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Abstract 1 

Analyzing track geometry defects is critical for safe and effective railway transportation. Repairing the 2 

right number and type of track geo-defects can appropriately reduce the probability of derailments. 3 

Additionally, prioritized track geometry repair work reduces dynamic vehicle and track interaction, thus 4 

reducing the stress state of the railroad. In this paper, we propose an analytical framework for making 5 

optimal geo-defect repair decisions by minimizing total expected costs, which include potential derailment 6 

costs and repair costs. Our major contribution lies in formulating and integrating the following three data-7 

driven models: 1). A track deterioration model to study the degradation of Class II geo-defects;  2). A 8 

survival model to assess the derailment risk as a function of the track condition; 3). An optimization model 9 

under uncertainty for track repair decisions. In real-world examples, compared with heuristic strategies in 10 

practice, our proposed models can reduce 20% of the total composite cost on average, and potentially even 11 

more for long track sections. 12 

 13 

1. Introduction 14 

In the United States, rail is a crucial mode of transportation. According to the National Transportation 15 

Statistics report from the Bureau of Transportation Statistics [1], 42.7% of the United States freight 16 

revenue ton-miles were carried by railroad; this represents the largest portion of the inter-city freight 17 

market. Proper maintenance of the existing lines through repair and renewal is critical to railroad operation 18 

and safety. In 2008, Class I railroads, defined as line haul freight railroads with operating revenues of 19 

$398.7 million or more [1], spent $7.52 billion on track maintenance [2].  20 

 21 

Track maintenance activities can be categorized into two main groups: preventive maintenance and 22 

corrective maintenance [3]. Preventive maintenance is pre-planned and carried out to avoid future defects, 23 

whereas corrective maintenance repairs existing defects in the infrastructure. Most of the literature in this 24 

area describes preventive or planned maintenance [4–11] due to its large scale of operation and high 25 

complexity, whereas very few studies have addressed the problem of corrective or unplanned maintenance 26 

[12-13], referred as track repair in this paper. Track repair is usually performed by the local track master in 27 

the network, and it is typically conducted on demand. Although corrective maintenance occurs on a 28 

relatively small scale as compared to preventive maintenance, it can be crucial to repair severe track 29 

defects because they may lead to catastrophic train derailments, the consequences of which can include 30 

death, injury, costs and the loss of public confidence.  31 

 32 

Track defects have become the leading cause of train accidents in the United States since 2009. 658 of 33 

1,890 (34.8%) train accidents were caused by track defects in 2009, incurring a $108.7 million loss [14]. 34 
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According to the existing literature on track degradation [15], these defects may be categorized into one of 1 

two groups: track structural defects and track geometry defects. Track structural defects are generated from 2 

the structural conditions of the track, which include the condition of the rail, sleeper, fastening systems, 3 

subgrade and drainage systems. On the other hand, track geometry defects (referred to as geo-defects in the 4 

remainder of this paper) indicate severe ill-conditioned geometry parameters such as profile, alignment, 5 

gauge, cant and twist  [16], shown in Figure 1. The top 12 major geo-defect types pertaining to our analysis 6 

are described in Table 1. 7 

 8 

Previous studies on track deterioration [15–18] divide track segments into several shorter sections for 9 

analyzing summary statistics of raw geometry measurements. The overall statistics provide a measure of 10 

segment quality, called Track Quality Indices (TQIs). TQIs have been widely used for preventive 11 

maintenance scheduling [1-2], since they provide a high level assessment of railway track performance. 12 

However, TQIs only provide an aggregate level picture and they cannot identify individual severe geo-13 

defects for track repair. According to the US Federal Railroad Administration (FRA) track safety 14 

standards, individual defects whose amplitudes exceed a certain tolerance level must be treated. 15 

Traditionally, geometry cars generally classify each defect by its severity as either Class I or Class II. Class 16 

I defects are those in violation of the FRA track safety standards, and railroads must fix these defects 17 

within a certain time period after their discovery or else they risk being fined. Class II defects are those 18 

whose amplitudes are currently below FRA limits, and they may or may not meet the particular railroad's 19 

own standards for repair. According to current practice, railroads fix Class I geo-defects immediately after 20 

inspection and they examine the Class II defects, repairing them based on their field experience. Hence, in 21 

order to make track repair decisions, it is necessary for existing railroads to address the following three 22 

questions: 1) how Class II geo-defects deteriorate into Class I defects; 2) how Class II geo-defects affect 23 

derailment risk; 3) how to prioritize and repair Class II geo-defects within a limited budget. 24 

 25 

Figure 1 Track geometry parameters [19] 
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Table 1 Geo-defect summary (in alphabetical order) 1 

Defect Type Description 

ALIGN ALIGN is the average of the left and right a certain chord alignment.  

CANT Rail cant (angle) measure the amount of vertical deviation between two flat rails from 
their designed value. (1 degree = 1/8” for all Rail Weights, approximation) 

DIP DIP is the largest change in elevation of the centerline of the track within a certain 
distance moving window. Dip may represent either a depression or a hump in the track 
and approximates the profile of the centerline of the track.  

GAGE_C Gage Change is the difference in two gage readings up to a certain distance. 

GAGE_TGHT GAGE_TGHT measures how much tighter from standard gage (56-1/2”). 

GAGE_W1  Gage is the distance between right and left rail measured 5/8” below the railhead. 
GAGE_WIDE measures how much wider from standard gage (56-1/2”). The amplitude 
of GAGE_WIDE plus 56-1/2” is equal to the actual track gage reading. 

GAGE_W2 Same as GAGE_W1 for concrete 

HARM_X    Harmonic cross-level defect is two cross-level deviations a certain distance apart in a 
curve. 

OVERELEV Over-elevation occurs when there is an excessive amount of elevation in a curve 
(overbalance) based on the degree of curvature and the board track speed. 

REV_X Reverse cross-level occurs when the right rail is low in a left-hand curve or the left rail 
is low in a right-hand curve. 

SUPER_X       Super cross-level is cross-level, elevation or super-elevation measured at a single point 
in a curve. 

SURF Uniformity of rail surface measured in short distances along the tread of the rails.  Rail 
surface is measured over a 62-foot chord, the same chord length as the FRA 
specification 

TWIST Twist is the difference between two cross-level measurements a certain distance apart. 

WARP Warp is the difference between two cross-level or elevation measurements up to a 
certain distance apart. 

WEAR The Automated Rail Weight Identification System (ARWIS) identifies the rail weight 
while the car is testing and measures the amount of head loss. The system measures for 
vertical head wear (VHW) and gage face wear (GFW) per rail. 

XLEVEL Cross-level is the difference in elevation between the top surfaces of the rails at a 
single point in a tangent track segment. 

  2 

The main objective of this study is to propose a framework for making optimal track geo-defect repair 3 

decisions, in order to appropriately reduce the probability of a derailment as well as its associated costs. 4 

Additionally, prioritized track geometry maintenance reduces dynamic vehicle and track interaction, thus 5 

reducing the stress state of the railroad. Our proposed analytical framework for geo-defect repair 6 

minimizes total expected costs, which include potential derailment costs and repair costs. Our major 7 

contribution is in formulating and integrating the following three models: 8 

• A track deterioration model to study the degradation of Class II geo-defects’ amplitudes 9 
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• A survival model to assess the derailment risk as a function of the track condition 1 

• An optimization model to optimize track repair decisions 2 

 3 

2. Data Summary and Pre-processing 4 

The field datasets from an existing railroad include 3-year traffic data, derailment data, and geo-defect data 5 

from January 2009 to December 2011. Since main line tracks carry most of the traffic, and derailments 6 

associated with these tracks usually cost much more than other track types, we focus our analysis on about 7 

2000 miles of main line tracks in this study. In total, there are 4,000 Class I defects and 27,000 Class II 8 

defects. The entire dataset was processed along both spatial and temporal dimensions: 9 

• Spatially, the rail network was originally defined by line segments (they usually connect two 10 

cities), track numbers (0-8 for main line tracks) and mile post locations. Constructed in such a 11 

fashion, the rail lines range from a few miles to hundreds of miles. To generate consistent 12 

spatial units and accommodate different modeling purposes, we divide the main line network 13 

further into two different levels of smaller segments, called lots and sections. At the finer level 14 

of granularity, each lot is 0.02 mile (about 100ft) in length, used for track deterioration analysis. 15 

At a higher level, a continuous track segment is divided into 2 mile long sections, used for track 16 

derailment risk as well as geo-defect repair modeling.  17 

• Temporally, regular track geometry inspection is performed 3 to 6 times per year according to 18 

characteristics of each track segment. Geo-defects are reported and updated after each 19 

inspection run. When they occur in the same inspection run window, different types of geo-20 

defects are aggregated to the level of an inspection run. 21 

 22 

3. The Track Deterioration Model  23 

We develop a rail track deterioration model to represent the causes and consequences of track 24 

deterioration. The model takes various factors into account, including the current track conditions and 25 

traffic information, and it has the capability to predict future track conditions. Track deterioration is 26 

captured by studying geo-defect amplitude changes, measured at each geometry inspection.  27 

 28 

The statistical model constructs the relationships between the effective parameters and the track 29 

deterioration rate, while incorporating the uncertainty caused by the unknown factors and measurement 30 

noise. By developing the statistical model, we are able to predict the deterioration of each geo-defect and 31 

the risk of a Class II geo-defect becoming Class I in the future.  32 

 33 
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To model track deterioration, we track the evolution of track defects. However, due to the lack of geo-1 

defect indices, it is not possible to track any particular geo-defect over time. We handle this situation by 2 

tracking the condition of small track segments, where each segment contains very few geo-defects for each 3 

inspection run. As the first step, we divide the tracks into non-overlapping lots of equal length 0.02 miles, 4 

i.e., 105.6 feet. 90% of geo-defect lengths are shorter than 100 feet and about 50% geo-defect lengths are 5 

about 30~40 feet. Then we aggregate the defects by inspection run for each defect type. We take the 90 6 

percentile of the amplitude to represent the track segment condition for the inspection run under 7 

consideration.  8 

 9 

Data analysis suggests fitting different models for different defect types, since the model parameters 10 

have varying effects on deterioration rate for each defect type (see Figure 2). We assume that geo-defects 11 

get worse over time, i.e., defect amplitudes increase when there is no maintenance work. For each defect 12 

type, let )(tyk denote the aggregated geo-defect amplitude (the 90 percentile of the defect amplitudes) of 13 

the track lot k at inspection time t. The deterioration rate or the amplitude change rate over time t∆  can be 14 

represented by ttytty kk ∆−∆+ /))()(( . We model the deterioration rate (only for a single defect type) as 15 

follows: 16 

 NkttXtX
tty

tytty
kpkpk

k

kk ...1)()()(
)(

)()(
log 110 =∀++++=









∆
−∆+ εααα K   (1a) 17 

where N  is the total number of  track lots. )(tX pk  are the pth external factor or predictor for kth track 18 

lot at inspection time t. Based on our exploratory data analysis, we choose to use an exponential 19 

(a) (b) 

Figure 2 Geo-defect amplitude change rate (per day) for different geo-defect 
types and different factors (a) type GAGE_W2 and traffic in MGT; (b) type 

GAGE_W1 and traffic in number of cars 
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relationship between the external factors or predictors )(,),(1 tXtX pkk K  and the deterioration rate in our 1 

model, similar to the model suggested in [15]. We assume the deterioration rate is linearly related with the 2 

current track condition. The random error, )(tkε , is assumed normally distributed with mean equal to 0 3 

and standard deviation 2σ .  4 

 5 

The factors considered in the model include monthly traffic MGT ( )(1 tX k ), monthly total number of 6 

cars ( )(2 tX k ), monthly total number of trains ( )(3 tX k ),Number of inspection runs in sequence since last 7 

observed Class I geo-defect( )(4 tX k ), and traffic average speed in mph ( )(5 tX k ). Model fitting shows that 8 

factors have different impacts on deterioration rates for each defect type. The coefficients, pααα ,,, 10 K , 9 

are listed in Table 2, where 0α  is the intercept of the model, and iα  represents the coefficient for ith X 10 

factor. 11 

 12 

Table 2 Estimation results of track deterioration model 13 

Defect Type 
0α  1α - Traffic 

(MGT) 
2α - Traffic  

(# of cars) 
3α - Traffic  

(# of trains) 
4α - 

Sequence 
# 

5α - Traffic 

speed 

ALIGN -7.71E+00 -- -- -- -- -- 

CANT -7.66E+00 -7.01E-02 6.05E-06 6.52E-04 6.71E-02 -- 

DIP -7.58E+00 7.21E-02 -- -- -- -- 

GAGE_C -8.53E+00 8.62E-02 -- -- 1.13E-01 -- 

GAGE_W1 -7.42E+00 3.58E-02 4.64E-06 -- 7.02E-02 -5.08E-01 

GAGE_W2 -8.08E+00 1.90E-02 -- 2.05E-04 7.98E-02 -- 

HARM_X -7.44E+00 -- -- -- -- -- 

OVERELEV -7.58E+00 2.45E-01 -- -- 6.99E-02  

REV_X -7.40E+00 -- -- -- -- -- 

SUPER_X -8.97E+00 -- -- -- -- -- 

SURF -6.99E+00 2.00E-01 -- -1.33E-03 4.36E-02 -- 

WEAR -8.22E+00 2.95E-02 -- 4.73E-04 7.49E-02 -- 

XLEVEL -7.66E+00 -- 2.64E-06 3.23E-04 9.18E-02 -- 

  14 

To compute the probability of a Class II defect becoming Class I in the future, we predict the defect 15 

amplitude for the next inspection run, as shown as Figure 3. Based on information about real-world 16 

inspection run intervals, we choose t∆  as 90 days. Assume the threshold for of a Class II defect becoming 17 

a Class I for a certain defect type is r. By assuming both r and )(tyk  are positive, we define  18 
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 








∆
−

=
)(

)(
log)(

tty

tyr
th

k

k
k ,  1 

as the logarithm transformation of deterioration rate threshold of exiting amplitude )(tyk . According to 2 

the assumption of linear regression model, the dependent variable 3 

 

z = log
yk (t + ∆t)− yk (t)

∆tyk (t)










 4 

is normally distributed. Then the risk, )(tpk , of a Class II geo-defect at time t on track segment k 5 

becoming Class I in t∆  is  6 

 ∫
∞

=
)(

)(
thk

k

zdztp  (1b) 7 

 8 

 9 

4. The Track Derailment Risk Model 10 

Survival analysis is the phrase used to describe the analysis of data regarding the occurrence of a 11 

particular event, within a time period after a well-defined time origin[20]. Analyzing survival times is 12 

common in many areas, for instance, in biomedical computation, engineering and the social sciences.  13 

 14 

In our railway application, each inspection run will “refresh” the track segment since all Class I geo-15 

defects will be repaired. If there is no derailment between two scheduled inspection runs on a track 16 

Figure 3 Predicted vs. actual geo-defect amplitude 
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segment, the track can be considered to have “survived” from one inspection to the next. If any derailment 1 

occurs, the track segment is said to have failed in the time period since the last inspection run.  2 

 3 

Associated with the survival of a track section at a point in time, we refer to derailment on this track 4 

section as a hazard. In survival theory, there are three basic functions: the density function )(tf , survival 5 

function )(tS  and hazard function )(tλ . For a derailment, density function )(tf  expresses the likelihood 6 

that the derailment will occur at time t. The survival function represents the probability that the track 7 

section will survive until time t:   8 

 )(1)(1)()(Prob)(
0

tFdxxfdxxftTtS
t

t

−=−==≥= ∫∫
∞

 (2a) 9 

where T denotes the variable of survival time of a track segment after inspection and F(t) the cumulative 10 

function of variable T. The hazard function is the likelihood that a derailment takes place in time t given 11 

that it has lasted at least until t. By definition, the relationship between these three functions can be 12 

written as: 13 

 
dt

tSd

tS

tf
t

)(ln

)(

)(
)( −==λ  14 

 ])(exp[)(
0
∫−=
t

dxxtS λ  15 

 ])(exp[)()()()(
0
∫−==
t

dxxttSttf λλλ  16 

 17 

The hazard function represents the instantaneous rate of failure probability at time t, given the condition 18 

that the event survived to time t. Parametric models may be used to specify the density distribution )(tf , 19 

such as exponential, Weibull, log-logistic, and log-normal distributions, but such pre-defined distributions 20 

may not appropriately fit the real world data. Without having to specify any assumptions about the shape 21 

of the baseline function, Cox [21] proposed a method for estimating the coefficients of covariates in the 22 

model using the method of partial likelihood (PL) rather than maximum likelihood. Hence, the Cox model 23 

is sometimes referred to as a semi-parametric model. The Cox model, which assumes that the covariates 24 

multiplicatively shift the baseline hazard function, is by far the most popular choice in practice due to its 25 

elegance and computational feasibility [22]. It has a considerable advantage compared to parametric 26 

approaches in that it does not need an assumption about the baseline hazard function. Furthermore, unlike 27 
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non-parametric analysis such as the Kaplan-Meire method and the rank test, it allows both nominal and 1 

continuous variables. The hazard function form of Cox model is, 2 

  XetXt '
0 )(),;( βλβλ =  (2b) 3 

where )(0 tλ  is an unspecified nonnegative function of time called the baseline hazard, and β  is a column 4 

vector of coefficients to be estimated,  and kk xxxX βββββ ++++= ...' 22110  . Because the hazard ratio 5 

for two subjects with fixed covariate vectors iX  and jX , 6 
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= , 7 

is constant over time, the model is also known as the proportional hazards (PH) model. In order to 8 

estimate β , Cox  [21] proposed a conditional (or partial) likelihood function which depends only on the 9 

parameter of interest. Originally he speculated that the resulting parameter estimators from the partial 10 

likelihood function would have the same distributional properties as full maximum likelihood estimators. 11 

Then he provided the mathematical proofs in [23]. The partial likelihood function is described as 12 

 

i

i

j
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 14 

The maximum partial likelihood estimator is found by solving the following equation, 15 

0
))(ln(

=
∂

∂
β

βpL
 16 

 17 

Table 3 Estimation results of Cox PH model 18 

covariates coef exp(coef) 
(hazard ratio) 

se(coef) z Pr(>|z|) 

numCII_GAGE_W1 1.01E-01 1.11E+00 1.96E-02 5.165 2.40E-07 

amp90_SUPER_X 5.10E-01 1.67E+00 1.68E-01 3.028 0.00246 

amp90_GAGE_C 6.33E-01 1.88E+00 2.10E-01 3.013 0.00259 

numCII_REV_X 6.66E-01 1.95E+00 3.21E-01 2.077 0.03782 

amp90_DIP 9.58E-01 2.61E+00 4.67E-01 2.052 0.04016 

amp90_WARP 7.44E-01 2.10E+00 3.69E-01 2.014 0.04404 

amp90_HARM_X 5.43E+00 2.29E+02 2.78E+00 1.958 0.05028 

numCII_GAGE_W2 2.28E-01 1.26E+00 1.17E-01 1.948 0.05139 

amp90_WEAR 1.54E+00 4.65E+00 8.34E-01 1.843 0.06533 

amp90_ALIGN 4.17E+00 6.45E+01 2.40E+00 1.736 0.08261 
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 1 

Fitting a Cox model can be handled using existing statistical software. The reader may refer to [24] for 2 

details of implementation. As described in Section 2, all the raw geo-defects are spatially aggregated to the 3 

section level (2 mile), and temporally into each inspection level. In one aggregated record, the dependent 4 

variable is either the time duration between two inspection runs (censored survival time), or time duration 5 

between the derailment and the last inspection run before derailment. Selected candidate predictors are 6 

listed as follows: 7 

• Monthly traffic in MGT  8 

• Number of Class II geo-defects (starting with “numCII”)  in each defect category in Table 1 9 

• 90 percentile amplitude (starting with “amp90”) of Class II geo-defects in each defect category in 10 

Table 1 11 

 12 

The final Cox model fit to the censoring derailment data is illustrated in Table 3. An efficient way to 13 

evaluate the fitted model is to use Cox-Snell residuals [24]. If the model is calibrated correctly, the Cox-14 

Snell residuals should show a standard exponential distribution with hazard function equal to one, and thus 15 

the cumulative hazard of the Cox-Snell residuals should follow a straight 45 degree line. The plot in Figure 16 

4 confirms that most of the step lines are close to the dashed straight line, except for a few tail large ones.  17 

As a result, we feel there is no evidence for us to reject the model. 18 

 19 

The model shown in Table 3 includes ten simple covariates. Each significant covariate represents a 20 

particular geo-defect type. To further explain the covariate, a positive coefficient means that the hazard is 21 

higher (hazard ratio is greater than 1.0), whereas a negative one indicates a lower hazard (hazard ratio is 22 

Figure 4 Cumulative hazard of Cox-Snell residuals 
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less than 1.0). In the fitted model, all the covariates have positive coefficients, indicating that all geo-defect 1 

types listed in Table 3 have a strong positive impact on derailment risk. Those 10 significant geo-defect 2 

types can be categorized into two groups: the number based and amplitude based groups. On one hand, the 3 

number based group consists of GAGE_W1, REV_X and GAGE_W2, in which the number of geo-defect 4 

in a track section determines the derailment risk. On the other hand, the amplitude based group includes 5 

SUPER_X, GAGE_C, DIP, WARP, HARM_X, WEAR, and ALIGN, and the 90 percentile of geo-defect 6 

amplitudes plays an important role to influence track geometry induced derailment. 7 

 Therefore, we can derive the derailment probability, )(tPi , on section i prior to time t given from: 8 

 )(1)(Prob)( i tStTtP ii −=≤=  (2c) 9 

where )(tSi  indicates the survival probability on section i prior to time t. Furthermore, the derailment 10 

probability after repair alternative a is taken, ),( atPi , can also be calculated in similar fashion, 11 

 ),(1),( atSatP ii −=  (2d) 12 

where ),( atSi  is the survival probability after repair action a is performed on section i prior to time t. 13 

 14 

5. Optimal Track Repair  15 

In the preceding sections, we presented two models: one to predict deterioration of Class II defects into 16 

Class I defects, and another to predict track-based derailments of trains. In this section, we use the results 17 

of the previous models along with information regarding costs as inputs for an optimization model under 18 

uncertainty.  19 

 20 

According to FRA regulations, all Class I defects have to be repaired as soon as possible - but which 21 

Class II defects should the railways company repair? There are costs associated with repairing Class II 22 

defects, but doing so may decrease the probability of derailment, which in turn would decrease expected 23 

derailment costs. It may be particularly prudential to repair Class II geo-defects that are likely to soon 24 

become Class I defects, since they will have to be repaired in the future anyway. The decision maker in 25 

such situations is usually the local track master, who may be in charge of several sections along a line 26 

segment. For instance, the track master may be responsible for track repair decisions for 50 miles of track, 27 

i.e. 25 sections of 2 miles each.  28 

 29 

We now formulate the track repair optimization using a simple single-stage model and describe the 30 

parameters and relevant assumptions: 31 

 32 

Decision variables 33 
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Due to the economies of scale involved, we assume that the decision maker either repairs none of the 1 

defects or all the defects of a particular category in that section. Suppose that a section is observed to 2 

contain Class II defects of 3 defect categories. In this case, there are 32 8=  alternatives available to the 3 

decision maker, because s/he can choose to repair none or all of the defects of each type in any possible 4 

combination. We denote decision variables using indicator variables i
ax . If alternative a A∈  is chosen 5 

for section i I∈ , then 1i
ax = , otherwise 0i

ax = . The decision maker can choose only one of the 6 

alternatives for a particular section, and this results in a feasibility constraint: 1 i Ii
a

a A

x
∈

= ∀ ∈∑ . 7 

 8 

Cost and probability parameters 9 

After an inspection run by the geometry car, the decision maker must fix all observed Class I defects. 10 

We denote the cost of repairing such defects in section i  as 1
iC . If the decision maker repairs all the Class 11 

II defects of a certain category in a section, then there are costs associated with repairing these defects:  12 

2,
,

Cost of  Class II defect repair = i i
a a

i I a A

x C
∈ ∈
∑ , where 2,

i
aC is the cost of repairing all Class II defects for 13 

section i  if alternative a is chosen.  14 

 15 

If Class II defects are not repaired, then there will be costs associated with repairing them at the next 16 

inspection run if they turn into Class I defects. Hence similarly:  17 

1,
,

Expected cost of Class I defect repair = i i
a a

i I a A

x C
∈ ∈
∑ . 1,

i
aC is the expected cost of Class I defect repair 18 

for section i  if alternative a is chosen, and it includes the probability of deterioration of all Class II defects 19 

into Class I defects. Specifically, 1, 1,
i k j

a a a
j J k K

C p C
∈ ∈

=∑∑ , where the summation is over all defect 20 

categories j  in section i , and for all defects k in category j . k
ap  is the probability that this defect will 21 

progress to a Class I defect if alternative a  is chosen ( 0=k
ap  when defect k is repaired, otherwise 22 

)(tpp k
k
a = ),  and 1,

j
aC  is the cost of fixing a Class I defect of category j  when alternative a  is chosen. 23 

There are also costs associated with derailment: 24 

 25 

,

Expected cost of derailment = i i
D a a

i I a A

C x P
∈ ∈
∑ , where i

aP  is the probability of derailment in section i  26 

if alternative a is chosen, and DC  is the expected derailment cost. A derailment is defined as the 27 
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interruption of normal wheel-to-rail interaction, and the consequences of derailments can vary 1 

significantly, from slight equipment damage to passenger injury or even death. Figure 5 presents the 2 

derailment cost data and a fitted probability density function. The derailment cost distribution follows a 3 

heavy-tailed distribution, ranging from hundreds of US dollars to millions of US dollars. The expected 4 

derailment cost based on on our data set is around $510K. 5 

 6 

All model parameters are summarized in Table 4. 7 

 8 

Table 4 Model parameters for the optimization formulation 9 

Type Notation  Description 
Indices Ii ∈  Index for section in a line segment 

j J∈  Index for defect category in the set of categories observed 
in section i  

k K∈  Index for individual Class II defect of type j  in section i  

a A∈  Index for chosen alternative out of all possible 
alternatives available to the decision maker  

Decision 
variables 

 ,  i
ax i I a A∀ ∈ ∈  Indicator which is 1 if alternative a  is chosen for section 

i , otherwise  0 
Parameters B  Budget for repair 

DC  Average derailment cost, assumed identical for all 
sections 

1
iC  Cost of repairing all existing Class I defects in section i  

1,  ,  i
aC i I a A∀ ∈ ∈  Cost of repairing all converted Class I defects from 

existing Class II defects if alternative a  is chosen for 
section i  

2,  ,  i
aC i I a A∀ ∈ ∈  Cost of repairing all Class II defects if alternative a  is 

chosen for section i  

 ,  i
aP i I a A∀ ∈ ∈  Probability of a derailment in the time from this 

inspection run to the next, if alternative a  is chosen for 
section i  

Figure 5 Probability density of derailment cost 
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 ,  k
ap k K a A∀ ∈ ∈  Probability that Class II defect k will progress to a Class I 

defect if alternative a  is chosen 

1,  ,  j
aC j J a A∀ ∈ ∈  Cost of repairing a Class I defect of category j  when 

alternative a  is chosen 
 1 

The formal optimization model is as follows: 2 

 Minimize total expected cost = 2, 1, 1( )i i i i i
a a a D a

i I a A

x C C C P C
∈ ∈

+ + +∑∑    (3a) 3 

Subject to { }0,1  i I,i
ax a A= ∀ ∈ ∀ ∈   (3b) 4 

 1 i Ii
a

a A

x
∈

= ∀ ∈∑   (3c) 5 

 2,
,

 i i
a a

i I a A

x C B
∈ ∈

≤∑   (3d) 6 

  7 

• Objective (3a) aims to minimize the total expected cost, which is the sum of Class I and II defect 8 

repair costs in this period, expected Class I defect repair costs in the next period, and expected 9 

derailment costs in the intermediate time period. 10 

• Equation (3b) specifies that the decision variables are binary 0-1 variables. 11 

• Equation (3c) is for feasibility, indicating that only 1 alternative can be chosen for any particular 12 

section. 13 

• Inequality (3d) is a capacity constraint where the total repair cost of Class II defects cannot 14 

exceed the available budget. If the budget includes both Class I and II defects for the current 15 

inspection run, then this constraint can be modified to 2, 1
,

 i i i
a a

i I a A

x C C B
∈ ∈

 
+ ≤ 

 
∑ . 16 

 17 

The optimization model is a binary integer programming (BIP) problem which is linear in the objective 18 

function as well as constraints, and it can be solved using standard commercial solvers. 19 

 20 

Note that when the cost of derailment is a random variable, due to the nature of the optimization 21 

formulation, we can simply replace derailment cost DC  with the expected derailment cost DC  in the 22 

optimization model 3(a)-(d). This is because the total expected cost is given as: 23 

 
( )

( ) ( )
2, 1, 1 2, 1, 1

2, 1, 1 2, 1, 1

( )i i i i i i i i i i
a a a D a a a a D a

i I a A i I a A

i i i i i i i i i i
a a a D a a a a D a

i I a A i I a A

E x C C C P C E x C C C P C

x C C E C P C x C C C P C

∈ ∈ ∈ ∈

∈ ∈ ∈ ∈

   + + + = + + +    

 = + + + = + + + 

∑∑ ∑∑

∑∑ ∑∑
, (4) 24 
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since the expectation of a sum is the sum of expectations. According to expression (4), the stochastic 1 

objective will eventually be derived the same as deterministic one (3a). Therefore, the proposed BIP can 2 

also handle uncertainty derailment costs. 3 

 4 

Comparison with heuristic strategies 5 

 6 

We compare the solution of our optimization formulation with two “baseline” heuristic strategies that 7 

are intuitive and commonly used in practice to make track repair decisions.  8 

 9 

Heuristic I: Distance-based strategy (HEUI) 10 

It is intuitive and cost-efficient to repair a Class II defect that is near a Class I defect of the same 11 

category. In the distance-based strategy, Class II defects close to Class I defects in the same category are 12 

likely to be repaired. We define 13 

jidD ik
j

i
j ,)min( ∀=  14 

as the distance index of section i and defect category j, and  ik
jd  represents the distance to the nearest 15 

Class I defect for Class II defect k in section i and category j. Given the budget, section and defect 16 

category, the section and category pairs (i,j) are ranked and selected for repair in ascending order of the 17 

distance index, until the budget is consumed.  18 

 19 

Heuristic II: Severity-based strategy (HEUII) 20 

In the severity-based strategy, an empirical aggregate level measure of defect amplitudes is computed 21 

for every section and category. We define the severity index as 22 

jinS i
j

j

ik
ji

j ,)(ln)
)max(

exp(
max

∀=
ω

ω
 23 

where ik
jω  is the amplitude of Class II defect k in section i and category j, max

jω  denotes the maximum 24 

amplitude of geo-defect category j, and i
jn   represents the number of Class II defects in section i and 25 

category j. These severity measures are ranked and each section and category pair (i,j) is repaired in 26 

descending order of severity, until the budget is consumed. 27 

 28 

6 Numerical Examples 29 

Four track segments denoted A, B, C and D, are selected for track repair optimization for geo-defects 30 

located in the last inspection run in December 2011. A summary of track information and geo-defects is 31 



17 
 

shown in Table 5. Segments are divided into no more than 2 mile sections according to traffic data. It is 1 

very hard to estimate exact costs of fixing individual geo-defects, due to variations of equipment, fleet and 2 

personnel at each local maintenance center. For simplicity, we assume all Class II and Class I defects cost 3 

$50 and $100 respectively, according to empirical estimation. Since Class I defects need to be repaired by 4 

law, it will be more convenient to fix Class II defects whereever there is a Class I defect in the same 5 

category nearby. Therefore, the repair costs are assumed to be reduced by 50% for those Class II defects 6 

within 5 miles of a Class I defect in the same category.   7 

 8 

 Table 5 Summary of test track segments 9 

Name Length 
(mile) 

Num. of 
sections 

Num. of 
Class II 
defects 

Num. of 
Class I 
defects 

Budget 
(USD) 

Geo-defect types observed 

A 50 13 60 4 1200 GAGE_C, GAGE_W1, XLEVEL 

B 100 21 77 2 2500 GAGE_C, GAGE_W1, HARM_X, 
OVERELEV, TWIST, XLEVEL 

C 300 49 122 37 4500 GAGE_C, GAGE_W1, 
GAGE_W2, HARM_X, 
OVERELEV, REV_X, TWIST, 
XLEVEL 

D 500 94 343 38 6500 ALIGN, GAGE_C, GAGE_W1, 
GAGE_W2, OVERELEV, REV_X, 
TWIST, XLEVEL 

 10 

For the sake of comparison, 100 scenarios of derailment costs are randomly sampled from the density 11 

function fitted in Figure 5. The proposed optimization model (BIP) can be solved within 1 second for all 12 

four instances, by CPLEX 12.3 on a personal computer with quad core 2.4GHz CPU and 3G RAM.  Our 13 

framework is therefore suitable for online track repair activities. 14 

 15 

Figure 6 plots total expected costs for each scenario for our optimal solutions (BIP) and two heuristic 16 

strategies (HEUI & HEUII). As expected, note that almost all the points are above the 45 degree straight 17 

line, since the optimal solution guarantees better solutions than the heuristic strategies by definition. the 18 

difference between the costs is particularly evident for long tracks such as Track D. In Figure 6(d), total 19 

expected costs of the optimal track repair solution vary from $200K to $400K, while HEUI and HEUII 20 

range from $200K to $900K. 21 

 22 
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 1 

 2 

Figure 7 compares average total costs across different strategies with a bar chart. HEUII produces lower 3 

total cost than HEUI does for all four track segments. It means that fixing geo-defects with higher severity 4 

can reduce more on derailment costs, which complies with the conclusion from derailment risk model. 5 

Among the three strategies, BIP always outperform the baselines of course. The percentage changes of 6 

total costs from HEUI & HEUII to optima; are labeled on the top of bars, and they range from -7% to -7 

38%. When the repair problem gets larger in scale, from track A to D, BIP shows a linear increasing curve, 8 

(c) (d) 

Figure 6 Comparison of total expected costs from Optimal, HEUI and HEUII under 100 
different derailment cost scenarios (a) Track A; (b) Track B; (c) Track C; (d) Track D 

(a) (b) 



19 
 

while the baseline costs appear to increase exponentially. On average, BIP decreases around 20% of total 1 

costs, which is equivalent to about $50K. 2 

 3 

 4 

7 Conclusions 5 

This paper presents an analytical framework to address the track geo-defect repair problem using three 6 

models. First, a statistical deterioration model is specially designed for track Class II geo-defects, and it 7 

aims to model deterioration rates for each geo-defect category. Second, a track derailment risk model is 8 

proposed by applying survival analysis. This model incorporates combinations of effects from different 9 

types of geo-defects, and represents how derailment risk changes over time. Finally, an optimization 10 

model is formulated for making geo-defect repair decisions. A real-world case study has shown that the 11 

proposed methodology yields more reliable and less costly solutions than typical heuristic strategies used 12 

according to current industry practices. Our proposed track repair model can reduce total costs by 20% or 13 

more. Our experiments demonstrate that particularly large savings of around 38% can be incurred for long 14 

track sections.  15 

 16 
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