For eaclctdefe
type, lety, (t) denote the aggregated geo-defect amplitude (theeBentile of the defect amplitudes) of
the track lot k at inspection time t. The deteriimmrate or the amplitude change rate over tikhecan be
represented byy, (t + At) -y, (t))/ At . We model the deterioration rate (only for a &ndefect type) as

follows:

Y (t + At) ~ Yx (t)
Aty, (t)

where N is the total number of track lotX , (t) are thepth external factor or predictor féth track

j =a,+a, X, ) +...+a X, O+ (t) OUk=1.N (1a)

lot at inspection time. Based on our exploratory data analysis, we chdosese an exponential



relationship between the external factors or ptedscXy (t),..., X, (t) and the deterioration rate in our

model, similar to the model suggested in [ assume the deterioration rate is linearly rdlateh the

current track condition. The random errgg,t |, (i9 assumed normally distributed with mean eqoaD t

and standard deviatioor®.

The factors considered in the model include monttadffic MGT (X, (t)), monthly total number of
cars (X, (t)), monthly total number of trainsX,, (t) ),Number of inspection runs in sequence since last
observed Class | geo-defet(, (t)), and traffic average speed in mpK 4 (t) ). Model fitting shows that

factors have different impacts on deterioratioesdbr each defect type. The coefficierts, a,....a,,

10
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are listed in Table 2, whem®, is the intercept of the model, amq represents the coefficient fah X

factor.

Table 2 Estimation results of track deterioratioode

Defect Type | o, a, - Traffic | a,-Traffic | a,-Traffic | a, - | a, - Traffic
(MGT) (# of cars) | (# of trains) iequence speed
ALIGN -7.71E+00| -- -- -- -- --
CANT -7.66E+00| -7.01E-02 6.05E-06 6.52E-04 6.71E-02
DIP -7.58E+00| 7.21E-02 -- -- -- --
GAGE_C -8.53E+00 8.62E-02 -- -- 1.13E-01 --
GAGE W1 | -7.42E+00 3.58E-02 4.64E-06 -- 7.02E-02 08&-01
GAGE W2 | -8.08E+00 1.90E-02 | - 2.05E-04 | 7.08E-02 -
HARM_X | -7.44E+00| - - - - -
OVERELEV | -7.58E+00| 2.45E-01 - -- 6.99E-02
REV_X 7.40E+00| - - - - -
SUPER X | -8.97E+00 - - - - -
SURF -6.99E+00 2.00E-01 -- -1.33E-03 4.36E-02 -
WEAR -8.22E+00| 2.95E-02 -- 4.73E-04 7.49E-02 --
XLEVEL -7.66E+00| -- 2.64E-06 3.23E-04 9.18E-02 --

To compute the probability of a Class Il defectdimaing Class | in the future, we predict the defect

amplitude for the next inspection run, as shownFagire 3. Based on information about real-world

inspection run intervals, we chooAt as 90 days. Assume the threshold for of a Clagefdct becoming

a Class | for a certain defect type i8y assuming bothand y, (t) are positive, we define
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h (t) = |og[rA_ty—yk(g)j,

as the logarithm transformation of deterioratiote rénreshold of exiting amplitudg, (t). According to

the assumption of linear regression model, the rildgrd variable

zZ= |Og[Yk (t+At) -y, (t)]
Aty (t)

is normally distributed. Then the rislg, t ( of a Class Il geo-defect at time t on track segnie

becoming Class | it is

p(t) = [ zdz (1b)

hy (t)

fitted value
70

-75
1

£.0 8.5 80 75 70 65 £.0

actual value

Figure 3 Predicted vs. actual geo-defect amplitude

4. The Track Derailment Risk Model
Survival analysis is the phrase used to describeatialysis of data regarding the occurrence of a
particular event, within a time period after a wadfined time origin[20]. Analyzing survival times

common in many areas, for instance, in biomedicaifutation, engineering and the social sciences.

In our railway application, each inspection runlwiiefresh” the track segment since all Class 1-geo

defects will be repaired. If there is no derailméetween two scheduled inspection runs on a track
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segment, the track can be considered to have ‘&d¥irom one inspection to the next. If any deraiht

occurs, the track segment is said to have failéddrtime period since the last inspection run.

Associated with the survival of a track sectiomagboint in time, we refer to derailment on thiscka

section as a hazard. In survival theory, therettanee basic functions: the density function , (Sprvival
function S¢) and hazard functioh t (.)For a derailment, density functioht (expresses the likelihood

that the derailment will occur at tinte The survival function represents the probabitiigt the track

section will survive until time:
© t
S(t) = Prol(T >t) :j f(x)dx:l—j f(x)dx=1- F(t) (2a)
t 0

whereT denotes the variable of survival time of a traeggraent after inspection and F(t) the cumulative
function of variableT. The hazard function is the likelihood that a derant takes place in timegiven
that it has lasted at least until By definition, the relationship between theseséhfunctions can be
written as:

_f(t) _ dInS(t)

TS dt

A(t)
S(t) = exp[—j A(X)dx]

f(t) = A(D)S(t) = A(t) exp[—jA (x)dx]

The hazard function represents the instantanetei®fdailure probability at timg given the condition

that the event survived to tinteParametric models may be used to specify theitgletistributionf ¢ ),

such as exponential, Weibull, log-logistic, and-fagmal distributions, but such pre-defined disttibns
may not appropriately fit the real world data. Witih having to specify any assumptions about theesha
of the baseline function, Cox [21] proposed a metfay estimating the coefficients of covariateghie
model using the method of partial likelihood (Pajher than maximum likelihood. Hence, the Cox model
is sometimes referred to as a semi-parametric madde Cox model, which assumes that the covariates
multiplicatively shift the baseline hazard functios by far the most popular choice in practice tués
elegance and computational feasibility [22]. It las<onsiderable advantage compared to parametric

approaches in that it does not need an assumptiout ghe baseline hazard function. Furthermorakenl
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non-parametric analysis such as the Kaplan-Meirthodeand the rank test, it allows both nominal and

continuous variables. The hazard function form ok Godel is,

At; B, X) = A, ()e’™*

(2b)

where A, { )is an unspecified nonnegative function of timdezhthe baseline hazard, agtlis a column

vector of coefficients to be estimated, afdX = S, + B,x + B,X, +...+ B, %, . Because the hazard ratio

for two subjects with fixed covariate vectoxs and X,

A1) _ A (t)e’™

A0 A 0ef*

is constant over time, the model is also known hes groportional hazards (PH) model. In order to

estimatef3, Cox [21] proposed a conditional (or partial)elikood function which depends only on the

parameter of interest. Originally he speculated tha resulting parameter estimators from the glarti

likelihood function would have the same distribnab properties as full maximum likelihood estimator

Then he provided the mathematical proofs in [2B Partial likelihood function is described as

L,(B) = u

n

2

&

JOR(t;y)

The maximum partial likelihood estimator is foungdmlving the following equation,

9In(L,(B)) _,,
op

Table 3 Estimation results of Cox PH model

covariates coef exp(coef) | se(coef) | z Pr(>|z|)
(hazard ratio)

numCIll_GAGE_W1 | 1.01E-01| 1.11E+00 1.96E-02 5.165 OE-87
amp90_SUPER_X 5.10E-01] 1.67E+00 1.68E401 3.028 2@®0
amp90_GAGE_C 6.33E-01| 1.88E+00 2.10E-01 3.013 G902
numCIll_REV_X 6.66E-01 | 1.95E+00 3.21E-Q1 2.077 0817
amp90_DIP 9.58E-01| 2.61E+00 4.67E-01 2.052 0.040
amp90_WARP 7.44E-01| 2.10E+00 3.69E-p1 2.014 0.044
amp90_HARM_X 5.43E+00| 2.29E+02 2.78E+00.958 | 0.05028
numCIll_GAGE_W2 | 2.28E-01| 1.26E+00 1.17E-01 1.948 5039
amp90_WEAR 1.54E+00] 4.65E+00 8.34E-p1 1.843 0.065
amp90_ALIGN 4.17E+00| 6.45E+01 2.40E+00.736 | 0.08261

10
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Fitting a Cox model can be handled using existiatjstical software. The reader may refer to [2#] f
details of implementation. As described in Secfoall the raw geo-defects are spatially aggregeteide
section level (2 mile), and temporally into eachpiection level. In one aggregated record, the dipdn
variable is either the time duration between twapattion runs (censored survival time), or timeatdan
between the derailment and the last inspectionbefore derailment. Selected candidate predictas ar
listed as follows:

*  Monthly traffic in MGT

* Number of Class Il geo-defects (starting with “nuiiiCin each defect category in Table 1

* 90 percentile amplitude (starting with “amp90”)@fass 1l geo-defects in each defect category in

Table 1

The final Cox model fit to the censoring derailmeéata is illustrated in Table 3. An efficient way t
evaluate the fitted model is to use Cox-Snell neslisl [24]. If the model is calibrated correctlye tBox-
Snell residuals should show a standard exponehstlbution with hazard function equal to one, dmas
the cumulative hazard of the Cox-Snell residuataikhfollow a straight 45 degree line. The ploFigure
4 confirms that most of the step lines are closthéodashed straight line, except for a few tagdaones.

As a result, we feel there is no evidence for ugject the model.

L
—

1.0

Cumulative hazard

0o
|

| T | T
0.0 0.5 10 15

Cox-Snell residuals

Figure 4 Cumulative hazard of Cox-Snell residuals

The model shown in Table 3 includes ten simple dates. Each significant covariate represents a
particular geo-defect type. To further explain towariate, a positive coefficient means that theald is

higher (hazard ratio is greater than 1.0), wheeeaggative one indicates a lower hazard (hazaial igat

11
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less than 1.0). In the fitted model, all the coatms have positive coefficients, indicating thhgab-defect
types listed in Table 3 have a strong positive ichwan derailment risk. Those 10 significant geoedef
types can be categorized into two groups: the nuinéged and amplitude based groups. On one hand, th
number based group consists of GAGE_W1, REV_X aAGE W2, in which the number of geo-defect
in a track section determines the derailment 1@&k.the other hand, the amplitude based group ieslud
SUPER_X, GAGE_C, DIP, WARP, HARM_X, WEAR, and ALIGHnNd the 90 percentile of geo-defect
amplitudes plays an important role to influencekrgeometry induced derailment.

Therefore, we can derive the derailment probabil (t), on sectiori prior to timet given from:

P.(t) =Pro (T <t) =1-S(t) (20)
where § { ) indicates the survival probability on sectiomrior to time t. Furthermore, the derailment
probability after repair alternatieis taken,P { a ) can also be calculated in similar fashion,

P (t.a)=1-S (t,a) (2d)

where S { a)is the survival probability after repair actiams performed on sectidrprior to timet.

5. Optimal Track Repair

In the preceding sections, we presented two modeésto predict deterioration of Class Il defeats i
Class | defects, and another to predict track-bdsedilments of trains. In this section, we userdwilts
of the previous models along with information retjag costs as inputs for an optimization model unde

uncertainty.

According to FRA regulations, all Class | defecévdn to be repaired as soon as possible - but which
Class Il defects should the railways company répd@inere are costs associated with repairing Class |
defects, but doing so may decrease the probabilierailment, which in turn would decrease expecte
derailment costs. It may be particularly prudent@lrepair Class Il geo-defects that are likelystmn
become Class | defects, since they will have tadpaired in the future anyway. The decision maker i
such situations is usually the local track mastdro may be in charge of several sections alonge li
segment. For instance, the track master may bemsiye for track repair decisions for 50 milegrafk,

i.e. 25 sections of 2 miles each.

We now formulate the track repair optimization gsen simple single-stage model and describe the

parameters and relevant assumptions:

Decision variables

12
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Due to the economies of scale involved, we assinaiethe decision maker either repairs none of the

defects or all the defects of a particular categaryhat section. Suppose that a section is obdetwe

contain Class Il defects of 3 defect categorieghis case, there a® = 8 alternatives available to the

decision maker, because s/he can choose to repadr ar all of the defects of each type in any fussi

combination. We denote decision variables usingcatdr variablesx, . If alternativeal] A is chosen
for sectioni 1, then X', =1, otherwisex', =0 . The decision maker can choose only one of the

alternatives for a particular section, and thisiitesn a feasibility constraintz x‘a1 =10i01.
alJA

Cost and probability parameters

After an inspection run by the geometry car, theisien maker must fix all observed Class | defects.
We denote the cost of repairing such defects itiset as Cil. If the decision maker repairs all the Class
Il defects of a certain category in a section, ttieme are costs associated with repairing thefeetde

Cost of Class Il defect repai¥ > X ,C'

ion,a0A

whereCiZ’a is the cost of repairing all Class Il defects for

2a’?

sectioni if alternativeais chosen.

If Class Il defects are not repaired, then theré vai costs associated with repairing them at e n

inspection run if they turn into Class | defectgnide similarly:

Expected cost of Class | defect repairz xiaCilva . Cil’a is the expected cost of Class | defect repair
idl,adA

for sectioni if alternativeais chosen, and it includes the probability of detation of all Class Il defects

into Class | defects. SpecificalfC',, => >’ p“,C’;, ., where the summation is over all defect
j03 koK

categories] in sectioni, and for all defectk in categoryj . p*, is the probability that this defect will
progress to a Class | defect if alternataes chosen X = Owhen defectk is repaired, otherwise
p'; = pe(t)), andeLa is the cost of fixing a Class | defect of categgryvhen alternativea is chosen.

There are also costs associated with derailment:

Expected cost of derailmertC, > X,P',, whereP', is the probability of derailment in section
idl,adA

if alternative ais chosen, andC, is the expected derailment cost. A derailment efinéd as the

13
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interruption of normal wheel-to-rail interactionnda the consequences of derailments can vary
significantly, from slight equipment damage to magger injury or even death. Figure 5 presents the
derailment cost data and a fitted probability dignfinction. The derailment cost distribution folle a
heavy-tailed distribution, ranging from hundredsU$ dollars to millions of US dollars. The expected

derailment cost based on on our data set is arpbhaK.

1.2e-06

Density
§.0e-07

[ I I I
0 500000 1500000 2500000

0.0e+00

Derailment Cost

Figure 5 Probability density of derailment cost

All model parameters are summarized in Table 4.

Table 4 Model parameters for the optimization folation

Type Notation Description
Indices i1 Index for section in a line segment
jdJd Index for defect category in the set of categooieserved
in sectioni
kOK Index for individual Class Il defect of typg in sectioni
allA Index for chosen alternative out of all possiple
alternatives available to the decision maker
Decision | ¥ [Oi0l, adA Indicator which is 1 if alternativa is chosen for section
variables : i , otherwise O
Parameters B Budget for repair
C, Average derailment cost, assumed identical for| all
sections
Cil Cost of repairing all existing Class | defectséatson i
C',, 0i0l,adA | Cost of repairing all converted Class | defectsmfro
' existing Class Il defects if alternative is chosen fof
sectioni
Ci2a Oi01, adA | Cost of repairing all Class Il defects if alternatia is
’ chosen for section
P Oi0l, adA Probability of a derailment in the time from this
inspection run to the next, if alternatigeis chosen for
sectioni

14
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pka OkOK, alJA | Probability that Class Il defedtwill progress to a Class
defect if alternativea is chosen
Cila 0j0J, adA Cost of repairing a Class | defect of categgrywhen

alternativea is chosen

The formal optimization model is as follows:

Minimize total expected costX » X, (C;, +C;, +C,P) +C; (3a)
i0l adA
Subject to x,={0,4 Di0,0aDA (3b)
> X, =10i01 (3c)
aJA
> x,C,.<B (3d)
idl,adA ’

» Obijective (3a) aims to minimize the total expeatedt, which is the sum of Class | and Il defect
repair costs in this period, expected Class | defggair costs in the next period, and expected
derailment costs in the intermediate time period.

» Equation (3b) specifies that the decision variablesbinary 0-1 variables.

» Equation (3c¢) is for feasibility, indicating thamlg 1 alternative can be chosen for any particular
section.

* Inequality (3d) is a capacity constraint where tb&l repair cost of Class Il defects cannot

exceed the available budget. If the budget incluo@® Class | and Il defects for the current

inspection run, then this constraint can be modifte( > xiaCiZ’aj +C,<B .
i0l,adA

The optimization model is a binary integer prograngr(BIP) problem which is linear in the objective

function as well as constraints, and it can beexblysing standard commercial solvers.

Note that when the cost of derailment is a randamable, due to the nature of the optimization

formulation, we can simply replace derailment c@gt with the expected derailment cds‘_g in the

optimization model 3(a)-(d). This is because thaltexpected cost is given as:

£ 33 K., 4Ol R+ =T [, (G +Cu R )
allA

i aJA idl , (4)
= Y X, (Cha+Cl +E[C, [P + L= T K, (€, +C + G +C
il adA il adA
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since the expectation of a sum is the sum of egfieas. According to expression (4), the stochastic
objective will eventually be derived the same ateirinistic one (3a). Therefore, the proposed BR ¢

also handle uncertainty derailment costs.
Comparison with heuristic strategies

We compare the solution of our optimization forntigia with two “baseline” heuristic strategies that

are intuitive and commonly used in practice to ma&ek repair decisions.

Heuristic I: Distance-based strategy (HEUI)

It is intuitive and cost-efficient to repair a Cdal defect that is near a Class | defect of thmesa
category. In the distance-based strategy, Cladsféicts close to Class | defects in the same catege
likely to be repaired. We define
D| =min(d*) Oi,j
as the distance index of sectibiand defect category and d}k represents the distance to the nearest

Class | defect for Class Il defektin sectioni and category. Given the budget, section and defect
category, the section and category padij$ &re ranked and selected for repair in ascendidgrof the

distance index, until the budget is consumed.

Heuristic I1: Severity-based strategy (HEUII)
In the severity-based strategy, an empirical aggeetpvel measure of defect amplitudes is computed

for every section and category. We define the ssnviedex as

i max@), o
S =expW)ln(nj) i, j
]

where a)‘j" is the amplitude of Class Il defektin sectioni and category, a);“ax denotes the maximum

amplitude of geo-defect categojryand n‘j represents the number of Class Il defects ini@ectand

categoryj. These severity measures are ranked and eaclorsectd category paili j) is repaired in

descending order of severity, until the budgebisstimed.

6 Numerical Examples
Four track segments denoted A, B, C and D, areteeldor track repair optimization for geo-defects

located in the last inspection run in December 2@L$ummary of track information and geo-defects is
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shown in Table 5. Segments are divided into no niwaa@ 2 mile sections according to traffic dataslt
very hard to estimate exact costs of fixing indiidtgeo-defects, due to variations of equipmeagtfand
personnel at each local maintenance center. Falisity, we assume all Class Il and Class | defeost
$50 and $100 respectively, according to empiristih@tion. Since Class | defects need to be regpéiye
law, it will be more convenient to fix Class Il @ets whereever there is a Class | defect in theesam
category nearby. Therefore, the repair costs arenasd to be reduced by 50% for those Class Il tefec

within 5 miles of a Class | defect in the same gaitg.

Table 5 Summary of test track segments

Name| Length| Num. of | Num. of | Num. of | Budget | Geo-defect types observed
(mile) | sections| Class Il | Class| | (USD)
defects | defects

A 50 13 60 4 1200 GAGE_C, GAGE_W1, XLEVEL

B 100 21 77 2 2500 GAGE_C, GAGE_W1, HARM_X
OVERELEV, TWIST, XLEVEL

C 300 49 122 37 4500 GAGE_C, GAGE_W1,
GAGE_W2, HARM_X,
OVERELEV, REV_X, TWIST,
XLEVEL

D 500 94 343 38 6500 ALIGN, GAGE_C, GAGE_W1,
GAGE_W?2, OVERELEV, REV_X,
TWIST, XLEVEL

For the sake of comparison, 100 scenarios of aeeail costs are randomly sampled from the density
function fitted in Figure 5. The proposed optimiaatmodel (BIP) can be solved within 1 second fibr a
four instances, by CPLEX 12.3 on a personal compwih quad core 2.4GHz CPU and 3G RAM. Our

framework is therefore suitable for online tracga activities.

Figure 6 plots total expected costs for each saefar our optimal solutions (BIP) and two heusti
strategies (HEUI & HEUII). As expected, note thimast all the points are above the 45 degree $iraig
line, since the optimal solution guarantees bedtdutions than the heuristic strategies by debnitithe
difference between the costs is particularly evidenlong tracks such as Track D. In Figure 6¢djal
expected costs of the optimal track repair solutiary from $200K to $400K, while HEUI and HEUII
range from $200K to $900K.
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Figure 6 Comparison of total expected costs frortifigd, HEUI and HEUII under 100
different derailment cost scenarios (a) Track A;Tkack B; (c) Track C; (d) Track D

Figure 7 compares average total costs acrossadtitfetrategies with a bar chart. HEUIIl producessiow
total cost than HEUI does for all four track segtseit means that fixing geo-defects with higheresiy
can reduce more on derailment costs, which compligs the conclusion from derailment risk model.
Among the three strategies, BIP always outperfdmen liaselines of course. The percentage changes of
total costs from HEUI & HEUII to optima; are labdlen the top of bars, and they range from -7% to -

38%. When the repair problem gets larger in sé¢ade) track A to D, BIP shows a linear increasingvel)
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while the baseline costs appear to increase expialtgnOn average, BIP decreases around 20% af tot

costs, which is equivalent to about $50K.

mEIFP BHEUI mHEUI

-9.1% -7.3%

150000 ;
-25.2% -17.3%
100000
-13.6% -13.2%
B C

Track
Figure 7 Comparison of average total costs from BIPUI and HEUII

Total Cost

7 Conclusions

This paper presents an analytical framework to esfdthe track geo-defect repair problem using three
models. First, a statistical deterioration modedpecially designed for track Class Il geo-defeats] it
aims to model deterioration rates for each geoalafategory. Second, a track derailment risk masiel
proposed by applying survival analysis. This madebrporates combinations of effects from different
types of geo-defects, and represents how derailmsgktchanges over time. Finally, an optimization
model is formulated for making geo-defect repaicisiens. A real-world case study has shown that the
proposed methodology yields more reliable and destly solutions than typical heuristic strategissd
according to current industry practices. Our preplosack repair model can reduce total costs by 80%
more. Our experiments demonstrate that particulartye savings of around 38% can be incurred fiog lo

track sections.
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