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Preface to the Second Edition

The second edition features 62 additional end of chapter problems and many
sections were edited for clarity and improvement of presentation. Furthermore,
the chapter on Klein-Gordon and Dirac fields has been expanded and split into
Chapter 21 on relativistic quantum fields and Chapter 22 on applications of quantum
electrodynamics. This was motivated by the renewed interest in the notions and
techniques of relativistic quantum theory due to their increasing relevance for
materials research. Of course, relativistic quantum theory has always been an
important tool in subatomic physics and in quantum optics since the dynamics
of photons or high energy particles is expressed in terms of relativistic quantum
fields. Furthermore, relativistic quantum mechanics has also always been important
for chemistry and condensed matter physics through the impact of relativistic
corrections to the Schrödinger equation, primarily through the Pauli term and
through spin-orbit couplings. These terms usually dominate couplings to magnetic
fields and relativistic corrections to energy levels in materials, and spin-orbit
couplings became even more prominent due to their role in manipulating spins
in materials through electric fields. Relativistic quantum mechanics has therefore
always played an important foundational role throughout the physical sciences and
engineering.

However, we have even seen discussions of fully quasirelativistic wave equations
in materials research in recent years. This development is driven by discoveries of
materials like Graphene or Dirac semimetals, which exhibit low energy effective
Lorentz symmetries in sectors of momentum space. In these cases c and m
become effective low energy parameters which parametrize quasirelativistic cones
or hyperboloids in regions of .E; k/ space. As a consequence, materials researchers
now do not only deal with Pauli and spin-orbit terms, but with representations of �
matrices and solutions of Dirac equations in various dimensions.

To prepare graduate students in the physical sciences and engineering better
for the increasing number of applications of (quasi-)relativistic quantum physics,
Section 21.5 on the non-relativistic limit of the Dirac equation now also contains a
detailed discussion of the Foldy-Wouthuysen transformation including a derivation
of the general spin-orbit coupling term and a discussion of the origin of Rashba
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vi Preface to the Second Edition

terms, and the Section 21.6 on quantization of the Maxwell field in Lorentz gauge
has been added. The discussion of applications of quantum electrodynamics now
also includes the new Section 22.2 on electron-nucleus scattering. Finally, the new
Appendix I discusses the transformation properties of scalars, spinors and gauge
fields under parity or time reversal.

Saskatoon, SK, Canada Rainer Dick
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Quantum mechanics was invented in an era of intense and seminal scientific research
between 1900 and 1928 (and in many regards continues to be developed and
expanded) because neither the properties of atoms and electrons, nor the spectrum of
radiation from heat sources could be explained by the classical theories of mechan-
ics, electrodynamics and thermodynamics. It was a major intellectual achievement
and a breakthrough of curiosity driven fundamental research which formed quantum
theory into one of the pillars of our present understanding of the fundamental laws
of nature. The properties and behavior of every elementary particle is governed by
the laws of quantum theory. However, the rule of quantum mechanics is not limited
to atomic and subatomic scales, but also affects macroscopic systems in a direct
and profound manner. The electric and thermal conductivity properties of materials
are determined by quantum effects, and the electromagnetic spectrum emitted by a
star is primarily determined by the quantum properties of photons. It is therefore
not surprising that quantum mechanics permeates all areas of research in advanced
modern physics and materials science, and training in quantum mechanics plays a
prominent role in the curriculum of every major physics or chemistry department.

The ubiquity of quantum effects in materials implies that quantum mechanics
also evolved into a major tool for advanced technological research. The con-
struction of the first nuclear reactor in Chicago in 1942 and the development of
nuclear technology could not have happened without a proper understanding of
the quantum properties of particles and nuclei. However, the real breakthrough
for a wide recognition of the relevance of quantum effects in technology occurred
with the invention of the transistor in 1948 and the ensuing rapid development
of semiconductor electronics. This proved once and for all the importance of
quantum mechanics for the applied sciences and engineering, only 22 years after
publication of the Schrödinger equation! Electronic devices like transistors rely
heavily on the quantum mechanical emergence of energy bands in materials, which
can be considered as a consequence of combination of many atomic orbitals or
as a consequence of delocalized electron states probing a lattice structure. Today
the rapid developments of spintronics, photonics and nanotechnology provide
continuing testimony to the technological relevance of quantum mechanics.

vii



viii Preface to the First Edition

As a consequence, every physicist, chemist and electrical engineer nowadays has
to learn aspects of quantum mechanics, and we are witnessing a time when also
mechanical and aerospace engineers are advised to take at least a 2nd year course,
due to the importance of quantum mechanics for elasticity and stability properties
of materials. Furthermore, quantum information appears to become increasingly
relevant for computer science and information technology, and a whole new area of
quantum technology will likely follow in the wake of this development. Therefore
it seems safe to posit that within the next two generations, 2nd and 3rd year
quantum mechanics courses will become as abundant and important in the curricula
of science and engineering colleges as first and second year calculus courses.

Quantum mechanics continues to play a dominant role in particle physics and
atomic physics – after all, the Standard Model of particle physics is a quantum
theory, and the spectra and stability of atoms cannot be explained without quantum
mechanics. However, most scientists and engineers use quantum mechanics in
advanced materials research. Furthermore, the dominant interaction mechanisms in
materials (beyond the nuclear level) are electromagnetic, and many experimental
techniques in materials science are based on photon probes. The introduction
to quantum mechanics in the present book takes this into account by including
aspects of condensed matter theory and the theory of photons at earlier stages
and to a larger extent than other quantum mechanics texts. Quantum properties
of materials provide neat and very interesting illustrations of time-independent
and time-dependent perturbation theory, and many students are better motivated
to master the concepts of quantum mechanics when they are aware of the direct
relevance for modern technology. A focus on the quantum mechanics of photons
and materials is also perfectly suited to prepare students for future developments
in quantum information technology, where entanglement of photons or spins,
decoherence, and time evolution operators will be key concepts.

Other novel features of the discussion of quantum mechanics in this book
concern attention to relevant mathematical aspects which otherwise can only be
found in journal articles or mathematical monographs. Special appendices include a
mathematically rigorous discussion of the completeness of Sturm-Liouville eigen-
functions in one spatial dimension, an evaluation of the Baker-Campbell-Hausdorff
formula to higher orders, and a discussion of logarithms of matrices. Quantum
mechanics has an extremely rich and beautiful mathematical structure. The growing
prominence of quantum mechanics in the applied sciences and engineering has
already reinvigorated increased research efforts on its mathematical aspects. Both
students who study quantum mechanics for the sake of its numerous applications,
as well as mathematically inclined students with a primary interest in the formal
structure of the theory should therefore find this book interesting.

This book emerged from a quantum mechanics course which I had introduced
at the University of Saskatchewan in 2001. It should be suitable both for advanced
undergraduate and introductory graduate courses on the subject. To make advanced
quantum mechanics accessible to wider audiences which might not have been
exposed to standard second and third year courses on atomic physics, analytical
mechanics, and electrodynamics, important aspects of these topics are briefly, but
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concisely introduced in special chapters and appendices. The success and relevance
of quantum mechanics has reached far beyond the realms of physics research, and
physicists have a duty to disseminate the knowledge of quantum mechanics as
widely as possible.

Saskatoon, SK, Canada Rainer Dick
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To the Students

Congratulations! You have reached a stage in your studies where the topics of your
inquiry become ever more interesting and more relevant for modern research in
basic science and technology.

Together with your professors, I will have the privilege to accompany you along
the exciting road of your own discovery of the bizarre and beautiful world of
quantum mechanics. I will aspire to share my own excitement that I continue to
feel for the subject and for science in general.

You will be introduced to many analytical and technical skills that are used
in everyday applications of quantum mechanics. These skills are essential in
virtually every aspect of modern research. A proper understanding of a materials
science measurement at a synchrotron requires a proper understanding of photons
and quantum mechanical scattering, just like manipulation of qubits in quantum
information research requires a proper understanding of spin and photons and
entangled quantum states. Quantum mechanics is ubiquitous in modern research.
It governs the formation of microfractures in materials, the conversion of light into
chemical energy in chlorophyll or into electric impulses in our eyes, and the creation
of particles at the Large Hadron Collider.

Technical mastery of the subject is of utmost importance for understanding
quantum mechanics. Trying to decipher or apply quantum mechanics without
knowing how it really works in the calculation of wave functions, energy levels, and
cross sections is just idle talk, and always prone for misconceptions. Therefore we
will go through a great many technicalities and calculations, because you and I (and
your professor!) have a common goal: You should become an expert in quantum
mechanics.

However, there is also another message in this book. The apparently exotic world
of quantum mechanics is our world. Our bodies and all the world around us is
built on quantum effects and ruled by quantum mechanics. It is not apparent and
only visible to the cognoscenti. Therefore we have developed a mode of thought
and explanation of the world that is based on classical pictures – mostly waves
and particles in mechanical interaction. This mode of thought was amended by the
notions of gravitational and electromagnetic forces, thus culminating in a powerful
tool called classical physics. However, by 1900 those who were paying attention
had caught enough glimpses of the underlying non-classical world to embark on
the exciting journey of discovering quantum mechanics. Indeed, every single atom
in your body is ruled by the laws of quantum mechanics, and could not even exist
as a classical particle. The electrons that provide the light for your long nights of
studying generate this light in stochastic quantum leaps from a state of a single
electron to a state of an electron and a photon. And maybe the most striking example
of all: There is absolutely nothing classical in the sunlight that provides the energy
for all life on Earth.

Quantum theory is not a young theory any more. The scientific foundations
of the subject were developed over half a century between 1900 and 1949, and
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many of the mathematical foundations were even developed in the 19th century.
The steepest ascent in the development of quantum theory appeared between 1924
and 1928, when matrix mechanics, Schrödinger’s equation, the Dirac equation and
field quantization were invented. I have included numerous references to original
papers from this period, not to ask you to read all those papers – after all, the
primary purpose of a textbook is to put major achievements into context, provide
an introductory overview at an appropriate level, and replace often indirect and
circuitous original derivations with simpler explanations – but to honour the people
who brought the then nascent theory to maturity. Quantum theory is an extremely
well established and developed theory now, which has proven itself on numerous
occasions. However, we still continue to improve our collective understanding of
the theory and its wide ranging applications, and we test its predictions and its
probabilistic interpretation with ever increasing accuracy. The implications and
applications of quantum mechanics are limitless, and we are witnessing a time when
many technologies have reached their “quantum limit”, which is a misnomer for
the fact that any methods of classical physics are just useless in trying to describe
or predict the behavior of atomic scale devices. It is a “limit” for those who do
not want to learn quantum physics. For you, it holds the promise of excitement
and opportunity if you are prepared to work hard and if you can understand the
calculations.

Quantum mechanics combines power and beauty in a way that even supersedes
advanced analytical mechanics and electrodynamics. Quantum mechanics is uni-
versal and therefore incredibly versatile, and if you have a sense for mathematical
beauty: The structure of quantum mechanics is breathtaking, indeed.

I sincerely hope that reading this book will be an enjoyable and exciting
experience for you.

To the Instructor

Dear Colleague,

As professors of quantum mechanics courses, we enjoy the privilege of teaching
one of the most exciting subjects in the world. However, we often have to do this
with fewer lecture hours than were available for the subject in the past, when at
the same time we should include more material to prepare students for research
or modern applications of quantum mechanics. Furthermore, students have become
more mobile between universities (which is good) and between academic programs
(which can have positive and negative implications). Therefore we are facing the
task to teach an advanced subject to an increasingly heterogeneous student body
with very different levels of preparation. Nowadays the audience in a fourth year
undergraduate or beginning graduate course often includes students who have not
gone through a course on Lagrangian mechanics, or have not seen the covariant
formulation of electrodynamics in their electromagnetism courses. I deal with this
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problem by including one special lecture on each topic in my quantum mechanics
course, and this is what Appendices A and B are for. I have also tried to be as
inclusive as possible without sacrificing content or level of understanding by starting
at a level that would correspond to an advanced second year Modern Physics or
Quantum Chemistry course and then follow a steeply ascending route that takes the
students all the way from Planck’s law to the photon scattering tensor.

The selection and arrangement of topics in this book is determined by the desire
to develop an advanced undergraduate and introductory graduate level course that is
useful to as many students as possible, in the sense of giving them a head start into
major current research areas or modern applications of quantum mechanics without
neglecting the necessary foundational training.

There is a core of knowledge that every student is expected to know by heart after
having taken a course in quantum mechanics. Students must know the Schrödinger
equation. They must know how to solve the harmonic oscillator and the Coulomb
problem, and they must know how to extract information from the wave function.
They should also be able to apply basic perturbation theory, and they should
understand that a wave function hxj .t/i is only one particular representation of
a quantum state j .t/i.

In a North American physics program, students would traditionally learn all
these subjects in a 300-level Quantum Mechanics course. Here these subjects are
discussed in Chapters 1–7 and 9. This allows the instructor to use this book also
in 300-level courses or introduce those chapters in a 400-level or graduate course
if needed. Depending on their specialization, there will be an increasing number of
students from many different science and engineering programs who will have to
learn these subjects at M.Sc. or beginning Ph.D. level before they can learn about
photon scattering or quantum effects in materials, and catering to these students will
also become an increasingly important part of the mandate of physics departments.
Including chapters 1–7 and 9 with the book is part of the philosophy of being as
inclusive as possible to disseminate knowledge in advanced quantum mechanics as
widely as possible.

Additional training in quantum mechanics in the past traditionally focused on
atomic and nuclear physics applications, and these are still very important topics in
fundamental and applied science. However, a vast number of our current students in
quantum mechanics will apply the subject in materials science in a broad sense
encompassing condensed matter physics, chemistry and engineering. For these
students it is beneficial to see Bloch’s theorem, Wannier states, and basics of
the theory of covalent bonding embedded with their quantum mechanics course.
Another important topic for these students is quantization of the Schrödinger
field. Indeed, it is also useful for students in nuclear and particle physics to learn
quantization of the Schrödinger field because it makes quantization of gauge fields
and relativistic matter fields so much easier if they know quantum field theory in the
non-relativistic setting.

Furthermore, many of our current students will use or manipulate photon probes
in their future graduate and professional work. A proper discussion of photon-matter
interactions is therefore also important for a modern quantum mechanics course.
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This should include minimal coupling, quantization of the Maxwell field, and
applications of time-dependent perturbation theory for photon absorption, emission
and scattering.

Students should also know the Klein-Gordon and Dirac equations after comple-
tion of their course, not only to understand that Schrödinger’s equation is not the
final answer in terms of wave equations for matter particles, but to understand the
nature of relativistic corrections like the Pauli term or spin-orbit coupling.

The scattering matrix is introduced as early as possible in terms of matrix
elements of the time evolution operator on states in the interaction picture,
Sfi.t; t0/ D hf jUD.t; t0/jii, cf. equation (13.26). This representation of the scattering
matrix appears so naturally in ordinary time-dependent perturbation theory that it
makes no sense to defer the notion of an S-matrix to the discussion of scattering
in quantum field theory with two or more particles in the initial state. It actually
mystifies the scattering matrix to defer its discussion until field quantization has
been introduced. On the other hand, introducing the scattering matrix even earlier
in the framework of scattering off static potentials is counterproductive, because its
natural and useful definition as matrix elements of a time evolution operator cannot
properly be introduced at that level, and the notion of the scattering matrix does not
really help with the calculation of cross sections for scattering off static potentials.

I have also emphasized the discussion of the various roles of transition matrix
elements depending on whether the initial or final states are discrete or continuous.
It helps students to understand transition probabilities, decay rates, absorption cross
sections and scattering cross sections if the discussion of these concepts is integrated
in one chapter, cf. Chapter 13. Furthermore, I have put an emphasis on canonical
field quantization. Path integrals provide a very elegant description for free-free
scattering, but bound states and energy levels, and basic many-particle quantum
phenomena like exchange holes are very efficiently described in the canonical
formalism. Feynman rules also appear more intuitive in the canonical formalism
of explicit particle creation and annihilation.

The core advanced topics in quantum mechanics that an instructor might want
to cover in a traditional 400-level or introductory graduate course are included
with Chapters 8, 11–13, 15–18, and 21. However, instructors of a more inclusive
course for general science and engineering students should include materials from
Chapters 1–7 and 9, as appropriate.

The direct integration of training in quantum mechanics with the foundations of
condensed matter physics, field quantization, and quantum optics is very important
for the advancement of science and technology. I hope that this book will help to
achieve that goal. I would greatly appreciate your comments and criticism. Please
send them to rainer.dick@usask.ca.





Contents

1 The Need for Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Electromagnetic spectra and evidence for discrete energy levels . 1
1.2 Blackbody radiation and Planck’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Blackbody spectra and photon fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The photoelectric effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Wave-particle duality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Why Schrödinger’s equation? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.7 Interpretation of Schrödinger’s wave function . . . . . . . . . . . . . . . . . . . . . 19
1.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Self-adjoint Operators and Eigenfunction Expansions . . . . . . . . . . . . . . . . . 25
2.1 The ı function and Fourier transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Self-adjoint operators and completeness of eigenstates . . . . . . . . . . . 30
2.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Simple Model Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1 Barriers in quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Box approximations for quantum wells, quantum

wires and quantum dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The attractive ı function potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Evolution of free Schrödinger wave packets . . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Notions from Linear Algebra and Bra-Ket Notation . . . . . . . . . . . . . . . . . . . 63
4.1 Notions from linear algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Bra-ket notation in quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 The adjoint Schrödinger equation and the virial theorem . . . . . . . . . 78
4.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Formal Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1 Uncertainty relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Frequency representation of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.3 Dimensions of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

xv



xvi Contents

5.4 Gradients and Laplace operators in general coordinate systems . . 94
5.5 Separation of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Harmonic Oscillators and Coherent States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Basic aspects of harmonic oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Solution of the harmonic oscillator by the operator method . . . . . . 104
6.3 Construction of the states in the x-representation. . . . . . . . . . . . . . . . . . 107
6.4 Lemmata for exponentials of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7 Central Forces in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.1 Separation of center of mass motion and relative motion . . . . . . . . . 121
7.2 The concept of symmetry groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.3 Operators for kinetic energy and angular momentum . . . . . . . . . . . . . 125
7.4 Matrix representations of the rotation group . . . . . . . . . . . . . . . . . . . . . . . 127
7.5 Construction of the spherical harmonic functions . . . . . . . . . . . . . . . . . 132
7.6 Basic features of motion in central potentials . . . . . . . . . . . . . . . . . . . . . . 136
7.7 Free spherical waves: The free particle with sharp Mz, M2 . . . . . . . 137
7.8 Bound energy eigenstates of the hydrogen atom . . . . . . . . . . . . . . . . . . 139
7.9 Spherical Coulomb waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8 Spin and Addition of Angular Momentum Type Operators . . . . . . . . . . . 157
8.1 Spin and magnetic dipole interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
8.2 Transformation of scalar, spinor, and vector wave

functions under rotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.3 Addition of angular momentum like quantities . . . . . . . . . . . . . . . . . . . . 163
8.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9 Stationary Perturbations in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . 171
9.1 Time-independent perturbation theory without degeneracies . . . . . 171
9.2 Time-independent perturbation theory with

degenerate energy levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
9.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10 Quantum Aspects of Materials I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.1 Bloch’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
10.2 Wannier states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.3 Time-dependent Wannier states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
10.4 The Kronig-Penney model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
10.5 kp perturbation theory and effective mass. . . . . . . . . . . . . . . . . . . . . . . . . . 198
10.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11 Scattering Off Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
11.1 The free energy-dependent Green’s function . . . . . . . . . . . . . . . . . . . . . . 209
11.2 Potential scattering in the Born approximation . . . . . . . . . . . . . . . . . . . . 212



Contents xvii

11.3 Scattering off a hard sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
11.4 Rutherford scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
11.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

12 The Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
12.1 Counting of oscillation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
12.2 The continuum limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
12.3 The density of states in the energy scale . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
12.4 Density of states for free non-relativistic particles

and for radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
12.5 The density of states for other quantum systems . . . . . . . . . . . . . . . . . . 235
12.6 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

13 Time-dependent Perturbations in Quantum Mechanics . . . . . . . . . . . . . . . 241
13.1 Pictures of quantum dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
13.2 The Dirac picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.3 Transitions between discrete states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.4 Transitions from discrete states into continuous states:

Ionization or decay rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.5 Transitions from continuous states into discrete states:

Capture cross sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
13.6 Transitions between continuous states: Scattering. . . . . . . . . . . . . . . . . 268
13.7 Expansion of the scattering matrix to higher orders . . . . . . . . . . . . . . . 273
13.8 Energy-time uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
13.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

14 Path Integrals in Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
14.1 Correlation and Green’s functions for free particles . . . . . . . . . . . . . . . 284
14.2 Time evolution in the path integral formulation . . . . . . . . . . . . . . . . . . . 287
14.3 Path integrals in scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

15 Coupling to Electromagnetic Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
15.1 Electromagnetic couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
15.2 Stark effect and static polarizability tensors . . . . . . . . . . . . . . . . . . . . . . . 309
15.3 Dynamical polarizability tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
15.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

16 Principles of Lagrangian Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
16.1 Lagrangian field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
16.2 Symmetries and conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
16.3 Applications to Schrödinger field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
16.4 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

17 Non-relativistic Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
17.1 Quantization of the Schrödinger field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
17.2 Time evolution for time-dependent Hamiltonians . . . . . . . . . . . . . . . . . 342
17.3 The connection between first and second quantized theory . . . . . . . 344



xviii Contents

17.4 The Dirac picture in quantum field theory . . . . . . . . . . . . . . . . . . . . . . . . . 349
17.5 Inclusion of spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
17.6 Two-particle interaction potentials and equations of motion . . . . . . 360
17.7 Expectation values and exchange terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
17.8 From many particle theory to second quantization . . . . . . . . . . . . . . . . 368
17.9 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

18 Quantization of the Maxwell Field: Photons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
18.1 Lagrange density and mode expansion for the

Maxwell field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
18.2 Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
18.3 Coherent states of the electromagnetic field . . . . . . . . . . . . . . . . . . . . . . . 392
18.4 Photon coupling to relative motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
18.5 Energy-momentum densities and time evolution . . . . . . . . . . . . . . . . . . 396
18.6 Photon emission rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
18.7 Photon absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
18.8 Stimulated emission of photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
18.9 Photon scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
18.10 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

19 Quantum Aspects of Materials II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
19.1 The Born-Oppenheimer approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
19.2 Covalent bonding: The dihydrogen cation . . . . . . . . . . . . . . . . . . . . . . . . . 436
19.3 Bloch and Wannier operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
19.4 The Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
19.5 Vibrations in molecules and lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
19.6 Quantized lattice vibrations: Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
19.7 Electron-phonon interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
19.8 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

20 Dimensional Effects in Low-dimensional Systems . . . . . . . . . . . . . . . . . . . . . . 477
20.1 Quantum mechanics in d dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
20.2 Inter-dimensional effects in interfaces and thin layers . . . . . . . . . . . . 483
20.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489

21 Relativistic Quantum Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
21.1 The Klein-Gordon equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
21.2 Klein’s paradox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
21.3 The Dirac equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
21.4 Energy-momentum tensor for quantum electrodynamics . . . . . . . . . 515
21.5 The non-relativistic limit of the Dirac equation. . . . . . . . . . . . . . . . . . . . 520
21.6 Covariant quantization of the Maxwell field . . . . . . . . . . . . . . . . . . . . . . . 529
21.7 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532

22 Applications of Spinor QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
22.1 Two-particle scattering cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
22.2 Electron scattering off an atomic nucleus . . . . . . . . . . . . . . . . . . . . . . . . . . 550



Contents xix

22.3 Photon scattering by free electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
22.4 Møller scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
22.5 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575

Appendix A: Lagrangian Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Appendix B: The Covariant Formulation of Electrodynamics . . . . . . . . . . . . . . 587

Appendix C: Completeness of Sturm-Liouville Eigenfunctions . . . . . . . . . . . . 605

Appendix D: Properties of Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Appendix E: The Baker-Campbell-Hausdorff Formula . . . . . . . . . . . . . . . . . . . . . 625

Appendix F: The Logarithm of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

Appendix G: Dirac � matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

Appendix H: Spinor representations of the Lorentz group. . . . . . . . . . . . . . . . . . 645

Appendix I: Transformation of fields under reflections . . . . . . . . . . . . . . . . . . . . . . 655

Appendix J: Green’s functions in d dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687



Chapter 1
The Need for Quantum Mechanics

1.1 Electromagnetic spectra and evidence for discrete
energy levels

Quantum mechanics was initially invented because classical mechanics,
thermodynamics and electrodynamics provided no means to explain the properties
of atoms, electrons, and electromagnetic radiation. Furthermore, it became clear
after the introduction of Schrödinger’s equation and the quantization of Maxwell’s
equations that we cannot explain any physical property of matter and radiation
without the use of quantum theory. We will see a lot of evidence for this in the
following chapters. However, in the present chapter we will briefly and selectively
review the early experimental observations and discoveries which led to the
development of quantum mechanics over a period of intense research between
1900 and 1928.

The first evidence that classical physics was incomplete appeared in unexpected
properties of electromagnetic spectra. Thin gases of atoms or molecules emit line
spectra which contradict the fact that a classical system of electric charges can
oscillate at any frequency, and therefore can emit radiation of any frequency. This
was a major scientific puzzle from the 1850s until the inception of the Schrödinger
equation in 1926.

Contrary to a thin gas, a hot body does emit a continuous spectrum, but even
those spectra were still puzzling because the shape of heat radiation spectra could
not be explained by classical thermodynamics and electrodynamics. In fact, classical
physics provided no means at all to predict any sensible shape for the spectrum of
a heat source! But at last, hot bodies do emit a continuous spectrum and therefore,
from a classical point of view, their spectra are not quite as strange and unexpected
as line spectra. It is therefore not surprising that the first real clues for a solution
to the puzzles of electromagnetic spectra emerged when Max Planck figured out
a way to calculate the spectra of heat sources under the simple, but classically
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2 1 The Need for Quantum Mechanics

extremely counterintuitive assumption that the energy in heat radiation of frequency
f is quantized in integer multiples of a minimal energy quantum hf ,

E D nhf ; n 2 N: (1.1)

The constant h that Planck had introduced to formulate this equation became
known as Planck’s constant and it could be measured from the shape of heat
radiation spectra. A modern value is h D 6:626� 10�34 J � s D 4:136� 10�15 eV � s.

We will review the puzzle of heat radiation and Planck’s solution in the next sec-
tion, because Planck’s calculation is instructive and important for the understanding
of incandescent light sources and it illustrates in a simple way how quantization of
energy levels yields results which are radically different from predictions of classical
physics.

Albert Einstein then pointed out that equation (1.1) also explains the photoelec-
tric effect. He also proposed that Planck’s quantization condition is not a property of
any particular mechanism for generation of electromagnetic waves, but an intrinsic
property of electromagnetic waves. However, once equation (1.1) is accepted as an
intrinsic property of electromagnetic waves, it is a small step to make the connection
with line spectra of atoms and molecules and conclude that these line spectra imply
existence of discrete energy levels in atoms and molecules. Somehow atoms and
molecules seem to be able to emit radiation only by jumping from one discrete
energy state into a lower discrete energy state. This line of reasoning, combined with
classical dynamics between electrons and nuclei in atoms then naturally leads to the
Bohr-Sommerfeld theory of atomic structure. This became known as old quantum
theory.

Apparently, the property which underlies both the heat radiation puzzle and the
puzzle of line spectra is discreteness of energy levels in atoms, molecules, and
electromagnetic radiation. Therefore, one major motivation for the development of
quantum mechanics was to explain discrete energy levels in atoms, molecules, and
electromagnetic radiation.

It was Schrödinger’s merit to find an explanation for the discreteness of energy
levels in atoms and molecules through his wave equation1 („ � h=2�)

i„ @
@t
 .x; t/ D � „2

2m
� .x; t/C V.x/ .x; t/: (1.2)

A large part of this book will be dedicated to the discussion of Schrödinger’s
equation. An intuitive motivation for this equation will be given in Section 1.6.

Ironically, the fundamental energy quantization condition (1.1) for electromag-
netic waves, which precedes the realization of discrete energy levels in atoms and
molecules, cannot be derived by solving a wave equation, but emerges from the
quantization of Maxwell’s equations. This is at the heart of understanding photons

1E. Schrödinger, Annalen Phys. 386, 109 (1926).
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and the quantum theory of electromagnetic waves. We will revisit this issue in
Chapter 18. However, we can and will discuss already now the early quantum theory
of the photon and what it means for the interpretation of spectra from incandescent
sources.

1.2 Blackbody radiation and Planck’s law

Historically, Planck’s deciphering of the spectra of incandescent heat and light
sources played a key role for the development of quantum mechanics, because it
included the first proposal of energy quanta, and it implied that line spectra are
a manifestation of energy quantization in atoms and molecules. Planck’s radiation
law is also extremely important in astrophysics and in the technology of heat and
light sources.

Generically, the heat radiation from an incandescent source is contaminated
with radiation reflected from the source. Pure heat radiation can therefore only be
observed from a non-reflecting, i.e. perfectly black body. Hence the name blackbody
radiation for pure heat radiation. Physicists in the late 19th century recognized that
the best experimental realization of a black body is a hole in a cavity wall. If the
cavity is kept at temperature T , the hole will emit perfect heat radiation without
contamination from any reflected radiation.

Suppose we have a heat radiation source (or thermal emitter) at temperature T .
The power per area radiated from a thermal emitter at temperature T is denoted as
its exitance (or emittance) e.T/. In the blackbody experiments e.T/ � A is the energy
per time leaking through a hole of area A in a cavity wall.

To calculate e.T/ as a function of the temperature T , as a first step we need to
find out how it is related to the density u.T/ of energy stored in the heat radiation.
One half of the radiation will have a velocity component towards the hole, because
all the radiation which moves under an angle # � �=2 relative to the axis going
through the hole will have a velocity component v.#/ D c cos# in the direction of
the hole. To find out the average speed v of the radiation in the direction of the hole,
we have to average c cos# over the solid angle � D 2� sr of the forward direction
0 � ' � 2� , 0 � # � �=2:

v D c

2�

Z 2�

0

d'
Z �=2

0

d# sin# cos# D c

2
:

The effective energy current density towards the hole is energy density moving in
forward direction � average speed in forward direction:

u.T/

2

c

2
D u.T/

c

4
;



4 1 The Need for Quantum Mechanics

and during the time t an amount of energy

E D u.T/
c

4
tA

will escape through the hole. Therefore the emitted power per area E=.tA/ D e.T/ is

e.T/ D u.T/
c

4
: (1.3)

However, Planck’s radiation law is concerned with the spectral exitance e.f ;T/,
which is defined in such a way that

eŒf1;f2�.T/ D
Z f2

f1

df e.f ;T/

is the power per area emitted in radiation with frequencies f1 � f � f2. In particular,
the total exitance is

e.T/ D eŒ0;1�.T/ D
Z 1

0

df e.f ;T/:

Operationally, the spectral exitance is the power per area emitted with frequencies
f � f 0 � f C�f , and normalized by the width �f of the frequency interval,

e.f ;T/ D lim
�f !0

eŒf ;f C�f �.T/

�f
D lim

�f !0

eŒ0;f C�f � � eŒ0;f �.T/

�f
D @

@f
eŒ0;f �.T/:

The spectral exitance e.f ;T/ can also be denoted as the emitted power per area and
per unit of frequency or as the spectral exitance in the frequency scale.

The spectral energy density u.f ;T/ is defined in the same way. If we measure the
energy density uŒf ;f C�f �.T/ in radiation with frequency between f and f C�f , then
the energy per volume and per unit of frequency (i.e. the spectral energy density in
the frequency scale) is

u.f ;T/ D lim
�f !0

uŒf ;f C�f �.T/

�f
D @

@f
uŒ0;f �.T/; (1.4)

and the total energy density in radiation is

u.T/ D
Z 1

0

df u.f ;T/:

The equation e.T/ D u.T/c=4 also applies separately in each frequency interval
Œf ; f C�f �, and therefore must also hold for the corresponding spectral densities,

e.f ;T/ D u.f ;T/
c

4
: (1.5)
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The following facts were known before Planck’s work in 1900.

• The prediction from classical thermodynamics for the spectral exitance e.f ;T/
(Rayleigh-Jeans law) was wrong, and actually non-sensible!

• The exitance e.T/ satisfies Stefan’s law (Stefan, 1879; Boltzmann, 1884)

e.T/ D �T4;

with the Stefan-Boltzmann constant

� D 5:6704 � 10�8 W

m2K4
:

• The spectral exitance e.�;T/ D e.f ;T/
ˇ̌
ˇ
f Dc=�

� c=�2 per unit of wavelength (i.e.

the spectral exitance in the wavelength scale) has a maximum at a wavelength

�max � T D 2:898 � 10�3 m � K D 2898	m � K:

This is Wien’s displacement law (Wien, 1893).

The puzzle was to explain the observed curves e.f ;T/ and to explain why
classical thermodynamics had failed. We will explore these questions through a
calculation of the spectral energy density u.f ;T/. Equation (1.5) then also yields
e.f ;T/.

The key observation for the calculation of u.f ;T/ is to realize that u.f ;T/ can be
split into two factors. If we want to know the radiation energy density uŒf ;f Cdf � D
u.f ;T/df in the small frequency interval Œf ; f C df �, then we can first ask ourselves
how many different electromagnetic oscillation modes per volume, %.f /df , exist
in that frequency interval. Each oscillation mode will then contribute an energy
hEi.f ;T/ to the radiation energy density, where hEi.f ;T/ is the expectation value
of energy in an electromagnetic oscillation mode of frequency f at temperature T ,

u.f ;T/df D %.f /df hEi.f ;T/:
The spectral energy density u.f ;T/ can therefore be calculated in two steps:

1. Calculate the number %.f / of oscillation modes per volume and per unit of
frequency (“counting of oscillation modes”).

2. Calculate the mean energy hEi.f ;T/ in an oscillation of frequency f at tempera-
ture T .

The results can then be combined to yield the spectral energy density u.f ;T/ D
%.f /hEi.f ;T/.

The number of electromagnetic oscillation modes per volume and per unit of
frequency is an important quantity in quantum mechanics and will be calculated
explicitly in Chapter 12, with the result

%.f / D 8� f 2

c3
: (1.6)
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The corresponding density of oscillation modes in the wavelength scale is

%.�/ D %.f /
ˇ̌
ˇ
f Dc=�

� c

�2
D 8�

�4
:

Statistical physics predicts that the probability PT.E/ to find an oscillation of
energy E in a system at temperature T should be exponentially suppressed,

PT.E/ D 1

kBT
exp

�
� E

kBT

�
: (1.7)

The possible values of E are not restricted in classical physics, but can vary
continuously between 0 � E < 1. For example, for any classical oscillation with
fixed frequency f , continually increasing the amplitude yields a continuous increase
in energy. The mean energy of an oscillation at temperature T according to classical
thermodynamics is therefore

hEi
ˇ̌
ˇ
classical

D
Z 1

0

dE EPT.E/ D
Z 1

0

dE
E

kBT
exp

�
� E

kBT

�
D kBT: (1.8)

Therefore the spectral energy density in blackbody radiation and the corresponding
spectral exitance according to classical thermodynamics should be

u.f ; t/ D %.f /kBT D 8� f 2

c3
kBT; e.f ;T/ D u.f ;T/

c

4
D 2� f 2

c2
kBT;

but this is obviously nonsensical: it would predict that every heat source should
emit a diverging amount of energy at high frequencies/short wavelengths! This is
the ultraviolet catastrophe of the Rayleigh-Jeans law.

Max Planck observed in 1900 that he could derive an equation which matches
the spectra of heat sources perfectly if he assumes that the energy in electromagnetic
waves of frequency f is quantized in multiples of the frequency,

E D nhf D n
hc

�
; n 2 N:

The exponential suppression of high energy oscillations then reads

PT.E/ D PT.n/ / exp

�
� nhf

kBT

�
;

but due to the discreteness of the energy quanta hf , the normalized probabilities are
now

PT.E/ D PT.n/ D
�
1 � exp

�
� hf

kBT

��
exp

�
� nhf

kBT

�

D exp

�
�n

hf

kBT

�
� exp

�
�.n C 1/

hf

kBT

�
;

such that
P1

nD0 PT.n/ D 1.
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The resulting mean energy per oscillation mode is

hEi D
1X

nD0
nhfPT.n/

D
1X

nD0
nhf exp

�
�n

hf

kBT

�
�

1X
nD0

nhf exp

�
�.n C 1/

hf

kBT

�

D
1X

nD0
nhf exp

�
�n

hf

kBT

�
�

1X
nD0
.n C 1/hf exp

�
�.n C 1/

hf

kBT

�

Chf
1X

nD0
exp

�
�.n C 1/

hf

kBT

�

The first two sums cancel, and the last term yields the mean energy in an
electromagnetic wave of frequency f at temperature T as

hEi.f ;T/ D hf
exp

�
� hf

kBT

�

1 � exp
�
� hf

kBT

� D hf

exp
�

hf
kBT

�
� 1

: (1.9)

Combination with %.f / from equation (1.6) yields Planck’s formulas for the spectral
energy density and spectral exitance in heat radiation,

u.f ;T/ D 8�hf 3

c3
1

exp
�

hf
kBT

�
� 1

; e.f ;T/ D 2�hf 3

c2
1

exp
�

hf
kBT

�
� 1

: (1.10)

These functions fitted the observed spectra perfectly! The spectrum e.f ;T/ and the
emitted power eŒ0;f �.T/ with maximal frequency f are displayed for T D 5780 K in
Figures 1.1 and 1.2.

1.3 Blackbody spectra and photon fluxes

Their technical relevance for the quantitative analysis of incandescent light sources
makes it worthwhile to take a closer look at blackbody spectra. Blackbody spectra
are also helpful to elucidate the notion of spectra more closely, and to explain that
a maximum in a spectrum strongly depends on the choice of independent variable
(e.g. wavelength or frequency) and dependent variable (e.g. energy flux or photon
flux). In particular, it is sometimes claimed that our sun has maximal radiation
output at a wavelength �max ' 500 nm. This statement is actually very misleading
if the notion of “radiation output” is not clearly defined, and if no explanation
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Fig. 1.1 The spectral emittance e.f ;T/ for a heat source of temperature T D 5780 K

is included that different perfectly suitable notions of radiation output yield very
different wavelengths or frequencies of maximal emission. We will see below that
the statement above only applies to maximal power output per unit of wavelength,
i.e. if we use a monochromator which slices the wavelength axis into intervals of
equal length d� D cjdf j=f 2, then we find maximal power output in an interval
around �max ' 500 nm. However, we will also see that if we use a monochromator
which slices the frequency axis into intervals of equal length df D cjd�j=�2, then
we find maximal power output in an interval around fmax ' 340 THz, corresponding
to a wavelength c=fmax ' 880 nm. If we ask for maximal photon counts instead of
maximal power output, we find yet other values for peaks in the spectra.

Since Planck’s radiation law (1.10) yielded perfect matches to observed black-
body spectra, it must also imply Stefan’s law and Wien’s law. Stefan’s law is readily
derived in the following way. The emitted power per area is

e.T/ D
Z 1

0

df e.f ;T/ D
Z 1

0

d� e.�;T/ D 2�
k4BT4

h3c2

Z 1

0

dx
x3

exp.x/ � 1 :
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Fig. 1.2 The emittance eŒ0;f �.T/ D R f
0 df 0 e.f 0;T/ (i.e. emitted power per area in radiation with

maximal frequency f ) for a heat source of temperature T D 5780 K. The asymptote for f ! 1 is
eŒ0;1�.T/ � e.T/ D �T4 D 6:33� 107 W=m2 for the temperature T D 5780 K

Evaluation of the integral

Z 1

0

dx
x3

exp.x/ � 1 D
Z 1

0

dx x3
1X

nD0
expŒ�.n C 1/x�

D �
1X

nD1

d3

dn3

Z 1

0

dx exp.�nx/ D �
1X

nD1

d3

dn3
1

n

D
1X

nD1

6

n4
D 6
.4/ D �4

15

implies

e.T/ D 2�5k4B
15h3c2

T4;
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i.e. Planck’s law implied a prediction for the Stefan-Boltzmann constant in terms
of the Planck constant h, which could be determined previously from a fit to the
spectra,

� D 2�5k4B
15h3c2

:

An energy flux e.T/ D 6:33 � 107 W=m2 from the Sun yields a remnant energy
flux at Earth’s orbit of magnitude e.T/ � .Rˇ=r˚/2 D 1:37 kW=m2. Here Rˇ D
6:955 � 108 m is the radius of the Sun and r˚ D 1:496 � 1011 m is the radius of
Earth’s orbit.

For the derivation of Wien’s law, we set

x D hc

�kBT
D hf

kBT
:

Then we have with e.�;T/ D e.f ;T/jf Dc=�c=�2,

@

@�
e.�;T/ D 2�hc2

�5
1

exp
�

hc
�kBT

�
� 1

0
@ hc

�2kBT

exp
�

hc
�kBT

�

exp
�

hc
�kBT

�
� 1

� 5

�

1
A

D 2�hc2

�6
1

exp.x/ � 1
�

x
exp.x/

exp.x/ � 1 � 5
�
;

which implies that @e.�;T/=@� D 0 is satisfied if and only if

exp.x/ D 5

5 � x
:

This condition yields x ' 4:965. The wavelength of maximal spectral emittance
e.�;T/ therefore satisfies

�max � T ' hc

4:965kB
D 2898	m � K:

For a heat source of temperature T D 5780 K, like the surface of our sun, this yields

�max D 501 nm;
c

�max
D 598THz;

see Figure 1.3.
One can also derive an analogue of Wien’s law for the frequency fmax of maximal

spectral emittance e.f ;T/. We have
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Fig. 1.3 The spectral emittance e.�;T/ for a heat source of temperature T D 5780 K

@

@f
e.f ;T/ D 2�hf 2

c2
1

exp
�

hf
kBT

�
� 1

0
@3 � hf

kBT

exp
�

hc
�kBT

�

exp
�

hc
�kBT

�
� 1

1
A

D 2�hf 2

c2
1

exp.x/ � 1
�
3 � x

exp.x/

exp.x/ � 1
�
;

which implies that @e.f ;T/=@f D 0 is satisfied if and only if

exp.x/ D 3

3 � x
;

with solution x ' 2:821. The frequency of maximal spectral emittance e.f ;T/
therefore satisfies

fmax

T
' 2:821

kB

h
D 58:79

GHz

K
:
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This yields for a heat source of temperature T D 5780 K, as in Figure 1.1,

fmax D 340THz;
c

fmax
D 882 nm:

The photon fluxes in the wavelength scale and in the frequency scale, j.�;T/ and
j.f ;T/, are defined below. The spectral emittance per unit of frequency, e.f ;T/, is
directly related to the photon flux per fractional wavelength or frequency interval
d ln f D df=f D �d ln� D �d�=�. We have with the notations used in (1.4) for
spectral densities and integrated fluxes the relations

e.f ;T/ D hfj.f ;T/ D hf
@

@f
jŒ0;f �.T/ D h

@

@ ln.f=f0/
jŒ0;f �.T/

D hj.ln.f=f0/;T/ D h�j.�;T/ D hj.ln.�=�0/;T/:

Optimization of the energy flux of a light source for given frequency bandwidth df
is therefore equivalent to optimization of photon flux for fixed fractional bandwidth
df=f D jd�=�j.

The number of photons per area, per second, and per unit of wavelength emitted
from a heat source of temperature T is

j.�;T/ D �

hc
e.�;T/ D 2�c

�4
1

exp
�

hc
�kBT

�
� 1

:

This satisfies

@

@�
j.�;T/ D j.�;T/

�

�
x

exp.x/

exp.x/ � 1 � 4
�

D 0

if

exp.x/ D 4

4 � x
:

This has the solution x ' 3:921. The wavelength of maximal spectral photon flux
j.�;T/ therefore satisfies

�max � T ' hc

3:921kB
D 3670	m � K:

This yields for a heat source of temperature T D 5780 K

�max D 635 nm;
c

�max
D 472THz;

see Figure 1.4.
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Fig. 1.4 The spectral photon flux j.�;T/ for a heat source of temperature T D 5780 K

The photon flux in the wavelength scale, j.�;T/, is also related to the energy
fluxes per fractional wavelength or frequency interval d ln� D d�=� D �d ln f D
�df=f ,

j.�;T/ D �

hc
e.�;T/ D 1

hc
e.ln.�=�0/;T/ D f

hc
e.f ;T/ D 1

hc
e.ln.f=f0/;T/:

Therefore optimization of photon flux for fixed wavelength bandwidth d� is
equivalent to optimization of energy flux for fixed fractional bandwidth d�=� D
jdf=f j.

Finally, the number of photons per area, per second, and per unit of frequency
emitted from a heat source of temperature T is

j.f ;T/ D e.f ;T/

hf
D 2� f 2

c2
1

exp
�

hf
kBT

�
� 1

:

This satisfies

@

@f
j.f ;T/ D j.f ;T/

f

�
2 � x

exp.x/

exp.x/ � 1
�

D 0



14 1 The Need for Quantum Mechanics

if

exp.x/ D 2

2 � x
:

This condition is solved by x ' 1:594. Therefore the frequency of maximal spectral
photon flux j.f ;T/ in the frequency scale satisfies

fmax

T
' 1:594

kB

h
D 33:21

GHz

K
:

This yields for a heat source of temperature T D 5780 K

fmax D 192THz;
c

fmax
D 1:56	m;

see Figure 1.5.
The flux of emitted photons is

j.T/ D
Z 1

0

df j.f ;T/ D 2�
k3BT3

h3c2

Z 1

0

dx
x2

exp.x/ � 1 :

Fig. 1.5 The spectral photon flux j.f ;T/ for a heat source of temperature T D 5780 K
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Evaluation of the integral

Z 1

0

dx
x2

exp.x/ � 1 D
Z 1

0

dx x2
1X

nD0
expŒ�.n C 1/x�

D
1X

nD1

d2

dn2

Z 1

0

dx exp.�nx/ D
1X

nD1

d2

dn2
1

n

D
1X

nD1

2

n3
D 2
.3/

yields

j.T/ D 4�
.3/k3B
h3c2

T3 D 1:5205 � 1015 T3

m2 � s � K3
:

A surface temperature T D 5780 K for our sun yields a photon flux at the solar
surface 2:94 � 1026 m�2 s�1 and a resulting photon flux at Earth’s orbit of 6:35 �
1021 m�2 s�1. The average photon energy e.T/=j.T/ D 1:35 eV is in the infrared.

1.4 The photoelectric effect

The notion of energy quanta in radiation was so revolutionary in 1900 that Planck
himself speculated that this must somehow be related to the emission mechanism
of radiation from the material of the source. In 1905 Albert Einstein pointed
out that hitherto unexplained properties of the photoelectric effect can also be
explained through energy quanta hf in ultraviolet light, and proposed that this energy
quantization is likely an intrinsic property of electromagnetic waves irrespective
of how they are generated. In short, the photoelectric effect observations by
J.J. Thomson and Lenard revealed the following key properties:

• An ultraviolet light source of frequency f will generate photoelectrons of
maximal kinetic energy hf � hf0 if f > f0, where hf0 D � is the minimal energy
to liberate photoelectrons from the photocathode.

• Increasing the intensity of the incident ultraviolet light without changing its
frequency will increase the photocurrent, but not change the maximal kinetic
energy of the photoelectrons. Increasing the intensity must therefore liberate
more photoelectrons from the photocathode, but does not impart more energy
on single electrons.

Einstein realized that this behavior can be explained if the incident ultraviolet
light of frequency f comes in energy parcels of magnitude hf , and if the electrons in
the metal can (predominantly) only absorb a single of these energy parcels.
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1.5 Wave-particle duality

When X-rays of wavelength �0 are scattered off atoms, one observes scattered
X-rays of the same wavelength �0 in all directions. However, in the years 1921–
1923 Arthur H. Compton observed that under every scattering angle # against the
direction of incidence, there is also a component of scattered X-rays with a longer
wavelength

� D �0 C �C.1 � cos#/ :

The constant �C D 2:426 pm has the same value for every atom. Compton (and
also Debye) recognized that this longer wavelength component in the scattered
radiation can be explained as a consequence of particle like collisions of Planck’s
and Einstein’s energy parcels hf with weakly bound electrons if the energy
parcels also carry momentum h=�. Energy conservation during the collision of
the electromagnetics energy parcels (meanwhile called photons) with weakly bound
electrons (p0

e is the momentum of the recoiling electron),

mec C h

�0
D
q

p02
e C m2

ec2 C h

�
;

yields

p02
e D h2

�20
C h2

�2
� 2 h2

��0
C 2mehc

�
1

�0
� 1

�

�
;

while momentum conservation implies

p02
e D h2

�20
C h2

�2
� 2 h2

��0
cos#:

This yields for the wavelength of the scattered photon

� D �0 C h

mec
.1 � cos#/ ; (1.11)

with excellent numerical agreement between h=mec and the measured value of �C.
From the experimental findings on blackbody radiation, the photoelectric effect,

and Compton scattering, and the ideas of Planck, Einstein, and Compton, an
electromagnetic wave of frequency f D c=� appears like a current of particles
with energy hf and momentum h=�. However, electromagnetic waves also show
wavelike properties like diffraction and interference. The findings of Planck,
Einstein, and Compton combined with the wavelike properties of electromagnetic
waves (observed for the first time by Heinrich Hertz) constitute the first observation
of wave-particle duality. Depending on the experimental setup, a physical system
can sometimes behave like a wave and sometimes behave like a particle.
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However, the puzzle did not end there. Louis de Broglie recognized in 1923 that
the orbits of the old Bohr model could be explained through closed circular electron
waves if the electrons are assigned a wavelength � D h=p, like photons. Soon
thereafter, wavelike behavior of electrons was observed by Clinton Davisson and
Lester Germer in 1927, when they observed interference of non-relativistic electrons
scattered off the surface of Nickel crystals. At the same time, George Thomson was
sending high energy electron beams (with kinetic energies between 20 keV and 60
keV) through thin metal foils and observed interference of the transmitted electrons,
thus also confirming the wave nature of electrons. We can therefore also conclude
that another major motivation for the development of quantum mechanics was to
explain wave-particle duality.

1.6 Why Schrödinger’s equation?

The foundations of quantum mechanics were developed between 1900 and 1950 by
some of the greatest minds of the 20th century, from Max Planck and Albert Einstein
to Richard Feynman and Freeman Dyson. The inner circle of geniuses who brought
the nascent theory to maturity were Heisenberg, Born, Jordan, Schrödinger, Pauli,
Dirac, and Wigner. Among all the outstanding contributions of these scientists,
Schrödinger’s invention of his wave equation (1.2) was likely the most important
single step in the development of quantum mechanics. Understanding this step,
albeit in a simplified pedagogical way, is important for learning and understanding
quantum mechanics.

Ultimately, basic equations in physics have to prove themselves in comparison
with experiments, and the Schrödinger equation was extremely successful in that
regard. However, this does not explain how to come up with such an equation.
Basic equations in physics cannot be derived from any rigorous theoretical or
mathematical framework. There is no algorithm which could have told Newton to
come up with Newton’s equation, or would have told Schrödinger how to come
up with his equation (or could tell us how to come up with a fundamental theory of
quantum gravity). Basic equations in physics have to be invented in an act of creative
ingenuity, which certainly requires a lot of brainstorming and diligent review of
pertinent experimental facts and solutions of related problems (where known).

It is much easier to accept an equation and start to explore its consequences if
the equation makes intuitive sense – if we can start our discussion of Schrödinger’s
equation with the premise “yes, the hypothesis that Schrödinger’s equation solves
the problems of energy quantization and wave-particle duality seems intuitively
promising and is worth pursuing”.

Therefore I will point out how Schrödinger could have invented the Schrödinger
equation (although his actual thought process was much more involved and was
motivated by the connection of the quantization rules of old quantum mechanics
with the Hamilton-Jacobi equation of classical mechanics [39]).
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The problem is to come up with an equation for the motion of particles, which
explains both quantization of energy levels and wave-particle duality.

As a starting point, we recall that the motion of a non-relativistic particle under
the influence of a conservative force F.x/ D �rV.x/ is classically described by
Newton’s equation

m
d2x.t/

dt2
D � rV.x.t//;

and this equation also implies energy conservation,

E D p2

2m
C V.x/: (1.12)

However, this cannot be the whole story, because Davisson and Germer, and
G.P. Thomson had shown that at least electrons sometimes also behave like waves
with wavelength � D h=p, as predicted by de Broglie. Furthermore, Compton has
demonstrated that photons of energy E D hf satisfy the relation � D h=p between
wavelength and momentum. This motivates the hypothesis that a non-relativistic
particle might also satisfy the relation E D hf . A monochromatic plane wave of
frequency f , wavelength �, and direction of motion Ok can be described by a wave
function

 .x; t/ D A exp

"
2� i

 Ok � x
�

� ft

!#
:

Substitution of the relations

� D h

p
; E D hf D p2

2m

yields with „ � h=2�

 .x; t/ D A exp

�
i

�
p � x
„ � p2

2m„ t

��
:

Under the supposition of wave-particle duality, we have to assume that this wave
function must somehow be related to the wave properties of free particles as
observed in the electron diffraction experiments. However, this wave function
satisfies a differential equation

i„ @
@t
 .x; t/ D E .x; t/ D p2

2m
 .x; t/ D � „2

2m
� .x; t/; (1.13)

because under the assumption of wave-particle duality we had to replace f with E=h
in the exponent, and we used E D p2=2m for a free particle.



1.7 Interpretation of Schrödinger’s wave function 19

This does not yet tell us how to calculate the wave function which would describe
motion of particles in a potential V.x/. However, comparison of the differential
equation (1.13) with the classical energy equation (1.12) can give us the idea to try

i„ @
@t
 .x; t/ D � „2

2m
� .x; t/C V.x/ .x; t/ (1.14)

as a starting point for the calculation of wave functions for particles moving in
a potential V.x/. Schrödinger actually found this equation after he had found the
time-independent Schrödinger equation (3.3) below, and he had demonstrated that
these equations yield the correct spectrum for hydrogen atoms, where

V.x/ D � e2

4��0jxj :

Schrödinger’s solution of the hydrogen atom will be discussed in Chapter 7.

1.7 Interpretation of Schrödinger’s wave function

The Schrödinger equation was a spectacular success right from the start, but it was
not immediately clear what the physical meaning of the complex wave function
 .x; t/ is. A natural first guess would be to assume that j .x; t/j2 corresponds to
a physical density of the particle described by the wave function  .x; t/. In this
interpretation, an electron in a quantum state  .x; t/ would have a spatial mass
density m j .x; t/j2 and a charge density �e j .x; t/j2. This interpretation would
imply that waves would have prevailed over particles in wave-particle duality.

However, quantum leaps are difficult to reconcile with a physical density
interpretation for j .x; t/j2, and Schrödinger, Bohr, Born and Heisenberg developed
a statistical interpretation of the wave function which is still the leading paradigm
for quantum mechanics. Already in June 1926, the view began to emerge that the
wave function  .x; t/ should be interpreted as a probability density amplitude2 in

2E. Schrödinger, Annalen Phys. 386, 109 (1926), paragraph on pp. 134–135, sentences 2–4: “  
is a kind of weight function in the configuration space of the system. The wave mechanical
configuration of the system is a superposition of many, strictly speaking of all, kinematically
possible point mechanical configurations. Thereby each point mechanical configuration contributes
with a certain weight to the true wave mechanical configuration, where the weight is just given by
  .” Of course, a weakness of this early hint at the probability interpretation is the vague reference
to a “true wave mechanical configuration”. A clearer formulation of this point was offered by Born
essentially simultaneously, see the following reference. While there was (and always has been)
agreement on the importance of a probabilistic interpretation, the question of the concept which
underlies those probabilities was a contentious point between Schrödinger, who at that time may
have preferred to advance a de Broglie type pilot wave interpretation, and Bohr and Born and their
particle-wave complementarity interpretation. In the end the complementarity picture prevailed:
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the sense that

PV.t/ D
Z

V
d3x j .x; t/j2 (1.15)

is the probability to find a particle (or rather, an excitation of the vacuum with
minimal energy mc2 and certain other quantum numbers) in the volume V at time t.
This equation implies that j .x; t/j2 is the probability density to find the particle in
the location x at time t. The expectation value for the location of the particle at time
t is then

hxi.t/ D
Z

d3x x j .x; t/j2 ; (1.16)

where integrals without explicit limits are taken over the full range of the integration
variable, i.e. here over all of R3. Many individual particle measurements will yield
the location x with a frequency proportionally to j .x; t/j2, and averaging over the
observations will yield the expectation value (1.16) with a variance e.g. for the x
coordinate

�x2.t/ D h.x � hxi/2i.t/ D hx2i.t/ � hxi2.t/

D
Z

d3x x2 j .x; t/j2 �
�Z

d3x x j .x; t/j2
�2
:

This interpretation of the relation between the wave function and particle properties
was essentially proposed by Max Born in an early paper on quantum mechanical
scattering3.

The Schrödinger equation (1.2) implies a local conservation law for probability

@

@t
j .x; t/j2 C r � j.x; t/ D 0 (1.17)

with the probability current density

j.x; t/ D „
2im

�
 C.x; t/ � r .x; t/ � r C.x; t/ � .x; t/

�
: (1.18)

There are fundamental degrees of freedom with certain quantum numbers. These degrees of
freedom are quantal excitations of the vacuum, and mathematically they are described by quantum
fields. Depending on the way they are probed, they exhibit wavelike or corpuscular properties.
Whether or not to denote these degrees of freedom as particles is a matter of convenience and
tradition.
3M. Born, Z. Phys. 38, 803 (1926).
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The conservation law (1.17) is important for consistency of the probability
interpretation of Schrödinger theory. We assume that the integral

P.t/ D
Z

d3x j .x; t/j2

over R
3 converges. A priori this should yield a time-dependent function P.t/.

However, equation (1.17) implies

d

dt
P.t/ D 0; (1.19)

whence P.t/ � P is a positive constant. This allows for rescaling  .x; t/ !
 .x; t/=

p
P such that the new wave function still satisfies equation (1.2) and yields

a normalized integral

Z
d3x j .x; t/j2 D 1: (1.20)

This means that the probability to find the particle anywhere at time t is 1, as it
should be. The equations (1.15) and (1.16) make sense only in conjunction with the
normalization condition (1.20)

We can also substitute the Schrödinger equation or the local conservation
law (1.17) into

hpi.t/ D m
d

dt
hxi.t/ D m

Z
d3x x

@

@t
j .x; t/j2 (1.21)

to find

hpi.t/ D
Z

d3x C.x; t/
„
i
r .x; t/: (1.22)

Equations (1.16) and (1.22) tell us how to extract particle like properties from
the wave function  .x; t/. At first sight, equation (1.22) does not seem to make
a lot of intuitive sense. Why should the momentum of a particle be related to the
gradient of its wave function? However, recall the Compton-de Broglie relation
p D h=�. Wave packets which are composed of shorter wavelength components
oscillate more rapidly as a function of x, and therefore have a larger average
gradient. Equation (1.22) is therefore in agreement with a basic relation of wave-
particle duality.

A related argument in favor of equation (1.22) arises from substitution of the
Fourier transforms4

4Fourier transformation is reviewed in Section 2.1.
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 .x; t/ D 1p
2�

3

Z
d3k exp.ik � x/ .k; t/;

 C.x; t/ D 1p
2�

3

Z
d3k exp.�ik � x/ C.k; t/

in equations (1.20) and (1.22). This yields
Z

d3k j .k; t/j2 D 1

and

hpi.t/ D
Z

d3k „k j .k; t/j2 ;

in perfect agreement with the Compton-de Broglie relation p D „k. Apparently
j .k; t/j2 is a probability density in k space in the sense that

P QV.t/ D
Z

QV
d3k j .k; t/j2

is the probability to find the particle with a wave vector k contained in a volume QV
in k space.

We can also identify an expression for the energy of a particle which is described
by a wave function  .x; t/. The Schrödinger equation (1.2) implies the conservation
law

d

dt

Z
d3x C.x; t/

�
� „2
2m
�C V.x/

�
 .x; t/ D 0: (1.23)

Here it plays a role that we assumed time-independent potential5. In classical
mechanics, the conservation law which appears for motion in a time-independent
potential is energy conservation. Therefore, we expect that the expectation value for
energy is given by

hEi D
Z

d3x C.x; t/
�

� „2
2m
�C V.x/

�
 .x; t/: (1.24)

We will also rederive this at a more advanced level in Chapter 17. From the
classical relation (1.12) between energy and momentum of a particle, we should
also have

hEi D hp2i
2m

C hV.x/i: (1.25)

5Examples of the Schrödinger equation with time-dependent potentials will be discussed in
Chapter 13 and following chapters.
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Comparison of equations (1.22) and (1.24) yields

hp2i.t/ D
Z

d3x C.x; t/.�i„r/2 .x; t/;

such that calculation of expectation values of powers of momentum apparently
amounts to corresponding powers of the differential operator �i„r acting on the
wave function  .x; t/.

Maybe one of the most direct observational confirmations of the statistical inter-
pretation of the wave function was the observation of single particle interference by
Tonomura, Endo, Matsuda and Kawasaski6 in 1988. Electrons are passing through
a double slit with a time difference that makes it extremely unlikely that two
electrons interfere during their passages through the slit. Behind the slit the electrons
are observed with a scintillation screen or a camera. Each individual electron is
observed to generate only a single dot on the screen. This is the behavior expected
from a pointlike particle which is not spread over a physical density distribution.
The first few electrons seem to generate a random pattern of dots. However, when
more and more electrons hit the screen, their dots generate a collective pattern which
exactly corresponds to a distribution j .x; t/j2 for double slit interference. This
implies that j .x; y; z0; t/j2 is indeed the probability density for an electron to hit
the point fx; yg on the screen which is located at z0, but it is not the physical density
of a spatially extended electron7.

A recent three-slit experiment also confirmed the statistical interpretation of the
wave function by proving that the interference patterns from many sequential single
particle paths agree with the probability density interpretation of j .x; t/j2 for single
slit diffraction, double-slit interference, and triple-slit interference8.

1.8 Problems

1.1. Plot the emittance eŒ0;��.T/ of our sun.

1.2. Suppose that the resolution of a particular monochromator scales with 1=f , i.e.
if the monochromator is set to a particular frequency f the product fdf D df 2=2 of
frequency and bandwidth is constant. Furthermore, assume that the monochromator
is coupled to a device which produces a signal proportional to the energy of the
incident radiation. In the limit df ! 0, is the signal curve from this apparatus
proportional to e.f ;T/, e.�;T/, j.f ;T/ or j.�;T/?

6A. Tonomura, J. Endo, T. Matsuda, T. Kawasaski, Amer. J. Phys. 57, 117 (1989).
7It has been argued that Bohmian mechanics can also explain the Tonomura experiment through a
pilot wave interpretation of the wave function. However, Bohmian mechanics has other problems.
We will briefly return to Bohmian mechanics in Problem 7.17.
8U. Sinha, C. Couteau, T. Jennewein, R. Laflamme, G. Weihs, Science 329, 418 (2010).
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1.3. Suppose that the resolution of a particular monochromator scales with f , i.e.
if the monochromator is set to a particular frequency f the fractional bandwidth
df=f is constant. The monochromator is coupled to a device which produces a
signal proportional to the energy of the incident radiation. The device is used
for observation of a Planck spectrum. For which relation between frequency and
temperature does this device yield maximal signal?

1.4. Derive the probability conservation law (1.17) from the Schrödinger equation.
Hint: Multiply the Schrödinger equation with  C.x; t/ and use also the complex
conjugate equation.

1.5. We will often deal with quantum mechanics in d spatial dimensions. There are
many motivations to go beyond the standard case d D 3. E.g. d D 0 is the number of
spatial dimensions for an idealized quantum dot, d D 1 is often used for pedagogical
purposes and also for idealized quantum wires or nanowires, and d D 2 is used for
physics on surfaces and interfaces.

We consider a normalized wave function  .x; t/ in d dimensions. What are the
SI units of the wave function? What are the SI units of the d-dimensional current
density j for the wave function  .x; t/?

1.6. Derive equation (1.22) from (1.21).

1.7. Show that the Schrödinger equation (1.14) implies the conservation laws

d

dt

Z
d3x C.x; t/

�
� „2
2m
�C V.x/

�n

 .x; t/ D 0; n 2 N0: (1.26)

Two particular cases of this equation appeared in Section 1.7. Which are those cases
and what are the related conserved quantities?

Why is there usually not much interest in the infinitely many higher order
conservation laws (1.26) for n > 1? Hint: Think about the classical interpretation of
these conservation laws.

Why do the higher order conservation laws nevertheless matter in quantum
mechanics? Hint: Equation (1.26) is generically different from the “similar” con-
servation law d.hEin/=dt D 0. Is there an interesting implication of the two
conservation laws for n D 2?

1.8. Equation (1.21) implies that the equation p.t/ D mdx.t/=dt from non-
relativistic classical mechanics is realized as an equation between expectation
values in non-relativistic quantum mechanics. Show that Newton’s law holds in the
following sense in non-relativistic quantum mechanics (Ehrenfest’s theorem),

d

dt
hpi.t/ D � hrV.x/i.t/: (1.27)



Chapter 2
Self-adjoint Operators and Eigenfunction
Expansions

The relevance of waves in quantum mechanics naturally implies that the
decomposition of arbitrary wave packets in terms of monochromatic waves,
commonly known as Fourier decomposition after Jean-Baptiste Fourier’s Théorie
analytique de la Chaleur (1822), plays an important role in applications of the
theory. Dirac’s ı function, on the other hand, gained prominence primarily through
its use in quantum mechanics, although today it is also commonly used in mechanics
and electrodynamics to describe sudden impulses, mass points, or point charges.
Both concepts are intimately connected to the completeness of eigenfunctions
of self-adjoint operators. From the quantum mechanics perspective, the problem
of completeness of sets of functions concerns the problem of enumeration of all
possible states of a quantum system.

2.1 The ı function and Fourier transforms

Let f .x/ be a smooth function in the interval Œa; b�. Dirichlet’s equation [7]

lim
!1

Z b

a
dx0 sin..x � x0//

�.x � x0/
f .x0/ D

�
0; x … Œa; b�;

f .x/; x 2 .a; b/; (2.1)

motivates the formal definition

ı.x/ D lim
!1

sin.x/

�x
D lim

!1
1

2�

Z 

�
dk exp.ikx/

D 1

2�

Z 1

�1
dk exp.ikx/; (2.2)

© Springer International Publishing Switzerland 2016
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such that equation (2.1) can (in)formally be written as

Z b

a
dx0 ı.x � x0/f .x0/ D

�
0; x … Œa; b�;

f .x/; x 2 .a; b/:

A justification for Dirichlet’s equation is given below in the derivation of
equation (2.8).

The generalization to three dimensions follows immediately from Dirichlet’s for-
mula in a three-dimensional cube, and exhaustion of an arbitrary three-dimensional
volume V by increasingly finer cubes. This yields

ı.x/ D
3Y

iD1
lim
i!1

sin.ixi/

�xi
D 1

.2�/3

Z
d3k exp.ik � x/; (2.3)

Z
V

d3x0 ı.x � x0/f .x0/ D
�
0; x … V;

f .x/; x inside V:

The case x 2 @V (x on the boundary of V) must be analyzed on a case-by-case basis.
Equation (2.3) implies

 .x; t/ D
Z

d3x0 ı.x � x0/ .x0; t/

D 1

.2�/3

Z
d3k exp.ik � x/

Z
d3x0 exp.�ik � x0/ .x0; t/:

This can be used to introduce Fourier transforms by splitting the previous equation
into two equations,

 .x; t/ D 1p
2�

3

Z
d3k exp.ik � x/ .k; t/; (2.4)

with

 .k; t/ D 1p
2�

3

Z
d3x exp.�ik � x/ .x; t/: (2.5)

Use of  .x; t/ corresponds to the x-representation of quantum mechanics. Use
of  .k; t/ corresponds to the k-representation or momentum-representation of
quantum mechanics.

The notation above for Fourier transforms is a little sloppy, but convenient and
common in quantum mechanics. From a mathematical perspective, the Fourier
transformed function  .k; t/ should actually be denoted by Q .k; t/ to make it clear
that it is not the same function as  .x; t/ with different symbols for the first three
variables. The physics notation is motivated by the observation that  .x; t/ and
 .k; t/ are just different representations of the same quantum mechanical state  .
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Another often used convention for Fourier transforms is to split the factor .2�/�3
asymmetrically, or equivalently replace it with a factor 2� in the exponents,

 .x; t/ D 1

.2�/3

Z
d3k exp.ik � x/ .k; t/;

 .k; t/ D
Z

d3x exp.�ik � x/ .x; t/;

or equivalently

 .x; t/ D
Z

d3 Q� exp.2� i Q� � x/ . Q�; t/;

 . Q�; t/ D
Z

d3x exp.�2� i Q� � x/ .x; t/;

with the vector of wave numbers

Q� D k
2�
:

The conventions (2.4, 2.5) are used throughout this book.
The following is an argument for equation (2.1) and its generalizations to other

representations of the ı function. The idea is to first construct a limit for the
Heaviside step function or ‚ function

‚.x/ D
�
1; x > 0;
0; x < 0;

and go from there. The value of ‚.0/ is often chosen to suite the needs of the
problem at hands. The choice ‚.0/ D 1=2 seems intuitive and is also mathe-
matically natural in the sense that any decomposition of a discontinuous functions
in a complete set of functions (e.g. Fourier decomposition) will approximate the
mean value between the left and right limit for a finite discontinuity, but in many
applications other values of ‚.0/ are preferred.

The ‚ function helps us to explain Dirichlet’s equation (2.1) through the
following construction. Suppose d.x/ is a normalized function,

Z 1

�1
dx d.x/ D 1: (2.6)

The integral

D.x/ D
Z x

�1
d� d.�/
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satisfies

lim
!1 D. � x/ D ‚.x/; (2.7)

where we apparently defined ‚.0/ as ‚.0/ D R 0
�1d� d.�/, but this plays no role

for the following reasoning.
Equation (2.7) yields for f .x/ differentiable in Œa; b�

Z b

a
dx  d. � x/f .x/ D D. � x/f .x/

ˇ̌
ˇb
a

�
Z b

a
dx D. � x/f 0.x/;

lim
!1

Z b

a
dx  d. � x/f .x/ D ‚.b/f .b/ �‚.a/f .a/ �

Z b

a
dx‚.x/f 0.x/

D ‚.b/f .b/ �‚.a/f .a/ �‚.b/Œf .b/ � f .0/�C‚.a/Œf .a/ � f .0/�

D Œ‚.b/ �‚.a/�f .0/; (2.8)

where we simply split

Z b

a
dx‚.x/f 0.x/ D

Z b

0

dx‚.x/f 0.x/ �
Z a

0

dx‚.x/f 0.x/

to arrive at the final result. Equation (2.8) confirms

lim
!1  d.x/ D ı.x/; (2.9)

or after shifting the argument,

lim
!1  dŒ.x � x0/� D ı.x � x0/:

From a mathematical perspective, equations like (2.9) mean that the action of the ı
distribution on a smooth function corresponds to integration with a kernel  d.x/
and then taking the limit  ! 1.

Equation (2.2) is an important particular realization of equation (2.9) with the
normalized sinc function d.x/ D sinc.x/=� D sin.x/=�x. Another important
realization uses the function d.x/ D .� C �x2/�1,

ı.x/ D lim
!1

1

�



1C 2x2
D lim

a!0

1

�

a

a2 C x2

D lim
a!0

1

2�

Z 1

�1
dk exp.ikx � ajkj/: (2.10)
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Note that we did not require d.x/ to have a maximum at x D 0 to derive (2.9),
and indeed we do not need this requirement. Consider the following example,

d.x/ D 1

2

r
˛

�
expŒ�˛.x � a/2�C 1

2

r
ˇ

�
expŒ�ˇ.x � b/2�:

This function has two maxima if ˛ �ˇ ¤ 0 and if a and b are sufficiently far apart,
and it even has a minimum at x D 0 if ˛ D ˇ and a D �b. Yet we still have

lim
!1  d. � x/ D lim

!1

�


2

r
˛

�
expŒ�˛.x � a/2�

C

2

r
ˇ

�
expŒ�ˇ.x � b/2�

!
D ı.x/;

because the scaling with  scales the initial maxima near a and b to a= ! 0 and
b= ! 0.

Sokhotsky-Plemelj relations

The Sokhotsky-Plemelj relations are very useful relations involving a ı distribu-
tion1,

1

x � i�
D P 1

x
C i�ı.x/;

1

x C i�
D P 1

x
� i�ı.x/: (2.11)

Indeed, for the practical evaluation of integrals involving singular denominators,
we virtually never use these relations but evaluate the integrals with the left hand
sides directly using the Cauchy and residue theorems. The primary use of the
Sokhotsky-Plemelj relations in physics and technology is to establish relations
between different physical quantities. The relation between retarded Green’s func-
tions and local densities of states is an example for this and will be derived in
Section 20.1.

I will give a brief justification for the Sokhotsky-Plemelj relations. The relations

1

x C i�
D 1

i

Z 1

0

dk expŒik.x C i�/� D 1

i

Z 0

�1
dk expŒ�ik.x C i�/�

1Yu.V. Sokhotsky, Ph.D. thesis, University of St. Petersburg, 1873; J. Plemelj, Monatshefte Math.
Phys. 19, 205 (1908). The “physics” version (2.11) of the Sokhotsky-Plemelj relations is of course
more recent than the original references because the ı distribution was only introduced much later.
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imply

= 1

x C i�
D � 1

2

Z 1

�1
dk cos.kx/ D ��ı.x/:

On the other hand, the real part is

< 1

x C i�
D 1

2.x C i�/
C 1

2.x � i�/
D x

x2 C �2
:

This implies for integration with a bounded function f .x/ in Œa; b�

Z b

a
dx

f .x/

x C i�
D
Z b

a
dx

xf .x/

x2 C �2
� i�Œ‚.b/ �‚.a/�f .0/:

However, the weight factor

K�.x/ D x

x2 C �2

essentially cuts the region �3� < x < 3� symmetrically from the integralR b
a dx f .x/=x (the value 3� is chosen because xK�.x/ D 0:9 for x D ˙3�), see

Figure 2.1. Therefore we can use this factor as one possible definition of a principal
value integral,

P
Z b

a
dx

f .x/

x
D lim

�!0

Z b

a
dx K�.x/f .x/:

2.2 Self-adjoint operators and completeness of eigenstates

The statistical interpretation of the wave function  .x; t/ implies that the wave
functions of single stable particles should be normalized,

Z
d3x j .x; t/j2 D 1: (2.12)

Time-dependence plays no role and will be suppressed in the following
investigations.

Indeed, we have to require a little more than just normalizability of the wave
function  .x/ itself, because the functions r .x/, � .x/, and V.x/ .x/ for
admissible potentials V.x/ should also be square integrable. We will therefore also
encounter functions f .x/ which may not be normalized, although they are square
integrable,
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Fig. 2.1 Comparison of 1=x with the weight factor K�.x/

Z
d3x jf .x/j2 < 1:

Let  .x/ and �.x/ be two square integrable functions. The identity

Z
d3x j .x/ � ��.x/j2 � 0

yields with the choice

� D
R

d3x�C.x/ .x/R
d3x j�.x/j2

the Schwarz inequality

ˇ̌
ˇ̌
Z

d3x�C.x/ .x/
ˇ̌
ˇ̌2 �

Z
d3x j .x/j2

Z
d3x0 ˇ̌�.x0/

ˇ̌2
:
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The differential operators �i„r and �.„2=2m/�, which we associated with
momentum and kinetic energy, and the potential energy V.x/ all have the following
properties,

Z
d3x�C.x/

„
i
r .x/ D

�Z
d3x C.x/

„
i
r�.x/

�C
; (2.13)

Z
d3x�C.x/� .x/ D

�Z
d3x C.x/��.x/

�C
; (2.14)

and

Z
d3x�C.x/V.x/ .x/ D

�Z
d3x C.x/V.x/�.x/

�C
: (2.15)

Equation (2.15) is a consequence of the fact that V.x/ is a real function.
Equations (2.13, 2.14) are a direct consequence of partial integrations and the fact
that boundary terms at jxj ! 1 vanish under the assumptions that we had imposed
on the wave functions.

If two operators Ax and Bx have the property

Z
d3x�C.x/Ax .x/ D

�Z
d3x C.x/Bx�.x/

�C
; (2.16)

for all wave functions of interest, then Bx is denoted as adjoint to the operator Ax.
The mathematical notation for the adjoint operator to Ax is AC

x ,

Bx D AC
x :

Complex conjugation of (2.16) then immediately tells us BC
x D Ax.

An operator with the property AC
x D Ax is denoted as a self-adjoint or hermitian

operator2. Self-adjoint operators are important in quantum mechanics because they
yield real expectation values,

2We are not addressing matters of definition of domains of operators in function spaces, see e.g.
[21] or Problem 2.6. If the operators AC

x and Ax can be defined on different classes of functions,
and AC

x D Ax holds on the intersections of their domains, then Ax is usually denoted as a symmetric
operator. The notion of self-adjoint operator requires identical domains for both Ax and AC

x such
that the domain of neither operator can be extended. If the conditions on the domains are violated,
we can e.g. have a situation where Ax has no eigenfunctions at all, or where the eigenvalues of
Ax are complex and the set of eigenfunctions is overcomplete. Hermiticity is sometimes defined
as equivalent to symmetry or as equivalent to the more restrictive notion of self-adjointness of
operators. We define Hermiticity as self-adjointness.
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.hAi /C D
�Z

d3x C.x/Ax .x/
�C

D
Z

d3x C.x/AC
x  .x/

D
Z

d3x C.x/Ax .x/ D hAi :

Observable quantities like energy or momentum or location of a particle are
therefore implemented through self-adjoint operators, e.g. momentum p is imple-
mented through the self-adjoint differential operator �i„r . We have seen one
method to figure this out in equation (1.21). We will see another method in
equations (4.26, 4.27).

Self-adjoint operators have the further important property that their eigenfunc-
tions yield complete sets of functions. Schematically this means the following:
Suppose we can enumerate all constants an and functions  n.x/ which satisfy the
equation

Ax n.x/ D an n.x/ (2.17)

with the set of discrete indices n. The constants an are eigenvalues and the functions
 n.x/ are eigenfunctions of the operator Ax. Hermiticity of the operator Ax implies
orthogonality of eigenfunctions for different eigenvalues,

an

Z
d3x C

m .x/ n.x/ D
Z

d3x C
m .x/Ax n.x/

D
�Z

d3x C
n .x/Ax m.x/

�C

D am

Z
d3x C

m .x/ n.x/

and therefore Z
d3x C

m .x/ n.x/ D 0 if an ¤ am:

However, even if an D am for different indices n ¤ m (i.e. if the eigenvalue an

is degenerate because there exist at least two eigenfunctions with the same eigen-
value), one can always chose orthonormal sets of eigenfunctions for a degenerate
eigenvalue. We therefore requireZ

d3x C
m .x/ n.x/ D ım;n: (2.18)

Completeness of the set of functions  n.x/ means that an “arbitrary” function
f .x/ can be expanded in terms of the eigenfunctions of the self-adjoint operator Ax

in the form

f .x/ D
X

n

cn n.x/ (2.19)
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with expansion coefficients

cn D
Z

d3x C
n .x/f .x/: (2.20)

If we substitute equation (2.20) into (2.19) and (in)formally exchange integration
and summation, we can express the completeness property of the set of functions
 n.x/ in the completeness relation

X
n

 n.x/ C
n .x

0/ D ı.x � x0/: (2.21)

Both the existence and the meaning of the series expansions (2.19, 2.20)
depends on what large a class of “arbitrary” functions f .x/ one considers. Minimal
constraints require boundedness of f .x/, and continuity if the series (2.19) is
supposed to converge pointwise. The default constraints in non-relativistic quan-
tum mechanics are continuity of wave functions  .x/ to ensure validity of the
Schrödinger equation with at most finite discontinuities in potentials V.x/, and
normalizability. Under these circumstances the expansion (2.19, 2.20) for a wave
function f .x/ �  .x/will converge pointwise to .x/. However, it is convenient for
many applications of quantum mechanics to use limiting forms of wave functions
which are not normalizable in the sense of equation (2.12) any more, e.g. plane
wave states  k.x/ / exp.ik � x/, and we will frequently also have to expand
non-continuous functions, e.g. functions of the form f .x/ D V.x/ .x/ with a
discontinuous potential V.x/. However, finally we only have to use expansions of
the form (2.19, 2.20) in the evaluation of integrals of the form

R
d3xgC.x/f .x/, and

here the concept of convergence in the mean comes to our rescue in the sense that
substitution of the series expansion (2.19, 2.20) in the integral will converge to the
same value of the integral, even if the expansion (2.19, 2.20) does not converge
pointwise to the function f .x/.

A more thorough discussion of completeness of sets of eigenfunctions of self-
adjoint operators in the relatively simple setting of wave functions confined to a
finite one-dimensional interval is presented in Appendix C. However, for a first
reading I would recommend to accept the series expansions (2.19, 2.20) with
the assurance that substitutions of these series expansions is permissible in the
calculation of observables in quantum mechanics.

2.3 Problems

2.1. Suppose the function f .x/ has only first order zeros, i.e. we have non-vanishing
slope at all nodes xi of the function,

f .xi/ D 0 ) f 0.xi/ � df .x/

dx

ˇ̌
ˇ̌
xDxi

¤ 0:
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Prove the following property of the ı function:

ı.f .x// D
X

i

1

jf 0.xi/jı.x � xi/:

2.2. Calculate the Fourier transforms of the following functions, where in all cases
�1 < x < 1. Do not use any electronic integration program.

2.2a.  1.x/ D exp.�ax2/, <a > 0,

2.2b.  2.x/ D 1=.a2 C x2/, a > 0 2 R,

2.2c.  3.x/ D xn exp.�ajxj/, a > 0 2 R, where n is a natural number.

2.3. The functions f1.x/ D exp.�x2/ and f2.x/ D exp.�jxj/ are normalizable to
functions d.x/ in the sense of equation (2.6). Use this to find other derivations of the
Fourier representation of the ı function similar to equation (2.10).

2.4. We consider a finite interval Œa; b� together with the set C.1;˛/Œa; b� of complex
valued functions which are continuous in Œa; b� and differentiable in .a; b/, and
satisfy the pseudo-periodicity condition

 .b/ D exp.i˛/ .a/; ˛ 2 R:

Show that the differential operator �id=dx is self-adjoint on C.1;˛/Œa; b�. Give a
complete set of eigenstates of �id=dx in C.1;˛/Œa; b�.

2.5. We consider the finite interval Œa; b� together with the set C.2/;0Œa; b� of complex
valued functions which are continuous in Œa; b� and second order differentiable in
.a; b/, and satisfy the boundary conditions

 .a/ D  .b/ D 0:

Show that that the differential operator d2=dx2 is self-adjoint on C.2/;0Œa; b�. Give a
complete set of eigenstates of d2=dx2 in C.2/;0Œa; b�.

2.6. We consider the finite interval Œa; b� together with the set C.1/;0Œa; b� of complex
valued functions which are continuous in Œa; b� and differentiable in .a; b/, and
satisfy the boundary conditions

 .a/ D  .b/ D 0:

Show that the symmetric differential operator h1 D �id=dx with domain C.1/;0Œa; b�
is not self-adjoint in the sense that hC

1 can be defined on the larger set L2Œa; b� of
square integrable functions over Œa; b�.

Show that h1 has no eigenstates, while hC
1 has complex eigenvalues and an

overcomplete set of eigenstates.



Chapter 3
Simple Model Systems

One-dimensional models and models with piecewise constant potentials have been
used as simple model systems for quantum behavior ever since the inception of
Schrödinger’s equation. These models vary in their levels of sophistication, but their
generic strength is the clear demonstration of important general quantum effects and
effects of dimensionality of a quantum system at very little expense in terms of effort
or computation. Simple model systems are therefore more than just pedagogical
tools for teaching quantum mechanics. They also serve as work horses for the
modeling of important quantum effects in nanoscience and technology, see e.g.
[4, 20].

3.1 Barriers in quantum mechanics

Widely used models for quantum behavior in solid state electronics are described by
piecewise constant potentials V.x/. This means that V.x/ attains constant values in
different regions of space, and the transition between those regions of constant V.x/
appears through discontinuous jumps in the potential. Figure 3.1 shows an example
of a piecewise constant potential.

The Schrödinger equation with a piecewise constant potential is easy to solve,
and the solutions provide instructive examples for the impact of quantum effects on
the motion of charge carriers through semiconductors and insulating barriers. We
will first discuss the case of a rectangular barrier.

Figure 3.1 shows a cross section of a non-symmetric rectangular square barrier.
The piecewise constant potential has values

V.x/ D
8<
:
0; x < 0;
ˆ1; 0 � x � L;
ˆ2; x > L:
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x

L

A exp(ikx)

B exp(−ikx)

F exp(ikx)

transmitted wave

incident wave

ref lected wave

V(x)

Φ1

Φ2

Fig. 3.1 A non-symmetric square barrier

with ˆ1 > ˆ2 > 0. This barrier impedes motion in the x direction. It can be used
e.g. as a simple quantum mechanical model for a metal coated with an insulating
layer. The region x < 0 would be inside the metal and the potential ˆ2 would be
the energy which is required to liberate an electron from the metal if there would
not be the insulating layer of thickness L. The energy ˆ1 is the energy which would
classically be required for an electron to penetrate the layer.

Quantum problems with time-independent potentials are conveniently analyzed
by using a Fourier transformation1 from time t to energy E,

 .x; t/ D 1p
2�„

Z 1

�1
dE exp

�
� i

„Et

�
 .x;E/; (3.1)

 .x;E/ D 1p
2�

Z 1

�1
dt exp

�
i

„Et

�
 .x; t/: (3.2)

Substitution into the time-dependent Schrödinger equation (1.2) yields the time-
independent Schrödinger equation2

E .x;E/ D � „2
2m
� .x;E/C V.x/ .x;E/: (3.3)

1The normalization condition (1.20) implies that the function  .x;E/ does not exist in the sense
of classical Fourier theory. We will therefore see in Section 5.2 that  .x;E/ is rather a series
of ı-functions of the energy. This difficulty is usually avoided by using an exponential ansatz
 .x; t/ D  .x;E/ exp.�iEt=„/ instead of a full Fourier transformation. However, if one accepts
the ı-function and corresponding extensions of classical Fourier theory, the transition to the time-
independent Schrödinger equation through a formal Fourier transformation to the energy variable
is logically more satisfactory.
2E. Schrödinger, Annalen Phys. 384, 361 (1926). Schrödinger found the time-independent equation
first and published the time-dependent equation (1.2) five months later.
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The potential on Figure 3.1 depends only on x. In this case we can also eliminate
the derivatives with respect to y and z through further Fourier transformations,

 .x;E/ D 1

2�

Z 1

�1
dk2

Z 1

�1
dk3 expŒi.k2y C k3z/�  .x; k2; k3;E/

to find the time-independent Schrödinger equation for motion in the x direction,

E1 .x;E1/ D � „2
2m

@2

@x2
 .x;E1/C V.x/ .x;E1/: (3.4)

Here

E1 � E � „2 k22 C k23
2m

;  .x;E1/ �  .x; k2; k3;E/:

E1 is the kinetic energy for motion in the x direction in the region x < 0.
Within each of the three separate regions x < 0, 0 < x < L, and x > L the

potential attains a constant value, and equation (3.4) can be solved with a final
Fourier transformation from x to k1,

 .x;E1/ D

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

A exp.ik1x/C B exp.�ik1x/; k1 D p
2mE1=„; x < 0;

C exp.ik00
1 x/C D exp.�ik00

1 x/;
k00
1 D p

2m.E1 �ˆ1/=„; 0 < x < L;

F exp.ik0
1x/C G exp.�ik0

1x/;
k0
1 D p

2m.E1 �ˆ2/=„; x > L:

(3.5)

We must have E1 > 0 because the absolute minimum of the potential determines
a lower bound for the energy of a particle moving in the potential. However, the
wave numbers k00

1 and k0
1 can be real or imaginary depending on the magnitude of E1.

We define

k00
1 D � i; k0

1 D i0;

with the conventions  > 0, 0 > 0, if k00
1 or k0

1 are imaginary.
The wave function (3.5) is not yet the complete solution to our problem, because

we have to impose junction conditions on the coefficients at the transition points
x D 0 and x D L to ensure that the Schrödinger equation is also satisfied in those
points. This will be done below. However, we can already discuss the meaning of
the six different exponential terms appearing in (3.5). The wave function  .x;E1/ is
multiplied by the time-dependent exponential exp.�iE1t=„/ in the transition from
 .x;E1/ to the time-dependent wave function  .x; t/ for motion in x direction,

 .x; t/ D 1p
2�„

Z 1

0

dE1 exp

�
� i

„E1t

�
 .x;E1/: (3.6)
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A single monochromatic component therefore corresponds to a time-dependent
wave function proportional to  .x;E1/ exp.�iE1t=„/. The term A expŒi.k1x �
E1t=„/� corresponds to a right moving wave in the region x < 0, while the term
B expŒ�i.k1x C E1t=„/� is a left moving wave. Similar identifications apply to the
C and D components if k00

1 is real, and to the F and G components if k0
1 is real.

Otherwise, these components will correspond to exponentially damped or growing
wave functions, which requires G D 0 if 0 D �ik0

1 > 0 is real, to avoid divergence
of the wave function for x ! 1.

There is a subtle point here that needs to be emphasized because it is also
relevant for potential scattering theory in three dimensions. We have just realized
that the monochromatic wave function  .x;E1/ describes a particle of energy E1
(for the motion in x direction) simultaneously as left and right moving particles in
the regions where the wave number is real. The energy dependent wave function
always simultaneously describes all states of the particle with energy E1, but does
not yield a time resolved picture of what happens to a particle in the presence of
the potential V.x/. Let us e.g. assume that we shoot a particle of energy E1 at the
potential V.x/ from the left. The component A expŒi.k1x � E1t=„/� describes the
initially incident particle, while the component B expŒ�i.k1x C E1t=„/� describes a
particle that is reflected by the barrier. The component F expŒi.k0

1x � E1t=„/�, on
the other hand, describes a particle which went across the barrier (if E1 > ˆ1), or a
particle that penetrated the barrier (without damaging the barrier!) ifˆ1 > E1 > ˆ2.

The calculation of expectation values sheds light on the property of the mono-
chromatic wave function  .x;E1/ exp.�iE1t=„/ to describe all states of a particle
of energy E1 simultaneously. The expectation values both for location hxi and
momentum hpi of a particle described by a monochromatic wave function are time-
independent, i.e. a single monochromatic wave function can never describe the time
evolution of motion of a particle in the sense of first corresponding to an incident
wave from the left, and later either to a reflected wave or a transmitted wave. A time
resolved picture describing sequential events really requires superposition of several
monochromatic components (3.6) with contributions from many different energies.
Stated differently, the wave function of a moving particle can never correspond to
only one exact value for the energy of the particle. Building wave functions for
moving particles will always require superposition of different energy values, which
corresponds to an uncertainty in the energy of the particle. Stated in yet another way:
The energy resolved picture described by the Schrödinger equation in the energy
domain (3.3) describes all processes happening with energy E, whereas the time-
dependent Schrödinger equation describes processes happening at time t. If the
time-dependent wave function of the system is indeed monochromatic,  .x; t/ D
 .x;E1/ exp.�iE1t=„/, then we imply that all these processes at energy E1 happen
simultaneously, e.g. because we have a continuous particle beam of energy E1
incident on the barrier.

The monochromatic wave function can still tell us a lot about the behavior of
particles in the presence of the potential barrier V.x/. We choose as an initial
condition a particle moving against the barrier from the left. Then we have to set
G D 0 in the solution above irrespective of whether k0

1 is real or imaginary, because



3.1 Barriers in quantum mechanics 41

in the real case this component would correspond to a particle hitting the barrier
from the right, and in the imaginary case G D 0 was imposed anyway from the
requirement that the wave function cannot diverge.

Before we can proceed, we have to discuss junction conditions for wave functions
at points where the potential is discontinuous.

A finite jump in V.x/ translates through the time-independent Schrödinger
equation into a finite jump in d2 .x/=dx2, which means a jump in the slope of
d .x/=dx, but not a discontinuity in d .x/=dx. Therefore both  .x/ and d .x/=dx
have to remain continuous across a finite jump in the potential3. This means that the
wave function  .x/ remains smooth across a finite jump in V.x/. On the other hand,
an infinite jump in V.x/ only requires continuity, but not smoothness of  .x/.

The requirement of smoothness of the wave function yields the junction
conditions

A C B D C C D

k1.A � B/ D k00
1 .C � D/

C exp.ik00
1L/C D exp.�ik00

1L/ D F exp.ik0
1L/

k00
1 ŒC exp.ik00

1L/ � D exp.�ik00
1L/� D k0

1F exp.ik0
1L/

Elimination of C and D yields

2k1k
00
1A D 	

k00
1 .k1 C k0

1/ cos.k00
1L/ � i.k1k

0
1 C k002

1 / sin.k00
1L/



F exp.ik0

1L/;

2k1k
00
1B D 	

k00
1 .k1 � k0

1/ cos.k00
1L/ � i.k1k

0
1 � k002

1 / sin.k00
1L/



F exp.ik0

1L/:

Note that

cos.k00
1L/ D cosh.L/; sin.k00

1L/ D � i sinh.L/:

If we decompose the wave function to the left and the right of the barrier into
incoming, reflected, and transmitted components

 in.x/ D A exp.ik1x/;  re.x/ D B exp.�ik1x/;  tr.x/ D F exp.ik0
1x/;

then the probability current density (1.18) yields

jin D „k1
m

jAj2; jre D � „k1
m

jBj2; jtr D „
m

jFj2<k0
1:

3The time-dependent Schrödinger equation permits discontinuous wave functions  .x; t/ even
for smooth potentials, because there can be a trade-off between the derivative terms, see e.g.
Problem 3.15.
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In the last equation we used that k0
1 is either real or imaginary. The reflection and

transmission coefficients from the barrier are then

R D jjrej
jjinj D jBj2

jAj2 ; T D jjtrj
jjinj D jFj2<k0

1

jAj2k1 :

This yields in all cases 0 � T D 1 � R � 1. The transmission coefficient is T D 0

for 0 < E1 � ˆ2,

T D 4
p

E1.E1 �ˆ2/.ˆ1 � E1/

�
h
.ˆ1 � E1/

�
2E1 �ˆ2 C 2

p
E1.E1 �ˆ2/

�

Cˆ1.ˆ1 �ˆ2/ sinh2
�p

2m.ˆ1 � E1/L=„
�i�1

for ˆ2 � E1 � ˆ1, and

T D 4
p

E1.E1 �ˆ2/.E1 �ˆ1/
�
h
.E1 �ˆ1/

�
2E1 �ˆ2 C 2

p
E1.E1 �ˆ2/

�

Cˆ1.ˆ1 �ˆ2/ sin2
�p

2m.E1 �ˆ1/L=„
�i�1

for E1 � ˆ1. Classical mechanics, on the other hand predicts T D 0 for E1 < ˆ1
and T D 1 for E1 > ˆ1, in stark contrast to the quantum mechanical transmission
coefficient shown in Figure 3.2.

The phenomenon that particles can tunnel through regions even when they do
not have the required energy is denoted as tunnel effect. It has been observed in
many instances in nature and technology, e.g. in the ˛ decay of radioactive nuclei
(Gamow, 1928) or electron tunneling in heavily doped pn junctions (Esaki, 1958).
Esaki diodes actually provide a beautiful illustration of the interplay of two quantum
effects, viz. energy bands in solids and tunneling. Charge carriers can tunnel from
one energy band into a different energy band in heavily doped pn junctions. We will
discuss energy bands in Chapter 10.

Quantum mechanical tunneling is also used e.g. in scanning tunneling micro-
scopes (Binnig & Rohrer, 1982), and in flash memory and magnetic tunnel junction
devices4.

It is easy to understand from our results for the transmission probability why
quantum mechanical tunneling plays such an important role in modern memory
devices. If we want to have a memory device which is electrically controlled, then

4Magnetic tunnel junctions provide yet another beautiful example of the interplay of two
quantum effects – tunneling and exchange interactions. Exchange interactions will be discussed
in Chapter 17.
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Fig. 3.2 The transmission coefficient for a non-symmetric square barrier. The curve calculated
here corresponds to m D 511 keV=c2, ˆ1 D 10 eV, ˆ2 D 3 eV, L D 2 Å

Fig. 3.3 A simplified
schematic of a flash memory
cell. The tunneling barrier is
the thin section of the
insulator between the floating
gate and the semiconductor

Floating Gate

Control Gate

Semiconductor

Dielectric Insulator

apparently the information bits 0 and 1 can be encoded through the two states
of a device being electrically charged or neutral. If we also want to maintain
storage of the information even when the power supply is switched off (a non-
volatile memory), then the device should not discharge spontaneously, i.e. it should
be electrically insulated. The device should therefore be a conductor which is
surrounded by insulating material. Such a device is called a floating gate in flash
memory devices, see Figure 3.3.
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However, we do want to be able to charge or discharge the floating gate, i.e.
eventually we want to run a current through the surrounding insulator without
destroying it. Using a tunneling current through the insulator is an elegant way
to achieve this. Our results for the tunneling probability tell us how to switch a
tunneling current. If we substitute m D 511 keV/c2, ˆ1 � E1 ' 1 eV, and L ' 10

nm, we find

p
2m.ˆ1 � E1/L=„ ' 51

and therefore

sinh2
�p

2m.ˆ1 � E1/L=„
�

' 1

4
exp

�
2
p
2m.ˆ1 � E1/L=„

�
;

i.e. in excellent approximation

T ' 16

p
E1.E1 �ˆ2/.ˆ1 � E1/

ˆ1.ˆ1 �ˆ2/ exp
�
�2
p
2m.ˆ1 � E1/L=„

�
:

The exponential dependence on
p
ˆ1 � E1 implies that decreasing ˆ1 � E1 by

increasing E1 will have a huge impact on the tunneling current through the insulator.
We can control the energy E1 of the electrons in the floating gate through the electron
concentration in a nearby control gate. Presence of a negative charge on the nearby
control gate will increase the energy of any electrons stored in the floating gate and
allow them to tunnel into a conducting sink (usually a semiconductor) opposite to
the control gate. This process will discharge the floating gate. On the other hand,
a positive charge on the control gate will attract electrons from an electron current
through the semiconductor towards the insulating barrier and help them to tunnel
into the floating gate.

3.2 Box approximations for quantum wells, quantum wires
and quantum dots

A particle in three dimensions which can move freely in two directions, but is
confined in one direction, is said to be confined in a quantum well. A particle which
can move freely only in one direction but is confined in two directions is confined
in a quantum wire. Finally, a particle which is confined to a small region of space
is confined to a quantum dot. We will discuss energy levels and wave functions of
particles in all three situations in the approximation of confinement to rectangular
(box-like) regions. For the quantum well this means that our particle will be confined
to the region 0 < x < L1, but it can move freely in y and z direction. The particle in
the quantum wire is confined in x and y direction to 0 < x < L1, 0 < y < L2, but
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it can move freely in the z direction. Finally, box approximation for a quantum dot
means that the particle is confined to the box 0 < x < L1, 0 < y < L2, 0 < z < L3.

We will assume strict confinement in this section, i.e. the wave function of the
particle vanishes outside of the allowed region while the wave function inside the
region must continuously go to zero at the boundaries of the allowed region.

We gauge the energy axis such that in the allowed region the potential energy
of the particle vanishes, V.x/ D 0, i.e. the time-independent three-dimensional
Schrödinger equation in the allowed region takes the form

E .x/ D � „2
2m
� .x/: (3.7)

Substitution of the Fourier decomposition

 .x/ D 1p
2�

3

Z
d3k .k/ exp.ik � x/

yields k D p
2mE=„ and the general solution for given energy E takes the form

 .x/ D
Z

d2 Ok A.Ok/ exp

�
i

„
p
2mE Ok � x

�
; Ok2 D 1:

On the other hand, equation (3.7) tells us that the energy of a plane wave  .x/ D
exp.ik � x/=

p
2�

3
of momentum p D „k is

E D „2k2
2m

: (3.8)

If we have no confinement condition at all, our particle is a free particle and
equation (3.8) is the kinetic energy of a free non-relativistic particle of momentum
p D „k.

Energy levels in a quantum well

If we have a confinement condition in x-direction, e.g.  .0; y; z/ D 0 and
 .L1; y; z/ D 0, then we have to superimpose plane wave solutions in x direction to
form a standing wave with nodes at the boundary points, and we find solutions

 n1;k2;k3 .x/ D 1

�
p
2L1

expŒi.k2y C k3z/� sin

�
n1�x

L1

�
; (3.9)
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with integer n1 2 N and energy

En1;k2;k3 D „2
2m

�
k22 C k23 C n21�

2

L21

�
:

The energy of the particle is therefore determined by the discrete quantum number
n1 and the continuous wave numbers k2 and k3.

Energy levels in a quantum wire

If the particle is confined both in the x-direction to the region 0 < x < L1 and in
the y-direction to the region 0 < y < L2, the boundary conditions  .0; y; z/ D 0,
 .L1; y; z/ D 0,  .x; 0; z/ D 0 and  .x;L2; z/ D 0 yield

 n1;n2;k3 .x/ D
s

2

�L1L2
exp.ik3z/ sin

�
n1�x

L1

�
sin

�
n2�x

L2

�
; (3.10)

and the energy of the particle is determined by the discrete quantum numbers n1 and
n2 and the continuous wave number k3 for motion in z direction,

En1;n2;k3 D �2„2
2m

�
n21
L21

C n22
L22

�
C „2k23

2m
:

Energy levels in a quantum dot

If the particle is confined to the region 0 < x < L1, 0 < y < L2, 0 < z < L3, the
conditions of vanishing wave function on the boundaries yields normalized states

 n1;n2;n3 .x/ D
s

8

L1L2L3
sin

�
n1�x

L1

�
sin

�
n2�y

L2

�
sin

�
n3�z

L3

�
; (3.11)

and the energy levels are determined in terms of three discrete quantum numbers,

En1;n2;n3 D �2„2
2m

�
n21
L21

C n22
L22

C n23
L23

�
: (3.12)

Degeneracy of quantum states

If two or more different quantum states have the same energy, the quantum states
are said to be degenerate, and the corresponding energy level is also denoted as
degenerate. This happens e.g. for the quantum wire and the quantum dot if at least
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two of the length scales Li have the same value. We will discuss the quantum
dot (3.12, 3.11) with L1 D L2 D L3 � L as an example. This cubic quantum
dot has energy levels

En1;n2;n3 D �
n21 C n22 C n23

� �2„2
2mL2

:

The lowest energy level

E1;1;1 D 3
�2„2
2mL2

corresponds to a unique quantum state  1;1;1.x/ and is therefore not degenerate.
However, the next allowed energy value

E1;1;2 D E1;2;1 D E2;1;1 D 6
�2„2
2mL2

is realized for three different wave functions  1;1;2.x/,  1;2;1.x/ and  2;1;1.x/, and is
therefore three-fold degenerate. Three-fold degeneracy is also realized for the next
two energy levels

E1;2;2 D E2;1;2 D E2;2;1 D 9
�2„2
2mL2

and

E1;1;3 D E1;3;1 D E3;1;1 D 11
�2„2
2mL2

:

The next energy level is again non-degenerate,

E2;2;2 D 12
�2„2
2mL2

:

Then follows a six-fold degenerate energy level,

E1;2;3 D E2;3;1 D E3;1;2 D E1;3;2 D E3;2;1 D E2;1;3 D 14
�2„2
2mL2

:

3.3 The attractive ı function potential

The attractive ı function potential

V.x/ D �Wı.x/; W > 0;

provides a simple model system for co-existence of free states and bound states of
particles in a potential.
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Positive energy solutions of the stationary Schrödinger equation for the ı

function potential must have the form

 k.x/ D
X
˙
‚.˙x/ ŒA˙ exp.ikx/C B˙ exp.�ikx/� ; „k D p

2mE;

and normalizability limits the negative energy solutions to the from

 .x/ D
X
˙
‚.˙x/C˙ exp.�x/; „ D p�2mE:

These solutions must be continuous in order not to generate ı0.x/ terms which would
violate the Schrödinger equation,

AC C BC D A� C B�; CC D C�: (3.13)

On the other hand, integrating the Schrödinger equation from x D �� to x D �

and taking the limit � ! 0C yields the junction conditions

lim
�!0C

�
d .x/

dx

ˇ̌
ˇ̌
xD�

� d .x/

dx

ˇ̌
ˇ̌
xD��

�
D � 2m

„2 W .0/:

This implies

ik.AC � BC � A� C B�/ D � m

„2W.AC C BC C A� C B�/ (3.14)

for the free states and

 D m

„2W (3.15)

for the bound states.
Equation (3.15) tells us that there exists one bound state for W > 0 with energy

E D � m

2„2W
2:

The normalized bound state is

 .x/ D p
 exp.�jxj/: (3.16)

For the free states, we first look at solutions which are right or left moving
plane waves exp.˙ikx/=

p
2� on the half-line x > 0, i.e. we solve equations (3.13)

and (3.14) first under the conditions AC D 1=
p
2� , BC D 0, and then under the

conditions AC D 0, BC D 1=
p
2� . This yields solutions
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 Ck.x/ D 1p
2�

exp.ikx/C
r
2

�
‚.�x/



k
sin.kx/; (3.17)

 �k.x/ D 1p
2�

exp.�ikx/C
r
2

�
‚.�x/



k
sin.kx/:

The free solutions can be unified if we also allow for negative values of k (recall that
until now k was defined positive from „k D p

2mE),

 k.x/ D 1p
2�

exp.ikx/C
r
2

�
‚.�x/



k
sin.kx/: (3.18)

These states are free right or left moving plane waves for x > 0, but they do not
provide orthonormal bases for the scattering states in the attractive ı potential.
We will construct two orthonormal bases below in (3.21, 3.22) and (3.25, 3.26),
respectively.

Another useful representation for the free states is motivated by considering the
outgoing waves with amplitudes AC and B� as consequences of the incident waves
with amplitudes A� and BC. The junction conditions (3.13, 3.14) yield

�
AC
B�

�
D 1

k � i

�
k i
i k

�
�
�

A�
BC

�
: (3.19)

The unitary matrix

S D 1

k � i

�
k i
i k

�
D 1p

E � i
p

B

� p
E i

p
B

i
p

B
p

E

�
(3.20)

is also known as a scattering matrix because it describes scattering of incoming
waves off the potential. Here B � �E is the binding energy of the bound state.

The scattering matrix can be used to read off the reflection and transmission
coefficients for the ı function potential,

R D
ˇ̌
ˇ̌@B�
@A�

ˇ̌
ˇ̌2 D

ˇ̌
ˇ̌@AC
@BC

ˇ̌
ˇ̌2 D 2

k2 C 2
D B

E C B
;

T D
ˇ̌
ˇ̌@AC
@A�

ˇ̌
ˇ̌2 D

ˇ̌
ˇ̌ @B�
@BC

ˇ̌
ˇ̌2 D k2

k2 C 2
D E

E C B
:

In many situations it is also convenient to use even and odd solutions of the
Schrödinger equation. Odd (or negative parity) solutions  .x/ D � .�x/ must
satisfy AC D �B�, BC D �A�. Solving equations (3.13) and (3.14) with these
conditions yields the negative parity solutions

 k;�.x/ D 1p
�

sin.kx/: (3.21)
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The positive energy solutions of positive parity follow from AC D B�, BC D A�
and equations (3.13), (3.14) in the form

 k;C.x/ D 1p
�

k cos.kx/ �  sin.kjxj/p
2 C k2

: (3.22)

The wave number k in (3.21) and (3.22) is constrained to the positive half-line k Dp
2mE=„ > 0.
The solutions (3.16), (3.21) and (3.22) satisfy the usual orthonormalization

conditions for bound or free states, respectively (see Problem 3.9), and their
completeness relation is

 .x/ .x
0/C

Z 1

0

dk
	
 k;�.x/ k;�.x0/C  k;C.x/ k;C.x0/


 D ı.x � x0/: (3.23)

The state (3.17) describes a situation in which a particle is incident on the ı
potential from the left, and therefore on the right side of the potential (x > 0)
we only have the right moving transmitted component, whereas the wave function
for x < 0 contains both incoming and reflected components. We can find a
corresponding normalized solution and construct a basis of scattering states which
describe scattering of particles incident from the left or from the right by applying a
unitary transformation on the basis of even and odd scattering states (3.22, 3.21):

�
 k;l.x/
 k;r.x/

�
D 1p

2.2 C k2/

�p
2 C k2  C ikp
2 C k2 �  � ik

��
 k;C.x/
 k;�.x/

�
: (3.24)

This yields a basis with states describing incidence of particles from the left,

 k;l.x/ D k exp.ikx/C 2‚.�x/ sin.kx/p
2�.2 C k2/

; (3.25)

and incidence of particles from the right,

 k;r.x/ D k exp.�ikx/ � 2‚.x/ sin.kx/p
2�.2 C k2/

: (3.26)

The completeness relation is

 .x/ .x
0/C

Z 1

0

dk
	
 k;l.x/ k;l.x

0/C  k;r.x/ k;r.x
0/

 D ı.x � x0/: (3.27)

There is no bound state solution for a repulsive ı potential

V.x/ D Wı.x/ D „2
m
ı.x/
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and the even parity energy eigenstates become

�k;C.x/ D 1p
�

k cos.kx/C  sin.kjxj/p
2 C k2

: (3.28)

The completeness relation for the eigenfunctions of the repulsive ı potential is
therefore

Z 1

0

dk
	
 k;�.x/ k;�.x0/C �k;C.x/�k;C.x0/


 D ı.x � x0/: (3.29)

3.4 Evolution of free Schrödinger wave packets

Another important model system for quantum behavior is provided by free wave
packets. We will discuss in particular free Gaussian wave packets because they
provide a simple analytic model for dispersion of free wave packets. This example
will also demonstrate that the spatial and temporal range of free particle models is
constrained in quantum physics. We will see that free wave packets of subatomic
particles disperse on relatively short time scales, which are however too long to
interfere with lab experiments involving free electrons or nucleons. Nevertheless,
the discussion of the dispersion of free wave packets makes it also clear that simple
interpretations of particles in quantum mechanics as highly localized free wave
packets which every now and then get disturbed through interactions with other
wave packets are not feasible. Particles can exist in the form of not too small free
wave packets for a little while, but atomic or nuclear size wave packets must be
stabilized by interactions to avoid rapid dispersion. We will see examples of stable
wave packets in Chapters 6 and 7.

The free Schrödinger propagator

Substitution of a Fourier ansatz

 .x; t/ D 1

2�

Z 1

�1
dk
Z 1

�1
d!  .k; !/ expŒi.kx � !t/�

into the free Schrödinger equation shows that the general solution of that equation
in one dimension is given in terms of a wave packet

 .k; !/ D p
2� .k/ı

�
! � „k2

2m

�
;

 .x; t/ D 1p
2�

Z 1

�1
dk .k/ exp

�
i

�
kx � „k2

2m
t

��
: (3.30)
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The amplitude  .k/ is related to the initial condition  .x; 0/ through inverse
Fourier transformation

 .k/ D 1p
2�

Z 1

�1
dx .x; 0/ exp.�ikx/ ;

and substitution of  .k/ into (3.30) leads to the expression

 .x; t/ D
Z 1

�1
dx0 U.x � x0; t/ .x0; 0/ (3.31)

with the free propagator

U.x; t/ D 1

2�

Z 1

�1
dk exp

�
i

�
kx � „k2

2m
t

��
: (3.32)

This is sometimes formally integrated as5

U.x; t/ D
r

m

2� i„t
exp

�
i
mx2

2„t

�
: (3.33)

The propagator is the particular solution of the free Schrödinger equation

i„ @
@t

U.x; t/ D � „2
2m

@2

@x2
U.x; t/

with initial condition U.x; 0/ D ı.x/. It yields the corresponding retarded Green’s
function

i„ @
@t
G.x; t/C „2

2m

@2

@x2
G.x; t/ D ı.t/ı.x/; (3.34)

G.x; t/
ˇ̌
ˇ
t<0

D 0; (3.35)

through

G.x; t/ D ‚.t/

i„ U.x; t/: (3.36)

This can also be derived from the Fourier decomposition of equation (3.34), which
yields

5The propagator is commonly denoted as K.x; t/. However, we prefer the notation U.x; t/ because
the propagator is nothing but the x representation of the time evolution operator U.t/ introduced in
Chapter 13.
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G.x; t/ D 1

.2�/2„
Z 1

�1
dk
Z 1

�1
d!

expŒi.kx � !t/�

! � .„k2=2m/C i�
:

The negative imaginary shift of the pole .„k2=2m/ � i�, � ! C0, in the
complex ! plane ensures that the condition (3.35) is satisfied. We will encounter
time evolution operators and Green’s functions in many places in this book. The
designation propagator is often used both for the time evolution operator U.x; t/
and for the related Green’s function G.x; t/. U.x; t/ propagates initial conditions
as in equation (3.31) while G.x; t/ propagates perturbations or source terms in the
Schrödinger equation.

Width of Gaussian wave packets

A wave packet  .x; t/ is denoted as a Gaussian wave packet if j .x; t/j2 is a
Gaussian function of x. We will see below through direct Fourier transformation
that  .x; t/ is a Gaussian wave packet in x if and only if  .k; t/ is a Gaussian wave
packet in k.

Normalized Gaussian wave packets have the general form

 .x; t/ D
�
2˛.t/

�

� 1
4

exp
��˛.t/Œx � x0.t/�

2 C i'.x; t/
�
; (3.37)

and we will verify that the real coefficient ˛.t/ is related to the variance through
�x2.t/ D 1=4˛.t/. The expectation values of x and x2 are readily evaluated,

hxi.t/ D
r
2˛.t/

�

Z 1

�1
dx x exp

��2˛.t/Œx � x0.t/�
2
�

D
r
2˛.t/

�

Z 1

�1
d� Œ� C x0.t/� exp

��2˛.t/�2� D x0.t/;

hx2i.t/ D
r
2˛.t/

�

Z 1

�1
dx x2 exp

��2˛.t/Œx � x0.t/�
2
�

D
r
2˛.t/

�

Z 1

�1
d� Œ� C x0.t/�

2 exp
��2˛.t/�2�

D
r
2˛.t/

�

�
x20.t/ � 1

2

d

d˛.t/

�Z 1

�1
d� exp

��2˛.t/�2�

D x20.t/C 1

4˛.t/
;
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and therefore we find indeed

�x2.t/ D hx2i.t/ � hxi2.t/ D 1

4˛.t/
: (3.38)

Free Gaussian wave packets in Schrödinger theory

We assume that the wave packet of a free particle at time t D 0was a Gaussian wave
packet of width �x,

 .x; 0/ D 1

.2��x2/1=4
exp

�
� .x � x0/2

4�x2
C ik0x

�
: (3.39)

This yields a Gaussian wave packet of constant width

�k D 1

2�x

in k space,

 .k/ D 1p
2�

Z 1

�1
dx .x; 0/ exp.�ikx/

D 1

.2�/3=4.�x2/1=4

Z 1

�1
dx exp

�
� .x � x0/2

4�x2
C i.k0 � k/x

�

D expŒi.k0 � k/x0�

.2�/3=4.�x2/1=4

Z 1

�1
d� exp

�
� �2

4�x2
C i.k0 � k/�

�

D
�
2�x2

�

� 1
4

exp
	��x2.k � k0/

2 � i.k � k0/x0


; (3.40)

 .k; t/ D  .k/ exp

�
�i

„k2

2m
t

�
: (3.41)

Substitution of  .k/ into equation (3.30) then yields

 .x; t/ D
�
�x2

2�3

� 1
4

exp
���x2k20 C ik0x0

�

�
Z 1

�1
dk exp

�
�
�
�x2 C i

„t

2m

�
k2 C �

2�x2k0 C i.x � x0/
�

k

�

D .2��x2/1=4

Œ2��x2 C i�.„t=m/�1=2
exp

���x2k20 C ik0x0
�
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� exp

"	
2�x2k0 C i.x � x0/


2
4�x2 C 2i.„t=m/

#

D .2��x2/1=4

Œ2��x2 C i�.„t=m/�1=2
exp

"
� Œx � x0 � .„k0=m/t�2

4�x2 C .„2t2=m2�x2/

#

� exp

"
i

 
k0x � „k20

2m
t C „t

8m

Œx � x0 � .„k0=m/t�2

.�x2/2 C .„2t2=4m2/

!#
: (3.42)

Comparison of equation (3.42) with equations (3.37, 3.38) yields

�x2.t/ D �x2 C „2t2
4m2�x2

; (3.43)

i.e. a strongly localized packet at time t D 0 will disperse very fast, because the
dispersion time scale � is proportional to �x2. The reason for the fast dispersion
is that a strongly localized packet at t D 0 comprises many different wavelengths.
However, each monochromatic component in a free wave packet travels with its own
phase velocity

v.k/ D !

k
D „k

2m
;

and a free strongly localized packet therefore had to emerge from rapid collapse
and will disperse very fast. On the other hand, a poorly localized packet is almost
monochromatic and therefore slowly changes in shape.

The relevant time scale for decay of the wave packet is

� D 2m�x2

„ : (3.44)

Electron guns often have apertures in the millimeter range. Assuming �x D 1mm
for an electron wave packet yields � ' 2 � 10�2 seconds. This sounds like a short
time scale for dispersion of the wave packet. However, on the time scales of a
typical lab experiment involving free electrons, dispersion of electron wave packets
is completely negligible, see e.g. Problem 3.17.

On the other hand, suppose we can produce a free electron wave packet with
atomic scale localization, �x D 1Å. This wave packet would disperse with an
extremely short time scale � ' 2 � 10�16 seconds, which means that the wave
function of that electron would be smeared across the planet within a minute. See
also Problem 3.18 for a corresponding discussion for neutrons.

We will see in Chapters 6 and 7 that wave packets can remain localized under the
influence of forces, i.e. the notion of stable electrons in atoms makes sense, although
the notion of highly localized free electrons governed by the free Schrödinger
equation is limited to small distance and time scales.



56 3 Simple Model Systems

We can infer from the example of the free Gaussian wave packet that the kinetic
term in the Schrödinger equation drives wave packets apart. If there is no attractive
potential term, the kinetic term decelerates any eventual initial contraction of a free
wave packet and ultimately pushes the wave packet towards accelerated dispersion.
We will see that this action of the kinetic term can be compensated by attractive
potential terms in the Schrödinger equation. Balance between the collapsing force
from attractive potentials and the dispersing force from the kinetic term can stabilize
quantum systems.

Comparison of equation (3.41) with equations (3.37, 3.38) yields constant width
of the wave packet in k space and therefore

�p D „�k D „
2�x

;

i.e. there is no dispersion in momentum. The product of uncertainties of momen-
tum and location of the particle satisfies �p�x.t/ � „=2, in agreement with
Heisenberg’s uncertainty relation, which will be derived for general wave packets in
Section 5.1.

The energy expectation value and uncertainty of the wave packet are

hEi D „2
2m

�
k20 C 1

4�x2

�

and

�E D „2
2m

s
k20
�x2

C 1

8�x4
:

Suppose we want to observe strong localization of a free particle. The decay
time (3.44) then defines a measure for the time window �t of observability of the
particle. This satisfies

�E�t D „
r
1

8
C k20�x2 � „p

8
;

in agreement with the qualitative energy-time uncertainty relation (5.7), which we
will encounter in Section 5.1.

The free Gaussian wave packet reproduces momentum eigenstates in the limit
�x2 ! 1 in the sense

lim
�x2!1

�
�x2

2�

�1=4
 .k/ D ı.k � k0/;

lim
�x2!1

�
�x2

2�

�1=4
 .x; t/ D 1p

2�
exp

�
i

�
k0x � „t

2m
k20

��
:
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3.5 Problems

3.1. Show that the tunneling probability for the square barrier in Figure 3.1 always
satisfies T < 1 if ˆ2 > 0.

Remark. Don’t be fooled by Figure 3.2. The first transmission maximum at E1 '
2ˆ1 corresponds already to T ' 0:998 and the next transmission maximum is even
closer to 1, but it only looks like the transmission probability would reach 1 in
Figure 3.2.

Tunneling resonances T D 1 occur for ˆ2 D 0. For which values of E1 and
k1 do this tunneling resonances occur? Which geometric matching condition holds
between the wavelength of the incident particles and the square barrier for the
tunneling resonances?

3.2a. Calculate the reflection and transmission coefficients for a particle that falls
down a potential step of height V0.

3.2b. Calculate the reflection and transmission coefficients for a particle that runs
against a potential step of height V0 both for particle energy 0 < E < V0 and for
E > V0.

3.3. Calculate the reflection and transmission coefficients for a particle in the .x; y/
plane which moves in the potential V.x; y/ D V0‚.x/. Assume that the particle
initially approached the potential step from the left,

 in.x; y/ D A expŒi.kxx C kyy/�; x < 0; kx > 0:

Solution. The reflected wave function is

 r.x; y/ D B expŒi.�kxx C kyy/�; x < 0:

The time-independent Schrödinger equation for the transmitted component of the
wave function

 t.x; y/ D C expŒi.k0
xx C k0

yy/�; x > 0;

implies

k2x C k2y D k02
x C k02

y C 2mV0
„2 :

However, smoothness of the wave function across the step does not only have to
hold for all times (this is what requires equal particle energy from equal time-
dependence exp.�iEt=„/ of the wave functions on both sides of the step), but also
for all locations along the step, i.e. for all y values. The latter requirement implies
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equal exp.ikyy/ factors on both sides of the step, and we find with k0
y D ky exactly

the same set of conditions that apply to the one-dimensional step from Problem 2,

k2x D k02
x C 2mV0

„2 ; A C B D C; kx.A � B/ D k0
xC;

i.e. we find the same results as in Problem 2, except for the substitution E ! Ex D
„2k2x=2m if we want to express results in terms of energies rather than wave numbers.

3.4. A barrier for motion of a particle consists of a combination of two repulsive ı
function potentials with separation a,

V.x/ D Wı.x/C Wı.x � a/:

Calculate the reflection and transmission coefficients for particles with
momentum „k.

3.5. Why is there a simple relation between momentum uncertainty and energy
level in the box model for a quantum dot? What is the relation?

3.6. A very simple cubic model for a color center in an alkali halide crystal consists
of an electron confined to a cube of length L. How large is the length L if the electron
absorbs photons of energy 2.3 eV?

Mollwo had found the empirical relation �d2 D 5:02 � 10�5 m2 Hz between
absorption frequencies � of color centers and lattice constants d in alkali halide
crystals. For the simple cubic model, which relation between L and d follows from
Mollwo’s relation?

A spherical model is also very simple, but gives a better estimate for the ratio
between size of the color center and lattice constant, see the corresponding problem
in Chapter 7.

3.7. Calculate the momentum uncertainty in the bound state (3.16).

3.8. Calculate the scattering matrix for the square barrier from Section 3.1.

3.9. Show that the bound state (3.16) of the attractive ı potential is orthogonal to
the free states (3.21, 3.22),

Z 1

�1
dx k;˙.x/ .x/ D 0:

Show also that the free eigenstates (3.21, 3.22) and (3.28) of the attractive or
repulsive ı potential are normalized according to

Z 1

�1
dx k;�.x/ k0;�.x/ D ı.k � k0/;

Z 1

�1
dx k;C.x/ k0;C.x/ D ı.k � k0/;

Z 1

�1
dx�k;C.x/�k0;C.x/ D ı.k � k0/:
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Remark. You have to use that the wave numbers k and k0 are positive.

3.10. Construct a basis of scattering states for the repulsive ı potential which
consists of states describing incidence of particles from the left or from the right
on the potential.

3.11. Show that all the momentum expectation values hpni are conserved for a free
particle.

If the particle is moving in a potential V.x/, find a necessary and sufficient
condition for V.x/ such that hpni is constant.

3.12. Suppose  .x; t/ is a normalizable free wave packet in one dimension, e.g.
the Gaussian wave packet from Section 3.4. Which classical quantity of the particle
corresponds to the integral

R
dx j.x/ of the current density? Does a similar result

hold for
R

d3x j.x/ in three dimensions?

3.13. The wave function of a free particle at time t D 0 is

 .x; 0/ D
r
2a3

�

1

x2 C a2
:

How large are the uncertainties �x.t/ and �p in location and momentum of the
particle?

Remark. The wave function  .x; t/ of the particle can be expressed in terms of
complex error functions, but it is easier to use the wave function  .k; t/ in k space
for the calculation of the uncertainties.

3.14. The wave function of a free particle at time t D 0 is

 .x; 0/ D p
 exp.�jxj/ : (3.45)

One could produce this state as initial state of a free particle by first capturing the
particle in the bound state of an attractive ı potential and then switching off the
potential.

Calculate the wave function  .k; t/ of the particle.
How large are the uncertainties �x.t/ and �p in location and momentum of the

particle?

3.15. The wave function of a free particle at time t D 0 is

 .x; 0/ D ‚.x C a/‚.a � x/p
2a

D ‚.a � x/ �‚.�x � a/p
2a

D ‚.x C a/ �‚.x � a/p
2a

: (3.46)

Calculate the wave function  .x; t/ of the particle.
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Solution. The wave function in momentum space is

 .k/ D 1

2
p
�a

Z a

�a
dx exp.�ikx/ D sin.ka/p

�ak
;

 .k; t/ D  .k/ exp

�
�i

„k2

2m
t

�
:

The wave function  .x; t/ can be evaluated numerically from the first line of the
following representations,

 .x; t/ D 1

2� i
p
2a

Z 1

�1
dk

expŒik.x C a/� � expŒik.x � a/�

k
exp

�
�i

„t

2m
k2
�

D 1

2� i
p
2a

Z 1

�1
dk

expŒik.x C a/� � expŒik.x � a/�

k C i�
exp

�
�i

„t

2m
k2
�

D 1

2� i
p
2a

Z 1

�1
dk

expŒik.x C a/� � expŒik.x � a/�

k � i�
exp

�
�i

„t

2m
k2
�
:

However, we can also proceed with the analytical evaluation of the integrals by
using the observation

˙ @

@a

Z 1

�1
dk

expŒik.x ˙ a/�

k
exp

�
�i

„t

2m
k2
�

D i

r
2�m

i„t
exp

�
i

m

2„t
.x ˙ a/2

�
:

Integration with respect to the parameter a then yields

 .x; t/ D 1

2
p
2a

�
erf

�r
m

2i„t
.x C a/

�
� erf

�r
m

2i„t
.x � a/

��
; (3.47)

where the error function is defined as

erf.z/ D 2p
�

Z z

0

du exp.�u2/:

One can easily check that the error functions erfŒ
p

m=2i„t.x � x0/� satisfy the free
Schrödinger equation. The wave function  .x; t/ from equation (3.47) also satisfies
the initial condition (3.46) through

lim
t!0�i�

erf

�r
m

2i„t
.x � x0/

�
D ‚.x � x0/ �‚.x0 � x/:

3.16. The initial condition (3.39) yielded a Gaussian wave packet that had its
minimal spread in location x exactly at the time t D 0. Before that particular
moment, the wave packet was contracting and afterwards it was spreading.
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Find an initial condition  .x; 0/ for a Gaussian wave packet that will continue to
contract for some time �t before it expands.

3.17. In their famous verification of the wave properties of electrons through
diffraction off the surface of a nickel crystal, Davisson and Germer6 used an electron
gun with an aperture of about 1mm. The electron beam that produced the most
prominent diffraction pattern had a kinetic energy of 54 eV, and the distance from
the electron gun to the nickel target was 7mm. Show that dispersion of the electron
wave packet on the way from the electron gun to the target is completely negligible.

3.18. Suppose we could produce a free neutron with a nuclear scale width �x D
1 fm. How large is the dispersion time scale (3.44) for the neutron?

Neutron beam experiments to measure e.g. the ˇ decay of free neutrons use
beams with apertures of a few centimeters7. How large is the dispersion time scale
for neutrons with �x ' 3 cm? How does this compare to the lifetime of free
neutrons?

6C. Davisson, L.H. Germer, Phys. Rev. 30, 705 (1927).
7See e.g. J.M. Robson, Phys. Rev. 83, 349 (1951) for one of the early lifetime measurements of
free neutrons, or H.P. Mumm et al., Rev. Sci. Instrum. 75, 5343 (2004), for a modern experimental
setup.



Chapter 4
Notions from Linear Algebra
and Bra-Ket Notation

The Schrödinger equation (1.14) is linear in the wave function  .x; t/. This implies
that for any set of solutions  1.x; t/,  2.x; t/; : : : , any linear combination  .x; t/ D
C1 1.x; t/C C2 2.x; t/C : : : with complex coefficients Cn is also a solution. The
set of solutions of equation (1.14) for fixed potential V will therefore have the
structure of a complex vector space, and we can think of the wave function  .x; t/
as a particular vector in this vector space. Furthermore, we can map this vector
bijectively into different, but equivalent representations where the wave function
depends on different variables. An example of this is Fourier transformation (2.5)
into a wave function which depends on a wave vector k,

 .k; t/ D 1p
2�

3

Z
d3x exp.�ik � x/  .x; t/:

We have already noticed that this is sloppy notation from the mathematical point
of view. We should denote the Fourier transformed function with Q .k; t/ to make
it clear that Q .k; t/ and  .x; t/ have different dependencies on their arguments
(or stated differently, to make it clear that  .k; t/ and  .x; t/ are really different
functions). However, there is a reason for the notation in equations (2.4, 2.5). We
can switch back and forth between  .x; t/ and  .k; t/ using Fourier transformation.
This implies that any property of a particle that can be calculated from the wave
function  .x; t/ in x space can also be calculated from the wave function  .k; t/ in
k space. Therefore, following Dirac, we nowadays do not think any more of  .x; t/
as a wave function of a particle, but we rather think more abstractly of .t/ as a time-
dependent quantum state, with particular representations of the quantum state  .t/
given by the wave functions .x; t/ or .k; t/. There are infinitely more possibilities
to represent the quantum state  .t/ through functions. For example, we could
perform a Fourier transformation only with respect to the y variable and represent
 .t/ through the wave function  .x; ky; z; t/, or we could perform an invertible
transformation to completely different independent variables. In 1939, Paul Dirac
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introduced a notation in quantum mechanics which emphasizes the vector space and
representation aspects of quantum states in a very elegant and suggestive manner.
This notation is Dirac’s bra-ket notation, and it is ubiquitous in advanced modern
quantum mechanics. It is worthwhile to use bra-ket notation from the start, and it is
most easily explained in the framework of linear algebra.

4.1 Notions from linear algebra

The mathematical structure of quantum mechanics resembles linear algebra in many
respects, and many notions from linear algebra are very useful in the investigation
of quantum systems. Bra-ket notation makes the linear algebra aspects of quantum
mechanics particularly visible and easy to use. Therefore we will first introduce a
few notions of linear algebra in standard notation, and then rewrite everything in
bra-ket notation.

Tensor products

Suppose V is an N-dimensional real vector space with a Cartesian basis1 Oea, 1 �
a � N, Oea

T � Oeb D ıab. Furthermore, assume that ua, va are Cartesian components of
the two vectors u and v,

u D
NX

aD1
ua Oea � ua Oea:

Here we use summation convention: Whenever an index appears twice in a
multiplicative term, it is automatically summed over its full range of values. We
will continue to use this convention throughout the remainder of the book.

The tensor product M D u ˝ vT of the two vectors yields an N � N matrix with
components Mab D uavb in the Cartesian basis:

M D u ˝ vT D uavb Oea ˝ Oeb
T: (4.1)

Tensor products appear naturally in basic linear algebra e.g. in the following
simple problem: Suppose u D ua Oea and w D wa Oea are two vectors in an
N-dimensional vector space, and we would like to calculate the part wk of the vector
w that is parallel to u. The unit vector in the direction of u is Ou D u=juj, and we
have

wk D Oujwj cos.u;w/; (4.2)

1We write scalar products of vectors initially as uT � v to be consistent with proper tensor product
notation used in (4.1), but we will switch soon to the shorter notations u � v, u ˝ v for scalar
products and tensor products.
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where cos.u;w/ D Ou � Ow is the cosine of the angle between u and w. Substituting the
expression for cos.u;w/ into (4.2) yields

wk D Ou. Ou � w/ D Oua Oubwc Oea.Oeb
T � Oec/ D Oua Oubwc.Oea ˝ Oeb

T/ � Oec

D . Ou ˝ OuT/ � w; (4.3)

i.e. the tensor product Pk D Ou˝ OuT is the projector onto the direction of the vector u.
The matrix M is called a 2nd rank tensor due to its transformation properties

under linear transformations of the vectors appearing in the product.
Suppose we perform a transformation of the Cartesian basis vectors Oea to a new

set Oe0
i of basis vectors,

Oea ! Oe0
i D OeaRa

i; (4.4)

subject to the constraint that the new basis vectors also provide a Cartesian basis,

Oe0
i � Oe0

j D ıabRa
iR

b
j D Ra

iRaj D ıij: (4.5)

Linear transformations which map Cartesian bases into Cartesian bases are denoted
as rotations.

We defined Raj � ıabRb
j in equation (4.5), i.e. numerically Raj D Ra

j.
Equation (4.5) is in matrix notation

RT � R D 1; (4.6)

i.e. RT D R�1.
However, a change of basis in our vector space does nothing to the vector v,

except that the vector will have different components with respect to the new basis
vectors,

v D Oeav
a D Oe0

iv
0i D OeaRa

iv
0i: (4.7)

Equations (4.7) and (4.5) and the uniqueness of the decomposition of a vector with
respect to a set of basis vectors imply

va D Ra
iv

0i; v0i D .R�1/iava D .RT/iav
a D vaRa

i: (4.8)

This is the passive interpretation of transformations: The transformation changes
the reference frame, but not the physical objects (here: vectors). Therefore the
expansion coefficients of the physical objects change inversely (or contravariant)
to the transformation of the reference frame. We will often use the passive
interpretation for symmetry transformations of quantum systems.

The transformation laws (4.4) and (4.8) define first rank tensors, because the
transformation laws are linear (or first order) in the transformation matrices R
or R�1.
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The tensor product M D u ˝ vT D uavb Oea ˝ Oeb
T then defines a second rank

tensor, because the components and the basis transform quadratically (or in second
order) with the transformation matrices R or R�1,

M0ij D u0iv0j D .R�1/ia.R�1/jbuavb D .R�1/ia.R�1/jbMab; (4.9)

Oe0
i ˝ Oe0

j
T D Oea ˝ Oeb

TRa
iR

b
j: (4.10)

The concept immediately generalizes to n-th order tensors.
Writing the tensor product explicitly as u ˝ vT reminds us that the a-th row of

M is just the row vector uavT, while the b-th column is just the column vector uvb.
However, usually one simply writes u ˝ v for the tensor product, just as one writes
u � v instead of uT � v for the scalar product.

Dual bases

We will now complicate things a little further by generalizing to more general sets
of basis vectors which may not be orthonormal. Strictly speaking this is overkill
for the purposes of quantum mechanics, because the infinite-dimensional basis
vectors which we will use in quantum mechanics are still mutually orthogonal,
just like Euclidean basis vectors in finite-dimensional vector spaces. However,
sometimes it is useful to learn things in a more general setting to acquire a proper
understanding, and besides, non-orthonormal basis vectors are useful in solid state
physics (as explained in an example below) and unavoidable in curved spaces.

Let ai, 1 � i � N, be another basis of the vector space V . Generically this
basis will not be orthonormal: ai � aj ¤ ıij. The corresponding dual basis with basis
vectors ai is defined through the requirements

ai � aj D ıi
j: (4.11)

Apparently a basis is self-dual (ai D ai) if and only if it is orthonormal
(i.e. Cartesian).

For the explicit construction of the dual basis, we observe that the scalar product
of the N vectors ai defines a symmetric N � N matrix

gij D ai � aj:

This matrix is not degenerate, because otherwise it would have at least one vanishing
eigenvalue, i.e. there would exist N numbers Xi (not all vanishing) such that
gijXj D 0. This would imply existence of a non-vanishing vector X D Xiai with
vanishing length,

X2 D XiXjai � aj D XigijX
j D 0:
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The matrix gij is therefore invertible, and we denote the inverse matrix with gij,

gijgjk D ıi
k:

The inverse matrix can be used to construct the dual basis vectors as

ai D gijaj: (4.12)

The condition for dual basis vectors is readily verified,

ai � ak D gijaj � ak D gijgjk D ıi
k:

For an example for the construction of a dual basis, consider Figure 4.1. The
vectors a1 and a2 provide a basis. The angle between a1 and a2 is �=4 radian, and
their lengths are ja1j D 2 and ja2j D p

2.
The matrix gij therefore has the following components in this basis,

g D
�

g11 g12
g21 g22

�
D
�

a1 � a1 a1 � a2
a2 � a1 a2 � a2

�
D
�
4 2

2 2

�
:

The inverse matrix is then

g�1 D
�

g11 g12

g21 g22

�
D 1

2

�
1 �1

�1 2

�
:

This yields with (4.12) the dual basis vectors

a1 D 1

2
a1 � 1

2
a2; a2 D � 1

2
a1 C a2:

These equations determined the vectors ai in Figure 4.1.

Fig. 4.1 The blue vectors are
the basis vectors ai. The red
vectors are the dual basis
vectors ai

2

1

2

1

a

a

a

a
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Decomposition of the identity

Equation (4.11) implies that the decomposition of a vector v 2 V with respect to the
basis ai can be written as (note summation convention)

v D ai.ai � v/; (4.13)

i.e. the projection of v onto the i-th basis vector ai (the component vi in standard
notation) is given through scalar multiplication with the dual basis vector ai:

vi D ai � v:

The right hand side of equation (4.13) contains three vectors in each summand, and
brackets have been employed to emphasize that the scalar product is between the
two rightmost vectors in each term. Another way to make that clear is to write the
combination of the two leftmost vectors in each term as a tensor product:

v D ai ˝ ai � v:

If we first evaluate all the tensor products and sum over i, we have for every vector
v 2 V

v D .ai ˝ ai/ � v;

which makes it clear that the sum of tensor products in this equation adds up to the
identity matrix,

ai ˝ ai D 1: (4.14)

This is the statement that every vector can be uniquely decomposed in terms of the
basis ai, and therefore this is a basic example of a completeness relation.

Note that we can just as well expand v with respect to the dual basis:

v D viai D ai.ai � v/ D .ai ˝ ai/ � v;

and therefore we also have the dual completeness relation

ai ˝ ai D 1: (4.15)

We could also have inferred this from transposition of equation (4.14).
Linear transformations of vectors can be written in terms of matrices,

v0 D A � v:
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If we insert the decompositions with respect to the basis ai,

v0 D ai ˝ ai � v0 D ai ˝ ai � A � aj ˝ aj � v;

we find the equation in components v0i D Ai
jv

j, with the matrix elements of the
operator A,

Ai
j D ai � A � aj: (4.16)

Using (4.14), we can also infer that

A D ai ˝ ai � A � aj ˝ aj D Ai
jai ˝ aj: (4.17)

An application of dual bases in solid state physics: The Laue
conditions for elastic scattering off a crystal

Non-orthonormal bases and the corresponding dual bases play an important role
in solid state physics. Assume e.g. that ai, 1 � i � 3, are the three fundamental
translation vectors of a three-dimensional lattice L. They generate the lattice
according to

` D aim
i; mi 2 Z:

In three dimensions one can easily construct the dual basis vectors using cross
products:

ai D �ijk aj � ak

2a1 � .a2 � a3/
D 1

2V
�ijkaj � ak; (4.18)

where V D a1 � .a2 � a3/ is the volume of the lattice cell spanned by the basis
vectors ai.

The vectors ai, 1 � i � 3, generate the dual lattice or reciprocal lattice QL
according to

Q̀ D niai; ni 2 Z;

and the volume of a cell in the dual lattice is

QV D a1 � .a2 � a3/ D 1

V
: (4.19)

Max von Laue derived in 1912 the conditions for constructive interference in the
coherent elastic scattering off a regular array of scattering centers. If the directions
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k
k’

α

α
φ

’ a i

Fig. 4.2 The Laue equation (4.20) is the condition for constructive interference between scattering
centers along the line generated by the primitive basis vector ai

of the incident and scattered waves of wavelength � are Oek and Oe0
k, as shown in

Figure 4.2, the condition for constructive interference from all scattering centers
along a line generated by ai is

jaij
�
cos˛0 � cos˛

� D �Oe0
k � Oek

� � ai D ni�; (4.20)

with integer numbers ni.
In terms of the wavevector shift

�k D k0 � k D 2�

�

�Oe0
k � Oek

�

equation (4.20) can be written more neatly as

�k � ai D 2�ni: (4.21)

If we want to have constructive interference from all scattering centers in the
crystal this condition must hold for all three values of i. In case of surface scattering
equation (4.21) must only hold for the two vectors a1 and a2 which generate the
lattice structure of the scattering centers on the surface.

In 1913 W.L. Bragg observed that for scattering from a bulk crystal equa-
tions (4.21) are equivalent to constructive interference from specular reflection from
sets of equidistant parallel planes in the crystal, and that the Laue conditions can be
reduced to the Bragg equation in this case. However, for scattering from one or two-
dimensional crystals2 and for the Ewald construction one still has to use the Laue
conditions.

2For scattering off two-dimensional crystals the Laue conditions can be recast in simpler forms in
special cases. E.g. for orthogonal incidence a plane grating equation can be derived from the Laue
conditions, or if the momentum transfer �k is in the plane of the crystal a two-dimensional Bragg
equation can be derived.
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If we study scattering off a three-dimensional crystal, we know that the three dual
basis vectors ai span the whole three-dimensional space. Like any three-dimensional
vector, the wavevector shift can then be expanded in terms of the dual basis vectors
according to

�k D ai.ai ��k/;

and substitution of equation (4.21) yields

�k D 2�niai;

i.e. the condition for constructive interference from coherent elastic scattering off a
three-dimensional crystal is equivalent to the statement that �k=.2�/ is a vector in
the dual lattice QL. Furthermore, energy conservation in the elastic scattering implies
jp0j D jpj,

�k2 C 2k ��k D 0: (4.22)

Equations (4.21) and (4.22) together lead to the Ewald construction for the momenta
of elastically scattered beams (see Figure 4.3): Draw the dual lattice and multiply
all distances by a factor 2� . Then draw the vector �k from one (arbitrary) point of
this rescaled dual lattice. Draw a sphere of radius jkj around the endpoint of �k.
Any point in the rescaled dual lattice which lies on this sphere corresponds to the k0
vector of an elastically scattered beam; k0 points from the endpoint of �k (the center
of the sphere) to the rescaled dual lattice point on the sphere.

We have already noticed that for scattering off a planar array of scattering centers,
equation (4.21) must only hold for the two vectors a1 and a2 which generate the
lattice structure of the scattering centers on the surface. And if we have only a

k

k’ Δk

Fig. 4.3 The Ewald construction of the wave vectors of elastically scattered beams. The points
correspond to the reciprocal lattice stretched with the factor 2�
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linear array of scattering centers, equation (4.21) must only hold for the vector a1
which generates the linear array. In those two cases the wavevector shift can be
decomposed into components orthogonal and parallel to the scattering surface or
line, and the Laue conditions then imply that the parallel component is a vector in
the rescaled dual lattice,

�k D �k? C�kk D �k? C ai.ai ��k/ D �k? C 2�niai:

The rescaled dual lattice is also important in the umklapp processes in phonon-
phonon or electron-phonon scattering in crystals. Lattices can only support oscil-
lations with wavelengths larger than certain minimal wavelengths, which are
determined by the crystal structure. As a result momentum conservation in phonon-
phonon or electron-phonon scattering involves the rescaled dual lattice,

X
kin �

X
kout 2 2� � QL;

see textbooks on solid state physics.

Bra-ket notation in linear algebra

The translation of the previous notions in linear algebra into bra-ket notation starts
with the notion of a ket vector for a vector, v D jvi, and a bra vector for a transposed
vector3, vT D hvj. The tensor product is

u ˝ vT D juihvj;

and the scalar product is

uT � v D hujvi:

The appearance of the brackets on the right hand side motivated the designation “bra
vector” for a transposed vector and “ket vector” for a vector.

The decomposition of a vector in the basis jaii, using the dual basis jaii is

jvi D jaiihaijvi;

and corresponds to the decomposition of unity

jaiihaij D 1:

3In the case of a complex finite-dimensional vector space, the “bra vector” would actually be the
transpose complex conjugate vector, hvj D vC D v�T.
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A linear operator maps vectors jvi into vectors jv0i, jv0i D Ajvi. This reads in
components

haijv0i D haijAjvi D haijAjajihajjvi;
where

Ai
j � haijAjaji

are the matrix elements of the linear operator A. There is no real advantage in using
bra-ket notation in the linear algebra of finite-dimensional vector spaces, but it turns
out to be very useful in quantum mechanics.

4.2 Bra-ket notation in quantum mechanics

We can represent a state as a probability amplitude in x-space or in k-space, and we
can switch between both representations through Fourier transformation. The state
itself is apparently independent from which representation we choose, just like a
vector is independent from the particular basis in which we expand the vector. In
Chapter 7 we will derive a wave function  1s.x; t/ for the relative motion of the
proton and the electron in the lowest energy state of a hydrogen atom. However,
it does not matter whether we use the wave function  1s.x; t/ in x-space or the
Fourier transformed wave function  1s.k; t/ in k-space to calculate observables
for the ground state of the hydrogen atom. Every information on the state can
be retrieved from each of the two wave functions. We can also contemplate
more exotic possibilities like writing the  1s state as a linear combination of the
oscillator eigenstates that we will encounter in Chapter 6. There are infinitely many
possibilities to write down wave functions for one and the same quantum state,
and all possibilities are equivalent. Therefore wave functions are only particular
representations of a state, just like the components haijvi of a vector jvi in an
N-dimensional vector space provide only a representation of the vector with respect
to a particular basis jaii, 1 � i � N.

This motivates the following adaptation of bra-ket notation: The (generically
time-dependent) state of a quantum system is j .t/i, and the x-representation is
just the specification of j .t/i in terms of its projection on a particular basis,

 .x; t/ D hxj .t/i;
where the “basis” is given by the non-enumerable set of “x-eigenkets”:

xjxi D xjxi: (4.23)

Here x is the operator, or rather a vector of operators x D .x; y; z/, and x D .x; y; z/
is the corresponding vector of eigenvalues.
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In advanced quantum mechanics, the operators for location or momentum of a
particle and their eigenvalues are sometimes not explicitly distinguished in notation,
but for the experienced reader it is always clear from the context whether e.g. x refers
to the operator or the eigenvalue. We will denote the operators x and p for location
and momentum and their Cartesian components with upright notation, x D .x; y; z/,
p D .px; py; pz/, while their eigenvalue vectors and Cartesian eigenvalues are written
in cursive notation, x D .x; y; z/ and p D „k D .px; py; pz/. However, this becomes
very clumsy for non-Cartesian components of the operators x and p, but once we are
at the stage where we have to use e.g. both location operators and their eigenvalues
in polar coordinates, you will have so much practice with bra-ket notation that you
will infer from the context whether e.g. r refers to the operator r D p

x2 C y2 C z2

or to the eigenvalue r D p
x2 C y2 C z2. Some physical quantities have different

symbols for the related operator and its eigenvalues, e.g. H for the energy operator
and E for its eigenvalues,

HjEi D EjEi;
so that in these cases the use of standard cursive mathematical notation for the
operators and the eigenvalues cannot cause confusion.

Expectation values of observables are often written in terms of the operator or the
observable, e.g. hxi � hxi, hEi � hHi etc., but explicit matrix elements of operators
should always explicitly use the operator, e.g. h jxj i, h jHj i.

The “momentum-eigenkets” provide another basis of quantum states of a
particle,

pjki D „kjki; (4.24)

and the change of basis looks like the corresponding equation in linear algebra: If
we have two sets of basis vectors jaii, jbai, then the components of a vector jvi
with respect to the new basis jbai are related to the jaii-components via (just insert
jvi D jaiihaijvi)

hbajvi D hbajaiihaijvi;
i.e. the transformation matrix Ta

i D hbajaii is just given by the components of the
old basis vectors in the new basis.

The corresponding equation in quantum mechanics for the jxi and jki bases is

hxj .t/i D
Z

d3k hxjkihkj .t/i D 1p
2�

3

Z
d3k exp.ik � x/hkj .t/i;

which tells us that the expansion coefficients of the vectors jki with respect to the
jxi-basis are just

hxjki D 1p
2�

3
exp.ik � x/: (4.25)
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The Fourier decomposition of the ı-function implies that these bases are self-
dual, e.g.

hxjx0i D
Z

d3k hxjkihkjx0i D 1

.2�/3

Z
d3k expŒik � .x � x0/� D ı.x � x0/:

The scalar product of two states can be written in terms of jxi-components or
jki-components

h'.t/j .t/i D
Z

d3x h'.t/jxihxj .t/i D
Z

d3x'C.x; t/ .x; t/

D
Z

d3x h'.t/jkihkj .t/i D
Z

d3x'C.k; t/ .k; t/:

To get some practice with bra-ket notation let us derive the x-representation of
the momentum operator. We know equation (4.24) and we want to find out what
the x-components of the state pj .t/i are. We can accomplish this by inserting the
decomposition

j .t/i D
Z

d3k jkihkj .t/i

into hxjpj .t/i,

hxjpj .t/i D
Z

d3k hxjpjkihkj .t/i D
Z

d3k „khxjkihkj .t/i: (4.26)

However, equation (4.25) implies

„khxjki D „
i
rhxjki;

and substitution into equation (4.26) yields

hxjpj .t/i D „
i
r
Z

d3k hxjkihkj .t/i D „
i
rhxj .t/i: (4.27)

This equation yields in particular the matrix elements of the momentum operator in
the jxi-basis,

hxjpjx0i D „
i
rı.x � x0/:

Equation (4.27) means that the x-expansion coefficients hxjpj .t/i of the new state
pj .t/i can be calculated from the expansion coefficients hxj .t/i of the old state
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j .t/i through application of �i„r . In sloppy terminology this is the statement “the
x-representation of the momentum operator is �i„r”, but the proper statement is
equation (4.27),

hxjpj .t/i D „
i
rhxj .t/i:

The quantum operator p acts on the quantum state j .t/i, the differential operator
�i„r acts on the expansion coefficients hxj .t/i of the state j .t/i.

The corresponding statement in linear algebra is that a linear transformation A
transforms a vector jvi according to

jvi ! jv0i D Ajvi;
and the transformation in a particular basis reads

haijv0i D haijAjvi D haijAjajihajjvi:
The operator A acts on the vector, and its representation haijAjaji in a particular
basis acts on the components of the vector in that basis.

Bra-ket notation requires a proper understanding of the distinction between
quantum operators (like p) and operators that act on expansion coefficients of
quantum states in a particular basis (like �i„r ). Bra-ket notation appears in
virtually every equation of advanced quantum mechanics and quantum field theory.
It provides in many respects the most useful notation for recognizing the elegance
and power of quantum theory.

Equations equivalent to equations (4.23, 4.24, 4.27) are contained in

x D
Z

d3x jxixhxj D
Z

d3k jkii @
@k

hkj; (4.28)

p D
Z

d3k jki„khkj D
Z

d3x jxi„
i

@

@x
hxj: (4.29)

Here we used the very convenient notation r � @=@x for the del operator in
x space, and @=@k for the del operator in k space. One often encounters several
copies of several vector spaces in an equation, and this notation is extremely useful
to distinguish the different del operators in the different vector spaces.

Functions of operators are operators again. An important example are the
operators V.x/ for the potential energy of a particle. The eigenkets of x are also
eigenkets of V.x/,

V.x/jxi D V.x/jxi;
and the matrix elements in x representation are

hxjV.x/jx0i D V.x0/ı.x � x0/:
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The single particle Schrödinger equation (1.14) is in representation free notation

i„ d

dt
j .t/i D Hj .t/i D p2

2m
j .t/i C V.x/j .t/i: (4.30)

We recover the x representation already used in (1.14) through projection on hxj and
substitution of

1 D
Z

d3x0 jx0ihx0j;

i„ @
@t

hxj .t/i D � „2
2m
�hxj .t/i C V.x/hxj .t/i:

The definition of adjoint operators in representation-free bra-ket notation is

h'jAj i D h jACj'iC: (4.31)

This implies in particular that the “bra vector” h‰j adjoint to the “ket vector” j‰i D
Aj i satisfies

h‰j D h jAC: (4.32)

This is an intuitive equation which can be motivated e.g. from matrix algebra of
complex finite-dimensional vector spaces. However, it deserves a formal derivation.
We have for any third state j�i the relation

h‰j�i D .h�j‰i/C D .h�jAj i/C D h jACj�i;

where we used the defining property of adjoint operators in the last equation.
Since this equation holds for every state j�i, the operator equation (4.32) follows:
Projection4 onto the state j‰i D Aj i is equivalent to action of the operator AC
followed by projection onto the state j i.

Self-adjoint operators (e.g. pC D p) have real expectation values and in
particular real eigenvalues:

h jpj i D h jpCj iC D h jpj iC:

Observables are therefore described by self-adjoint operators in quantum
mechanics.

4Strictly speaking, we can think of multiplication of a state j�i with h‰j as projecting onto
a component parallel to j‰i only if j‰i is normalized. It is convenient, though, to denote
multiplication with h‰j as projection, although in the general case this will only be proportional
to the coefficient of the j‰i component in j�i.
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Unitary operators (UC D U�1) do not change the norm of a state: Substitution
of j i D Uj'i into h j i yields

h j i D h jUj'i D h'jUCj iC D h'jUCUj'iC D h'j'iC D h'j'i:
Time evolution and symmetry transformations of quantum systems are described by
unitary operators.

4.3 The adjoint Schrödinger equation and the virial theorem

We consider a matrix element

h .t/jA.t0/j�.t0/i D .h�.t0/jAC.t0/j .t/i/C: (4.33)

We assume that j .t/i satisfies the Schrödinger equation

i„ d

dt
j .t/i D Hj .t/i;

while A.t0/ and j�.t0/i are an arbitrary operator and state, respectively. We have arti-
ficially taken the state jˆ.t0/i D A.t0/j�.t0/i at another time t0, because we are par-
ticularly interested in the time-dependence of the matrix element h .t/jA.t0/j�.t0/i
which arises from the time-dependence of j .t/i.

Equation (4.33), the Schrödinger equation, and hermiticity of H imply

d

dt
h .t/jA.t0/j�.t0/i D

�
h�.t0/jAC.t0/

d

dt
j .t/i

�C

D
�
1

i„h�.t0/jAC.t0/Hj .t/i
�C

D i

„h .t/jHA.t0/j�.t0/i:

Since this holds for every operator A.t0/ and state j�.t0/i, we have an operator
equation

�
d

dt
h .t/j

�
D i

„h .t/jH: (4.34)

With the brackets on the left hand side, this equation also holds for projection
on time-dependent states of the form A.t/j�.t/i: Projection of any state jˆ.t/i
on .dh .t/j=dt/ is equivalent to action of H on jˆ.t/i followed by projection of
Hjˆ.t/i on .i=„/h .t/j,

d

dt
h .t/jA.t/j�.t/i D i

„h .t/jHA.t/j�.t/i C h .t/jdA.t/

dt
j�.t/i

C h .t/jA.t/ d

dt
j�.t/i:
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In particular, if j�.t/i also satisfies the Schrödinger equation, we have

d

dt
h .t/jA.t/j�.t/i D i

„h .t/jŒH;A.t/�j�.t/i C h .t/jdA.t/

dt
j�.t/i: (4.35)

The operator equation (4.34) is the adjoint Schrödinger equation. In general it
is an operator equation, but it reduces to the complex conjugate of the Schrödinger
equation if it is projected onto x eigenkets,

d

dt
h .t/jxi D i

„
Z

d3x0 h .t/jx0i
�

� „2
2m

@2

@x02 C V.x0/
�
ı.x0 � x/

D i

„
�

� „2
2m

@2

@x2
C V.x/

�
h .t/jxi:

The result (4.35) for the time-dependence of matrix elements appears in many
different settings in quantum mechanics, but one application that we will address
now concerns the particular choice of the virial operator x � p for the operator A. In
classical mechanics, Newton’s equation and mPx D p imply that the time derivative
of the virial x � p is

d

dt
x � p D p2

m
� x � rV.x/:

Application of the time averaging operation limT!1
R T
0

dt : : : on both sides of this
equation then yields the classical virial theorem for the time average hKiT of the
kinetic energy K D p2=2m,

2hKiT D hx � rV.x/iT : (4.36)

The equation (4.35) applied to A D x � p implies that the same relation holds for
all matrix elements of the operators K D p2=2m and x � rV.x/. We have

i

„ ŒH; x � p� D p2

m
� x � @

@x
V.x/;

and therefore

d

dt
h .t/jx � pj�.t/i D 2h .t/jKj�.t/i � h .t/jx � @

@x
V.x/j�.t/i: (4.37)

Time averaging then yields a quantum analog of the classical virial theorem,

2h .t/jKj�.t/iT D h .t/jx � @
@x

V.x/j�.t/iT : (4.38)
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However, if j .t/i and j�.t/i are energy eigenstates,

j .t/i D j i exp.�iE t=„/; j�.t/i D j�i exp.�iE� t=„/;

then equation (4.37) yields

i

„ .E � E�/h jx � pj�i D 2h jKj�i � h jx � @
@x

V.x/j�i: (4.39)

In this case, the classical time averaging cannot yield anything interesting, but if we
assume that our energy eigenstates are degenerate normalizable states,

E D E�; h j i D h�j�i D 1;

then we find the quantum virial theorem for matrix elements of degenerate
normalizable energy eigenstates5,

2h jKj�i D h jx � @
@x

V.x/j�i: (4.40)

Furthermore, if V.x/ is homogeneous of order �,

V.ax/ D a�V.x/;

then

x � rV.x/ D �V.x/

and

2h jKj�i D �h jVj�i: (4.41)

The relations (4.40) and (4.41) hold in particular for the expectation values of
normalizable energy eigenstates. Special cases for the appearance of physically
relevant homogeneous potential functions include harmonic oscillators, � D 2, and
the three-dimensional Coulomb potential, � D �1. We will discuss harmonic oscil-
lators and the Coulomb problem in Chapters 6 and 7, respectively. Equation (4.41)
has also profound implications for hypothetical physics in higher dimensions, see
Problem 20.5.

5Normalizability is important for the correctness of equation (4.40), because for states in an energy
continuum the left hand side of equation (4.39) may not vanish in the degenerate limit E ! E� ,
see Problem 9.
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4.4 Problems

4.1. We consider again the rotation (4.4) of a Cartesian basis,

Oea ! Oe0
i D OeaRa

i;

but this time we insist on keeping the expansion coefficients va of the vector
v D va Oea. Rotation of the basis with fixed expansion coefficients fv1; : : : vNg will
therefore generate a new vector

v ! v0 � vi Oe0
i:

This is the active interpretation of transformations, because the change of the
reference frame is accompanied by a change of the physical objects.

In the active interpretation, transformations of the expansion coefficients are
defined by the condition that the transformed expansion coefficients describe the
expansion of the new vector v0 with respect to the old basis Oea,

v0 � vi Oe0
i D v0a Oea: (4.42)

How are the new expansion coefficients v0a related to the old expansion coefficients
vi for an active transformation?

In the active interpretation, rotations are special by preserving the lengths of
vectors and the angles between vectors.

Equation (4.42) implies that we can describe an active transformation either
through a transformation of the basis with fixed expansion coefficients, or equiv-
alently through a transformation of the expansion coefficients with a fixed basis.
This is very different from the passive transformation, where a transformation of
the basis is always accompanied by a compensating contragredient transformation
of the expansion coefficients.

4.2. Two basis vectors a1 and a2 have length one and the angle between the vectors
is �=3. Construct the dual basis.

4.3. Nickel atoms form a regular triangular array with an interatomic distance of
2:49Å on the surface of a Nickel crystal. Particles with momentum p D h=� are
incident on the crystal. Which conditions for coherent elastic scattering off the
Nickel surface do we get for orthogonal incidence of the particle beam? Which
conditions for coherent elastic scattering do we get for grazing incidence in the
plane of the surface?

4.4. Suppose V.x/ is an analytic function of x. Write down the k-representation
of the time-dependent and time-independent Schrödinger equations. Why is the
x-representation usually preferred for solving the Schrödinger equation?



82 4 Notions from Linear Algebra and Bra-Ket Notation

4.5. Sometimes we seem to violate the symmetric conventions (2.4, 2.5) in the
Fourier transformations of the Green’s functions that we will encounter later on.
We will see that the asymmetric split of powers of 2� that we will encounter in
these cases is actually a consequence of the symmetric conventions (2.4, 2.5) for the
Fourier transformation of wave functions.

Suppose that the operator G has translation invariant matrix elements,

hxjGjx0i D G.x � x0/:

Show that the Fourier transformed matrix elements hkjGjk0i satisfy hkjGjk0i D
G.k/ı.k � k0/ with

G.k/ D
Z

d3x G.x/ exp.�ik � x/;

G.x/ D 1

.2�/3

Z
d3k G.k/ exp.ik � x/: (4.43)

4.6. Suppose that the Hamilton operator depends on a real parameter �, H D H.�/.
This parameter dependence will influence the energy eigenvalues and eigenstates of
the Hamiltonian,

H.�/j n.�/i D En.�/j n.�/i:
Use h m.�/j n.�/i D ımn (this could also be a ı function normalization), to show
that6

ımn
dEn.�/

d�
D h m.�/jdH.�/

d�
j n.�/i

C ŒEm.�/ � En.�/� h m.�/j d

d�
j n.�/i: (4.44)

For m D n discrete this is known as the Hellmann-Feynman theorem7 [15]. The
theorem is important for the calculation of forces in molecules.

4.7. We consider particles of mass m which are bound in a potential V.x/. The
potential does not depend on m. How do the energy levels of the bound states change
if we increase the mass of the particles?

The eigenstates for different energies will usually have different momentum
uncertainties �p. Do the energy levels with large or small �p change more rapidly
with mass?

6P. Güttinger, Diplomarbeit, ETH Zürich, Z. Phys. 73, 169 (1932). Exceptionally, there is no
summation convention used in equation (4.44).
7R.P. Feynman, Phys. Rev. 56, 340 (1939).
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4.8. Show that the free propagator (3.32, 3.33) is the x representation of the one-
dimensional free time evolution operator,

U.t/ D exp

�
�i

t � i�

2m„ p2
�
; U.x � x0; t/ D hxjU.t/jx0i:

Here a small negative imaginary part was added to the time variable to ensure
convergence of a Gaussian integral.

Show also that the free time-evolution operator in three dimensions satisfies

U.x � x0; t/ D hxj exp

�
�i

t � i�

2m„ p2
�

jx0i

D
r

m

2� i„.t � i�/

3

exp

�
i

m

2„.t � i�/
.x � x0/2

�
: (4.45)

For later reference we also note that this implies the formula

exp

�
i„ t � i�

2m

@2

@x2

�
ı.x � x0/ D

r
m

2� i„.t � i�/

3

� exp

�
i

m

2„.t � i�/
.x � x0/2

�
: (4.46)

4.9. Apply equation (4.39) in the case V.x/ D 0 to plane wave states. Show that
in this case the left hand side does not vanish in the limit E.k/ ! E.k0/. Indeed,
the equation remains correct in this case only because the left hand side does not
vanish.

4.10. Use the calculation of p or x expectation values in the wave vector represen-
tation and in the momentum representation of the state j i to show that momentum
and wave vector eigenstates in d spatial dimensions are related according to
jpi D jki=„d=2. Does this comply with proper ı function normalization of the two
bases?



Chapter 5
Formal Developments

We have to go through a few more formalities before we can resume our discussion
of quantum effects in physics. In particular, we need to address minimal uncertain-
ties of observables in quantum mechanics, and we have to discuss transformation
and solution properties of differential operators.

I have also included an introduction to the notion of length dimensions of states,
since this is useful for understanding the meaning of matrix elements in scattering
theory in Chapters 11 and 13. Furthermore, I have included a section on frequency-
time Fourier transformation, although that can only be defined in a distributional
sense for time-dependent wave functions. However, it is sometimes useful to
represent the decompositions of states j .t/i in terms of energy eigenmodes j ˛i,
Hj ˛i D E˛j ˛i, in the framework of Fourier transformation to a frequency-
dependent state j .!/i. The frequency-dependent states vanish if „! is not part
of the spectrum of H, and they contain ı-functions for „! in the discrete spectrum
of H.

5.1 Uncertainty relations

The statistical interpretation of the wave function naturally implies uncertainty in an
observable Ao if the wave function is not an eigenstate of the hermitian operator A
that corresponds to Ao. Suppose that A has eigenvalues an,

Aj�ni D anj�ni; h�mj�ni D ımn:

Substitution of the expansion

j i D
X

n

j�nih�nj i

© Springer International Publishing Switzerland 2016
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into the formula for the expectation value hAi D h jAj i in the state j i yields

hAi D
X

n

an jh�nj ij2 ;

i.e. jh�nj ij2 is a probability that the value an for the observable Ao will be observed
if the system is in the state j i.

If the distribution jh�nj ij2 is strongly concentrated around a particular index
`, then it is very likely that a measurement of Ao will find the value a` with very
little uncertainty. However, if the probability distribution jh�nj ij2 covers a broad
range of indices or has maxima e.g. for two separated indices, then there will be
high uncertainty of the value of the observable Ao, and observation of Ao for many
copies of the system in the state j i will yield a large scatter of observed values.

If A has a continuous spectrum of eigenvalues, e.g. if A D x is the operator for
the location x of a particle in one dimension, then jhxj ij2 dx is the probability to
find the system with a value of x in the interval Œx; x C dx�.

Heisenberg found in 1927 an intuitive estimate for the minimal product of
uncertainties �x and �p in location and momentum of a particle1. His arguments
were easily made rigorous and generalized to other pairs of observables using the
statistical formalism of quantum mechanics.

Suppose that two observables Ao and Bo are represented by the two hermitian
operators A and B. The expectation value of the observable Ao in a state j i is

hAi D h jAj i;
and the uncertainty �A of the expectation value hAi is defined through

�A2 D h.A � hAi/2i D hA2i � hAi2:
Minimal values of the uncertainty �A with which the observable Ao can be
measured are directly related to the commutator of the operator A with other
operators. The commutator of the two operators A and B is defined through

ŒA;B�j i � ABj i � BAj i;
where ABj i is the action of the operator B on the state j i followed by the action
of the operator A on the new state j 0i D Bj i.

The commutator of two hermitian operators yields a new hermitian operator C,

ŒA;B� D iC;

and it is easy to show that the magnitude of the expectation value hCi yields a lower
bound on the product of uncertainties �A ��B,

�A�B � 1

2
jhCij: (5.1)

1W. Heisenberg, Z. Phys. 43, 172 (1927).
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For the proof of this relation, we use a real parameter � . The function

0 � f .�/ D h.A � hAi � i�B C i�hBi/ .A � hAi C i�B � i�hBi/i
D �A2 � �hCi C �2�B2 (5.2)

has minimal value for

� D hCi
2�B2

and substitution into (5.2) yields

0 � �A2 � hCi2
4�B2

:

This implies the result (5.1).
For the inequality in equation (5.2) note that

h j .A � hAi � i�B C i�hBi/ .A � hAi C i�B � i�hBi/ j i
D j.A � hAi C i�B � i�hBi/ j ij2 :

Equation (5.1) implies for the operators x and p for location and momentum of a
particle Heisenberg’s uncertainty relation

�x�p � „
2
; (5.3)

or in tensorial form for the three-dimensional operators x and p

�x ˝�p � „
2
1

If the state j i should satisfy the uncertainty relation for �A ��B with the
equality sign (minimal product of uncertainties), then we must have

0 D h j
�
.A � hAi/2 � hCi2

4�B4
.B � hBi/2

�
j i

D h j
�

A � hAi � ihCiB � hBi
2�B2

� �
A � hAi C ihCiB � hBi

2�B2

�
j i

D
ˇ̌
ˇ̌
�

A � hAi C ihCiB � hBi
2�B2

�
j i

ˇ̌
ˇ̌2 ;
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where in the second equation the commutator ŒA;B� D iC has been used. This is
equivalent to

�
A � hAi C ihCiB � hBi

2�B2

�
j i D 0:

In particular we have minimal �p�x if and only if

h
p � p0 � i„x � x0

2�x2

i
j i D 0: (5.4)

This implies in the x-representation

�
d

dx
� i

p0
„ C x � x0

2�x2

�
hxj i D 0

and yields up to an arbitrary constant phase factor the Gaussian wave packet (3.39)

hxj i D 1

.2��x2/1=4
exp

�
� .x � x0/2

4�x2
C i

p0x

„ � i
p0x0
2„

�
: (5.5)

Equation (5.4) is in p-representation

�
2�x2.p � p0/C i„x0 C „2 d

dp

�
hpj i D 0;

and this yields (again up to an arbitrary constant phase factor)

hpj i D
�
2�x2

�„2
� 1

4

exp

�
��x2

„2 .p � p0/
2 � i

px0
„ C i

p0x0
2„

�
; (5.6)

which explicitly confirms

�p D „
2�x

and corresponds to the wave packet (3.40).
For comparison of the solutions, we note that

hpj i D 1p
2�„

Z 1

�1
dx exp

�
�i

px

„
�

hxj i

D 1p
2�„

1

.2��x2/1=4
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�
Z 1

�1
dx exp

"
� 1

4�x2

�
x � x0 C i

2�x2

„ .p � p0/

�2#

� exp

�
��x2

„2 .p � p0/
2 � i

.p � p0/x0
„

�

D
�
2�x2

�„2
� 1

4

exp

�
��x2

„2 .p � p0/
2 � i

px0
„ C i

p0x0
2„

�
:

The phase factor exp.�ip0x0=2„/ was included in in (5.5) to ensure that (5.5)
and (5.6) are also related through direct Fourier transformations. Otherwise there
would have been a mismatch in a phase / p0x0=2„.

We have seen in equation (3.43) that the width�x2 will remain minimal only for
a certain moment in time if a Gaussian packet follows a free evolution idj .t/i=dt /
p2j .t/i, while the uncertainty �p2 in momentum remains constant. Therefore a
freely evolving Gaussian packet will satisfy the minimal condition �x�p D „=2
only for a moment in time.

A Gaussian wave packet following an evolution idj .t/i=dt / x2j .t/i would
have constant �x2, but �p2 would have the minimal possible value „=.2�x/ only
for a moment in time. Such a hypothetical quantum system would correspond to an
oscillator without kinetic energy, and it could move uniformly along the p axis.

In Chapter 6 we will find that a harmonic oscillator evolution for Gaussian wave
packets, idj .t/i=dt D .˛p2 C ˇx2/j .t/i, yields constant widths both in x and in
p direction, and the minimal uncertainty condition �x�p D „=2 will be satisfied at
all times.

There is also an uncertainty relation between energy and time, which is not
as strict as the relations (5.1, 5.3), and cannot be proven by the same rigorous
mathematical methods. The relation involves the minimal time window �t which
is required to observe a system with energy uncertainty �E. Smaller energy
uncertainty requires a longer observation window, or a longer time to form the
system,

�t�E & O.„/: (5.7)

This order of magnitude estimate is often written as �t�E & „=2 for symmetry
with the Heisenberg uncertainty relation (5.3), but it should not be mistaken to
indicate a strict lower bound as in equation (5.3).

Equation (5.7) cannot be derived in the same way as equation (5.3) because time
is not an observable, but a parameter in quantum mechanics. Therefore there is no
related expectation value, nor is there any corresponding definition of �t as the
variance of an expectation value.

There exist a few simple heuristic derivations to motivate equation (5.7) from
equation (5.3), but we will find the best justification for (5.7) in the equations of
time-dependent perturbation theory in Section 13.8.
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5.2 Frequency representation of states

Fourier transformation from x-dependent wave functions  .x; t/ to .k D p=„/-de-
pendent wave functions  .k; t/ is defined within the framework of classical analysis
as long as we are only dealing with square integrable functions, which is the case
for bound states. However, even for Fourier transformation between the x and p
representations of wave functions we had to go beyond classical analysis and invoke
the ı function to deal e.g. with plane wave states.

Fourier transformation of wave functions between frequency and time is also
important in quantum mechanics, but it is clear that we always have to define it
in terms of distributions when it comes to the frequency representation, because
wave functions  .x; t/ are never square integrable (nor e.g. absolutely integrable)
with respect to time. Therefore the standard classical criteria for existence of
Fourier transforms from t to ! D E=„ in the sense of classical analysis will
never apply for a quantum system. In spite of this verdict, we will see that time-
frequency Fourier transformation automatically appears in quantum mechanics if
we combine completeness of energy eigenstates with the time evolution implied by
the Schrödinger equation.

Recall that the eigenstates of a stationary Hamiltonian,

Hj ˛i D E˛j ˛i

form a complete basis,

XZ
d˛ j ˛ih ˛j D 1; (5.8)

see Section 2.2 and Appendix C. The notation
PR

d˛ stands for summation over
discrete quantum numbers and integration over continuous quantum numbers, see
e.g. (3.23), which we can write in bra-ket notation in the form

jihj C
Z 1

0

dk .jk;�ihk;�j C jk;Cihk;Cj/ D 1: (5.9)

Another example is the completeness of the states (3.10) in a cubic quantum wire,

1X
n1D1

1X
n2D1

Z 1

�1
dk jn1; n2; kihn1; n2; kj D 1:

On the other hand, for every time-dependent state which evolves with the
Hamiltonian H, the Schrödinger equation

i„ d

dt
j .t/i D Hj .t/i
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implies

j .t/i D exp

�
� i

„Ht

�
j .0/i: (5.10)

Substitution of the decomposition j .0/i D PR
d˛j ˛ih ˛j .0/i into (5.10) yields

j .t/i D
XZ

d˛ j ˛ih ˛j .0/i exp

�
� i

„E˛t

�
:

We can interprete this as a frequency-time Fourier transformation2

j .t/i D 1p
2�

Z
d! j .!/i exp.�i!t/ (5.12)

with inversion

j .!/i D 1p
2�

Z
dt j .t/i exp.i!t/ (5.13)

if we define

j .!/i D p
2�
XZ

d˛ j ˛ih ˛j .0/iı.! � E˛=„/

D p
2�ı.! � H=„/j .t D 0/i: (5.14)

The sum over continuous indices ˛ will include an integration over ı.! � E˛=„/
for E˛ in the continuous parts of the spectrum of H, and although the Fourier
transformation from j .t/i to a frequency dependent state does not exist in the sense
of classical Fourier theory, j .!/i exists as a sum of ı functions over the discrete
spectrum of the Hamiltonian plus a sum over continuous states. E.g. an initial state
j .0/i moving in the attractive ı potential from Section 3.3 (see also (3.23)) evolves
according to

j .t/i D exp.�iHt=„/j .0/i D exp.i„2t=2m/jihj .0/i

C
X
˙

Z 1

0

dk exp.�i„k2t=2m/jk;˙ihk;˙j .0/i

2Frequency-time Fourier transformation for Green’s functions and potentials, which generically
will depend on two arguments, will often appear asymmetric due to translation invariance
G.t; t0/ D G.t � t0/ $ G.!; !0/ D G.!/ı.! � !0/:

G.t/ D 1

2�

Z
d! G.!/ exp.�i!t/ ; G.!/ D

Z
dt G.t/ exp.i!t/ : (5.11)
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in the time domain, and corresponds to

j .!/i D p
2�ı.! � H=„/j .0/i D p

2�jihj .0/iı
�
! C „2

2m

�

C‚.!/

r
�m

„!
X
˙

j
p
2m!=„;˙ih

p
2m!=„;˙j .0/i

in the frequency domain3.
In a formal sense j .!/i solves the Schrödinger equation in frequency represen-

tation, .„! � H/j .!/i D 0, with initial condition j .t D 0/i by decomposing
the initial state in energy eigenmodes. Nevertheless, the notion of frequency-time
Fourier transformation in quantum mechanics is delicate and can easily be abused
to draw incorrect conclusions if not used carefully. A major source of error is to
confuse the frequency representation j .!/i of a state, which only exists in the
distribution sense, with energy eigenstates j ˛i of H which satisfy Hj ˛i D E˛j ˛i
in the sense of classical analysis. To avoid possible confusion, we will abstain from
using frequency itself as a quantum number for classifying energy eigenstates like
j ˛i � j .E˛/i.

The energy expectation value in the state j .t/i is

hEi D h .t/jHj .t/i D
XZ

d˛ E˛ jh ˛j .0/ij2 :

The corresponding energy uncertainty �E follows from

�E2 D
XZ

d˛ E2˛ jh ˛j .0/ij2 �
�XZ

d˛ E˛ jh ˛j .0/ij2
�2
:

5.3 Dimensions of states

A simple, but useful concept for checking consistency in quantum mechanical
calculations is the concept of length dimension of a state. To introduce this concept,
note that the completeness relation for the eigenstates of the one-dimensional
attractive ı potential

jihj C
Z 1

0

dk .jk;�ihk;�j C jk;Cihk;Cj/ D 1

3Free states with initial conditions hxj i � hxj .t D 0/i yield frequency representations
hxj .!/i in terms of convolutions of hxj i with Bessel functions. This is explained in Appendix J,
especially equations (J.32)and (J.34–J.36). However, if you began only recently to learn quantum
mechanics, don’t let yourself become distracted by the technicalities of Appendix J. Save it for
later.
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implies that the discrete bound state ji is dimensionless, while the continuous
unbound states jk;˙i have the dimension of length1=2.

Similarly, the completeness relations for continuous one-dimensional x or free
momentum eigenstates

Z
dx jxihxj D 1;

Z
dk jkihkj D 1 (5.15)

imply that jxi has the dimension of length�1=2 and jki has the dimension of
length1=2. The wave functions hxji and hkji therefore have dimension of
length�1=2 or dimension of length1=2, respectively, while the representations or
wave functions hxjki or hxjk;˙i are dimensionless. The momentum representations
of the unbound states of the attractive ı potential,

hk0jk;˙i D 1p
2�

Z 1

�1
dx exp.�ik0x/ k;˙.x/

have length dimension 1, e.g.

hk0jk;�i D 1

i
p
2

	
ı.k � k0/ � ı.k C k0/



:

In three dimensions, the states jn1; n2; n3i in a cubic quantum dot are dimension-
less while the states jn1; n2; ki (3.10) in a cubic quantum wire have the dimension
of length1=2 in agreement with their completeness relation

1X
n1D1

1X
n2D1

Z 1

�1
dk jn1; n2; kihn1; n2; kj D 1:

The continuous state jxi apparently has dimension of length�3=2 and jki has the
dimension of length3=2. The representation hxjki of a plane wave state is therefore
dimensionless, while the representation hxjn1; n2; n3i of a quantum dot state has the
dimension length�3=2.

A state j i in d spatial dimensions is usually specified in terms of N � d
quantum numbers. If ck of these quantum numbers are continuous wave-number like
quantum numbers and cx quantum numbers are continuous position like quantum
numbers, the length dimension of the state is length.ck�cx/=2. The representation
(= transformation matrix element = wave function) h j 0i has length dimension
length.ckCc0

k�cx�c0

x/=2. This is as trivial as calculating with units, and as useful for
checking consistency of results. Furthermore, length dimensions of initial and final
states will also provide important hints for us to identify the use and the physical
meaning of transition matrix elements in time-dependent perturbation theory in
Chapters 13 and 22.
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5.4 Gradients and Laplace operators in general
coordinate systems

The transformation properties of the gradient r and Laplace operator � D r 2

under coordinate transformations are basic aspects of mathematics that we have to
discuss due to the importance of those operators in quantum mechanics. We use
three dimensions for the discussions in this section, but the methods apply in any
number of dimensions.

Suppose we wish to use coordinates �˛ , 1 � ˛ � 3, instead of Cartesian
coordinates xi. The coordinate maps

�˛ ! xi.�/; xi ! �˛.x/ (5.16)

define Jacobi matrices

@˛xi.�/ � @xi.�/

@�˛
(5.17)

and @i�
˛.x/. The Jacobi matrix (5.17) in particular allows us to calculate tangent

vectors to the new �˛ coordinate lines. We can easily figure this out by observing
that the map (5.16) can be written as (recall summation convention)

�˛ ! r.�/ D xi.�/ei;

where the vectors ei are the Cartesian basis vectors along the xi coordinate lines.
Infinitesimal coordinate shifts generate a vector

dr D dxiei D d�˛@˛xiei D a˛d�˛;

and this tells us that the vector

a˛.�/ D @˛r.�/ D @˛xi.�/ei: (5.18)

is a tangent vector along the �˛ coordinate line in the point r.�/.
The products of these tangent vectors define the components of the metric in the

new coordinate system,

g˛ˇ.�/ D a˛.�/ � aˇ.�/;

because the length squared of the shift vector dr is

ds2 D dr2 D a˛ � aˇd�˛d�ˇ D g˛ˇd�˛d�ˇ:
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The inverse metric g˛ˇ yields the dual basis vectors according to equa-
tions (4.11, 4.12),

a˛.�/ D g˛ˇ.�/aˇ.�/;

and the Jacobian matrix @i�
˛.x/ connects the dual basis vectors,

a˛ D ei@i�
˛: (5.19)

Simple consequences of a˛.�/ D @˛r.�/ and a˛.�/ � aˇ.�/ D ı˛ˇ are

@˛aˇ D @ˇa˛

and

a˛ � @�aˇ D � aˇ � @�a˛:

The r operator is defined as

r D ei @

@xi
D ei @�

˛

@xi

@

@�˛
D a˛

@

@�˛
: (5.20)

Note that once we accept the Cartesian equation r D ei@i with the recognition
that the Cartesian vectors ei D ei appearing in the r operator are actually the
dual basis vectors, the representation r D a˛@˛ in the new coordinate system is
a direct consequence of the chain rule of differentiation. Furthermore, we can write
equation (5.19) also in the form

a˛ D r�˛ (5.21)

and the inverse metric is

g˛ˇ D .r�˛/ � .r�ˇ/: (5.22)

These equations are particularly convenient if the new coordinates are given in terms
of the Cartesian coordinates xi, �˛ D �˛.x/.

The new dual basis vectors a˛ D a˛.�/ generically depend on the coordinates
�, because the new coordinates will often be curvilinear. We have to take this into
account when calculating the Laplace operator in the new coordinate system,

� D r 2 D a˛.�/@˛ ı aˇ.�/@ˇ D g˛ˇ.�/@˛@ˇ C a˛.�/ � .@˛aˇ.�//@ˇ: (5.23)

We can also write this as

� D g˛ˇ.�/
�
@˛@ˇ C aˇ.�/ � @˛a� .�/@�

� D g˛ˇ.�/
�
@˛@ˇ � ��ˇ˛.�/@�

�
;
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where the coefficients

��ˇ˛.�/ D � aˇ.�/ � @˛a� .�/ D a� .�/ � @˛aˇ.�/ (5.24)

are known as Christoffel symbols.
We can use equation (5.23) e.g. to calculate the Laplace operator in spherical

coordinates. It is convenient to use the common column vector notation for
components with respect to the Cartesian ei D ei in the actual calculation. The
transformation

r D
0
@ x1

x2

x3

1
A D

0
@ r sin# cos'

r sin# sin'
r cos#

1
A

yields tangent vectors

ar D @rr D
0
@ sin# cos'

sin# sin'
cos#

1
A ; a# D @#r D

0
@ r cos# cos'

r cos# sin'
�r sin#

1
A ;

and

a' D @'r D
0
@�r sin# sin'

r sin# cos'
0

1
A :

The metric and the inverse metric in spherical coordinates are

g D
0
@1 0 0

0 r2 0

0 0 r2 sin2 #

1
A ; g�1 D

0
@1 0 0

0 r�2 0

0 0 r�2 sin�2 #

1
A ;

and the dual vectors are

ar D
0
@ sin# cos'

sin# sin'
cos#

1
A; a# D 1

r

0
@ cos# cos'

cos# sin'
� sin#

1
A; a' D 1

r sin#

0
@� sin'

cos'
0

1
A:

The non-vanishing products

a# � @#ar D a' � @'ar D 1

r
; a' � @'a# D cot#

r2

yield

� D @2

@r2
C 2

r

@

@r
C 1

r2
@2

@#2
C cot#

r2
@

@#
C 1

r2 sin2 #

@2

@'2
: (5.25)
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Later we will also use the normalized spherical tangent vectors

er � ar; e# D 1

r
a# ; e' D 1

r sin#
a':

Another useful representation of the Laplace operator which follows from
equation (5.23) is

� D 1p
g
@˛
�p

gg˛ˇ@ˇ
�
; (5.26)

where g.�/ is the determinant of the metric tensor g˛ˇ.�/. To demonstrate equiva-
lence of (5.26) with (5.23) one has to use the properties

@˛g D ggˇ�@˛gˇ� D � ggˇ�@˛gˇ�

and

gˇ�@˛gˇ� D 2a� � @˛a� D � 2a� � @˛a� D � 2a� � @�a˛ D 2a˛ � @�a� :

It is also useful to point out that
p

g.�/ is the volume measure in the new
coordinates �˛ ,

d3x D dx1dx2dx3 D d�1d�2d�3
p

g.�/: (5.27)

This follows from the fact that the matrix relation

g˛ˇ.�/ D @˛r.�/ � @ˇr.�/ D @˛xi.�/ � @ˇxj.�/ıij

implies that the determinant g D det.g˛ˇ/ is the square of the Jacobian determinant,

g.�/ D �
det.@˛xi.�//

�2
: (5.28)

The familiar form for transformation of volume measures,

dx1dx2dx3 D d�1d�2d�3
ˇ̌
det.@˛xi.�//

ˇ̌
; (5.29)

then yields (5.27).

5.5 Separation of differential equations

Separation of variables, where applicable, is a very powerful and useful tool for
solution of partial differential equations. The purpose of this section is to point
out that separation of variables for separable hermitian operators is not just a
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matter of convenient choice, but a must for the determination of eigenfunctions
of these operators. Eigenstates of separable hermitian differential operators will
automatically factorize into eigenstates of the corresponding lower-dimensional
operators.

We assume a three-dimensional space with coordinates � i, 1 � i � 3, but the
reader will again recognize that the arguments presented in this section do not
depend on the number of dimensions.

In quantum mechanics we often encounter Hamiltonians with the following
property: If we choose a suitable set of coordinates �, then the time-independent
Schrödinger equation

Ej .E/i D Hj .E/i
will separate in the form

Eh�j .E/i D
X

i

h�jHij .E/i D
X

i

Dih�j .E/i; (5.30)

where each of the hermitian differential operators Di has the property to contain
only the coordinate �i and the corresponding derivative @=@� i. However, the
results on completeness of eigenstates of one-dimensional hermitian operators
from Appendix C imply that each of the operators has its own complete set of
eigenfunctions,

Dih�ij i.Ei/i D Eih�ij i.Ei/i; (5.31)

where the different eigenfunctions h�ij i.Ei/i are labeled by the eigenvalues Ei.
This can give us the idea to decompose the function h�j .E/i with respect to the

eigenfunctions h�1j 1.E1/i,

h�j .E/i D
XZ

dE1 h�1j 1.E1/ihE1; �2; �3j .E/i;

hE1; �2; �3j .E/i D
Z

d�1 h 1.E1/j�1ih�1; �2; �3j .E/i:

We can then repeat the decomposition with respect to the eigenfunctions of D2 and
D3. This leads finally to the decomposition

h�j .E/i D
XZ

dE1
XZ

dE2
XZ

dE3 h�1j 1.E1/ih�2j 2.E2/ih�3j 3.E3/i

�hE1;E2;E3j .E/i; (5.32)

hE1;E2;E3j .E/i D
Z

d�1

Z
d�2

Z
d�3 h 1.E1/j�1ih 2.E2/j�2i

�h 3.E3/j�3ih�1; �2; �3j .E/i:
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Substitution of the decomposition (5.32) into the Schrödinger equation (5.30)
yields

E
XZ

dE1
XZ

dE2
XZ

dE3 h�1j 1.E1/ih�2j 2.E2/ih�3j 3.E3/i

�hE1;E2;E3j .E/i

D
XZ

dE1
XZ

dE2
XZ

dE3 .E1 C E2 C E3/ h�1j 1.E1/ih�2j 2.E2/ih�3j 3.E3/i

�hE1;E2;E3j .E/i: (5.33)

The orthogonality properties of different eigenfunctions,
Z

d�i h i.Ei/j�iih�ij i.E
0
i/i
ˇ̌
ˇ
Ei¤E0

i

D 0

then imply that for all combinations of eigenvalues E and Ei the condition

.E1 C E2 C E3 � E/ h�1j 1.E1/ih�2j 2.E2/ih�3j 3.E3/i
�hE1;E2;E3j .E/i D 0

must be satisfied, i.e. the eigenvalue E in equation (5.33) must equal one particular
sum of eigenvalues,

E D E1 C E2 C E3; (5.34)

and the related eigenfunction is

h�j .E/i D h�1j 1.E1/ih�2j 2.E2/ih�3j 3.E3/i: (5.35)

These observations tell us that we can and indeed should use a separation ansatz for
Hamiltonians of the form (5.30).

The previous argument works for Hamiltonian operators which split into a sum
of one-dimensional operators in suitable coordinates. However, the arguments are
easily generalized to the more general case

Eh�j .E/i D f .�3/g.�2/D1h�j .E/i C f .�3/D2h�j .E/i
CD3h�j .E/i: (5.36)

Since D1 commutes with the Hamiltonian operator on the right hand side, the space
of eigenfunctions h�j .E/i with fixed eigenvalue E must be generated by a set of
eigenstates of the hermitian differential operator D1 with eigenvalues QE1,

h�j .E/i D
XZ

d QE1 h�1j 1. QE1/ih QE1; �2; �3j .E/i:
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Non-degeneracy of the one-dimensional eigenvalues QE1 and linear independence of
the corresponding eigenstates then implies

Eh QE1; �2; �3j .E/i D f .�3/
	
g.�2/ QE1 C D2


 h QE1; �2; �3j .E/i
CD3h QE1; �2; �3j .E/i:

Now the Hamiltonian on the right hand side commutes with the parameter-
dependent hermitian one-dimensional operator

D0
2 D D2 C g.�2/ QE1;

which has parameter-dependent eigenvalues QE2. QE1/. The further decomposition

h�j .E/i D
XZ

d QE1
XZ

d QE2. QE1/ h�1j 1. QE1/ih�2j 0
2.

QE2. QE1//i

�h QE1; QE2. QE1/; �3j .E/i
then yields the one-dimensional hermitian problem

Eh QE1; QE2. QE1/; �3j .E/i D f .�3/ QE2. QE1/h QE1; QE2. QE1/; �3j .E/i
CD3h QE1; QE2. QE1/; �3j .E/i;

which finally yields eigenvalues En. QE1; QE2/ and the solution

h�j .En. QE1; QE2//i D h�1j 1. QE1/ih�2j 0
2.

QE2. QE1//i
�h QE1; QE2. QE1/; �3j .En. QE1; QE2//i: (5.37)

5.6 Problems

5.1. We consider a particle of mass m in a one-dimensional infinite square well,
i.e. the energy eigenstates jni are labelled by natural numbers n. How large are the
energy expectation value and energy uncertainty in the state

j i D p
e � 1

1X
nD1

exp.�n=2/jni‹

5.2. Calculate the Laplace operator in spherical coordinates from equation (5.26).

5.3. Calculate the tangent vectors, the r operator and the Laplace operator in
parabolic coordinates

x D 2
p
�� cos'; y D 2

p
�� sin'; z D � � �;

2� D r C z; 2� D r � z; ' D arctan
y

x
:
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Equation (5.26) is more convenient than (5.23) for the calculation of the Laplace
operator in parabolic coordinates.

5.4. Show that the Christoffel symbols (5.24) can also be expressed in terms of the
metric and inverse metric components,

��ˇ˛ D 1

2
g�ı

�
@ˇgı˛ C @˛gıˇ � @ıg˛ˇ

�
: (5.38)

5.5. Prove the following statement: The Euler-Lagrange equation (see Appendix A,
in particular equation (A.3))

d

d�

@L

@ P�˛ � @L

@�˛
D 0

for the Lagrange function

L.�; P�/ D 1

2
g˛ˇ.�.�// P�˛.�/ P�ˇ.�/ (5.39)

yields the equation

R�˛.�/C �˛ˇ� .�.�// P�ˇ.�/ P�� .�/ D 0: (5.40)

This is a most useful lemma for the calculation of Christoffel symbols. For given
metric g˛ˇ.�/, one simply calculates the Euler-Lagrange equations for the Lagrange
function (5.39) and then reads off the Christoffel symbols from the quadratic terms
in the velocities P�.�/.

Equation (5.40) is known as the geodesic equation, because in a general space it
yields lines �.�/ of stationary length (e.g. shortest or longest lines). In the flat spaces
that we are dealing with in this book, equation (5.40) is the condition for a straight
line in terms of the curvilinear coordinates �˛ .

5.6. Find the eigenvalues and eigenfunctions of the two-dimensional differential
operator Hx;y D y@2x � i@y.



Chapter 6
Harmonic Oscillators and Coherent States

The harmonic oscillator is the general approximation for the dynamics of small
fluctuations around a minimum of a potential. This is the reason why harmonic
oscillators are very important model systems both in mechanics and in quantum
mechanics. In addition there is another reason why we have to discuss the quantum
harmonic oscillator in detail. For the discussion of quantum mechanical reactions
between particles later on, we have to go beyond ordinary quantum mechanics and
use a technique called second quantization or canonical quantum field theory. The
techniques of second quantization are based on linear superpositions of infinitely
many oscillators. Therefore it is important to have a very good understanding of
oscillator eigenstates and of the calculational techniques involved with oscillation
operators.

6.1 Basic aspects of harmonic oscillators

The classical motion of a particle in the three-dimensional isotropic potential

V.x/ D m

2
!2x2

without external driving forces is described by the classical solution

x.t/ D X cos.!t/C P
m!

sin.!t/;

p.t/ D P cos.!t/ � m!X sin.!t/; (6.1)

where X D x.0/, P D mPx.0/ are the values of location and momentum of the
particle at time t D 0.

© Springer International Publishing Switzerland 2016
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The corresponding Schrödinger equation is

i„ d

dt
j .t/i D

�
p2

2m
C m

2
!2x2

�
j .t/i

or after substitution of energy-time Fourier transformation (5.12),

Ej .E/i D
�

p2

2m
C m

2
!2x2

�
j .E/i: (6.2)

The corresponding differential equation in x representation

Ehxj .E/i D
�

� „2
2m
�C m

2
!2x2

�
hxj .E/i (6.3)

can be decomposed into three one-dimensional problems through separation of the
spatial variables. The separation ansatz

hxj .E/i D
3Y

iD1
hxij i.Ei/i (6.4)

yields

E D
3X

iD1
Ei; (6.5)

where the three energy values Ei and wave functions hxij .Ei/i have to satisfy the
one-dimensional equation

Ehxj .E/i D � „2
2m

d2

dx2
hxj .E/i C m

2
!2x2hxj .E/i: (6.6)

Indeed, the results of Section 5.5 imply that the solutions of the three-dimensional
equation (6.3) will always have the separated form (6.4, 6.5).

6.2 Solution of the harmonic oscillator
by the operator method

The one-dimensional oscillator equation (6.6) is in representation free notation

Ej .E/i D
�

p2

2m
C m

2
!2x2

�
j .E/i: (6.7)
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There exists a powerful and elegant method to solve equation (6.7) through a
transformation from the self-adjoint operators x and p to mutually adjoint operators
a and aC. The substitutions

a D 1p
2„

�p
m!x C i

pp
m!

�
; aC D 1p

2„

�p
m!x � i

pp
m!

�
; (6.8)

yield the commutation relation

Œa; aC� D 1; (6.9)

the inverse transformation

x D
r „
2m!

�
a C aC� ; p D �i

r
m!„
2

�
a � aC� ; (6.10)

and the Hamiltonian in the form

H D 1

2
„!.aaC C aCa/ D „!

�
aCa C 1

2

�
:

The equations

ŒH; a� D � „!a; ŒH; aC� D „!aC (6.11)

and

Hj .E/i D Ej .E/i; (6.12)

imply that the operator a decreases energy eigenvalues and the operator aC increases
energy eigenvalues in units of „!,

Haj .E/i D .E � „!/aj .E/i; HaCj .E/i D .E C „!/aCj .E/i: (6.13)

The operator a is therefore denoted as an annihilation operator or lowering
operator, while aC is a creation operator or a raising operator. Together, they are
also known as ladder operators.

Stability of the system requires existence of a lowest energy state j�i. This state
must be annihilated by the operator a since otherwise aj�i would be a state of lower
energy,

9j�i W aj�i D 0; ) Hj�i D 1

2
„!j�i:

The standard notation for this lowest energy state or vacuum state is j�i D j0i.
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The excited energy eigenstates are then

jni D .aC/np
nŠ

j0i; (6.14)

and the corresponding energy eigenvalues follow from

Hjni D „!
�

n C 1

2

�
jni

as

En D „!
�

n C 1

2

�
:

These relations are equivalent to

aCajni D njni;

and therefore aCa returns the level number of a state. The operator aCa is denoted as
an occupation number operator, or number operator for short, because this operator
enumerates how many energy quanta „! are contained in an energy level.

For an explanation of the normalization of the states (6.14), we note that (4.32)
implies that the adjoint of the state .aC/nj0i is h0jan, and therefore the inner product
of the state is h0jan.aC/nj0i. We can evaluate this product by using the property

Œa; .aC/n� D n.aC/n�1; (6.15)

which is easily proved by induction. We use (6.15) in the second step of the
following calculation (and then in n � 1 additional steps to arrive at the final result),

h0jan.aC/nj0i D h0jan�1Œa; .aC/n�j0i D nh0jan�1.aC/n�1j0i
D nŠh0j0i D nŠ (6.16)

On a more formal level, the proof of (6.16) would also involve an induction step
with respect to n.

We have for arbitrary states j i

h0jaCj i D .h jaj0i/C D 0

and therefore the projector h0jaC annihilates every state,

h0jaC D 0:
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6.3 Construction of the states in the x-representation

We construct the expansion coefficients hxjni of the states with respect to the jxi-
basis. In the first step we construct the components hxj0i of the ground state j0i. The
equation aj0i D 0 in x representation,

hxjaj0i D
 r

m!

2„ x C
r „
2m!

d

dx

!
hxj0i D 0;

yields

hxj0i D
�m!

�„
� 1
4

exp
�
�m!

2„ x2
�
;

and from this the x-components of the higher states can be calculated in the
following way:

hxjni D 1p
nŠ

hxj.aC/nj0i

D 1p
nŠ

�m!

�„
� 1
4

 r
m!

2„ x �
r „
2m!

d

dx

!n

exp
�
�m!

2„ x2
�

D 1p
2nnŠ

�m!

�„
� 1
4

Hn

�r
m!

„ x

�
exp

�
�m!

2„ x2
�
: (6.17)

The functions Hn.x/ are the Hermite polynomials

Hn.x/ D exp

�
1

2
x2
��

x � d

dx

�n

exp

�
�1
2

x2
�
; (6.18)

H0.x/ D 1; H1.x/ D 2x; H2.x/ D 4x2 � 2; : : :

Properties of Hermite polynomials are discussed in Appendix D.
The general state of the one-dimensional harmonic oscillator in the x-representa-

tion is

hxj .t/i D
X
n�0

hxjnihnj .t/i D
X
n�0

hxjnihnj .0/i exp

�
�i
�

n C 1

2

�
!t

�
;

and the general normalizable state of a 1-dimensional system with Hamiltonian H
(here PH D 0) in the x-representation can be expanded in oscillator eigenstates
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hxj .t/i D
X
n�0

hxjnihnj .t/i D
X
n�0

hxjnihnj exp.�iHt=„/j .0/i

D
X
n�0

hxj exp.�iHt=„/jnihnj .0/i:

These expansions are particular examples of the completeness relations of Sturm-
Liouville eigenfunctions discussed in Appendix C. They hold pointwise for every
continuous square integrable function hxj .t/i, and they hold for the derivatives as
long as the derivatives are continuous (otherwise they remain valid in the mean).

Oscillator eigenstates in k space and bilinear relations
for Hermite polynomials

The k space representations of the oscillator energy eigenstates can be constructed
in the same way as the x representations. The equation

hkjaj0i D i

 r
m!

2„
d

dk
C
r „
2m!

k

!
hkj0i D 0

yields

hkj0i D
� „
�m!

� 1
4

exp

�
� „
2m!

k2
�
;

and from this the k-components of the higher states can be calculated,

hkjni D 1p
nŠ

hkj.aC/nj0i

D inp
nŠ

� „
�m!

� 1
4

 r
m!

2„
d

dk
�
r „
2m!

k

!n

exp

�
� „
2m!

k2
�

D .�i/np
2nnŠ

� „
�m!

� 1
4

Hn

 r „
m!

k

!
exp

�
� „
2m!

k2
�
:

From this and the previous result we find an expression for the decomposition of
plane waves,

hxjki D 1p
2�

exp.ikx/ D 1p
�

1X
nD0

in

2nnŠ
Hn

�r
m!

„ x

�
Hn

 r „
m!

k

!

� exp

�
� 1

„!
�„2k2
2m

C m

2
!2x2

��
: (6.19)
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This reads in scaled variables

1p
2�

exp.iKX/ D 1p
�

1X
nD0

in

2nnŠ
Hn.X/Hn.K/ exp

�
�1
2

�
K2 C X2

��
:

This equation follows from the Mehler formula (D.8) in the limit z ! i.
For comparison, we must also have

hxjyi D ı.x � y/ D
r

m!

�„
1X

nD0

1

2nnŠ
Hn

�r
m!

„ x

�
Hn

�r
m!

„ y

�

� exp
�
�m!

2„
�
x2 C y2

��
; (6.20)

or in scaled variables

ı.X � Y/ D 1p
�

1X
nD0

1

2nnŠ
Hn.X/Hn.Y/ exp

�
�1
2

�
X2 C Y2

��
:

This equation follows from the Mehler formula (D.8) in the limit z ! 1 and using
lim!1  exp

��2x2� D p
�ı.x/.

6.4 Lemmata for exponentials of operators

Exponentials

exp.A/ �
1X

nD0

1

nŠ
An (6.21)

of operators appear in many applications of quantum mechanics, because

• exponentials of Hamiltonians generate time evolution in quantum systems (time
evolution operators);

• exponentials of operators generate continuous transformations (e.g. translations
or rotations or phase rotations etc.) in quantum systems; and because

• the exponential exp.��A=C/ shifts the eigenvalues of the complementary opera-
tor Ac (where ŒA;Ac� D C D const:) by �, i.e. exp.A/ maps one eigenstate of Ac

into another eigenstate. In this case the exponential operator is also denoted as a
shift operator. We will see explicit examples for all these uses of exponentials of
operators in later sections.
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The definition (6.21) implies the property

d

d�
exp.�A/ D A exp.�A/ D exp.�A/A;

where � is a complex variable. The property exp.A/ exp.�A/ D 1 is also easily
proven, see Problem 6.5.

in addition, there are three other very useful theorems for products involving
operator exponentials. The formulation of the first two of these theorems requires

the notion of higher order commutators
n
ŒA;B�, which can be recursively defined

through

0

ŒA;B� � B; ŒA;B
0

�� A;
1

ŒA;B� D ŒA;B
1

�D ŒA;B�;

nC1
ŒA;B� D ŒA;

n
ŒA;B��; ŒA;B

nC1
�D ŒŒA;B

n
�;B�:

With these definitions, we can state Lemma 1:

exp.A/B exp.�A/ D
X
n�0

1

nŠ

n
ŒA;B�: (6.22)

The proof simply proceeds by Taylor expansion of exp.�A/B exp.��A/with respect
to �. This uses the property

dn

d�n
exp.�A/B exp.��A/ D exp.�A/

n
ŒA;B� exp.��A/;

which is proven by induction.
The second lemma is useful to combine certain products of three operator

exponentials.

Lemma 2.

exp.A/ exp.B/ exp.�A/ D expŒexp.A/B exp.�A/�: (6.23)

The proof proceeds by applying the Taylor expansion exp.C/ D P1
nD0 Cn=nŠ for

C D exp.A/B exp.�A/.
The exponent on the right hand side of Lemma 2 can be evaluated with Lemma 1.
The third useful lemma concerns the combination of two exponentials of

operators and requires that all higher order commutators of two operators A and
B vanish:

2

ŒA;B� D 0;
2

ŒB;A� D 0: (6.24)

Then the following equations hold1,

1There is a generalization of equation (6.25) known as the Baker-Campbell-Hausdorff formula,
which holds if the higher order commutators of A and B do not vanish. The recursive construction
of higher order terms is outlined in Appendix E.
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Lemma 3. If equations (6.24) hold, then

exp.A/ exp.B/ D exp

�
A C B C 1

2
ŒA;B�

�
(6.25)

D exp.A C B/ exp

�
1

2
ŒA;B�

�
: (6.26)

Proof. First we note that (6.26) is a direct consequence of (6.25) if we apply this
equation to exp.A0/ exp.B0/with operators A0 D ACB and B0 D ŒA;B�=2. Therefore
it is enough to prove (6.25), which we will prove in the equivalent form

exp.�A/ exp.�B/ D exp

�
�A C �B C �2

2
ŒA;B�

�
: (6.27)

This equation is certainly correct for � D 0. For the first order derivative of the left
hand side of equation (6.27) one finds with (6.22) and (6.24)

d

d�
exp.�A/ exp.�B/ D .A C B C �ŒA;B�/ exp.�A/ exp.�B/

D exp.�A/ exp.�B/.A C B C �ŒA;B�/ ; (6.28)

while the first order derivative of the right hand side of (6.27) is

d

d�
exp

�
�A C �B C �2

2
ŒA;B�

�
D .A C B C �ŒA;B�/

� exp

�
�A C �B C �2

2
ŒA;B�

�
D exp

�
�A C �B C �2

2
ŒA;B�

�

� .A C B C �ŒA;B�/ : (6.29)

Therefore we also have�
d

d�
exp.�A/ exp.�B/

�
�D0

D A C B

D
�

d

d�
exp

�
�A C �B C �2

2
ŒA;B�

��
�D0

:(6.30)

Equations (6.28, 6.29) then also yield that in general

Fn �
�

dn

d�n
exp.�A/ exp.�B/

�
�D0

D
�

dn

d�n
exp

�
�A C �B C �2

2
ŒA;B�

��
�D0
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by induction:

FnC1 D
�

dnC1

d�nC1 exp.�A/ exp.�B/

�
�D0

D
�

dn

d�n
.A C B C �ŒA;B�/ exp.�A/ exp.�B/

�
�D0

D .A C B/

�
dn

d�n
exp.�A/ exp.�B/

�
�D0

C nŒA;B�

�
dn�1

d�n�1 exp.�A/ exp.�B/

�
�D0

D .A C B/

�
dn

d�n
exp

�
�A C �B C �2

2
ŒA;B�

��
�D0

C nŒA;B�

�
dn�1

d�n�1 exp

�
�A C �B C �2

2
ŒA;B�

��
�D0

D
�

dn

d�n
.A C B C �ŒA;B�/ exp

�
�A C �B C �2

2
ŒA;B�

��
�D0

D
�

dnC1

d�nC1 exp

�
�A C �B C �2

2
ŒA;B�

��
�D0

:

Therefore the two operators have the same expansion in �, and since they also agree
for � D 0 they must be the same.

We will often use these lemmata in quantum mechanical calculations.

6.5 Coherent states

Coherent states were introduced by Schrödinger in 1926 as quantum states which
reproduce the classical oscillatory motion of a harmonic oscillator on the level of
expectation values2.

Equation (6.22) implies

exp.��aC/a exp.�aC/ D a C �;

and therefore

a exp.�aC/j0i D exp.�aC/.a C �/j0i D � exp.�aC/j0i;

2E. Schrödinger, Naturwissenschaften 14, 664 (1926).
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i.e. the state exp.�aC/j0i is an eigenstate of the annihilation operator a with
eigenvalue �. It is not yet normalized, however. We can remedy this by replacing
the shift operator exp.�aC/ by a unitary shift operator with the same effect on a,

exp.�Ca � �aC/a exp.�aC � �Ca/ D a C �;

and therefore the normalized eigenstate of a is

j�i D exp.�aC � �Ca/j0i D exp

�
�1
2

j�j2
�

exp.�aC/j0i

D exp

�
�1
2

j�j2
� 1X

nD0

�n

p
nŠ

jni: (6.31)

Here we used Lemma 3,

exp.�aC/ exp.��Ca/ D exp.�aC � �Ca/ exp

�
1

2
j�j2

�
:

We also used an implicit convention that a state jni labelled by an integer is an
eigenstate of the Hamiltonian H of the harmonic oscillator, while a state j�i labelled
by a complex number is an eigenstate of a. Only the lowest energy state j0i is an
eigenstate of both operators.

The states j�i for � ¤ 0 are apparently superpositions of all energy eigenstates,
and they are known as coherent states. They can be used to generate quantum states
which move like a classical particle in the oscillator potential.

Classical motion with initial values x.0/ D X and p.0/ D P is described by

xcl.t/ D X cos.!t/C P

m!
sin.!t/;

pcl.t/ D P cos.!t/ � m!X sin.!t/; (6.32)

and what we want to construct is a state j�.t/i with exactly these time dependences
of its expectation values,

h�.t/jxj�.t/i D
r „
2m!

h�.t/ja C aCj�.t/i D
r „
2m!

	
�.t/C �C.t/




D xcl.t/ D X cos.!t/C P

m!
sin.!t/;

h�.t/jpj�.t/i D � i

r
m!„
2

h�.t/ja � aCj�.t/i D � i

r
m!„
2

	
�.t/ � �C.t/




D pcl.t/ D P cos.!t/ � m!X sin.!t/:
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This yields

�.t/ D
r

m!

2„ xcl.t/C i
pcl.t/p
2m!„

D
�r

m!

2„ X C i
Pp
2m!„

�
exp.�i!t/: (6.33)

We can also write the coherent state in terms of the operators x and p,

j�.t/i D exp
	
�.t/aC � �C.t/a


j0i D exp

�
i

„ Œpcl.t/x � xcl.t/p�

�
j0i: (6.34)

We still have to show that the coherent states (6.34) satisfy the Schrödinger
equation for the harmonic oscillator. We have with j�j2.t/ D j�j2 time-independent,

i„ d

dt
j�.t/i D i„P�.t/aCj�.t/i D „!�.t/aCj�.t/i D „!aCaj�.t/i

D Hj�.t/i � 1

2
„!j�.t/i:

Therefore the oscillating state which satisfies the Schrödinger equation of the
harmonic oscillator including the zero point energy term is j�.t/i exp.�i!t=2/.

For the x representation of the coherent states, we notice

hxj�.t/i D exp

�
�1
2

j�.t/j2
�

hxj exp
�
�.t/aC� j0i

D exp

�
�1
2

j�.t/j2
�

hxj exp

�
�.t/p
2„

�p
m!x � i

pp
m!

��
j0i

D exp

�
�.t/

r
m!

2„ x

�
exp

�
�1
2

j�.t/j2 � 1

4
�2.t/

�

�hxj exp

�
�i�.t/

pp
2m!„

�
j0i

D exp

�
�.t/

r
m!

2„ x

�
exp

�
�1
2

j�.t/j2 � 1

4
�2.t/

�

�hx � �.t/
r „
2m!

j0i

D
�m!

�„
� 1
4

exp

�
�.t/

r
m!

2„ x

�
exp

�
�1
2

j�.t/j2 � 1

4
�2.t/

�
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� exp

�
�m!

2„ x2 C
r

m!

2„ �.t/x � 1

4
�2.t/

�

D
�m!

�„
� 1
4

exp

 
�m!

2„ x2 C
r
2m!

„ �.t/x � 1

2
j�.t/j2 � 1

2
�2.t/

!
:

This yields with

1

2
j�.t/j2 C 1

2
�2.t/ D m!

2„ x2cl.t/C i
xcl.t/pcl.t/

2„
the result

hxj�.t/i D
�m!

�„
� 1
4

exp

�
�m!

2„ .x � xcl.t//
2 C i

xpcl.t/

„ � i
xcl.t/pcl.t/

2„
�
: (6.35)

Comparison of equation (6.35) with equations (5.5) and (5.6) or direct evaluation
yields the momentum representation of the coherent states,

hpj�.t/i D 1

.�m!„/ 14
exp

 
� .p � pcl.t//

2

2m!„ � i
xcl.t/p

„ C i
xcl.t/pcl.t/

2„

!
: (6.36)

The variances of the expectation values hxi.t/ D xcl.t/ and hpi.t/ D pcl.t/ of the
coherent state j�.t/i (6.33, 6.34) are

�x2 D „
2m!

; �p2 D m!„
2
: (6.37)

In terms of the force constant K D m!2 of the harmonic potential the width of the
coherent states is �x2 / 1=

p
mK. This equation holds with an n-dependent factor

also for the energy eigenstates jni, see Problem 6.2. We have seen in Section 3.4
that the kinetic term p2=2m drives wave packets apart. The attractive potential
V.x/ D Kx2=2 on the other hand tries to collapse wave packets, and the balance of
these terms yields the stable wave packets (6.17) and (6.33, 6.34). This is consistent
with �x2 / 1=

p
mK, because mK ! 1 would correspond to domination of the

attractive potential while mK ! 0 would imply domination of the kinetic term.
In the next chapter we will see that the same basic mechanism also stabilizes the
bound states of atoms. Balance between kinetic terms driving wave packets apart
and the attractive Coulomb potential trying to contract the wave function generates
minimal possible sizes of wave functions for given kinetic parameters 1=m and force
constants Ze2, thus preventing electrons from the classically inevitable core collapse.
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Scalar products and overcompleteness of coherent states

We use � instead of �C to denote the complex conjugate of � in this section.
The decomposition (6.31) yields for the product of two coherent state the result

h�j	i D exp

�
�1
2

�j�j2 C j	j2�
� 1X

nD0

�
�	
�n

nŠ

D exp

�
�	 � 1

2

�j�j2 C j	j2�
�
; (6.38)

and therefore we also have

jh�j	ij2 D exp
��j� � 	j2� ;

i.e. coherent states are never orthogonal. Therefore any completeness relation cannot
be unique, and we will find indeed that coherent states are overcomplete, i.e. we can
decompose every state in a series of coherent states in infinitely many different
ways. However, we can still identify a kind of “canonical” completeness relation in
which all coherent states contribute with the same weight. We use

dz D exp.i'/dr C izd';
dz ^ dz

2i
D d<z ^ d=z D dr ^ d' r

to find the particular completeness relation

Z
dz ^ dz

2� i
jzihzj D

Z
dz ^ dz

2� i
exp

��jzj2�X
m;n

jmi zmzn

p
mŠnŠ

hnj

D 1

�

Z 1

0

dr
Z 2�

0

d' exp
��r2

�X
m;n

jmi rmCnC1
p

mŠnŠ
expŒi.n � m/'� hnj

D 2

Z 1

0

dr r exp
��r2

�X
n

jni r2n

nŠ
hnj

D
X

n

Z 1

0

du

�
� d

d˛

�n

exp.�˛u/

ˇ̌
ˇ̌
˛D1

1

nŠ
jnihnj

D
X

n

�
� d

d˛

�n
1

˛

ˇ̌
ˇ̌
˛D1

1

nŠ
jnihnj D

X
n

jnihnj D 1: (6.39)

For example, substitution of

hzjni D zn

p
nŠ

exp

�
�1
2

jzj2
�
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yields the following decomposition of the energy eigenstates of the harmonic
oscillator in terms of coherent states,

jni D
Z

dz ^ dz

2� i
jzi zn

p
nŠ

exp

�
�1
2

jzj2
�
:

For another example of an expansion in terms of coherent states, substitution of
equation (6.38) yields a decomposition of coherent states in terms of coherent states,

j
i D
Z

dz ^ dz

2� i
jzi exp

�
z
 � 1

2

�jzj2 C j
j2�
�
: (6.40)

This lack of orthogonality of the coherent states implies that we can shift con-
tributions of different coherent states to the expansion of a state j i, see e.g.
Problem 6.10.

Note that for the coherent state parameter �.t/ (6.33)

d�.t/ ^ d�.t/

2� i
D dxcl.t/ ^ dpcl.t/

h
D dX ^ dP

h
;

or if we denote the classical parameters simply with x and p,
Z

dx ^ dp

h
j�x;p.t/ih�x;p.t/j D 1:

Later we will encounter the measure dx ^ dp=h in phase space also in the density of
states.

Squeezed states

We try to construct new oscillation operators b, bC from the oscillation opera-
tors (6.8). Substitution of the linear ansatz

b D Aa C BaC; bC D AaC C Ba

into the condition Œb; bC� D 1 yields

jAj2 � jBj2 D 1;

i.e. we find

b D exp.i˛/ cosh.u/a C exp.iˇ/ sinh.u/aC;

bC D exp.�i˛/ cosh.u/aC C exp.�iˇ/ sinh.u/a:
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The phase factors are irrelevant in the following. Therefore we study the ladder
operators

a.u/ D cosh.u/a C sinh.u/aC D 1p
2„

�p
m!x exp.u/C i

p exp.�u/p
m!

�

and

aC.u/ D cosh.u/aC C sinh.u/a D 1p
2„

�p
m!x exp.u/ � i

p exp.�u/p
m!

�
:

The x and p operators of the original oscillator are

x D
r „
2m!

�
a C aC� D

r „
2m!

exp.�u/
�
a.u/C aC.u/

�

and

p D � i

r
m!„
2

�
a � aC� D � i

r
m!„
2

exp.u/
�
a.u/ � aC.u/

�
:

We can think of the new operators a.u/ and aC.u/ as oscillation operators for a
harmonic oscillator with a u-dependent product of mass and frequency,

.m!/.u/ D .m!/ exp.2u/: (6.41)

The coherent state for the new oscillation operators j�i.u/ D exp.�aC.u/ �
�Ca.u//j0iu, a.u/j0iu D 0, has expectation values and variances

hxi.u/ D
r „
2m!

exp.�u/
�
�C �C� D hxi

ˇ̌
ˇ
uD0 � exp.�u/;

hpi.u/ D � i

r
m!„
2

exp.u/
�
� � �C� D hpi

ˇ̌
ˇ
uD0 � exp.u/;

�x2.u/ D „
2m!

exp.�2u/ D �x2
ˇ̌
ˇ
uD0 � exp.�2u/;

�p2.u/ D m!„
2

exp.2u/ D �p2
ˇ̌
ˇ
uD0 � exp.2u/;

i.e. the uncertainty in x or p direction is squeezed at the expense of a corresponding
increase of the uncertainty in the complementary direction.

We could formally write

�aC.u/ � �Ca.u/ D �.u/aC � �C.u/a

with �.u/ D � cosh.u/ � �C sinh.u/. However, j0iu ¤ j0i and therefore j�iu ¤
j�.u/i. Without the change in the vacuum, the variances could not change.
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For the actual transformation, we note that

a.u/ D exp
�u

2

	
a2 � .aC/2


�
a exp

�
�u

2

	
a2 � .aC/2


�

and therefore

j0iu D exp
�u

2

	
a2 � .aC/2


� j0i; j�iu D exp
�u

2

	
a2 � .aC/2


� j�i:

6.6 Problems

6.1. Write down the p-representation of the Schrödinger equation for the one-
dimensional harmonic oscillator. Which transformations between the parameters m
and ! map the p-representation into the x-representation?

6.2. Calculate the widths�xn and�pn of the n-th energy eigenstate of the harmonic
oscillator.

Remark. This is most conveniently done using the annihilation and creation
operators.

6.3. A one-dimensional oscillator at time t D 0 is in a state

j ˛i D cos˛j0i C exp.i'/ sin˛j1i:

6.3a. Calculate the expectation values hxi.t/, hpi.t/ and hEi for the oscillator.

6.3b. Calculate the uncertainties �x.t/, �p.t/ and �E for the oscillator.

6.4. For the oscillator from Problem 6.3, how large is the probability density to find
the oscillator in the location x at time t?

6.5. Show that

exp.A/ exp.�A/ D 1: (6.42)

Hint: Define a corresponding �-dependent operator F.�/ by rescaling the operator
A in (6.42) with the complex number �. Show dF.�/=d� D 0. This implies
F.�/ D F.0/.

6.6. Show that every coherent state j�i D exp.�aC � �Ca/j0i has the vari-
ances (6.37).

6.7. Calculate the energy expectation value hEi and the energy uncertainty �E
for the coherent state j�i. Which values do you find in particular for the state
j�.t/i (6.34) which reproduces the classical trajectories (6.32)?
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6.8. Show that

exp

�
i

„ Œpcl.t/x � xcl.t/p�

�
D exp

�
i

„pcl.t/x

�
exp

�
� i

„xcl.t/p

�

� exp

�
� i

2„xcl.t/pcl.t/

�

D exp

�
� i

„xcl.t/p

�
exp

�
i

„pcl.t/x

�

� exp

�
i

2„xcl.t/pcl.t/

�
:

6.9. Use the results from Problem 6.8 and equation (6.34) to re-derive the x and p
representations (6.35, 6.36) of the coherent state j�.t/i.
6.10. Suppose K 	 C is a subset of the complex plane. Show that the relation (6.40)
implies a completeness relation

1 D
Z
CnK

dz ^ dz

2� i
jzi
 

hzj C
Z

K

d
 ^ d


2� i
exp

�
z
 � 1

2

�jzj2 C j
j2�
�

h
j
!

C
Z

K

dz ^ dz

2� i
jzi
Z

K

d
 ^ d


2� i
exp

�
z
 � 1

2

�jzj2 C j
j2�
�

h
j:

What we have done here is to use (6.40) to redistribute contributions from coherent
states with eigenvalues in K and in C n K to the completeness relation. Since
there are non-enumerably many possibilities to choose the subset K, there are non-
enumerably many completeness relations for coherent states.

6.11. Construct a coherent state j�.t/i that follows the orbit (6.1) in terms of its
expectation values h�.t/jxj�.t/i, h�.t/jpj�.t/i.

How large are the uncertainties of the coordinate and momentum expectation
values?

6.12. The classical solution (6.1) of the three-dimensional isotropic oscillator
describes a curve on a five-dimensional ellipsoid in six-dimensional phase space.

How long are the main axes of the ellipsoid?
How can you then think geometrically of the evolution of the coherent state from

Problem 6.11?



Chapter 7
Central Forces in Quantum Mechanics

Radially symmetric problems appear if the interaction between two particles
depends only on their separation r. We will first see how the dynamical problem of
the motion of the two particles can be separated in terms of center of mass motion
and relative motion and then write the effective Hamiltonian for the relative motion
of the two particles in spherical coordinates.

7.1 Separation of center of mass motion and relative motion

The separation of center of mass motion and relative motion proceeds like in
classical mechanics. The Hamiltonian of the 2-particle system is

H D p21
2m1

C p22
2m2

C V.jx1 � x2j/ D P2

2M
C p2

2	
C V.r/; (7.1)

where

M D m1 C m2; 	 D m1m2

m1 C m2

(7.2)

are the total and reduced mass,

R D m1x1 C m2x2
m1 C m2

; r D x1 � x2 (7.3)

are the operators for center of mass and relative coordinates, and

P D M PR D p1 C p2; p D 	Pr D 	

m1

p1 � 	

m2

p2 D m2p1 � m1p2
m1 C m2

(7.4)
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are the momentum operators of center of mass motion and relative motion. The
relative motion of the two original particles also comes with an angular momentum

l D x1 � p1 C x2 � p2 � R � P D r � p: (7.5)

The inverse transformations are

x1 D R C m2

M
r; x2 D R � m1

M
r; p1 D m1

M
P C p; p2 D m2

M
P � p; (7.6)

and if we assume m2 � m1,

m2 D M Cp
M.M � 4	/
2

; m1 D M �p
M.M � 4	/
2

:

The r operators transform as

@

@R
D @

@x1
C @

@x2
;

@

@r
D m2

M

@

@x1
� m1

M

@

@x2
;

@

@x1
D m1

M

@

@R
C @

@r
;

@

@x1
D m2

M

@

@R
� @

@r
:

These are the same transformations for operators as the corresponding transfor-
mations for classical coordinates and momenta in classical mechanics. From the
quantum mechanics perspective this is not surprising, since the transformation
equations for the operators are linear and therefore also hold for the expectation
values of the operators, hence for the classical variables. What becomes particularly
relevant for quantum mechanics is that the transformations preserve canonical
commutation relations,

Œx1;p1� D i„1; Œx2;p2� D i„1 , ŒR;P� D i„1; Œr;p� D i„1:

Since the interaction does not depend on the center of mass coordinates, we can
separate the center of mass motion with momentum P D „K in the wave function
for the time-independent Schrödinger equation,

‰.x1; x2/ D 1p
2�

3
exp.iK � R/ .r/; (7.7)

and the energy eigenvalue problem Hj‰i D Etotalj‰i reduces to an eigenvalue
problem for the relative motion,

E .r/ D � „2
2	
� .r/C V.r/ .r/; (7.8)

where

Etotal D E C „2K2

2M
(7.9)

is the total energy in the center of mass motion and relative motion.
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The discussion of separated solutions in Section 5.5 implies that the solutions for
the Hamiltonian (7.1) should have the separated form with respect to center of mass
motion and relative motion, ‰.x1; x2/ D ‰.R/ .r/. However, the reasoning there
also implies that we cannot find a solution of the Schrödinger equation which is
separated in the actual coordinates of the two particles, ‰.x1; x2/ ¤  2.x2/ 1.x1/.
The wave functions of interacting particles are always entangled. This entanglement
is easy to understand. Suppose that the interaction between two particles is attractive
and strong enough to generate a bound state between the two particles. If we
observe one particle at location x1, we know that the second particle has to be
nearby at a location which is determined probabilistically by j .x1 � x2/j2. On
the other hand, if the interaction is weak or repulsive, interactions with other
particles will soon dominate each of the two particles, and their two-particle wave
function ‰.x1; x2/ D ‰.R/ .r/ is not a viable description any more: their mutual
entanglement is destroyed by interactions with other particles.

We have based this discussion on the wave function (7.7) which appears in the
.x1; x2/ representation of the time-independent two-particle Schrödinger equation
Hj‰i D Etotalj‰i with the Hamiltonian (7.1). If one starts from a time-dependent
two-particle Schrödinger equation

i„ @
@t
‰.x1; x2; t/ D � „2

2m1

@2

@x21
‰.x1; x2; t/ � „2

2m2

@2

@x22
‰.x1; x2; t/

C V.jx1 � x2j/‰.x1; x2; t/;
the separation ansatz for the center of mass motion

‰.x1; x2; t/ D ‰.x1; x2/ exp

�
� i

Etotal

„ t

�

D 1p
2�

3
exp

 
iK � R � i

„K2

2M
t

!
 .r; t/

D 1p
2�

3
exp

 
iK � R � i

„K2

2M
t

!
 .r/ exp

�
� i

E

„ t

�

leads again to equation (7.8).
Separation of the center of mass motion in the present form works for any

potential V.r/ which only depends on the separation vector r of the two particles.
More general, if the 2-particle system moves in a potential of the form

V.x1; x2/ D V.r/C W.R/;

we can separate center of mass motion in the potential W.R/ from relative motion
with the interaction potential V.r/ and find two independent effective single-particle
Schrödinger equations (or Newton equations in mechanics) for the system. An
example for this situation would be a hydrogen atom trapped in a potential well,
e.g. in ice. If we model the potential well through a three-dimensional oscillator
potential, the center of mass motion could be described by oscillator eigenstates
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‰N.R; t/ while the relative motion between the electron and the proton would
be described by the wave functions  n;`.r/Y`;m.#; '/ exp.�iEnt=„/ derived in
Sections 7.5 and 7.8.

7.2 The concept of symmetry groups

The effective single particle equation (7.8) for relative motion has the same form
in every coordinate system which is related to the coordinates r through a rotation
r0i D Ri

ara, or in column vector notation,

r0 D R � r; RT � R D 1;

cf. Section 4.1 and in particular equations (4.6) and (4.8). Contrary to Section 4.1,
here we use the common left multiplication convention for linear coordinate
transformations, ra ! r0i D Ri

ara, i.e. our rotation matrix R in the present section
corresponds to RT D R�1 in Section 4.1.

Rotations have the following four basic properties:

1. The combination of two rotations R1 and R2 yields again a rotation R2 � R1,

r00 D R2 � r0 D R2 � .R1 � r/ D .R2 � R1/ � r:

2. The identity transformation 1 is a particular rotation.
3. For every rotation there is an inverse rotation, R�1 � R D 1.
4. Combination of rotations is associative,

R3 � .R2 � R1/ D .R3 � R2/ � R1:

These four algebraic properties are common to all sets of symmetry transforma-
tions of physical systems, and they have far reaching consequences in the sense that
many other interesting properties of symmetry transformations can be derived from
these four properties. Every set of mathematical objects having these four properties
is therefore denoted as a group, and the study of groups is a subdiscipline of algebra
denoted as group theory.

Groups which are particularly relevant for quantum mechanics include the
following sets:

1. The group of proper rotations is the set of all rotations which does not include
inversion of an odd number of axes. Matrices which generate proper rotations do
not only satisfy the orthogonality condition

RT � R D 1;

but also the special additional condition

detR D 1:
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The group of proper rotations in three dimensions is therefore also denoted as the
special orthogonal group of rotations in three dimensions, or SO(3) for short.

2. A group which is closely related to the group SO(3) is the group of unitary 2� 2
matrices with determinant 1,

UC � U D 1; detU D 1:

This is the special group of unitary transformations in two dimensions SU(2).
3. The Poincaré group and its various subgroups, including in particular the proper

orthochronous Lorentz group SO(1,3) of proper rotations and Lorentz boosts in
Minkowski spacetime, are important for relativistic quantum mechanics.

4. SO(1,3) is closely related to the group of complex 2 � 2 matrices with determi-
nant 1. This group is often denoted as SL(2,C).

5. Discrete symmetry groups involve e.g. translations along lattice vectors in a
regular lattice, or inversions of axes, or rotations by fixed angles. Discrete groups
are also important in many applications of quantum mechanics.

6. The known basic particle interactions (besides gravity) are related to the group
U(1) of phase transformations, and also to the special unitary groups SU(2) and
SU(3).

In this and the following chapter we are primarily concerned with the groups
SO(3) and SU(2), and we will develop the relevant aspects of these groups and their
matrix representations along the way. Students who would like to acquire a deeper
understanding of groups and their representations from a physics perspective should
consult the excellent texts by Barut and Raczka [2] or Cornwell [6] for groups in
general, or Sexl and Urbantke [37] for emphasis on the Poincaré and Lorentz groups.
However, this is not required for understanding the following chapters.

7.3 Operators for kinetic energy and angular momentum

The kinetic operator in spherical coordinates follows from (5.25) as

p2

2	
D � „2

2	

Z
d3r jri

�
1

r

@2

@r2
r C 1

r2
@2

@#2
C cot#

r2
@

@#
C 1

r2 sin2 #

@2

@'2

�
hrj

D � „2
2	

Z
d3r jri1

r

@2

@r2
rhrj C M2

2	r2
;

where M is the angular momentum operator

M D r � p D „
i

Z
d3r jrir � rhrj
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D „
i

Z
d3r jri

�
e'
@

@#
� 1

sin#
e#
@

@'

�
hrj

D „
i

Z
d3r jri

�
ex

�
� sin'

@

@#
� cot# � cos'

@

@'

�

C ey

�
cos'

@

@#
� cot# � sin'

@

@'

�
C ez

@

@'

�
hrj: (7.10)

The property

M2 D � „2
Z

d3r jri
�
@2

@#2
C cot#

@

@#
C 1

sin2 #

@2

@'2

�
hrj (7.11)

follows from

@'e' D � cos' ex � sin' ey D � sin# er � cos# e# :

The energy eigenvalue problem for the relative motion therefore reads

�
� „2
2	

1

r

@2

@r2
r C V.r/

�
hrj i C 1

2	r2
hrjM2j i D Ehrj i; (7.12)

and we can deal with the angular part in the equation by first solving the eigenvalue
problem for the operator M2.

A useful tool for the analysis of angular momentum operators is the � tensor or
Eddington tensor. The � tensor in an n-dimensional flat space is the completely
anti-symmetric tensor of n-th order

�i1i2:::ik�1ikikC1:::im�1imimC1:::in�1in D � �i1i2:::ik�1imikC1:::im�1ikimC1:::in�1in

with the normalization

�123:::n D 1:

This tensor has nn components. Anti-symmetry and the normalization imply that
nŠ=2 of the components have the value 1, nŠ=2 of the components have the value
�1, and nn � nŠ components vanish. We often use the � tensor in three dimensions,

�123 D �231 D �312 D � �213 D � �132 D � �321 D 1:

This tensor appears e.g. if we express cross products of vectors in terms of their
components in a Cartesian basis ei,

a D aiei; b D biei ) a � b D ei�ijkajbk: (7.13)
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This relation can be verified directly from the explicit definition of cross products
like .a � b/1 D a2b3 � a3b2 etc., or it can be considered as a consequence of a
relation for the cross product of Cartesian basis vectors,

ei � ej D �ijkek:

An example of (7.13) which involves the gradient operator is the curl of a vector
field,

B D r � A D ei�ijk@jAk:

A useful identity is

�ijk�k`m D ıi`ıjm � ıimıj`: (7.14)

This identity yields e.g. the relations

a � .b � c/ D .a � c/b � .a � b/c;

r � .r � A/ D r.r � A/ ��A:

Equation (7.13) implies that the Cartesian components of the angular momentum
operator are related to the Cartesian components of position and momentum
operators according to

Mi D �ijkxjpk D „
i

Z
d3rjri�ijkxj

@

@xk
hrj:

The first of these relations and the canonical commutation relations Œxi; pj� D i„ıij

imply the angular momentum commutation relations

ŒMi;Mj� D i„�ijkMk: (7.15)

Determination of the eigenvalues of M2 is equivalent to the determination of
all hermitian matrix representations of the Lie algebra (7.15), which in turn is
equivalent to the determination of all the matrix representations of the rotation
group. We will find that all those matrix representations are realized in rotationally
symmetric quantum systems. Therefore our next task is the determination of all the
matrix representations of (7.15).

7.4 Matrix representations of the rotation group

We will start the study of matrix representations of the rotation group by looking at
the defining representation, and then derive the general matrix representation.
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The defining representation of the three-dimensional
rotation group

In Section 4.1 we found the condition

R � RT D 1

for rotation matrices. This leaves the following possibilities for the matrix1 X D
ln R,

XT D � X C 2� in1: (7.16)

The equation

det.exp X/ D exp.trX/; (7.17)

which follows from the existence of a Jordan canonical form (F.2) for every matrix,
implies then

det R D exp

�
tr

X C XT

2

�
D .�1/n;

i.e. det R D ˙1. Pure rotations have det R D 1, whereas additional inversion of an
odd number of axes2 yields det R D �1 . We will focus on pure rotations.

The general solution of equation (7.16) in three dimensions and with n D 0 is

X D
0
@ 0 '3 �'2

�'3 0 '1
'2 �'1 0

1
A D 'iLi D ' � L;

where the basis of anti-symmetric real 3 � 3 matrices

L1 D
0
@0 0 0

0 0 1

0 �1 0

1
A ; L2 D

0
@0 0 �1
0 0 0

1 0 0

1
A ; L3 D

0
@ 0 1 0

�1 0 0
0 0 0

1
A (7.18)

was introduced. We can write the equations above in short form .Li/jk D �ijk. The
general orientation preserving rotation in three dimensions therefore has the form

R.'/ D exp.' � L/:

1See Appendix F for the calculation of the logarithm of an invertible matrix.
2Inversion of three axes is equivalent to inversion of one axis combined with a rotation.
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Expansion of the exponential function and ordering into even and odd powers of
' � L yields the representation

R.'/ D O' ˝ O'T C
�
1 � O' ˝ O'T

�
cos' C O' � L sin': (7.19)

Application of the matrix O' � L on a vector r generates a vector product,

. O' � L/ � r D � O' � r;

i.e. for every vector r, the first term in (7.19) preserves the part rk D O'˝ O'T � r of the
vector which is parallel to the vector ', the second term multiplies the orthogonal
part r? D r � rk by the factor cos', and the third part takes the orthogonal part,
rotates it by �=2 and multiplies it by the factor sin',

R.'/ � r D rk C r? cos' � O' � r sin':

This also implies that the direction O' of the vector ' is the direction of the axis of
rotation.

Exponentiation of the linear combinations ' � L of the matrices (7.18) thus
generates rotations in three dimensions, and therefore these matrices are also
denoted as three-dimensional representations of generators of the rotation group.
They satisfy the commutation relations

ŒLi;Lj� D � �ijkLk: (7.20)

We will also use the hermitian matrices

Mi D � i„Li; ŒMi;Mj� D i„�ijkMk; ŒMi;M
2� D 0: (7.21)

It is no coincidence that the angular momentum operators

Mi D �ijkxjpk

satisfy the same commutation relations. We will see that angular momentum
operators also generate rotations, and a set of operators Mi generates rotations if and
only if the operators satisfy the commutation relations (7.21). It is a consequence of
the general Baker-Campbell-Hausdorff formula in Appendix E that the combination
of any two rotations to a new rotation is completely determined by the commutation
relations (7.21) of the generators of rotations.

The general matrix representations of the rotation group

We wish to classify all possible representations of the commutation relations (7.21)
in vector spaces. To accomplish this, it is convenient to change the basis from Mx �
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M1 and My � M2 to

M˙ D M1 ˙ iM2; Mz � M3:

The product M2 � MiMi is then

M2 D 1

2
.MCM� C M�MC/C Mz

2 D M�MC C Mz
2 C „Mz;

and we have the commutation relations in the new basis,

ŒMz;M˙� D ˙ „M˙; ŒMC;M�� D 2„Mz:

Hermiticity3 implies that we can use a basis where Mz is diagonal with real
eigenvalues,

Mzjmi D „mjmi; m 2 R:

The commutation relations then imply

M˙jmi D „C˙.m/jm ˙ 1i;
CC.m � 1/C�.m/ D 2„m C C�.m C 1/CC.m/; (7.22)

and MCC D M� implies

C�.m/ D hm � 1jM�jmi D .hmjMCCjm � 1i/C D CC.m � 1/C:
Substitution in equation (7.22) yields

jCC.m/j2 D jCC.m � 1/j2 � 2„2m:
Since the left hand side cannot become negative, there must exist some maximal
value ` for m such that CC.`/ D 0, MCj`i D 0, and we have

jCC.` � 1/j2 D 2„2`; jCC.` � 2/j2 D 2„2.2` � 1/;
and after n � 1 steps

jCC.` � n/j2 D jC�.` � n C 1/j2 D „2Œ2n` � n.n � 1/�: (7.23)

Again, the left hand side cannot become negative, and therefore the expression on
the right hand side must terminate for some value N of n, C�.` � N C 1/ D 0,
M�j` � N C 1i D 0. This implies existence of an integer N such that 2` D N � 1

and

CC.` � N/ D CC.�.N C 1/=2/ D C�..1 � N/=2/ D C�.�`/ D 0; (7.24)

3We could do the following calculations in slightly more general form without using hermiticity,
and then find hermiticity of the finite-dimensional representations along the way.
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where an irrelevant possible phase factor was excluded. Therefore we have
boundaries

� ` D 1 � N

2
� m � N � 1

2
D ` (7.25)

and N D 2`C 1 possible values for m both for integer ` and half-integer `.
Equation (7.23) yields with

n D N � 1
2

� m

the equation

n.N � n/ D N2

4
�
�

m C 1

2

�2
D N2 � 1

4
� m.m C 1/

D `.`C 1/ � m.m C 1/;

and therefore

CC.m/2 D „2
�

N2 � 1
4

� m.m C 1/

�
D „2 Œ`.`C 1/ � m.m C 1/� ;

C�.m/2 D CC.m � 1/2 D „2 Œ`.`C 1/ � m.m � 1/� :
We have found all the hermitian matrix representations of the commutation rela-
tions (7.21). The magnetic quantum number m can take values �` � m � `, the
number of dimensions is N D 2`C1 2 N, and the actions of the angular momentum
operators are

Mzj`;mi D „mj`;mi; 2` 2 N0; m 2 f�`;�`C 1; : : : ; ` � 1; `g; (7.26)

MCj`;mi D „
p
`.`C 1/ � m.m C 1/j`;m C 1i (7.27)

M�j`;mi D „
p
`.`C 1/ � m.m � 1/j`;m � 1i (7.28)

Mxj`;mi D „
2

p
`.`C 1/ � m.m C 1/j`;m C 1i

C „
2

p
`.`C 1/ � m.m � 1/j`;m � 1i; (7.29)

Myj`;mi D „
2i

p
`.`C 1/ � m.m C 1/j`;m C 1i

� „
2i

p
`.`C 1/ � m.m � 1/j`;m � 1i; (7.30)

M2j`;mi D �
CC.`;m/2 C „2m.m C 1/

� j`;mi D „2`.`C 1/j`;mi: (7.31)
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7.5 Construction of the spherical harmonic functions

We now want to construct the r representations of the angular momentum eigen-
states j`;mi, i.e. we are seeking the solutions h#; 'j`;mi � Y`;m.#; '/ of the
differential equations

h#; 'jM2j`;mi � � „2
�
@2

@#2
C cot#

@

@#
C 1

sin2 #

@2

@'2

�
Y`;m.#; '/

D „2`.`C 1/Y`;m.#; '/

and

h#; 'jMzj`;mi � „
i

@

@'
Y`;m.#; '/ D „mY`;m.#; '/:

Here we used that the angular momentum operators act in r space as differential
operators with respect to # and ', and therefore do not determine the radial
dependence of wave functions. The radial part can therefore be left out in their
representation4,

M2 D � „2
Z 2�

0

d'
Z �

0

d# sin# j#; 'i
�
@2

@#2
C cot#

@

@#
C 1
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@'2

�
h#; 'j;
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i

Z 2�

0
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Z �

0

d# sin# j#; 'i @
@'

h#; 'j;

MC D „
Z 2�

0

d'
Z �

0

d# sin# j#; 'i exp.i'/

�
i cot#

@

@'
C @

@#

�
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Z 2�

0
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Z �

0
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�
i cot#

@
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� @

@#

�
h#; 'j:

The equation

h#; 'jMzj`; `i D „
i

@

@'
h#; 'j`; `i D „`h#; 'j`; `i (7.32)

implies

h#; 'j`; `i D Y`;`.#; '/ D f`.#/ exp.i`'/:

Single valuedness of the eigenstates implies ` 2 N0.
The equation

h#; 'jMCj`; `i D „ exp.i'/

�
@

@#
C i cot#

@

@'

�
h#; 'j`; `i D 0 (7.33)

4Stated differently, we leave out a factor 1 D R
1

0 drr2jrihrj.
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implies
�
@

@#
� ` cot#

�
f`.#/ D 0;

with the solution f`.#/ D N�1=2
` sin` # . The normalization constants are chosen to

ensure
Z �

0

d# f 2` .#/ sin# D 1:

They can be calculated recursively if we note that

N0 D
Z �

0

d# sin# D 2

and

N`�1 D
Z �

0

d# sin2`C1 # D
Z 1

�1
d� .1 � �2/`

D �.1 � �2/`
ˇ̌
ˇ1�1 C

Z 1

�1
d� 2`�2.1 � �2/`�1

D �2`N` C 2`N`�1:

This yields

N` D 2`

2`C 1
N`�1 D 22`.` � 1/

.2`C 1/.2` � 1/N`�2 D : : : D 2``Š

.2`C 1/ŠŠ
2

D 2
22`.`Š/2

.2`C 1/Š
;

and therefore

h#; 'j`; `i D Y`;`.#; '/ D .�/`
2`C1`Š

r
.2`C 1/Š

�
exp.i`'/ sin` #: (7.34)

We can get the other eigenfunctions from h#; 'j`; `i through repeated applica-
tions of the lowering operator M�,

Y`;m.#; '/ D h#; 'j`;mi D h#; 'jM�j`;m C 1i
„p.`C m C 1/.` � m/

D h#; 'j.M�/2j`;m C 2i
„2p.`C m C 1/.`C m C 2/.` � m/.` � m � 1/ D : : :

D h#; 'j.M�/`�mj`; `i
„`�m

Œ.`C m C 1/.`C m C 2/ � : : : � 2`
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�.` � m/.` � m � 1/ � : : : � 1��1=2

D 1

„`�m

s
.`C m/Š

.2`/Š.` � m/Š
h#; 'j.M�/`�mj`; `i

D
s

.`C m/Š

.2`/Š � .` � m/Š

�
�

exp.�i'/

�
i cot#

@

@'
� @

@#

��`�m

Y`;`.#; '/: (7.35)

If we substitute Y`;`.#; '/ from (7.34) into (7.35), we find

Y`;m.#; '/ D .�/m
2`C1`Š

s
.2`C 1/ � .`C m/Š

� � .` � m/Š
exp.im'/

�
" Ỳ

nDmC1

�
n cot# C d

d#

�#
sin` #

D .�/m
2`C1`Š

s
.2`C 1/ � .`C m/Š

� � .` � m/Š
exp.im'/

�
" Ỳ

nDmC1

�
sin�n #

d

d#
sinn #

�#
sin` #

D .�/`
2`C1`Š

s
.2`C 1/ � .`C m/Š

� � .` � m/Š
exp.im'/

� sin�m #
d`�m

d.cos#/`�m
sin2` #: (7.36)

Equations (7.35) or (7.36) provide a solution to the problem to construct the
spherical harmonic functions. However, it is common to make the connection to
orthogonal polynomials in the interval Œ�1; 1�. If we use the following equation for
the associated Legendre polynomials,

Pm
` .x/ D .�/m .`C m/Š

2``Š � .` � m/Š

�
1 � x2

��m=2 d`�m

dx`�m

�
x2 � 1�` ;

we can also write

Y`;m.#; '/ D .�/m
s
.2`C 1/ � .` � m/Š

4� � .`C m/Š
exp.im'/Pm

` .cos#/: (7.37)
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The identity

�
x2 � 1�m=2

s
.` � m/Š

.`C m/Š

d`Cm

dx`Cm

�
x2 � 1�`

D �
x2 � 1��m=2

s
.`C m/Š

.` � m/Š

d`�m

dx`�m

�
x2 � 1�`

implies

Y`;�m.#; '/ D .�/mYC
`;m.#; '/:

The spherical harmonic functions provide an orthonormal basis for functions on
the sphere. The completeness relations are

Z 2�

0

d'
Z �

0

d# sin# Y`;m.#; '/Y
C
`0;m0.#; '/ D ı`;`0ım;m0 (7.38)

and

1X
`D0

X̀
mD�`

Y`;m.#; '/Y
C
`;m.#

0; '0/ D ı.Or � Or0/

D ı.cos# � cos# 0/ı.' � '0/: (7.39)

In bra-ket notation we can write these completeness relations for functions on the
sphere as

Z �

0

d#
Z 2�

0

d' sin# j#; 'ih#; 'j D
1X
`D0

X̀
mD�`

j`;mih`;mj D 1; (7.40)

i.e. the spherical harmonics Y`;m.#; '/ D h#; 'j`;mi discretize functions on the
sphere in the same sense as the Fourier monomials discretize functions on a circle
or a finite interval (Sec. 10.1 contains a brief review of Fourier monomials on a finite
interval). Knowledge of a continuous function h#; 'jf i on the sphere is equivalent
to knowing the enumerably many numbers h`;mjf i.

The lowest order spherical harmonics are

Y0;0.#; '/ D 1p
4�
; Y1;0.#; '/ D

r
3

4�
cos#;

Y1;˙1.#; '/ D �
r

3

8�
exp.˙i'/ sin#; Y2;0.#; '/ D 1

4

r
5

�
.3 cos2 # � 1/;
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Y2;˙1.#; '/ D �1

4

r
30

�
exp.˙i'/ sin# cos#;

Y2;˙2.#; '/ D 1

8

r
30

�
exp.˙2i'/ sin2 #:

7.6 Basic features of motion in central potentials

Separation of the wave function in equation (7.12)

 .r/ D  .r/Y`;m.#; '/ (7.41)

and use of

M2j`;mi D „2`.`C 1/j`;mi

yields the radial Schrödinger equation

� „2
2	

1

r

d2

dr2
r .r/C

�„2`.`C 1/

2	r2
C V.r/

�
 .r/ D E .r/: (7.42)

The effective potential for the radial part of the relative motion of the two particles
is therefore

Veff.r/ D V.r/C „2`.`C 1/

2	r2
;

with a “centrifugal barrier” term M2=.2	r2/ just like in classical mechanics.
The reason for this term is essentially the same consistency requirement as in
classical mechanics. Classically, two particles with non-vanishing relative angular
momentum M can never be in the same location, and the centrifugal barrier term
simply reflects this property. Quantum mechanically, non-vanishing relative angular
momentum M implies that the particular value  .r D 0/ of the radial wave function
must be suppressed, and it must be more strongly suppressed for larger M2.

Equation (7.42) is usually solved by the Sommerfeld method. In the first step
one studies the asymptotic equations for small r and for large r, and keeps only the
normalizable solutions or those solutions which approximate Fourier monomials in
the asymptotic regions. In the next step one makes an ansatz for the full solution
by multiplying the asymptotic solutions with a polynomial. Before we apply this
method to the hydrogen atom, we will do something that one might find odd at first
sight. The simplest case of a radially symmetric potential is V D 0, i.e. free motion.
It is of interest both for scattering theory and for ionization or decay of rotationally
symmetric systems to discuss free motion with defined angular momentum, when
the wave function for a free particle has the form (7.41).
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7.7 Free spherical waves: The free particle with sharp Mz, M2

The radial Schrödinger equation for a free particle with fixed angular momentum
Mz, M2 and energy E D „2k2=2	 is

� „2
2	

1

r

d2

dr2
r .r/C „2`.`C 1/

2	r2
 .r/ D E .r/;

or
�

d2

dr2
� `.`C 1/

r2
C k2

�
r .r/ D 0: (7.43)

The regular solution for ` D 0 is

 k;0.r/ D
r
2

�

sin.kr/

kr
;

where the pre-factor was determined from the normalization conditionZ 1

0

dr r2 k;0.r/ k0;0.r/ D 1

kk0 ı.k � k0/:

For the study of solutions  k;`.r/ for higher `, we observe that solutions of
equation (7.43) for kr 
 p

`.`C 1/ are  .r/ / r` or  .r/ / r�`�1. We will
only study solutions which are regular for r D 0, i.e. for kr 
 p

`.`C 1/ our
solutions must approximate r`. Therefore we substitute  k;`.r/ D r`fk;`.r/ into
equation (7.43),

�
d2

dr2
C 2

r
.`C 1/

d

dr
C k2

�
fk;`.r/ D

�
1

r

d2

dr2
r C 2`

r

d

dr
C k2

�
fk;`.r/ D 0:

It is useful to write this as �
ArBr C 2`Ar C k2

�
fk;`.r/ D 0 (7.44)

with operators

Ar D 1

r

d

dr
; Br D d

dr
r:

These operators satisfy the commutation relation

ŒAr;Br� D 2Ar;

and this implies

Ar
�
ArBr C k2

� D Ar
�
BrAr C 2Ar C k2

� D �
ArBr C 2Ar C k2

�
Ar;

A`r
�
ArBr C k2

� D �
ArBr C 2`Ar C k2

�
A`r : (7.45)
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This yields

fk;`.r/ / 1

r

d

dr
fk;`�1.r/ /

�
1

r

d

dr

�`
fk;0.r/ D

r
2

�

�
1

r

d

dr

�` sin.kr/

kr
; (7.46)

 k;`.r/ /
r
2

�
r`
�
1

r

d

dr

�` sin.kr/

kr
D .�/`k`

r
2

�
j`.kr/: (7.47)

Here we used the definition of the spherical Bessel functions

j`.x/ D .�x/`
�
1

x

d

dx

�` sin x

x
D
r
�

2x
J`C 1

2
.x/:

The asymptotic expansion of j`.x/ is

j`.x/
ˇ̌
ˇ
x�1

� 1

x
sin

�
x � �`

2

�
:

Therefore the properly normalized radial eigenfunctions are

 k;`.r/ D
r
2

�
i`j`.kr/ D

r
2

�

� r

ik

�` �1
r

d

dr

�` sin.kr/

kr
; (7.48)

and the free spherical waves with sharp angular momenta M2, Mz are

hrjk; `;mi D
r
2

�
i`j`.kr/Y`;m.#; '/ D i`p

kr
J`C 1

2
.kr/Y`;m.#; '/: (7.49)

Our conventions for the phase and the normalization of the radial wave function
are motivated by the expansion of plane waves in terms of spherical harmonics. If
we define

hkjk0; `;mi D 1

kk0 ı.k � k0/Y`;m.Ok/;
we automatically get the expansion of plane waves in terms of spherical harmonics,

hrjki D 1p
2�

3
exp.ik � r/ D

r
2

�

1X
`D0

X̀
mD�`

i`j`.kr/Y`;m.Or/YC
`;m.

Ok/

D 1p
kr

1X
`D0

X̀
mD�`

i`J`C 1
2
.kr/Y`;m.Or/YC

`;m.
Ok/: (7.50)

This expansion is also particularly useful for exp.ikz/. We have Pm
` .1/ D ım;0

and therefore Y`;m.ez/ D Y`;m.# D 0/ D p
.2`C 1/=4� . This yields

exp.ikz/ D
1X
`D0
.2`C 1/i`j`.kr/P`.cos#/: (7.51)
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The radial wave functions (7.48) of the free spherical waves (7.49) satisfy
completeness relations on the half-line

Z 1

0

dr r2  k;`.r/ k0;`.r/ D 1

k2
ı.k � k0/;

Z 1

0

dk k2  k;`.r/ k;`.r
0/ D 1

r2
ı.r � r0/: (7.52)

If our discussion above does not refer to motion of a single particle with mass 	,
but to relative motion of two non-interacting particles at locations

x1 D R C m2

m1 C m2

r; x2 D R � m1

m1 C m2

r

we can write a full two-particle wave function with sharp angular momentum
quantum numbers for the relative motion as

hR; rjK; k; `;mi D i`

2�2
exp.iK � R/j`.kr/Y`;m.Or/;

or we could also require sharp angular momentum quantum numbers L;M for the
center or mass motion5,

hR; rjK;L;M; k; `;mi D 2

�
iLC`jL.KR/j`.kr/YL;M. OR/Y`;m.Or/:

7.8 Bound energy eigenstates of the hydrogen atom

The solution for the hydrogen atom was reported by Schrödinger in 1926 in the
same paper where he introduced the time-independent Schrödinger equation6.

We recall that separation of the wave function in equation (7.12)

 .r/ D  .r/Y`;m.#; '/ (7.53)

and use of M2j`;mi D „2`.`C 1/j`;mi yields the radial Schrödinger equation

� „2
2	

1

r

d2

dr2
r .r/C

�„2`.`C 1/

2	r2
� e2

4��0r

�
 .r/ D E .r/; (7.54)

5. . . or we could use total angular momentum, i.e. quantum numbers K; k; j 2 fjL � `j; : : : ;L C
`g;mj D M C m;L; `.
6E. Schrödinger, Annalen Phys. 384, 361 (1926).
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where the attractive Coulomb potential between charges e and �e has been inserted.
This yields asymptotic equations for small r,

� r2
d2

dr2
r .r/C `.`C 1/r .r/ D 0; (7.55)

and for large r,

� d2

dr2
r .r/ D 2	E

„2 r .r/: (7.56)

The Euler type differential equation (7.55) has basic solutions r .r/ D Ar`C1 C
Br�`, but with ` � 0 only the first solution r .r/ / r`C1 will yield a finite
probability density j .r/j2 near the origin.

The normalizable solution of (7.56) for E < 0 is

r .r/ / exp
�
�p�2	Er=„

�
: (7.57)

We combine the asymptotic solutions with a polynomial w.r/ D P
��0 c�r� ,

r .r/ D r`C1w.r/ exp.�r/ ;  D p�2	Er=„:
Substitution in (7.54) yields the condition

r
d2

dr2
w.r/C 2.`C 1 � r/

d

dr
w.r/C

�
	e2

2��0„2 � 2.`C 1/

�
w.r/ D 0;

which in turn yields a recursion relation for the coefficients in the polynomial w.r/,

c�C1 D c�
2.� C `C 1/ � 	e2

2��0„2
.� C 1/.� C 2`C 2/

: (7.58)

Normalizability of the solution requires termination of the polynomial w.r/ with a
maximal power N � max.�/ � 0 of r, i.e. cNC1 D 0 and therefore

 �
p�2	E

„ D 	e2

4��0„2.N C `C 1/
: (7.59)

This implies energy quantization for the bound states in the form

En D � 	e4

32�2�20„2
1

n2
D � ˛2

2
	c2

1

n2
(7.60)

with the principal quantum number n � N C ` C 1. Note that N � 0 implies the
relation n � `C 1 between the principal and the magnetic quantum number.

We used the definition

˛ D e2

4��0„c
D 7:29735 : : : � 10�3 D 1

137:036 : : :
: (7.61)

of Sommerfeld’s fine structure constant in (7.60).
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We will also use equation (7.59) in the form  D .na/�1 with the Bohr radius

a � 4��0„2
	e2

D „
˛	c

: (7.62)

The recursion relation is then

c�C1 D c�
2

na

� C `C 1 � n

.� C 1/.� C 2`C 2/
; 0 � � � N � n � ` � 1: (7.63)

This defines all coefficients c� in w.r/ in terms of the coefficient c0, which finally
must be determined from normalization. The factor 2=na in the recursion relation
will generate a power .2=na/� in c� , such that w.r/ will be a polynomial in 2r=na.
The factor .�C1/�1 will generate a factor 1=�Š in c� , and the factor .�C˛/=.�Cˇ/
with ˛ D `C 1 � n, ˇ D 2`C 2 will finally yield a polynomial of the form

w.r/ D c0

"
1C ˛

ˇ

2r

na
C 1

2Š

˛.˛ C 1/

ˇ.ˇ C 1/

�
2r

na

�2

C 1

3Š

˛.˛ C 1/.˛ C 2/

ˇ.ˇ C 1/.ˇ C 2/

�
2r

na

�3
C : : :

#
D c0 � 1F1.˛IˇI 2r=na/:

As indicated in this equation, the series for c0 D 1 defines the confluent hyper-
geometric function 1F1.˛IˇI x/ � M.˛IˇI x/ (also known as Kummer’s function
[1]). For �˛ 2 N0 and ˇ 2 N this function can also be expressed as an associated
Laguerre polynomial. The normalized radial wave functions can then be written as

 n;`.r/ D 2

n2

s
.n C `/Š

.n � ` � 1/Ša3
1F1.�n C `C 1I 2`C 2I 2r=na/

.2`C 1/Š

�
�
2r

na

�`
exp

�
� r

na

�

D 2

n2

s
.n � ` � 1/Š
.n C `/Ša3

�
2r

na

�`
L2`C1n�`�1

�
2r

na

�
exp

�
� r

na

�
: (7.64)

Substitution of the explicit series representation for w.r/ shows that the radial
wave functions are products of a polynomial in 2r=na of order n � 1 with n � `

terms, multiplied with the exponential function exp.�r=na/,

 n;`.r/ D 2

n2
.�/`

r
.n C `/Š.n � ` � 1/Š

a3
exp

�
� r

na

�

�
n�1X
kD`

.�2r=na/k

.k � `/Š.n � k � 1/Š.k C `C 1/Š
: (7.65)
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The representation (7.64) in terms of the associated Laguerre polynomials differs
from older textbook representations by a factor .nC`/Š due to the modern definition
of the normalization of associated Laguerre polynomials,

Lm
n .x/ D .�/m

.n C m/Š

dm

dxm

�
exp.x/

dnCm

dxnCm

	
xnCm exp.�x/


�

D .m C n/Š

nŠ � mŠ
1F1.�nI m C 1I x/;

which is also used in symbolic calculation programs. The normalization follows
from

Z 1

0

dx exp.�x/xmC1ŒLm
n .x/�

2 D .2n C m C 1/
.n C m/Š

nŠ
; (7.66)

but their standard orthogonality relation is

Z 1

0

dx exp.�x/xmLm
n .x/L

m
n0.x/ D .n C m/Š

nŠ
ın;n0 : (7.67)

Since they appear as eigenstates of the hydrogen Hamiltonian, the normalized
bound radial wave functions must satisfy the orthogonality relation

Z 1

0

dr r2  n;`.r/ n0;`.r/ D ın;n0 : (7.68)

This implies that the associated Laguerre polynomials must also satisfy a peculiar
additional orthogonality relation which generalizes (7.66),

Z 1

0

dx exp

�
� .n C n0 C m C 1/x

.2n C m C 1/.2n0 C m C 1/

�
xmC1Lm

n

�
x

2n C m C 1

�

� Lm
n0

�
x

2n0 C m C 1

�
D .2n C m C 1/mC3 .n C m/Š

nŠ
ın;n0 : (7.69)

Squares  2
n;`.r/ of the radial wave functions are plotted for low lying values of n

and ` in Figures 7.1–7.6.
For the meaning of the radial wave function, recall that the full three-dimensional

wave function is

 n;`;m.r/ D  n;`.r/Y`;m.#; '/:

This implies that  2
n;`.r/ is a radial profile of the probability density j n;`;m.r/j2 to

find the particle (or rather the quasiparticle which describes relative motion in the
hydrogen atom) in the location r, but note that in each particular direction .#; '/ the
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Fig. 7.1 The function a3 2
1;0.r/

radial profile is scaled by the factor Y2`;m.#; '/ to give the actual radial profile of the
probability density in that direction. Furthermore, note that the probability density
for finding the electron-proton pair with separation between r and r C dr is

Z �

0

d#
Z 2�

0

d' r2 sin# j n;`;m.r/j2 D r2 2
n;`.r/:

The function  2
n;`.r/ is proportional to the radial probability density in fixed

directions, while r2 2
n;`.r/ samples the full spherical shell between r and r C dr in

all directions, and therefore the latter probability density is scaled by the geometric
size factor r2 for thin spherical shells.

Nowadays radial expectation values

hrhin;` D
Z 1

0

dr rhC2 2
n;`.r/

are readily calculated with symbolic computation programs. One finds in particular

hrin;` D 3n2 � `.`C 1/

2
a; hr2in;` D n2

2
Œ5n2 C 1 � 3`.`C 1/�a2:
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Fig. 7.2 The function a3 2
2;0.r/ for r > a

The resulting uncertainty in distance between the proton and the electron

.�r/n;` D hr2in;` � hri2n;` D a

2

p
n2.n2 C 2/ � `2.`C 1/2

is relatively large for most states in the sense that .�r=hri/n;` is not small, except for
large n states with large angular momentum. For example, we have .�r=hri/n;0 Dp
1C .2=n2/=3 > 1=3 but .�r=hri/n;n�1 D 1=

p
2n C 1. However, even for large

n and `, the particle could still have magnetic quantum number m D 0, whence
its probability density would be uniformly spread over directions .#; '/. This
means that a hydrogen atom with sharp energy generically cannot be considered
as consisting of a well localized electron near a well localized proton. This is just
another illustration of the fact that simple particle pictures make no sense at the
quantum level.

We also note from (7.64) or (7.65) that the bound eigenstates  n;`;m.r/ D
 n;`.r/Y`;m.#; '/ have a typical linear scale

na D n
4��0„2
	Ze2

/ n
	�1

Ze2
: (7.70)
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Fig. 7.3 The function a3 2
2;1.r/

Here we have generalized the definition of the Bohr radius a to the case of an
electron in the field of a nucleus of charge Ze. Equation (7.70) is another example of
the competition between the kinetic term p2=2	 driving wave packets apart, and an
attractive potential, here V.r/ D �Ze2=4��0r, trying to collapse the wave function
into a point. Metaphorically speaking, pressure from kinetic terms stabilizes the
wave function. For given ratio of force constant Ze2 and kinetic parameter 	�1 the
attractive potential cannot compress the wave packet to sizes smaller than a, and
therefore there is no way for the system to release any more energy. Superficially,
there seems to exist a classical analog to the quantum mechanical competition
between kinetic energy and attractive potentials in the Schrödinger equation. In
classical mechanics, competition between centrifugal terms and attractive potentials
can yield stable bound systems. However, the classical analogy is incomplete in
a crucial point. The centrifugal term for ` ¤ 0 is also there in equation (7.54)
exactly as in the classical Coulomb or Kepler problems. However, what stabilizes
the wave function against core collapse in the crucial lowest energy case with
` D 0 is the radial kinetic term, whereas in the classical case bound Coulomb or
Kepler systems with vanishing angular momentum always collapse. To understand
the quantum mechanical stabilization of atoms against collapse a little better, let us
repeat equation (7.54) for ` D 0 and nuclear charge Ze, and for low values of r,
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Fig. 7.4 The function a3 2
3;0.r/ for r > a

where we can assume  .r/ ¤ 0:

„2
2	

1

 .r/

d2

dr2
r .r/ D � Er � Ze2

4��0
: (7.71)

The radial probability amplitude r .r/must satisfy  �1.r/d2.r .r//=dr2 < 0 near
the origin, to bend the function around to eventually yield limr!1 r .r/ D 0, which
is necessary for normalizability of r2 2.r/ on the half-axis r > 0. But near r D 0,
the only term that bends the wave function in the right direction for normalizability
is essentially the ratio Ze2=	�1,

1

 .r/

d2

dr2
r .r/ ' � Ze2	

2��0„2 :

If we want to concentrate more and more of the wave function near the origin
r ' 0, we have to bend it around already very close to r D 0 to reach small values
ar2 2.r/ 
 1 very early. But the only parameter that bends the wave function
near the origin r ' 0 is the ratio between attractive force constant and kinetic
parameter, Ze2=	�1. This limits the minimal spatial extension of the wave function
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Fig. 7.5 The function a3 2
3;1.r/

and therefore prevents the classically inevitable core collapse in the bound Coulomb
system with vanishing angular momentum M D 0. In a nutshell, there is only so
much squeezing of the wave function that Ze2=	�1 can do. See also Problem 7.15
for squeezing or stretching of a hydrogen atom near its ground state.

The radial probability amplitude r 1;0.r/ for the ground state is plotted in
Figure 7.7.

7.9 Spherical Coulomb waves

Now we assume E > 0. Recall that the asymptotic solutions for r .r/ for r ! 0

were of the form Ar`C1 C Br�`. Let us initially focus on the solutions which remain
regular in the origin.

The symptotic behavior for large r seems to correspond to outgoing and incoming
radial waves

r ˙.r/ ! A˙ exp.˙ikr/; k D p
2	E=„:
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Fig. 7.6 The function a3 2
3;2.r/

Therefore we try an ansatz

r ˙.r/ D w˙.r/r`C1 exp.˙ikr/; w˙.r/ D
X
��0

c˙;�r�:

Instead of the recursion relation (7.58) we now find

c˙;�C1 D � c˙;�
2

� C 1

1
a ˙ ik.� C `C 1/

� C 2`C 2
(7.72)

and therefore

w˙.r/ / 1� `C 1� i
ka

2`C 2
2ikr C

�
`C 1� i

ka

� �
`C 2� i

ka

�
.2`C 2/.2`C 3/

.2ikr/2

2Š

�
�
`C 1� i

ka

� �
`C 2� i

ka

� �
`C 3� i

ka

�
.2`C 2/.2`C 3/.2`C 4/

.2ikr/3

3Š
C : : :

D 1F1.`C 1� .i=ka/I 2`C 2I �2ikr/:
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Fig. 7.7 The function
p

ar 1;0.r/

However, the confluent hypergeometric function satisfies Kummer’s identity

1F1.˛IˇI z/ D exp.z/1F1.ˇ � ˛IˇI �z/;

and this implies in particular

exp.ikr/1F1.`C 1 � .i=ka/I 2`C 2I �2ikr/

D exp.�ikr/1F1.`C 1C .i=ka/I 2`C 2I 2ikr/;

i.e. there is only one regular solution for given quantum numbers .k; `/, and it
corresponds neither to an outgoing nor to an incoming spherical wave, but is
apparently rather a superposition of incoming and outgoing waves. For applications
in scattering theory one often also has to look at solutions which are irregular in the
origin,

r .r/ D r�`v˙.r/ exp.˙ikr/; v˙.r/ D
X
��0

d˙;�r�:
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In this case, the radial Schrödinger equation yields

d˙;�C1 D � d˙;�
2ik

� C 1

� � `� i
ka

� � 2` : (7.73)

This recursion relation follows also directly from (7.72) with the substitution ` !
�` � 1. The solution is

v˙.r/ / 1F1.�`� .i=ka/I �2`I �2ikr/;

and we have again from Kummer’s identity

exp.ikr/1F1.�` � .i=ka/I �2`I �2ikr/

D exp.�ikr/1F1.�`C .i=ka/I �2`I 2ikr/;

i.e. there is also only one irregular solution for given quantum numbers .k; `/, as
expected. Regular and irregular solutions can be combined to form outgoing or
incoming spherical waves, see e.g. [1] or [28]. This is relevant when the long range
Coulomb potential is combined with a short range scattering potential, because the
short range part will modify the short distance properties of the states and both
the regular and irregular spherical Coulomb waves are then needed to model the
asymptotic behavior of incoming and scattered waves far from the short range
scattering potential. This is relevant for scattering in nuclear physics, when short
range scattering is effected by nuclear forces.

However, for us the regular solutions are more interesting because together
with the bound states  n;`;m.r/ D  n;`.r/Y`;m.#; '/, the regular unbound states
 k;`;m.r/ D  k;`.r/Y`;m.#; '/ form a complete set in Hilbert space.

We use the normalization7

 k;`.r/ D
r
2

�
exp

� �
2ak

� ˇ̌��`C 1C i
ka

�ˇ̌
.2`C 1/Š

.2kr/` exp.�ikr/

�1F1.`C 1C .i=ka/I 2`C 2I 2ikr/: (7.74)

With this normalization the regular spherical Coulomb waves become the free waves
with sharp angular momentum (7.48) in the limit of vanishing Coulomb potential
e2 ! 0 ) a ! 1, or if the energy E D „2k2=2	 of the spherical Coulomb
waves is much larger than the binding energy EB D �E1 D „2=2	a2 of hydrogen,
E � EB ) ka � 1.

Apart from the normalization, the spherical Coulomb waves  k;`.r/ become the
radial bound state wave functions n;`.r/ through the substitution ik ! .na/�1. This
is expected since this substitution takes the positive energy Schrödinger equation
into the negative energy Schrödinger equation.

7W. Gordon, Annalen Phys. 394, 1031 (1929); M. Stobbe, Annalen Phys. 399, 661 (1930), see also
[3]. Gordon and Stobbe normalized in the k scale, i.e. to ı.k � k0/ instead of ı.k � k0/=k2.
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The regular spherical Coulomb waves satisfy the orthogonality properties
(cf. (7.68))

Z 1

0

dr r2  k;`.r/ k0;`.r/ D 1

k2
ı.k � k0/;

Z 1

0

dr r2  k;`.r/ n;`.r/ D 0;

and together with the radial bound state wave functions they satisfy the complete-
ness relation8

1X
nD`C1

 n;`.r/ n;`.r
0/C

Z 1

0

dk k2 k;`.r/ k;`.r
0/ D 1

r2
ı.r � r0/:

Together with the completeness relation (7.39) for the spherical harmonics, this
implies completeness of the regular hydrogen states,

1X
`D0

X̀
mD�`

 1X
nD`C1

 n;`;m.r/ C
n;`;m.r

0/C
Z 1

0

dk k2 k;`;m.r/ C
k;`;m.r

0/
!

D ı.r � r0/: (7.75)

For calculations of transitions between free and bound states, e.g. for electron-
proton recombination cross sections, one needs free eigenstates which are not
radially symmetric but approximate plane waves at large separations. To construct
such a state from the spherical Coulomb waves, we can use that equation (7.51) tells
us the decomposition of the plane wave exp.ikz/ in terms of the free states of sharp
angular momentum (7.48),

exp.ikz/ D
r
�

2

1X
`D0
.2`C 1/P`.cos#/ .e2D0/

k;` .r/:

However, one needs to adjust the phase factors in the sum if one wants to get
an asymptotic superposition of plane waves and outgoing spherical waves. The
superposition of spherical Coulomb waves9 (7.74),

hrjkiMG D
r
�

2

1X
`D0
.2`C 1/P`.cos#/

�
�
`C 1C i

ka

�
ˇ̌
�
�
`C 1C i

ka

�ˇ̌ k;`.r/; (7.76)

will correspond to a free energy eigenstate of hydrogen with energy „2k2=2	 which
up to logarithmic corrections approximates a superposition of a plane wave exp.ikz/
with outgoing radial waves.

8See e.g. N. Mukunda, Amer. J. Phys. 46, 910 (1978).
9N.F. Mott, Proc. Roy. Soc. London A 118, 542 (1928); W. Gordon, Z. Phys. 48, 180 (1928).
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7.10 Problems

7.1. Show that the transformations (7.3, 7.4) imply

K � R C k � r D k1 � x1 C k2 � x2: (7.77)

What is then the proper boundary condition for limr!1  .r/ for an unbound
2-particle state of the form (7.7) if we assume that the two particles have asymptotic
momenta „k1 and „k2 for large separation?

7.2. How large is the minimal value of the product �Mx�My of uncertainties of
angular momentum components in a state j`;m`i?
7.3. Why does equation (7.45) imply that there is no other choice but (7.46) for the
regular solution fk;`.r/ of (7.44)?

7.4. A simple spherical model for a color center or a quantum dot consists of an
electron confined to a sphere of radius R. Inside the sphere the electron can move
freely because the potential energy vanishes there, V.r/ D 0 for r < R. The wave
function in the sphere for given angular momentum quantum numbers will therefore
have the form  .r/ / j`.kr/Y`;m.#; '/.

Which energy quantization conditions will we get from the condition that the
wave function vanishes for r � R? How large is the radius R if the electron absorbs
photons of energy 2.3 eV?

Zeros xn;` of spherical Bessel functions, j`.xn;`/ D 0, n D 1; 2; : : : can be found
e.g. in Chapter 10 of [1].

Which relation between R and lattice constant d follows from Mollwo’s relation
�d2 D 5:02 � 10�5 m2 Hz?

In hindsight, color centers could be considered as the first realization of atomic
scale quantum dots.

7.5. Show that the radial density profile  2
n;`.r/ for bound states of hydrogen has

maxima at the extrema of the radial wave function  n;`.r/.

Remark.  n;`.r/ and d n;`.r/=dr have no common zeros, because this would
contradict the radial Schrödinger equation.

7.6. Calculate the radius r.n;n�1/
max where the radial wave function  n;n�1.r/ has a

maximum. Compare your result to hrin;n�1 ˙ .�r/n;n�1.

7.7. For n � 2 calculate the radius r.n;n�2/
max where the radial wave function  n;n�2.r/

has a maximum.

7.8. As a rule of thumb, quantum systems tend to approach classical behavior for
large quantum numbers. We have seen that for large quantum number n the radial
wave function  n;n�1.r/ is localized in a spherical shell hrin;n�1 ˙ .�r/n;n�1 which
is “thin” in the sense of .�r=hri/n;n�1 D 1=

p
2n C 1 ! 0.
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For sharp energy En;`;m, could we ever hope to find an approximately localized
electron in a hydrogen atom?

7.9. Calculate the radial expectation values hr�1in;`, hr�2in;` and hr�3in;`. These
expectation values are relevant for interaction energies within the atom.

7.10. We have seen how the expectation value hri for the separation between the
electron and the proton depends on the quantum numbers n and `. How large are
the corresponding expectation values for the distances of the two particles from the
center of mass of the hydrogen atom?

7.11. An electric field along the z axis shifts the potential energy of a hydrogen
atom by a perturbation �V / z. For which combinations of quantum numbers are
the matrix elements hn0

1; n
0
2;m

0jzjn1; n2;mi different from zero?

7.12. Calculate the probability density to find the momentum p in the relative
motion in a hydrogen atom in its ground state.

7.13. Calculate the probability densities to find the momentum p in the relative
motion in a hydrogen atom for the n D 2 states j2; `;m`i.
7.14. We cannot construct energy eigenstates of the hydrogen atom which separate
in the coordinates xe and xp of the electron and the proton. If we want to have a
representation which factorizes in electron and proton wave functions, the best we
can do is to expand the energy eigenstates ‰K;n;`;m.R; r/ in terms of complete sets
of functions fe.xe/gp.xp/ which arise from complete sets of functions f .x/, g.x/ for
single particle states. Expand the ground state of a hydrogen atom with center of
mass momentum „K,

‰K;1;0;0.R; r/ D 1p
2a

3
�2

exp
�

iK � R � r

a

�

in terms of the complete basis of factorized plane electron and proton waves,

hxe; xpjke; kpi D 1

.2�/3
exp

�
ike � xe C ikp � xp

�
:

Solution. Fourier transformation of

hxe; xpj1; 0; 0I Ki D 1p
2a

3
�2

exp

�
iK � mexe C mpxp

me C mp
� jxe � xpj

a

�

yields

hke; kpj1; 0; 0I Ki D
p
2a

3

�
ı.K � ke � kp/

�
�
1C a2

.me C mp/2

ˇ̌
mpke � mekp

ˇ̌2��2
; (7.78)
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i.e. the decomposition of the 1s hydrogen state with center of mass momentum „K
in terms of electron and proton plane wave states is

j1; 0; 0I Ki D
p
2a

3

�

Z
d3ke jkei ˝ jK � kei

�
"
1C a2

ˇ̌
ˇ̌ke � me

me C mp
K

ˇ̌
ˇ̌2
#�2

: (7.79)

Hint for the Fourier transformation: It is advantageous to use center of mass and
relative coordinates for the calculation of the Fourier integrals, d3xe ^ d3xp D d3r ^
d3R.

7.15. Suppose we force a hydrogen atom into a 1s type state

 .r; t/ D 1p
�b3

exp.�r=b/ exp.�iE1t=„/; (7.80)

where

E1 D � 	e4

32�2�20„2
D � e2

8��0a

is the ground state energy of the hydrogen atom, but the length parameter b is not
the Bohr radius a.

7.15a. How do the expectation values for kinetic, potential and total energy in
the state (7.80) compare to the corresponding values in the ground state of the
unperturbed hydrogen atom?

7.15b. How do we have to change the potential energy of the system to force the
hydrogen atom into the state (7.80)? Show that the change in potential energy can
be written as

�V D „2
	

�
1

a
� 1

b

��
1

r
� 1

2a
� 1

2b

�
:

7.16. Solve the differential equation (6.6) for the harmonic oscillator not by the
operator method, but by the same methods which we have used to solve the radial
equation (7.54) for the hydrogen atom.

7.17. The proposal of Bohmian mechanics10 asserts that quantum mechanics with
the Born probability interpretation should be replaced by a pilot wave theory. The
wave function would still satisfy the Schrödinger equation. However, instead of

10D. Bohm, Phys. Rev. 85, 166 & 180 (1952).
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serving as a probability amplitude for the outcome of single measurements, the wave
function provides a pilot wave for particles in the sense that an N particle wave
function determines the velocity field for the particles through the equation

dxI.t/

dt
D „
2imI j .x1.t/; : : : xN.t/I t/j2

�
�
 C.x1.t/; : : : xN.t/I t/

$r I  .x1.t/; : : : xN.t/I t/

�
; (7.81)

where  C $r  �  Cr � .r C/ .
It has been claimed that this leads to predicitions which are indistinguishable

from quantum mechanics, at least as long as we are only concerned with motion of
non-relativistic particles.

We consider a hydrogen atom with center of mass velocity V D „K=.me C mp/.
Which velocities would equation (7.81) predict for the velocities of the proton and
the electron in the ground state of the atom? How would the proton and the electron
then be arranged in the ground state of a hydrogen atom?

Solution. The ground state wave function in terms of electron and proton coordi-
nates is

hxe; xpj1; 0; 0I K.t/i D exp

�
iK � mexe C mpxp

me C mp

�
exp

�
�jxe � xpj

a

�

� 1

�2
p
2a

3
exp

�
� i„
2.me C mp/

K2t � i

„E1t

�
:

Equation (7.81) then yields

ve D vp D V:

This result agrees with the corresponding expectation values for particle velocities
in quantum mechanics. However, here we assume that both the electron and the
proton have well defined (although not individually observable) trajectories, and
their velocities are sharply defined. Therefore the electron and the proton would
both move with the constant center of mass velocity V along straight lines. Motion
with a fixed distance between the two particles seems hardly compatible with their
electromagnetic attraction, but Bohmian mechanics explains this in terms of an
additional quantum potential generated by the wave function,

V .x/ D � „2
2mj .x/j�j .x/j;

i.e. the wave function would also induce an additional force field in Bohmian
mechanics.
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However, motion with fixed separation between the electron and the proton
should imply observation of an electric dipole moment for individual hydrogen
atoms, contrary to ordinary quantum mechanics.

On the other hand, motion of the electron and the proton right on top of each
other is an appealing classical picture, but is incompatible with the positive nucleus
plus negative electron hull structure of atoms that follows e.g. from the van der
Waals equation of state for gases (which gives atomic radii between 1 and 2 Å)
and Rutherford scattering (which tells us two things: only the positive charge is
concentrated in the nucleus, and the nucleus has only a radius of a few femtometers).

To avoid this negative verdict, we might argue that we should rather consider a
cold gas of Bohmian hydrogen atoms to understand the implications of the Bohmian
interpretation for the ground state wave function.

In a cold gas of Bohmian hydrogen atoms the static distance between the electron
and the proton would be distributed according to jhxe �xpj1; 0; 0ij2. There would be
many hydrogen atoms with the electron sitting right on top of the proton, but there
would also be a lot of hydrogen atoms with a large separation and a corresponding
static electric dipole moment d D e.xp�xe/. Standard quantum mechanics in Born’s
interpretation does not predict an electric dipole moment in any of the hydrogen
atoms, because an electron would only appear to have a particular location if we
specifically perform a measurement asking for the location. However, in Bohmian
mechanics, the electron and proton would exist as particles at all times with fixed
relative location, and therefore there should be an average dipole moment per atom
in the ground state with magnitude hjdji D ehri D 3ea=2.

These dipole moments might be randomly distributed and therefore we might
not observe a macroscopic dipole moment. However, we could align these dipole
moments with a weak static external electric field. The field strength would be much
weaker than the internal field strength in hydrogen, to ensure that the ground state
wave function is not perturbed. In addition to any induced electric dipole moment
in the Bohmian hydrogen atoms (which would also exist in the same way for
the standard quantum mechanical hydrogen atoms) there would be a macroscopic
dipole moment from orientation polarization. This would be a real difference from
the standard quantum mechanical cold hydrogen gas. Therefore I disagree with
claims that Bohmian mechanics is just a different ontological interpretation of non-
relativistic quantum mechanics. Trying to make pilot wave theories work is certainly
tempting, but I cannot consider Bohmian mechanics as a serious competitor to
standard quantum mechanics with the Born interpretation of quantum states.



Chapter 8
Spin and Addition of Angular Momentum
Type Operators

We have seen in Section 7.4 that representations of the angular momentum Lie
algebra (7.21) are labelled by a quantum number ` which can take half-integer or
integer values. However, we have also seen in Section 7.5 that ` is limited to integer
values when the operators M actually refer to angular momentum, because the wave
functions1 hxjn; `;m`i or hxjk; `;m`i for angular momentum eigenstates must be
single valued. It was therefore very surprising when Stern, Gerlach, Goudsmit,
Uhlenbeck and Pauli in the 1920s discovered that half-integer values of ` are
also realized in nature, although in that case ` cannot be related to an angular
momentum any more. Half-integer values of ` arise in nature because leptons
and quarks carry a representation of the “covering group” SU(2) of the proper
rotation group SO(3), where SU(2) stands for the group which can be represented
by special unitary 2 � 2 matrices2. The designation “special” refers to the fact that
the matrices are also required to have determinant 1. The generators of the groups
SU(2) and SO(3) satisfy the same Lie algebra (7.21), but for every rotation matrix
R.'/ D R.' C 2� O'/ there are two unitary 2 � 2 matrices U.'/ D � U.' C 2� O'/.
In that sense SU(2) provides a double cover of SO(3).

We will use the notations l and M for angular momenta, and s or S for spins.

1We denote the magnetic quantum number with m` in this chapter because m will denote the mass
of a particle.
2Ultimately, all particles carry representations of the covering group SL(2,C) of the group SO(1,3)
of proper orthochronous Lorentz transformations, see Appendices B and H.
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8.1 Spin and magnetic dipole interactions

A particle of charge q and mass m which moves with angular momentum l through
a constant magnetic field B has its energy levels shifted through a Zeeman term in
the Hamiltonian,

HZ D � q

2m
l � B: (8.1)

We will explore the origin of this term in Chapter 15, see Problem 15.2, but for now
we can think of it as a magnetic dipole term with a dipole moment

�l D q

2m
l:

The relation between �l and l can be motivated from electrodynamics, but is actually
a consequence of the coupling to magnetic vector potentials in the Schrödinger
equation.

The quantization h`;m`jlzj`;m`i D „m` for angular momentum components in
a fixed direction yields a Zeeman shift

�E D � q„
2m

Bm`; �` � m` � `;

of the energy levels of a charged particle in a magnetic field. For orbital momentum
the resulting number 2` C 1 of energy levels is odd. However, the observation of
motion of Ag atoms through an inhomogeneous field by Stern and Gerlach in 1921
revealed a split of energy levels of these atoms into two levels in a magnetic field.
This complies with a split into 2s C 1 levels only if the angular momentum like
quantum number s is 1=2. This additional angular momentum type quantum number
is denoted as spin. Spin behaves in many respects similar to angular momentum, but
it cannot be an orbital angular momentum because that would exclude half-integer
values for s. Another major difference to angular momentum concerns the fact that
the spectroscopically observed splitting of energy levels due to spin complies with
a magnetic dipole type interaction only if the corresponding Zeeman type term is
increased by a factor gs,

H D � �s � B; �s D gs
q

2m
s:

This “anomalous g factor” is in very good approximation gs ' 2. The relation
between �s and s is a consequence of relativistic quantum mechanics and will be
explained in Section 21.5.

The important observation for now is that there exist operators which satisfy the
angular momentum Lie algebra (7.21),

ŒSi; Sj� D i„�ijkSk;
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and therefore have representations of the form (7.26–7.31),

Szjs;msi D „msjs;msi; (8.2)

S˙js;msi D „
p

s.s C 1/ � ms.ms ˙ 1/js;ms ˙ 1i; (8.3)

S2js;msi D „2s.s C 1/js;msi:

However, these operators are not related to orbital angular momentum and therefore
can have half-integer values of the quantum number s in their representations.

Our previous calculations of matrix representations of the rotation group in
Section 7.4 imply that spin is related to transformation properties of particle wave
functions under rotations. However, before we can elaborate on this, we have to take
a closer look at the representations with s D 1=2.

In the following mapping between matrices we use an index mapping for the
magnetic quantum numbers ms D ˙1=2 to indices

a.ms/ D .3=2/ � ms; (8.4)

i.e. ms D 1=2 ! a.ms/ D 1, ms D �1=2 ! a.ms/ D 2.
Substitution of s D 1=2 in equations (8.2, 8.3) yields

h1=2;m0
sjS3j1=2;msi D „msım0

s;ms D „
2
.�3/a.m0

s/;a.ms/; (8.5)

h1=2;m0
sjS1j1=2;msi D „

2

�
ım0

s;msC1 C ım0

s;ms�1
� D „

2
.�1/a.m0

s/;a.ms/; (8.6)

and

h1=2;m0
sjS2j1=2;msi D „

2i

�
ım0

s;msC1 � ım0

s;ms�1
� D „

2
.�2/a.m0

s/;a.ms/; (8.7)

with the Pauli matrices

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
; �3 D

�
1 0

0 �1
�
: (8.8)

The Pauli matrices provide a basis for hermitian traceless 2 � 2 matrices and
satisfy the relation

� i � � j D ıij1C i�ijk� k: (8.9)

The index mapping ms ! a.ms/ is employed in the notation of spin states as
j1=2;msi ! ja.ms/i such that a general s D 1=2 state is

j i D
�1=2X

msD1=2
j1=2;msih1=2;msj i D

2X
aD1

jaihaj i (8.10)
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Knowledge of a spin 1=2 state j i is equivalent to the knowledge of its two
components h1=2; 1=2j i � h1j i �  1, h1=2;�1=2j i � h2j i �  2.
In column notation this corresponds to the 2-spinor  

 D
�
 1
 2

�
; (8.11)

such that application of a spin operator Si

h1=2;msj 0i D h1=2;msjSij i D
�1=2X

m0

sD1=2
h1=2;msjSij1=2;m0

sih1=2;m0
sj i

corresponds to the matrix multiplication

 0 D „
2
� i � : (8.12)

For example, a general electron state j i corresponds to a superposition of spin
orientations ˙1=2 and a superposition of x eigenstates,

j i D
Z

d3x
�1=2X

msD1=2
jxI msihxI msj i �

Z
d3x

�1=2X
msD1=2

jxI msi a.ms/.x/;

and is given in 2-spinor notation (listing all common index conventions) as

 .x/ D
�
 1.x/
 2.x/

�
�
�
 1=2.x/
 �1=2.x/

�
�
�
 C.x/
 �.x/

�
�
�
 ".x/
 #.x/

�
: (8.13)

The normalization is Z
d3x

�
j 1.x/j2 C j 2.x/j2

�
D 1:

The probability densities for finding the electron with spin up or down in the
location x are j 1.x/j2 and j 2.x/j2, respectively, while the probability density to
find the electron in the location x in any spin orientation is j 1.x/j2 C j 2.x/j2.
Note that these three probability densities can have maxima in three different
locations, which reminds us how questionable the concept of a particle is in quantum
mechanics.

8.2 Transformation of scalar, spinor, and vector wave
functions under rotations

The commutation relations between angular momentum M D x � p and x,

ŒMi; xj� D i„�ijkxk
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imply with the rotation generators .Li/jk D �ijk and the rotation matrices from
Section 7.4

exp

�
i

„' � M
�

x exp

�
� i

„' � M
�

D exp.�' � L/ � x D R.�'/ � x;

and therefore

hxj exp

�
i

„' � M
�

D hR.�'/ � xj:

Rotation of a state

j .t/i ! j 0.t/i D exp

�
i

„' � M
�

j .t/i

therefore implies for the rotated wave function

hx0j 0.t/i D hR.'/ � xj 0.t/i D hxj .t/i; (8.14)

where

x0 D R.'/ � x

is the rotated coordinate vector.
A transformation behavior like (8.14) tells us that the transformed wave function

at the transformed set of coordinates is the same as the original wave function at the
original set of coordinates. Such a transformation behavior is denoted as a scalar
transformation law, and the corresponding wave functions are scalar functions.

On the other hand, spinor wave functions have two components which denote
probability amplitudes for spin orientation along a given spatial axis, conventionally
chosen as the z axis. The z0 axis of the rotated frame will generically have a direction
which is different from the z axis, and the probability amplitudes for spin along the
z0 direction will be different from the probability amplitudes along the z direction.

The rotated 2-spinor state

j .t/i ! j 0.t/i D exp

�
i

„' � .M C S/
�

j .t/i (8.15)

has components

hx0; aj 0.t/i �  0
a.x

0; t/ D hR.'/ � x; aj exp

�
i

„' � .M C S/
�

j .t/i

D hx; aj exp

�
i

„' � S
�

j .t/i D
�

exp

�
i

2
' � �

��
ab

hx; bj .t/i



162 8 Spin and Addition of Angular Momentum Type Operators

or in terms of the column 2-spinor (8.13),

 0.x0; t/ D exp

�
i

2
' � �

�
� .x; t/: (8.16)

For comparison, we also give the result if we use the representation (8.2, 8.3)
with s D 1 for the spin operators S on wave functions. In that case the matrix
correspondence

hs D 1=2;m0
sjSjs D 1=2;msi D „� a.m0

s/;a.ms/=2

is replaced in a first step by

hs D 1;m0
sjSjs D 1;msi D „†j.m0

s/;j.ms/

with j.ms/ D 2 � ms,

†1 D 1p
2

0
@ 0 1 01 0 1

0 1 0

1
A ; †2 D ip

2

0
@0 �1 0

1 0 �1
0 1 0

1
A ;

†3 D
0
@1 0 0

0 0 0

0 0 �1

1
A : (8.17)

However, this is still not the standard matrix representation for spin s D 1. The
connection with the conventional representation (7.18) of vector rotation operators
is achieved through the similarity transformation

L D i

„M D iA � † � A�1 (8.18)

with the unitary matrix

A D 1p
2

0
@�1 0 1

�i 0 �i
0

p
2 0

1
A ; A�1 D 1p

2

0
@�1 i 0

0 0
p
2

1 i 0

1
A :

The transformation law for vector wave functions hx; ijA.t/i � Ai.x; t/ under rota-
tions is then given in terms of the same rotation matrices
R.'/ D exp .' � L/ which effect rotations of the vector x,

x0 D exp .' � L/ � x; A0.x0; t/ D exp .' � L/ � A.x; t/: (8.19)

We will see in Chapter 18 that photons are described by vector wave functions.
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8.3 Addition of angular momentum like quantities

In classical mechanics, angular momentum is an additive vector quantity which
is conserved in rotationally symmetric systems. Furthermore, the transformation
equation (8.15) for spinor states involved addition of two different operators which
both satisfy the angular momentum Lie algebra (7.21). However, before immersing
ourselves into the technicalities of how angular momentum type operators are
combined in quantum mechanics, it is worthwhile to point out that interactions
in atoms and materials provide another direct physical motivation for addition of
angular momentum like quantities.

We have seen in Section 7.1 that relative motion of two interacting particles with
an interaction potential V.x1 � x2/ can be described in terms of effective single
particle motion of a (quasi)particle with location r.t/ D x1.t/ � x2.t/, mass m D
m1m2=.m1Cm2/, momentum p D .m2p1�m1p2/=.m1Cm2/ and angular momentum
l D r � p.

Furthermore, if m2 � m1, but the charge q2 is not much larger than q1 and the
spin js2j is not much larger than js1j, then we can assign a charge3 q D q1 and a spin
s D s1 to the quasiparticle with mass m ' m1.

A particle of charge �e and mass m with angular momentum operators l and spin
s experiences a contribution to its energy levels from an interaction term

Hl � s D 	0e2

8�m2r3
l � s (8.20)

in its Hamiltonian, if it is moving in the electric field E D Ore=.4��0r2/ of a much
heavier particle of charge e. One can think of Hl � s as a magnetic dipole-dipole
interaction .	0=4�r3/�l � �s, but finally it arises as a consequence of a relativistic
generalization of the Schrödinger equation. We will see this in Chapter 21, in
particular equation (21.117). However, for the moment we simply accept the
existence of terms like (8.20) as an experimental fact. These terms contribute to
the fine structure of spectral lines. The term (8.20) is known as a spin-orbit coupling
term or ls coupling term, and applies in this particular form to the energy levels of
the quasiparticle which describes relative motion in a two-particle system. However,
if there are many charged particles like in a many-electron atom, then there will also
be interaction terms between angular momenta and spins of different particles in the
system, i.e. we will have terms of the form

Hj1 � j2 D f .r12/j1 � j2; (8.21)

where ji are angular momentum like operators. We will superficially denote all these
operators (including spin) simply as angular momentum operators in the following.

3We will return to the question of assignment of charge and spin to the quasiparticle for relative
motion in Section 18.4.
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Diagonalization of Hamiltonians like (8.20) or (8.21) requires us to combine two
operators to a new operator according to j D l C s or j D j1 C j1, respectively. From
the perspective of spectroscopy, terms like (8.20) or (8.21) are the very reason why
we have to know how to combine two angular momentum type operators in quantum
mechanics. Diagonalization of (8.20) and (8.21) is important for understanding the
spectra of atoms and molecules, and spin-orbit coupling also affects energy levels
in materials. Furthermore, Hamiltonians of the form �2Js1 � s2 provide an effective
description of interactions in magnetic materials, see Section 17.7, and they are
important for spin entanglement and spintronics. The advantage of introducing the
combined angular momentum operator j D l C s is that it also satisfies angular
momentum commutation rules (7.21) Œja; jb� D i„�abcjc and therefore should have
eigenstates jj;mji,

j2jj;mji D „2j.j C 1/jj;mji; jzjj;mji D „mjjj;mji: (8.22)

However, j commutes with l2 and s2, Œja; l2� D Œja; s2� D 0, and therefore we can try
to construct the states in (8.22) such that they also satisfy the properties

l2jj;mj; `; si D „2`.`C 1/jj;mj; `; si;
s2jj;mj; `; si D „2s.s C 1/jj;mj; `; si:

The advantage of these states is that they are eigenstates of the coupling
operator (8.20),

l � sjj;mj; `; si D j2 � l2 � s2

2
jj;mj; `; si

D „2 j.j C 1/ � `.`C 1/ � s.s C 1/

2
jj;mj; `; si; (8.23)

and therefore the energy shifts from spin-orbit coupling in these states are

�E D 	0e2„2
16�m2

hr�3i Œj.j C 1/ � `.`C 1/ � s.s C 1/� : (8.24)

The states that we know for the operators l and s are the eigenstates j`;m`i for l2

and lz, and js;msi for s2 and sz, respectively. We can combine these states into states

j`;m`i ˝ js;msi � j`;m`I s;msi (8.25)

which will be denoted as a tensor product basis of angular momentum states. The
understanding in the tensor product notation is that l only acts on the first factor
and s only on the second factor. Strictly speaking the combined angular momentum
operator should be written as

j D l ˝ 1C 1˝ s;
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which automatically ensures the correct rule

j.j`;m`i ˝ js;msi/ D lj`;m`i ˝ js;msi C j`;m`i ˝ sjs;msi;

but we will continue with the standard physics notation j D l C s.
The main problem for combination of angular momenta is how to construct the

eigenstates jj;mj; `; si for total angular momentum from the tensor products (8.25)
of eigenstates of the initial angular momenta,

jj;mj; `; si D
X

m`;ms

j`;m`I s;msih`;m`I s;msjj;mj; `; si: (8.26)

We will denote the states jj;mj; `; si as the combined angular momentum states.
There is no summation over indices `0 ¤ ` or s0 ¤ s on the right hand side

because all states involved are eigenstates of l2 and s2 with the same eigenvalues
„2`.`C 1/ or „2s.s C 1/, respectively.

The components h`;m`I s;msjj;mj; `; si of the transformation matrix from the
initial angular momenta states to the combined angular momentum states are
known as Clebsch-Gordan coefficients or vector addition coefficients. The nota-
tion h`;m`I s;msjj;mj; `; si is logically satisfactory by explicitly showing that the
Clebsch-Gordan coefficients can also be thought of as the representation of the
combined angular momentum states jj;mj; `; si in the basis of tensor product states
j`;m`I s;msi. However, the notation is also redundant in terms of the quantum
numbers ` and s, and a little clumsy. It is therefore convenient to abbreviate the
notation by setting

h`;m`I s;msjj;mj; `; si � h`;m`I s;msjj;mji:

The new angular momentum eigenstates must also be normalizable and orthog-
onal for different eigenvalues, i.e. the transformation matrix must be unitary,

X
m`;ms

hj;mjj`;m`I s;msih`;m`I s;msjj0;m0
ji D ıj;j0ımj;m0

j
; (8.27)

X
j;mj

h`;m`I s;msjj;mjihj;mjj`;m0̀ I s;m0
si D ım`;m

0

`
ıms;m0

s
: (8.28)

The hermiticity properties

jz D .lz C sz/
C ; j˙ D .l� C s�/C

imply with the definition (4.31) of adjoint operators the relations

mjh`;m`I s;msjj;mji D .m` C ms/ h`;m`I s;msjj;mji (8.29)
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and q
j.j C 1/ � mj.mj ˙ 1/h`;m`I s;msjj;mj ˙ 1i

D
p
`.`C 1/ � m`.m` � 1/h`;m` � 1I s;msjj;mji

C
p

s.s C 1/ � ms.ms � 1/h`;m`I s;ms � 1jj;mji: (8.30)

Equation (8.29) yields

h`;m`I s;msjj;mji D ım`Cms;mjh`;m`I s;msjj;m` C msi:
The highest occurring value of mj which is also the highest occurring value for j is
therefore `C s, and there is only one such state. This determines the state j`C s; `C
s; `; si up to a phase factor to

j`C s; `C s; `; si D j`; `I s; si; (8.31)

i.e. we choose the phase factor as

h`; `I s; sj`C s; `C si D 1:

Repeated application of j� D l�Cs� on the state (8.31) then yields all the remaining
states of the form j` C s;mj; `; si or equivalently the remaining Clebsch-Gordan
coefficients of the form h`;m`I s;msj`Cs;mj D m`Cmsi with �`�s � mj < `Cs.
For example, the next two lower states with j D `C s are given by

j�j`C s; `C s; `; si D
p
2.`C s/j`C s; `C s � 1; `; si

D
p
2`j`; ` � 1I s; si C p

2sj`; `I s; s � 1i
and

j2�j`C s; `C s; `; si D 2
p
`C s

p
2.`C s/ � 1j`C s; `C s � 2; `; si

D 2
p
`.2` � 1/j`; ` � 2I s; si C 4

p
`sj`; ` � 1I s; s � 1i

C 2
p

s.2s � 1/j`; `I s; s � 2i: (8.32)

However, we have two states in the j`;m`I s;msi basis with total magnetic quantum
number `C s � 1, but so far discovered only one state in the jj;mj; `; si basis with
this magnetic quantum number. We can therefore construct a second state with mj D
`C s � 1, which is orthogonal to the state j`C s; `C s � 1; `; si,

j`Cs�1; `Cs�1; `; si D
r

s

`C s
j`; `�1I s; si�

s
`

`C s
j`; `I s; s�1i: (8.33)
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Application of j2 would show that this state has j D ` C s � 1, which was already
anticipated in the notation. Repeated application of the lowering operator j� on this
state would then yield all remaining states of the form j` C s � 1;mj; `; si with
1 � ` � s � mj < `C s � 1, e.g.

p
`C s � 1j`C s � 1; `C s � 2; `; si D

s
s
2` � 1
`C s

j`; ` � 2I s; si

�
r
`
2s � 1
`C s

j`; `I s; s � 2i C s � `p
`C s

j`; ` � 1I s � 1; si: (8.34)

We have three states with mj D ` C s � 2 in the direct product basis,
viz. j`; ` � 2I s; si, j`; `I s; s � 2i and j`; ` � 1I s � 1; si, but so far we have
only constructed two states in the combined angular momentum basis with
mj D ` C s � 2, viz. j` C s; ` C s � 2; `; si and j` C s � 1; ` C s � 2; `; si.
We can therefore construct a third state in the combined angular momentum basis
which is orthogonal to the other two states,

j`C s � 2; `C s � 2; `; si / j`; ` � 1I s � 1; si
� j`C s; `C s � 2; `; sih`C s; `C s � 2; `; sj`; ` � 1I s � 1; si
� j`C s � 1; `C s � 2; `; sih`C s � 1; `C s � 2; `; sj`; ` � 1I s � 1; si:

Substitution of the states and Clebsch-Gordan coefficients from (8.32) and (8.34)
and normalization yields

j`C s � 2; `C s � 2; `; si D
s

.2` � 1/.2s � 1/
.2`C 2s � 1/.`C s � 1/ j`; ` � 1I s � 1; si

C
p
`.2` � 1/j`; `I s; s � 2i �p

s.2s � 1/j`; ` � 2I s; sip
.2`C 2s � 1/.`C s � 1/ : (8.35)

Application of j� then yields the remaining states of the form j` C s � 2;mj; `; si.
This process of repeated applications of j� and forming new states with lower j
through orthogonalization to the higher j states terminates when j reaches a minimal
value j D j`� sj, when all .2`C1/.2s C1/ states j`;m`I s;msi have been converted
into the same number of states of the form jj;mj; `; si. In particular, we observe that
there are 2 � min.`; s/C 1 allowed values for j,

j 2 fj` � sj; j` � sj C 1; : : : ; `C s � 1; `C sg: (8.36)

The procedure to reduce the state space in terms of total angular momentum
eigenstates jj;mj; `; si through repeated applications of j� and orthogonalizations
is lengthy when the number of states .2` C 1/.2s C 1/ is large, and the reader
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will certainly appreciate that Wigner [42] and Racah4 have derived expressions
for general Clebsch-Gordan coefficients. Racah derived in particular the following
expression (see also [9, 34])

h`;m`I s;msjj;mji D ım`Cms;mj

�
�2X

�D�1
.�/�

 p
.2j C 1/ � .`C s � j/Š � .j C ` � s/Š � .j C s � `/Šp
.j C `C s C 1/Š � �Š � .` � m` � �/Š � .s C ms � �/Š

�
p
.`C m`/Š � .` � m`/Š � .s C ms/Š � .s � ms/Š � .j C mj/Š � .j � mj/Š

.j � s C m` C �/Š � .j � ` � ms C �/Š � .`C s � j � �/Š

!
:

(8.37)

The boundaries of the summation are determined by the requirements

maxŒ0; s � m` � j; `C ms � j� � � � minŒ`C s � j; ` � m`; s C ms�:

Even if we decide to follow the standard convention of using real Clebsch-
Gordan coefficients, there are still sign ambiguities for every particular value of j in
j`�sj � j � `Cs. This arises from the ambiguity of constructing the next orthogonal
state when going from completed sets of states jj0;mj0 ; `; si, j < j0 � ` C s to the
next lower level j, because a sign ambiguity arises in the construction of the next
orthogonal state jj; j; `; si. For example, Racah’s formula (8.37) would give us the
state j` C s � 2; ` C s � 2; `; si constructed before in equation (8.35), but with an
overall minus sign.

Tables of Clebsch-Gordan coefficients had been compiled in the olden days, but
nowadays these coefficients are implemented in commercial mathematical software
programs for numerical and symbolic calculation, and there are also free online
applets for the calculation of Clebsch-Gordan coefficients.

8.4 Problems

8.1. Calculate the spinor rotation matrix

U.'/ D exp

�
i

2
' � �

�
:

Hint: Use the expansion of the exponential function and consider odd and even
powers of the exponent separately.

4G. Racah, Phys. Rev. 62, 438 (1942).
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Verify the property

U.'/ D � U.' C 2� O'/:

8.2. We perform a rotation of the reference frame by an angle ' around the x-axis.
How does this change the coordinates of the vector x? Suppose we have a spinor
which has only a spin up component in the old reference frame. How large are the
spin up and spin down components of the spinor with respect to the rotated z axis?

8.3. The Cartesian coordinates fx; y; zg transform under rotations according to

x ! x0 D exp .' � L/ � x:

Construct coordinates fX;Y;Zg which transform with the matrices (8.17) under
rotations,

X ! X0 D exp .i' � †/ � X:

8.4. Construct the matrices hs;m0
sjSjs;msi D „†j.m0

s/;j.ms/ for s D 3=2. Choose the
index mapping ms ! j.ms/ such that

†3 D 1

2

0
BB@
3 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �3

1
CCA :

Suppose we have an excited Lithium atom in a spin s D 3=2 state, which is
described by the 4-component wave function ‰j.x1; x2; x3/, 1 � j � 4. How
does this wave function transform under a rotation around the x axis by an angle
' D �=2?

8.5. Construct all the states jj;mj; ` D 1; s D 1=2i as linear combinations of
the tensor product states j` D 1;m`I s D 1=2;msi, using either the recursive
construction from the state jj D 3=2;mj D 3=2; ` D 1; s D 1=2i D j` D 1,
m` D 1I s D 1=2;ms D 1=2i or Racah’s formula (8.37). Compare with the results
from a symbolic computation program or an online applet for the calculation of
Clebsch-Gordan coefficients.



Chapter 9
Stationary Perturbations in Quantum
Mechanics

We denote a quantum system with a time-independent Hamiltonian H0 as solvable
(or sometimes also as exactly solvable) if we can calculate the energy eigenvalues
and eigenstates of H0 analytically. The harmonic oscillator and the hydrogen atom
provide two examples of solvable quantum systems. Exactly solvable systems
provide very useful models for quantum behavior in physical systems. The harmonic
oscillator describes systems near a stable equilibrium, while the Hamiltonian with a
Coulomb potential is an important model system for atomic physics and for every
quantum system which is dominated by Coulomb interactions. However, in many
cases the Schrödinger equation will not be solvable, and we have to go beyond
solvable model systems to calculate quantitative properties. In these cases we have
to resort to the calculation of approximate solutions. The methods developed in the
present chapter are applicable to perturbations of discrete energy levels by time-
independent perturbations V of the Hamiltonian, H0 ! H D H0 C V .

9.1 Time-independent perturbation theory
without degeneracies

We consider a perturbation of a solvable time-independent Hamiltonian H0 by a
time-independent term V , and for bookkeeping purposes we extract a coupling
constant � from the perturbation,

H D H0 C V ! H D H0 C �V:

After the relevant expressions for shifts of states and energy levels have been
calculated to the desired order in �, we usually subsume � again in V , such that
e.g. �h�.0/jVj .0/i ! h�.0/jVj .0/i.

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7_9
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We know the unperturbed energy levels and eigenstates of the solvable Hamilto-
nian H0,

H0j .0/
j i D E.0/j j .0/

j i:

In the present section we assume that the energy levels E.0/j are not degenerate,
and we want to calculate in particular approximations for the energy level Ei

which arises from the unperturbed energy level E.0/i due to the presence of the
perturbation V . We will see below that consistency of the formalism requires that
the differences jE.0/i � E.0/j j for j ¤ i must have a positive minimal value, i.e. the

unperturbed energy level E.0/i for which we want to calculate corrections has to be
discrete1.

Orthogonality of eigenstates for different energy eigenvalues implies

h .0/
i j .0/

j i D ıij:

In the most common form of time-independent perturbation theory we try to find an
approximate solution to the equation

Hj ii D Eij ii
in terms of power series expansions in the coupling constant �,

j ii D
X
n�0

�nj .n/
i i; h .0/

i j .n�1/
i i D 0; Ei D

X
n�0

�nE.n/i : (9.1)

Depending on the properties of V , these series may converge for small values of j�j,
or they may only hold as asymptotic expansions for j�j ! 0. The book by Kato
[21] provides results and resources on convergence and applicability properties of
the perturbation series. Here we will focus on the commonly used first and second
order expressions for wave functions and energy levels.

We can require

h .0/
i j .n/

i i D ın;0 (9.2)

because the recursion equation (9.3) below, which is derived without the assump-
tion (9.2), does not determine these particular coefficients. One way to understand
this is to observe that we can decompose j .n�1/

i i into terms parallel and orthogonal

to j .0/
i i,

j .n�1/
i i D j .0/

i ih .0/
i j .n�1/

i i C j .n�1/
i i � j .0/

i ih .0/
i j .n�1/

i i:

1This condition is not affected by a possible degeneracy of E.0/i , as will be shown in Section 9.2.
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Inclusion of the parallel part j .0/
i ih .0/

i j .n�1/
i i in the zeroth order term, followed

by a rescaling by

�
1C h .0/

i j .n�1/
i i

��1 D 1 � h .0/
i j .n�1/

i i C O.�2n/

to restore a coefficient 1 in the zeroth order term, affects only terms of order �nC1 or
higher in the perturbation series. This implies that if we have solved the Schrödinger
equation to order �n�1 with the constraint

h .0/
i j .m/

i i D ım;0; 0 � m � n � 1;
then ensuring that constraint also to order �n preserves the constraint for the lower
order terms. Therefore we can fulfill the constraint (9.2) to any desired order in
which we wish to calculate the perturbation series.

Substitution of the perturbative expansions into the Schrödinger equation
Hj ii D Eij ii yields

X
n�0

�nH0j .n/
i i C

X
n�0

�nC1Vj .n/
i i D

X
m;n�0

�mCnE.m/i j .n/
i i

D
X
n�0

nX
mD0

�nE.m/i j .n�m/
i i:

This equation is automatically fulfilled at zeroth order. Isolation of terms of order
�nC1 for n � 0 yields

H0j .nC1/
i i C Vj .n/

i i D
nC1X
mD0

E.m/i j .n�mC1/
i i;

and projection of this equation onto j .0/
j i yields

E.0/j h .0/
j j .nC1/

i i C h .0/
j jVj .n/

i i D
nX

mD0
E.m/i h .0/

j j .n�mC1/
i i

CE.nC1/
i ıij: (9.3)

We can first calculate the first order corrections for energy levels and wave functions
from this equation, and then solve it recursively to any desired order.

First order corrections to the energy levels and eigenstates

The first order corrections are found from equation (9.3) for n D 0. Substitution of
j D i implies for the first order shifts of the energy levels the result

E.1/i D h .0/
i jVj .0/

i i; (9.4)
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and j ¤ i yields with E.0/i ¤ E.0/j the first order shifts of the energy eigenstates

h .0/
j j .1/

i i D h .0/
j jVj .0/

i i
E.0/i � E.0/j

: (9.5)

Recursive solution of equation (9.3) for n � 1

We first observe that j D i in equation (9.3) implies with the condition (9.2)

E.nC1/
i D h .0/

i jVj .n/
i i �

nX
mD1

E.m/i h .0/
i j .n�mC1/

i i D h .0/
i jVj .n/

i i; (9.6)

and i ¤ j yields

�
E.0/i � E.0/j

�
h .0/

j j .nC1/
i i D h .0/

j jVj .n/
i i

�
nX

mD1
E.m/i h .0/

j j .n�mC1/
i i: (9.7)

The right hand side of both equations depends only on lower order shifts of energy
levels and eigenstates. Therefore these equations can be used for the recursive
solution of equation (9.3) to arbitrary order.

Second order corrections to the energy levels and eigenstates

Substitution of n D 1 into equation (9.6) yields with (9.5) and

XZ
k
j .0/

k ih .0/
k j D 1

the second order shift

E.2/i D
XZ

k¤i

h .0/
i jVj .0/

k ih .0/
k jVj .0/

i i
E.0/i � E.0/k

D
XZ

k¤i

jh .0/
i jVj .0/

k ij2
E.0/i � E.0/k

: (9.8)

States in the continuous part of the spectrum of H0 will also contribute to the shifts
in energy levels and eigenstates. It is only required that the energy level E.0/i , for
which we want to calculate the corrections, is discrete and does not overlap with
any continuous energy levels.



9.1 Time-independent perturbation theory without degeneracies 175

Note that equation (9.8) implies that the second order correction to the ground
state energy is always negative.

For the eigenstates, equation (9.7) yields with the first order results (9.4, 9.5) the
equation (recall i ¤ j in (9.7))

h .0/
j j .2/

i i D
XZ

k¤i

h .0/
j jVj .0/

k ih .0/
k jVj .0/

i i�
E.0/i � E.0/j

��
E.0/i � E.0/k

�

� h .0/
i jVj .0/

i ih .0/
j jVj .0/

i i�
E.0/i � E.0/j

�2 : (9.9)

Now we can explain why it is important that our original unperturbed energy
level E.0/i is discrete. To ensure that the n-th order corrections to the energy levels
and eigenstates in equations (9.1) are really of order �n (or smaller than all previous
terms), the matrix elements jh .0/

j jVj .0/
k ij of the perturbation operator should be at

most of the same order of magnitude as the energy differences jE.0/i � E.0/j j between

the unperturbed level E.0/i and the other unperturbed energy levels in the system.

This implies in particular that the minimal absolute energy difference between E.0/i

and the other unperturbed energy levels must not vanish, i.e. E.0/i must be a discrete
energy level.

Equations (9.4) and (9.8) (and their counterparts (9.16) and (9.24) in degenerate
perturbation theory below) used to be the most frequently employed equations
of time-independent perturbation theory, because historically many experiments
were concerned with spectroscopic determinations of energy levels. However,
measurements e.g. of local electron densities or observations of wave functions (e.g.
in scanning tunneling microscopes or through X-ray scattering using synchrotrons)
are very common nowadays, and therefore the corrections to the states are also
directly relevant for the interpretation of experimental data.

Summary of non-degenerate perturbation theory in second order

If we include � with V , the states and energy levels in second order are

j ii D j .0/
i i C j .1/

i i C j .2/
i i D j .0/

i i

C
XZ

j¤i
j .0/

j i h .0/
j jVj .0/

i i
E.0/i � E.0/j

C
XZ

j;k¤i
j .0/

j i h .0/
j jVj .0/

k ih .0/
k jVj .0/

i i�
E.0/i � E.0/j

��
E.0/i � E.0/k

�

�
XZ

j¤i
j .0/

j i h .0/
j jVj .0/

i ih .0/
i jVj .0/

i i�
E.0/i � E.0/j

�2 (9.10)
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and

Ei D E.0/i C h .0/
i jVj .0/

i i C
XZ

j¤i

jh .0/
i jVj .0/

j ij2
E.0/i � E.0/j

: (9.11)

The second order states j ii are not normalized any more,

h ij ji D ıij C O.�2/ıij:

Normalization is preserved in first order due to

h .0/
i j .1/

j i C h .1/
i j .0/

j i D 0;

but in second order we have

h .0/
i j .2/

j i C h .1/
i j .1/

j i C h .2/
i j .0/

j i D
XZ

k¤i

jh .0/
i jVj .0/

k ij2�
E.0/i � E.0/k

�2 ıij:

However, we can add to the leading term j .0/
i i in j ii a term of the form

j .0/
i iO.�2/ and still preserve the master equation (9.3) to second order. We can

therefore rescale (9.10) by a factor Œ1 C O.�2/��1=2 to a normalized second order
state

j ii D j .0/
i i � 1

2
j .0/

i i
XZ

j¤i

jh .0/
i jVj .0/

j ij2�
E.0/i � E.0/j

�2 C
XZ

j¤i
j .0/

j i h .0/
j jVj .0/

i i
E.0/i � E.0/j

C
XZ

j;k¤i
j .0/

j i h .0/
j jVj .0/

k ih .0/
k jVj .0/

i i�
E.0/i � E.0/j

��
E.0/i � E.0/k

�

�
XZ

j¤i
j .0/

j i h .0/
j jVj .0/

i ih .0/
i jVj .0/

i i�
E.0/i � E.0/j

�2 : (9.12)

Now the second order shift is not orthogonal to j .0/
i i any more, but we still have

a solution of equation (9.3) to second order.

9.2 Time-independent perturbation theory with degenerate
energy levels

Now we admit degeneracy of energy levels of our unperturbed Hamiltonian H0.
Time-independent perturbation theory in the previous section repeatedly involved
division by energy differences ŒE.0/i � E.0/j �i¤j. This will not be possible any more
for pairs of degenerate energy levels, and we have to carefully reconsider each step
in the previous derivation if degeneracies are involved.
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The full Hamiltonian and the 0-th order results are now

H D H0 C �V; H0j .0/
j˛ i D E.0/j j .0/

j˛ i;
where Greek indices denote sets of degeneracy indices. For example, if H0 would
correspond to a hydrogen atom, the quantum number j would correspond to the
principal quantum number n of a bound state or the wave number k of a spherical
Coulomb wave, and the degeneracy index ˛ would correspond to the set of angular
momentum quantum number, magnetic quantum number, and spin projection, ˛ D
f`;m`;msg. For the same reasons as in equation (9.9), the energy level for which we
wish to calculate an approximation must be discrete, i.e. the techniques developed
in this chapter can be used to study perturbations of the bound states of hydrogen
atoms, but not perturbations of Coulomb waves.

We denote the degeneracy subspace to the energy level E.0/j as Ej and the projector
on Ej is

P .0/
j D

X
˛

j .0/
j˛ ih .0/

j˛ j:

As in the previous section, we wish to calculate approximations for the energy
level Ei˛ and corresponding eigenstates j i˛i, Hj i˛i D Ei˛j i˛i, which arise from
the energy level E.0/i and the eigenstates j .0/

i˛ i due to the perturbation V . The energy

level E.0/i may split into several energy levels Ei˛ because the perturbation might lift

the degeneracy of E.0/i . We will actually assume that the perturbation V lifts the

degeneracy of the energy level E.0/i already at first order, E.1/i˛ ¤ E.1/iˇ if ˛ ¤ ˇ.
The Rayleigh-Ritz-Schrödinger ansatz is

j i˛i D
X
n�0

�nj .n/
i˛ i; h .0/

i˛ j .n�1/
i˛ i D 0; Ei˛ D

X
n�0

�nE.n/i˛ : (9.13)

Substitution into the full time-independent Schrödinger equation yields
X
n�0

�nH0j .n/
i˛ i C

X
n�0

�nC1Vj .n/
i˛ i D

X
m;n�0

�mCnE.m/i˛ j .n/
i˛ i

D
X
n�0

nX
mD0

�nE.m/i˛ j .n�m/
i˛ i:

This is yields in .n C 1/-st order for n � 0

H0j .nC1/
i˛ i C Vj .n/

i˛ i D
nC1X
mD0

E.m/i˛ j .n�mC1/
i˛ i: (9.14)

We determine the corrections j .n�1/
i˛ i to the wave functions through their pro-

jections h .0/

jˇ j .n�1/
i˛ i onto the basis of unperturbed states. Projection of equa-

tion (9.14) yields
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E.0/j h .0/

jˇ j .nC1/
i˛ i C h .0/

jˇ jVj .n/
i˛ i D

nX
mD0

E.m/i˛ h .0/

jˇ j .n�mC1/
i˛ i

C E.nC1/
i˛ ıijı˛ˇ: (9.15)

First order corrections to the energy levels

The first order equations (n D 0 in equation (9.15)) yield for j D i and ˇ D ˛ the
equation

E.1/i˛ D h .0/
i˛ jVj .0/

i˛ i; (9.16)

while j D i, ˛ ¤ ˇ imposes a consistency condition on the choice of basis of
unperturbed states,

h .0/

iˇ jVj .0/
i˛ i

ˇ̌
ˇ
ˇ¤˛ D 0; (9.17)

This condition means that we have to diagonalize V first within each degeneracy
subspace Ei in the sense

Vj .0/
i˛ i D E.1/i˛ j .0/

i˛ i C
XZ

j¤i

X
ˇ

j .0/

jˇ ih .0/

jˇ jVj .0/
i˛ i; (9.18)

before we can use the perturbation ansatz (9.13), and according to (9.16) the
first order energy corrections E.1/i˛ are the corresponding eigenvalues in the i-th

degeneracy subspace. If the first order energy corrections E.1/i˛ are all we care about,
this means that we can calculate them from the eigenvalue conditions

det
h
h .0/

iˇ jVj .0/
i˛ i � E.1/i˛ ı˛ˇ

i
D 0; (9.19)

using any initial choice of unperturbed orthogonal energy eigenstates. But that
would achieve only a very limited objective.

As also indicated in equation (9.18), diagonalization within the subspaces means
only diagonalization of the operators P .0/

i VP .0/
i , which does not amount to total

diagonalization of V ,
X

i

P .0/
i VP .0/

i ¤ V D
X

i;j

P .0/
i VP .0/

j :

We still will have non-vanishing transition matrix elements h .0/

jˇ jVj .0/
i˛ i ¤ 0

between different degeneracy subspaces i ¤ j.
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First order corrections to the energy eigenstates

Setting i ¤ j in equation (9.15) yields a part of the first order corrections to the wave
functions,

h .0/

jˇ j .1/
i˛ i D h .0/

jˇ jVj .0/
i˛ i

E.0/i � E.0/j

: (9.20)

However, this yields only the projections h .0/

jˇ j .1/
i˛ i of the first order corrections

j .1/
i˛ i onto the unperturbed states for j ¤ i. We need to use j D i in the second order

equations to calculate the missing terms h .0/

iˇ j .1/
i˛ i, .ˇ ¤ ˛/, for the first order

corrections.
Equation (9.15) yields for n D 1, j D i and ˇ ¤ ˛ the equation

h .0/

iˇ jVj .1/
i˛ i

ˇ̌
ˇ
ˇ¤˛ D E.1/i˛ h .0/

iˇ j .1/
i˛ i

ˇ̌
ˇ
ˇ¤˛

and after substitution of equations (9.16, 9.17, 9.20)

�
E.1/i˛ � E.1/iˇ

�
h .0/

iˇ j .1/
i˛ i

ˇ̌
ˇ
ˇ¤˛ D

XZ
j¤i

X
�

h .0/

iˇ jVj .0/
j� ih .0/

j� j .1/
i˛ i

D
XZ

j¤i

X
�

h .0/

iˇ jVj .0/
j� ih .0/

j� jVj .0/
i˛ i

E.0/i � E.0/j

;

i.e. we find the missing pieces of the first order corrections to the states

h .0/

iˇ j .1/
i˛ i

ˇ̌
ˇ
ˇ¤˛ D 1

h .0/
i˛ jVj .0/

i˛ i � h .0/

iˇ jVj .0/

iˇ i

�
XZ

j¤i

X
�

h .0/

iˇ jVj .0/
j� ih .0/

j� jVj .0/
i˛ i

E.0/i � E.0/j

(9.21)

if V has removed the degeneracy between j i˛i and j iˇi in first order, E.1/i˛ ¤ E.1/iˇ .

Recursive solution of equation (9.15) for n � 1

We first rewrite equation (9.15) by inserting

1 D
XZ

k;�
j .0/

k� ih .0/
k� j
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in the matrix element of V , and using equations (9.16, 9.17):

E.0/j h .0/

jˇ j .nC1/
i˛ i C E.1/jˇ h .0/

jˇ j .n/
i˛ i C

XZ
k¤j

X
�

h .0/

jˇ jVj .0/
k� ih .0/

k� j .n/
i˛ i

D E.0/i h .0/

jˇ j .nC1/
i˛ i C E.1/i˛ h .0/

jˇ j .n/
i˛ i C‚.n � 2/

nX
mD2

E.m/i˛ h .0/

jˇ j .n�mC1/
i˛ i

C E.nC1/
i˛ ıijı˛ˇ: (9.22)

Substitution of j D i and ˇ D ˛ yields

E.nC1/
i˛ D

XZ
k¤i

X
�

h .0/
i˛ jVj .0/

k� ih .0/
k� j .n/

i˛ i; (9.23)

where equations (9.13, 9.17) have been used. The second order correction is in
particular with equation (9.20):

E.2/i˛ D
XZ

j¤i

X
ˇ

jh .0/

jˇ jVj .0/
i˛ ij2

E.0/i � E.0/j

: (9.24)

We find again that the second order correction to the ground state energy is always
negative.

For the higher order shifts of the states we find for j ¤ i in equation (9.22)

�
E.0/i � E.0/j

�
h .0/

jˇ j .nC1/
i˛ i D h .0/

jˇ jVj .n/
i˛ i �

nX
mD1

E.m/i˛ h .0/

jˇ j .n�mC1/
i˛ i

D h .0/

jˇ jVj .n/
i˛ i � h .0/

i˛ jVj .0/
i˛ ih .0/

jˇ j .n/
i˛ i

�‚.n � 2/

n�1X
mD1

XZ
k¤i

X
�

h .0/
i˛ jVj .0/

k� ih .0/
k� j .m/

i˛ ih .0/

jˇ j .n�m/
i˛ i; (9.25)

which gives us the contributions h .0/

jˇ j .nC1/
i˛ i

ˇ̌
ˇ
j¤i

to the .n C 1/-st order wave

function corrections.
Substitution of i D j, ˛ ¤ ˇ yields finally

�
E.1/i˛ � E.1/iˇ

�
h .0/

iˇ j .n�1/
i˛ i

ˇ̌
ˇ
ˇ¤˛ D

XZ
k¤i

X
�

h .0/

iˇ jVj .0/
k� ih .0/

k� j .n/
i˛ i

�‚.n � 2/

nX
mD2

E.m/i˛ h .0/

iˇ j .n�mC1/
i˛ i D

XZ
k¤i

X
�

h .0/

iˇ jVj .0/
k� ih .0/

k� j .n/
i˛ i

�‚.n � 2/

n�1X
mD1

XZ
k¤i

X
�

h .0/
i˛ jVj .0/

k� ih .0/
k� j .m/

i˛ ih .0/

iˇ j .n�m/
i˛ i: (9.26)



9.3 Problems 181

This gives us the missing pieces h .0/

iˇ j .n/
i˛ i

ˇ̌
ˇ
ˇ¤˛ of the n-th order wave function

correction for E.1/i˛ ¤ E.1/iˇ .

Summary of first order shifts of the level E.0/

i if the perturbation
lifts the degeneracy of the level

We must diagonalize the perturbation operator V within the degeneracy subspace Ei

in the sense of (9.18), i.e. we must choose the unperturbed eigenstates j .0/
i˛ i such

that the equation

h .0/
i˛ jVj .0/

iˇ i D E.1/i˛ ı˛ˇ (9.27)

also holds for ˛ ¤ ˇ.
The projections of the first order shifts of the energy eigenstates onto states in

other degeneracy sectors are

h .0/

jˇ j .1/
i˛ i

ˇ̌
ˇ
j¤i

D h .0/

jˇ jVj .0/
i˛ i

E.0/i � E.0/j

; (9.28)

and the projections within the degeneracy sector are

h .0/

iˇ j .1/
i˛ i

ˇ̌
ˇ
ˇ¤˛ D 1

h .0/
i˛ jVj .0/

i˛ i � h .0/

iˇ jVj .0/

iˇ i

�
XZ

j¤i

X
�

h .0/

iˇ jVj .0/
j� ih .0/

j� jVj .0/
i˛ i

E.0/i � E.0/j

: (9.29)

This requires that the first order shifts have completely removed the degeneracies in
the i-th energy level, E.1/iˇ ¤ E.1/i˛ for ˇ ¤ ˛.

9.3 Problems

9.1. A one-dimensional harmonic oscillator is perturbed by a term

V D �Œ.aC/2 C a2�2:

Calculate the first and second order corrections to the ground state energy and wave
function.
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9.2. An atom on a surface is prevented from moving along the surface through a
two-dimensional potential

V.x; y/ D 1

2
m!2.x2 C y2/C Ax4 C By4; A � 0; B � 0:

Find an approximation H0 for the Hamiltonian of the atom where you can write
down exact energy levels and eigenstates for the atom.

Use the remaining terms in H � H0 to calculate first order corrections to the
energy levels and eigenstates of the atom.

9.3. Which results do you get for the perturbed system from 9.2 in second order
perturbation theory?

9.4. Suppose that the perturbation V has removed all degeneracies in all energy lev-
els of an unperturbed system. Show that all the first order states j .0/

i˛ i C j .1/
i˛ i are

orthonormal in first order.

9.5. A hydrogen atom is perturbed by a static electric field E D Eez in z direction.
This field induces an extra potential

V D �eˆ D eEz (9.30)

in the Hamiltonian for relative motion.

9.5a. Calculate the shift of the ground state energy up to second order in E .

9.5b. Calculate the shift of the ground state wave function up to second order in E .

9.5c. Which constraints on E do you find from the requirement of applicability of
perturbation theory?

9.6. Calculate the first order shifts of the n D 2 level of hydrogen under the
perturbation (9.30).

9.7. A two-level system has two energy eigenstates jE˙i with energies

H0jE˙i D
�

E0 ˙ �E

2

�
jE˙i; �E ¤ 0:

We can use 2-spinor notation such that a general state in the two-level system is

j i D
X
˙

jE˙ihE˙j i !  D
�
 1
 2

�
;  1 D hECj i;  2 D hE�j i:

The Hamiltonian in 2-spinor notation is

H0 D E01C �E

2
�3:
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We now perturb the Hamiltonian H0 ! H D H0 C V through a term

V D V1
2
�1 C V2

2
�2:

9.7a. Calculate the first order corrections to the energy levels and eigenstates due
to the perturbation V .

9.7b. Calculate the second order corrections to the energy levels and eigenstates
due to the perturbation V .

9.7c. The Hamiltonian H is a hermitian 2 � 2 matrix which can be diagonalized
exactly.

Calculate the exact energy levels and eigenstates of H. Compare with the
perturbative results from 9.7a and 9.7b.

9.8. Which consistency conditions in the degeneracy subspace Ei would you find if
the perturbation V does not remove the degeneracy in that subspace in first order?

Solution. The derivation of (9.21) shows that if we still have E.1/i˛ D E.1/iˇ for all
degeneracy indices in Ei, consistency of the second order equation requires that not
just the operator V.1/

i D P .0/
i VP .0/

i is diagonal, but also that the operator

V.2/
i D P .0/

i V
1 � P .0/

i

E.0/i � H0

VP .0/
i

is diagonal. However, consistency of the simultaneous diagonalization of V.1/
i and

V.2/
i then also implies the condition

h
V.1/

i ;V.2/
i

i
D P .0/

i V

 
P .0/

i V
1 � P .0/

i

E.0/i � H0

� 1 � P .0/
i

E.0/i � H0

VP .0/
i

!
VP .0/

i D 0:

If V preserves the degeneracy in Ei, but these consistency conditions cannot be met,
then H D H0 C V apparently does not have a complete set of eigenstates which
scale analytically under scaling V ! �V of the perturbation.



Chapter 10
Quantum Aspects of Materials I

Quantum mechanics is indispensable for the understanding of materials. In return,
solid state physics provides beautiful illustrations for the impact of quantum
dynamics on allowed energy levels in a system, for wave-particle duality, and for
applications of perturbation theory.

In the present chapter we will focus on Bloch’s theorem, the duality between
Bloch and Wannier states, the emergence of energy bands in crystals, and the
emergence of effective mass in kp perturbation theory. We will do this for one-
dimensional lattices, since this captures the essential ideas. Students who would like
to follow up on our introductory exposition and understand the profound impact
of quantum mechanics on every physical property of materials at a deeper level
should consult the monographs of Callaway [5], Ibach and Lüth [17], Kittel [22] or
Madelung [25], or any of the other excellent texts on condensed matter physics -
and they should include courses on condensed matter physics in their curriculum!

10.1 Bloch’s theorem

Electrons in solid materials provide a particularly beautiful realization of wave-
particle duality. Bloch’s theorem covers the wave aspects of this duality. From a
practical perspective, Bloch’s theorem implies that we can discuss electrons in terms
of states which sample the whole lattice of ion cores in a solid material. This has
important implications for the energy levels of electrons in materials, and therefore
for all physical properties of materials.

It is useful to recall the theory of discrete Fourier transforms as a preparation for
the proof of Bloch’s theorem. We write the discrete Fourier expansion for functions
f .x/ with periodicity a as

f .x/ D
1X

nD�1
fn exp

�
2� i

nx

a

�
: (10.1)
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The orthogonality relation

1

a

Z a

0

dx exp
�
2� i

mx

a

�
exp

�
�2� i

nx

a

�
D ımn (10.2)

yields the inversion

fn D 1

a

Z a

0

dx f .x/ exp
�
�2� i

nx

a

�
;

and substituting this back into equation (10.1) yields a representation of the ı-
function in a finite interval of length a,

1

a

1X
nD�1

exp

�
2� in

x � x0

a

�
D ı.x � x0/; (10.3)

or equivalently

1X
nD�1

exp.in�/ D 2�ı.�/: (10.4)

Equation (10.3) is the completeness relation for the Fourier monomials on an
interval of length a.

The Hamiltonian for electrons in a lattice with periodicity a is

H D p2

2m
C V.x/;

where the potential operator has the periodicity of the lattice,

V.x/ D V.x C a/ D exp

�
i

„ap

�
V.x/ exp

�
� i

„ap

�
:

This implies

exp

�
i

„ap

�
H D H exp

�
i

„ap

�
;

and therefore eigenspace of H with eigenvalue En can be decomposed into
eigenspaces of the lattice translation operator

T.a/ D exp

�
i

„ap

�
: (10.5)
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The eigenvalues of this unitary operator must be pure phase factors1,

exp

�
i

„ap

�
jEn; ki D exp.ika/ jEn; ki: (10.6)

Let us repeat this result in the x-representation:

hxj exp

�
i

„ap

�
jEn; ki D exp

�
a

d

dx

�
hxjEn; ki D hx C ajEn; ki

D exp.ika/ hxjEn; ki: (10.7)

This means that the energy eigenstate hxjEn; ki �  n.k; x/ has exactly the
same periodicity properties under lattice translations as the plane wave hxjki D
exp.ikx/=

p
2� . The ratio  n.k; x/=hxjki must therefore be a periodic function! This

is Bloch’s theorem in solid state physics2:
Energy eigenstates in a periodic lattice can always be written as the product of a

periodic function un.k; x C a/ D un.k; x/ with a plane wave,

 n.k; x/ D
r

a

2�
exp.ikx/un.k; x/: (10.8)

The quasiperiodicity parameter k (multiplied with „) has momentum-like prop-
erties, but it is not the momentum hEn; kjpjEn; ki in the state jEn; ki. Therefore it is
often denoted as a quasimomentum or a pseudomomentum.

Periodicity of the modulation factor un.k; x/ implies the expansions

un.k; x/ D
X
`2Z

unI`.k/ exp

�
2� i

`x

a

�
;

unI`.k/ D 1

a

Z a

0

dx un.k; x/ exp

�
�2� i

`x

a

�
:

We denote the eigenfunctions  n.k; x/ � hxjEn; ki of the lattice Hamiltonian as
Bloch functions or equivalently as the x representation of the Bloch states jEn; ki.
The corresponding periodic functions un.k; x/ � hxjun.k/i will be denoted as Bloch
factors. Equation (10.8) for the Bloch state jEn; ki reads in basis free notation

jEn; ki D
r

a

2�
exp.ikx/jun.k/i: (10.9)

1This is a consequence of Schur’s Lemma in group theory: Abelian symmetry groups have one-
dimensional irreducible representations.
2F. Bloch, Z. Phys. 52, 555 (1929). As a mathematical theorem in the theory of differential
equations it is known as Floquet’s theorem due to G. Floquet, Ann. sci. de l’É.N.S., 2e série,
12, 47 (1883).
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For arbitrary ` 2 Z the eigenvalues of the lattice translations satisfy

exp.ika/ D exp

�
i

�
k C 2�`

a

�
a

�
;

and therefore the quasimomentum k can be restricted to the region

� �

a
< k � �

a
; (10.10)

which is denoted as the first Brillouin zone of the (rescaled) dual lattice.
The quasiperiodicity property will impact the possible eigenstates of the lattice

Hamiltonian H. The parameter k will therefore also impact the corresponding
eigenvalues En, i.e. the eigenvalues will be functions En.k/ of the pseudomomentum.
The index n enumerates different energy levels for each value of k in the first
Brillouin zone. The functions En.k/ are known as energy bands, and we will see
below that there are enumerably many energy bands in a lattice.

Orthogonality of the periodic Bloch factors

The orthogonality relation for the energy eigenstates  n.k; x/ D hxjEn; ki implies
an orthogonality property for the periodic Bloch factors un.k; x/ D hxjun.k/i. We
have

ımnı.k � k0/ D hEm; k
0jEn; ki

D a

2�

Z 1

�1
dx exp

	
i.k � k0/x



uC

m .k
0; x/un.k; x/

D a

2�

X
`2Z

exp
	
i.k � k0/`a




�
Z a

0

dx exp
	
i.k � k0/x



uC

m .k
0; x/un.k; x/: (10.11)

Equation (10.4) implies

X
`2Z

exp
	
i.k � k0/`a


 D 2�

a
ı.k � k0/; (10.12)

and substitution of this into equation (10.11) yields the orthogonality relations for
the periodic Bloch factors,

Z a

0

dx uC
m .k; x/un.k; x/ D a

X
`

uC
mI`.k/unI`.k/ D ımn: (10.13)
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Note that this in turn also implies a normalization of the Bloch functions in the
lattice cell,

Z a

0

dx j n.k; x/j2 D a

2�
:

The plane wave normalization in (10.11) implies length dimension 0 for the Bloch
functions and length dimension -1/2 for the Bloch factors.

We remark that the completeness of the energy eigenstates yields

ı.x � x0/ D
X

n

Z �=a

��=a
dk hxjEn; kihEn; kjx0i

D a

2�

X
n

Z �=a

��=a
dk exp

	
ik.x � x0/



uC

n .k; x
0/un.k; x/; (10.14)

but we cannot read off a separate relation for the Bloch factors from this.

10.2 Wannier states

The Bloch functions  n.k; x/ are plane waves with a periodic modulation factor
un.k; x/ D un.k; xCa/, and therefore extend over the full lattice in x-space. However,
due to

exp.i Œk C .2�`=a/� a/ D exp.ika/

the quasiperiodicity parameter k was restricted to the first Brillouin zone

� �

a
< k � �

a
; (10.15)

i.e. as a function of k,  n.k; x/ is only defined in the finite interval (10.15) (or
equivalently has periodicity under shifts of k by multiples of 2�=a). This implies
the expansions3

 n.k; x/ D
r

a

2�
exp.ikx/un.k; x/ D

r
a

2�

X
�2Z

wn;�.x/ exp.i�ka/; (10.16)

un.k; x/ D
X
�2Z

wn;�.x/ expŒ�ik.x � �a/�: (10.17)

3 This is exactly as in (10.1), only with periodicity 2�=a.
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The functions wn;�.x/ D hxjwn;�i are apparently Fourier transforms of the Bloch
functions  n.k; x/ with respect to the quasiperiodicity parameter k. These functions
are known as Wannier functions4.

The inversion of the expansion is

wn;�.x/ D
r

a

2�

Z �=a

��=a
dk n.k; x/ exp.�i�ka/

D a

2�

Z �=a

��=a
dk un.k; x/ expŒik.x � �a/�: (10.18)

The corresponding states

jwn;�i D
r

a

2�

Z �=a

��=a
dk exp.�i�ka/jEn; ki (10.19)

are Wannier states.
The periodicity un.k; x � 	a/ D un.k; x/ of the Bloch functions also yields

wn;�.x � 	a/ D wn;�C	.x/: (10.20)

This implies in particular a localization property of Wannier functions,

wn;�.x/ D wn;0.x � �a/: (10.21)

Determining all the functions wn;�.x/ in one cell of the direct lattice is equivalent to
finding the function wn;0.x/ over the full lattice. Furthermore, wn;�.x/ depends only
on x � �a, i.e. it is attached to a lattice cell5.

Wannier states satisfy completeness relations as a consequence of the complete-
ness relations of the Bloch states. The relations are

Z 1

�1
dx wC

m;	.x/wn;�.x/ D a

2�

Z �=a

��=a
dk0
Z �=a

��=a
dk
Z 1

�1
dx C

m .k
0; x/ n.k; x/

� expŒi.	k0 � �k/a�

D ımn
a

2�

Z �=a

��=a
dk expŒi.	 � �/ka� D ımnı	�;

4G.H. Wannier, Phys. Rev. 52, 191 (1937).
5It is tempting to conclude that the Wannier functions wn;� .x/ should be centered around the lattice
site x D �a, but this is not what generically happens. The Wannier function wn;� .x/ is usually large
in a unit cell containing the lattice site x D �a, but localization around the lattice site requires
inclusion of extra phase factors expŒi'.n; k/� in the Bloch functions, see W. Kohn, Phys. Rev. 115,
809 (1959) and F.B. Pedersen, G.T. Einevoll, P.C. Hemmer, Phys. Rev. B 44, 5470 (1991).
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and

X
n;�

wn;�.x/w
C
n;�.x

0/ D
Z �=a

��=a
dk
Z �=a

��=a
dk0 a

2�

X
�

expŒ�i�.k � k0/a�

�
X

n

 n.k; x/ 
C
n .k

0; x0/

D
Z �=a

��=a
dk
Z �=a

��=a
dk0 ı.k � k0/

X
n

 n.k; x/ 
C
n .k

0; x0/

D
Z �=a

��=a
dk
X

n

 n.k; x/ 
C
n .k; x

0/ D ı.x � x0/: (10.22)

The periodicity of the Bloch functions in the dual lattice

 n.k; x/ D  n

�
k C 2�

a
; x

�

implies for the Bloch factors the quasiperiodicity

un

�
k C 2�

a
; x

�
D exp

�
�2� i

x

a

�
un.k; x/; un;`

�
k C 2�

a

�
D un;`C1.k/;

and in particular

un;`.k/ D un;0

�
k C 2�`

a

�
: (10.23)

This property of the Fourier coefficients of the Bloch factors in the dual lattice is
dual to the property (10.21) of the Wannier functions in the direct lattice. Knowing
all the Fourier coefficients un;`.k/ of the Bloch factors in a Brillouin zone is
equivalent to knowing the Fourier coefficients un;0.k/ throughout the dual lattice.
We can think of the functions un;�`.k/ as dual Wannier functions in k space. Indeed,
these functions are related through Fourier transforms,

wn;0.x/ D a

2�

Z 1

�1
dk un;0.k/ exp.ikx/;

un;0.k/ D 1

a

Z 1

�1
dx wn;0.x/ exp.�ikx/; (10.24)

see Problem 10.3. Knowing any particular Wannier function wn;�.x/ in the whole
lattice, or any particular dual Wannier function un;`.k/ everywhere in the dual lattice
completely determines the Wannier and Bloch functions, and the Wannier and Bloch
states for given band index n.
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We can summarize the periodicity properties of the Bloch functions and the
Bloch factors in the assertions that the Bloch function

 n.k; x/ D
r

a

2�
exp.ikx/un.k; x/

D
r

a

2�

X
`2Z

un;0

�
k C 2�`

a

�
exp

�
i

�
k C 2�`

a

�
x

�

D
r

a

2�

X
�2Z

wn;0.x C �a/ exp.�i�ka/ (10.25)

is periodic in dual space and quasiperiodic in direct space, whereas the Bloch factor

un.k; x/ D
X
`2Z

un;0

�
k C 2�`

a

�
exp

�
2� i

`x

a

�

D
X
�2Z

wn;0.x C �a/ expŒ�ik.x C �a/� (10.26)

is quasiperiodic in dual space and periodic in direct space.

10.3 Time-dependent Wannier states

The usual stationary Wannier states (10.18) do not satisfy the time-independent
Schrödinger equation in the crystal because they are linear combinations of
stationary solutions for different eigenvalues En.k/. However, the solutions

 n.k; x; t/ D  n.k; x/ exp.�iEn.k/t=„/

of the time-dependent Schrödinger equation satisfy the same periodicity properties
in the dual lattice as  n.k; x/ because the energy bands En.k/ are periodic in the dual
lattice. Therefore we can write down expansions

 n.k; x; t/ D
r

a

2�

X
�2Z

wn;�.x; t/ exp.i�ka/; (10.27)

wn;�.x; t/ D
r

a

2�

Z �=a

��=a
dk n.k; x; t/ exp.�i�ka/

D a

2�

Z �=a

��=a
dk un.k; x/ expŒik.x � �a/� exp

�
� i

„En.k/t

�
:

(10.28)
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The time-dependent Wannier states wn;�.x; t/ D hxjwn;�.t/i also satisfy complete-
ness relations,

Z 1

�1
dx wC

m;	.x; t/wn;�.x; t/ D ımnı	� (10.29)

and

X
n;�

wn;�.x; t/w
C
n;�.x

0; t/ D ı.x � x0/; (10.30)

and the periodicity un.k; x � 	a/ D un.k; x/ of the Bloch functions also implies
localization of the time-dependent states,

wn;�.x; t/ D wn;0.x � �a; t/: (10.31)

These states are therefore still associated with individual lattice sites, but contrary
to the states (10.19), the states (10.28) are solutions of a Schrödinger equation in the
lattice,

i„ d

dt
jwn;�.t/i D

�
p2

2m
C V.x/

�
jwn;�.t/i:

We can think of this as a manifestation of wave-particle duality for electrons in
a crystal. We can describe electrons as waves penetrating the whole crystal, or as
particles associated with particular lattice sites.

10.4 The Kronig-Penney model

The Kronig-Penney model6 discusses motion of non-relativistic particles in a
periodic piecewise constant potential. It provides a beautiful explanation for the
emergence of energy bands in materials by demonstrating that only certain energy
ranges in a periodic potential can yield electron states which comply with Bloch’s
theorem. We discuss the simplified version where the periodic potential is a series
of ı-peaks at distance a,

V.x/ D V0b
X
�2Z

ı.x � �a/: (10.32)

6R. de L. Kronig, W.G. Penney, Proc. Roy. Soc. London A 130, 449 (1931).
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V0 is a constant energy, while b > 0 is a constant length to make the equation
dimensionally correct. In a model with finite width, V0 would be the height of a
barrier and b the width.

Since we have vanishing potential for �a < x < 0, the energy eigenstates

hxjE; ki D
r

a

2�
exp.ikx/u.k; x/

in this region must satisfy

� „2
2m

d2

dx2
hxjE; ki D EhxjE; ki; �a < x < 0;

i.e. they must be combinations of plane waves exp.˙iKx/ with wave vector K Dp
2mE=„ for E > 0, or combinations of real exponentials exp.˙Kx/ with K Dp�2mE=„ for E < 0. Solution with positive energy exist both for V0 > 0 and

V0 < 0, but negative energy solutions exist only for V0 < 0.
We discuss the positive energy solutions first. Once we know the energy

eigenstates in one interval of length a, we know them everywhere, because we know
from Bloch’s theorem that whenever we proceed by a length a the wave function
only changes by a factor exp.ika/. For the intervals �a < x < 0 and 0 < x < a this
implies in particular (with E > 0)

hxjE; ki D
8<
:

A expŒiKx�C B expŒ�iKx�; �a � x � 0;

A expŒi.Kx � Ka C ka/�C B expŒi.Ka � Kx C ka/�;
0 � x � a;

and for .� � 1/a < x < �a:

hxjE; ki D A expŒi.Kx � �Ka C �ka/�C B expŒi.�Ka � Kx C �ka/�:

The junction conditions following from the full Schrödinger equation

d2

dx2
hxjE; ki C 2mE

„2 hxjE; ki D 2m

„2 V0b
X
�2Z

ı.x � �a/hxjE; ki

read

lim
�!0

.h�a C �jE; ki � h�a � �jE; ki/ D 0;

lim
�!C0

�
d

dx
hxjE; ki

ˇ̌
ˇ
xD�aC� � d

dx
hxjE; ki

ˇ̌
ˇ
xD�a��

�
D 2

u

a
h�ajE; ki;

where the new constant u D mV0ab=„2 was introduced for convenience. The
resulting junction conditions are identical at all lattice points x D �a,

A expŒi.k � K/a�C B expŒi.k C K/a� D A C B; (10.33)

iKA
�

expŒi.k � K/a� � 1
�

� iKB
�

expŒi.k C K/a� � 1
�

D 2
u

a
.A C B/: (10.34)
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The requirement for existence of a non-trivial solution of these equations yields the
condition

ˇ̌
ˇ̌ expŒi.k � K/a� � 1 expŒi.k C K/a� � 1
iK.expŒi.k � K/a� � 1/ � .2u=a/ �iK.expŒi.k C K/a� � 1/ � .2u=a/

ˇ̌
ˇ̌

D 0;

i.e.

cos.Ka/C u

Ka
sin.Ka/ D cos.ka/; (10.35)

which in turn implies a condition for the allowed energy values E D „2K2=2m,

ˇ̌
ˇcos.Ka/C u

Ka
sin.Ka/

ˇ̌
ˇ � 1: (10.36)

The limit E ! 0C is allowed if and only if j1C uj � 1, or equivalently if and only
if �2 � u � 0.

The function on the left hand side of equation (10.35) is plotted for u D 5 in
Figure 10.1 and for negative values of u in Figures 10.6 and 10.8 below. For 0 >
u > �2 the lowest energy band has both positive and negative energy values.

Negative energy solutions E < 0 might exist for V0 < 0. The Schrödinger
equation for �a < x < 0 and the Bloch theorem imply

hxjE; ki D
8<
:

A expŒKx�C B expŒ�Kx�; �a � x � 0;

A expŒKx � Ka C ika�C B expŒKa � Kx C ika�;
0 � x � a;

with K D p�2mE=„.
The matching conditions at x D 0 (and for any x D �a) are

A expŒ.ik � K/a�C B expŒ.ik C K/a� D A C B;

KA.expŒ.ik � K/a� � 1/ � KB.expŒ.ik C K/a� � 1/ D �2m

„2 jV0jb.A C B/;

and the condition for existence of non-trivial solutions is with
u D mV0ab=„2 < 0,

ˇ̌
ˇ̌ expŒ.ik � K/a� � 1 expŒ.ik C K/a� � 1
K.expŒ.ik � K/a� � 1/ � .2u=a/ �K.expŒ.ik C K/a� � 1/ � .2u=a/

ˇ̌
ˇ̌

D 0:
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Fig. 10.1 The function
f .Ka/ D
cos.Ka/C .u=Ka/ sin.Ka/
for u D 5

This yields

cosh.Ka/C u

Ka
sinh.Ka/ D cos.ka/ (10.37)

The limit E ! 0� exists if and only if �2 � u � 0, i.e. in the same range for V0
which was found for E ! 0C.

For V0 < 0 one always finds one negative energy band (besides the positive
energy bands), see e.g. Figures 10.5 and 10.7. This negative energy band goes from
a minimum at k D 0 to positive maxima at k D ˙�=a if �2 � u � 0, by joining to
a positive energy branch at some intermediate values ˙k0. The intermediate value
k0 with E.k0/ D 0 satisfies

cos.k0a/ D 1C u:

For u < �2 the lowest band is entirely in the negative energy range, but still with
the minimum at k D 0 and the maxima at k D ˙�=a.

It is useful to plot the functions f .Ka/ D cos.Ka/ C .u=Ka/ sin.Ka/, and for
negative u also g.Ka/ D cosh.Ka/ C .u=Ka/ sinh.Ka/ to analyze the implications
of the conditions (10.35) and (10.37). We will do this for u D 5.

Increasing Ka in Figure 10.1 corresponds to increasing energy E D „2K2=2m.
Due to the condition (10.35) there are no allowed energies for 0 � Ka < K1a '
2:284 where f .Ka/ > 1. At K1a we have the lowest allowed energy value „2K2

1=2m
with corresponding pseudomomentum ka D 0. Between K1a � Ka � K2a D �
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Fig. 10.2 The three lowest
energy bands E0.k/, E1.k/
and E2.k/ for u D 5

the energy increases to „2�2=2ma2 and the values of jkaj increase to the boundaries
jkaj D � of the Brillouin zone. The width of this lowest energy band is

W D „2
2m

�
K2
2 � K2

1

� ' „2
2ma2

�
�2 � 2:2842� :

For � < Ka < K3a ' 4:761 there are again no allowed energy values, i.e. there is
an energy gap of width

�Eg D „2
2m

�
K2
3 � K2

2

� ' „2
2ma2

�
4:7612 � �2�

between the lowest energy band and the next energy band. Between K3a � Ka �
K4a D 2� the energy increases from „2K2

3=2m to „2K2
4=2m, while jkaj decreases

from jkaj D � to ka D 0. This behavior occurs over and over again, with decreasing
energy gaps �Eg between adjacent bands. The three lowest energy bands En.k/ for
u D 5 are plotted in Figure 10.2.

The energy bands have extrema in the center and at the boundaries of the
Brillouin zone,

dEn.k/

dk

ˇ̌
ˇ̌
kD0;˙�=a

D „2Kn.k/

m

dKn.k/

dk

ˇ̌
ˇ̌
kD0;˙�=a

D 0:

Therefore we can use parabolic approximations

En.k/ ' En.k0/˙ „2
2mn.k0/

.k � k0/
2 (10.38)
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near those extrema, with effective masses

1

mn.k0/
D ˙ 1

„2
dEn.k/

dk

ˇ̌
ˇ̌
kDk0

D ˙Kn.k0/

m

d2Kn.k/

dk2

ˇ̌
ˇ̌
kDk0

: (10.39)

This is denoted as an effective electron mass if the extremum is a minimum, because
the required energy to accelerate an electron from the band minimum „k0 to a nearby
pseudomomentum „k is „2.�k/2=2mn.k0/. On the other hand, if the extremum is
a maximum, the effective mass is denoted as a hole mass, because in that case
„2.�k/2=2mn.k0/ is the required energy to move an electron from a nearby point
k to k0 (if that state was vacant), or equivalently move the vacant state (or hole)
from k0 to the nearby point k.

Note that the curvature in the minimum k0 D 0 of the lowest energy band is
smaller than in the vacuum, where we would have the parabola 2mEa2=„2 D .ka/2

in Figure 10.2. This means that the effective electron mass in the lowest band
satisfies mnD0.0/ > m. However, band curvature increases for the higher bands,
which means small effective masses for higher n.

10.5 kp perturbation theory and effective mass

The combination of the Bloch theorem with second order perturbation theory
provides another beautiful introduction to the concept of effective electron or hole
mass in materials. This is a little more technical, but also more general in the sense
that it does not rely on a particular potential model.

The starting point for kp perturbation theory is an effective Schrödinger equation
for the Bloch factors un.k; x/ D hxjun.k/i. The identity

p2jEn; ki D
r

a

2�
exp.ikx/.p C „k/2jun.k/i

implies the following effective Schrödinger equation for the Bloch factors:

�
p2

2m
C „

m
kp C V.x/

�
jun.k/i D

�
En.k/ � „2k2

2m

�
jun.k/i: (10.40)

Now suppose that we know the Bloch factors and energy levels at a point k0 in
the Brillouin zone, and we take these solutions of

�
p2

2m
C „

m
k0p C V.x/

�
jEn.k0/i D

�
En.k0/ � „2k20

2m

�
jEn.k0/i (10.41)
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as 0-th order approximation to the perturbative solution of equation (10.40),
�

p2

2m
C „

m
k0p C V.x/C „

m
.k � k0/p

�
jun.k/i D

�
En.k/ � „2k2

2m

�
jun.k/i;

i.e. the perturbatively sought states and eigenvalues are jun.k/i and En.k/ �
.„2k2=2m/, and the perturbation operator is „.k � k0/p=m. The energy levels in
second order perturbation theory are therefore

En.k/ D En.k0/C „2
2m

�
k2 � k20

�C „
m
.k � k0/hEn.k0/jpjEn.k0/i

C „2
m2
.k � k0/

2
X
m¤n

jhEm.k0/jpjEn.k0/ij2
En.k0/ � Em.k0/

;

and the effective mass near an extremum k0 in the n-th band is then in second order
perturbation theory

1

mn.k0/
D 1

„2
d2

dk2
En.k/

ˇ̌
ˇ̌
kDk0

D 1

m
C 2

m2

X
m¤n

jhEm.k0/jpjEn.k0/ij2
En.k0/ � Em.k0/

:

If there appear degeneracies between different bands at k D k0, we should split the
band indices n ! i; ˛, and we have to apply the result (9.24) to find

Ei;˛.k/ D Ei.k0/C „2
2m

�
k2 � k20

�C „
m
.k � k0/hui;˛.k0/jpjui;˛.k0/i

C „2
m2
.k � k0/

2
X
j¤i

X
ˇ

jhuj;ˇ.k0/jpjui;˛.k0/ij2
Ei.k0/ � Ej.k0/

;

1

mi;˛.k0/
D 1

„2
d2

dk2
Ei;˛.k/

ˇ̌
ˇ̌
kDk0

D 1

m
C 2

m2

X
j¤i

X
ˇ

jhuj;ˇ.k0/jpjui;˛.k0/ij2
Ei.k0/ � Ej.k0/

:

These results indicate that the effective mass in the lowest energy band is always
larger than the free electron mass m, in agreement with our observation from the
Kronig-Penney model.

10.6 Problems

10.1. Show that the lattice translation operator (10.5) acts on the Wannier states

jwn;�.t/i D
r

a

2�

Z �=a

��=a
dk jEn; ki exp.�i�ka/ expŒ�iEn.k/t=„�
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according to

T.a/jwn;�.t/i D jwn;��1.t/i:

10.2. Show that the momentum per lattice site in the Bloch function  n.k; x/,

hpin;k D 2�

a

Z .�C1/a

�a
dx C

n .k; x/
„
i

@

@x
 n.k; x/:

is independent of � and is given in terms of a weighted sum over equivalent sites in
the dual lattice,

hpin;k D a
X
`

„
�

k C 2�

a
`

� ˇ̌
ˇ̌un;0

�
k C 2�`

a

�ˇ̌
ˇ̌2 :

10.3. Show that the Wannier functions wn;�.x/ D wn;0.x � �a/ in the lattice and the
dual Wannier functions un;�`.k/ D un;0.k � .2�=a/`/ in the dual lattice are related
according to

wn;�.x/ D a

2�

Z �=a

��=a
dk
X
`

un;�`.k/ exp

�
i

�
k � 2�

a
`

�
.x � �a/

�
;

un;�`.k/ D 1

a

Z a

0

dx
X
�

wn;�.x/ exp

�
�i

�
k � 2�

a
`

�
.x � �a/

�
:

Furthermore, show that these relations are equivalent to (10.24).

10.4. Show that we can write the (non-normalized) positive energy Bloch functions
for the Kronig-Penney model in Section 10.4 in the form

 K.k; x/ D hxjE; ki D
r

a

2�

X
q2Z

‚.x C a � qa/‚.qa � x/ expŒi.q � 1/ka�

�
�

expŒiK.x � qa/� � expŒiK.x � qa/� expŒi.k C K/a�

� expŒ�iK.x � qa/�C expŒ�iK.x � qa/� expŒi.k � K/a�
�
: (10.42)

We use the label K � K.n; k/ D p
2mEn.k/=„ instead of the energy band index n.

Up to an undetermined phase factor expŒi'K.k/�, the omitted normalization factor
NK is given by

N�2
K D 4aŒ1 � cos.Ka/ cos.ka/�C 4

K
sin.Ka/Œcos.ka/ � cos.Ka/�

D 4a sin.Ka/
h
sin.Ka/

�
1C u

K2a2

�
� u

Ka
cos.Ka/

i
: (10.43)
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Determine the Bloch factor uK.k; x/ and the dual Wannier states uK;`.k/ for the
Bloch function (10.42).

10.5. We consider the Kronig-Penney model in the limit of vanishing potential
u D 0.

Show that the solutions for the energy levels for k in the first Brillouin zone are
given by

p
2mEn.k/

„ � Kn.k/ D jkj C 2�

a
n; n D 0; 1; : : :

Using (10.42) with the normalization factor included, construct the Bloch functions
 n.k; x/ and Bloch factors un.k; x/ for k in the first Brillouin zone.

Show that the Bloch factors in the whole dual lattice are given by

un.k; x/ D 1

i
p

a

X
`2Z

�
‚

�
k � 2�

a
`

�
‚
�
.2`C 1/

�

a
� k

�
exp

�
2� i

n � `
a

x

�

C ‚
�

k � .2` � 1/�
a

�
‚

�
2�

a
` � k

�
exp

�
�2� i

n C `

a
x

��
:

Show that Wannier functions are given by

wn;0.x/ D
p

a

i�

sinŒ.2n C 1/�x=a� � sinŒ2n�x=a�

x
:

Examples are shown in Figures 10.3 and 10.4.

10.6. We consider the Kronig-Penney model in the limit of vanishing potential
u D 0. Show that the time-dependent Bloch functions in the whole dual lattice
are given by

 n.k; x; t/ D exp.ikx/

i
p
2�

X
`2Z

�
‚

�
k � 2�

a
`

�
‚
�
.2`C 1/

�

a
� k

�

� exp

�
2� i

n � `
a

x

�
exp

"
� i„t

2m

�
k C 2�

n � `
a

�2#

C‚
�

k � .2` � 1/�
a

�
‚

�
2�

a
` � k

�
exp

�
�2� i

n C `

a
x

�

� exp

"
� i„t

2m

�
k � 2� n C `

a

�2##
:
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Fig. 10.3 The function
w0;0.x/ for u D 0

- -

-

-

Fig. 10.4 The function w1;0.x/ for u D 0
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Show that the time-dependent Wannier functions (10.28) are given by

wn;0.x; t/ D �
r

ima

8�„t
exp

�
i
mx2

2„t

�2
4erf

0
@�

s
i
mx2

2„t
� 2n�

r
i„t

2ma2

1
A

� erf

0
@�

s
i
mx2

2„t
� .2n C 1/�

r
i

„t

2ma2

1
A

C erf

0
@�

s
i
mx2

2„t
C .2n C 1/�

r
i„t

2ma2

1
A

� erf

0
@�

s
i
mx2

2„t
C 2n�

r
i„t

2ma2

1
A
3
5 ;

where
p

i D .1C i/=
p
2.

10.7. Figures 10.5 and 10.6 illustrate the conditions (10.37) and (10.35) for
existence of negative or positive energies for u D �3.

Note that for the negative energies increasing K corresponds to decreasing E.
Therefore the energy minimum in the negative energy band arises from g.Ka/ D 1,
ka D 0, and the maximum in the negative energy band arises from g.Ka/ D �1,
ka D ˙� in Figure 10.5. Analyze the band structure in this model similar to the
analysis of Figure 10.1. Contrary to the case of positive u, there are also negative
energy values possible for u D �3. How many negative energy bands are there for
u D �3?

10.8. Figures 10.7 and 10.8 illustrate the conditions (10.37) and (10.35) for
existence of negative or positive energies for u D �1:5.

Analyze the band structure in this model similar to the analysis of Problem 10.7.
Contrary to the case u < �2, we reach the value E D 0 for Ka D 0 in Figure 10.7
for 0 < jkaj < � . At this point we go into the positive energies corresponding to
the values 0 � Ka . 1:689 in Figure 10.8, i.e. the lowest energy band contains both
negative and positive energies in this case. For which value of ka is E D 0?
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Fig. 10.5 The function
g.Ka/ D
cosh.Ka/� .3=Ka/ sinh.Ka/.
Only values of Ka with
jg.Ka/j 	 1 correspond to
allowed energy values
E D �„2K2=2m in the
Kronig-Penney model with
u D �3

−

−

Fig. 10.6 The function
f .Ka/ D
cos.Ka/� .3=Ka/ sin.Ka/.
Only values of Ka with
jf .Ka/j 	 1 correspond to
allowed energy values
E D „2K2=2m in the
Kronig-Penney model with
u D �3

-

-
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Fig. 10.7 The function
g.Ka/ D cosh.Ka/�
.1:5=Ka/ sinh.Ka/. Only
values of Ka with
jg.Ka/j 	 1 correspond to
allowed energy values
E D �„2K2=2m in the
Kronig-Penney model with
u D �1:5

Fig. 10.8 The function
f .Ka/ D
cos.Ka/� .1:5=Ka/ sin.Ka/.
Only values of Ka with
jf .Ka/j 	 1 correspond to
allowed energy values
E D „2K2=2m in the
Kronig-Penney model with
u D �1:5



Chapter 11
Scattering Off Potentials

Most two-particle interaction potentials V.x1 � x2/ assume a finite value V1 if
jx1 � x2j ! 1. If the relative motion of the two-particle system has an energy
E > V1 the particles can have arbitrary large distance. In particular, we can
imagine a situation where the two particles approach each other from an initially
large separation and after reaching some minimal distance move away from each
other. The force between the two particles will influence the trajectories of the
two particles, and this influence will be strongest when the particles are close
together. The deflection of particle trajectories due to interaction forces is denoted as
scattering. This is denoted as potential scattering if the interaction forces between
the particles can be expressed through a potential. We have seen in Section 7.1
that the motion of two particles with an interaction potential of the form V.r/ D
V.x1 � x2/ can be separated into center of mass motion and relative motion,

‰.x1; x2/ D  .r/ exp.iK � R/=
p
2�

3
, where the factor  .r/ for relative motion of

the two particles satisfies

E .r/ D � „2
2m
� .r/C V.r/ .r/: (11.1)

E is the contribution from relative motion to the total energy (7.9) of the two-particle
system, and I wrote m for the reduced mass of the two-particle system.

Equation (11.1) with E > V1 does not only describe two-particle scattering,
but also scattering of a particle of mass m off a potential with fixed center r D 0,
e.g. because the source of the potential is fixed by forces which do not affect the
scattered particle.

Scattering is an important technique for the determination of properties of a
physical system. Within the framework of potential scattering, observations of
deflections of particle trajectories in a potential can be used to determine the strength
and functional dependence V.r/ of a scattering potential.

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7_11
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Suppose that we wish to determine a scattering potential V.r/ through scattering
of non-relativistic particles of momentum „k off the potential. The deflected
particles will have momenta k0 ¤ k, and one observable that we should certainly
be able to measure is the number dn.�/=dt of particles per time which are
deflected into a small solid angle d� D d#d' sin# in the direction Ox D
.sin# cos'; sin# sin'; cos#/. According to the definition of particle current
densities j, this number will be given by

dn.�/

dt
D lim

r!1 jout.k0/r2d�;

where jout.k0/ is the number of deflected particles per area and per time which are
moving in the direction Ok0 D Ox with momentum „k0. We are taking the limit r ! 1
because we are interested in measuring dn.�/=dt far from the scattering center (or
for large separation of particles in particle-particle scattering), to make sure that the
scattering potential does not deflect the scattered particles any further.

The number of particles dn.�/=dt which are scattered into the direction Ok0
is of

course proportional to the number jin.k/ of particles per area and per time which
are incident on the scattering center, and it is also proportional to the width d� of
the solid angle over which we sum the scattered particles. Therefore we expect that
the observable which may really tell us something about the scattering potential is
gotten by dividing out the trivial dependence on jin and d�, i.e. we define

d�

d�
D 1

jin.k/
dn.�/

d�dt
D lim

r!1 r2
jout.k0/
jin.k/

: (11.2)

The quantity d�.�/ D .dn.�/=dt/=jin has the dimension of an area and is
therefore known as a differential scattering cross section. Differential scattering
cross sections are the observables or primary interest in potential scattering.

If we integrate over all possible scattering directions, we get the scattering cross
section

� D
Z

d� D 1

jin.k/

Z
d�

dn.�/

dt
D 1

jin.k/
dn

dt
;

i.e. the scattering cross section is the total number of scattered particles per time,
dn=dt, divided by the current density of incident particles.

For an explanation of the name cross section we also remark that the calculation
of scattering of particles off a hard sphere of radius R in classical mechanics
yields a scattering cross section � D �R2 which equals the cross section of the
sphere. We will see below in Section 11.3 that quantum mechanics actually yields
a larger scattering cross section of a sphere, e.g. � D 4�R2 for scattering of
very low energetic particles. Scattering of low energy particles off a sphere could
be considered as a most basic illustration of measuring properties of a scattering
center. Measuring the number dn=dt of low energy particles per time which are
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scattered off the sphere and dividing by the incident particle current density provides
a measurement of the radius R D p

�=4� D p
.dn=dt/=4� jin of the scattering

center.
The particle current density of particles described by a wave function  .x; t/will

be proportional to the corresponding probability current density

j D „
2im

�
 C � r � r C � � ;

and therefore we can use probability current densities in the calculation of the ratio
in (11.2).

11.1 The free energy-dependent Green’s function

Many applications of quantum mechanics require the calculation of the inverse (or
resolvent) G.E/ of the operator E � H0 D E � .p2=2m/,

.E � H0/G.E/ D 1: (11.3)

E.g. if we consider a time-independent potential V , the time-independent
Schrödinger equation

.E � H0/j .E/i D Vj .E/i (11.4)

is satisfied if the energy eigenstate j .E/i satisfies a Lippmann-Schwinger equa-
tion1

j .E/i D j 0.E/i C G.E/Vj .E/i; (11.5)

where j 0.E/i satisfies the condition .E � H0/j 0.E/i D 0. Iteration of (11.5) for
j 0.E/i ¤ 0 then yields the perturbation series

j .E/i D
1X

nD0
ŒG.E/V�n j 0.E/i: (11.6)

Equations (11.5, 11.6) with j 0.E/i ¤ 0 are also sometimes written as

j .E/i D 1

1 � G.E/V j 0.E/i: (11.7)

1B.A. Lippmann, J. Schwinger, Phys. Rev. 79, 469 (1950).
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Contrary to equation (11.5), the equations (11.6, 11.7) assume that E is an
eigenvalue of both H and H0. A necessary condition for equations (11.6, 11.7) is
therefore E � 0 because we use H0 D p2=2m. We also assume that the series on
the right hand side of (11.6) converges in a suitable sense (e.g. such that we can
integrate it with square integrable functions).

Equation (11.5) is more general than equations (11.6, 11.7) because if E is
not an eigenvalue of H0 we have j 0.E/i D 0 and equation (11.5) simply states
that the solutions of (11.4) are eigenstates of G.E/V with eigenvalue 1, whereas
equations (11.6, 11.7) become singular if G.E/V has eigenvalue 1.

For potential scattering theory it is customary to rescale G.E/ by a factor
�„2=2m, such that the zero energy Green’s function G.0/ is the inverse of the
negative Laplace operator. The equation

G.E/ D � 2m

„2 G.E/ D 1

E � H0 C i�
; � ! C0; (11.8)

is then in k-representation

hkjG.E/jk0i D ı.k � k0/
k2 � .2mE=„2/ � i�

D G.E; k/ı.k � k0/: (11.9)

The condition (11.3) for the energy-dependent Green’s function in x-representation

hxjG.E/jx0i D
Z

d3k
Z

d3k0 hxjkihkjG.E/jk0ihk0x0i

D 1

.2�/3

Z
d3k expŒik � .x � x0/�G.E; k/

D G.E; x � x0/ (11.10)

is

�G.E; x � x0/C 2m

„2 EG.E; x � x0/ D � ı.x � x0/: (11.11)

The shift i� ! Ci0 in equation (11.8) defines the retarded Green’s function for
the Schrödinger equation. The reason for this terminology is that the corresponding
Green’s function in the time domain (cf. (5.11)),

G.t/ D 1

2�„
Z 1

�1
dE G.E/ exp

�
� i

„Et

�
D ‚.t/

i„ exp

�
� i

„H0t

�
; (11.12)

satisfies the conditions

i„@G.t/
@t

� H0G.t/ D ı.t/; G.t/
ˇ̌
ˇ
t<0

D 0:

This implies that G propagates time-dependent perturbations

i„ @
@t

j .t/i � H0j .t/i D V.t/j .t/i
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forward in time,

j .t/i D j 0.t/i C
Z 1

�1
dt0 G.t � t0/V.t0/j .t0/i

D j 0.t/i � i

„
Z t

�1
dt0 exp

�
� i

„H0.t � t0/
�

V.t0/j .t0/i: (11.13)

We will revisit time-dependent perturbations in Chapter 13 and focus on
scattering due to time-independent perturbations (11.4–11.6) for now.

We first calculate the Green’s function G.E; x/ for E > 0. The equations (11.9)
and (11.10) yield

G.E; x/ D 1

.2�/3

Z
d3k

exp.ik � x/
k2 � .2mE=„2/ � i�

D 1

.2�/2

Z 1

0

dk
Z 1

�1
d� k2

exp.ikr�/

k2 � .2mE=„2/ � i�

D 1

.2�/2ir

Z 1

0

dk k
exp.ikr/ � exp.�ikr/

k2 � .2mE=„2/ � i�

D 1

.2�/2ir

Z 1

�1
dk k

exp.ikr/

k2 � .2mE=„2/ � i�
: (11.14)

Due to r > 0 we can add a semi-circle with radius jkj ! 1 in the upper half
of the complex k plane to the integration contour, see Figure 11.1. This additional

q+iε

−q−iε

k

Fig. 11.1 Location of the poles and integration contour in the complex k plane. Here q �p
2mE=„
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path segment \ will not change the integral in (11.14) because we have with k D
jkj exp.i�/

lim
jkj!1

Z
\

dk k
exp.ikr/

k2 � .2mE=„2/ � i�

D lim
jkj!1

Z �

0

d�
ijkj2 exp.2i�/ expŒijkjr cos.�/�

jkj2 exp.2i�/ � .2mE=„2/ expŒ�jkjr sin.�/� D 0:

However, adding the semi-circle to the integration contour allows us to use the
residue theorem. Decomposing the denominator into its simple poles

1

k2 � .2mE=„2/ � i�
D 1

Œk � .p2mE=„/ � i��Œk C .
p
2mE=„/C i��

then yields

G.E; x/ D 1

2�r

k exp.ikr/

k C .
p
2mE=„/

ˇ̌
ˇ̌
kDp

2mE=„

D 1

4�r
exp

�
i
p
2mEr=„

�
; (11.15)

i.e. the retardation requirement G.t/ / ‚.t/ yields only outgoing spherical waves
for positive energy.

If we perform the same calculation for E < 0 we find a denominator

1

k2 � .2mE=„2/ D 1

Œk � i.
p�2mE=„/�Œk C i.

p�2mE=„/� ;

and integration yields

G.E; x/ D 1

4�r
exp

�
�p�2mEr=„

�
: (11.16)

We can combine the results for positive and negative energy into

G.E; x/ D ‚.E/

4�r
exp

�
i
p
2mE

r

„
�

C ‚.�E/

4�r
exp

�
�p�2mE

r

„
�
: (11.17)

This is the energy-dependent Green’s function for the free non-relativistic particle.

11.2 Potential scattering in the Born approximation

We consider a particle of energy E D „2k2=2m in a static potential V.x/ of finite
range. The time-independent Schrödinger equation

.�C k2/ .x/ D 2m

„2 V.x/ .x/ (11.18)



11.2 Potential scattering in the Born approximation 213

can be converted into an integral equation using the Green’s function (11.15),

 .x/ D exp.ik � x/
.2�/3=2

� m

2�„2
Z

d3x0 exp.ikjx � x0j/
jx � x0j V.x0/ .x0/: (11.19)

Note that the Lippmann-Schwinger equation (11.5) is the representation free
operator version of this equation for static potential and plane waves as unperturbed
states.

First order iteration of (11.19) and neglect of the irrelevant normalization factor
.2�/�3=2 yields

 .x/ � exp.ik � x/ � m

2�„2
Z

d3x0 V.x0/
jx � x0j exp.ikjx � x0j C ik � x0/; (11.20)

The overall normalization is irrelevant, because finally we are only interested in the
ratio of the different parts of the wave function.

For r � r0 we have

jx � x0j �
p

r2 � 2rr0 cos � � r � r0 cos � D r � 1

r
x � x0 D r � Ox � x0:

We need the expansion to this order in the exponent of the Green’s function in
equation (11.20). However, for the denominator the expansion

1

jx � x0j � 1

r

will suffice, because the subleading term .r0=r2/ cos � will not contribute to the
differential scattering cross section (11.2) due to the limit limr!1 r2jout.

Substitution of the approximations yields the Born approximation

 .x/ D exp.ik � x/ � m

2�„2
1

r
exp.ikr/

Z
d3x0 expŒi.k � kOx/ � x0�V.x0/

D exp.ik � x/C f .kOx � k/
1

r
exp.ikr/ D  .in/.x/C  .out/.x/; (11.21)

with the scattering amplitude

f .�k/ D � m

2�„2
Z

d3x exp.�i�k � x/V.x/: (11.22)

Note that „�k � „.kOx � k/ D „k0 � „k is the momentum transfer imparted on
the particle which is detected in the direction Ox, i.e. the scattering amplitude is up
to a factor the Fourier transformed scattering potential evaluated at the momentum
transfer. For later reference, we note that f .�k/ can also be written as a transition
matrix element of the operator V.x/,

f .�k/ D � .2�/2 m

„2 hk0jVjki: (11.23)
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Like in the prototype one-dimensional scattering event described in Section 3.1,
the monochromatic asymptotic wave function (11.21) describes both the incident
and the scattered particles simultaneously, for the same reasons as in Section 3.1.
The current density jout of scattered particles is therefore calculated from the
outgoing spherical wave component  .out/.x/ in the wave function (11.21), and we
only need the leading term for r ! 1,

jout D „
2im

�
 .out/Cr .out/ � r .out/C � .out/

�ˇ̌ˇ̌
leading term for r!1

D „k

m

Ox
r2

jf .kOx � k/j2: (11.24)

The incoming current density jin is calculated from the incoming plane wave
component  .in/.x/,

jin D „k
m
: (11.25)

Both jin and jout come in units of cm/s instead of the expected cm�2/s for particle
or probability current densities. The reason for this is the use of plane or spherical
wave states in k space which are dimensionless in x representation, see Section 5.3.
Therefore the current densities (11.24) and (11.25) are actually current densities per
k space volume2. The normalization to k space volume cancels in the ratio jout=jin,
and substitution of equations (11.24, 11.25) into (11.2) yields

d�k

d�
D jf .kOx � k/j2: (11.27)

The scattering amplitude (11.22) for a spherically symmetric potential is

f .�k/ � fk.�/ D � 2m

„2�k

Z 1

0

dr r sin.�kr/V.r/; (11.28)

where �k D 2k sin.�=2/ and � is the scattering angle, see Figure 11.2.
In agreement with the observation that the energy-dependent wave function

describes both the incoming and the scattered particles, we have split the wave
function  .r/ into the components  .in/.r/ and  .out/.r/, and then calculated
separate current densities jin and jout from both contributions rather than calculate a
total current density j for  .r/. On the other hand, probability conservation implies
for stationary states r � j D 0, but only for the full current density including the

2We could more appropriately write dj.k/=d3k D „k=m, and the current density from a volume QV
in k space is

j. QV/ D
Z

QV
d3k

„k
m
: (11.26)

Note that this has the correct units cm�2/s for a current density.
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Fig. 11.2 Energy
conservation implies
k � jkj D jk0j. �k is
therefore related to k and the
scattering angle � according
to �k D 2k sin.�=2/ k’

k

Δk

Θ

interference terms j � jin � jout between the incoming and scattered parts of the wave
function. Therefore the interference terms will describe reduction of the current of
incoming particles due to scattering.

When we discuss this effect on the basis of the wave function (11.21), we
have to keep in mind that this is only a large distance approximation which was
justified by the observation that we are interested in the large distance limit of r2jout.
Furthermore, the wave function (11.21) will only yield components jr and j� in
spherical coordinates, and only jr will be relevant for the detailed balance between
incoming and scattered particles. The radial current density from (11.21) in the large
distance approximation, i.e. for kr � 1 and under neglect of terms which drop off
faster than r�2, is

m

„ jr D =
�
 C @

@r
 

�
' k cos � C k

jfk.�/j2
r2

C k

r

�<�fk.�/ expŒikr.1 � cos �/�C f C
k .�/ cos � expŒ�ikr.1 � cos �/�

�
:

Conservation of particles requires
R

d� r2jr D 0. The first term k cos �
yields null after integration over the sphere. The remaining terms yield with
u D 1 � cos � , Fk.u/ D fk.�/,

k�k C2�kr
Z 2

0

du <	Fk.u/ exp.ikru/C FC
k .u/.1 � u/ exp.�ikru/


 D 0: (11.29)

Here �k � R
d� d�k=d� is the total scattering cross section.

Two-fold integration by parts yields

kr
Z 2

0

du Fk.u/ exp.ikru/ D iFk.0/ � iFk.2/ exp.2ikr/ � 1

kr
F0

k.0/

C 1

kr
F0

k.2/ exp.2ikr/ � 1

kr

Z 2

0

du F00
k .u/ exp.ikru/:
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The last three terms vanish for kr ! 1. For the term Fk.2/ exp.2ikr/ we observe
that averaging over a very small momentum uncertainty �k=k D �=kr 
 1 also
yields a null result because it corresponds to an integration in k space over a range
��=r � k � �=r. This can be understood physically as destructive interference
between states with a minute variation in momentum. Therefore we find for kr ! 1

kr
Z 2

0

du Fk.u/ exp.ikru/ ! ifk.0/:

In the same way one finds

kr
Z 2

0

du FC
k .u/.1 � u/ exp.�ikru/ ! �if C

k .0/;

and equation (11.29) yields in the large kr limit the optical theorem

�k D 4�

k
=fk.0/ (11.30)

between the total scattering cross section and the imaginary part of the scattering
amplitude in forward direction.

11.3 Scattering off a hard sphere

The hard sphere of radius R corresponds to the V0 ! 1 limit of a potential V.r/ D
V0‚.R � r/. This reduces to the solution of the free Schrödinger equation for r > R
and a boundary condition on the surface of the sphere,

 .r/
ˇ̌
ˇ
rDR

D 0: (11.31)

We recall that the radial Schrödinger equation for a free particle with fixed angu-
lar momentum Mz, M2 and energy E D „2k2=2m yields the radial equation (7.43),

�
d2

dr2
� `.`C 1/

r2
C k2

�
r .r/ D 0: (11.32)

We have seen in Section 7.7 that the regular solutions for arbitrary ` can be gotten
through repeated application of r�1d=dr on the regular solution for ` D 0,

 
.in/
`;k .r/ / j`.kr/; j`.x/ D .�x/`

�
1

x

d

dx

�`
j0.x/; j0.x/ D sin x

x
:
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We denote the regular solutions j`.kr/ as .in/
`;k .r/, because we can superimpose those

functions according to equation (7.51) to form an incoming plane wave.
However, equation (11.32) also has an outgoing radial wave as a solution for

` D 0,

 
.out/
0;k .r/ / exp.ikr/

kr
D � ih.1/0 .kr/:

The reasoning leading to equations (7.46, 7.47) also implies that repeated applica-
tion of r�1d=dr on the outgoing radial wave solution leads to solutions for higher `,

 
.out/
`;k .r/ / � ih.1/` .kr/; h.1/` .x/ D .�x/`

�
1

x

d

dx

�`
h.1/0 .x/:

In leading order in 1=r, these are again outgoing radial waves,

h.1/` .kr/ ' .�/` exp.ikr/

ikr
: (11.33)

The functions h.1/` .x/ are known as spherical Hankel functions of the first kind.
We can use the spherical Bessel and Hankel functions to form solutions of

equation (11.32) which satisfy the condition (11.31) and contain an outgoing
spherical wave in the asymptotic limit,

 `;k.r/ D  
.in/
`;k .r/C  

.out/
`;k .r/ / j`.kr/ � h.1/` .kr/

j`.kR/

h.1/` .kR/
:

However, equation (7.51) then tells us how to write down a solution to the free
Schrödinger equation for energy E D „2k2=2m outside of the hard sphere, which
satisfies the boundary condition (11.31) and contains both a plane wave and an
outgoing spherical wave,

 k.r/ D
1X
`D0
.2`C 1/i`

 
j`.kr/ � h.1/` .kr/

j`.kR/

h.1/` .kR/

!
P`.cos �/

D exp.ikz/ �
1X
`D0
.2`C 1/i`h.1/` .kr/

j`.kR/

h.1/` .kR/
P`.cos �/

D  .in/.r/C  .out/.r/: (11.34)

From our previous experience in Sections 3.1 and 11.2 we already anticipated
that the monochromatic wave function will describe both incoming and scattered
particles. According to equation (11.33), the asymptotic expansion of the wave
function for large r is

 k.r/ ' exp.ikz/C fk.�/
exp.ikr/

r
;

fk.�/ D � 1

k

1X
`D0
.2`C 1/.�i/`C1P`.cos �/

j`.kR/

h.1/` .kR/
:
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The resulting expression for the differential scattering cross section of the hard
sphere is a little unwieldy,

d�k

d�
D jfk.�/j2 D 1

k2

1X
`;`0D0

.2`C 1/.2`0 C 1/i`�`0

P`.cos �/P`0.cos �/

� jC` .kR/j`0.kR/

h.1/C` .kR/h.1/
`0 .kR/

: (11.35)

However, for the scattering cross section the orthogonality property of Legendre
polynomials

Z �

0

d� sin � P`.cos �/P`0.cos �/ D 2

2`C 1
ı`;`0

yields a much simpler result,

�k D 4�

k2

1X
`D0
.2`C 1/

ˇ̌
ˇ̌
ˇ

j`.kR/

h.1/` .kR/

ˇ̌
ˇ̌
ˇ
2

: (11.36)

This is shown in Figure 11.3. The asymptotic behavior for small arguments kR,
j`.kR/ ' .kR/`=.2`C 1/ŠŠ and h.1/` .kR/ ' �i.2`� 1/ŠŠ.kR/�`�1, imply for the low
energy or long wavelength limit � � R that only the ` D 0 contribution survives
with

lim
kR!0

�k D 4�R2:

The quantum mechanical scattering cross section drops continuously from
limkR!0 �k D 4�R2 to limkR!1 �k D 2�R2, i.e. it always exceeds the classical
value �cl D �R2 by more than a factor of 2. In terms of the variables k and R,
�k seems to be independent of „ and one might naively expect that this is the
reason for absence of a classical limit for scattering off a hard sphere, but this is
wrong for two reasons. If one compares with classical results one should use the
same variables as in classical mechanics, and if in terms of the classical variables
the quantum mechanical result is independent of „, we rather expect to find the
same result as in classical mechanics. Furthermore, when one calculates classical
scattering cross sections, one uses the momentum p D „k for the incident particles
as a variable besides the radius R of the sphere, i.e. in terms of classical variables
the cross section �k does depend on „, and the classical limit should correspond to
pR � „, kR � 1. However, the classical limit fails because there is an important
difference between the classical calculation and quantum mechanical scattering.
The classical calculation requires particles to hit the hard sphere with an impact
parameter b D jMj=jpj which is limited by the requirement that all scattered
particles must actually hit the sphere, b � R. This corresponds to a classical
angular momentum cutoff jMj � pR. However, quantum mechanically, particles
with arbitrary high angular momentum still feel the presence of the hard sphere
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Fig. 11.3 The scattering cross section of a hard sphere normalized to the classical scattering cross
section �classical D �R2

and can be scattered similar to classical wave diffraction. This regime of deviation
between the classical and quantum picture concerns large angular momenta and
small deflection angles, i.e. the forward scattering region. In the classical picture
the forward scattered particles are considered as missing the sphere and therefore
ignored in the classical scattering cross section. Therefore the classical cross section
is always smaller than the quantum mechanical cross section, even in the classical
limit kR � 1. The increasing concentration of scattering in forward direction with
increasing kR is demonstrated in Figures 11.4 and 11.5.

An approximate evaluation of the � dependence of the extra “non-classical” part
of the differential cross section for kR � 1 in terms of shadow forming waves
is given in [29]. However, the Figures 11.4 and 11.5 use the exact result (11.35).
Either way, the ultimate reason for the discrepancy between the quantum result and
the classical result in the classical limit kR � 1 is different accounting of scattered
versus unscattered particles in the forward scattering region.
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Fig. 11.4 The differential scattering cross section d�k=d� of a hard sphere of radius R normalized
to the classical differential scattering cross section .d�k=d�/classical D R2=4 for kR D 1

11.4 Rutherford scattering

Axial symmetry often plays a role in atoms which interact with their surroundings.
External fields will often have axial symmetry, and this motivated Schrödinger to
solve the hydrogen problem in parabolic coordinates for his perturbative analysis
of the Stark effect3. Furthermore, if a hydrogen atom is formed through electron-
proton recombination, the initial plane wave state describing the mutual approach
of the electron and the proton will also break the rotational symmetry to axial
symmetry and the calculation of recombination cross sections can be performed in
terms of parabolic coordinates [3]. Maybe the best known application of parabolic
coordinates concerns the calculation of Rutherford scattering. The incident plane
wave  .in/  exp.ikz/ breaks the rotational symmetry of the problem down to an
axial symmetry, but we still expect an outgoing spherical wave  .out/  exp.ikr/=r.
The reconciliation of axial symmetry with the use of r makes parabolic coordinates
more useful than cylinder coordinates for the study of scattering in rotationally

3E. Schrödinger, Annalen Phys. 385, 437 (1926).
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Fig. 11.5 The differential scattering cross section d�k=d� of a hard sphere of radius R normalized
to the classical differential scattering cross section .d�k=d�/classical D R2=4 for kR D 10

symmetric potentials beyond the Born approximation, and can occasionally render
them also more useful than spherical coordinates. The separability of the Coulomb
problem in parabolic coordinates makes them particularly useful for the study of
Rutherford scattering.

We define parabolic coordinates through the following relations4,

x D 2
p
�� cos'; y D 2

p
�� sin'; z D � � �;

2� D r C z; 2� D r � z; ' D arctan
y

x
: (11.37)

Using the methods developed in Section 5.4, one finds the Schrödinger equation
for motion of a particle of energy E D „2k2=2	 in the Coulomb potential V D
q1q2=4��0r D „2K=2	.� C �/ in parabolic coordinates,s

1

� C �

�
@

@�

�
�
@

@�

�
C @

@�

�
�
@

@�

��
 C 1

4��

@2 

@2'
Ck2 � K

� C �
 D 0: (11.38)

4 Please note that the definition used here differs by factors of 2 from the definition used by
Schrödinger, �1 � �S D 2� , �2 � �S D 2�.
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The arguments in Section 5.5, in particular concerning Hamiltonians of the
form (5.36), imply that the solutions of this equation must have the form

 .�; �; '/ D f .�/g.�/ exp.im'/;

with the remaining separated equations

�
�

d

d�

�2
f C

�
k2�2 � K1� � m2

4

�
f D 0; (11.39)

�
�

d

d�

�2
g C

�
k2�2 � K2� � m2

4

�
g D 0; (11.40)

with K1 C K2 D K. We want  .in/  exp.ikz/ D exp.ik�/ exp.�ik�/ to be the
dominant term in the solution near the half-axis z < 0, i.e. for � ! 0. This
requirement complies with equation (11.39) if we choose m D 0 and K1 D ik.
If we then substitute f .�/ D F.�/ exp.ik�/ into equation (11.39) to find the second
solution, we find F.�/ D ACBEi.�2ik�/, which implies a singularity of the second
solution near the half-axis z < 0. Therefore we conclude that the solution to our
scattering problem must have the form  .�; �/ D g.�/ exp.ik�/ with the remaining
condition

�
d2g

d�2
C dg

d�
C �

k2� � K C ik
�

g D 0: (11.41)

Comparison with equation (11.39) for m D 0 and K1 D ik tells us that g.�/ D
exp.�ik�/ is the regular solution of equation (11.41) if K D 0. This is also clear
from the physical point of view. If there is no scattering potential, the plane wave
exp.ikz/ D exp.ik�/ exp.�ik�/ that we imposed near the half-axis z < 0 must
persist everywhere. This motivates a substitution g.�/ D h.�/ exp.�ik�/ in (11.41),

�
d2h

d�2
C .1 � 2ik�/

dh

d�
� Kh D 0: (11.42)

Substitution of h.�/ D P
n�0 cn�

n yields

cnC1 D K C 2ikn

.n C 1/2
cn

and therefore

h.�/ D c0

1X
nD0

K.K C 2ik/ : : : .K C 2ik.n � 1//
nŠ

�n

nŠ

D c0 1F1.�iK=2kI 1I 2ik�/ D c0 exp.2ik�/1F1.1C iK=2kI 1I 2ik�/:
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The wave function for our scattering problem is therefore up to normalization5

 .r/ D expŒik.� � �/�1F1.�iK=2kI 1I 2ik�/

D exp.ikz/1F1.�iK=2kI 1I ik.r � z//

D exp.ikr/1F1.1C iK=2kI 1I ik.r � z//: (11.43)

The normalization factor c0 is irrelevant because it cancels in the calculation of the
cross section.

Identification of the incoming and scattered components in the wave function
requires asymptotic expansion for large values of the argument 2k� D k.r � z/. The
asymptotic expansion of confluent hypergeometric functions 1F1.aI bI 
/ for large
j
j [1] yields the leading order terms

1F1.�iK=2kI 1I ik.r � z// ' exp

�
�K

4k

��
2k

iK
��1

�
iK

2k

�

� exp

�
iK

2k
lnŒk.r � z/�

��
1C K2

4ik3.r � z/

�
C expŒik.r � z/�

ik.r � z/
��1

�
K

2ik

�

� exp

�
� iK

2k
lnŒk.r � z/�

��
:

After neglecting another irrelevant overall factor we find the asymptotic form

 .r/ ' exp

�
ikz C iK

2k
lnŒk.r � z/�

��
1C K2

4ik3r.1 � cos �/

�

C �.iK=2k/

�.�iK=2k/

K

2k2r.1 � cos �/
exp

�
ikr � iK

2k
lnŒk.r � z/�

�

D  .in/.r/C  .out/.r/; (11.44)

where � D arccos.z=r/ is the scattering angle.
This yields a differential scattering cross section

d�

d�
D lim

r!1
r2jout

jin
D
�

K

4k2 sin2.�=2/

�2
D
�

q1q2
16��0E

�2
1

sin4.�=2/
; (11.45)

which equals exactly the corresponding cross section calculated in classical mechan-
ics and used by Rutherford in 1911 to infer the existence of a tiny positively charged
nucleus in atoms. The cross section (11.45) is an example of a quantum mechanical
result which is independent of „ when expressed in terms of classical variables, and
therefore it must agree with the classical result.

5W. Gordon, Z. Phys. 48, 180 (1928).
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Use of the asymptotic expansion of the hypergeometric function 1F1.aI bI 
/
for large j
j in the present case implies the requirement kr.1 � cos �/ D
2kr sin2.�=2/ � 1, i.e. the Rutherford formula is only applicable for scattering
angles � � p

2=kr D p
�=�r. This limitation is usually irrelevant, because

the values of � e.g. in the experiments of Geiger and Marsden were only a few
femtometers.

11.5 Problems

11.1. Show that the Lippmann-Schwinger equations (11.6, 11.7) can also be written
in the form

j .E/i D .E � H0 C i�/
1

E � H C i�
j 0.E/i:

11.2. The free time-dependent retarded Green’s function in x representation has to
satisfy the conditions

�
i„ @
@t

C „2
2m
�

�
G.x; t/ D ı.x/ı.t/; G.x; t/

ˇ̌
ˇ
t<0

D 0:

Show that this function satisfies the following equations,

G.x; t/ D 1

.2�/4„
Z

d3k
Z 1

�1
d!

expŒi.k � x � !t/�

! � .„k2=2m/C i�

D � m

�„3
Z 1

�1
dE G.x;E/ exp.�iEt=„/

D ‚.t/

.2�/3i„
Z

d3k exp

�
i

�
k � x � „t

2m
k2
��

D ‚.t/

i„
r

m

2� i„t

3

exp

�
i
mx2

2„t

�
: (11.46)

This also corresponds to the relation

G.x; t/ D ‚.t/

i„ U.x; t/ D ‚.t/

i„ hxj exp

�
� it

2m
p2
�

j0i

between the retarded Green’s function and the propagator for the free Schrödinger
equation.

11.3. Show that transformation of equation (11.13) into the frequency
domain (5.12, 5.13) yields

j .!/i D j 0.!/i C 1p
2�

Z 1

�1
d!0 G.„!/V.! � !0/j .!0/i: (11.47)
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Show also that this reduces to the Lippmann-Schwinger equation (11.5) if the
perturbation V is time-independent.

11.4. Calculate the differential scattering cross sections for the following potentials
in Born approximation.

11.4a. V.r/ D V0‚.R � r/,

11.4b. V.r/ D V0 exp.�r=R/,

11.4c. V.r/ D V0 exp.�r2=R2/.

11.5. Calculate the total cross sections for the potentials from Problem 11.4 in Born
approximation.

11.6. Calculate the differential cross section for Rutherford scattering in Born
approximation. Compare with the exact result.

11.7. Calculate the differential and total scattering cross sections for Rutherford
scattering with screened electromagnetic interactions in Born approximation. Use
the following models for the screened interactions,

11.7a. V.r/ D .qQ=4��0r/ exp.�r=R/,

11.7b. V.r/ D .qQ=4��0r/ exp.�r2=R2/.

11.8. Show that the scattering amplitude in Born approximation (11.22) satisfies
=fk.0/ D 0. Why does this not contradict the optical theorem (11.30)?

Hint: Split the potential into parity even and odd parts, V.x/ D VC.x/C V�.x/,
V˙.x/ D ŒV.x/ ˙ V.�x/�=2. Consider powers of V (or equivalently of coupling
constants) in (11.30).



Chapter 12
The Density of States

Many applications of quantum mechanics require the concept of density of states.
The notion of density of states is not entirely unique. Depending on the context
and the requirements of the problem at hand, it most often refers to the number of
quantum states per volume and per unit of energy, or to the number of states in a
volume unit d3k in k space, and for both notions there are several variants of the
density of states. Therefore the purpose of this chapter is not only to introduce the
concept of density of states, but also to enumerate all the different definitions which
are commonly used in physics.

Various forms of the density of states appear in numerous places in physics, e.g.
in thermodynamics and optics we need the density of photon states in the derivation
of Planck’s law, in solid state physics the density of electron states appears in
the integral of energy dependent functions over the Brillouin zone, in statistical
physics we need it to calculate energy densities in physical systems, and in quantum
mechanics we need it to calculate transition probabilities involving states in an
energy continuum, e.g. to calculate electron emission probabilities for ionization
or for the photoelectric effect, or to calculate scattering cross sections. Transition
probabilities involving quantum states in an energy continuum (e.g. unbound states
or states in an energy band in a solid) involve the density of states per particle as the
number of states dn per unit of volume in k space,

dn D d3k: (12.1)

More precisely, this is a density of states per spin or polarization or helicity states
of a particle. Otherwise it would have to be multiplied by the number g of spin or
helicity states.

The densities of electron states, photon states, and all kinds of quasiparticle
states in materials are also very important quantities in materials science. These
densities determine the momentum and energy distributions of (quasi)particles in
materials, and the number of available states e.g. for charge or momentum transport,
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or for excitation of electrons or phonons. Densities of states therefore have profound
impacts on electric and thermal conductivity and on optical properties of materials.
We will see that there exist several ways to justify equation (12.1), and we will also
explore the many different, but related definitions of the density of states.

12.1 Counting of oscillation modes

The basic notion of density of states concerns the k space density of linearly
independent oscillation modes in a homogeneous volume. This is a very basic
quantity in physics from which more advanced notions like local densities of
states can be inferred. There are two basic ways to derive the k space density of
states in a finite volume V . One of the derivations is more intuitive and the other one
is slightly more formal, but the density of states is such an important concept that it
is worthwhile to discuss both derivations.

The reasoning with periodic boundary conditions
in a finite volume

The simplest derivation of (12.1) counts the number of independent oscillation
modes in a rectangular cavity with periodic boundary conditions. A general wave
vector can always be written in the form

k D 2�

�
Ok D 2�

�

X
i

cos �i ei;

where cos �i,
P

i cos �2i D 1, are the directional cosines of the vector.
Suppose that the wave has to be periodic with periodicity Li in direction ei. In

that case the length Li must be an integer multiple of the projection �i D �= cos �i

of the wavelength onto the direction ei:

Li D ni�i D ni
�

cos �i
; ni � 0; (12.2)

see Figure 12.1.
Equation (12.2) can be written in terms of the components of the wave vector k,

ki D 2�

�
cos �i D 2�

�i
D 2�

ni

Li
:

The volume of a single state in k-space is therefore (with g spin or helicity states
per wave)

	
�3k



single state D .2�/3

gV
;
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L

L 2

1

k

λ

λ

λ 1

λ 2

Fig. 12.1 A standing wave in a cavity with periodic boundary conditions

since g helicity states reside in a cell of volume .2�/3=V in k-space. This yields
the proportionality factor between the measure for the number of states dn and the
volume measure in k-space: The number dn of states in a volume d3k in k space is

dn D d3k
.	
�3k



single state D gV

8�3
d3k: (12.3)

Inclusion of the factor g corresponds to a summation over all possible polarizations
or helicities. This version of the density of states is often employed in thermody-
namics and statistical physics. In quantum mechanics and scattering theory we often
need the density of states with a given polarization or helicity,

dn D V

8�3
d3k: (12.4)

The quantity dn=d3k D V=.2�/3 is the density of polarized states (if the system
can have polarization) in k space, and dn=.Vd3k/ D 1=.2�/3 is the corresponding
density of states in phase space. We will mostly use the density (12.4) or its
continuum limit, i.e. we will usually count states with a given polarization or
helicity, e.g. states of spin up electrons, states of photons of given polarization, etc.

The reasoning based on the completeness of plane wave states

A slightly more formal reasoning is based on the completeness of Fourier monomi-
als. The Fourier monomials

hxjni D 1p
V

exp.ik � x/ D 1p
V

exp

 
2� i

X
i

nixi

Li

!
(12.5)
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provide a complete set of functions in a box of lengths Li, cf. (10.2) and (10.3) for
the one-dimensional versions of the following equations:

1

V

Z
V

d3x exp

 
2� i

X
i

ni � n0
i

Li
xi

!
D ın;n0 ;

1

V

X
n

exp

 
2� i

X
i

ni
xi � x0

i

Li

!
D ı.x � x0/:

Therefore we find again ki D 2�ni=Li for the components of the k vectors, and the
volume per base oscillation mode (with fixed polarization) is again

�3k
ˇ̌
ˇ
single mode

D 8�3

V
:

This yields again the equation (12.4),

dn D V

8�3
d3k:

We remark that the measure dn for the number of states in k-space (12.4) can
also be written in terms of the wave numbers Q�i � 1=�i D ki=2� ,

dn D V

8�3
d3k D Vd3 Q� D Vd3

1

�
:

If we also replace the volume V in position space with the volume measure d3x, we
find a particularly intuitive and suggestive form for the corresponding measure of
states in phase space,

dn D d3x d3 Q� D d3x d3
1

�
D d3x d3p

h3
:

Here � D �Ok, and we define the “inverse” vector as 1=� � �=�2.

12.2 The continuum limit

In the limit V ! 1, the discrete enumerable set of normalized plane waves
in a cubic volume V , exp.ik � x/=

p
V , k D 2�n=L D 2�n=V1=3, is replaced

by the continuous non-enumerable set exp.ik � x/=
p
2�

3
. We have derived the

completeness relation for the continuous Fourier monomials in Section 2.1, see
equations (2.2) and (2.9). However, for the discussion of the continuum limit
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of (12.4) it is useful to revisit the completeness relation of the continuous Fourier
monomials as a continuum limit of the completeness relation of Fourier monomials
in finite volume.

We are using �3n D 1 for the volume of a triplet of integers in Z
3. The

completeness relation for the Fourier monomials in a cubic box can then be
written as

ı.x � x0/ D 1

V

X
n

exp

�
2� i

V1=3
n � .x � x0/

�

D 1

V

X
n

�3n exp

�
2� i

V1=3
n � .x � x0/

�

D 1

V

X
k

V

.2�/3
�3k exp

	
ik � .x � x0/




! 1

.2�/3

Z
d3k exp

	
ik � .x � x0/



; (12.6)

where we have used the fact that the volume cancels to take the continuum limit in
the final step.

This corresponds to the substitution V ) .2�/3 in the plane waves, and the
corresponding substitution for the measure for the number of states is indeed

dn D V

.2�/3
d3k ) d3k: (12.7)

Note that either way, the density of states per volume V of a particle with fixed
helicity or spin is

dn

V
D d3k
.2�/3

; (12.8)

irrespective of whether we have taken the continuum limit or not. However, please
also note that in the continuum limit both the differential number of states dn D d3k
and the number of states per volume dn=V D d3k=.2�/3 come with dimensions
length�3.

The “dimensionally wrong” density of states dn=d3k D 1 in k space is a
consequence of the cancellation of V in (12.6) and the ensuing interpretation of

exp.ik � x/=
p
2�

3
as the properly normalized plane wave states in the continuum

limit. This has shifted the length dimension from the states

dim
h
exp.ik � x/=

p
V
i

D `�3=2 ! dim
h
exp.ik � x/=

p
2�

3
i

D 1
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into the k space measure of states,

dim
	
dn D d3kV=.2�/3


 D 1 ! dim
	
dn D d3k


 D `�3:

We have to keep this in mind when we are using dimensional analysis of quan-
tum mechanical transition amplitudes in time-dependent perturbation theory in
Chapters 13 and 18.

Another reasoning for the continuum limit

We consider the matrix element of the time evolution operator UD.t; t0/ between a
bound hydrogen state jn; `;m`i and a plane wave jki. The definition of UD and the
motivation for considering its matrix elements will be given in the following chapter.
For now we only need to know that it is a unitary operator which describes e.g. how
bound hydrogen eigenstates are scattered into other states under a time-dependent
perturbation of the hydrogen atom.

Unitarity of UD.t; t0/ and the completeness relation for plane waves imply
Z

d3k
ˇ̌hkjUD.t; t

0/jn; `;m`i
ˇ̌2 D 1:

This tells us that we can interprete jhkjUD.t; t0/jn; `;m`ij2 as a probability density
for the system to end up in a plane wave state jki, and d3k as a measure for the
number of states, such that the probability for the system to end up in a region K in
k space is

Pn;`;m`!K.t; t0/ D
Z
K

d3k
ˇ̌hkjUD.t; t

0/jn; `;m`i
ˇ̌2
:

This confirms yet again that dn D d3k is the correct density of states in k space in
the continuum limit.

Different forms of the density of states in a homogeneous
medium

We may or may not include the number g of helicity or spin states in the density of
states, we can normalize to finite volume V or take the continuum limit V ! 1,
and we may also use the number of states per k space volume and per direct volume
V (i.e. calculate the density of states in phase space). All these simple alternatives
amount to eight basic options for the density of states in k space,

dn D Œg�

�
ŒV�

8�3

�
d3k:



12.3 The density of states in the energy scale 233

The first term in square brackets is included if we sum over all possible polarizations
of the particle, and the fraction V=.8�3/ is included if we use box normalization.
The volume factor is not included if the density of states is also counted per volume
in position space, dn=V . The fraction V=.8�3/ in dn disappears in the continuum
limit.

12.3 The density of states in the energy scale

In solid state physics (and in variants of time-dependent perturbation theory and
scattering theory) one is often interested in transforming d3k to variables d2kk
parallel to surfaces of constant energy E.k/ in k space and the energy E, which
increases orthogonal to the surfaces of constant energy. The normalized unit vector
in the direction of increasing E is

Ok? D @E.k/=@k
j@E.k/=@kj D v.k/

jv.k/j

(recall that v.k/ D „�1@E.k/=@k is the group velocity). Therefore we have

dk? D dk � Ok? D dk � @E.k/=@k
j@E.k/=@kj D dE

j@E.k/=@kj D dE

„jv.k/j
and

d3k D d2kk
dE

j@E.k/=@kj :

Here d2kk is some appropriate measure for coordinates along the constant energy
surfaces.

An isotropic dispersion relation, E.k/ D E.k/, yields

d3k D d2�kk2
dE

dE=dk
:

The corresponding number of states is then

dn D Œg�

�
ŒV�

8�3

�
d2�kk2

dE

jdE=dkj D %.E/dEd2�k; (12.9)

with a density of states per energy or density of states in the energy scale

%.E/ D Œg�

�
ŒV�

8�3

�
k2

jdE=dkj : (12.10)
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Here the absolute value jdE=dkj is taken in the denominator, because in cases where
dE=dk < 0, the convention is to substitute an integral in positive dk direction with
an integral in positive dE direction in the summation over states,

dk D dE

dE=dk
! dE

jdE=dkj :

In isotropic problems the angular variables are often integrated over, and one uses
the convention

dn ! %.E/dE

with the factor 4� included in %. Altogether this leaves us with the following sixteen
possibilities for the density of states in the energy scale,

%.E/ D Œg�

�
ŒV�

8�3

�
Œ4��

k2

jdE=dkj : (12.11)

We remark that generalization of the previous arguments to d spatial dimensions
yields the following results for the density of states,

dn D Œg�

�
ŒV�

.2�/d

�
ddk; %d.E/ D Œg�

�
ŒV�

.2�/d

�"
2
p
�

d

�.d=2/

#
kd�1

jdE=dkj ; (12.12)

where Sd�1 D 2
p
�

d
=�.d=2/ is the .d �1/-dimensional hyper-area of a unit sphere

in d dimensions.

12.4 Density of states for free non-relativistic particles
and for radiation

The free non-relativistic particle satisfies E D „2k2=2m, and equation (12.12) yields
the following forms of the density of states in the energy scale in d dimensions,

%d.E/ D ‚.E/ Œg�

�
ŒV�

.2�/d

�"
2
p
�

d

�.d=2/

#�p
m

„
�d p

2E
d�2
:

The most commonly used version gives the density of free non-relativistic states per
volume and per energy in d dimensions as

%d.E/ D g‚.E/

r
m

2�

d p
E

d�2

�.d=2/„d
: (12.13)
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For d D 3 this yields the density of states in a free electron model for metals. For
other materials this equation can be used to calculate the density of electron states
near the minimum of an energy band or the density of hole states near the maximum
of an energy band if we replace E with the difference to the local minimum or
maximum in energy: E ! E � Emin or E ! Emax � E. In these cases m is the
effective electron or hole mass near Emin or Emax, respectively. Equation (12.13)
is also often employed for d D 1 and d D 2 to estimate the density of states in
quantum wires or quantum wells.

The energy of a photon of frequency f is E D hf D „ck and we have g D 2

independent polarization states. Equations (12.3) or (12.11) therefore yield the
following expressions for the density of photon states per volume and per unit of
energy,

%.E/ D dn

VdE
D 2

8�3
4�k2

dk

dE
D E2

�2.„c/3
;

or in d dimensions (with g D d � 1 polarizations),

%d.E/ D .d � 1/Ed�1

2d�1�d=2�.d=2/.„c/d
:

The density of photon states (per volume V) in the frequency scale follows as

%d.f / D dn

Vdf
D 2.d � 1/�d=2

�.d=2/

f d�1

cd
:

For d D 3 this is equation (1.6) which we have used in the derivation of Planck’s
law.

12.5 The density of states for other quantum systems

It is also useful to note that we can express the density of states per volume in plane
waves trivially through the corresponding wave functions,

dn

V
D d3k
.2�/3

D d3k jhxjkij2 :

This suggests the following identification of the number of states per volume in
terms of quantum states which are labeled through a set of quantum numbers ˛,

dn

V
.x/ D d˛ jhxj˛ij2 : (12.14)
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From this observation we can infer a generalization of the density of states per
volume and per unit of energy which also holds for discrete spectra. Suppose the
Hamiltonian H has a discrete spectrum En and continuous spectra in ranges Eb1 �
E � Eb2. We use ˛ D .E; �/ for the set of quantum numbers, where � is a set of
degeneracy indices. Then the previous identification yields the density of states per
volume and per energy as

%.E; x/ D
X

n

ı.E � En/
XZ

d�n jhxjEn; �nij2

C
X

b

‚.E � Eb1/‚.Eb2 � E/
XZ

d�.E/ jhxjE; �.E/ij2 : (12.15)

E.g. the density of states per volume and per energy for the hydrogen atom would
be (with factors of 2 from summation over spins)

%.E; x/ D 2

1X
nD1

ı.E � En/

n�1X
`D0

X̀
m`D�`

jhxjn; `;m`ij2

C‚.E/
1X
`D0

X̀
m`D�`

1

„3
p
.2m/3E jhxjk; `;m`ij2 ; (12.16)

where hxjk; `;m`i are the Coulomb waves  k;`;m` .x/ from Section 7.9 andp
.2m/3E=„3 D 2k2dk=dE.
A short hand version of equation (12.15) is

%.E; x/ D
XZ

dE0 d�.E0/ ı.E � E0/
ˇ̌hxjE0; �.E0/iˇ̌2 : (12.17)

Note that for each quantum system, the total number of single-particle states per
volume diverges in a very specific way,

Z
dn

V
D ghxjxi D gı.0/:

12.6 Problems

12.1. We consider a free gas of spin 1/2 fermions in a finite volume V D L3 with
periodic boundary conditions. This implies the constraints

ki D 2�

L
ni; ni 2 Z

on the components of the wave vector.
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Our fermion gas contains N � 1 particles, and we assume it to be in the state
of minimal energy. How large is the maximal momentum pF D „kF (the Fermi
momentum) in the fermi gas?

You have to take into account that only two fermions can have the same
momentum.

Solution. With N � 1 we have �F 
 L or kF � 2�
L . The number of states with

momenta p � pF is then

2
4�

3
k3F

L3

8�3
D 1

3�2
k3FL3 D N;

and therefore

kF D 1

L

�
3�2N

� 1
3 D �

3�2n
� 1
3 ; pF D „kF; (12.18)

where n D N=V is the particle density.

12.2. The equation (12.12) for the density of states in d dimensions holds for
isotropic dispersion relations E D E.jkj/. We used k � jkj in (12.12).

For one-dimensional models that equation yields the density of states in the
energy scale per volume V � a (a lattice constant) and per helicity state as

%1.E/ D 1

ag

dn

dE
D 1

2�
� 2 �

ˇ̌
ˇ̌djkj

dE

ˇ̌
ˇ̌ : (12.19)

The factor of 2 comes from the “volume” S0 D Œ2
p
�

d
=�.d=2/�dD1 of the

zero-dimensional unit sphere. This sphere consists of the two points 1 and �1. Is
equation (12.19) correct? Or should we abandon the factor of 2?

12.3. Equation (12.14) for the local density of states yields for one-dimensional
lattices with volume V D a and Bloch states (10.8) the local density of states in the
k scale as

%.k; x/ D dn

agdk
.x/ D

X
n

j n.k; x/j2:

Note that we also divided out the number g of spin or helicity states, which is
included as a discrete parameter in the set of quantum numbers ˛ in (12.14).

Show that transformation to the energy scale and spatial averaging reproduces
the isotropic result (12.19),

%.E/ D 1

a

Z a

0

dx %.E; x/ D 1

�

ˇ̌
ˇ̌djkj

dE

ˇ̌
ˇ̌ :
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12.4. We consider the Kronig-Penney model from Section 10.4.
Show for E > 0 that the spatially averaged one-dimensional density of states in

the energy scale,

%.E/ D dn

agdE
D 1

�

ˇ̌
ˇ̌djkj

dE

ˇ̌
ˇ̌ ;

is given by

%.E/ D m

�„2K
ˇ̌
ˇ̌
�
1C u

.Ka/2

�
sin.Ka/ � u

Ka
cos.Ka/

ˇ̌
ˇ̌

�
��
1 � u2

.Ka/2

�
sin2.Ka/ � u

Ka
sin.2Ka/

��1=2
; (12.20)

with K D p
2mE=„. This equation only applies where states exist, i.e. where the

condition (10.35) is met.
The resulting density of states for u D 5 in the region of the first two energy

bands is plotted in Figure 12.2 for a lattice constant a D 3:5Å.

12.5. Calculate the density of states in the energy scale for free unpolarized
electrons in three dimensions if you cannot assume that the kinetic energy of the
electrons is much smaller than their rest energy.

Which result do you get in the non-relativistic limit?
Derive the corresponding results also in d spatial dimensions.

Fig. 12.2 The
one-dimensional density of
states in the energy
scale (12.20) for u D 5 and a
lattice constant a D 3:5 Å.
The energy scale covers the
first two energy bands E0.k/
and E1.k/, cf. Figure 10.2
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Result. The relativistic dispersion relation E D „c
p

k2 C .mc=„/2 yields for
particles with g helicity (or spin or polarization) states the density of states per
volume and in the energy scale

%.E/ D dn

dVdE
D g

.2�/d
2
p
�

d

�.d=2/
kd�1 dk

dE

D 2g‚.E � mc2/

.2
p
�„c/d�.d=2/

E
p

E2 � m2c4
d�2
: (12.21)

For the comparison with the non-relativistic limit we should write this in terms of
the kinetic energy K D E � mc2, because K is usually denoted as the energy of the
particle in the non-relativistic limit,

%.K/ D 2g‚.K/

.2
p
�„c/d�.d=2/

.K C mc2/
p

K.K C 2mc2/
d�2
: (12.22)

This yields the non-relativistic result (12.13) (with the substitution Enon�rel: D K) in
the limit K 
 mc2.

Note that use of E D ˙„c
p

k2 C .mc=„/2 yields a symmetric density of states
which includes the anti-particles as negative energy states,

O%.E/ D %.E/C %.E/ D 2g‚.E2 � m2c4/

.2
p
�„c/d�.d=2/

jEj
p

E2 � m2c4
d�2
: (12.23)

Here E D �E > mc2 corresponds to the energy of the anti-particles. As for the
factor g, we just remark for completeness that a massive vector field in d C 1 space-
time dimensions has gd D d possible polarizations. Furthermore, a spinor in d C 1

space-time dimensions has 2b.dC1/=2c components which describe both particles and
anti-particles, and therefore an electron in d C 1 space-time dimensions has gd D
2b.d�1/=2c spin components. The floor function used here yields bn=2c D n=2 if n is
even, bn=2c D .n � 1/=2 if n is odd. Please see Chapter 21 and Appendix G (note
that d denotes the number of space-time dimensions in Appendix G).



Chapter 13
Time-dependent Perturbations in Quantum
Mechanics

The development of time-dependent perturbation theory was initiated by Paul
Dirac’s early work on the semi-classical description of atoms interacting with
electromagnetic fields1. Dirac, Wheeler, Heisenberg, Feynman and Dyson devel-
oped it into a powerful set of techniques for studying interactions and time
evolution in quantum mechanical systems which cannot be solved exactly. It is
used for the quantitative description of phenomena as diverse as proton-proton
scattering, photo-ionization of materials, scattering of electrons off lattice defects in
a conductor, scattering of neutrons off nuclei, electric susceptibilities of materials,
neutron absorption cross sections in a nuclear reactor etc. The list is infinitely long.
Time-dependent perturbation theory is an extremely important tool for calculating
properties of any physical system.

So far all the Hamiltonians which we had studied were time-independent. This
property was particularly important for the time-energy Fourier transformation
from the time-dependent Schrödinger equation to a time-independent Schrödinger
equation. Time-independence of H also ensures conservation of energy, as will be
discussed in detail in Chapter 16. Time-dependent perturbation theory, on the other
hand, is naturally also concerned with time-dependent Hamiltonians H.t/ (although
it provides very useful results also for time-independent Hamiltonians, and we will
see later that most of its applications in quantum field theory concern systems
with time-independent Hamiltonians). We will therefore formulate all results in
this chapter for time-dependent Hamiltonians, and only specify to time-independent
cases where it is particularly useful for applications.

1P.A.M. Dirac, Proc. Roy. Soc. London A 112, 661 (1926).
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13.1 Pictures of quantum dynamics

As a preparation for the discussion of time-dependent perturbation theory (and of
field quantization later on), we now enter the discussion of different pictures of
quantum dynamics.

The picture which we have used so far is the Schrödinger picture of quantum
dynamics: The time evolution of a system is encoded in its states j .t/i which
have to satisfy a Schrödinger equation i„dj S.t/i=dt D H.t/j S.t/i. However, every
transformation on states and operators j i ! Uj i, A ! U � A � UC with a unitary
operator U leaves the matrix elements h�jAj i and therefore the observables of a
system invariant.

If U is in particular a time-dependent unitary operator, then this changes the
time-evolution of the states and operators without changing the time-evolution of
the observables. Application of a time-dependent U.t/ corresponds to a change of
the picture of quantum dynamics, and two important cases besides the Schrödinger
picture are the Heisenberg picture and the interaction (or Dirac) picture. In
the Heisenberg picture all time dependence is cast from the states onto the
operators, whereas in the Dirac picture the operators follow a “free” (or better:
exactly solvable) time evolution, while the interaction (non-solvable) part of the
Hamiltonian determines the time evolution of the states.

There are essentially two reasons for introducing the Heisenberg picture. The less
important of these reasons is that the Hamilton-Poisson formulation of the classical
limit of quantum systems is related to the Heisenberg picture. The really important
reason is that quantum field theory in Chapter 17 appears first in the Heisenberg
picture.

The rationale for introducing the Dirac picture is that time-dependent pertur-
bation theory automatically leads to the calculation of matrix elements of the
time evolution operator in the Dirac picture. As soon as we want to calculate
transition probabilities in a quantum system under the influence of time-dependent
perturbations, we automatically encounter the Dirac picture.

Before immersing ourselves into the discussion of the Heisenberg and Dirac
pictures, we have to take a closer look at time evolution in the Schrödinger picture.

Time evolution in the Schrödinger picture

In the Schrödinger picture the basic operatorsˆS (like x or p) are time-independent,
dˆS=dt D 0, and all the time evolution from the dynamics is carried by the states.
The differential equation

i„ d

dt
j S.t/i D H.t/j S.t/i
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yields an equivalent integral equation

j S.t/i D j S.t0/i � i

„
Z t

t0

d� H.�/j S.�/i;

and iteration of this equation yields

j S.t/i D U.t; t0/j S.t0/i
with the time evolution operator2

U.t; t0/ D
X

n

1

.i„/n
Z t

t0

d�1

Z �1

t0

d�2 : : :
Z �n�1

t0

d�n H.�1/H.�2/ : : :H.�n/

D
X

n

1

.i„/n
Z t

t0

d�n

Z t

�n

d�n�1 : : :
Z t

�2

d�1 H.�1/H.�2/ : : :H.�n/

D T exp

�
� i

„
Z t

t0

d� H.�/

�
: (13.1)

Taking the adjoint switches t with t0 in the argument of the time evolution operator,

UC.t; t0/ D
X

n

�
i

„
�n Z t

t0

d�1

Z �1

t0

d�2 : : :
Z �n�1

t0

d�n H.�n/H.�n�1/ : : :H.�1/

D
X

n

1

.i„/n
Z t0

t
d�n

Z �n

t
d�n�1 : : :

Z �2

t
d�1 H.�n/H.�n�1/ : : :H.�1/

D T exp

�
� i

„
Z t0

t
d� H.�/

�
D U.t0; t/: (13.2)

This and the composition law (13.7) below imply unitarity of the time evolution
operator.

Please note that the time ordering operator T in equations (13.1) and (13.2)
always ensures that the Hamiltonians are ordered from right to left such that
their time arguments go from closer to the lower integration boundary (t0 in
equation (13.1), t in equation (13.2)) to the upper integration boundary (t in
equation (13.1), t0 in equation (13.2)), irrespective of whether the upper integration
boundary is larger or smaller than the lower integration boundary, e.g. if t > t0
in equation (13.1) then of course t0 < t in equation (13.2). Apparently, the
identification of “lower” and “upper” integration boundary in the previous statement
implies the convention that the integrand in the exponent is �iH.t/=„. Otherwise the
statement would be ambiguous.

The re-ordering of integrations in the second lines of equations (13.1, 13.2)
is trivial for the 0th and 1st order terms. For the higher order terms e.g. in
equation (13.1) we can recursively use for any consecutive pair of integrations

2F.J. Dyson, Phys. Rev. 75, 1736 (1949). Equation (13.1) gives three different representations
of the time evolution operator. Equivalence of these representations is demonstrated in equa-
tions (13.3, 13.4) and in Problem 13.1.



244 13 Time-dependent Perturbations in Quantum Mechanics

t0 t t t0
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t t0

t

τ1τ1

τ2 τ2

Fig. 13.1 The integration domain in equation (13.3) is shown in green. The left panel is for t > t0
(forward evolution by U.t; t0/), the right panel is for t < t0 (backward evolution by U.t; t0/). In
either case re-arranging of the order of integration over the same domain yields equation (13.3)

Z t

t0

d�1

Z �1

t0

d�2 A.�1; �2/ D
Z t

t0

d�2

Z t

�2

d�1 A.�1; �2/; (13.3)

which proves the re-ordering for n D 2, see also Figure 13.1. For higher n we can
perform an induction step,

Z t

t0

d�1

Z �1

t0

d�2 : : :
Z �n�1

t0

d�n

Z �n

t0
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Z �1

�3
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d�2 H.�1/H.�2/ : : :H.�nC1/

D
Z t

t0

d�nC1
Z t

�nC1

d�n : : :

Z t

�3

d�1

Z �1

�3

d�2 H.�1/H.�2/ : : :H.�n/H.�nC1/

D
Z t

t0

d�nC1
Z t

�nC1

d�n : : :

Z t

�3

d�2

Z t

�2

d�1 H.�1/H.�2/ : : :H.�n/H.�nC1/; (13.4)

which concludes the proof.
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Time evolution operators satisfy several important properties which include
Schrödinger type operator equations, unitarity, and a simple composition property.
We begin with the Schrödinger type differential equations satisfied by U.t; t0/.

The derivative with respect to the first time argument of the time evolution
operator is most easily calculated using the representation in the first line of (13.1),

i„ @
@t

U.t; t0/ D H.t/U.t; t0/; (13.5)

while the derivative with respect to the second argument follows most easily from
the second line in (13.1),

i„ @
@t

U.t0; t/ D � U.t0; t/H.t/: (13.6)

Taking the adjoint of (13.5) or using (13.2) yields

i„ @
@t

UC.t; t0/ D � UC.t; t0/H.t/:

The time evolution operator is the unique solution of these differential equations
with initial condition U.t0; t0/ D 1. The differential equations together with the
initial condition also imply the integral equations

U.t; t0/ D 1 � i

„
Z t

t0
d� H.�/U.�; t0/ D 1 � i

„
Z t

t0
d� U.t; �/H.�/:

Another important property of the time evolution operator is the composition law

U.t0; t/U.t; t0/ D U.t0; t0/: (13.7)

Proving this through multiplication of the left hand side and sorting out the
n-th order term is clumsy, due to the need to prove that the sum over n C 1

n-fold integrals on the left hand side really produces the n-th order term on the
right hand side. However, we can find a much more elegant proof by observing that
U.t0; t/U.t; t0/ is actually independent of t due to equations (13.5, 13.6),

@

@t
U.t0; t/U.t; t0/ D 0;

and therefore

U.t0; t/U.t; t0/ D U.t0; t0/U.t0; t0/ D U.t0; t0/:

The composition law yields in particular

U.t0; t/U.t; t0/ D U.t0; t0/ D 1; U.t0; t/ D U�1.t; t0/;

and combined with (13.2) this implies unitarity of the time evolution operator,

UC.t; t0/ D U.t0; t/ D U�1.t; t0/; (13.8)

i.e. time evolution preserves the norm of states.
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The time evolution operator for the harmonic oscillator

The time evolution operator for time-independent Hamiltonians H is invariant under
time translations,

U.t � t0/ D exp

�
� i

„H.t � t0/

�
:

The matrix elements in x space can then be written in terms of the wave functions of
energy eigenstates HjE; �i D EjE; �i, where � is a set of degeneracy indices. There
are no degeneracy indices in one dimension and the expansion takes the form

hxjU.t/jx0i D
XZ

dE exp

�
� i

„Et

�
hxjEihEjx0i:

E.g. the time evolution operator of the harmonic oscillator

U.t/ D exp
��i!aCat

�
exp.�i!t=2/

has matrix elements

hxj exp
��i!aCat

� jx0i D
1X

nD0
hxjnihnjx0i exp.�in!t/

D
r

m!

�„
1X

nD0

exp.�in!t/

2nnŠ
Hn

�r
m!

„ x

�

�Hn

�r
m!

„ x0
�

exp
�
�m!

2„
�
x2 C x02�� :

Use of the Mehler formula (D.8) yields

hxjU.t/jx0i D hxj exp
��i!aCat

� jx0i exp.�i!t=2/

D
r

m!

2� i„ sin.!t/
exp

 
i
m!

2„

�
x2 C x02� cos.!t/ � 2xx0

sin.!t/

!
: (13.9)

To use the Mehler formula we should take ! ! ! � i� for t > 0. This complies
with the shifts E0 ! E0 � i�,

G.E/ D 1

E � H C i�
D
XZ

dE0 jE0ihE0j
E � E0 C i�

;
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which define retarded Green’s functions in the energy representation, see
e.g. (11.8, 20.14). The time-dependent retarded Green’s function for the oscillator
is related to the propagator (13.9) in the standard way

hxjG.t/jx0i D ‚.t/

i„ hxjU.t/jx0i:

The Heisenberg picture

In the Heisenberg picture we use the unitary time evolution operator U.t; t0/ to cast
the time dependence from the states onto the operators,

j Hi D j S.t0/i D UC.t; t0/j S.t/i;
ˆH.t/ D UC.t; t0/ˆSU.t; t0/:

For the time evolution of the operators in the Heisenberg picture we observe that

ˆH.t/ D UC.t; t0/ˆSU.t; t0/ D UC.t; t0/ˆSUC.t0; t/

D UC.t; t0/UC.t0; t0/ˆSUC.t0; t0/UC.t0; t/ D UC.t; t0/ˆH.t
0/U.t; t0/;

and the Heisenberg evolution equation

i„ d

dt
ˆH.t/ D � UC.t; t0/ŒH.t/ˆS �ˆSH.t/�U.t; t0/

D � UC.t; t0/H.t/U.t; t0/UC.t; t0/ˆSU.t; t0/

C UC.t; t0/ˆSU.t; t0/U
C.t; t0/H.t/U.t; t0/

D � ŒHH.t/; ˆH.t/�: (13.10)

In the last equation, HH.t/ is the Hamiltonian written in terms of operators ˆH.t/ in
the Heisenberg picture.

For time-dependent ˆS.t/ we have

d

dt
ˆH.t/ D UC.t; t0/

�
i

„ ŒH.t/; ˆS.t/�C d

dt
ˆS.t/

�
U.t; t0/:

13.2 The Dirac picture

For the Dirac or interaction picture we split the Schrödinger picture Hamiltonian
H.t/ into a “free” (or rather: solvable) part H0.t/ and an “interaction” (or rather:
perturbation) part V.t/,

H.t/ D H0.t/C V.t/; (13.11)
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and define the “free” time evolution operator

U0.t; t0/ D T exp

�
� i

„
Z t

t0

d� H0.�/

�
:

The common terminology of denoting H0.t/ and U0.t; t0/ as “free” Hamiltonian
and time evolution operator while V.t/ is the “interaction” part is motivated from
scattering theory, which is one of the most common applications of time-dependent
perturbation theory. However, we should always keep in mind that H0.t/ does not
really need to be a free particle Hamiltonian. E.g. for a hydrogen atom under
the influence of an external electromagnetic field with wavelength � � a0, the
“free” part H0 would actually be the hydrogen Hamiltonian including the Coulomb
interaction between the proton and the electron, while V.t/ would describe the
effective coupling of the electromagnetic field to the quasiparticle which describes
relative motion in the hydrogen atom. We will discuss this case in detail in
Chapter 18, and in particular in Section 18.4.

The interaction picture splits off the solvable part of the time evolution from the
states,

j D.t/i D UC
0 .t; t0/j S.t/i D UC

0 .t; t0/U.t; t
0/j S.t

0/i
D UC

0 .t; t0/U.t; t
0/U0.t

0; t0/j D.t
0/i D UD.t; t

0/j D.t
0/i; (13.12)

where the last line identifies the time evolution operator UD.t; t0/ acting on the states
in the interaction picture.

The solvable part of the time evolution is cast onto the operators

ˆD.t/ D UC
0 .t; t0/ˆSU0.t; t0/ (13.13)

to preserve the time evolution of matrix elements and expectation values in the
interaction picture.

Substituting the composition law for time evolution operators confirms that
ˆD.t/ evolves freely between different times,

ˆD.t/ D UC
0 .t; t0/ˆSUC

0 .t0; t/ D UC
0 .t; t

0/UC
0 .t

0; t0/ˆSUC
0 .t0; t

0/UC
0 .t

0; t/

D UC
0 .t; t

0/ˆD.t
0/U0.t; t

0/; (13.14)

and substituting ˆH.t/ for ˆS shows that ˆD.t/ is related to the operator in the
Heisenberg picture through the particular variant UD.t; t0/ of the interaction picture
evolution operator UD.t; t0/ (13.12),

ˆD.t/ D UC
0 .t; t0/U.t; t0/ˆH.t/U

C.t; t0/U0.t; t0/

D UD.t; t0/ˆH.t/U
C
D .t; t0/: (13.15)
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The differential equation for time evolution of the operators is

i„ d

dt
ˆD.t/ D � UC

0 .t; t0/ŒH0.t/ˆS �ˆSH0.t/�U0.t; t0/

D � UC
0 .t; t0/H0.t/U0.t; t0/U

C
0 .t; t0/ˆSU0.t; t0/

C UC
0 .t; t0/ˆSU0.t; t0/U

C
0 .t; t0/H0.t/U0.t; t0/

D � ŒH0;D.t/; ˆD.t/�;

where in the last equation (similar to the previous remark for the Heisenberg picture)
H0;D.t/ is written in terms of operators ˆD.t/ in the Dirac picture.

The interactions are encoded in the time evolution of the states,

i„ d

dt
j D.t/i D UC

0 .t; t0/ŒH.t/ � H0.t/�j S.t/i

D UC
0 .t; t0/V.t/U0.t; t0/j D.t/i D HD.t/j D.t/i; (13.16)

where again UC
0 .t; t0/V.t/U0.t; t0/ D VD.t/ � HD.t/ due to the operator transition

ˆS ! ˆD in the Hamiltonians.
Conversion of equation (13.16) into the equivalent integral equation gives us

another equation for the time evolution operator UD.t; t0/ for the states in the Dirac
picture,

UD.t; t
0/ D UC

0 .t; t0/U.t; t
0/U0.t

0; t0/ D T exp

�
� i

„
Z t

t0
d� HD.�/

�
: (13.17)

This evolution operator apparently satisfies

i„ @
@t

UD.t; t
0/ D HD.t/UD.t; t

0/; i„ @
@t0

UD.t; t
0/ D � UD.t; t

0/HD.t
0/:

We have split the time evolution asymmetrically between states and operators,
and therefore there are two Hamiltonians and related time evolution operators in the
interaction picture: the “free” Hamiltonian H0.t/ for the evolution of the operators
and the interaction Hamiltonian HD.t/ for the evolution of the states (and then
there is the third Hamiltonian H.t/ and its time evolution operator appearing in the
derivation of the interaction picture).

If we substitute3

HD.t/ D UC
0 .t; t0/V.t/U0.t; t0/ D U0.t0; t/V.t/U0.t; t0/

into equation (13.17) and use the composition property for time evolution operators

U0.�; t0/U0.t0; �
0/ D U0.�; �

0/;

3The transformation law for operators from the Schrödinger picture into the interaction picture
implies HD.t/ � VD.t/. The notation VD.t/ is therefore also often used for HD.t/.
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Fig. 13.2 Scattering off a
time-dependent perturbation
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nD0
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.i„/n
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d�1

Z �1

t0
d�2 : : :

Z �n�1

t0
d�n U0.t0; �1/V.�1/U0.�1; �2/

�V.�2/U0.�2; �3/ : : :U0.�n�1; �n/V.�n/U0.�n; t0/: (13.18)

The n-th term in the sum can be interpreted as n scatterings at the perturbation
V.t/, with “free” time evolution under the Hamiltonian H0.t/ between any two
scattering events, see Figure 13.2. In the end everything is evolved again to the
fiducial time t0. Equation (13.21) below will show that this as a consequence of the
fact that we will express transition probability amplitudes in terms of states at some
fixed time t0.

Dirac picture for constant H0

We have H0 D H0;D if H0 is a time-independent operator in the Schrödinger picture,
because H0 and U0.t; t0/ D expŒ�iH0.t � t0/=„� commute.
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The Hamiltonian HD.t/ acting on the states in the interaction picture is related to
the Hamiltonian with the ordinary operators p, x,: : : of the Schrödinger picture via

HD.t/ D exp

�
i

„H0.t � t0/

�
V.t/ exp

�
� i

„H0.t � t0/

�
:

The time evolution operator for the states in the interaction picture is then

UD.t; t
0/ D T exp

�
� i

„
Z t

t0
d� HD.�/
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D
1X

nD0

1

.i„/n
Z t

t0
d�1

Z �1

t0
d�2 : : :

Z �n�1

t0
d�n exp

�
� i

„H0.t0 � �1/
�

� V.�1/ exp

�
� i

„H0.�1 � �2/
�

V.�2/ exp

�
� i

„H0.�2 � �3/
�
: : :

� exp

�
� i

„H0.�n�1 � �n/

�
V.�n/ exp

�
� i

„H0.�n � t0/

�
: (13.19)

The case of time-independent unperturbed operators H0 is the most common case
in applications of time-dependent perturbation theory. Equation (13.19) therefore
shows the most commonly employed form of UD.t; t0/ for the evaluation of the
transition amplitudes or scattering matrix elements which will be introduced in
Section 13.3.

13.3 Transitions between discrete states

We are now in a position to discuss transitions in a quantum system under the
influence of time-dependent perturbations. We are still operating in the framework
of “ordinary” quantum mechanics (“first quantized theory”), and at this stage time-
dependent perturbations of a quantum system arise from time dependence of the
parameters in the Schrödinger equation.

We will denote states as discrete states if they can be characterized by a set
of discrete quantum numbers, e.g. the bound energy eigenstates jn; `;m`;msi of
hydrogen or the states jn1; n2; n3i of a three-dimensional harmonic oscillator are
discrete. States which require at least one continuous quantum number for their
labeling are denoted as continuous states. Momentum eigenstates jki are examples
of continuous states. Quantum mechanical transitions involving continuous states
require special considerations. Therefore we will first discuss transitions between
discrete states, e.g. transitions between atomic or molecular bound states.
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We consider a system with an unperturbed Hamiltonian H0 under the influence
of a perturbation V.t/:

H.t/ D H0 C V.t/:

The perturbation operator will in general be a function of the operators p and x,
V.t/ � V.p; x; t/. We will see later that in many applications V.t/ has the form

V.p; x; t/ D V1.x; t/C p � V2.x; t/: (13.20)

In this section we assume that all states under consideration can be normalized
to 1.

For the calculation of transition probabilities in the system, recall that the
expansion of a general state j�i in terms of an orthonormal complete set of states
j ni is

j�i D
X

n

j nih nj�i;

and therefore the probability Pn.�/ of finding the state j ni in a measurement
performed on the state j�i is Pn.�/ D jh nj�ij2. We can also understand this as
the expectation value of the projection operator j nih nj in the state j�i.

Now assume that the state j�i is a state j in.t/i, where the state at an earlier time
t0 < t was an unperturbed state j .0/

in .t
0/i, typically an eigenstate of H0. Then we

know that the state at time t is

j in.t/i D U.t; t0/j .0/
in .t

0/i;

and since the state now evolved with the full Hamiltonian including the perturbation
V.t/, it will not be an unperturbed state any more, but a superposition of unperturbed
states. If at time t a measurement is performed on the state j in.t/i, the probability
to measure a certain unperturbed state j .0/

out .t/i will be jh .0/
out .t/j in.t/ij2.

Therefore the probability amplitude for transition from an unperturbed state
j .0/

in .t
0/i to an unperturbed state j .0/

out .t/i between times t0 and t is

h .0/
out .t/j in.t/i D h .0/

out .t/jU.t; t0/j .0/
in .t

0/i
D h .0/

out .t0/jUC
0 .t; t0/U.t; t

0/U0.t
0; t0/j .0/

in .t0/i
D h .0/

out .t0/jUD.t; t
0/j .0/

in .t0/i: (13.21)

The transition probability amplitudes between unperturbed states are matrix ele-
ments of the time evolution operator in the interaction picture, where the unper-
turbed states are taken at some arbitrary fixed time.
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The Schrödinger equations for the unperturbed states j .0/.t0/i and the free
evolution operators U0.t0; t0/ and UC

0 .t; t0/ imply

@

@t0
h .0/

out .t0/jUC
0 .t; t0/U.t; t

0/U0.t
0; t0/j .0/

in .t0/i D 0; (13.22)

i.e. the choice of the parameter t0 is (of course) irrelevant for the transition matrix
element. We set t0 D 0 in the following.

If we substitute the expansion (13.18) for the time evolution operator in the
interaction picture we get a series

h .0/
out .0/jUD.t; t

0/j .0/
in .0/i D h .0/

out .0/jT exp
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„
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�V.�1/ exp

�
� i

„H0.�1 � �2/
�

V.�2/ exp

�
� i

„H0.�2 � �3/
�

� : : : exp

�
� i

„H0.�n�1 � �n/

�
V.�n/ exp

�
� i

„H0�n

�
j .0/

in .0/i: (13.23)

Now we assume that our unperturbed states are energy eigenstates

j .0/
out .0/i D j n.0/i D jni; H0j n.0/i D Enj n.0/i;

j .0/
in .0/i D j m.0/i D jmi; H0j m.0/i D Emj m.0/i

of the unperturbed Hamiltonian. Equation (13.23) then yields for the transition
probability amplitude between eigenstates of H0 (see also equation (13.19)),

hnjUD.t; t
0/jmi D ın;m � i

„
Z t

t0
d� exp.i!nm�/hnjV.�/jmi

� 1

„2
X

l

Z t

t0
d�1

Z �1

t0
d�2 exp.i!nl�1/hnjV.�1/jli

� exp.i!lm�2/hljV.�2/jmi C : : : ; (13.24)

with the transition frequencies !nm D .En � Em/=„.
The transition probability from a discrete state jmi to a discrete state jni is then

Pm!n.t; t
0/ D ˇ̌hnjUD.t; t

0/jmiˇ̌2 : (13.25)

Equation (13.24) assumes that we use eigenstates of H0 for the initial and final
states, but equation (13.25) holds for arbitrary discrete initial and final states, and
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we even do not have to require the same basis for the decomposition of the initial
and the final state, i.e. equation (13.25) also holds if m and n are discrete quantum
numbers referring to different bases of states.

Pm!n.t; t0/ is a dimensionless positive number if both the initial and final states
are discrete states, i.e. dimensionless states (see the discussion of dimensions of
states in Section 5.3), and due to the unitarity of UD.t; t0/ it is also properly
normalized as a probability,X

n

Pm!n.t; t
0/ D

X
n

hmjUC
D .t; t

0/jnihnjUD.t; t
0/jmi D hmjmi D 1:

As a corollary, this observation also implies 0 � jhnjUD.t; t0/jmij2 � 1, as required
for a probability.

We will denote the transition probability amplitude hnjUD.t; t0/jmi also as a
scattering matrix element or S matrix element,

Snm.t; t
0/ D hnjUD.t; t

0/jmi D hnjT exp

�
� i

„
Z t

t0
d� HD.�/

�
jmi

D hmjUC
D .t; t

0/jni
 D hmjUD.t
0; t/jni
 D �

S�1
mn.t; t

0/
�


D �
S�1C.t; t0/

�
nm : (13.26)

In the literature this definition is more commonly employed with default values
t ! 1, t0 ! �1 for the initial and final times, Snm � Snm.1;�1/. It is also
usually reserved for transitions with two particles in the initial state (to be discussed
in Chapter 17 and following chapters), but here we are still dealing with a single
particle perturbed by a potential V.t/, or an effective single particle description of
relative motion of two particles. The connection with many particle scattering theory
later on is easier if we introduce the scattering matrix already for single particle
problems, and it is also useful to have this notion available for arbitrary initial and
final times.

Møller operators

At this point it is also interesting to note a factorized representation of the time
evolution operator in the interaction picture, which is applicable if both H and H0

do not depend on time. In this case we have with t0 D 0,

UD.t; t
0/ D exp

�
i

„H0t

�
exp

�
� i

„H.t � t0/
�

exp

�
� i

„H0t
0
�

D �C.t/�.t0/

with the Møller operator

�.t/ D exp

�
i

„Ht

�
exp

�
� i

„H0t

�
:



13.3 Transitions between discrete states 255

Let us repeat the basic equation (13.21) and substitute this definition,

h .0/
out .t/j in.t/i D h .0/

out .t/jU.t; t0/j .0/
in .t

0/i
D h .0/

out jUC
0 .t/U.t; t

0/U0.t
0/j .0/

in i D h .0/
out jUD.t; t

0/j .0/
in i

D h .0/
out j�C.t/�.t0/j .0/

in i D h‰outftgj‰inft0gi:

Here we have introduced states

j‰ftgi D �.t/j .0/i D exp

�
i

„Ht

�
exp

�
� i

„H0t

�
j .0/i

D exp

�
i

„Ht

�
j .0/.t/i: (13.27)

For the interpretation of these states we notice

exp

�
� i

„Ht

�
j‰ftgi D j .0/.t/i;

i.e. j‰ftgi is the fictitious interacting state at time t0 D 0 which yields the
unperturbed state j .0/.t/i at time t under full time evolution from t0 D 0 to t.

In the framework or quantum mechanics, the case that both H and H0 are
time-independent would often be dealt with in the framework of time-independent
perturbation theory or potential scattering theory. However, we will see later that in
the framework of quantum field theory, time-independent H and H0 is very common
in applications of time-dependent perturbation theory.

First order transition probability between discrete
energy eigenstates

For n ¤ m, the first order result for Snm is the matrix element of the Fourier
component V.!nm/,

Snm D � i

„
Z 1

�1
dt exp.i!nmt/hnjV.t/jmi

D � i

„
p
2�hnjV.!nm/jmi: (13.28)

If the time dependence of the perturbation V.t/ is such that the Fourier transform
V.!/ exists in the sense of standard Fourier theory (i.e. if V.!/ is a sufficiently well
behaved function, which is the case e.g. if V.t/ is absolutely integrable or square
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integrable with respect to t), then the first order scattering matrix (13.28) provides
us with finite first order approximations for transition probabilities

Pm!n D jSnmj2 D 2�

„2 jhnjV.!nm/jmij2 : (13.29)

Note that the Fourier transform

V.!/ D 1p
2�

Z
dt exp.i!t/V.t/

of a potential V.t/ has the dimension energy�time. Therefore Pm!n is a dimen-
sionless number, as it should be. Furthermore, the probability interpretation and the
use of first order perturbation theory entail that we should have jhnjV.!nm/jmij <
„=p2� . Otherwise first order perturbation theory is not applicable and higher order
terms must be included to estimate transition probabilities.

The first order transition probability between discrete states requires existence
of a regular Fourier transform V.!/ of the perturbation V.t/. This condition is
not satisfied in the important case of monochromatic perturbations like V.t/ D
W exp.�i!t/, which have a ı function as Fourier transform,

V.t/ D W exp.�i!t/; V.!nm/ D p
2�Wı.!nm � !/:

Consistent treatment of this case requires that at least one of the states involved is
part of a continuum of states, as discussed in Sections 13.4 and 13.5. If both the
initial and final atomic or molecular state are discrete, then the perturbation V.t/ D
W exp.�i!t/ must be treated as arising from a quantized field which comes with
its own continuum of states. Monochromatic perturbations V.t/ D W exp.˙i!t/
typically arise from photon absorption or emission, and the previous statement
simply means that the consistent treatment of transitions between bound states due
to monochromatic perturbations requires the full quantum theory of the photon, see
Section 18.6. See also Problem 13.6 for an explanation why the Golden Rule of first
order perturbation theory, which is discussed in the next section, cannot be used for
transitions between discrete states.

13.4 Transitions from discrete states into continuous states:
Ionization or decay rates

Ionization of atoms or molecules, transitions from discrete donor states into con-
duction bands in n-doped semiconductors, or disintegration of nuclei are processes
where particles make a transition from discrete states into states in a continuum.

We assume that the unperturbed Hamiltonian H0 contains an attractive radially
symmetric potential which generates bound states jn; `;mi, where ` and m are the
usual angular momentum quantum numbers for the bound states and the quantum
number n labels the energy levels. The free states for H0 are usually given in terms
of hypergeometric functions, e.g. the Coulomb waves jk; `;mi from Section 7.9.
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Here we initially use plane wave states instead and ask for the probability for
the system to go from a bound state jn; `;mi into a plane wave state jki under
the influence of a perturbation V.t/. This is a simplification, but the prize that we
pay is that the transition matrix elements from a bound state into plane waves do
not necessarily tell us something about ionization or decay of a bound system,
because those transition matrix elements will also not vanish for perturbations which
primarily generate another bound state since the bound states can also be written as
superpositions of plane waves, see e.g. Problem 13.7. Therefore the transition matrix
elements into plane wave states generically correspond to a mixture of transitions
into bound states and free states. However, the focus in this preliminary discussion is
not the calculation of actual ionization or decay rates, but to explain how continuous
final states affect the interpretation of transition matrix elements.

For continuous final states like jki, the appropriate projection of UD.t; t0/j .0/
in i

is onto the dimensionless combination
p

d3khkj (recall from hkjk0i D ı.k � k0/ that
the plane wave states jki in three dimensions have length dimension length3=2, see
Section 5.3). This means that in a transition from a discrete state jn; `;mi into a
momentum eigenstate k, the dimensionless quantity

p
d3k SkIn;`;m.t; t0/ D

p
d3khkjUD.t; t

0/jn; `;mi

is a differential transition probability amplitude, in the sense that

dPn;`;m!k.t; t
0/ D d3k

ˇ̌hkjUD.t; t
0/jn; `;miˇ̌2

is a differential transition probability for the transition from the discrete state into a
volume element d3k around the vector k in momentum space. The meaning of this
statement is that

Pn;`;m!K.t; t0/ D
Z
K

d3k
ˇ̌hkjUD.t; t

0/jn; `;miˇ̌2 (13.30)

is the transition probability from the discrete state jn; `;mi into a volume K in k-
space. Another way to say this is to denote the quantity with the dimension length3

Pn;`;m!k.t; t
0/ D dPn;`;m!k.t; t0/

d3k
D ˇ̌hkjUD.t; t

0/jn; `;miˇ̌2

as the transition probability density per k-space volume. The S matrix element

SkIn;`;m.t; t0/ D hkjUD.t; t
0/jn; `;mi

is then a transition probability density amplitude (just like a wave function hxj .t/i
is a probability density amplitude rather than a probability amplitude, but for
obvious reasons neither of these designations are ever used).
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With this interpretation, the transition amplitudes into continuous states yield
correctly normalized probabilities, e.g. for plane waves,

Z
d3kPn;`;m!k.t; t

0/ D
Z

d3k
ˇ̌hkjUD.t; t

0/jn; `;miˇ̌2

D
Z

d3k hn; `;mjUC
D .t; t

0/jkihkjUD.t; t
0/jn; `;mi

D hn; `;mjUC
D .t; t

0/UD.t; t
0/jn; `;mi

D hn; `;mjn; `;mi D 1:

The important conclusion from this is that transition matrix elements of UD.t; t0/
from discrete states into continuous final states yield transition probability densities,
which have to be integrated to yield transition probabilities. We will also rediscover
this in the framework of the spherical Coulomb waves in the following subsection.

Ionization probabilities for hydrogen

Now that we have clarified the meaning of transition amplitudes from discrete states
into continuous states with the familiar basis of plane wave states, let us come back
to the ionization or decay problems, i.e. transitions from the discrete bound spectrum
of an unperturbed Hamiltonian H0 into the continuum of unbound states. We will
use hydrogen states as an example, but the derivations go through in the same way
for any Hamiltonian H0 with discrete and continuous states.

The unperturbed Hamiltonian for hydrogen is

H0 D p2

2	
� e2

4��0jrj ; (13.31)

and the ionization problem concerns transitions from bound states jn; `;mi into
Coulomb waves jk; `;mi under the influence of a time-dependent perturbation4 V.t/.
The contribution from Coulomb waves to the decomposition of unity in terms of
hydrogen states came with a measure k2dk (7.75),

4If the perturbation V.t/ contains directional information (e.g. polarization of an incoming photon
or the direction of an electric field), then we might also like to calculate probabilities for the
direction of dissociation of the hydrogen atom. This direction would be given by the k vector
of relative motion between the electron and the proton after separation. For the calculation of
directional information we would have to combine the spherical Coulomb waves jk; `;mi into
states which approximate plane wave states jki at infinity, similar to the construction of incoming
approximate plane wave states in Section 13.5, see also the discussion of the photoeffect in [3].
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1 D
1X
`D0

X̀
mD�`

 1X
nD`C1

jn; `;mihn; `;mj C
Z 1

0

dk k2jk; `;mihk; `;mj
!

D
1X
`D0

X̀
mD�`

 1X
nD`C1

jn; `;mihn; `;mj C
Z 1

0

dE jE; `;mi%.E/hE; `;mj
!
;

where we also introduced an energy representation for the spherical Coulomb
waves, jE; `;mi D jk; `;mi,

E D „2k2
2	

D „2k2
2

�
1

me
C 1

mp

�
;

and the corresponding density of spherical Coulomb waves in the energy scale,

%.E/ D ‚.E/k2
dk

dE
D ‚.E/

„3
p
2	3E: (13.32)

This differs from (12.13) for d D 3 by missing a factor g=2�2 D g4�=8�3. The
spin factor is g D 1, because spin flips can usually be neglected in ionization
transitions. Inclusion of spin quantum numbers ms and m0

s for the initial and final
states would therefore result in a factor ıms;m0

s
. There is no factor 4� because the

angular directions in k space have been discretized in terms of angular momentum
quantum numbers .`;m/, and there is no factor .2�/�3 because the density %.E/
in equation (13.32) is a number of states per unit of energy, but it is not a number
of states per energy and volume (remember V ! .2�/3 in the continuum limit).
It comes in units cm�3eV�1 because the projector jk; `;mihk; `;mj for spherical
Coulomb waves has dimension length3, and therefore scattering matrix elements
jhE; `0;m0jUD.1;�1/jn; `;mij2 from bound states into ionized states come in
units of cm3. Please also recall the remark after equation (12.8).

Suppose we start with an unperturbed bound state jn; `;mi. We can calculate two
kinds of scattering matrix elements, viz. for transitions into bound states,

Sn0;`0;m0In;`;m D hn0; `0;m0jUD.1;�1/jn; `;mi;

and into ionized states

SE;`0;m0In;`;m D hE; `0;m0jUD.1;�1/jn; `;mi; E > 0:

For the sums of the absolute squares of these scattering matrix elements, we observe
from the completeness relation for hydrogen states, the unitarity of UD.1;�1/,
and hn; `;mjn; `;mi D 1 that
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1X
`0D0

`0X
m0D�`0

 1X
n0D`0C1

jhn0; `0;m0jUD.1;�1/jn; `;mij2

C
Z 1

0

dE %.E/ jhE; `0;m0jUD.1;�1/jn; `;mij2
�

D 1:

This confirms 0 � jhn0; `0;m0jUD.1;�1/jn; `;mij2 � 1, as is required for
transition probabilities between bound states, but it also tells us that

Pn;`;m!E>0 D 1 � Pn;`;m!E<0

D
1X
`0D0

`0X
m0D�`0

Z 1

0

dE %.E/ jhE; `0;m0jUD.1;�1/jn; `;mij2 (13.33)

must be the ionization probability due to the perturbation V.t/, since the sum over
all transition probabilities into bound states is

Pn;`;m!E<0 D
1X
`0D0

`0X
m0D�`0

1X
n0D`0C1

jhn0; `0;m0jUD.1;�1/jn; `;mij2:

This confirms again that absolute squares of scattering matrix elements into
continuous final states must be integrated against final state densities to yield
transition probabilities, where the appropriate density of final states follows from
the completeness relation of the unperturbed system.

If we want to know the probability for the hydrogen atom to ionize into a state
with energy 0 < E1 � E � E2 for the relative motion between proton and electron,
we have to calculate

Pn;`;m!ŒE1;E2� D
1X
`0D0

`0X
m0D�`0

Z E2

E1

dE %.E/ jhE; `0;m0jUD.1;�1/jn; `;mij2:

On the other hand, if we only know the energy level En of the initial bound state, we
would calculate the ionization probability of the atom as a weighted average

PEn!E>0 D 1

n2

n�1X
`D0

X̀
mD�`

Pn;`;m!E>0: (13.34)

The first order results for the ionization probabilities follow from the first order
scattering matrix elements
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S.1/k;`0;m0In;`;m D hk; `0;m0jUD.1;�1/jn; `;mi.1/

D � i

„
Z 1

�1
dt exp

�
i

„ .Ek � En/ t

�
hk; `0;m0jV.t/jn; `;mi

D � i

p
2�

„ hk; `0;m0jV.!kn/jn; `;mi; (13.35)

with the transition frequency !kn D .Ek � En/=„. This assumes that the Fourier
transformed operator V.!kn/ exists in the sense of standard Fourier theory. The case
of a monochromatic perturbation, for which the Fourier transform is a ı function
in frequency space, requires special treatment and is discussed in the following
subsection.

Even for well behaved Fourier transform V.!kn/, use of the first order
result (13.35) to estimate the ionization probability,

P.1/n;`;m!E>0 D 2�

„2
1X
`0D0

`0X
m0D�`0

Z 1

0

dk k2
ˇ̌hk; `0;m0jV.!kn/jn; `;miˇ̌2 ;

can only make sense for P.1/n;`;m!E>0 � 1.

The Golden Rule for transitions from discrete states
into a continuum of states

Now assume that we perturb a hydrogen atom in the initial bound state jn; `;mi with
a monochromatic perturbation5

V.t/ D W exp.�i!t/C WC exp.i!t/; (13.36)

V.!0/ D p
2�Wı.!0 � !/C p

2�WCı.!0 C !/: (13.37)

The corresponding scattering matrix element for transition into the ionized state
jE; `0;m0i is in first order

SE;`0;m0In;`;m D � i

„2�hE; `0;m0jWjn; `;miı
�

E � En

„ � !
�

� i

„2�hE; `0;m0jWCjn; `;miı
�

E � En

„ C !

�
: (13.38)

5Recall that the notation tacitly implies dependence of the operators V and W on x and p (just like
we usually write H instead of H.x;p/ for a Hamilton operator).
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The cross multiplication terms in jSE;`0;m0In;`;mj2 cancel for ! ¤ 0 due to the
incompatibility of the ı functions, and therefore we can focus in the following
discussion only on the first terms in equations (13.36–13.38), i.e. we continue with

SE;`0;m0In;`;m D � i

„2�hE; `0;m0jWjn; `;miı
�

E � En

„ � !
�
:

The square of this S matrix element yields a factor

ı.0/ D lim
!!0

ı.!/ D lim
!!0

lim
T!1

1

2�

Z T=2

�T=2
dt exp.i!t/ D lim

T!1
T

2�

in dPn;`;m!E;`0;m0=dE D %.E/jSE;`0;m0In;`;mj2. Dividing by the factor T provides us
with a differential transition rate into a final state energy interval ŒE;E C dE�,

dwn;`;m!E;`0;m0 D 1

T
dPn;`;m!E;`0;m0 D dE %.E/

1

T
jSE;`0;m0In;`;mj2

D dE %.E/
2�

„2
ˇ̌hE; `0;m0jWjn; `;miˇ̌2 ı

�
E � En

„ � !
�

D dE %.E/
2�

„
ˇ̌hE; `0;m0jWjn; `;miˇ̌2 ı.E � En � „!/:

Integration over the final state energy E then yields an expression for the transition
rate,

wn;`;m!E;`0;m0 D 2�

„
ˇ̌hE; `0;m0jWjn; `;miˇ̌2 %.E/

ˇ̌
ˇ̌
EDEnC„!

; (13.39)

which is commonly referred to as the Golden Rule.
The total first order ionization rate of the state jn; `;mi under the perturba-

tion (13.36) is then

wn;`;m D 2�

„
1X
`0D0

`0X
m0D�`0

ˇ̌hE; `0;m0jWjn; `;miˇ̌2 %.E/
ˇ̌
ˇ̌
ˇ̌
EDEnC„!

: (13.40)

The standard expression for the Golden Rule for the transition rate from
a discrete state jmi into a continuous state jni due to the perturbation
V D W exp.�i!t/ is

wm!n D
Z 1

�1
dE

dwm!n

dE
D 2�

„ %.En/jhnjWjmij2
ˇ̌
ˇ̌
EnDEmC„!

: (13.41)
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Fig. 13.3 Energy schematics
for an Auger process. The
initial bound state of the two
electrons has the same energy
as the final continuous state
of an ion and a free electron E=0

This is also particularly popular for time-independent V ,

wm!n D 2�

„ %.En/jhnjVjmij2
ˇ̌
ˇ̌
EnDEm

: (13.42)

Quantum systems can have degeneracy between states jmi which are labelled
by discrete quantum numbers and states jni with continuous quantum numbers.
Metastable states, or excited bound states in many-electron atoms provide examples
for this, and equation (13.42) would be the first order expression for the decay rate of
these states. An example for this is the Auger effect, which is electron emission from
atoms due to Coulomb repulsion. The perturbation operator6 V D e2=4�jx1 � x2j
is time-independent, and energy conservation is fulfilled because the discrete bound
state of two electrons in an excited atom can exceed the sum of ground state energy
and ionization energy, see Figure 13.3.

Time-dependent perturbation theory in second order
and the Golden Rule #1

We will discuss a time-independent perturbation V ,

H D H0 C V;

6G. Wentzel, Z. Phys. 43, 524 (1927).
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and transition from a discrete state jmi into a continuous state jni. The completeness
relation for the eigenstates of H0 is

X
m

jmihmj C
Z

dEn%.En/jnihnj D 1:

We will also write this symbolically as

XZ
l

jlihlj D 1:

If hnjVjmi D 0, the leading order term for the scattering matrix element
hnjUD.1;�1/jmi is the second order term

S.2/nm D � 1

„2
XZ

l

Z 1

�1
d�
Z �

�1
d� 0 exp.i!nl�/hnjVjli exp.i!lm�

0/hljVjmi:

To make the � 0 integral convergent, we add a small negative imaginary part to !lm !
!lm � i�, so that the time integrals yield

Z 1

�1
d�
Z �

�1
d� 0 exp.i!nl�/ exp

�
i!lm�

0 C �� 0� D 1

i!lm C �

Z 1

�1
d� exp.i!nm�/

D 2�

i!lm C �
ı.!nm/: (13.43)

This yields the second order scattering matrix element

S.2/nm D 2� i

„2 ı.!nm/
XZ

l

hnjVjlihljVjmi
!lm � i�

D 2� iı.En � Em/
XZ

l

hnjVjlihljVjmi
El � Em � i�

;

and the differential transition rate

dwm!n D dEn%.En/
1

T
jSnmj2

D dEn%.En/
2�

„ ı.En � Em/

ˇ̌
ˇ̌X
Z

l

hnjVjlihljVjmi
El � Em � i�

ˇ̌
ˇ̌2 : (13.44)

Integration yields the second order expression for the transition rate,

wm!n D 2�

„ %.En/

ˇ̌
ˇ̌X
Z

l

hnjVjlihljVjmi
El � Em � i�

ˇ̌
ˇ̌2
ˇ̌
ˇ̌
ˇ
EnDEm

: (13.45)
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Equation (13.45) tells us how transitions through virtual intermediate states can
generate the transition from jmi to jni even if the direct transition is forbidden due
to a selection rule hnjVjmi D 0.

In his famous lectures on nuclear physics at the University of Chicago in
1949, Fermi coined the phrase “Golden Rule #2” for the first order transition
rate (13.41, 13.42). He denoted the corresponding second order expression for
transition rates as “Golden Rule #1”, because it is important for nuclear reactions
through intermediate compound nuclei [30].

13.5 Transitions from continuous states into discrete states:
Capture cross sections

Transitions from continuous to discrete states arise e.g. in the capture of electrons
by ions, in the absorption of an electron from a valence band into an acceptor state
in a p-doped semiconductor, in neutron capture by nuclei etc. Consider e.g. the
process jk; `;mi ! jn; `0;m0i of absorption of an electron by an HC ion, where we
still assume that the hydrogen Hamiltonian (13.31) for relative motion is perturbed
by addition of an operator V.t/. From our previous experience, we expect that the
transition matrix element

Sn;`0;m0Ik;`;m D hn; `0;m0jUD.1;�1/jk; `;mi

yields a measure of probability for the absorption in the form of a transition
probability density

Pk;`;m!n;`0;m0 D jSn;`0;m0Ik;`;mj2 : (13.46)

Indeed, the dimensionless number

Pn;`0;m0 D
1X
`D0

X̀
mD�`

Z 1

0

dk k2
ˇ̌hn; `0;m0jUD.1;�1/jk; `;miˇ̌2

D 1 �
1X
`D0

X̀
mD�`

1X
n0D`C1

ˇ̌hn; `0;m0jUD.1;�1/jn0; `;miˇ̌2

is the probability that the state jn; `0;m0i emerged from some capture (pCCe� ! H)
event rather than from an internal transition in the hydrogen atom. This assumes
again that the perturbation V.t/ has a well behaved Fourier transform V.!/ such
that the time integrals in the perturbation series can be defined as classical functions.
However, a more common use of transition matrix elements from continuous initial
states is the calculation of cross sections due to monochromatic perturbations. One
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possibility to calculate capture or absorption due to a Coulomb potential is to use
parabolic coordinates because the incoming asymptotic plane wave can be described
in parabolic coordinates, just like in Rutherford scattering [3]. However, radial
coordinates are just as convenient for this problem.

Calculation of the capture cross section

We will outline how to calculate the first order cross section for the reaction pC C
e� ! H due to a monochromatic perturbation7 V.t/ D W exp.i!t/. For a judicious
choice of the operator W � W.p; x/ this describes electron-proton recombination
due to emission of a photon with energy „!. We will discuss these operators in
Chapter 18, but here we do not specify the operator W further. Our present focus is
rather to develop the formalism for calculating the capture or recombination cross
section for a general perturbation W.p; x/ exp.i!t/. We should also mention that
perturbations V.t/ D V.x; t/ due to interactions with additional nearby electrons or
ions are much more efficient and therefore more important for electron capture than
direct radiative recombination due to photon emission.

The wave function for the approach between a free electron and a proton in
the effective single particle description for relative motion is given by the wave
function hxjkiMG which was constructed by Mott and Gordon in 1928 (7.76).
The normalization factor is irrelevant because it cancels in the cross section. For
convenience, it was chosen in equation (7.76) such that the asymptotic incoming
current density is

jin D „k

	
; (13.47)

where 	 is the reduced mass of the two-particle system. This current density has
units of cm=s D cm�2s�1=cm�3 because it is actually a current density djin=d3k
per unit of volume in k space, which is a consequence of the use of an asymptotic
plane wave state in its calculation. A current density per k space volume is the
correct notion for the calculation of the electron-proton recombination cross section,
because the S matrix element

Sn;`;mIk D 2�

i„ hn; `;mjWjkiMGı.!nk C !/

yields a transition probability density per k space volume

Pk!n;`;m D jSn;`;mIkj2

7See the discussion after equation (13.38) for an explanation why we can deal with monochromatic
perturbations as abridged non-hermitian operators.
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which comes in units of cm3, again due to the use of an asymptotic plane wave state
as incoming state.

Pk!n;`;m contains the factor

ı.0/ D lim
!!0

ı.!/ D lim
!!0

lim
T!1

1

2�

Z T=2

�T=2
dt exp.i!t/ D lim

T!1
T

2�
:

We can use this to calculate a transition rate density per k space volume

Wk!n;`;m D 1

T
jSn;`;mIkj2 D 2�

„2 jhn; `;mjWjkiMGj2 ı.!nk C !/ : (13.48)

The transition rate is certainly proportional to the asymptotic current density jin,
and therefore we divide the transition rate density by this current density to get a
measure for the probability of the absorption process jkiMG ! jn; `;mi. This yields
the absorption cross section

�k!n;`;m D Wk!n;`;m

jin
D 2�	

„3k jhn; `;mjWjkiMGj2 ı.!nk C !/ (13.49)

with units of cm2. The total absorption cross section due to the perturbation operator
W.p; x/ exp.i!t/ is then

�k D
1X
`D0

X̀
mD�`

1X
nD`C1

�k!n;`;m:

The capture cross section enters into the calculations of rate coefficients .�v/av ,
where the notation indicates averaging over the distribution of relative particle
velocities in a plasma of ions and electrons. The rate coefficients go into the balance
equations for electron and ion densities,

d�e

dt
D d�p

dt
D � .�v/av�p�e;

where in general additional terms due to collisional relaxation and ionization have to
be included. Due to (13.47) the rate coefficients are directly related to the transition
rates per k space volume calculated in the state (7.76),

v�k D jin�k D
1X
`D0

X̀
mD�`

1X
nD`C1

Wk!n;`;m:

Calculations of radiative capture cross sections for electron-proton recombina-
tion into arbitrary hydrogen shells were performed in parabolic coordinates by
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Oppenheimer8 and by Bethe and Salpeter [3]. Calculations in polar coordinates
had been performed by Wessel, Stückelberg and Morse, and Stobbe9. All these
authors had noticed that the electron capture cross sections for ions from radiative
recombination were much too small to explain the experimental values, and it
was eventually recognized that collisional relaxation due to interactions with
spectator particles dominated the observed recombination rates. Therefore modern
calculations of electron-ion recombination rates focus on collisional relaxation,
which means that the relevant perturbation operators V are not determined by
photon emission but by Coulomb interactions in a plasma, and the spectator particles
also have to be taken into account in the initial and final states. Electron-ion
recombination rates are particularly important for plasma physics and astrophysics.

13.6 Transitions between continuous states: Scattering

For transitions between continuous states, e.g. jki ! jk0i, the S matrix element

Sk0;k D hk0jUD.1;�1/jki

is a quantity with the dimension length3, because both external states have dimen-
sion length3=2. We know from Section 13.4 how to make sense of transition
matrix elements with continuous final states, viz. as transition probability densities
d3k0jSk0;kj2 in the final state space. We also know from the discussion in Section 13.5
that a continuous initial state in the scattering matrix will yield a transition
probability density in the space of initial states if V.!/ is a classical function. In
that case

PK!K0 D
Z
K0

d3k0
Z
K

d3k jSk0;kj2

will tell us the probability for transitions between states in k space volumes K and
K0 due to the perturbation V.t/.

However, just like in Section 13.5, the most important applications of scattering
matrix elements with continuous initial states concern the calculation of cross
sections due to monochromatic perturbations. We know from Sections 13.4 and 13.5
that monochromatic perturbations call for normalization of jSk0;kj2 by the reaction
time T , and we have learned in Section 13.5 that continuous initial states under the
influence of a monochromatic perturbation require normalization of the transition
rate with the current density jin of incident particles to calculate a cross section

8J.R. Oppenheimer, Z. Phys. 55, 725 (1929).
9W. Wessel, Annalen Phys. 397, 611 (1930); E.C.G. Stückelberg, P.M. Morse, Phys. Rev. 36, 16
(1930); M. Stobbe, Annalen Phys. 399, 661 (1930).
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for the quantum mechanical reaction described by the S matrix element, see
equation (13.49). Our previous experience with initial or final continuous states
therefore motivates the definition of the differential scattering cross section

d�k!k0 D d3k0 jSk0;kj2
Tjin

: (13.50)

This has again the dimension length2, because the incident current density jin for
plane waves has units of cm=s, see equation (13.47) and the following discussion.

The notion of a differential scattering cross section is sufficiently important to
warrant rederivation of equation (13.50) in simple steps in the next paragraph.

Cross section for scattering off a periodic perturbation

We apply the transition probability between continuous states to calculate the
scattering cross section for a monochromatic perturbation

V.t/ D W exp.�i!t/:

Our Hamiltonian is

H D p2

2m
C W.x/ exp.�i!t/;

and our unperturbed states are plane waves jki.
The first order result for the scattering matrix Sk0;k D hk0jUD.1;�1/jki is

Sk0;k D � i

„
Z 1

�1
dt exp

�
i

�
„k02 � k2

2m
� !

�
t

�
hk0jWjki

D � 2� i

„ hk0jWjkiı
�

„k02 � k2

2m
� !

�

D � iMk0;kı

�
„k02 � k2

2m
� !

�
: (13.51)

The factor Mk0;k in the scattering matrix element is also denoted as a scattering
amplitude.

The transition probability density

Pk!k0 D ˇ̌
Sk0;k

ˇ̌2 D ˇ̌Mk0;k

ˇ̌2
ı.0/ı

�
„k02 � k2

2m
� !

�

contains the factor

ı.0/ D lim
!!0

ı.!/ D lim
!!0

lim
T!1

1

2�

Z T=2

�T=2
dt exp.i!t/ D lim

T!1
T

2�
;
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and we can calculate a transition rate density

Wk!k0 D 1

T

ˇ̌
Sk0;k

ˇ̌2 D
ˇ̌Mk0;k

ˇ̌2
2�

ı

�
„k02 � k2

2m
� !

�

D 2�

„2
ˇ̌hk0jWjkiˇ̌2 ı

�
„k02 � k2

2m
� !

�
:

The corresponding differential transition rate into the final state volume d3k0 is

dwk!k0 D d3k0 Wk!k0 D d3k0 1
T

ˇ̌
Sk0;k

ˇ̌2
:

However, this still comes in units of cm3=s instead of s�1, due to the initial
plane wave state. For initial continuous states, we do not apply a volume measure
(here d3k) in the space of initial states, but normalize by the current density of
the incident particles. This yields a differential cross section for scattering of
momentum eigenstates,

d�k!k0 D dwk!k0

jin
D d3k0 2�

„2jin
ˇ̌hk0jWjkiˇ̌2 ı

�
„k02 � k2

2m
� !

�
: (13.52)

The motivation for dividing out the current density jin of incoming particles from the
scattering rate is the trivial dependence of the scattering rate on this parameter: if
we double the number of incoming particles per second or per cm2, we will trivially
double the number of scattering events per second. Therefore all the interesting
physics is in the proportionality factor d� between jin and dw. This proportionality
factor has the dimension of an area, and in classical mechanics, integration of d�
over d3p0 for scattering of classical particles off a hard sphere of radius r yields the
cross section area of the sphere � D R

d� D �r2. Therefore the name differential
scattering cross section for d� .

The current density j D .„=2im/. Cr � r C � / for a plane wave,
j D „k=.2�/3m, is actually a current density per unit of volume in k-space. This
is the correct current density to be used in (13.52), because dwk!k0 is a transition
rate per unit of volume in k-space, and the ratio yields a bona fide differential
cross section10. Expressed in terms of continuum plane wave matrix elements, the
differential scattering cross section is

10 Alternatively, we could have used box normalization for the incoming plane waves, hxjki D
exp.ik � x/=

p
V both in dwk!k0 and in j () j D „k=.mV/ D v=V), or we could have rescaled both

dwk!k0 and j with the conversion factor 8�3=V to make both quantities separately dimensionally
correct, Œdwk!k0 � D s�1, Œj� D cm�2s�1. All three methods yield the same result for the scattering
cross section, of course.
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d�k!k0 D d3k0 .2�/4m
„3k

ˇ̌hk0jWjkiˇ̌2 ı
�

„k02 � k2

2m
� !

�

D d3k0 .2�/4
2m2

„4k
ˇ̌hk0jWjkiˇ̌2 ı

�
k02 � k2 � 2m

„ !

�
: (13.53)

We can use the ı-function in (13.53) to integrate over k0. This leaves us with a
differential cross section per unit of solid angle,

d�

d�
D .2�/4

m2

„4
r
1C 2m!

„k2
ˇ̌hk0jWjkiˇ̌2

ˇ̌
ˇ̌
ˇ
k0D

p
k2C.2m!=„/

: (13.54)

The corresponding result for ! D 0 (scattering off a static potential) can also be
derived within the framework of the time-independent Schrödinger equation, see
Chapter 11. For the comparison note that we can write the differential scattering
cross section (13.54) as

d�

d�
D
r
1C 2m!

„k2
jf .�k/j2

ˇ̌
ˇ̌
ˇ
k0D

p
k2C.2m!=„/

; (13.55)

with the scattering amplitude

f .�k/ D � .2�/2 m

„2 hk0jWjki D � 2�m

„ Mk0;k; (13.56)

cf. (11.23), i.e. equation (13.55) reduces to (11.27) for scattering off a static potential
if ! D 0. The potential scattering formalism could be extended to time-dependent
perturbations by using the asymptotic expansion of the time-dependent retarded
Green’s function (11.46). However, the equivalent scattering matrix formalism is
more convenient.

Scattering theory in second order

We will discuss scattering off the time-independent potential V in second order. The
Hamiltonian is

H D p2

2m
C V:
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If k0 ¤ k and hk0jVjki D 0, the leading order term for the S-matrix is the second
order term

Sk0;k D � 1

„2
Z

d3q
Z 1

�1
d�
Z �

�1
d� 0 exp

�
i„
2m

�
k02 � q2

�
�

�

�hk0jVjqi exp

�
i„
2m

�
q2 � k2

�
� 0
�

hqjVjki:

To make the � 0 integral convergent, we add a term �� 0 in the exponent, so that the
time integrals yield

Z 1

�1
d�
Z �

�1
d� 0 exp

�
i„
2m

�
k02 � q2

�
�

�
exp

�
i„
2m

�
q2 � k2

�
� 0 C �� 0

�

D 1
i„
2m .q

2 � k2/C �

Z 1

�1
d� exp

�
i„
2m

�
k02 � k2

�
�

�

D 2�
i„
2m .q

2 � k2/C �
ı

� „
2m

�
k02 � k2

��

and

Sk0;k D 2� i

„2 ı
�
!.k0/ � !.k/�

Z
d3q

hk0jVjqihqjVjki
!.q/ � !.k/ � i�

D 2� iı
�
E.k0/ � E.k/

� Z
d3q

hk0jVjqihqjVjki
E.q/ � E.k/ � i�

:

The corresponding differential transition rate is

dwk!k0 D d3k0 1
T

ˇ̌
Sk0;k

ˇ̌2
:

D d3k0 2�
„ ı

�
E.k0/ � E.k/

� ˇ̌ˇ̌Z d3q
hk0jVjqihqjVjki

E.q/ � E.k/ � i�

ˇ̌
ˇ̌2 ;

and the differential cross section for scattering of momentum eigenstates in second
order is

d�k!k0 D dwk!k0

jin

D d3k0 .2�/4m
„2k ı

�
E.k0/ � E.k/

� ˇ̌ˇ̌Z d3q
hk0jVjqihqjVjki

E.q/ � E.k/ � i�

ˇ̌
ˇ̌2

D d3k0 .2�/4m2

„4kk0 ı
�
k0 � k

� ˇ̌ˇ̌
Z

d3q
hk0jVjqihqjVjki

E.q/ � E.k/ � i�

ˇ̌
ˇ̌2 : (13.57)
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Integration over k0 yields the differential scattering cross section per unit of solid
angle in second order,

d�

d�
D .2�/4

m2

„4
ˇ̌
ˇ̌
Z

d3q
hk0jVjqihqjVjki

E.q/ � E.k/ � i�

ˇ̌
ˇ̌2
ˇ̌
ˇ̌
ˇ
k0Dk

: (13.58)

Equations (13.54) and (13.58) could be denoted as Fermi’s Golden Rules #2 and
#1 for scattering theory.

13.7 Expansion of the scattering matrix to higher orders

For time-independent perturbation V we can write the expansion of the scattering
matrix in the form

Sfi.t; t
0/ D hf jUD.t; t

0/jii D hf jT exp

�
� i

„
Z t

t0
d� HD.�/

�
jii

D
1X

nD0

1

.i„/n
Z t

t0
d�1

Z �1

t0
d�2 : : :

Z �n�1

t0
d�n hf jU0.t0; �1/VU0.�1; �2/

�VU0.�2; �3/ : : :U0.�n�1; �n/VU0.�n; t0/jii

D
1X

nD0

XZ
j1;:::jn�1

1

.i„/n
Z t

t0
d�1

Z �1

t0
d�2 : : :

Z �n�1

t0
d�n exp

�
� i

„ Ef t0

�

� exp

�
i

„ Ef �1

�
Vfj1 exp

�
� i

„ Ej1 �1

�
exp

�
i

„ Ej1 �2

�
Vj1j2

� exp

�
� i

„ Ej2 �2

�
exp

�
i

„ Ej2 �3

�
: : : exp

�
i

„ Ejm�1 �m

�
Vjm�1jm

� exp

�
� i

„ Ejm�m

�
: : : exp

�
i

„ Ejn�2 �n�1
�

Vjn�2jn�1

� exp

�
� i

„ Ejn�1 �n�1
�

exp

�
i

„ Ejn�1 �n

�
Vjn�1i exp

�
� i

„ Ei�n

�

� exp

�
i

„ Eit0

�
:

Taking the limits t0 ! �1 and t ! 1, we find the equation

Sfi D ıfi � 2� iı.Ef � Ei/Vfi � 2� iı.Ef � Ei/

�
1X

nD2

XZ
j1;:::jn�1

Vfj1Vj1j2 : : :Vjn�2jn�1Vjn�1i
	
.Ei � Ej1 C i�/

� .Ei � Ej2 C i�/ : : : .Ei � Ejn�2 C i�/.Ei � Ejn�1 C i�/

�1

: (13.59)
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However, we can also use

� 2� iı.Ef � Ei/ D � i

„ lim
�!0;t!1;�t!0

Z t

�1
d� exp

�
i.Ef � Ei/C �

„ �

�

D lim
�!0;t!1;�t!0

1

Ei � Ef C i�
exp

�
i.Ef � Ei/t C �t

„
�
:

This yields a form which resembles expressions for the shifts of wave functions in
time-independent perturbation theory,

Sfi D lim
�!0;t!1;�t!0

exp

�
i.Ef � Ei/t C �t

„
� 

ıfi C Vfi

Ei � Ef C i�

C
1X

nD2

XZ
j1;:::jn�1

Vfj1Vj1j2 : : :Vjn�2jn�1Vjn�1i
	
.Ei � Ef C i�/

� .Ei � Ej1 C i�/ : : : .Ei � Ejn�2 C i�/.Ei � Ejn�1 C i�/

�1

!
: (13.60)

If the initial state is continuous, jSfij2 will enter into the calculation of cross
sections. If only the final state is continuous, jSfij2 will enter into the calculation of
decay rates. If both external states are discrete, the perturbation V should be treated
as arising from a quantum field, see the remarks at the end of Section 13.3.

We can write the result (13.60) also as

Sfi D lim
�!0;t!1;�t!0

h f j exp

�
�i

Ei � H0 C i�

„ t

�
j‰.�/

i i (13.61)

with the state

j‰.�/
i i D

1X
nD0

�
1

Ei � H0 C i�
V

�n

j ii: (13.62)

This state satisfies the Lippmann-Schwinger equation (11.5)

j‰.�/
i i D j ii C 1

Ei � H0 C i�
Vj‰.�/

i i (13.63)

and therefore also

lim
�!0

.Ei � H C i�/j‰.�/
i i D 0:
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Indeed, one of the objectives of the original work of Lippmann and Schwinger was
to relate states of the form (13.62) to the scattering matrix, and it was thought that
they relate to the Møller states (13.27). However, we now see that they instead
appear as stated in equation (13.61).

We can also write the result (13.61) in even neater form

Sfi D lim
�!0;t!1;�t!0

h f j‰.�/
i .t/i (13.64)

with the state

j‰.�/
i .t/i D

1X
nD0

�
1

Ei � H0 C i�
HD.t/

�n

j ii: (13.65)

This state satisfies the equation

j‰.�/
i .t/i D j ii C 1

Ei � H0 C i�
HD.t/j‰.�/

i .t/i (13.66)

and therefore also

lim
�!0

.Ei � H0 C i�/j‰.�/
i .t/i D lim

�!0
HD.t/j‰.�/

i .t/i: (13.67)

13.8 Energy-time uncertainty

We are now finally in a position to address the origin of energy-time uncertainty in a
more formal way. Energy conservation in each term of the scattering matrix (13.59)
came from the final time integral over �1, which in symmetric form for the initial
and final time limits can be written as

lim
�t!1

1

„
Z �t=2

��t=2
dt exp.i�Efit=„/ D 2 lim

�t!1
sin.�Efi�t=2„/

�Efi

D 2�ı.�Efi/: (13.68)

However, this tells us that if we allocate only a finite time window �t to observe
the evolution of the system, or if the system is forced to make the transition within
a time window �t, then we will observe violations of energy conservation of order

j�Efij ' 4„
�t
: (13.69)

Here we used that the sinc function sin.x/=x is rather broad with half maximum near
x D ˙2.
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How can that be? The theorem of energy conservation for time-independent
Hamiltonian H D H0 C V in a static spacetime holds in quantum mechanics just
as in any other physical field theory. We will see this in Section 16.2. However,
by allocating a finite time window �t for our measurement device to observe
the system, or by constraining the system to make the transition within the fixed
finite time window, we apparently introduce a time-dependent perturbation into the
system that results in an energy uncertainty in excess of „=�t in the final state.

13.9 Problems

13.1. The last lines in equations (13.1, 13.2) require the property

T
1

nŠ

�Z t

t0

d� H.�/

�n

� 1

nŠ
T
Z t

t0

d�1

Z t

t0

d�2 : : :
Z t

t0

d�n H.�1/H.�2/ : : :H.�n/

D
Z t

t0

d�1

Z �1

t0

d�2 : : :
Z �n�1

t0

d�n H.�1/H.�2/ : : :H.�n/: (13.70)

Prove this property.
Hints: The equation for n D 0 and n D 1 is trivial, and for n D 2 it can easily be

demonstrated from equation (13.3). This motivates a proof by induction with respect
to n, which can easily be accomplished using the property

TH.�1/H.�2/ : : :H.�n/H.�nC1/ D TŒTH.�1/H.�2/ : : :H.�n/�H.�nC1/:

A more direct way to prove (13.70) is to express the ordering of operators through
appropriate ‚ functions under the assumption t > t0 (forward evolution) or t < t0
(backward evolution).

13.2. Use Fourier transformation to calculate the matrix elements hxjU.t/jx0i for
the free time evolution operator in one dimension. Compare with the result (13.9)
for the harmonic oscillator.

13.3. Calculate the annihilation and creation operators a.t/ and aC.t/ of the
harmonic oscillator in the Heisenberg picture.

Use the previous results to calculate the operators x.t/ and p.t/ for the harmonic
oscillator in the Heisenberg picture.

13.4. Start from the definition

UD.t; t
0/ D UC

0 .t; t0/U.t; t
0/U0.t

0; t0/

of the time evolution operator of states in the interaction picture to prove that

i„ @
@t

UD.t; t
0/ D HD.t/UD.t; t

0/; i„ @
@t0

UD.t; t
0/ D �UD.t; t

0/HD.t
0/:
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13.5. Calculate the first order transition probability for the transition 1s!2p for a
hydrogen atom which is perturbed by a potential

V.t/ D P
z

2�
exp.�jtj=�/:

P and � are constants. What is the meaning of P in the limit � ! 0?

13.6. The Golden Rule #2 for the first order transition rate (13.41) is often abused
for the discussion of transitions between discrete states. In this problem you will
be asked to figure out where the derivation of the Golden Rule #2 for transitions
between discrete states breaks down.

13.6a. Calculate the first order transition probability for transitions between dis-
crete energy eigenstates jmi ! jni under the influence of a monochromatic
perturbation V.t/ D W exp.�i!t/ which only acts between times t0 and t. Which
consistency requirements do you find from the condition that the first order result
describes a transition probability Pm!n.t; t0/? Calculate also the transition rate
wm!n.t; t0/ D dPm!n.t; t0/=dt.

13.6b. Try to take the limit t � t0 ! 1 to derive the Golden Rule #2. Does this
comply with the consistency requirements from 13.6a?

13.6c. Why do the inconsistencies of 13.6b not appear if the final state jni is a
continuous state?

Solution for Problem 13.6. For a periodic perturbation V.t/ D W exp.�i!t/ the
first order transition amplitude between times t0 and t, and between different
eigenstates of H0 becomes

hnjUD.t; t
0/jmi � � i

„
Z t

t0
d� expŒi.!nm � !/��hnjWjmi

D expŒi.!nm � !/t0� � expŒi.!nm � !/t�
„.!nm � !/ hnjWjmi:

The resulting transition probability is

Pm!n.t � t0/ D 2
1 � cosŒ.!nm � !/.t � t0/�

„2.!nm � !/2 jhnjWjmij2

D
�
2 sinŒ.!nm � !/.t � t0/=2�

„.!nm � !/ jhnjWjmij
�2
; (13.71)

and the rate of change of the transition probability follows as

wm!n.�t/ D d

dt
Pm!n.�t/ D 2

„2
sinŒ.!nm � !/�t�

!nm � ! jhnjWjmij2: (13.72)
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Equations (13.71) and (13.72) yield perfectly well behaved, dimensionally correct
expressions for the first order transition probability and transition rate between
discrete states. Consistency with the probability interpretation for the extreme case
!nm � ! D 0 requires

�t D t � t0 � „
jhnjWjmij ; (13.73)

or alternatively, consistency of (13.71) with the probability interpretation for
arbitrary �t requires

j!nm � !j � 2

„jhnjWjmij: (13.74)

The problem arises with the limit�t ! 1, which would transform the transition
rate from an ordinary function of frequencies into a ı function,

wm!n D lim
�t!1 wm!n.�t/ D 2�

„2 jhnjWjmij2ı.!nm � !/

D 2�

„ jhnjWjmij2ı.En � Em � „!/: (13.75)

Here we used

lim
�t!1

sinŒ.!nm � !/�t�

!nm � ! D lim
�t!1

1

2

Z �t

��t
d� expŒi.!nm � !/��

D �ı.!nm � !/ D �„ı.En � Em � „!/:

Taking the limit �t ! 1 violates either the condition (13.73), or the condi-
tion (13.74) through its result !nm �! ! 0 for a transition. From this point of view
(and ignoring the fact that we should have at least one continuous external state
when properly taking into account photons, see Section 18.6 and Problem 18.11),
the resolution of the paradox of emergence of a ı function between discrete states
in the limit �t ! 1 is that in the region of frequencies (13.74) where the first
order result might be applicable, the first order result becomes subdominant for
large �t and (at the very least) higher order terms would have to be included to
get estimates of transition probabilities and transition rates, or perturbation theory
is just not suitable any more to get reliable estimates for those parameters.

These problems do not arise for continuous final states, because in these cases
Pm!n.t; t0/ ! dPm!n.t; t0/ D dEn%.En/jSn;m.t; t0/j2 are not transition probabilities
any more (which would be bounded by 1), but only transition probability densities
for which only the integral over the energy scale with measure factor %.En/ is
bounded.

13.7. Calculate the representation of the ground state of hydrogen as a superposi-
tion of plane waves.
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Solution. The x representation of the ground state of hydrogen is

hxj1; 0; 0i D 1p
�a3

exp.�r=a/;

where a is the Bohr radius (7.62).
Fourier transformation to k space yields

hkj1; 0; 0i D 1

�
p
2a3

Z 1

0

dr
Z 1

�1
d� r2 exp.�ikr�/ exp.�r=a/

D 1

ik�
p
2a3

Z 1

0

dr r exp.�r=a/Œexp.ikr/ � exp.�ikr/�

D 1

ik�
p
2a3

"
1

2

ˇ̌
ˇ̌
D.1=a/�ik

� 1

2

ˇ̌
ˇ̌
D.1=a/Cik

#

D
p
2a

3

�

1

Œ1C .ka/2�2
:

The representation in terms of plane waves is therefore

hxj1; 0; 0i D
r

a

�

3 Z
d3k

exp.ik � x/
�Œ1C .ka/2�2

;

i.e. the ground state is an isotropic superposition of plane waves which is dominated
by small wave numbers k . 1=a or large wavelengths � & 2�a. This problem was
included in this chapter to drive home the point that calculation of transition rates
into plane wave states does not necessarily tell us something about scattering or
ionization in a system with bound states, unless the energy of the final plane wave
state is large compared to the binding energies of the bound states.

13.8. Calculate the first order ionization rate for particles which are trapped in a
one-dimensional ı-function potential (Section 3.3), if the particles are perturbed by
a potential V.t/ D F0x exp.�i!t/. What is the meaning of the constant F0?

13.9. Calculate the first order capture cross section for free particles with wave
function (3.18) which can become trapped in a one-dimensional ı-function poten-
tial, if the particles are perturbed by a potential V.t/ D F0x exp.i!t/. Recall that
the normalization of initial states does not matter in the calculation of cross sections
since it cancels in the ratio of capture rate to current density.

13.10. Calculate the cross section for recombination of an electron and a proton
with energy „2k2=2	 (in their relative motion) into the ground state of hydrogen.
Perform the calculation both in parabolic and in polar coordinates.
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13.11. Calculate the differential and total scattering cross sections for particles with
initial momentum „k which are scattered off the time-dependent potential

V.t/ D A

r
‚.R � r/ exp.�i!t/:

13.12. In 1984 Michael Berry published a paper studying (among other things) the
following interesting question: Suppose H.t/ is a time-dependent Hamiltonian with
the property that for each value of t there is a discrete spectrum En.t/ such that

H.t/jEn.t/i D En.t/jEn.t/i; (13.76)

hEm.t/jEn.t/i D ımn;
X

n

jEn.t/ihEn.t/j D 1: (13.77)

We can relate the eigenstates jEn.t/i of H.t/ to the states j n.t/i of the physical
system described by H.t/ simply through the completeness relation (13.77),

j n.t/i D
X

m

jEm.t/ihEm.t/j n.t/i: (13.78)

However, assume that we start with an eigenstate jEn.0/i at time t D 0, i.e. we are
seeking a solution of the initial value problem

i„ d

dt
j n.t/i D H.t/j n.t/i; j n.0/i D jEn.0/i: (13.79)

Can we directly relate j n.t/i to jEn.t/i without invoking a superposition (13.78) of
all the eigenstates jEm.t/i?
13.12a. Can you give an example of a time-dependent Hamiltonian satisfying the
requirements (13.76, 13.77)?

13.12b. Since the states j n.t/i and jEn.t/i are both normalized they could only
differ by a time-dependent phase if they are directly related,

j n.t/i D expŒ�i�n.t/�jEn.t/i: (13.80)

Which conditions would the phase �n.t/ have to fulfill for j n.t/i to satisfy the
initial value problem (13.79)?

13.12c. What would be the solution for �n.t/ if a solution exists?
Which condition does jEn.t/i have to satisfy for existence of �n.t/?

Solution for 13.12b and 13.12c. Substitution of (13.80) into the time-dependent
Schrödinger equation (13.79) and taking into account (13.76) yields
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i„ d

dt
j n.t/i � H.t/j n.t/i D expŒ�i�.t/�

�
�

„d�n.t/

dt
jEn.t/i C i„ d

dt
jEn.t/i � En.t/jEn.t/i

�
;

i.e. we would need to satisfy the conditions

„d�n.t/

dt
jEn.t/i C i„ d

dt
jEn.t/i � En.t/jEn.t/i D 0 (13.81)

and �.0/ D 0 to ensure that the Ansatz (13.80) satisfies the initial value
problem (13.79). If the condition (13.81) is consistent, it is equivalent to

„d�n.t/

dt
D En.t/ � i„hEn.t/j d

dt
jEn.t/i (13.82)

with solution

�n.t/ D
Z t

0

d�

�En.�/

„ � ihEn.�/j d

d�
jEn.�/i

�
: (13.83)

However, the condition (13.81) will usually not be consistent and �n.t/ will
not exist in many cases. The problem is that condition (13.81) requires that
djEn.t/i=dt / jEn.t/i,

d

dt
jEn.t/i D i

�
d�n.t/

dt
� En.t/

„
�

jEn.t/i; (13.84)

which would yield with (13.83)

jEn.t/i D exp

�Z t

0

d� hEn.�/j d

d�
jEn.�/i

�
jEn.0/i

D expŒ�iˇn.t/�jEn.0/i; (13.85)

with the Berry phase11

ˇn.t/ D i
Z t

0

d� hEn.�/j d

d�
jEn.�/i: (13.86)

The constraints on the existence of physical states of the form (13.80) and on the
usefulness of the Berry phase can most easily be seen from the fact that (13.85) is
equivalent to

d

dt
jEn.t/i D jEn.t/ihEn.t/j d

dt
jEn.t/i; (13.87)

11M.V. Berry, Proc. Roy. Soc. London A 392, 45 (1984).
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whereas generically time-dependence of the Hamiltonian mixes its eigenstates
under time-evolution,

d

dt
jEn.t/i D

X
m

jEm.t/ihEm.t/j d

dt
jEn.t/i: (13.88)

Stated differently, the condition for existence of �n.t/ is

hEm.t/j d

dt
jEn.t/i D ım;nhEn.t/j d

dt
jEn.t/i; (13.89)

or the condition for (13.80, 13.83) as an approximate solution of the time-dependent
Schrödinger equation is that for every m ¤ n

ˇ̌
ˇ̌hEm.t/j d

dt
jEn.t/i

ˇ̌
ˇ̌ 


ˇ̌
ˇ̌hEn.t/j d

dt
jEn.t/i

ˇ̌
ˇ̌ : (13.90)

Note that if �n.t/ exists, the solution (13.80, 13.83) can also be written as

j n.t/i D exp

�
� i

„
Z t

0

d� En.�/

�
jEn.0/i: (13.91)

Of course, the Berry phase always exists in the sense of the definition (13.86), and
in the same manner one might simply adopt (13.83) as a definition of �n.t/. The
problem is whether or not they are related to the evolution of the states j n.t/i of the
system described by the Hamiltonian H.t/. We have found (13.90) as a condition for
the usefulness of the Berry phase. Comparison of (13.91) with the exact evolution
formula

j n.t/i D T exp

�
� i

„
Z t

0

d� H.�/

�
jEn.0/i (13.92)

shows that the condition for usefulness of the Berry phase for the approximate
description of the evolution of the system between times 0 and t can also be
expressed in the form

H.�/jEn.0/i ' En.�/jEn.0/i (13.93)

for 0 � � � t or t � � � 0.



Chapter 14
Path Integrals in Quantum Mechanics

Path integrals provide in many instances an elegant complementary description of
quantum mechanics and also for the quantization of fields, which we will study from
a canonical point of view in Chapter 17 and following chapters. Path integrals are
particularly popular in scattering theory, because the techniques of path integration
were originally developed in the study of time evolution operators. Other areas
where path integrals are used include statistical physics and the description of
dissipative systems.

Path integration is based on a beautiful intuitive description of the quantum
mechanical time evolution of particles or wave functions from initial to final states.
The prize for the intuitive elegance in the description of time evolution is that the
description of bound systems and the identification of the corresponding states is
often cumbersome with path integral methods. On the other hand, path integration
and canonical quantization complement each other particularly well in relativistic
scattering theory, where canonical methods are needed for unitarity of the scattering
matrix, for the normalization of the scattering states, and also for the correct choice
of propagators in perturbation theory, while the path integral formulation provides
an elegant tool for the development of rules for covariant perturbation theory.

Path integrals had been developed by Richard Feynman as a tool for understand-
ing the role of the classical action in quantum mechanics, and had then evolved into a
basis for covariant perturbation theory in relativistic field theories1. Our introductory
exposition will focus on the use of path integrals in scattering theory. The first
authoritative textbook on path integrals was co-authored by Feynman himself [10].
Extensive discussions and many applications of path integrals can be found in [13]
and [23]. The use of path integrals in perturbative relativistic quantum field theory
from a particle physics perspective is discussed e.g. in [18, 31, 41].

1R.P. Feynman, Ph.D. thesis, Princeton University 1942; Rev. Mod. Phys. 20, 367 (1948).
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14.1 Correlation and Green’s functions for free particles

Before we enter the discussion of free particle motion and potential scattering in
terms of path integrals, it is useful to discuss Green’s functions for the Newton
equation and canonical correlation functions for free particles.

The equation of motion of a classical non-relativistic particle under the influence
of a force F.t/ is directly integrable,

x.t/ D xi C vi.t � ti/C 1

m

Z t

ti

dt0
Z t0

ti

dt00 F.t00/: (14.1)

Partial integration of the acceleration term yields a Green’s function representa-
tion

x.t/ D xi C vi.t � ti/C 1

m

Z t

ti

dt0 .t � t0/F.t0/

D xi C vi.t � ti/C 1

m

Z 1

�1
dt0 Gi.t; t

0/F.t0/; (14.2)

with a Green’s function which satisfies homogeneous initial conditions,

Gi.t; t
0/ D .t � t0/

	
‚.t � t0/ �‚.ti � t0/



D .t � t0/

	
‚.t0 � ti/ �‚.t0 � t/



; (14.3)

@2

@t2
Gi.t; t

0/ D ı.t � t0/;
@

@t
Gi.t; t

0/
ˇ̌
ˇ̌
tDti

D 0; Gi.ti; t
0/ D 0:

If we determine the velocity vi such that x.tf / D xf , we find another Green’s
function representation

x.t/ D xi
t � tf
ti � tf

C xf
t � ti
tf � ti

C
Z t

tf

dt0
ttf C t0ti
tf � ti

F.t0/
m

C
Z t

ti

dt0
tti C t0tf
ti � tf

F.t0/
m

C
Z tf

ti

dt0
tt0 C titf
tf � ti

F.t0/
m

D xi
t � tf
ti � tf

C xf
t � ti
tf � ti

C 1

m

Z 1

�1
dt0 Gfi.t; t

0/F.t0/; (14.4)

with a Green’s function which satisfies homogeneous boundary conditions,

Gfi.t; t
0/ D ttf C t0ti

tf � ti

	
‚.t � t0/ �‚.tf � t0/




C tti C t0tf
ti � tf

	
‚.t � t0/ �‚.ti � t0/
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C tt0 C titf
tf � ti

	
‚.tf � t0/ �‚.ti � t0/




D ‚.tf � t0/
.t � ti/.t0 � tf /

tf � ti
C‚.ti � t0/

.t � tf /.ti � t0/
tf � ti

C .t � t0/‚.t � t0/; (14.5)

@2

@t2
Gfi.t; t

0/ D ı.t � t0/; Gfi.tf ; t
0/ D 0; Gfi.ti; t

0/ D 0:

The most general form of the Green’s function for the Newton equation is

G.t; t0/ D jt � t0j
2

C ˛.t0/t C ˇ.t0/: (14.6)

A particular of these Green’s functions appears also in canonical quantum
mechanics in the time ordered two-point correlation function of the Heisenberg
position operator

x.t/ D exp

�
it

2m„p2
�

x exp

�
� it

2m„p2
�

D x C t

m
p:

In general we can define N-point correlation functions without or with time-
ordering,

g.N/fi .tN ; tN�1; : : : ; t1/ D hxf ; tf jx.tN/˝ x.tN�1/˝ : : :˝ x.t1/jxi; tii; (14.7)

G.N/
fi .tN ; tN�1; : : : ; t1/ D hxf ; tf jTCx.t1/˝ x.t2/˝ : : :˝ x.tN/jxi; tii: (14.8)

Here the time ordering operator TC arranges the Heisenberg operators from right to
left by increasing time, but does not affect the times ti and tf , e.g.

G.2/
fi .t; t

0/ D ‚.t � t0/g.2/fi .t; t
0/C‚.t0 � t/g.2/fi .t

0; t/:

The states jx; ti are the position eigenkets in the Heisenberg picture,

jx; ti D exp

�
it

2m„p2
�

jxi; x.t/jx; ti D xjx; ti;

and their products coincide with the position representation of the free non-
relativistic particle propagator which we have encountered on several occasions
before, see e.g. (3.33) and (4.45),
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g.0/fi D hxf ; tf jxi; tii D hxf j exp
�
�i

tf � ti
2m„ p2

�
jxii D hxf jU0.tf ; tijxii

D
r

m

2� i„.tf � ti/

3

exp

"
�m

�
xf � xi

�2
2i„.tf � ti/

#
: (14.9)

A small imaginary shift tf � ti ! tf � ti � i� is implied for convergence properties
of Gaussian integrals which appear in the evaluation of hxf ; tf jxi; tii.

Note that Rx.t/ D �ŒH0; ŒH0; x.t/��=„2 D 0 and therefore the second order time
derivatives of g.N/fi .tN ; tN�1; : : : ; t1/ with respect to the time arguments tI of the
Heisenberg operators vanish. However, this implies that the time ordered two-point
function contains a Green’s function of the Newton equation on the diagonal (no
summation over the index pair aa),

@2

@t2
G.2/

fi;aa.t; t
0/ D ı.t � t0/

1

m
hxf ; tf jŒpa; xa.t

0/�jxi; tii

D ı.t � t0/
„
im

hxf ; tf jxi; tii: (14.10)

The functions g.N/fi .tN ; tN�1; : : : ; t1/ will generically not be symmetric in their
time arguments. They are easily evaluated by observing that the relation

exp

�
� itf
2m„p2

�
x.t/ exp

�
itf
2m„p2

�
D x C t � tf

m
p D x.t � tf /

implies the recursion relation

g.N/fi .tN ; tN�1; : : : ; t1/ D
�

xf � i„
m
.tN � tf /

@

@xf

�
g.N�1/

fi .tN�1; : : : ; t1/:

The one-point function is in particular

g.1/fi .t/ � G.1/
fi .t/ D hxf ; tf jx.t/jxi; tii

D hxf j
�

x C t � tf
m

p
�

exp
�
�i

tf � ti
2m„ p2

�
jxii

D
�

xf � i„
m
.t � tf /

@

@xf

�
hxf jU0.tf ; ti/jxii

D
�

xf C �
xf � xi

� t � tf
tf � ti

�
hxf jU0.tf ; ti/jxii; (14.11)

i.e. the ratio between the one-point function and the zero-point function is the free
classical path which passes through xi and xf ,

g.1/fi .t/

g.0/fi

D xf
t � ti
tf � ti

C xi
tf � t

tf � ti
:
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The canonical two-point function is

g.2/fi .t; t
0/ D hxf ; tf jx.t/˝ x.t0/jxi; tii

D
�

xf � i„
m
.t � tf /

@

@xf

�
˝
�

xf � i„
m
.t0 � tf /

@

@xf

�
hxf jU0.tf ; ti/jxii

D
�

xf
t � ti
tf � ti

C xi
tf � t

tf � ti

�
˝
�

xf
t0 � ti
tf � ti

C xi
tf � t0

tf � ti

�
hxf jU0.tf ; ti/jxii

C i„
m

.tf � t/.t0 � ti/

tf � ti
1hxf jU0.tf ; ti/jxii: (14.12)

The relation (14.10) for the diagonal entries of the time-ordered two-point
function is easily confirmed.

The primary use of N-point functions in quantum mechanics concerns the
perturbative evaluation of scattering amplitudes in analytic scattering potentials. We
will see this in Section 14.3.

14.2 Time evolution in the path integral formulation

The standard formulation of path integrals derives from the time evolution of states
in the x representation,

hxj .t/i D hxjU.t; t0/j .t0/i;

We can also write this as

hxj .t/i D hx; t; t0j .t0/i

if we define the time-dependent states

jx; t; t0i D UC.t; t0/jxi D T exp

�
� i

„
Z t0

t
d� H.�/

�
jxi: (14.13)

Recall the definition of the time ordering operator T which was given following
equation (13.2).

The parameter t0 is usually suppressed in the notation of states, jx; t; t0i � jx; ti,
j .t0/i � j i. The time-dependent basis states (14.13) are just the eigenstates of
the Heisenberg picture operator

x.t/ D UC.t; t0/xU.t; t0/; x.t/jx; ti D xjx; ti; (14.14)

and the time parameter t0 is the time parameter where the Schrödinger picture and
the Heisenberg picture coincide.
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The Heisenberg picture eigenstates satisfy the completeness relation

Z
d3x jx; tihx; tj D 1 (14.15)

as a consequence of the completeness relation of the x eigenstates jxi and the uni-
tarity of the time evolution operators. Furthermore, the composition property (13.7)
of time evolution operators implies that the products of the Heisenberg picture
eigenstates yield the x representation of the time evolution operator,

hx; tjx0; t0i D hxjU.t; t0/jx0i: (14.16)

The properties (14.15) and (14.16) imply the following representation of the time
evolution of a state,

hx; tj i D hx; tj
 

NY
nD1

Z
d3xn jxn; tnihxn; tnj

!
j i

D
Z

d3xN : : :

Z
d3x1hxjU.t; tN/jxNihxN jU.tN ; tN�1/jxN�1i : : :

�hx2jU.t2; t1/jx1ihx1jU.t1; t0/j i: (14.17)

Equivalently, we could also have arrived at this equation directly from the
composition property (13.7) of the time evolution operator and the completeness
of the Schrödinger picture eigenkets jxi.

Equation (14.17) implies in particular for the initial state j .t0/i D jx0i �
jx0; t0i the evolution equation

hx; tjx0i D hxjU.t; t0/jx0i

D
Z

d3xN : : :

Z
d3x1hxjU.t; tN/jxNihxN jU.tN ; tN�1/jxN�1i : : :

�hx2jU.t2; t1/jx1ihx1jU.t1; t0/jx0i: (14.18)

Intuitively the formula (14.18) can be considered as an integration over the set of
all paths that a particle can take from an initial location x0 at time t0 to the location
x at time t. In particular, if we use

hxjU.t; t0/jx0i D hxj exp

�
�i

t � t0
„

�
p2

2m
C V.x/

��
jx0i

D hxj lim
N!1

�
1 � i

t � t0
N„

�
p2

2m
C V.x/

��N

jx0i (14.19)
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and substitute the following peculiar decomposition of unity,

1 D
Z

d3x
Z

d3p jxihxjpihpj

D
Z

d3x
Z

d3pp
2�„3

jxi exp

�
i

„p � x
�

hpj (14.20)

between any two factors in the product (14.19), we find

hx; tjx0i D hxjU.t; t0/jx0i

D lim
N!1

 
NY

ID1

Z
d3xId3pIp
2�„3

!
exp

 
i

„
NX

JD1
pJ � xJ

!
hxjxNihpN j

�
�
1 � i

t � t0
N„

�
p2

2m
C V.x/

��
jxN�1ihpN�1j : : :

�jx2ihp2j
�
1 � i

t � t0
N„

�
p2

2m
C V.x/

��
jx1ihp1j

�
�
1 � i

t � t0
N„

�
p2

2m
C V.x/

��
jx0i: (14.21)

The momentum integrals are

Z
d3pIp
2�„3

exp

�
i

„pI � xI

�
hpN j

�
1 � i

t � t0
N„

�
p2

2m
C V.x/

��
jxI�1i

D
Z

d3pI

.2�„/3
�
1 � i

t � t0
N„

�
V.xI�1/ � „2

2m

@2

@x2I�1

��

� exp

�
i

„pI � .xI � xI�1/
�

D
�
1 � i

t � t0
N„

�
V.xI�1/ � „2

2m

@2

@x2I�1

��
ı .xI � xI�1/ ; (14.22)

and this exactly returns equation (14.19) if we would have substituted N copies of

1 D
Z

d3x jxihxj

instead of (14.20). This is exactly as it should be. However, if we substitute instead
�
1 � i

t � t0
N„

�
p2I
2m

C V.xI�1/
��

' exp

�
�i

t � t0
N„

�
p2I
2m

C V.xI�1/
��
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in (14.22), we find that the momentum integrals are

Z
d3pI

.2�„/3 exp

"
�i

t � t0 � i�

2m„N

�
pI � mN

xI � xI�1

t � t0 � i�

�2
C iN

m

2„
.xI � xI�1/

2

t � t0

#

D
s

mN

2� i„.t � t0 � i�/

3

exp

"
i

„
m

2

�
N

xI � xI�1

t � t0

�2 t � t0
N

#
:

This motivates the following formula for the matrix elements of the time
evolution operator,

hx; tjx0i D hxjU.t; t0/jx0i

' lim
N!1 exp

 
i

„
NX

JD1

"
m

2

�
N

xJ � xJ�1
t � t0

�2
� V.xJ�1/

#
t � t0

N

!

�
s

mN

2� i„.t � t0/

3N  NY
ID1

Z
d3xI

!
ı.x � xN/: (14.23)

The exponent is a discretized version of the action integral of a non-relativistic
particle, and this motivates the further short hand notation

hxjU.t; t0/jx0i D
Z x.t/Dx

x.t0/Dx0

D3x.t0/ exp

�
i

„
Z t

t0

dt0
�m

2
Px2.t0/ � V.x.t0//

��

D
Z x.t/Dx

x.t0/Dx0

D3x.t0/ exp

�
i

„SŒx.t0/�
�
; (14.24)

where SŒx.t0/� is the action functional of the particle (see Appendix A). Please note
that this standard notation for path integrals is misleading with regard to the length
dimension or units of the path integral. The x matrix elements of the time evolution
operator have dimension length�3 in agreement with the dimension length�3=2 of
x eigenstates in three dimensions, see Section 5.3. This of course agrees with the
discretized version on the right hand side of equation (14.23). The three-dimensional
path integral therefore has dimension length�3, but the notation

R
D3x exp.iSŒx�=„/

suggests length dimension length3. A dimensionally correct, but also more awkward
notation would be

hxjU.t; t0/jx0i D ı
�
x.t0/ � x0

�
ı
�
x.t/ � x

�

�
Z

D3x.t0/ exp

�
i

„SŒx.t0/�
�
; (14.25)
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where the end point integration of the path would implement the boundary point
constraints. We will continue to use the standard notation (14.24), but keep the fact
in mind that this notation is not dimensionally correct.

Equation (14.24) defines the path integral representation of the propagator
in configuration (x) space. Note that nothing in the derivation required forward
evolution t > t0 in time. Of course, the same results apply for backward evolution.
However, the discretization into time steps .t � t0/=N imply that consecutive steps
are either always later or always earlier depending on t > t0 or t < t0, respectively.
Therefore path integrals with factors like x.t1/x.t2/ in the integrand correspond to
time ordered matrix elements in canonical quantization, but whether time ordering
refers to later times or earlier times depends on whether we are studying forward or
backward evolution in time. Usually we are interested in forward evolution, i.e. we
assume t > t0 in the following.

A virtue of the path integral is that it explains the principle of stationary action of
classical paths as a consequence of dominant contributions from those trajectories
where small fluctuations of the path do not yield cancellation of the integral from
phase fluctuations.

As a relatively simple exercise, let us see how this reproduces the x representa-
tion (4.45) of the free propagator.

The integrations in (14.23) for V.x/ D 0 include a set of N�1Gaussian integrals.
The first integral over d3x1 yields

s
mN

2� i„.t � t0 � i�/

3

exp

�
� mN

2i„.t � t0 � i�/

1

2
.x2 � x0/

2

�

�
Z

d3x1 exp

"
� mN

2i„.t � t0 � i�/
2

�
x1 � x2 C x0

2

�2#

D 1p
2
3

exp

�
� mN

2i„.t � t0 � i�/

1

2
.x2 � x0/

2

�
:

Next we evaluate the x2 integral and then work consecutively through all the
integrals. This reproduces always a similar result with minor variations. One can
show by induction with respect to I that the xI integral yields

s
mN

2� i„.t � t0 � i�/I

3

exp

�
� mN

2i„.t � t0 � i�/

1

I C 1
.xIC1 � x0/

2

�

�
Z

d3xI exp

"
� mN

2i„.t � t0 � i�/

I C 1

I

�
xI � I

I C 1

�
xIC1 C x0

I

��2#

D 1p
I C 1

3
exp

�
� mN

2i„.t � t0 � i�/

1

I C 1
.xIC1 � x0/

2

�
:
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After the final integrations over xN�1 and xN (which is trivial due to the ı function
in (14.23)), we are left with

hx; tjx0i D hxjU.t; t0/jx0i

D
r

m

2� i„.t � t0 � i�/

3

exp

"
� m .x � x0/

2

2i„.t � t0 � i�/

#
;

which is indeed the x representation (4.45) of the free propagator.
Note that the classical trajectory of the particle from the location x0 at time t0 to

the location x at time t is given by

xcl.t
0/ D x0 C x � x0

t � t0
.t0 � t0/ D x

t0 � t0
t � t0

C x0
t0 � t

t0 � t
;

and therefore the factor in the exponent of the free propagator is just the action
functional evaluated on the classical trajectory,

m

2

.x � x0/
2

t � t0
D SŒxcl.t

0/�:

This holds in general for propagators where the Lagrange function contains at
most second order terms in particle velocities and locations, and the path integral
formulation is particularly well suited to prove this. If the Lagrange function
contains at most second order terms in Px and x, then due to fixed initial and final
points x.t0/ � x0 and x.t/ � x, the action functional for all admissible paths x.t0/
is exactly

SŒx.t0/� D SŒxcl.t
0/�C 1

2

Z t

t0

dt00
Z t

t0

dt0
�
x.t00/ � xcl.t

00/
�

� ı2S

ıx.t00/ıx.t0/
� �x.t0/ � xcl.t

0/
�
; (14.26)

see Problem 14.1. Functional integration over exp.iSŒx.t0/�=„/ then yields a constant
from the Gaussian integral over the fluctuations x.t0/ � xcl.t0/, and a remnant
exponential factor,

hxjU.t; t0/jx0i  exp

�
i

„SŒxcl.t
0/�
�
:

However, note that this requires vanishing fluctuations at the boundaries, x.t.0// �
xcl.t.0// D 0. Otherwise boundary terms involving x.t.0//�xcl.t.0//will appear in the
exponent. This is important e.g. in scattering theory in the following section, when
we are really concerned with fixed initial and final momenta rather than locations.
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14.3 Path integrals in scattering theory

We have seen in Chapter 13 that the calculation of transition probabilities or
scattering cross section from an initial state j i.t0/i to a final state j f .t/i requires
the calculation of the scattering matrix element

Sfi.t; t
0/ D h f .t/jU.t; t0/j i.t

0/i D h f jUD.t; t
0/j ii;

where

UD.t; t
0/ D exp

�
i

„H0t

�
T exp

�
� i

„
Z t

t0
d� H.�/

�
exp

�
� i

„H0t
0
�

is the time evolution operator on the states in the interaction picture. We also recall
that the usual default definition of the scattering matrix involves t ! 1, t0 ! �1,
Sfi � Sfi.1;�1/. For the following discussion it is convenient to relabel initial and
final times as t0 ! ti, t ! tf . Equation (14.24) then implies a connection between
scattering matrix elements and path integrals,

Sfi D lim
ti!�1;tf !1

Z
d3xf

Z
d3xi h f j exp

�
i

„H0tf

�
jxf i

�
Z x.tf /Dxf

x.ti/Dxi

D3x.t/ exp

�
i

„SŒx.t/�
�

hxij exp

�
� i

„H0ti

�
j ii: (14.27)

This is still a mixed formula involving both canonical operators and a path
integral. We now assume that our initial and final states are momentum eigenstates
j ii D jpii and j f i D jpf i, and we also assume that the scattering potential
V.x; t/ is analytic with finite range. The free Hamiltonian for the free-free scattering
problem is H0 D p2=2m. The resulting scattering matrix element is then

Sfi D lim
ti!�1;tf !1

Z
d3xf

Z
d3xi

Z x.tf /Dxf

x.ti/Dxi

D3x.t/ exp

�
i

„SŒx.t/�
�

� 1

.2�„/3 exp

"
i

„

 
p2f tf � p2i ti

2m
C pi � xi � pf � xf

!#
: (14.28)

For the perturbative evaluation of (14.28) we introduce an auxiliary external force
F.t/, such that the Lagrange function including the scattering potential V.x; t/ takes
the form

L D m

2
Px2.t/ � V.x.t/; t/C F.t/ � x.t/:
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The path integral in (14.28) then takes the form

Z
D3x.t/ exp

�
i

„SŒx.t/�
�

D
Z

D3x.t/
1X

nD0

1

.i„/nnŠ

Z tf

ti

dt1 : : :
Z tf

ti

dtn

�V.x.t1/; t1/ : : :V.x.tn/; tn/ exp

�
i

„
Z tf

ti

dt
�m

2
Px2.t/C F.t/ � x.t/

��

D
Z

D3x.t/
1X

nD0

1

.i„/nnŠ

Z tf

ti

dt1 : : :
Z tf

ti

dtn V

�„
i

ı

ıF.t1/
; t1

�
: : :

�V

�„
i

ı

ıF.tn/
; tn

�
exp

�
i

„
Z tf

ti

dt
�m

2
Px2.t/C F.t/ � x.t/

��

D
Z

D3x.t/ exp

�
� i

„
Z tf

ti

dt0 V

�„
i

ı

ıF.t0/
; t0
��

� exp

�
i

„
Z tf

ti

dt
�m

2
Px2.t/C F.t/ � x.t/

��
: (14.29)

Evaluation of the Gaussian integrals as in equation (14.23) for V.x/ D 0 repro-
duces the canonical perturbation series (13.18). However, a different representation
is gotten if we pull the variational derivative operators V.�i„ı=ıF.t/; t/ out of the
path integral,

Z
D3x.t/ exp

�
i

„SŒx.t/�
�

D exp

�
� i

„
Z tf

ti

dt0 V

�„
i

ı

ıF.t0/
; t0
��

ZŒF�;

ZŒF� D
Z

D3x.t/ exp

�
i

„
Z tf

ti

dt
�m

2
Px2.t/C F.t/ � x.t/

��
: (14.30)

It is useful to have a convolution notation for the following calculations. We
define

.G ı F/.t/ �
Z 1

�1
dt0 G.t; t0/F.t0/

and

. PG ı F/.t/ �
Z 1

�1
dt0

@

@t
G.t; t0/F.t0/:

Partial integration yields the following representation of the action of a particle
under the influence of a force F.t/ for every Green’s function (14.6),
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SŒx;F� D
Z tf

ti

dt
�m

2
Px2.t/C F.t/ � x.t/

�

D m

2

Z tf

ti

dt

 
Px.t/ � . PG ı F/.t/

m

!2
C 1

2m

Z tf

ti

dt F.t/ � .G ı F/.t/

C
�

x.tf / � .G ı F/.tf /
2m

�
� . PG ı F/.tf /

�
�

x.ti/ � .G ı F/.ti/
2m

�
� . PG ı F/.ti/: (14.31)

The trajectory x.t/ between xi and xf appears only in the free particle action for
the trajectory

X.t/ D x.t/ � 1

m
.G ı F/.t/; (14.32)

which classically satisfies RX.t/ D 0. Therefore the path integral (14.30) can be
evaluated in terms of the result for the free particle,

ZŒF� D
r

m

2� i„.tf � ti/

3

exp

�
i

„
�
Xf � . PG ı F/.tf / � Xi � . PG ı F/.ti/

��

� exp

�
i

2m„
	
.G ı F/.tf / � . PG ı F/.tf / � .G ı F/.ti/ � . PG ı F/.ti/


�

� exp

 
im

�
Xf � Xi

�2
2„.tf � ti/

C i

2m„
Z tf

ti

dt F.t/ � .G ı F/.t/

!

D hXf jU0.tf ; ti/jXii exp

�
i

2m„
Z tf

ti

dt F.t/ � .G ı F/.t/
�

� exp

�
i

2m„
	
.G ı F/.tf / � . PG ı F/.tf / � .G ı F/.ti/ � . PG ı F/.ti/


�

� exp

�
i

„
�
Xf � . PG ı F/.tf / � Xi � . PG ı F/.ti/

��
: (14.33)

We can summarize our results in the equations

Sfi D lim
ti!�1;tf !1 exp

�
� i

„
Z tf

ti

dt V

�„
i

ı

ıF.t/
; t

��
SfiŒF�

ˇ̌
ˇ̌
FD0

; (14.34)
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SfiŒF� D 1

.2�„/3
Z

d3Xf

Z
d3Xi ZŒF�.Xf ; tf I Xi; ti/

� exp

 
i
p2f tf � p2i ti

2m„

!
exp

�
i

„pi �
�

Xi C 1

m
.G ı F/.ti/

��

� exp

�
� i

„pf �
�

Xf C 1

m
.G ı F/.tf /

��
:

(14.35)

The integrals over Xf and Xi amount to a Gaussian integral involving
Xf � Xi and an integral over a Fourier monomial involving Xi. Evaluation of
the integrals yields

SfiŒF� D exp

�
i

2m„
Z tf

ti

dt F.t/ � .G ı F/.t/
�

� exp

�
i

2m„
	
2pf � . PG ı F/.tf /


 � 	tf . PG ı F/.tf / � .G ı F/.tf /

�

� exp

�
� i

2m„
	
2pi � . PG ı F/.ti/


 � 	ti. PG ı F/.ti/ � .G ı F/.ti/

�

� ı�pf � . PG ı F/.tf / � pi C . PG ı F/.ti/
�
: (14.36)

For consistency we note that this reproduces the correct result
Sfi D ı

�
pf � pi

�
for the free particle. The ı function implies conservation of

the free momentum P D p.t/� . PG ı F/.t/, or equivalently matching of the external
momenta under evolution with the force F.t/,

pf D pi C
Z tf

ti

dt F.t/: (14.37)

Please note that it is not possible to impose simultaneous boundary conditions

tf
@

@t
G.t; t0/

ˇ̌
ˇ̌
tDtf

D G.tf ; t
0/

and

ti
@

@t
G.t; t0/

ˇ̌
ˇ̌
tDti

D G.ti; t
0/;

because such a Green’s function does not exist. As a consequence it is not possible
to eliminate the initial and final state dependent exponentials in the scattering matrix
through a clever choice of the Green’s function. This is of course as it should be,
because the scattering amplitude Mfi D i.Sfi � ıfi/=ı.Pf � Pi/ generically must
depend on the initial and final states.
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The functionals SŒx;F� (14.31), ZŒF� (14.33) and SfiŒF� (14.36) are all indepen-
dent of the boundary functions ˛.t0/ and ˇ.t0/ in the general Green’s function (14.6).
The easiest way to show this is by observing that the functionals are invariant under
shifts

.G ı F/.t/ ! .G ı F/.t/C At C B

with constant vectors A and B. For ZŒF� the demonstration has to take into account
that Xf and Xi contain .G ı F/.tf / or .G ı F/.ti/ according to (14.32).

We are therefore free to use e.g. the Green’s functions Gi.t; t0/ (14.3) or
Gfi.t; t0/ (14.5), or the retarded Green’s function Gret.t; t0/ D .t � t0/‚.t � t0/ or a
Stückelberg-Feynman type Green’s function with equal contributions from retarded
and advanced components, GSF.t; t0/ D jt � t0j=2, or any other Green’s function of
the form (14.6).

The limit ti ! �1, tf ! 1 in equation (14.36) yields the following
representation of the S-matrix element for scattering due to the external force F.t/,

SfiŒF� D ı

�
pf � pi �

Z 1

�1
dt F.t/

�
exp

�
i
pf C pi

2m„ �
Z 1

�1
dt tF.t/

�

� exp

�
i

4m„
Z 1

�1
dt
Z 1

�1
dt0 jt � t0jF.t/ � F.t0/

�
: (14.38)

In the next steps we will compare the correlation functions between the canonical
and the path integral formalism.

The calculation of the one-point function from the path integral (14.33) has to
take into account that the generic Green’s function (14.6) shifts xf=i to Xf=i according
to equation (14.32). This implies for the one-point function in the path integral
formalism

hxf ; tf jx.t/jxi; tii D � i„ ı

ıF.t/
ZŒF�

ˇ̌
ˇ̌
FD0

D hxf jU0.tf ; ti/jxii

�
�

xf C xi

2
C ˛.t/

�
xf � xi

�C m
ı

ıF.t/

�
Xf � Xi

� � xf � xi

tf � ti

�
:

However, we have

m
ı

ıF.t/

�
Xf � Xi

� D ˛.t/.ti � tf /C t � tf C ti
2

;

and therefore the path integral result for the one-point function is indeed inde-
pendent on the gauge functions ˛.t0/ and ˇ.t0/, as was already clear from the
cancellation of those terms in ZŒF�,
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hxf ; tf jx.t/jxi; tii D � i„ ı

ıF.t/
ZŒF�

ˇ̌
ˇ̌
FD0

D hxf jU0.tf ; ti/jxii

�
�

xf
t � ti
tf � ti

C xi
tf � t

tf � ti

�
; (14.39)

i.e. we do find the same result (14.11) as in the canonical formalism.
For the calculation of the two-point functions in the functional formalism

hxf ; tf jx.t2/˝ x.t1/jxi; tii D � „2 ı2ZŒF�
ıF.t2/˝ ıF.t1/

ˇ̌
ˇ̌
FD0

it is useful to observe that

1

ZŒF�
ı2ZŒF�

ıF.t2/˝ ıF.t1/
D ı2 ln ZŒF�
ıF.t2/˝ ıF.t1/

C ı ln ZŒF�
ıF.t2/

˝ ı ln ZŒF�
ıF.t1/

:

The factors in the last term were evaluated at F D 0 in (14.39) and reproduce
the tensor product of one-point functions in (14.12). The second order variational
derivative of ln ZŒF� yields for ti � t1 � t2 � tf (but only in that case)

� „2 ı2 ln ZŒF�
ıF.t2/˝ ıF.t1/

D i„
m

.tf � t2/.t1 � ti/

tf � ti
1:

The general result for ti < tf is

� „2 ı2 ln ZŒF�
ıF.t2/˝ ıF.t1/

D i„
m.tf � ti/

h
‚.tf � t2/‚.t2 � t1/‚.t1 � ti/

�.tf � t2/.t1 � ti/C‚.tf � t1/‚.t1 � t2/‚.t2 � ti/.tf � t1/.t2 � ti/
i
1:

Therefore we cannot in general simply identify �„2ı2ZŒF�=.ıF.t2/˝ ıF.t1// at
F D 0 with either g.2/fi .t2; t1/ or G.2/

fi .t2; t1/, but we have

� „2 ı2ZŒF�
ıF.t2/˝ ıF.t1/

ˇ̌
ˇ̌
FD0

D g.2/fi .t2; t1/ D G.2/
fi .t2; t1/

if ti � t1 � t2 � tf .
It seems surprising that substitution of (14.38) into equation (14.34) and setting

F D 0 after evaluation of the functional derivatives yields scattering from the
potential V . However, equations (14.34, 14.38) compare to the practically useful
relation (13.18) (or the equivalent relation (14.29)) for the scattering matrix
elements like the representation
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hxjU0.t � t0/jx0i D exp

�
i„ t � t0 � i�

2m

@2

@x2

�
ı.x � x0/

for the x matrix elements of the free time evolution operator compares to the
practically more useful representation (4.45).

Recasting the perturbation series in terms of the operator V.�i„ı=ıF.t/; t/
instead of V.x; t/ does not yield a more efficient or practical representation for
potential scattering theory. However, recasting interactions in terms of functional
derivatives is useful when interactions are expressed in terms of higher order
products of wave functions instead of potentials. Therefore we used the transcription
of potential scattering theory in terms of functional derivatives with respect to
auxiliary forces as an illustration for functional methods in perturbation theory.

14.4 Problems

14.1. Verify equation (14.26) for the general second order particle action

SŒx.t0/� D
Z t

t0

dt0
�
1

2
Px.t0/ � M � Px.t0/C 1

2
x.t0/ � F � Px.t0/

� 1

2
x.t0/ ��2 � x.t0/C F � x.t0/

�
;

FT D � F; x.t0/ D xcl.t0/ D x0; x.t/ D xcl.t/ D x:

14.2. Which exponential factor in the propagator hxjU.t; t0/jx0i do you find for a
harmonic oscillator?

14.3. Derive the particular Green’s functions (14.3) and (14.5) from the general
form (14.6).

14.4. Show that the terms

AŒF� D 1

2m

	
.G ı F/.tf / � . PG ı F/.tf / � .G ı F/.ti/ � . PG ı F/.ti/




C 1

2m

Z tf

ti

dt F.t/ � .G ı F/.t/

in the exponent in (14.33) are actually the action SŒx;F� for the classical trajectory
x.t/ D .G ı F/.t/=m.

Why is ZŒF� not just given by h0jU0.tf ; ti/j0i exp.iAŒF�=„/, in spite of what you
might have expected from (14.26)?
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14.5. Calculate the time ordered three-point function

hxf ; tf jx.t3/˝ x.t2/˝ x.t1/jxi; tii; ti < t1 < t2 < t3 < tf ;

both in the canonical formalism and in the path integral formalism.

14.6. The functional SfiŒF� � S.pf ; pi/ŒF� (14.38) is a scattering matrix element
between momentum eigenstates. The functional ZŒF� (14.33) on the other hand is
not a scattering matrix element in position space because it does not correspond to
a position space matrix element of an interaction picture time evolution operator.
Instead it corresponds to the path integral result for the position matrix element of
the full time evolution operator of a free particle under the influence of a spatially
homogeneous force F.t/. However, we can derive a position space scattering matrix
element through Fourier transformation of S.pf ; pi/ŒF�. Show that

S.xf ; xi/ŒF� D
Z

d3pf

Z
d3pi exp

�
i

„
�
pf � xf � pi � xi

�� S.pf ; pi/ŒF�

.2�„/3

D ı

�
xf � xi C 1

m

Z 1

�1
dt tF.t/

�
exp

�
i
xf C xi

2„ �
Z 1

�1
dt F.t/

�

� exp

�
i

4m„
Z 1

�1
dt
Z 1

�1
dt0 jt � t0jF.t/ � F.t0/

�
: (14.40)

Show also that with the conditions

lim
t!˙1 t

Z t

�1
dt0 F.t0/ D 0 (14.41)

the ı function implies

xf D xi C 1

m

Z 1

�1
dt
Z t

�1
dt0 F.t0/; (14.42)

while the conditions

lim
t!˙1 t

Z 1

t
dt0 F.t0/ D 0 (14.43)

yield with the ı function the relation

xi D xf C 1

m

Z �1

1
dt
Z t

1
dt0 F.t0/: (14.44)

Equation (14.42) describes the asymptotic solution of a classical trajectory of a
non-relativistic particle which started out at rest in xi at t ! �1, while (14.44)
reconstructs the initial location for t ! �1 of a particle which comes to rest in
xf in the limit t ! 1. The conditions (14.41) or (14.43) do not generate extra
restrictions on the physical motion of the particle, but are mathematical conditions
for convergence of the time integrals in (14.42) or (14.44), respectively, i.e. they are
necessary for existence of solutions of the Newton equation for t ! ˙1.



Chapter 15
Coupling to Electromagnetic Fields

Electromagnetism is the most important interaction for the study of atoms,
molecules and materials. It determines most of the potentials or perturbation
operators V which are studied in practical applications of quantum mechanics,
and it also serves as a basic example for the implementation of other, more
complicated interactions in quantum mechanics. Therefore the primary objective of
the current chapter is to understand how electromagnetic fields are introduced in the
Schrödinger equation.

15.1 Electromagnetic couplings

The introduction of electromagnetic fields into the Schrödinger equation for a
particle of mass m and electric charge q can be inferred from the description of
the particle in classical Lagrangian mechanics.

The Lagrange function for the particle in electromagnetic fields

E.x; t/ D � rˆ.x; t/ � @A.x; t/
@t

; B.x; t/ D r � A.x; t/

is

L D m

2
Px.t/2 C qPx.t/ � A.x.t/; t/ � qˆ.x.t/; t/: (15.1)

Let us check (or review) that equation (15.1) is indeed the correct Lagrange
function for the particle. The electromagnetic potentials in the Lagrange function
depend on the time t both explicitly and implicitly through the time dependence x.t/
of the trajectory of the particle. The time derivative of the conjugate momentum

p D @L

@Px D mPx C qA (15.2)
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is therefore

dp
dt

D mRx C qPxi
@A
@xi

C q
@A
@t
:

According to the Euler-Lagrange equations (cf. Appendix A), this must equal

@L

@x
D qPxirAi � qrˆ:

The property (7.14) of the � tensor implies

ei
�Pxj@iAj � Pxj@jAi

� D ei�ijk�klm Pxj@lAm D Px � B;

and therefore the Euler-Lagrange equation yields the Lorentz force law

mRx D q.E C v � B/ ; (15.3)

as required.
The classical Hamiltonian for the particle follows as

H D p � Px � L D 1

2m
.p � qA/2 C qˆ D m

2
Px2 C qˆ: (15.4)

The Hamilton operator of the charged particle therefore becomes

H D 1

2m
Œp � qA.x; t/�2 C qˆ.x; t/; (15.5)

and the Schrödinger equation in x representation is

i„ @
@t
‰.x; t/ D � 1

2m
Œ„r � iqA.x; t/�2‰.x; t/C qˆ.x; t/‰.x; t/: (15.6)

This is the Schrödinger equation for a charged particle in electromagnetic fields. If
we write this in the form

i„ @
@t
‰ � qˆ‰ D 1

2m
.i„r C qA/2‰

we also recognize that this arises from the free Schrödinger equation through the
substitutions

i„r ! i„r C qA; i„ @
@t

D i„c@0 ! i„c@0 � qˆ: (15.7)
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These equations can be combined in 4-vector notation with p0 D �E=c,
A0 D �ˆ=c,

p	 D � i„@	 ! p	 � qA	 D � i„@	 � qA	:

This observation is useful for recognizing a peculiar symmetry property of equa-
tion (15.6). Classical electromagnetism is invariant under gauge transformations of
the electromagnetic potentials (here we use f .x/ � f .x; t/),

ˆ.x/ ! ˆ0.x/ D ˆ.x/ � c@0'.x/; A.x/ ! A0.x/ D A.x/C r'.x/; (15.8)

where the arbitrary function '.x/ has the dimension of a magnetic flux, i.e. it comes
in units of Vs. The Schrödinger equation (15.6) should respect this invariance of
classical electromagnetism to comply with classical limits, and indeed it does. If we
also transform the wave function according to

‰.x/ ! ‰0.x/ D exp
�

i
q

„'.x/
�
‰.x/; (15.9)

then the Schrödinger equation in the transformed fields and wave functions has
exactly the same form as the Schrödinger equation in the original fields, because
the linear transformation property

i„ @
@t
‰0 � qˆ0‰0 C 1

2m
.„r � iqA0/2‰0

D exp
�

i
q

„'.x/
� �

i„ @
@t
‰ � qˆ‰ C 1

2m
.„r � iqA/2‰

�

implies that

i„ @
@t
‰0 � qˆ0‰0 C 1

2m
.„r � iqA0/2‰0 D 0

holds in the transformed fields if and only if the Schrödinger equation also holds in
the original fields,

i„ @
@t
‰ � qˆ‰ C 1

2m
.„r � iqA/2‰ D 0:

The reason for the linear transformation law is

@	 � i
q

„A0
	 D @	 � i

q

„A	 � i
q

„ .@	'/

D exp
�

i
q

„'
� �
@	 � i

q

„A	
�

exp
�
�i

q

„'
�
;
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which implies that the covariant derivatives

D	‰ D
�
@	 � i

q

„A	
�
‰

transform exactly like the fields,

‰.x/ ! ‰0.x/ D exp
�

i
q

„'.x/
�
‰.x/;

D	‰.x/ ! D0

	‰
0.x/ D exp

�
i
q

„'.x/
�

D	‰.x/;

D	D� : : :D�‰.x/ ! D0

	D0

� : : :D
0

�‰
0.x/ D exp

�
i
q

„'.x/
�

D	D� : : :D�‰.x/:

This implies preservation of every partial differential equation which like the
Schrödinger equation uses only covariant derivatives,

i„cD0‰.x/ D � „2
2m

D2‰.x/ , i„cD0
0‰

0.x/ D � „2
2m

D02‰0.x/:

Coupling of matter wave functions to electromagnetic potentials through covariant
derivatives is known as minimal coupling.

Observables are gauge invariant, too. For example, the mechanical momentum
of the charged particle in electromagnetic fields is

m
d

dt
hxi.t/ D

Z
d3x‰C.x; t/ Œ� i„r � qA.x; t/� ‰.x; t/

D
Z

d3x‰0C.x; t/
	� i„r � qA0.x; t/



‰0.x; t/: (15.10)

Electromagnetic interactions ensure local phase invariance of nature. We can
rotate the wave function with an arbitrary local phase factor without changing
the dynamics or observables of a physical system, due to the presence of the
electromagnetic potentials. In hindsight, we should consider this as the reason
for the peculiar coupling of the electromagnetic potentials in the Schrödinger
equation (15.6).

The presence of the electromagnetic potentials in the observables will of course
affect conservation laws. E.g. the mechanical momentum (15.10) of the particle
will generically not be conserved, because it can exchange momentum with the
electromagnetic field which carries momentum pem.t/ D �0

R
d3x E.x; t/ � B.x; t/.

The conserved momentum1 of the coupled system of non-relativistic charged

1The canonial momentum hpi.t/ D �i„ R d3x‰C.x; t/r ‰.x; t/ D m.dhxi.t/=dt/ C qhA.x; t/i
is also generically not conserved, except if the particle moves in a spatially homogeneous electric
field E.t/ D �dA.t/=dt, e.g. in a plate capacitor. However, note that this is an artifact of the gauge
ˆ D 0.
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particle and electromagnetic fields is

P D m
d

dt
hxi.t/C pem.t/ D

Z
d3xP.x; t/;

where the momentum density with symmetrized action of the derivatives on the
wave functions is given by

P.x; t/ D „
2i

	
‰C.x; t/ � r‰.x; t/ � r‰C.x; t/ �‰.x; t/


� q‰C.x; t/A.x; t/‰.x; t/C �0E.x; t/ � B.x; t/: (15.11)

The derivation of momentum conservation for the classical particle-field system
in the full relativistic setting can be found in Appendix B, see in particular equa-
tion (B.29). Systematic derivations of momentum densities in the coupled system
of charged particles and electromagnetic fields in the framework of relativistic
spinor quantum electrodynamics (QED) can be found in Sections 21.4 and 21.5, see
in particular equations (21.90) and (21.106). Problem 21.5 and equation (21.133)
provide the corresponding results in relativistic scalar QED.

Both the non-relativistic limits for bosons and fermions lead to (15.11) for the
conserved momentum density in non-relativistic QED, which is also known as
quantum electronics.

Multipole moments

In many applications of quantum mechanics, simplifications of the electromagnetic
coupling terms in equation (15.6) can be employed if the electromagnetic fields
have large wavelengths compared to the wave functions in the Schrödinger equation.
The leading order and most common approximation is related to the electric dipole
moment of charge distributions, and therefore we will briefly discuss the origin of
multipole moments in electromagnetism.

Suppose that we probe the electromagnetic potential of a charge q which is
located at x. We are interested in the potential at location r, where jrj � jxj. Second
order Taylor expansion of the Coulomb term in the variables x yields

q

jr � xj � q

r
C q

r � x
r3

C q
3.r � x/2 � r2x2

2r5
D q

r
C r � d

r3
C 1

2r5
r � Q � r

with the dipole and quadrupole terms

d D qx; Q D q
�
3x ˝ x � x21

�
:
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For an extended charge distribution %.x/ this implies at large distance a representa-
tion of the potential

4��0ˆ.r/ D
Z

d3x
%.x/

jr � xj � q

r
C r � d

r3
C 1

2r5
r � Q � r

in terms of the monopole, dipole, and quadrupole moments

q D
Z

d3x %.x/; d D
Z

d3x %.x/x; Q D
Z

d3x %.x/Œ3x ˝ x � x21�:

We will find that the leading order coupling of long wavelength electromagnetic
fields to charges appears through electric dipole moments of the charges.

Semiclassical treatment of the matter-radiation system
in the dipole approximation

In the semiclassical treatment the electromagnetic fields are considered as exter-
nal classical fields with which the quantum mechanical matter (atom, nucleus,
molecule, solid) interacts.

If we consider e.g. an atom with an internal (average or effective) potential Vint.x/
experienced by the electrons, the Schrödinger equation for these electrons in the
external electromagnetic fields is

i„ @
@t
‰ D � 1

2m
.„r � iqA/2‰ C .qˆC Vint/‰: (15.12)

If the electromagnetic fields vary weakly over the extension a of the wave functions
(corresponding to approximately homogeneous field over the extension of the
atom or molecule under consideration), we can effectively assume a spatially
homogeneous field E D E.t/ corresponding to a potentialˆ.x; t/ D �E.t/ � x. If we
assume that our material probes range over length scales from 1Å (corresponding
to the size of atoms) to several Å (corresponding to molecules containing e.g.
several Benzene rings), electromagnetic fields with wavelengths larger than 100 nm
or photon energies smaller than 12 eV can be considered as approximately spatially
homogeneous over the size of the probe. Furthermore the magnetic field in the
electromagnetic wave satisfies

B.t/ D 1

2
r � .B.t/ � x/ (15.13)

and

jBj D 1

c
jEj; j PBj D !

c
jEj D 2�

�
jEj:
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We have
ˇ̌
ˇ̌@A
@t

ˇ̌
ˇ̌ D 1

2

ˇ̌
ˇ PB � x

ˇ̌
ˇ ' �a

�
jEj 
 jEj ;

and therefore the description of E only through the electric potential,

E.t/ D �rˆ.x; t/ D r.E.t/ � x/;

is justified for � � a. Furthermore, the magnitudes of magnetic contributions to the
Schrödinger equation are of order

q„
m

jA � r‰j ' q„
2mc

jEj jxj jr‰j ' q„
2mc

jEj j‰j ; (15.14)

q2

2m
A2 j‰j ' q2

8mc2
E2x2 j‰j ' q2a2

8mc2
E2 j‰j : (15.15)

For comparison, the electric contribution has a magnitude of order

q jEj jxj j‰j ' qa jEj j‰j :

The ratio of the linear magnetic term (15.14) to the electric term is „=.2mca/. If we
use the electron mass for m, we find

„
2mca

� 2 � 10�3 � 1Å

a
;

i.e. the linear magnetic term is often negligible compared to the electric term.
The ratio of the second magnetic term (15.15) to the electric term is approx-

imately qa jEj =8mc2. Validity of the non-relativistic approximation requires that
the electrostatic energy qa jEj due to the electric field should be small compared
to mc2. Therefore we also find that the second magnetic term should be negligible
compared to the electric term. Quantitatively, if we assume mc2 D 511 keV, we have
ea jEj =8mc2 
 1 for

jEj 
 8mc2

ea
D 4 � 1016 V

m
� 1Å

a
:

For comparison, the internal field strength in hydrogen is of order e=.4��0a20/ '
5 � 1011 V/m.

We conclude that for � � a the effect of external electromagnetic fields can be
approximated by the addition of a term

�V.x; t/ D qˆ.x; t/ D � qE.t/ � x D � d � E.t/ (15.16)
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in the Schrödinger equation. The approximation of spatially homogeneous external
field yields a perturbation proportional to the dipole operator and is therefore
denoted as dipole approximation.

Two cautionary remarks are in order at this point. The term dipole approx-
imation is nowadays more widely used for the long wavelength approximation
exp.ik � x/' 1 in matrix elements irrespective of whether the perturbation operator
has the dipole form (15.16) or is given in terms of the coupling to the vector potential
A.x; t/ in (15.12).

Furthermore, if we describe electromagnetic interactions at the level of photon-
matter interactions, the dipole approximation (15.16) is generically limited to first
order perturbation theory, and holds in second order perturbation theory only if
additional conditions are met, see Section 18.9 and Problem 18.10.

Dipole selection rules

The first order scattering matrix elements in dipole approximation are given by
Sfi D p

2� iqE.!fi/ � hf jxjii=„, i.e. only transitions jii ! jf i with non-vanishing
dipole matrix elements qhf jxjii are allowed in this approximation. This yields
straightforward selection rules for states which are eigenstates of M2 and Mz. The
commutator relation ŒMz; z� D 0 implies

hn0; `0;m0jŒMz; z�jn; `;mi D „hn0; `0;m0jzjn; `;mi.m0 � m/ D 0; (15.17)

and therefore an electric field component in z direction can only induce transitions
between states with the same magnetic quantum number.

In the same way, the commutators ŒMz; x ˙ iy� D ˙„.x ˙ iy/ imply

hn0; `0;m0jx ˙ iyjn; `;mi.m0 � m � 1/ D 0; (15.18)

such that electric field components in the .x; y/ plane can only induce transitions
which increase or decrease the magnetic quantum number by one unit.

Finally, the fairly complicated relation ŒM2; ŒM2; x�� D 2„2fM2; xg yields

hn0; `0;m0jxjn; `;mi.`C `0/.`C `0 C 2/Œ.` � `0/2 � 1� D 0: (15.19)

This implies that the matrix element can be non-vanishing only if `0 D ` ˙ 1.
`0 D ` D 0 is not a solution, because in this case the wave functions depend only
on r and the angular integrations then show that the matrix element vanishes.

Equations (15.17–15.19) imply the dipole selection rules �` D ˙1 and
�m D 0;˙1.



15.2 Stark effect and static polarizability tensors 309

15.2 Stark effect and static polarizability tensors

Polarizability tensors characterize the response of a quantum system to an external
electric field E. The calculation of polarizability tensors is another example of
applications of second order perturbation theory in materials science. It also
illustrates the role of perturbation theory in derivations of quantum mechanical
expressions for measurable physical quantities, which were first introduced in
classical electrodynamics and were initially approximated by means of simple
mechanical models.

The calculation of polarizabilities generically involves many particles and related
dipole operators V.t/ D �PN

iD1 qiE.t/ � xi, where it is assumed that all particles are
confined to a region which is still small compared to the wavelength of the electric
field. We will develop the theory in a single-particle approximation in the sense that
we only use the single charged (quasi)particle operator V.t/ D �qE.t/ � x. In the
present section we will do this for time-independent external field, where we can
use the techniques of time-independent perturbation theory. The case of dynamical
polarizability for time-dependent external fields will be discussed in Section 15.3.

Linear Stark effect

Before we jump into the second order calculation of the response to an electric
field, we consider the implications of first order perturbation theory for the dipole
approximation.

An external static electric field shifts the Hamilton operator according to

H0 ! H D H0 C V D H0 � qE � x:

Time-independent perturbation theory tells us that the first order shifts of atomic
or molecular energy levels due to the external field have to be determined as the
eigenvalues of the matrix

h‰.0/
n;˛jV.x/j‰.0/

n;ˇi D � qh‰.0/
n;˛jxj‰.0/

n;ˇi � E;

and when the n-th degeneracy subspace has been internally diagonalized with
respect to V.x/, the first order shifts are

E.1/n;˛ D � qh‰.0/
n;˛jxj‰.0/

n;˛i � E D � dn;˛ � E;

with the intrinsic dipole moment in the state j‰.0/
n;˛i

dn;˛ D qh‰.0/
n;˛jxj‰.0/

n;˛i: (15.20)
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The perturbation V has odd parity under x ! �x, while atomic states of opposite
parity are usually not degenerate. Therefore in systems which are symmetric under
the parity transformation x ! �x, the states in the n-th energy level usually satisfy

h‰.0/
n;˛jxj‰.0/

n;ˇi D 0

because the integrand is odd under the parity transformation. Usually this implies
absence of a linear Stark effect in atoms, and the same remark applies to molecules
with parity symmetry. An important exception is the hydrogen atom due to
`-degeneracy of its energy levels (if the matrix elements of V are larger than the fine
structure of the hydrogen levels). States with angular momentum quantum number
` have parity .�1/`, so that the n-th hydrogen level with n > 1 contains degenerate
states of opposite parity. Diagonalization of V in that degeneracy subspace then
yields states j‰.0/

n;˛i with h‰.0/
n;˛jxj‰.0/

n;˛i ¤ 0.

Quadratic Stark effect and the static polarizability tensor

Second order perturbation theory yields the following corrections to discrete atomic
or molecular energy levels,

E.2/n˛ D
XZ

m¤n

X
ˇ

jh‰.0/

mˇjVj‰.0/
n˛ ij2

E.0/n � E.0/m

D q2E �
XZ

m¤n

X
ˇ

h‰.0/
n˛ jxj‰.0/

mˇih‰.0/

mˇjxj‰.0/
n˛ i

E.0/n � E.0/m

� E:

The notation takes into account that the intermediate levels can be continuous, but
degeneracy indices are always discrete.

We can write the second order shifts in the form

E.2/n˛ D � 1

2
d.n˛/ � E D � 1

2
E �˛.n˛/ � E;

where

d.n˛/ D ˛.n˛/ � E

is the induced dipole moment and ˛.n˛/ is the static electronic polarizability tensor

in the state j‰.0/
n˛ i,

˛.n˛/ D � q2
XZ

m¤n

X
ˇ

1

E.0/n � E.0/m

�
h‰.0/

n˛ jxj‰.0/

mˇi ˝ h‰.0/

mˇjxj‰.0/
n˛ i

C h‰.0/

mˇjxj‰.0/
n˛ i ˝ h‰.0/

n˛ jxj‰.0/

mˇi
�
: (15.21)
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Note that in the ground state ˛ii > 0 (no summation convention), i.e. in second
order perturbation theory, which usually should capture all linear contributions from
a weak external electric field to the induced dipole moment, there is no electronic
dia-electricity for the ground state.

15.3 Dynamical polarizability tensors

We cannot use time-independent perturbation theory if the perturbation operator
V.t/ D �qx � E.t/ varies with time. Application of our results from Chapter 13 for
time-dependent perturbations implies that the first order transition probability from
a state jmi into a state jni under the action of the electric field E.t/ between times t0
and t is proportional to2

P.1/m!n.t; t
0/ D

ˇ̌
ˇ̌q
„
Z t

t0
d� exp.i!nm�/E.�/ � hnjxjmi

ˇ̌
ˇ̌2 ;

where

!nm D 1

„ .En � Em/ :

For t0 ! �1, t ! 1, this becomes in particular (see our previous
results (13.28, 13.29))

P.1/m!n D 2�
ˇ̌
ˇq„E.!nm/ � hnjxjmi

ˇ̌
ˇ2 ;

i.e. long term action of an external electric field can induce a transition in first order
between energy levels Em and En only if the field contains a Fourier component of
the corresponding frequency !nm.

However, at this time we are interested in the problem how equation (15.21) can
be generalized to a dynamical polarizability in the presence of a time-dependent
external field E.t/.

Suppose the system was in the state j‰.0/
n;˛.0/i � j‰.0/

n;˛i at t D 0, when it begins
to experience the effect of the electric field. The shift of the wave function j‰.0/

n;˛.t/i
under the influence of the external field is

j‰n;˛.t/i � j‰.0/
n;˛.t/i D ‚.t/ ŒU.t/ � U0.t/� j‰.0/

n;˛i
D ‚.t/U0.t/

	
UC
0 .t/U.t/U0.0/ � 1
 j‰.0/

n;˛i
D ‚.t/U0.t/ ŒUD.t/ � 1� j‰.0/

n;˛i;

2Recall that jSnmj2 is a true transition probability only if the initial and final state are discrete, while
otherwise it enters into decay rates or cross sections.
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and the first order shift is therefore

j‰.1/
n;˛.t/i D � i

„‚.t/U0.t/
Z t

0

d� HD.�/j‰.0/
n;˛i

D � i

„‚.t/U0.t/
Z t

0

d� UC
0 .�/V.�/U0.�/j‰.0/

n;˛i

D � i

„‚.t/
Z t

0

d� U0.t � �/V.�/U0.�/j‰.0/
n;˛i:

The induced dipole moment in the state j‰.0/
n;˛i is then given in leading order by the

first order terms (recall that the 0th order term corresponds to the intrinsic dipole
moment (15.20))

d.n˛/.t/ D h‰.0/
n;˛.t/jqxj‰.1/

n;˛.t/i C h‰.1/
n;˛.t/jqxj‰.0/

n;˛.t/i

D q2
i

„‚.t/
Z t

0

d� h‰.0/
n;˛jUC

0 .t/xU0.t � �/x � E.�/U0.�/j‰.0/
n;˛i

� q2
i

„‚.t/
Z t

0

d� h‰.0/
n;˛jUC

0 .�/x � E.�/UC
0 .t � �/xU0.t/j‰.0/

n;˛i:

This becomes after insertion of complete sets of unperturbed states in
U0.t � �/ D U0.t/U

C
0 .�/ and UC

0 .t � �/ D U0.�/U
C
0 .t/

d.n˛/.t/ D q2
i

„‚.t/
XZ

m;ˇ

Z t

0
d� expŒi!nm.t � �/�h‰.0/n;˛ jxj‰.0/m;ˇi

�h‰.0/m;ˇ jx � E.�/j‰.0/n;˛i � q2
i

„‚.t/
XZ

m;ˇ

Z t

0
d� expŒ�i!nm.t � �/�

�h‰.0/n;˛ jx � E.�/j‰.0/m;ˇih‰.0/m;ˇ jxj‰.0/n;˛i

D
Z 1

0
d� ˛.n˛/.t � �/ � E.�/; (15.22)

with a dynamical polarizability tensor

˛.n˛/.t/ D q2
i

„‚.t/
�XZ

m;ˇ
exp.i!nmt/h‰.0/

n;˛jxj‰.0/

m;ˇi ˝ h‰.0/

m;ˇjxj‰.0/
n;˛i

�
XZ

m;ˇ
exp.�i!nmt/h‰.0/

m;ˇjxj‰.0/
n;˛i ˝ h‰.0/

n;˛jxj‰.0/

m;ˇi
�
: (15.23)

Now we assume harmonic time dependence of an electric field which is switched
on at t D 0,

E.�/ � E!.�/ D E‚.t/ sin.!�/ D E‚.t/
exp.i!�/ � exp.�i!�/

2i
:
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The time integrals in the two terms for d.n˛/.t/ then yield

˙ q2

2„
Z t

0

d�
�

expŒ˙i!nm.t � �/C i!�� � expŒ˙i!nm.t � �/ � i!��
�

D ˙ q2

2i„
�

exp.i!t/ � exp.˙i!nmt/

! � !nm
C exp.�i!t/ � exp.˙i!nmt/

! ˙ !nm

�

D ˙ q2

i„
! cos.!t/˙ i!nm sin.!t/ � ! exp.˙i!nmt/

!2 � !2nm

: (15.24)

We also assume slowly oscillating field in the sense ! 
 j!nmj for all
quantum numbers m which correspond to large matrix elements jh‰.0/

m;ˇjxj‰.0/
n;˛ij.

This means that the external field is not likely to induce direct transitions between
different energy levels. Under these conditions, the contribution from the integrals
in equation (15.24) to d.n˛/.t/ will be dominated by the term which is in phase with
the external field,

˙ q2

2„
Z t

0

d�
�

expŒ˙i!nm.t � �/C i!�� � expŒ˙i!nm.t � �/ � i!��
�

! q2

„
!nm sin.!t/

!2 � !2nm

;

and the induced dipole moment in this approximation is

d.n˛/!.t/ D q2

„
XZ

m;ˇ

!mn

!2mn � !2
�
h‰.0/

n;˛jxj‰.0/

m;ˇih‰.0/

m;ˇjx � E!.t/j‰.0/
n;˛i

C h‰.0/

m;ˇjxj‰.0/
n;˛ih‰.0/

n;˛jx � E!.t/j‰.0/

m;ˇi
�
:

This can also be written as

d.n˛/!.t/ D ˛.n˛/.!/ � E!.t/

with the frequency dependent polarizability tensor for the state j‰.0/
n;˛i (usually the

ground state)

˛.n˛/.!/ D q2

„
XZ

m;ˇ

!mn

!2mn � !2
�
h‰.0/

n;˛jxj‰.0/

m;ˇi ˝ h‰.0/

m;ˇjxj‰.0/
n;˛i

C h‰.0/

m;ˇjxj‰.0/
n;˛i ˝ h‰.0/

n;˛jxj‰.0/

m;ˇi
�
: (15.25)

The zero frequency polarizability tensor ˛.n˛/.0/ is the static tensor (15.21), as
expected.
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The frequency dependent polarizability tensor is not only relevant for slowly
oscillating fields, but appears implicitly already in the equations (15.22, 15.23),
which do not include a restriction to slowly oscillating external field. If we agree
to shift the denominator in (15.25) by small imaginary numbers according to

˛.n˛/.!/ D q2

„
�XZ

m;ˇ

!nm

!2 � !2nm � i�
h‰.0/n;˛jxj‰.0/m;ˇi ˝ h‰.0/m;ˇ jxj‰.0/n;˛i

C
XZ

m;ˇ

!nm

!2 � !2nm C i�
h‰.0/m;ˇ jxj‰.0/n;˛i ˝ h‰.0/n;˛ jxj‰.0/m;ˇi

�
; (15.26)

we find that the dynamical polarizability tensors in equations (15.23) and (15.26)
are related via

˛.n˛/.t/ D ‚.t/

�

Z 1

�1
d! ˛.n˛/.!/ exp.�i!t/: (15.27)

Oscillator strength

Equation (15.26) yields an averaged polarizability

˛.n˛/.!/ D 1

3
tr˛.n˛/.!/ D 2q2

3„
XZ

m;ˇ

!mn

!2mn � !2 jh‰.0/

m;ˇjxj‰.0/
n;˛ij2

D q2

m

XZ
m;ˇ

fm;ˇIn;˛
!2mn � !2

with the oscillator strength for the transition j‰.0/
n;˛i ! j‰.0/

m;ˇi:

fm;ˇIn;˛ D 2m

3„ !mnjh‰.0/

m;ˇjxj‰.0/
n;˛ij2 D � fn;˛Im;ˇ: (15.28)

We use m both for the mass of the charged (quasi)particle which has its wave
functions shifted due to the external field, and as a label for the intermediate states.
Since mass never appears as an index in equation (15.28) or the following equations,
this should not cause confusion.

The polarizability is also often averaged over degenerate initial states. If the
degeneracy of the n-th energy level is gn, then

˛n.!/ D 1

gn

X
˛

˛.n˛/.!/ D q2

m

XZ
m

fmjn
!2mn � !2

with an effective oscillator strength which is averaged over degenerate initial states
and summed over degenerate final states,

fmjn D 1

gn

X
˛;ˇ

fm;ˇIn;˛ D � gm

gn
fnjm: (15.29)



15.3 Dynamical polarizability tensors 315

With these conventions, positive oscillator strength corresponds to absorption
and negative oscillator strength corresponds to emission. Oscillator strengths are
sometimes also defined through absolute values, but for the f -sum rules below it
plays a role that emission transitions contribute with negative sign.

For an explanation of the name oscillator strength for fm;ˇIn;˛ , we observe that a
classical isotropic harmonic oscillator model for polarizability

mRx.t/C m!20x.t/ D qE sin.!t/

yields an induced dipole moment

d!.t/ D qx.t/ D q2

m

1

!20 � !2E sin.!t/ D ˛.!/E!.t/

with the polarizability

˛.!/ D q2

m

1

!20 � !2 ;

i.e. every virtual transition j‰.0/
n;˛i ! j‰.0/

m;ˇi contributes effectively like an oscillator

of frequency j!mnj D
ˇ̌
ˇE.0/m � E.0/n

ˇ̌
ˇ =„ to the polarizability ˛.n˛/.!/ of the state

j‰.0/
n;˛i, but the contribution of that transition is weighted with the oscillator

strength (15.28).

Thomas-Reiche-Kuhn sum rule (f -sum rule)
for the oscillator strength

Kuhn, Reiche and Thomas found a sum rule for the oscillator strength already in the
framework of old quantum theory3. The quantum mechanical proof is based on the
fact that the Hamiltonian operator H D .p2=2m/C V.x/ yields a commutator

ŒH; x� D „p
im
: (15.30)

This implies for a discrete normalized state j‰.0/
n;˛i

XZ
m;ˇ

fm;ˇIn;˛ D 2m

3„
XZ

m;ˇ
!mnh‰.0/

n;˛jxj‰.0/

m;ˇi � h‰.0/

m;ˇjxj‰.0/
n;˛i

D 2m

3„2
XZ

m;ˇ

�
E.0/m � E.0/n

� h‰.0/
n;˛jxj‰.0/

m;ˇi � h‰.0/

m;ˇjxj‰.0/
n;˛i

3W. Kuhn, Z. Phys. 33, 408 (1925); F. Reiche, W. Thomas, Z. Phys. 34, 510 (1925).
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D m

3„2
XZ

m;ˇ

�
h‰.0/

n;˛jxj‰.0/

m;ˇi � h‰.0/

m;ˇjŒH0; x�j‰.0/
n;˛i

� h‰.0/
n;˛jŒH0; x�j‰.0/

m;ˇi � h‰.0/

m;ˇjxj‰.0/
n;˛i

�

D 1

3i„
XZ

m;ˇ

�
h‰.0/

n;˛jxj‰.0/

m;ˇi � h‰.0/

m;ˇjpj‰.0/
n;˛i

�
D
‰.0/

n;˛jpj‰.0/

m;ˇi � h‰.0/

m;ˇjxj‰.0/
n;˛i

�

D 1

3i„h‰.0/
n;˛j.x � p � p � x/j‰.0/

n;˛i D 1:

This is the4 Thomas-Reiche-Kuhn sum rule,

XZ
m;ˇ

fm;ˇIn;˛ D 1: (15.31)

Averaging over initial degeneracy indices (15.29) then also yields

XZ
m

fmjn D 1: (15.32)

Equation (15.30) implies a further relation which connects matrix elements of x
and p,

!mnh‰.0/

m;ˇjxj‰.0/
n;˛i D 1

im
h‰.0/

m;ˇjpj‰.0/
n;˛i:

This yields an alternative representation of the oscillator strength

fm;ˇIn;˛ D 2

3m„!mn
jh‰.0/

m;ˇjpj‰.0/
n;˛ij2; (15.33)

which is known as the velocity form of the oscillator strength, while equation (15.28)
is denoted as the length form of the oscillator strength. Yet another common
definition in atomic, molecular and optical physics is

fm;ˇIn;˛ D 2m!mn

3„q2
Sm;ˇIn;˛; fmjn D 2m!mn

3„q2
Sm;n;

4If the wave functions are N-particle wave functions and the potential V is the corresponding sum
of dipole operators, the number on the right hand side of the sum rules becomes N.
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with the electric dipole line strength of the transition j‰.0/
n;˛i ! j‰.0/

m;ˇi

Sm;ˇIn;˛ D jh‰.0/

m;ˇjqxj‰.0/
n;˛ij2 D

ˇ̌
ˇ̌ q

m!mn
h‰.0/

m;ˇjpj‰.0/
n;˛i

ˇ̌
ˇ̌2 ;

Sm;n D 1

gn

X
˛;ˇ

Sm;ˇIn;˛ D gm

gn
Sn;m:

Tensorial oscillator strengths and sum rules

We can define oscillator strength tensors through the relations

˛.n˛/.!/ D q2

m

XZ
m;ˇ

f
m;ˇIn;˛

!2mn � !2 ;

˛n.!/ D 1

gn

X
˛

˛.n˛/.!/ D q2

m

X
m

f
m;n

!2mn � !2 ;

i.e. we have representations for oscillator strength tensors

f
m;ˇIn;˛

D m

„ !mn

�
h‰.0/

n;˛jxj‰.0/

m;ˇi ˝ h‰.0/

m;ˇjxj‰.0/
n;˛i

C h‰.0/

m;ˇjxj‰.0/
n;˛i ˝ h‰.0/

n;˛jxj‰.0/

m;ˇi
�

D m

2„2
�
h‰.0/

n;˛jxj‰.0/

m;ˇi ˝ h‰.0/

m;ˇjŒH0; x�j‰.0/
n;˛i

� h‰.0/
n;˛jŒH0; x�j‰.0/

m;ˇi ˝ h‰.0/

m;ˇjxj‰.0/
n;˛i

C h‰.0/

m;ˇjŒH0; x�j‰.0/
n;˛i ˝ h‰.0/

n;˛jxj‰.0/

m;ˇi

� h‰.0/

m;ˇjxj‰.0/
n;˛i ˝ h‰.0/

n;˛jŒH0; x�j‰.0/

m;ˇi
�

D 1

2i„
�
h‰.0/

n;˛jxj‰.0/

m;ˇi ˝ h‰.0/

m;ˇjpj‰.0/
n;˛i � h‰.0/

n;˛jpj‰.0/

m;ˇi ˝ h‰.0/

m;ˇjxj‰.0/
n;˛i

C h‰.0/

m;ˇjpj‰.0/
n;˛i ˝ h‰.0/

n;˛jxj‰.0/

m;ˇi � h‰.0/

m;ˇjxj‰.0/
n;˛i ˝ h‰.0/

n;˛jpj‰.0/

m;ˇi
�

D � f
n;˛Im;ˇ

; (15.34)

and reduced oscillator strength tensors

f
mjn D 1

gn

X
˛;ˇ

f
m;ˇIn;˛ D � gm

gn
f

njm: (15.35)
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This yields tensorial f -sum rules,

X
m;ˇ

f
m;ˇIn;˛ D 1

2i„h‰.0/
n;˛j �Œxi; pj� � Œpi; xj�

� j‰.0/
n;˛iei ˝ ej D 1 D

X
m

f
mjn:

For comparison, we note that the polarization tensor of an isotropic classical
oscillator is easily shown to be

˛.!/ D q2

m

1

!20 � !2 1:

The standard oscillator strength is related to the oscillator strength tensor via

fm;ˇIn;˛ D 1

3
tr f

m;ˇIn;˛:

15.4 Problems

15.1. Show that the probability current density in the presence of electromagnetic
potentials is given by

j D „
2im

�
‰Cr‰ � r‰C �‰ � 2i

q

„‰
CA‰

�
:

Is this expression gauge invariant?

15.2. Suppose that a particle is moving in a spatially homogeneous magnetic field
B.t/. Show that in order jqBj this yields the Zeeman term

hxjHZ.t/j‰.t/i D �hxj q

2m
B.t/ � lj‰.t/i D i

q„
2m

B.t/ � .x � r/‰.x; t/

in the Schrödinger equation (15.6).
Hint: You can use equation (15.13).

15.3. A hydrogen atom is initially in its ground state when it is excited by an
external electric field E.t/.

15.3a. Show through direct evaluation of the matrix elements that the dipole term
V.t/ D �qx � E.t/ in first order only excites higher level p states.

15.3b. The external field is

E.t/ D ezE exp.�t2=�2/: (15.36)
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How large are the first order transition probabilities P1!n into excited bound energy
levels?

15.4. How large is the ionization probability for a hydrogen atom in the electric
field (15.36) in leading order perturbation theory?

15.5. Calculate the ionization probability (13.40) for a hydrogen atom in its ground
state which is perturbed by an oscillating electric field in z direction,

V.t/ D ezE cos.!t/:

15.6. Calculate the linear Stark effect for the first excited level of hydrogen due to
a homogeneous static electric field E.

15.7. Calculate the static polarizability tensor in the ground state of hydrogen.

15.8. Calculate the oscillator strengths fn0In D 2m!n0njhn0jxjnij2=„ for a one-
dimensional oscillator. Why does the equation for the one-dimensional oscillator
strength differ by a factor 3 from the three-dimensional oscillator strength (15.28)?

15.9. Calculate the oscillator strengths fn;`;mI1;0;0 for the hydrogen atom. How large
is the sum

1X
`D0

X̀
mD�`

Z 1

0

dk k2fk;`;mI1;0;0

of the oscillator strengths into Coulomb waves?

15.10. We consider the transition jmi ! jni due to an external electric field E.t/.
Show that the square of the corresponding first order scattering matrix element is
related to the oscillator strength tensor of the transition through

jSnmj2 D �q2

m„!nm
E.!nm/ � f

nIm � E.!nm/:

15.11. Show that normalizable energy eigenstates, hnjni D 1, have vanishing
momentum expectation values,

hnjpjni D 0:

Why does this equation not hold for plane wave states?

15.12. Prove the Bethe sum rule5,

2m

„
XZ

m;ˇ
!mn

ˇ̌
ˇh‰.0/

m;ˇj exp.ik � x/j‰.0/
n;˛i

ˇ̌
ˇ2 D k2:

5H. Bethe, Annalen Phys. 397, 325 (1930).



Chapter 16
Principles of Lagrangian Field Theory

The replacement of Newton’s equation by quantum mechanical wave equations in
the 1920s implied that by that time all known fundamental degrees of freedom in
physics were described by fields like A.x; t/ or ‰.x; t/, and their dynamics was
encoded in wave equations. However, all the known fundamental wave equations
can be derived from a field theory version of Hamilton’s principle1, i.e. the concept
of the Lagrange function L.q.t/; Pq.t// and the related action S D R

dt L generalizes to
a Lagrange density L.�.x; t/; P�.x; t/;r�.x; t// with related action S D R

dt
R

d3xL,
such that all fundamental wave equations can be derived from the variation of an
action,

@L
@�

� @	 @L
@.@	�/

D 0:

This formulation of dynamics is particularly useful for exploring the connection
between symmetries and conservation laws of physical systems, and it also allows
for a systematic approach to the quantization of fields, which allows us to describe
creation and annihilation of particles.

16.1 Lagrangian field theory

Irrespective of whether we work with relativistic or non-relativistic field theories,
it is convenient to use four-dimensional notation for coordinates and partial
derivatives,

x	 D fx0; xg � fct; xg; @	 D @

@x	
D f@0;rg:

1Please review Appendix A if you are not familiar with Lagrangian mechanics, or if you need a
reminder.
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We proceed by first deriving the general field equations following from a
Lagrangian L.@�I ; �I/ which depends on a set of fields �I.x/ � �I.x; t/ and their
first order derivatives @	�I.x/. These fields will be the Schrödinger field ‰.x; t/ and
its complex conjugate field ‰C.x; t/ in Chapter 17, but in Chapter 18 we will also
deal with the wave function A.x/ of the photon.

We know that the equations of motion for the variables x.t/ of classical
mechanics follow from action principles ıS D ı

R
dtL.Px; x/ D 0 in the form of

the Euler-Lagrange equations

@L

@xi
� d

dt

@L

@Pxi
D 0:

The variation of a field dependent action functional

SŒ�� D 1

c

Z
V

d4xL.@�I ; �I/

for fields �I.x/ proceeds in the same way as in classical mechanics, the only
difference being that we apply the Gauss theorem for the partial integrations.

To elucidate this, we require that arbitrary first order variation

�I.x/ ! �I.x/C ı�I.x/

with fixed fields at initial and final times t0 and t1,

ı�I.x; t0/ D 0; ı�I.x; t1/ D 0;

leaves the action SŒ�� in first order invariant. We also assume that the fields and their
variations vanish at spatial infinity.

The first order variation of the action between the times t0 and t1 is

ıSŒ�� D SŒ� C ı�� � SŒ��

D
Z

d3x
Z t1

t0

dt ŒL.@�I C @ı�I ; �I C ı�I/ � L.@�I ; �I/�

D
Z

d3x
Z t1

t0

dt

�
ı�I

@L
@�I

C @L
@.@	�I/

@	ı�I

�
:

Partial integration in the last term yields

ıSŒ�� D
Z

d3x
Z t1

t0

dt ı�I

�
@L
@�I

� @	 @L
@.@	�I/

�
; (16.1)

where the boundary terms vanish because of the vanishing variations at spatial
infinity and at t0 and t1.
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Equation (16.1) implies that we can have ıSŒ�� D 0 for arbitrary variations
ı�I.x/ between t0 and t1 if and only if the equations

@L
@�I

� @	 @L
@.@	�I/

D 0 (16.2)

hold for all the fields �I.x/. These are the Euler-Lagrange equations for Lagrangian
field theory.

The derivation of equation (16.2) does not depend on the number of four
spacetime dimensions, 	 2 f0; 1; 2; 3g. It would just as well go through in any
number d of dimensions, where d could be a number of spatial dimensions if we
study equilibrium or static phenomena in field theory, or d can be d � 1 spatial
and one time dimension. Relevant cases for observations include d D 1 (mechanics
or equilibrium in one-dimensional systems), d D 2 (equilibrium phenomena on
interfaces or surfaces, time-dependent phenomena in one-dimensional systems),
d D 3 (equilibrium phenomena in three dimensions, time-dependent phenomena
on interfaces or surfaces), and d D 4 (time-dependent phenomena in observable
spacetime). In particular, classical particle mechanics can be considered as a field
theory in one spacetime dimension.

The Lagrange density for the Schrödinger field

An example is provided by the Lagrange density for the Schrödinger field,

L D i„
2

�
‰C � @‰

@t
� @‰C

@t
�‰
�

� „2
2m

r‰C � r‰ �‰C � V �‰: (16.3)

In the notation of the previous paragraph, this corresponds to fields �1.x/ D
‰C.x/ and �2.x/ D ‰.x/, or we could also denote the real and imaginary parts of
‰ as the two fields.

We have the following partial derivatives of the Lagrange density,

@L
@‰C D i„

2

@‰

@t
� V‰;

@L
@.@t‰C/

D � i„
2
‰;

@L
@.@i‰C/

D � „2
2m
@i‰;

and the corresponding adjoint equations. The Euler-Lagrange equation from varia-
tion of the action with respect to ‰C,

@L
@‰C � @t

@L
@.@t‰C/

� @i
@L

@.@i‰C/
D 0;
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is the Schrödinger equation

i„ @
@t
‰ C „2

2m
�‰ � V‰ D 0:

The Euler-Lagrange equation from variation with respect to ‰ in turn yields the
complex conjugate Schrödinger equation for ‰C. This is of course required for
consistency, and is a consequence of L D LC.

The Schrödinger field is slightly unusual in that variation of the action with
respect to �1.x/ D ‰C.x/ yields the equation for �2.x/ D ‰.x/ and vice versa.
Generically, variation of the action with respect to a field �I.x/ yields the equation
of motion for that field2. However, the important conclusion from this section is
that Schrödinger’s quantum mechanics is a Lagrangian field theory with a Lagrange
density (16.3).

16.2 Symmetries and conservation laws

We consider an action with fields � (�I , 1 � I � N) in a d-dimensional space or
spacetime:

S D 1

c

Z
ddxL.�; @�/: (16.4)

To reveal the connection between symmetries and conservation laws, we calcu-
late the first order change of the action S (16.4) if we perform transformations of the
coordinates,

x0.x/ D x � �.x/: (16.5)

This transforms the integration measure in the action as

ddx0 D ddx
�
1 � @	�	

�
;

and partial derivatives transform according to

@0
	 D @	 C �

@	�
�
�
@�: (16.6)

We also include transformations of the fields,

�0.x0/ D �.x/C ı�.x/: (16.7)

2The unconventional behavior for the Schrödinger field can be traced back to how it arises from
the Klein-Gordon or Dirac fields in the non-relativistic limit, see Chapter 21.
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Coordinate transformations often also imply transformations of the fields, e.g. if �
is a tensor field of n-th order with components �˛:::�.x/, the transformation induced
by the coordinate transformation x ! x0.x/ D x � �.x/ is

� 0̨
0:::�0.x0/ D @˛0x˛ � @ˇ0xˇ : : : @�0x� ��˛ˇ:::�.x/:

This yields is in first order

ı�˛ˇ:::�.x/ D � 0̨
:::�.x

0/ � �˛:::�.x/
D @˛�

� ���ˇ:::�.x/C @ˇ�
� ��˛�:::�.x/C : : :C @��

� ��˛ˇ:::� .x/:
Fields can also transform without a coordinate transformation, e.g. through a phase
transformation.

We denote the transformations (16.5, 16.7) as a symmetry of the Lagrangian field
theory (16.4) if they leave the volume form ddxL invariant,

ddx0 L.�0; @0�0I x0/ D ddxL.�; @�I x/: (16.8)

Here we also allow for an explicit dependence of the Lagrange density on the
coordinates x besides the implicit coordinate dependence through the dependence
on the fields �.x/. If we define a transformed Lagrange density from the requirement
of invariance of the action S under the transformations (16.5, 16.7),

L0.�0; @0�0I x0/ D det.@0x/L.�; @�I x/; (16.9)

the symmetry condition (16.8) amounts to form invariance of the Lagrange density.
The equations (16.6) and (16.7) imply the following first order change of partial

derivative terms:

ı
�
@	�

� D @	ı� C �
@	�

�
�
@��: (16.10)

The resulting first order change of the volume form is (with the understanding that
we sum over all fields in all multiplicative terms where the field � appears twice):

ı.ddxL/ D ddx
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� �L C ı�
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@�

C ı
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D ddx

�
@	

�
��
�
@�� � @L

@.@	�/
� ��	L

�
C ı�

@L
@.@	�/

�

C .ı� C ��@��/

�
@L
@�

� @	 @L
@.@	�/

�
: (16.11)

Here

ı	L D @	L � @	� � @L
@�

� @	@�� � @L
@.@��/

is the partial derivative of L with respect to any explicit coordinate dependence.
If we have off-shell ı.ddxL/ D 0 for the proposed transformations �, ı�, we find

a local on-shell conservation law

@	j	 D 0 (16.12)

with the current density

j	 D ��
�
��
	L � @�� � @L

@.@	�/

�
� ı� @L

@.@	�/
: (16.13)

The corresponding charge in a d-dimensional spacetime

Q D 1

c

Z
dd�1x j0.x; t/ D

Z
dd�1x %.x; t/ (16.14)

is conserved if no charges are escaping or entering at jxj ! 1:

lim
jxj!1

Z
dd�2� jxjd�3x � j.x; t/ D 0:

Here dd�2� D d�1 : : : d�d�2 sind�3 �1 : : : sin �d�3 is the measure on the .d � 2/-
dimensional sphere in the d�1 spatial dimensions, see also (J.22) (note that in (J.22)
the number of spatial dimensions is denoted as d).

If the off-shell variation of ddxL satisfies ı.ddxL/ � ddx @	K	, the on-shell
conserved current is J	 D j	 C K	 and the charge is the spatial integral over J0=c.

Symmetry transformations which only transform the fields, but leave the coor-
dinates invariant (ı� ¤ 0, � D 0), are denoted as internal symmetries. Symmetry
transformations involving coordinate transformations are denoted as external sym-
metries.

The connection between symmetries and conservation laws was developed by
Emmy Noether3 and is known as Noether’s theorem.

3E. Noether, Nachr. König. Ges. Wiss. Göttingen, Math.-phys. Klasse, 235 (1918), see also
arXiv:physics/0503066.



16.2 Symmetries and conservation laws 327

Energy-momentum tensors

We now specialize to inertial (i.e. pseudo-Cartesian) coordinates in Minkowski
spacetime. If the coordinate shift in (16.5) is a constant translation, @	�� D 0, all
fields transform like scalars, ı� D 0, and the conserved current becomes

j	 D ��
�
��
	L � @�� � @L

@.@	�/

�
D ��‚�

	:

Omitting the d irrelevant constants �� leaves us with d conserved currents .0 � � �
d � 1/

@	‚�
	 D 0; (16.15)

with components

‚�
	 D ��

	L � @�� � @L
@.@	�/

: (16.16)

The corresponding conserved charges

p� D 1

c

Z
dd�1x‚�

0 (16.17)

are the components of the four-dimensional energy-momentum vector of the phys-
ical system described by the Lagrange density L, and the tensor with components
‚�

	 is therefore denoted as an energy-momentum tensor.
The spatial components ‚ij of the energy-momentum tensor have dual interpre-

tations in terms of momentum current densities and forces. To explain the meaning
of ‚ij, we pick an arbitrary (but stationary) spatial volume V . Since we are talking
about fields, part of the fields will reside in V . From equation (16.17), the fields in
V will carry a part of the total momentum p which is

pV D ei
1

c

Z
V

dd�1x‚i0:

The equations (16.15) and (16.17) imply that the change of pV is given by

d

dt
pV D ei

Z
V

dd�1x @0‚i0 D � ei

I
@V

dd�2Sj‚
ij; (16.18)

where the Gauss theorem in d � 1 spatial dimensions was employed and dd�2Sj is
the outward bound surface element on the boundary @V of the volume.

This equation tells us that the component‚ij describes the flow of the momentum
component pi through the plane with normal vector ej, i.e. ‚ij is the flow of
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momentum pi in the direction ej and ji D ‚ijej is the corresponding current density.
In the dual interpretation, we read equation (16.18) with the relation FV D dpV=dt
between force and momentum change in mind. In this interpretation, FV is the force
exerted on the fields in the fixed volume V , because it describes the rate of change
of momentum of the fields in V . �FV is the force exerted by the fields in the fixed
volume V . The component ‚ij is then the force in direction ei per area with normal
vector ej. This represents strain or pressure for i D j and stress for i ¤ j. The
energy-momentum tensor is therefore also known as stress-energy tensor.

There is another equation for the energy-momentum tensor in general relativity,
which agrees with equation (16.16) for scalar fields, but not for vector or relativistic
spinor fields. Both definitions yield the same conserved energy and momentum of a
system, but improvement terms have to be added to the tensor from equation (16.16)
in relativistic field theories to get the correct expressions for local densities for
energy and momentum. We will discuss the necessary modifications of ‚�

	 for the
Maxwell field (photons) in Section 18.1 and for relativistic fermions in Section 21.4.

16.3 Applications to Schrödinger field theory

The energy-momentum tensor for the Schrödinger field is found by substitut-
ing (16.3) into equation (16.16). The corresponding energy density is usually written
as a Hamiltonian density H,

H D cP0 D �‚0
0 D „2

2m
r‰C � r‰ C‰C � V �‰; (16.19)

and the momentum density is

P D 1

c
ei‚

i0 D „
2i

�
‰C � r‰ � r‰C �‰� : (16.20)

The energy current density for the Schrödinger field follows as

jH D � c‚0
iei D � „2

2m

�
r‰C � @‰

@t
C @‰C

@t
� r‰

�
: (16.21)

The energy E D R
d3xH and momentum p D R

d3xP agree with the correspond-
ing expectation values of the Schrödinger wave function in quantum mechanics. The
results of the previous section, or direct application of the Schrödinger equation,
tell us that E is conserved if the potential is time-independent, V D V.x/, and the
momentum component e.g. in x-direction is conserved if the momentum does not
depend on x, V D V.y; z/.
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Probability and charge conservation from invariance under
phase rotations

The Lagrange density (16.3) is invariant under phase rotations of the Schrödinger
field,

ı‰.x; t/ D i
q

„'‰.x; t/; ı‰C.x; t/ D � i
q

„'‰
C.x; t/:

We wrote the constant phase in the peculiar form q'=„ in anticipation of the connec-
tion to local gauge transformations (15.8, 15.9), which will play a recurring role later
on. However, for now we note that substitution of the phase transformations into the
equation (16.13) yields after division by the irrelevant constant q' the density

% D j0

c
D � 1

q'

�
ı‰

@L
@.@t‰/

C ı‰C @L
@.@t‰C/

�
D ‰C‰ D 1

q
%q (16.22)

and the related current density

j D � 1

q'

�
ı‰

@L
@.r‰/ C ı‰C @L

@.r‰C/

�
D „
2im

�
‰C � r‰ � r‰C �‰�

D 1

q
jq: (16.23)

Comparison with equations (1.17) and (1.18) shows that probability conservation in
Schrödinger theory can be considered as a consequence of invariance under global
phase rotations.

Had we not divided out the charge q, we would have drawn the same conclusion
for conservation of electric charge with %q D q‰C‰ as the charge density and
jq D qj as the electric current density. The coincidence of the conservation laws for
probability and electric charge in Schrödinger theory arises because it is a theory for
non-relativistic particles. Only charge conservation will survive in the relativistic
limit, but probability conservation for particles will not hold any more, because
%q.x; t/=q will not be positive definite any more and therefore will not yield a
quantity that could be considered as a probability density to find a particle in the
location x at time t.

Comparison with equation (16.20) tells us that j is also proportional to the
momentum density,

j.x; t/ D 1

m
P.x; t/; (16.24)

which tells us that the probability current density of the Schrödinger field is also a
velocity density.
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16.4 Problems

16.1. Show that addition of any derivative term @	F.�I/ to the Lagrange density
L.�I ; @�I/ does not change the Euler-Lagrange equations.

16.2. We consider classical particle mechanics with a Lagrangian L.qI ; PqI/.

16.2a. Suppose the action is invariant under constant shifts ıqJ of the coordinate
qJ.t/. Which conserved quantity do you find from equation (16.13)? Which
condition must L fulfill to ensure that the action is not affected by the constant
shift ıqJ?

16.2b. Now we assume that the action is invariant under constant shifts
ıt D �� of the internal coordinate t. Which conserved quantity do you find
from equation (16.13) in this case?

16.3. Use the Schrödinger equation to confirm that the energy density (16.19) and
the energy current density (16.21) indeed satisfy the local conservation law

@

@t
H D �r � jH

if the potential is time-independent, V D V.x/.
How does E change if V D V.x; t/ is time-dependent?

16.4. We have only evaluated the components ‚0
0, ‚i

0 and ‚0
i of the energy-

momentum tensor of the Schrödinger field in equations (16.19)–(16.21). Which
momentum current densities jiP do you find from the energy-momentum tensor of
the Schrödinger field?

16.5. Schrödinger fields can have different transformation properties under coor-
dinate rotations ıx D �' � x, see Section 8.2. In this problem we analyze a
Schrödinger field which transforms like a scalar under rotations,

ı‰.x; t/ D ‰0.x0; t/ �‰.x; t/ D 0:

The Lagrange density (16.3) is invariant under rotations if V D V.r; t/. Which
conserved quantity do you find from this observation?

Solution. Equation (16.13) yields with � D ' � x a conserved charge density

% D j0

c
D �.' � x/ �

�
r‰ @L

@.@t‰/
C r‰C @L

@.@t‰C/

�

D � i„
2

' � 	x � �‰C � r‰ � r‰C �‰�
 D ' �M;

with an angular momentum density

M D „
2i

x � �‰C � r‰ � r‰C �‰� D x � P : (16.25)
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Since the constant parameters ' are arbitrary, we find three linearly independent
conserved quantities, viz. the angular momentum

M D
Z

d3xM D hx � pi

of the scalar Schrödinger field.

16.6. Now we assume that our Schrödinger field is a 2-spinor with the transforma-
tion property

ı‰ D i

2
.' � � / �‰; ı‰C D � i

2
‰C � .' � � /:

Show that the corresponding density of “total angular momentum” of the
Schrödinger field in this case consists of an orbital and a spin part,

J D „
2i

x � �‰C � r‰ � r‰C �‰�C „
2
‰C � � �‰

D x � P C‰C � S �‰ D M C S: (16.26)

Rotational invariance implies only conservation of the total angular momentum
J D R

d3xJ . However, on the level of the Lagrange density (16.3), which does not
contain spin-orbit interaction terms (8.20), the orbital and spin parts are preserved
separately. We will see in Section 21.5 that spin-orbit coupling is a consequence of
relativity.

16.7. Suppose the Hamiltonian has the spin-orbit coupling form H D˛M � S, where
Mi and Si are angular momentum and spin operators. How do these operators evolve
in the Heisenberg picture?

16.7a. Show that the Heisenberg evolution equations for the operators yield

PM D ˛S � M; PS D ˛M � S: (16.27)

16.7b. Show that J � M C S, M2, S2 and M � S are all constant.

16.7c. Show that the evolution equations (16.27) are solved by

M.t/ D exp.�˛J � Lt � i„˛t/ � M (16.28)

and

S.t/ D exp.�˛J � Lt � i„˛t/ � S; (16.29)

where M � M.0/, S � S.0/, and L D .L1;L2;L3/ is the vector of matrices with
components .Li/jk D �ijk, see equation (7.18).
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16.7d. Except for the phase rotations, the equations (16.28, 16.29) seem to suggest
that M.t/ and S.t/ are rotating around the direction of the vector J with angular
velocity ! D ˛J. This suggestive picture of coupled angular momentum type
operators rotating around the total angular momentum vector is often denoted as
the vector model of spin-orbit type couplings. However, note that the total angular
momentum vector is acting on tensor products of eigenstates and in fully explicit
notation has the form

J D M ˝ 1C 1˝ S:

That does not mean that the results (16.27–16.29) or the conservation laws expressed
in 16.7b are incorrect, but we must beware of simple interpretations in terms of
vectors living within one and the same vector space.

Repeat the previous problems 16.7a–c in terms of the explicit tensor product
notation using the Hamiltonian

H D ˛M
�̋

S D ˛Mi ˝ Si:

16.8. Show that the Lagrange density

L D i„
2

�
‰C � @‰

@t
� @‰C

@t
�‰
�

� q‰C �ˆ �‰

� „2
2m

�
r‰C C i

q

„‰
CA
�

�
�
r‰ � i

q

„A‰
�
: (16.30)

yields the equations of motion for the Schrödinger field in external electromagnetic
fields

E.x; t/ D � rˆ.x; t/ � @

@t
A.x; t/; B.x; t/ D r � A.x; t/:

16.9. Derive the electric charge and current densities for the Schrödinger field in
electromagnetic fields from the phase invariance of (16.30).

Answers. The charge density is

%q D q‰C‰: (16.31)

The current density is

jq D q„
2im

�
‰C � r‰ � r‰C �‰� � q2

m
‰CA‰: (16.32)

Are the charge and current densities gauge invariant?



Chapter 17
Non-relativistic Quantum Field Theory

Quantum mechanics, as we know it so far, deals with invariant particle numbers,

d

dt
h‰.t/j‰.t/i D 0:

However, at least one of the early indications of wave-particle duality implies
disappearance of a particle, viz. absorption of a photon in the photoelectric effect.
This reminds us of two deficiencies of Schrödinger’s wave mechanics: it cannot deal
with absorption or emission of particles, and it cannot deal with relativistic particles.

In the following sections we will deal with the problem of absorption and
emission of particles in the non-relativistic setting, i.e. for slow electrons, protons,
neutrons, or nuclei, or quasiparticles in condensed matter physics. The strategy will
be to follow a quantization procedure that works for the promotion of classical
mechanics to quantum mechanics, but this time for Schrödinger theory. The
correspondences are summarized in Table 17.1.

The key ingredient is promotion of the “classical” variables x or ‰.x; t/ to
operators through “canonical (anti-)commutation relations”, as outlined in the
last two lines of Table 17.1. This procedure of promoting classical variables
to operators by imposing canonical commutation or anti-commutation relations
is called canonical quantization. Canonical quantization of fields is denoted as
field quantization. Since the fields are often wave functions (like the Schrödinger
wave function) which arose from the quantization of x and p, field quantization
is sometimes also called second quantization. A quantum theory that involves
quantized fields is denoted as a quantum field theory.

Indeed, quantum field theory is essentially as old as Schrödinger’s wave mechan-
ics, because it was clear right after the inception of quantum mechanics that the
formalism was not yet capable of the description of quantum effects for photons.
This led to the rapid invention of field quantization in several steps between

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
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Table 17.1 Correspondence between first and second quantization

Classical mechanics Schrödinger’s wave mechanics

Independent variable t Independent variables x; t

Dependent variables x.t/ Dependent variables ‰.x; t/; ‰C.x; t/

Newton’s equation Schrödinger’s equation

mRx D �r V.x/ i„ @
@t‰ D � „

2

2m�‰ C V‰

Lagrangian Lagrangian

L D m
2

Px2 � V.x/ L D i„
2

�
‰C � @

@t‰ � @
@t‰

C �‰�
� „

2

2m r ‰C � r ‰ �‰C � V �‰
Conjugate momenta Conjugate momenta

pi.t/ D @L=@Pxi.t/ D mPxi.t/ …‰.x; t/ D @L=@ P‰.x; t/ D i„
2
‰C.x; t/,

…
C

‰ .x; t/ D � i„
2
‰.x; t/

Canonical commutators Canonical (anti-)commutators

Œxi.t/; pj.t/� D i„ıij, Œ‰.x; t/; ‰C.x0; t/�� D ı.x � x0/,

Œxi.t/; xj.t/� D 0, Œpi.t/; pj.t/� D 0 Œ‰.x; t/; ‰.x0; t/�� D 0

1925 and 1928. Key advancements1 were the formulation of a quantum field
as a superposition of infinitely many oscillation operators by Born, Heisenberg
and Jordan in 1926, the application of infinitely many oscillation operators by
Dirac in 1927 for photon emission and absorption, and the introduction of anti-
commutation relations for fermionic field operators by Jordan and Wigner in 1928.
Path integration over fields was introduced by Feynman in the 1940s.

17.1 Quantization of the Schrödinger field

We will now start to perform the program of canonical quantization of Schrödinger’s
wave mechanics. First steps will involve the promotion of wave functions like
‰.x; t/ and ‰C.x; t/ to field operators or quantum fields through the proposition
of canonical commutation or anti-commutation relations, and the identification of
related composite field operators like the Hamiltonian, momentum and charge
operators. The composite operators will then help us to reveal the physical meaning
of the Schrödinger quantum fields ‰.x; t/ and ‰C.x; t/ as annihilation and creation
operators for particles.
The Lagrange density (16.3) yields the canonically conjugate momenta

…‰ D @L
@ P‰ D i„

2
‰C; …‰C D @L

@ P‰C D � i„
2
‰;

1M. Born, W. Heisenberg, P. Jordan, Z. Phys. 35, 557 (1926); P.A.M. Dirac, Proc. Roy. Soc. London
A 114, 243 (1927); P. Jordan, E. Wigner, Z. Phys. 47, 631 (1928).
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and the canonical commutation relations2 translate for fermions (with the upper
signs corresponding to anti-commutators) and bosons (with the lower signs corre-
sponding to commutators) into

Œ‰.x; t/; ‰C.x0; t/�˙ � ‰.x; t/‰C.x0; t/˙‰C.x0; t/‰.x; t/

D ı.x � x0/; (17.1)

Œ‰.x; t/; ‰.x0; t/�˙ D 0; Œ‰C.x; t/; ‰C.x0; t/�˙ D 0:

Whether the quantum field for a particle should be quantized using commutation
or anti-commutation relations depends on the spin of the particle, i.e. on the
transformation properties of the field under rotations, see Chapter 8. Bosons have
integer spin and are quantized through commutation relations while fermions have
half-integer spin and are quantized through anti-commutation relations. Therefore
we should include spin labels (which were denoted as ms or a in Chapter 8) with
the quantum fields, e.g. ‰ms.x; t/, ms 2 f�s;�s C 1; : : : ; sg, for a field describing
particles of spin s and spin projection ms. We will explicitly include spin labels in
Section 17.5, but for now we will not clutter the equations any more than necessary,
since spin labels can usually be ignored as long as dipole approximation � � a0
applies. Here a0 is the Bohr radius and � is the wavelength of photons which might
interact with the Schrödinger field. Spin-flipping transitions are suppressed roughly
by a factor a20=�

2 relative to spin-preserving transitions in dipole approximation.
See the remarks after equation (18.106).

The commutation relations (17.1) in the bosonic case are like the commutation
relations Œai; a

C
j � D ıij etc. for oscillator operators. Therefore we can think of the

field operators ‰.x; t/ and ‰C.x0; t/ as annihilation and creation operators for each
point in spacetime. We will explicitly confirm this interpretation below by showing
that the corresponding Fourier transformed operators a.k/ and aC.k/ (in the
Schrödinger picture) annihilate or create particles of momentum „k, respectively.
We will also see how linear superpositions of the operators  C.x/ D ‰C.x; 0/
act on the vacuum to generate e.g. states jn; `;m`i which correspond to hydrogen
eigenstates.

Note that ‰.x; t/ and ‰C.x; t/ are now time-dependent operators and their time
evolution is determined by the full dynamics of the system. Therefore they are
operators in the Heisenberg picture of the second quantized theory, i.e. what had
been representations of states in the Schrödinger picture of the first quantized theory
has become field operators in the Heisenberg picture of the second quantized theory.

The elevation of wave functions to operators implies that functions or functionals
of the wave functions that we had encountered in quantum mechanics now also

2Recall the canonical commutation relations Œxi.t/; pj.t/� D i„ıij, Œxi.t/; xj.t/� D 0, Œpi.t/; pj.t/� D
0 in the Heisenberg picture of quantum mechanics. It is customary to dismiss a factor of 2 in the
(anti-)commutation relations (17.1), which otherwise would simply reappear in different places of
the quantized Schrödinger theory.
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become operators. Particularly important cases of functionals of wave functions
include expectation values for observables like energy, momentum, and charge, and
these will all become operators in the second quantized theory. E.g. the Hamiltonian
density is related to the Lagrange density through a Legendre transformation (cf.
H D P

i pi Pqi � L in mechanics), H D …‰
P‰ C P‰C…‰C � L. This yields the

Hamiltonian H D R
d3xH in the form

H D
Z

d3x
� „2
2m

r‰C.x; t/ � r‰.x; t/C‰C.x; t/V.x/‰.x; t/
�
: (17.2)

We have also found the Hamiltonian density in equation (16.19) from the energy-
momentum tensor of the Schrödinger field, which in addition gave us the momentum

P.t/ D
Z

d3xP.x; t/

D
Z

d3x
„
2i

�
‰C.x; t/ � r‰.x; t/ � r‰C.x; t/ �‰.x; t/� : (17.3)

We can just as well use the equivalent expressions

H D
Z

d3x
�

� „2
2m
‰C.x; t/�‰.x; t/C‰C.x; t/ � V.x/ �‰.x; t/

�

and P.t/ D � i„ R d3x‰C.x; t/r‰.x; t/, which can be motivated from the corre-
sponding equations for the energy and momentum expectation values in the first
quantized Schrödinger theory.

Other frequently used composite operators3 include the number and charge
operators N and Q, cf. (16.23),

N D
Z

d3x %.x; t/ D
Z

d3x‰C.x; t/‰.x; t/ D 1

q
Q: (17.4)

Before we continue with the demonstration that ‰.x; t/ and ‰C.x0; t/ are
annihilation and creation operators, we should confirm our suspicion that they are
indeed operators in the Heisenberg picture of quantum field theory. We will do this
next.

3For another composite operator we can also define an integrated current density through Iq.t/ DR
d3x jq.x; t/ D qP.t/=m, where the last equation follows from (16.24). However, recall that jq.x; t/

is a current density, but it is not a current per volume, and therefore Iq.t/ is not an electric current
but comes in units of e.g. Ampère meter. It is related to charge transport like momentum P.t/ is
related to mass transport.
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Time evolution of the field operators

Very useful identities for commutators involving products of operators are

ŒAB;C� D ABC � CAB D ABC C ACB � ACB � CAB

D AŒB;C�˙ � ŒC;A�˙B;

ŒA;BC� D ABC � BCA D ABC C BAC � BAC � BCA

D ŒA;B�˙C � BŒC;A�˙: (17.5)

These relations and the canonical (anti-)commutation relations between the field
operators imply that both bosonic and fermionic field operators ‰.x; t/ satisfy the
Heisenberg evolution equations,

@

@t
‰.x; t/ D i

„
2m
�‰.x; t/ � i

„V.x/‰.x; t/ D i

„ ŒH; ‰.x; t/�; (17.6)

@

@t
‰C.x; t/ D � i

„
2m
�‰C.x; t/C i

„V.x/‰C.x; t/ D i

„ ŒH; ‰
C.x; t/�: (17.7)

However, then we also get (note that here the time-independence of V.x/ is
important)

d

dt
H D i

„ ŒH;H� D 0;

which was already anticipated in the notation by writing H rather than H.t/.
The relations (17.6, 17.7) confirm the Heisenberg picture interpretation of the
Schrödinger field operators ‰.x; t/ and ‰C.x; t/.

k-space representation of quantized Schrödinger theory

In quantum mechanics, we used wave functions in k-space both for scattering theory
and for the calculation of the time evolution of free wave packets. The k-space
representation becomes even more important in quantum field theory because
ensembles of particles have additive quantum numbers like total momentum and
total kinetic energy which depend on the wave vector k of a particle, and this will
help us to reveal the meaning of the Schrödinger field operators.

The mode expansion in the Heisenberg picture

‰.x; t/ D 1p
2�

3

Z
d3k a.k; t/ exp.ik � x/ ; (17.8)

a.k; t/ D 1p
2�

3

Z
d3x‰.x; t/ exp.�ik � x/ (17.9)
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implies with (17.1) the (anti-)commutation relations for the field operators in k-
space,

Œa.k; t/; aC.k0; t/�˙ D ı.k � k0/;

Œa.k; t/; a.k0; t/�˙ D 0; ŒaC.k; t/; aC.k0; t/�˙ D 0:

Furthermore, substitution of equation (17.8) into the charge, momentum and
energy operators yields

Q D qN D q
Z

d3k aC.k; t/a.k; t/; (17.10)

P.t/ D
Z

d3k „k aC.k; t/a.k; t/ (17.11)

and

H D H0.t/C V.t/; (17.12)

with the kinetic and potential operators

H0.t/ D
Z

d3k
„2k2
2m

aC.k; t/a.k; t/ (17.13)

and

V.t/ D
Z

d3k
Z

d3q aC.k C q; t/V.q/a.k; t/: (17.14)

Here we used the following normalization for the Fourier transform of single particle
potentials,

V.x/ D
Z

d3q V.q/ exp.iq � x/;

V.q/ D VC.�q/ D 1

.2�/3

Z
d3x V.x/ exp.�iq � x/:

Field operators in the Schrödinger picture and the Fock space
for the Schrödinger field

The relations in the Heisenberg picture
@

@t
‰.x; t/ D i

„ ŒH; ‰.x; t/�;
@

@t
a.k; t/ D i

„ ŒH; a.k; t/�;
d

dt
H D 0

imply

‰.x; t/ D exp

�
i

„Ht

�
 .x/ exp

�
� i

„Ht

�
;

a.k; t/ D exp

�
i

„Ht

�
a.k/ exp

�
� i

„Ht

�
:
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The time-independent operators  .x/ D ‰.x; 0/, a.k/ D a.k; 0/ are the corre-
sponding operators in the Schrödinger picture of the quantum field theory4. Having
time-independent operators in the Schrödinger picture comes at the expense of time-
dependent states

jˆ.t/i D exp

�
� i

„Ht

�
jˆ.0/i;

to preserve the time dependence of matrix elements and observables. Here we use
a boldface bra-ket notation hˆj and jˆi for states in the second quantized theory to
distinguish them from the states hˆj and jˆi in the first quantized theory.

The canonical (anti-)commutation relations for the Heisenberg picture operators
imply canonical (anti-)commutation relations for the Schrödinger picture operators,

Œ .x/;  C.x0/�˙ D ı.x � x0/; (17.15)

Œ .x/;  .x0/�˙ D 0; Œ C.x/;  C.x0/�˙ D 0;

Œa.k/; aC.k0/�˙ D ı.k � k0/; (17.16)

Œa.k/; a.k0/�˙ D 0; ŒaC.k/; aC.k0/�˙ D 0:

These are oscillator like commutation or anti-commutation relations, and to
figure out what they mean we will look at all the composite operators of the
Schrödinger field that we had constructed before.

Time-independence of the full Hamiltonian implies that we can express H in
terms of the field operators ‰.x; t/ in the Heisenberg picture or the field operators
 .x/ in the Schrödinger picture,

H D
Z

d3x
� „2
2m

r‰C.x; t/ � r‰.x; t/C‰C.x; t/ � V.x/ �‰.x; t/
�

D
Z

d3x
� „2
2m

r C.x/ � r .x/C  C.x/ � V.x/ � .x/
�

D
Z

d3k
„2k2
2m

aC.k/a.k/C
Z

d3k
Z

d3q aC.k C q/V.q/a.k/: (17.17)

However, the free Hamiltonians in the Heisenberg picture and in the Schrödinger
picture depend in the same way on the respective field operators, but they are
different operators if V ¤ 0,

H0 D exp

�
� i

„Ht

�
H0.t/ exp

�
i

„Ht

�

D exp

�
� i

„Ht

�Z
d3x

„2
2m

r‰C.x; t/ � r‰.x; t/ exp

�
i

„Ht

�

D
Z

d3x
„2
2m

r C.x/ � r .x/ D
Z

d3k
„2k2
2m

aC.k/a.k/: (17.18)

4For convenience, we have chosen the time when both pictures coincide as t0 D 0.
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The number and charge operators in the Schrödinger picture are

N D
Z

d3x %.x/ D
Z

d3x C.x/ .x/ D
Z

d3k aC.k/a.k/ D 1

q
Q;

and the momentum operator is

P D
Z

d3x
„
2i

�
 C.x/ � r .x/ � r C.x/ � .x/�

D
Z

d3k „k aC.k/a.k/: (17.19)

The momentum operator P.t/ in the Heisenberg picture (17.11) is related
to the momentum operator P in the Schrödinger picture through the standard
transformation between Schrödinger picture and Heisenberg picture,

P.t/ D exp

�
i

„Ht

�
P exp

�
� i

„Ht

�
;

and the same similarity transformation applies to all the other operators. However,
we did not write N.t/ or Q.t/ in equations (17.4, 17.10), because ŒH;N� D 0 for the
single particle Hamiltonian (17.17).

We are now fully prepared to identify the meaning of the operators a.k/ and
aC.k/. The commutation relations

ŒH0; a.k/� D � „2k2
2m

a.k/; ŒH0; a
C.k/� D „2k2

2m
aC.k/; (17.20)

ŒP; a.k/� D � „ka.k/; ŒP; aC.k/� D „kaC.k/; (17.21)

ŒQ; a.k/� D � qa.k/; ŒQ; aC.k/� D qaC.k/; (17.22)

ŒN; a.k/� D � a.k/; ŒN; aC.k/� D aC.k/; (17.23)

imply that a.k/ annihilates a particle with energy „2k2=2m, momentum „k, mass
m and charge q, while aC.k/ generates such a particle. This follows exactly in
the same way as the corresponding proof for energy annihilation and creation for
the harmonic oscillator (6.11–6.13). Suppose e.g. that jKi is an eigenstate of the
momentum operator,

PjKi D „KjKi:
The commutation relation (17.21) then implies

PaC.k/jKi D aC.k/ .P C „k/ jKi D „ .K C k/ aC.k/jKi;
i.e.

aC.k/jKi / jK C ki;
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while (17.20) implies

aC.k/jEi / jE C .„2k2=2m/i:

The Hamilton operator (17.18) therefore corresponds to an infinite number of
harmonic oscillators with frequencies !.k/ D „k2=2m, and there must exist a lowest
energy state j0i which must be annihilated by the lowering operators,

a.k/j0i D 0:

The general state then corresponds to linear superpositions of states of the form

jfnkgi D
Y

k

aC.k/nk

p
nkŠ

j0i:

This vector space of states is denoted as a Fock space.
The particle annihilation and creation interpretation of a.k/ and aC.k/ then

also implies that the Fourier component V.q/ in the potential term of the full
Hamiltonian (17.17) shifts the momentum of a particle by �p D „q by replacing a
particle with momentum „k with a particle of momentum „k C „q.

Time-dependence of H0

The free Hamiltonian H0 (17.18) is time-independent in the Schrödinger picture
(and also in the Dirac picture introduced below), but not in the Heisenberg picture if
ŒH0;H� ¤ 0. The transformation from the Schrödinger picture into the Heisenberg
picture,

H0.t/ D
Z

d3x
„2
2m

r‰C.x; t/ � r‰.x; t/ D exp

�
i

„Ht

�
H0 exp

�
� i

„Ht

�
;

implies the evolution equation

dH0.t/

dt
D i

„ ŒH;H0.t/� D i

„ ŒV.t/;H0.t/�

D i

„ exp

�
i

„Ht

�
ŒV;H0� exp

�
� i

„Ht

�
; (17.24)

The operator

V.t/ D
Z

d3x‰C.x; t/V.x/‰.x; t/ D exp

�
i

„Ht

�
V exp

�
� i

„Ht

�
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is the potential operator in the Heisenberg picture, while the potential operator in
the Schrödinger picture is

V D
Z

d3x C.x/V.x/ .x/ D
Z

d3k
Z

d3q aC.k C q/V.q/a.k/:

The commutator in the Schrödinger picture follows from the canonical commutators
or anti-commutators of the field operators as

ŒV;H0� D
Z

d3x
„2
2m

�
 C.x/ � r .x/ � r C.x/ � .x/� � rV.x/ (17.25)

D �
Z

d3k
Z

d3q
„2
2m

�
q2 C 2k � q

�
aC.k C q/V.q/a.k/: (17.26)

The integral in equation (17.25) contains the current density (1.18, 16.23) of the
Schrödinger field. The commutator can therefore be written as

ŒV;H0� D i„
Z

d3x j.x/ � rV.x/;

and substitution into the Heisenberg picture evolution equations for H0.t/ (17.24)
yields

d

dt
H0.t/ D �

Z
d3x j.x; t/ � rV.x/: (17.27)

However, we have also identified j.x; t/ as a velocity density operator for the
Schrödinger field, cf. (16.24). The classical analog of equation (17.27) is therefore
the equation for the change of the kinetic energy of a classical non-relativistic
particle moving under the influence of the force F.x/ D �rV.x/,

d

dt
K.t/ D � v.t/ � rV.x/:

17.2 Time evolution for time-dependent Hamiltonians

The generic case in quantum field theory are time-independent Hamilton operators
in the Heisenberg and Schrödinger pictures. We will see the reason for this below,
after discussing the general case of a Heisenberg picture Hamiltonian H.t/ � HH.t/
which could depend on time.

Integration of equation (17.6) yields in the general case of time-dependent H.t/

‰.t/ D ‰.t0/C i

„
Z t

t0

d� ŒH.�/; ‰.�/� D QU.t; t0/‰.t0/ QUC.t; t0/;
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with the unitary operator

QU.t; t0/ D QT exp

�
i

„
Z t

t0

d� H.�/

�
:

Here QT locates the Hamiltonians near the upper time integration boundary leftmost,
but for the factor Ci in front of the integral.

Recall that in the Heisenberg picture, we have all time dependence in the
operators, but time-independent states. To convert to the Schrödinger picture, we
remove the time dependence from the operators and cast it onto the states such that
matrix elements remain the same, hˆ.t0/j‰.t/jˆ.t0/i D hˆ.t/j‰.t0/jˆ.t/i. The
time evolution of the states in the Schrödinger picture is therefore given by

jˆ.t/i D QU.t0; t/jˆ.t0/i: (17.28)

This implies a Schrödinger equation

i„ d

dt
jˆ.t/i D QU.t0; t/HH.t/jˆ.t0/i D QU.t0; t/HH.t/ QU.t; t0/jˆ.t/i

D HS.t/jˆ.t/i:

Therefore we also have

jˆ.t/i D U.t; t0/jˆ.t0/i D T exp

�
� i

„
Z t

t0

d� HS.�/

�
jˆ.t0/i;

i.e.

QU.t0; t/ D QT exp

�
i

„
Z t0

t
d� HH.�/

�
D U.t; t0/

D T exp

�
� i

„
Z t

t0

d� HS.�/

�
; (17.29)

where

HS.t/ D QU.t0; t/HH.t/ QU.t; t0/; HH.t/ D U.t0; t/HS.t/U.t; t0/:

The Hamiltonian in the Schrödinger picture depends only on the
t-independent field operators ‰.t0/, i.e. any time dependence of HS can only
result from an explicit time dependence of any parameter, e.g. if a coupling constant
or mass would somehow depend on time. If such a time dependence through a
parameter is not there, then U.t; t0/ D expŒ�iHS.t � t0/=„� and HH.t/ D HS, i.e. HS

is time-independent if and only if HH is time-independent, and then HS D HH .
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This explains why time-independent Hamiltonians HS D HH are the generic
case in quantum field theory. Usually, if we would discover any kind of time
dependence in any parameter � D �.t/ in HS, we would suspect that there must be
a dynamical explanation in terms of a corresponding field, i.e. we would promote
�.t/ to a full dynamical field operator besides all the other field operators in HS,
including a kinetic term for �.t/, and then the new Hamiltonian would again be
time-independent.

Occasionally, we might prefer to treat a dynamical field as a given time-
dependent parameter, e.g. include electric fields in a semi-classical approximation
instead of dealing with the quantized photon operators. This is standard practice
in the “first quantized” theory, and therefore time dependence of the Schrödinger
and Heisenberg Hamiltonians plays a prominent role there. However, once we go
through the hassle of field quantization, we may just as well do the same for
all the fields in the theory, including electromagnetic fields, and therefore semi-
classical approximations and ensuing time dependence through parameters is not as
important in the second quantized theory.

17.3 The connection between first and second
quantized theory

For a single particle first and second quantized theory should yield the same
expectation values, i.e. matrix elements in the 1-particle sector should agree:

hˆj‰i D hˆj‰i: (17.30)

For the states

jxi D  C.x/j0i; jki D aC.k/j0i;

equation (17.30) is fulfilled due to the standard Fourier transformation relation
between the operators in x-space and k-space. The relations

 C.x/ D
Z

d3k aC.k/hkjxi;  .x/ D
Z

d3k hxjkia.k/;

aC.k/ D
Z

d3x C.x/hxjki; a.k/ D
Z

d3x hkjxi .x/;

yield

hxjki D h0j .x/aC.k/j0i D
Z

d3k0 hxjk0ih0ja.k0/aC.k/j0i

D
Z

d3k0 hxjk0ih0jŒa.k0/; aC.k/�˙j0i D hxjki D 1p
2�

3
exp.ik � x/:
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To explore this connection further, we will use superscripts .1/ and .2/ to desig-
nate operators in first and second quantized theory. E.g. the 1-particle Hamiltonians
in first and second quantized theory can be written as

H.1/ D
Z

d3x jxi
�

� „2
2m
�C V.x/

�
hxj; (17.31)

H.2/ D
Z

d3x C.x/
�

� „2
2m
�C V.x/

�
 .x/: (17.32)

We can rewrite H.2/ as

H.2/ D
Z

d3x0
Z

d3x00
Z

d3x C.x0/ı.x0 � x00/
�

� „2
2m
�00 C V.x00/

�

�ı.x00 � x/ .x/ D
Z

d3x0
Z

d3x C.x0/hx0jH.1/jxi .x/;

and again we have exact correspondence between 1-particle matrix elements in the
first and second quantized theory,

hx0jH.1/jxi D hx0jH.2/jxi: (17.33)

This works in general. For an operator K.1/ from first quantized theory, the
requirement of equality of 1-particle matrix elements

hk0jK.2/jki D hk0jK.1/jki; hx0jK.2/jxi D hx0jK.1/jxi (17.34)

can be solved by

K.2/ D
Z

d3k0
Z

d3k aC.k0/hk0jK.1/jkia.k/

D
Z

d3x0
Z

d3x C.x0/hx0jK.1/jxi .x/:

General 1-particle states and corresponding annihilation
and creation operators in second quantized theory

The equivalence of first and second quantized theory in the single-particle sector
also allows us to derive the equations for 1-particle states and corresponding
annihilation and creation operators in second quantization. Suppose jmi and jni
are two states of the first quantized theory. The corresponding matrix element of the
Hamiltonian in the first quantized theory is
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hmjH.1/jni D
Z

d3x hmjxi
�

� „2
2m
�C V.x/

�
hxjni

D
Z

d3x
Z

d3x0
Z

d3x00 hmjx00iı.x00 � x/
�

� „2
2m
�C V.x/

�

�ı.x � x0/hx0jni

D
Z

d3x
Z

d3x0
Z

d3x00 hmjx00ih0j .x00/ C.x/
�

� „2
2m
�C V.x/

�

� .x/ C.x0/j0ihx0jni

D
Z

d3x0
Z

d3x00 hmjx00ih0j .x00/H.2/ C.x0/j0ihx0jni; (17.35)

where we used the identity

ı.x00 � x/ı.x � x0/ D h0j .x00/ C.x/ .x/ C.x0/j0i
to write the matrix element of the 1st quantized theory as a matrix element of the
2nd quantized theory.

We can interprete the result (17.35) as equality of single particle matrix elements,

hmjH.1/jni D hmjH.2/jni

if we define the 1-particle states

jni D
Z

d3x C.x/j0ihxjni D
Z

d3x jxihxjni: (17.36)

This also motivates the definition of corresponding creation and annihilation
operators

aC
n �  C

n D
Z

d3x C.x/hxjni D
Z

d3k aC.k/hkjni; (17.37)

an �  n D
Z

d3x .x/hnjxi D
Z

d3k a.k/hnjki: (17.38)

E.g. the operator

aC
n;`;m �  C

n;`;m D
Z

d3x C.x/hxjn; `;mi D
Z

d3k aC.k/hkjn; `;mi

will create an electron (or more precisely, the corresponding quasiparticle for
relative motion of the electron and the proton) in the jn; `;mi state of hydrogen.
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The canonical relations for the field operators  .x/ or a.k/ imply that the
operators for multiplets of quantum numbers n also satisfy (anti-)commutation
relations

Œ m;  
C
n �˙ D ım;n; Œ m;  n�˙ D 0; Œ C

m ;  
C
n �˙ D 0: (17.39)

Substituting hxjni D hxjni in equation (17.36) also shows the completeness
relation in the single particle sector of the Fock space,Z

d3x jxihxj D 1: (17.40)

Time evolution of 1-particle states in second quantized theory

According to our previous observations, a state in the Schrödinger picture evolves
according to

jˆ.t/i D exp

�
� i

„H.2/t

�
jˆ.0/i: (17.41)

On the other hand, according to equation (17.36), a single particle state at time
t D 0 should be given in terms of the corresponding first quantized state jˆ.0/i,

jˆ.0/i D
Z

d3x C.x/j0ihxjˆ.0/i:

Here we wish to show that this relation is preserved under time evolution.
We find from equations (17.41), (17.40) and (17.33)

jˆ.t/i D
Z

d3x jxihxj exp

�
� i

„H.2/t

�
jˆ.0/i

D
Z

d3x C.x/j0ihxj exp

�
� i

„H.1/t

�
jˆ.0/i

D
Z

d3x C.x/j0ihxjˆ.t/i; (17.42)

i.e. the equation (17.36) is indeed preserved under time evolution of the states.
We can write the Schrödinger state jˆ.t/i also in the form

jˆ.t/i D ˆC.t/j0i
with the creation operator of the particle in the first quantized state jˆ.t/i,

ˆC.t/ D
Z

d3x C.x/hxjˆ.t/i D
Z

d3k aC.k/hkjˆ.t/i: (17.43)
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Note that ˆC.t/ is an operator in the Schrödinger picture of the theory. The
time-dependence arises only because it is a superposition of Schrödinger picture
operators with time-dependent amplitudes. The corresponding Heisenberg picture
operator is given in equation (17.47) below.

Other equivalent forms of the representation of states in the Schrödinger picture
involve linear combinations of Heisenberg picture field operators, e.g.

jˆ.t/i D exp

�
� i

„H.2/t

�
jˆ.0/i

D
Z

d3x exp

�
� i

„H.2/t

�
 C.x/j0ihxjˆ.0/i

D
Z

d3x‰C.x;�t/j0ihxjˆ.0/i (17.44)

and

hxjˆ.t/i D hxj exp

�
� i

„H.2/t

�
jˆ.0/i D hx; tjˆ.0/i;

with moving base kets

jx; ti D exp

�
i

„H.2/t

�
jxi D exp

�
i

„H.2/t

�
 C.x/j0i D ‰C.x; t/j0i;

jk; ti D aC.k; t/j0i:

At first sight, the time-dependence of the creation operator in (17.44) may not
be what one naively might have expected, but as we have seen it is implied by
the correspondence of single particle matrix elements between the second and
first quantized theory. In a slightly different way, the correctness of the time-
dependence in (17.44) can also be confirmed by verifying that it is exactly the
time-dependence which ensures that the Heisenberg evolution equation (17.7) is
equivalent to the Schrödinger equation on the single particle wave function, see
Problem 17.10.

The Heisenberg picture state corresponding to jˆ.t/i is

jˆHi D exp

�
i

„H.2/t

�
jˆ.t/i D jˆ.0/i

D
Z

d3x C.x/j0ihxjˆ.0/i: (17.45)

Note that substitution of (17.42) into the first equation in (17.45) implies that we
can write this state also in the form

jˆHi D
Z

d3x‰C.x; t/j0ihxjˆ.t/i D ˆC
H .t/j0i (17.46)
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with the Heisenberg picture operator

ˆC
H .t/ D exp

�
i

„H.2/t

�
ˆC.t/ exp

�
� i

„H.2/t

�

D
Z

d3x‰C.x; t/hxjˆ.t/i: (17.47)

The time-independence of the Heisenberg picture state jˆHi is manifest
in (17.45) but appears rather suspicious in (17.46). However, the representa-
tion (17.46) directly leads back to (17.45) if we use the correspondence of single
particle matrix elements,

hxjˆ.t/i D hxjˆ.t/i D hxj exp

�
� i

„H.2/t

�
jˆ.0/i;

and the completeness relation in the single particle sector,

exp

�
i

„H.2/t

�Z
d3x jxihxj exp

�
� i

„H.2/t

�
D 1:

There is a subtle point underlying the discussion in this section that students who
go through their first iteration of learning quantum field theory would not notice,
because we have not yet discussed interacting quantum field theories. However, I
should point out that the equivalence of first and second quantization in the single
particle sector holds if the single particle states cannot spontaneously absorb another
particle or decay into two or more particles. This property also holds in interacting
quantum field theories like quantum electronics or quantum electrodynamics,
because conservation laws prevent e.g. single charged particles from spontaneously
absorbing or radiating photons. These theories require at least two particles in both
the initial and final states (or semi-classical inclusion of a second particle in the
form of an external potential) for particle number changing processes. Quantum
field theory can also describe inherently unstable particles which decay into two or
more particles. This could be mapped back to a corresponding first quantized theory
in terms of coupled many particle wave equations for N-particle wave functions.
However, that would yield an unwieldy and inefficient formalism. Quantum fields
are much more convenient than wave functions when it comes to the description of
particle number changing processes.

17.4 The Dirac picture in quantum field theory

Although our Hamiltonians in the Heisenberg and Schrödinger pictures are usually
time-independent in quantum field theory, time-dependent perturbation theory
is still used for the calculation of transition rates even with time-independent
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perturbations V . This will lead again to the calculation of scattering matrix elements
Sfi D hf jUD.1;�1/jii of the time-evolution operator in the interaction picture.
Therefore we will automatically encounter field operators in the Dirac picture,
which are gotten from the time-independent field operators of the Schrödinger
picture through application of an unperturbed Hamiltonian H0 D H � V . In many
cases this will be the free Schrödinger picture Hamiltonian

H0 D
Z

d3x
„2
2m

r C.x/ � r .x/ D
Z

d3k
„2k2
2m

aC.k/a.k/:

Please note that the free Hamilton operator in the Heisenberg picture (we set again
t0 D 0 for the time when the two pictures coincide)

H0;H.t/ D exp

�
i

„Ht

�
H0 exp

�
� i

„Ht

�

D
Z

d3x
„2
2m

r‰C.x; t/ � r‰.x; t/ D
Z

d3k
„2k2
2m

aC.k; t/a.k; t/

usually differs from H0, because generically

ŒH;H0� D ŒV;H0� ¤ 0:

Transformation of the basic field operators from the Schrödinger picture into the
Dirac picture yields

aD.k; t/ D exp

�
i

„H0t

�
a.k/ exp

�
� i

„H0t

�
D a.k/ exp

�
� i„
2m

k2t
�

D 1p
2�

3

Z
d3x .x; t/ exp.�ik � x/ ; (17.48)

 .x; t/ D exp

�
i

„H0t

�
 .x/ exp

�
� i

„H0t

�

D 1p
2�

3

Z
d3k aD.k; t/ exp.ik � x/

D 1p
2�

3

Z
d3k a.k/ exp

�
ik � x � i„

2m
k2t
�
: (17.49)

Due to the simple relation (17.48) aD.k; t/ is always substituted with a.k/ in
applications of the Dirac picture.

We summarize the conventions for the notation for basic field operators in
Schrödinger field theory in Table 17.2.

The Hamiltonian and the corresponding time evolution operator on the states,
as well as the transition amplitudes are derived in exactly the same way as in
the first quantized theory. However, these topics are important enough to warrant



17.4 The Dirac picture in quantum field theory 351

Table 17.2 Conventions for
basic field operators in
different pictures of
Schrödinger field theory

Heisenberg picture Schrödinger picture Dirac picture

‰.x; t/  .x/  .x; t/
‰C.x; t/  C.x/  C.x; t/
a.k; t/ a.k/ aD.k; t/
aC.k; t/ aC.k/ aC

D .k; t/

repetition in the framework of the second quantized theory. This time we can limit
the discussion to the simpler case of time-independent Hamiltonians H and H0 in
the Schrödinger picture.

The states in the Schrödinger picture of quantum field theory satisfy the
Schrödinger equation

i„ d

dt
jˆ.t/i D Hjˆ.t/i;

which implies

jˆ.t/i D exp

�
� i

„H.t � t0/
�

jˆ.t0/i:

The transformation (17.49)  .x/ !  .x; t/ into the Dirac picture implies for the
states the transformation

jˆ.t/i ! jˆD.t/i D exp

�
i

„H0t

�
jˆ.t/i:

The time evolution of the states in the Schrödinger picture then determines the time
evolution of the states in the Dirac picture

jˆD.t/i D exp

�
i

„H0t

�
exp

�
� i

„H.t � t0/
�

exp

�
� i

„H0t
0
�

jˆD.t
0/i

D UD.t; t
0/jˆD.t

0/i

with the time evolution operator on the states5

UD.t; t
0/ D exp

�
i

„H0t

�
exp

�
� i

„H.t � t0/
�

exp

�
� i

„H0t
0
�
:

5Recall that there are two time evolution operators in the Dirac picture. The free time evolution
operator U0.t � t0/ evolves the operators  .x; t/ D UC

0 .t � t0/ .x; t0/U0.t � t0/, while UD.t; t0/
evolves the states.
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This operator satisfies the initial condition UD.t0; t0/ D 1 and the differential
equations

i„ @
@t

UD.t; t
0/ D exp

�
i

„H0t

�
.H � H0/ exp

�
� i

„H.t � t0/
�

exp

�
� i

„H0t
0
�

D exp

�
i

„H0t

�
V exp

�
� i

„H0t

�
UD.t; t

0/ D HD.t/UD.t; t
0/;

i„ @
@t0

UD.t; t
0/ D � UD.t; t

0/HD.t
0/;

and can therefore also be written as

UD.t; t
0/ D T exp

�
� i

„
Z t

t0
d� HD.�/

�
:

The states in the Dirac picture therefore satisfy the Schrödinger equation

i„ d

dt
jˆD.t/i D HD.t/jˆD.t/i

with the Hamiltonian

HD.t/ � VD.t/ D exp

�
i

„H0t

�
V exp

�
� i

„H0t

�
:

The transition amplitude from an initial unperturbed state jˆi.t0/i at time t0 to a
final state jˆf .t/i at time t is

Sfi.t; t
0/ D hˆf .t/jˆi.t/i D hˆf .t/j exp

�
� i

„H.t � t0/
�

jˆi.t
0/i

D hˆf .0/j exp

�
i

„H0t

�
exp

�
� i

„H.t � t0/
�

exp

�
� i

„H0t
0
�

jˆi.0/i;

or with jf i � jˆf .0/i

Sfi.t; t
0/ D hf jUD.t; t

0/jii D hf jT exp

�
� i

„
Z t

t0
d� HD.�/

�
jii: (17.50)

The scattering matrix Sfi D hf jUD.1;�1/jii contains information about all
processes which take a physical system e.g. from an initial state jii with ni particles
to a final state jf i with nf . This includes in particular also processes where the
interactions in HD.t/ generate virtual intermediate particles which do not couple to
any of the external particles. These vacuum processes need to be subtracted from
the scattering matrix in each order of perturbation theory, which amounts to simply
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neglecting them in the evaluation of the scattering matrix. The vacuum processes
also appear in the vacuum to vacuum amplitude, and the subtraction in each order
of perturbation theory can also be understood as dividing the vacuum to vacuum
amplitude out of the scattering matrix,

Sfi D hf jUD.1;�1/jii
h0jUD.1;�1/j0i : (17.51)

However, unitarity of the time evolution operator UD.1;�1/ implies unitarity
of the scattering matrix Sfi D hf jUD.1;�1/jii as defined earlier,

X
i

SfiSC
if 0 D

X
i

SfiS

f 0i D

X
i

hf jUD.1;�1/jiihf 0jUD.1;�1/jii


D
X

i

hf jUD.1;�1/jiihijUC
D .1;�1/jf 0i

D hf jUD.1;�1/UC
D .1;�1/jf 0i D ıff 0 :

Therefore division by the vacuum to vacuum matrix element h0jUD.1;�1/j0i
in the alternative definition (17.51) can only yield a unitary scattering matrix if
the amplitude h0jUD.1;�1/j0i is a phase factor. We can understand this in the
following way. Conservation laws prevent spontaneous decay of the vacuum into
any excited states jNi,

hN ¤ 0jUD.1;�1/j0i D 0:

The completeness relation

j0ih0j C
X
N¤0

jNihNj D 1

and unitarity of the time evolution operator then implies

jh0jUD.1;�1/j0ij2 D jh0jUD.1;�1/j0ij2 C
X
N¤0

jhNjUD.1;�1/j0ij2

D h0jUC
D .1;�1/UD.1;�1/j0i D 1; (17.52)

thus confirming that the vacuum to vacuum amplitude is a phase factor. We will
continue to use the simpler notation Sfi D hf jUD.1;�1/jii for the scattering
matrix with the understanding that we can neglect vacuum processes.

17.5 Inclusion of spin

The wave functions of particles with spin s have 2s C 1 components ‰�.x; t/ �
hx; � j‰.t/i, � � ms 2 f�s;�s C 1; : : : ; sg, and the normalization condition is

sX
�D�s

Z
d3x j‰�.x; t/j2 D 1;
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see e.g. Section 8.1. The Schrödinger equation with spin-dependent local interaction
potentials between the different components,

i„ @
@t
‰�.x; t/ D � „2

2m
�‰�.x; t/C

X
� 0

V�� 0.x/‰� 0.x; t/

follows from a Lagrange density

L D i„
2

X
�

�
‰C
� � @‰�

@t
� @‰C

�

@t
�‰�

�
� „2
2m

X
�

r‰C
� � r‰�

�
X
�;� 0

‰C
� � V�� 0 �‰� 0 : (17.53)

Canonical quantization then yields the (anti-)commutation relations for the Heisen-
berg picture field operators,

Œ‰�.x; t/; ‰C
� 0.x0; t/�˙ D ı�� 0ı.x � x0/;

Œ‰�.x; t/; ‰� 0.x0; t/�˙ D 0; Œ‰C
� .x; t/; ‰

C
� 0.x0; t/�˙ D 0;

with commutators for bosons (integer spin) and anti-commutators for fermions
(half-integer spin).

The charge, Hamiltonian and momentum operators for particles with spin follow
from (17.53) using the methods of Sections (16.2,16.3),

Q D qN D q
Z

d3x
X
�

‰C
� .x; t/‰�.x; t/; (17.54)

H D H0.t/C V.t/;

H0.t/ D
Z

d3x
X
�

„2
2m

r‰C
� .x; t/ � r‰�.x; t/; (17.55)

V.t/ D
Z

d3x
X
�;� 0

‰C
� .x; t/V�� 0.x/‰� 0.x; t/; (17.56)

and

P.t/ D
Z

d3x
X
�

„
2i

�
‰C
� .x; t/ � r‰�.x; t/ � r‰C

� .x; t/ �‰�.x; t/
�
:

The transition to the Schrödinger picture field operators then proceeds in the
standard way,
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 �.x/ D exp

�
� i

„Ht

�
‰�.x; t/ exp

�
i

„Ht

�
;

Œ �.x/;  C
� 0 .x0/�˙ D ı�� 0ı.x � x0/;

Œ �.x/;  � 0.x0/�˙ D 0; Œ C
� .x/;  

C
� 0 .x0/�˙ D 0:

The most common case of non-vanishing spin in non-relativistic quantum
mechanics is s D 1=2, and then the common conventions for assigning values for
the spin label � are 1=2;C;" for sz D „=2, and �1=2;�;# for sz D �„=2. Higher
spin values can arise within non-relativistic quantum mechanics in nuclei, atoms,
and molecules.

Since we now use ‰�.x; t/ to denote quantum fields in the Heisenberg picture,
we will denote the time-dependent states in the Schrödinger picture and the
corresponding wave function components by ˆ�.x; t/. Within the framework of
the “first quantized theory”, a single particle state for a particle with spin s is then
given by

jˆ.t/i D
sX

�D�s

Z
d3x jx; �ihx; � jˆ.t/i; (17.57)

such that jhx; � jˆ.t/ij2 D jˆ�.x; t/j2 is the probability density to find the particle
with spin projection „� in the location x at time t, and the normalization condition is

sX
�D�s

Z
d3x jhx; � jˆ.t/ij2 D 1:

The Fock space creation and annihilation operators for particles in first quantized
particle states jˆ.t/i are then in direct generalization of (17.43)

ˆC.t/ D
X
�

Z
d3x C

� .x/hx; � jˆ.t/i D
X
�

Z
d3k aC

� .k/hk; � jˆ.t/i (17.58)

and

ˆ.t/ D
X
�

Z
d3x �.x/hˆ.t/jx; �i D

X
�

Z
d3k a� .k/hˆ.t/jk; �i: (17.59)

A single particle wave function with a set n of orbital quantum numbers and definite
spin projection � is e.g. hx; � 0jˆn;� .t/i D hxjˆn.t/iı�� 0 , and the corresponding
single particle state in the quantized field theory is

jˆn;� .t/i D ˆC
n;� .t/j0i D

Z
d3x C

� .x/j0ihxjˆn.t/i: (17.60)
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It is appropriate to add a remark on notation for the general single particle
field operators. Following the conventions of equation (17.37), we like to write
the creation operator for a particle with a set n of orbital quantum numbers and
spin projection „� as  C

n;� .t/ or aC
n;� .t/, but if no quantum numbers are specified

and we just talk about an abstract single particle state jˆ.t/i, the notation ˆC.t/
from equation (17.58) is more suitable. The three notations for given sets of orbital
quantum numbers and spin projection are therefore

ˆC
n;� .t/ D  C

n;� .t/ D aC
n;� .t/ D

Z
d3x C

� .x/hxjˆn.t/i

D
Z

d3k aC
� .k/hkjˆn.t/i:

Note that these time-dependent operators are operators in the Schrödinger picture
of the theory. Their time-dependence arises only because they are time-dependent
superpositions of the Schrödinger picture operators  C

� .x/ or aC
� .k/. We can easily

verify that the state (17.60) is a Schrödinger picture state by using the correspon-
dence of single particle matrix elements between first and second quantized theory,

hxjˆn.t/iı�� 0 D hx; � 0jˆn;� .t/i D hx; � 0j exp.�iH.1/t=„/jˆn;� .0/i
D hx; � 0j exp.�iHt=„/jˆn;� .0/i; (17.61)

jˆn;� .t/i D
X
� 0

Z
d3x jx; � 0ihx; � 0j exp.�iHt=„/ jˆn;� .0/i

D exp.�iHt=„/ jˆn;� .0/i: (17.62)

The operators ˆn;� .t/ and ˆC
n;� .t/ satisfy canonical commutation or anti-commuta-

tion relations as a consequence of the corresponding relations for  �.x/ and  C
� .x/,

see Problem 17.4.
The Heisenberg picture operators for a state with quantum numbers n and � are

ˆC
H;n;� .t/ D exp

�
i

„Ht

�
ˆC

n;� .t/ exp

�
� i

„Ht

�
D
Z

d3x‰C
� .x; t/hxjˆn.t/i:

The Schrödinger picture state (17.60) yields the correct expectation value for
the kinetic energy of the particle if evaluated with the time-independent kinetic
Hamiltonian H0 in the Schrödinger picture, but the Heisenberg picture state

jˆn;�i D exp

�
i

„Ht

�
jˆn;� .t/i D ˆC

H;n;� .t/j0i

D
Z

d3x‰C
� .x; t/j0ihxjˆn.t/i

D jˆn;� .0/i D
Z

d3x C
� .x/j0ihxjˆn.0/i: (17.63)
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has to be evaluated with the generically time-dependent kinetic Hamiltonian H0.t/
in the Heisenberg picture to yield the kinetic energy of the particle.

The actual time-independence of
R

d3x‰C
� .x; t/j0ihxjˆn.t/i follows already

from the first line of equation (17.63), but we can also verify it again from the
correspondence (17.61) of single particle matrix elements,

Z
d3x‰C

� .x; t/j0ihxjˆn.t/i D exp

�
i

„Ht

�X
� 0

Z
d3x jx; � 0ihx; � 0j

� exp

�
� i

„Ht

�
jˆn;� .0/i D jˆn;� .0/i D

Z
d3x C

� .x/j0ihxjˆn.0/i:

We will mostly use Schrödinger picture states and operators in the remainder of this
chapter.

A general two-particle state with particle species a and a0 (e.g. an electron and a
proton or two electrons) will have the form

jˆa;a0.t/i D 1p
1C ıa;a0

X
�;� 0

Z
d3x

Z
d3x0  C

a;� .x/ 
C
a0;� 0.x0/j0i

�hx; � I x0; � 0jˆa;a0.t/i: (17.64)

For identical particles it makes sense to require the symmetry property

hx; � I x0; � 0jˆa;a.t/i D � hx0; � 0I x; � jˆa;a.t/i; (17.65)

with the upper sign applying to fermions and the lower sign for bosons.
In the ideal case of a completely normalizable system (e.g. two particles

trapped in an oscillator potential or a box), the quantity jhx; � I x0; � 0jˆa;a0.t/ij2 is
a probability density for finding one particle at x with spin projection � and the
second particle at x0 with spin projection � 0, and we should have

X
�;� 0

Z
d3x

Z
d3x0 jhx; � I x0; � 0jˆa;a0.t/ij2 D 1

if we know that there is exactly one particle of kind a and one particle of kind a0 in
the system. It then follows with (17.65) that the state (17.64) is also normalized,

hˆa;a0.t/jˆa;a0.t/i D 1:

For an example we consider a state where a particle of type a has orbital quantum
numbers n and spin projection � , and a particle of type a0 has orbital quantum
numbers n0 and spin projection � 0. The two-particle amplitude

hx; �I x0; �0jˆa;n;� Ia0;n0;� 0.t/i D hx; �I x0; �0jˆa;n;� .t/; ˆa0;n0;� 0.t/i
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� ı��ı�0� 0hxjˆa;n.t/ihx0jˆa0;n0.t/ip
1C ıaa0

p
1C ıaa0ınn0ı�� 0

� ıaa0

ı�0�ı�� 0hx0jˆa;n.t/ihxjˆa0;n0.t/ip
2.1C ınn0ı�� 0/

(17.66)

yields the tensor product state

jˆa;n;� .t/; ˆa0;n0;� 0.t/i D
Z

d3x
Z

d3x0  C
a;� .x/ 

C
a0;� 0.x0/j0i

�hxjˆa;n.t/ihx0jˆa0;n0.t/ip
1C ıaa0ı�� 0ınn0

: (17.67)

A two-particle state will generically not have the factorized form (17.67) because
this form is incompatible with interactions between the two particles. We can
explain this with the case of a system of two different particles that we have solved in
Chapter 7. A two-particle state of a proton with quantum numbers N and an electron
with quantum numbers n and definite spin projections of the two particles could be
written in the form

j�n;� .t/; ˆN;†.t/i D
Z

d3x
Z

d3x0  C
e;� .x/ 

C
p;†.x

0/j0ihxj�n.t/ihx0jˆN.t/i;

but we had seen in Chapter 7 that no such electron-proton state is compatible with
the Coulomb interaction of the two particles. There is no solution of the Schrödinger
equation for the two particles which factorizes into the product of an electron wave
function with a proton wave function. We did find factorized solutions of the form

hx; x0jˆK;n;`;m.t/i D hRjˆK.t/ihrjˆn;`;m.t/i;

where the first factor

hRjˆK.t/i D 1p
2�

3
exp

�
iK � R � i

„
2m

K2t

�

describes center of mass motion, and the second factor

hrjˆn;`;m.t/i D hrjn; `;mi exp.�iEnt=„/

describes relative motion. Therefore we can write down a two-particle state for the
electron-proton system in the form

jˆK;n;`;mI�;†.t/i D
Z

d3x
Z

d3x0  C
e;� .x/ 

C
p;†.x

0/j0ihx � x0jˆn;`;m.t/i

�h.mex=M/C .mpx0=M/jˆK.t/i: (17.68)
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I am emphasizing this to caution the reader. We frequently calculate scattering
matrix elements and expectation values for many-particle states which are products
of independent single-particle states like (17.67). However, we should keep in mind
that these states may temporarily describe the state of a many-particle system, e.g.
for t ! ˙1 or t D 0, but these tensor-product states never describe the full time
evolution of many-particle systems with interactions. Two-particle systems with an
interaction potential V.x � x0/ (and without external fields affecting both particles
differently, see Section 18.4 below) always allow for separation of the center of
mass motion, and the states can be written in the form (17.68). However, the general
form is (17.64). These remarks immediately generalize to N-particle states. Those
states will be characterized by amplitudes hx1; �1I : : : I xN ; �N jˆ.t/i with appropriate
(anti-) symmetry properties for identical particles.

In spite of all those cautionary remarks about the limitations of tensor product
states of the form (17.67) in the actual description of many-particle systems, we
will now return to those states because they will help us to understand important
aspects of expectation values in many-particle systems in Sections 17.6 and 17.7.

The state (17.67) is anti-symmetric or symmetric for fermions or bosons,
respectively. In particular the state will vanish for identical fermions with identical
spin and orbital quantum numbers � D � 0, n D n0.

For the normalization of the state (17.67) we note that the following equations
hold with upper signs for fermions,

h0j a0;� 0.y0/ a;� .y/ C
a;� .x/ 

C
a0;� 0.x0/j0i D ı.y � x/ı.y0 � x0/

� ıaa0ı�� 0ı.y � x0/ı.y0 � x/

and therefore
Z

d3y
Z

d3y0
Z

d3x
Z

d3x0 h0j a0;� 0.y0/ a;� .y/ C
a;� .x/ 

C
a0;� 0.x0/j0i

�hˆa0;n0.t/jy0ihˆa;n.t/jyihxjˆa;n.t/ihx0jˆa0;n0.t/i

D
Z

d3x jhxjˆa;n.t/ij2
Z

d3x0 jhx0jˆa0;n0.t/ij2

� ıaa0ı�� 0

Z
d3x hˆa0;n0.t/jxihxjˆa;n.t/i

Z
d3x0 hˆa;n.t/jx0ihx0jˆa0;n0.t/i

D 1� ıaa0ı�� 0ınn0 ;

i.e. the 2-particle state (17.67) is properly normalized to 1, except when it vanishes
because it corresponds to two fermions with identical quantum numbers.

We can also form singlet states and triplet states for two spin 1/2 fermions with
single-particle orbital quantum numbers n and n0. The triplet states are

jˆn;n0I1;˙1.t/i D jˆn;˙1=2.t/; ˆn0;˙1=2.t/i D �jˆn0;nI1;˙1.t/i; (17.69)
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jˆn;n0I1;0.t/i D jˆn;1=2.t/; ˆn0;�1=2.t/i C jˆn;�1=2.t/; ˆn0;1=2.t/ip
2

D � jˆn0;nI1;0.t/i; (17.70)

and the singlet state is

jˆn;n0I0;0.t/i D jˆn;1=2.t/; ˆn0;�1=2.t/i � jˆn;�1=2.t/; ˆn0;1=2.t/ip
2

D jˆn0;nI0;0.t/i: (17.71)

17.6 Two-particle interaction potentials and equations
of motion

It is now only a small step to describe particle interactions as exchange of virtual
particles between particles. We will take this step in Section 19.7 for exchange
of non-relativistic virtual particles, and in Chapters 22 for photon exchange
between charged particles. However, a description of interactions through 2-particle
interaction potentials V is often sufficient. Furthermore, interaction potentials also
appear in quantum electrodynamics in the Coulomb gauge6.

The Hamiltonian with time-independent particle-particle interaction potentials
Va;a0.x/ has the same form in the Schrödinger picture and in the Heisenberg picture,

H D 1

2

Z
d3x

Z
d3x0X

a;a0

X
�;� 0

 C
a;� .x/ 

C
a0;� 0.x

0/Va;a0.x � x0/ a0;� 0.x0/ a;� .x/

C
Z

d3x
X
a;�

„2
2ma

r C
a;� .x/ � r a;� .x/ (17.72)

D 1

2

Z
d3x

Z
d3x0X

a;a0

X
�;� 0

‰C
a;� .x; t/‰

C
a0;� 0.x

0; t/Va;a0.x � x0/

�‰a0;� 0.x0; t/‰a;� .x; t/

C
Z

d3x
X
a;�

„2
2ma

r‰C
a;� .x; t/ � r‰a;� .x; t/: (17.73)

If the operators  C
1;� .x/ describe electrons, we would include e.g. the repulsive

Coulomb potential V11.x � x0/ D e2=.4��0jx � x0j/ between pairs of electrons.

6We will derive this for non-relativistic charged particles in Section 18.5, see equation (18.66), and
for relativistic charged particles in Section 21.4, see equation (21.94).
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The ordering of annihilation and creation operators in the potential term in
equation (17.72) is determined by the requirement that the expectation value of
the interaction potential for the vacuum j0i and for single particle states jˆn.t/i
vanishes. The nested structure  C

a;� .x/ 
C
a0;� 0.x0/ a0;� 0.x0/ a;� .x/ of the operators

ensures the correct sign for the interaction energy of two-fermion states.
It is also instructive to write the Hamiltonian (17.72) in wavevector space. We

use the following conventions for the Fourier transformation of the potential:

V.x/ D
Z

d3q V.q/ exp.iq � x/;

V.q/ D VC.�q/ D 1

.2�/3

Z
d3x V.x/ exp.�iq � x/;

to avoid extra factors of 2� in the particle interaction terms in wavevector space.
This yields the representations

H D 1

2

Z
d3k

Z
d3k0

Z
d3q

X
�;� 0

aC
� .k C q/aC

� 0.k0 � q/V.q/a� 0.k0/a� .k/

C
Z

d3k
X
�

„2k2
2m

aC
� .k/a� .k/

D 1

2

Z
d3k

Z
d3k0

Z
d3q

X
�;� 0

aC
� .k C q; t/aC

� 0.k0 � q; t/V.q/

�a� 0.k0; t/a� .k; t/C
Z

d3k
X
�

„2k2
2m

aC
� .k; t/a� .k; t/;

where the labels a and a0 for the particle species are suppressed. The representations
in momentum space imply that the Fourier component V.q/ of the two-particle
interaction potential describes exchange of momentum „q between the two inter-
acting particles. Note that symmetric interaction potentials V.x/ D V.�x/ are
also symmetric in wavevector space V.q/ D V.�q/. The Coulomb potential e.g.
is dominated by small momentum exchange, V.q/ D .2�/�3.e2=�0/q�2.

The corresponding Hamiltonians in the Dirac picture are

H0 D
Z

d3x
X
�

„2
2m

r C
� .x/ � r �.x/ D

Z
d3k

X
�

„2k2
2m

aC
� .k/a� .k/

D
Z

d3x
X
�

„2
2m

r C
� .x; t/ � r �.x; t/

D
Z

d3k
X
�

„2k2
2m

aC
D;� .k; t/aD;� .k; t/
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and

HD.t/ D exp

�
i

„H0t

�
.H � H0/ exp

�
� i

„H0t

�

D 1

2

Z
d3x

Z
d3x0X

�;� 0

 C
� .x; t/ 

C
� 0 .x0; t/V.x � x0/ � 0.x0; t/ �.x; t/

D 1

2

Z
d3k

Z
d3k0

Z
d3q

X
�;� 0

aC
D;� .k C q; t/aC

D;� 0.k0 � q; t/V.q/

�aD;� 0.k0; t/aD;� .k; t/;

with the time-dependent field operators in the Dirac picture. Recall that H0

determines the time evolution of the operators, while HD.t/ determines the time
evolution of the states in the Dirac picture.

Contrary to H0, we cannot simply replace the time-dependent field operators in
the Dirac picture with the time-independent operators of the Schrödinger picture
in HD.t/, because ŒH0;V� ¤ 0. In applications within non-relativistic field theory
one often uses the representation HD.t/ D exp.iH0t=„/V exp.�iH0t=„/, where the
Schrödinger picture potential operator V is given in terms of the time-independent
field operators.

Equation of motion

The derivation of the equation of motion for the Schrödinger picture state (17.64)
with the Schrödinger picture Hamiltonian (17.72) is easily done with the relation

 �0.y0/ �.y/ C
� .x/ 

C
� 0 .x0/j0i D Œ �0.y0/; Œ �.y/;  C

� .x/ 
C
� 0 .x0/���˙j0i

D ı��ı.x � y/ı�0� 0ı.x0 � y0/j0i � ı�� 0ı.x0 � y/ı�0�ı.x � y0/j0i;

with the upper signs for fermions. This yields both for bosons and fermions the
equation

i„ d

dt
jˆa;a0.t/i D Hjˆa;a0.t/i

D 1p
1C ıaa0

Z
d3x

Z
d3x0X

�;� 0

 C
a;� .x/ 

C
a0;� 0.x0/j0i

�
�

� „2
2ma

� � „2
2ma0

�0 C Va;a0.x � x0/
�

hx; � I x0; � 0jˆa;a0.t/i: (17.74)

Here we used � � @2=@x2, �0 � @2=@x02 and symmetry of the potential: Va;a0.x �
x0/ D Va0;a.x0 � x/.
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Linear independence of the states  C
� .x/ 

C
� 0 .x0/j0i (or equivalently application

of the projector h0j a0;�0.y0/ a;�.y/ and the symmetry property (17.65)) implies that
equation (17.74) is equivalent to the two-particle Schrödinger equation

i„ @
@t

hx; � I x0; � 0jˆa;a0.t/i D
�

� „2
2ma

� � „2
2ma0

�0 C Va;a0.x � x0/
�

�hx; � I x0; � 0jˆa;a0.t/i: (17.75)

Time-independence of the Hamiltonian implies that we can also write this in the
time-independent form

Ehx; � I x0; � 0jˆa;a0i D
�

� „2
2ma

� � „2
2ma0

�0 C Va;a0.x � x0/
�

�hx; � I x0; � 0jˆa;a0i: (17.76)

These are exactly the two-particle Schrödinger equations that we would have
expected for a wave function which describes two particles interacting with a
potential V . Indeed, we have used this expectation already in Chapter 7 to formulate
the equation of motion for the electron-proton system that constitutes a hydrogen
atom. The not entirely trivial observation at this point is that these two-particle
Schrödinger equations also hold for identical particles. The only manifestation of
statistics of the particles is the symmetry property (17.65) of the two-particle wave
function7.

The amplitude for a general N-particle state with particle species a.i/ for the i-th
particle would satisfy

i„ @
@t

hx1; �1I : : : I xN ; �N jˆa1;:::;aN .t/i D
 

�
NX

iD1

„2
2ma.i/

�i

C
N�1X
iD1

NX
jDiC1

Va.i/;aj.xi � xj/

!
hx1; �1I : : : I xN ; �N jˆa1;:::;aN .t/i: (17.78)

7Formal substitution e.g. of two-particle tensor product states of definite spin for two identical
particles,

hx; � I x0; � 0jˆn;n0 i D hxjˆnihx0jˆn0 i � ı�� 0 hxjˆn0 ihx0jˆnip
2.1C ınn0ı�� 0 /

(17.77)

(cf. equation (17.66) for a D a0, � D � , �0 D � 0) and projection onto effective single particle
equations using orthonormality of single particle wave functions yields exchange terms. However,
the resulting equations are not identical with the Hartree-Fock equations from Problem 17.7,
because E in equation (17.76) is the total energy of the system, whereas the Lagrange multipliers
�n in Hartree-Fock equations do not add up to the total energy of a many particle system, see
Problem 17.7b. The formal nature of the substitution (17.77) is emphasized because we know that
solutions of equation (17.76) do not factorize in single particle tensor products.
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The derivation of the two-particle equation (17.75) or the general N-particle
equation (17.78) crucially relies on the fact that the Hamiltonian (17.73) preserves
the number of particles for each species a. This is a simple consequence of
the fact that each individual term does not have an excess of annihilation or
creation operators for any particular species a. Otherwise we could not use linear
independence of states within a particular subsector of .

P
a na D N/-particle states

to read off the first quantized evolution equations (17.78) for the time-dependent
N-particle amplitudes hx1; �1I x2; �2I : : : jˆa1;a2;:::.t/i. If the Hamiltonian would not
preserve the numbers na of particles for each species, we could have derived coupled
systems of equations for wave functions with different particle numbers na and
possibly also different total numbers N of particles. However, the first quantized
formalism becomes unwieldy if we have to include sets of coupled many particle
Schrödinger equations with different particle numbers, and one rather calculates
everything in the second quantized formalism then.

Relation to other equations of motion

In N-particle mechanics, the two-particle Schrödinger equations (17.75) and (17.76)
and their extensions to N > 2 correspond to the equation for the total energy
of the particle system. However, in mechanics we are used to deal with separate
equations of motion for each particle in terms of the forces acting on the particle.
Sometimes the experience from mechanics leads to the suspicion that there should
be a separate Schrödinger type equation for each particle. We can infer that this
naive expectation is not correct from the observation that the equations for individual
particles in a classical particle system are equations for forces, not energies. We can
easily recover the separate N-particle equations of classical mechanics from the
N-particle equation (17.78), because this equation implies the N-particle version of
the Ehrenfest theorem, e.g. for two particles

d

dt
hpai.t/ D

Z
d3x

Z
d3x0

 
@ˆC

a;�Ia0;� 0.x; x0/

@t

„
i

@

@x
ˆa;�Ia0;� 0.x; x0/

CˆC

a;�Ia0;� 0.x; x0/ � „
i

@

@x
@ˆa;�Ia0;� 0.x; x0/

@t

�

D �
Z

d3x
Z

d3x0ˆC

a;�Ia0;� 0.x; x0/
@Va;a0.x � x0/

@x
ˆa;�Ia0;� 0.x; x0/

D � hrVa;a0.x � x0/i.t/; (17.79)

d

dt
hpa0i.t/ D � hr 0Va;a0.x � x0/i.t/:

Another reason why one might incorrectly suspect that there should be N separate
Schrödinger type equations for an N-particle system is that each single particle field
operator‰a;� .x; t/ in the Heisenberg picture still satisfies its own evolution equation,
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i„ @
@t
‰a;� .x; t/ D � ŒH; ‰a;� .x; t/�

D � „2
2ma

�‰a;� .x; t/C Va.x; t/‰a;� .x; t/; (17.80)

with

Va.x; t/ D
X

a0

X
� 0

Z
d3x0‰C

a0;� 0.x0; t/Va;a0.x � x0/‰a0;� 0.x0; t/:

However, note that this non-linear Schrödinger equation is an operator equation
which holds for the operators annihilating and creating the particle species a, but
not separately for a wave function for each single particle of type a. Indeed, the
second quantized many particle Schrödinger equation

i„ d

dt
jˆ�1;�2;:::.t/i D Hjˆ�1;�2;:::.t/i

and the corresponding first quantized many particle Schrödinger equation (17.78)
can be derived from the single particle operator equations (17.80), see Prob-
lem 17.11.

17.7 Expectation values and exchange terms

It is not difficult to discuss expectation values for the general two-particle
state (17.64). However, it is more instructive to do this for the tensor product
of single-particle states (17.67) with a D a0.

The result for the kinetic Hamiltonian in the Schrödinger picture

H0jˆn;� .t/; ˆn0;� 0.t/i D 1p
1C ı�� 0ınn0

Z
d3x

Z
d3x0  C

� .x/ 
C
� 0 .x0/j0i

�
�

� „2
2m
�hxjˆn.t/ihx0jˆn0.t/i � „2

2m
hxjˆn.t/i�0hx0jˆn0.t/i

�

also immediately yields the expectation value of the kinetic energy operator in the
two-particle state (17.67),

hH0i D hˆn;� .t/; ˆn0;� 0.t/jH0jˆn;� .t/; ˆn0;� 0.t/i D � „2
2m.1C ı�� 0ınn0/

�
Z

d3x
Z

d3x0 �hˆn0.t/jx0ihˆn.t/jxi�hxjˆn.t/ihx0jˆn0.t/i

C hˆn0.t/jx0ihˆn.t/jxihxjˆn.t/i�0hx0jˆn0.t/i
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� ı�� 0hˆn0.t/jxihˆn.t/jx0i�hxjˆn.t/ihx0jˆn0.t/i
� ı�� 0hˆn0.t/jxihˆn.t/jx0ihxjˆn.t/i�0hx0jˆn0.t/i

�

D 1� ı�� 0ınn0

1C ı�� 0ınn0

Knn0 ;

i.e. unless the two-particle state vanishes because it describes two fermions with
identical quantum numbers, the kinetic energy is the sum of the kinetic energies in
the orbital motion of the two particles,

Knn0 D hˆn;� .t/; ˆn0;� 0.t/jH0jˆn;� .t/; ˆn0;� 0.t/i
ˇ̌
ˇ
.n;�/¤.n0;� 0/ for fermions

D �
Z

d3x
„2
2m

�
hˆn.t/jxi�hxjˆn.t/i C hˆn0.t/jxi�hxjˆn0.t/i

�
:

The potential operator in the Schrödinger picture

V D 1

2

Z
d3x

Z
d3x0X

�;� 0

 C
� .x/ 

C
� 0 .x0/V.x � x0/ � 0.x0/ �.x/

satisfies with V.x � x0/ D V.x0 � x/ both for fermions and for bosons the equation

Vjˆn;� .t/; ˆn0;� 0.t/i D 1p
1C ı�� 0ınn0

Z
d3x

Z
d3x0  C

� .x/ 
C
� 0 .x0/j0i

�V.x � x0/hxjˆn.t/ihx0jˆn0.t/i
�
:

This yields again with upper signs for fermions the result

hVi D hˆn;� .t/; ˆn0;� 0.t/jVjˆn;� .t/; ˆn0;� 0.t/i

D
Z

d3x
Z

d3x0
V.x � x0/

1C ınn0ı�� 0

�
hˆn.t/jxihˆn0.t/jx0ihxjˆn.t/ihx0jˆn0.t/i

� ı�� 0hˆn.t/jxihˆn0.t/jx0ihx0jˆn.t/ihxjˆn0.t/i
�
;

i.e. the expectation value for the potential energy becomes

hVi D
Z

d3x
Z

d3x0ˆC

n .x; t/ˆn.x; t/
V.x � x0/

1C ınn0ı�� 0

ˆC

n0 .x0; t/ˆn0.x0; t/

� ı�� 0

Z
d3x

Z
d3x0ˆC

n .x; t/ˆn0.x; t/
V.x � x0/

1C ınn0

ˆC

n0 .x0; t/ˆn.x0; t/:

We can collect the results for the expectation values of kinetic and potential energy
of the two-particle state (17.67) (with upper signs for fermions)
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hHi D hˆn;� .t/; ˆn0;� 0.t/jHjˆn;� .t/; ˆn0;� 0.t/i

D 1� ı�� 0ınn0

1C ı�� 0ınn0

Knn0 C Cnn0 � Jnn0ı�� 0

1C ı�� 0ınn0

; (17.81)

with the Coulomb term8

Cnn0 D
Z

d3x
Z

d3x0ˆC
n .x; t/ˆ

C
n0 .x0; t/V.x � x0/ˆn0.x0; t/ˆn.x; t/ (17.82)

and the exchange integral9

Jnn0 D
Z

d3x
Z

d3x0ˆC
n0 .x; t/ˆC

n .x
0; t/V.x � x0/ˆn0.x0; t/ˆn.x; t/: (17.83)

The Coulomb term is what we would have expected for the energy of the interaction
of two particles with quantum numbers n and n0. The exchange interaction, on the
other hand, is a pure quantum effect which only exists as a consequence of
the canonical (anti-)commutation relations for bosonic or fermionic operators. In the
first quantized theory it appears as a consequence of symmetrized boson wave
functions and anti-symmetrized fermion wave functions.

For electrons with aligned spins (17.69) and also for the m D 0 triplet
state (17.70) we must have n ¤ n0, and the result (17.81) implies a shift of the
ordinary Coulomb term Cnn0 by the exchange term Jnn0 , Cnn0 ! Cnn0 � Jnn0 . For
the m D 0 triplet state the exchange integral arises from the cross multiplication
terms in the evaluation of the expectation value. By the same token, the Coulomb
term for the singlet state (17.71) gets shifted to .Cnn0 C Jnn0/=.1 C ınn0/ due to the
cross multiplication terms. The potential energy part of the Hamiltonian (17.72)
can therefore be replaced by an effective spin interaction Hamiltonian10 (with
dimensionless spins: S=„ ! S)

Hnn0 D 1

1C ınn0

�
Cnn0 C Jnn0 � Jnn0.S C S0/2

�

D 1

1C ınn0

�
Cnn0 � 1

2
Jnn0.1C 4S � S0/

�
; (17.84)

where S and S0 are the dimensionless spin operators for two electrons. Equa-
tion (17.84) gives the correct shifts by �Jnn0 because .S C S0/2 D 2, S � S0 D 1=4,

8As derived, this result applies to every 2-particle interaction potential. The most often studied case
in atomic, molecular and condensed matter physics is the Coulomb interaction between electrons,
and therefore the standard (non-exchange) interaction term is simply denoted as the Coulomb term.
9W. Heisenberg, Z. Phys. 38, 411 (1926); Z. Phys. 39, 499 (1926).
10P.A.M. Dirac, Proc. Roy. Soc. London A 123, 714 (1929).
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in the triplet state and .S C S0/2 D 0, S � S0 D �3=4, in the singlet state. Note that
Cnn D Jnn, and therefore

Cnn0 � Jnn0

1C ınn0

D Cnn0 � Jnn0 :

The Hamiltonian (17.84) without the constant terms is the spin-spin coupling
Hamiltonian which is also known as the Heisenberg Hamiltonian11.

Equations (17.81) and (17.84) show that the Coulomb interaction between
electrons, through the exchange integral, effectively generates an interaction of the
same form as the magnetic spin-spin interaction. The exchange interaction usually
dominates over the magnetic spin-spin interaction in materials. For example in
atoms or molecules Jnn0 will be of order of a few eV, whereas the energy of the
genuine magnetic dipole-dipole interaction will only be of order meV or smaller.
Exchange interaction with Jnn0 > 0 therefore can align electron spins to generate
ferromagnetism12, but the magnetic dipole interaction will certainly not accomplish
this at room temperature.

17.8 From many particle theory to second quantization

Second quantization (or field quantization) of the Schrödinger field is relevant for
condensed matter physics and statistical physics, but it is usually not introduced
through quantization of the corresponding Lagrangian field theory. An alternative
approach proceeds through the observation that field quantization yields the same
matrix elements as symmetrized wave functions (for bosons) or anti-symmetrized
wave functions (for fermions) in first quantized theory with a fixed number N of
particles.

In short this reasoning goes as follows. We assume a finite volume V D L3 of
our system. Then we can restrict attention to discrete momenta

k D 2�

L
n; n 2 N

3;

and the N-particle momentum eigenstates are generated by states of the form

jk1; : : : kNi D jk1i : : : jkNi:
This state needs to be symmetrized for indistinguishable bosons by summing over
all NŠ permutations P of the N momenta,X

P2SN

Pjk1; : : : kNi

11Heisenberg had introduced exchange integrals in 1926, and he published an investigation of
ferromagnetism based on the exchange interaction (17.81) in 1928 (Z. Phys. 49, 619 (1928)).
However, the effective Hamiltonian (17.84) was introduced by Dirac in the previously mentioned
reference in 1929. Therefore a better name for (17.84) would be Dirac-Heisenberg Hamiltonian.
12Ferromagnetism or anti-ferromagnetism in magnetic materials usually requires indirect exchange
interactions, see e.g. [5, 12, 22, 40].
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However, this state is not generically normalized. If the momentum k is realized nk

times in the state, then
ˇ̌
ˇ̌
ˇ̌
X
P2SN

Pjk1; : : : kNi
ˇ̌
ˇ̌
ˇ̌
2

D NŠQ
k nkŠ

 Y
k

nkŠ

!2
D NŠ

Y
k

nkŠ;

since there are NŠ=
Q

k nkŠ different distinguishable states in the symmetrized state,
and each of these states occurs

Q
k nkŠ times. Therefore the correctly normalized

Bose states are

jfnkgi D 1p
NŠ
Q

k nkŠ

X
P2SN

Pjk1; : : : kNi:

The action of the operator jk0ihkj on this state is for k ¤ k0

jk0ihkj : : : ; nk; : : : ; nk0 ; : : :i D nk

s
nk0 C 1

nk
j : : : ; nk � 1; : : : ; nk0 C 1; : : :i

D p
nk.nk0 C 1/j : : : ; nk � 1; : : : ; nk0 C 1; : : :i

D aC.k0/a.k/j : : : ; nk; : : : ; nk0 ; : : :i;

and for k D k0,

jkihkj : : : ; nk; : : :i D nkj : : : ; nk; : : :i D aC.k/a.k/j : : : ; nk; : : :i:

i.e. we find that for 1-particle operators, the operator

K.1/ D
Z

d3k0
Z

d3k jk0ihk0jK.1/jkihkj

has the same effect in the first quantized theory as

K.2/ D
Z

d3k0
Z

d3k hk0jK.1/jkiaC.k0/a.k/

has in the second quantized theory. E.g. the first quantized 1-particle Hamiltonian

H.1/ D p2

2m
D
Z

d3k jki„2k2
2m

hkj

becomes

H.2/ D
Z

d3k
„2k2
2m

aC.k/a.k/:
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Once the beasts aC.k/ and a.k/ are let loose, it is easy to recognize from their com-
mutation or anti-commutation relations that they create and annihilate particles, and
the whole theory can be developed from there. The approach through quantization
of Lagrangian field theories is preferred in this book because it also yields an elegant
formalism for the identification of conservation laws and generalizes more naturally
to the relativistic case.

17.9 Problems

17.1. Calculate the evolution equations dN.t/=dt and dP.t/=dt for the number and
momentum operators in the Heisenberg picture if the Hamiltonian is given by
equation (17.2).

17.2. The relation p0 D �E=c in relativity motivates the identification of the
Hamiltonian H with a timelike momentum operator P0 D �H=c.

Show that the field operators in the Heisenberg picture satisfy the commutation
relations

ŒP	;‰.x; t/� D i„@	‰.x; t/:

17.3a. Calculate the expectation value of the operator

x D
Z

d3x
X
a;�

 C
a;� .x/x a;� .x/

for the two-particle state (17.67).

17.3b. Express the operator x in terms of k space operators aa;� .k/ and aC
a;� .k/.

17.4a. Suppose n is a set of orbital quantum numbers and � is a spin quantum
number such that H.1/jn; �i D Enjn; �i and the completeness relations

X
n;�

jn; �ihn; � j D 1; hn; � jn0; � 0i D ınn0ı�� 0

hold. The range of n may contain both discrete and continuous components such that
the sum over n may also contain integrations over the continuous components and
ınn0 D ı.n � n0/ for n and n0 in the continuous components. Show that the creation
and annihilation operators

 C
n;� .t/ D

X
� 0

Z
d3x C

� 0 .x/hx; � 0jn; �i exp.�iEnt=„/

D
Z

d3x C
� .x/hxjni exp.�iEnt=„/ (17.85)
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and

 n;� .t/ D
Z

d3x �.x/hnjxi exp.iEnt=„/ (17.86)

satisfy canonical (anti-)commutation relations

Œ n;� .t/;  n0;� 0.t/�˙ D 0; Œ C
n;� .t/;  

C
n0;� 0.t/�˙ D 0;

Œ n;� .t/;  
C
n0;� 0.t/�˙ D ınn0ı�� 0 : (17.87)

17.4b. Suppose the second quantized Hamiltonian is

H D
X
�

Z
d3x

� „2
2m

r C
� .x/ � r �.x/C  C

� .x/V.x/ �.x/
�
:

Express H in terms of the operators  C
n;� .t/ and  n;� .t/. Show that

j n;� .t/i D  C
n;� .t/j0i

is an eigenstate of H, and that

 n0;� 0.t/j n;� .t/i D ınn0ı�� 0 j0i:

17.5. Calculate the expectation values hH0i and hVi for kinetic and potential energy
in the two-particle state (17.64) with identical particles.

17.6. Show that for pairs of spin-1 bosons, the interaction energy for states (17.67)

hVi D h‰n;� .t/; ‰n0;� 0.t/jVj‰n;� .t/; ‰n0;� 0.t/i D Cnn0 C Jnn0ı�� 0

1C ı�� 0ınn0

corresponds to the following values for the interaction energy in the singlet, triplet,
and quintuplet states,

E.0/n;n0 D E.2/n;n0 D Cnn0 C Jnn0

1C ınn0

; E.1/nn0 D Cnn0 � Jnn0

1C ınn0

D Cnn0 � Jnn0 :

Show also that these energies can be reproduced with an effective spin-spin
interaction Hamiltonian

Hn;n0 D 1

1C ınn0

�
Cnn0 C 1

4
Jnn0

�
4 � 6.S C S0/2 C .S C S0/4

��

D 1

1C ınn0

�
Cnn0 � Jnn0 C Jnn0 S � S0 C Jnn0.S � S0/2

�
: (17.88)
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17.7. Hartree-Fock equations

17.7a. Calculate the expectation value of the Hamiltonian (17.72) for a three-
particle state which is a tensor product of single particle factors for a helium nucleus
and two electrons,

jˆi D
Z

d3x
Z

d3x0
Z

d3y C
e;� .x/ 

C
e;� 0.x0/ C̨

;�j0i

�hxj�n.t/ihx0j�n0.t/ihyj�N.t/i:
Show that the requirement of minimal expectation value hˆjHjˆi under the
constraints of normalized single particle wave functions yields a set of three non-
linear coupled equations for the single particle wave functions. You have to use
Lagrange multipliers to include the normalization constraints, i.e. you have to
calculate the variational derivatives of the functional

FŒ�n.t/; �n0.t/; �N.t/� D hˆjHjˆi � �n

�Z
d3x jhxj�n.t/ij2 � 1

�

� �n0

�Z
d3x jhxj�n0.t/ij2 � 1

�
� �N

�Z
d3x jhxj�N.t/ij2 � 1

�
;

e.g.

ı

ı�n.x/
FŒ�n.t/; �n0.t/; �N.t/� D 0:

This yields intuitive versions of non-linearly coupled equations which look like
time-independent Schrödinger equations. These equations are examples of Hartree-
Fock equations13. The equations for the electrons contain exchange terms due to
the presence of identical particles, and Hartree-Fock type equations have been
successfully applied to calculate electronic configurations in atoms, molecules
and solids. However, the limitation of the variation of the N particle states to
tensor product states is a principal limitation of the Hartree-Fock method. The
lowly hydrogen atom already told us that translation invariant interaction potentials
V.x � x0/ entangle two-particle states in such a way that the energy eigenstates of
the coupled system cannot be written as tensor products of single particle states.

17.7b. Show that the Lagrange multipliers �i add up to the sum of the kinetic energy
plus twice the potential energy of the system.

17.8a. We consider field operators for spin-1/2 fermions,

f �.x/;  C
� 0 .x0/g D ı�� 0ı.x � x0/;

f �.x/;  � 0.x0/g D 0; f C
� .x/;  

C
� 0 .x0/g D 0:

13Very good textbook discussions of Hartree-Fock equations can be found in [26, 35, 36], and a
comprehensive discussion of the uses of Hartree-Fock type equations in chemistry and materials
physics is contained in [11].
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17.8a. The particle density operator is n� .x/ D  C
� .x/ �.x/. Show that the states

jx1; �1i D  C
�1
.x1/j0i and jx1; �1I x2; �2i D  C

�1
.x1/ 

C
�2
.x2/j0i are eigenstates of

n� .x/ in the sense that relations of the kind

n� .x/jx1; �1i D ��;�1.x; x1/jx1; �1i;
n� .x/jx1; �1I x2; �2i D ��;�1;�2.x; x1; x2/jx1; �1I x2; �2i

hold. Calculate the “eigenvalues” ��;�1.x; x1/ and ��;�1;�2.x; x1; x2/.

17.8b. We can define a density-density correlation operator

G�;� 0.x; x0/ D n� .x/n� 0.x0/:

Evaluate the matrix elements hx1; �1jG�;� 0.x; x0/jx2; �2i of this operator in 1-particle
states.

Solution.

17.8a. For the 1-particle state we can write

n� .x/jx1; �1i D  C
� .x/f �.x/;  C

�1
.x1/gj0i D ı��1ı.x � x1/ C

� .x/j0i
D ı��1ı.x � x1/jx1; �1i: (17.89)

For the 2-particle state we use the relation ŒA;BC� D fA;BgC � BfC;Ag in

n� .x/jx1; �1I x2; �2i D  C
� .x/Œ �.x/;  

C
�1
.x1/ C

�2
.x2/�j0i

D ı��1ı.x � x1/ C
� .x/ 

C
�2
.x2/j0i � ı��2ı.x � x2/ C

� .x/ 
C
�1
.x1/j0i

D .ı��1ı.x � x1/C ı��2ı.x � x2// jx1; �1I x2; �2i: (17.90)

17.8b. From the previous results and the orthogonality of the single-particle states
(following from the anti-commutation relation between  �1.x1/ and  C

�2
.x2/) we

find

hx1; �1jG�;� 0.x; x0/jx2; �2i D hx1; �1jn� .x/n� 0.x0/jx2; �2i
D ı��1ı.x � x1/ı� 0�2ı.x

0 � x2/ı�1�2ı.x1 � x2/:

17.9a. Pair correlations in the Fermi gas
We know that the Pauli principle excludes two fermions from being in the same

state, i.e. they cannot have the same quantum numbers. But what does that mean for
continuous quantum numbers like the location x of a particle? What exactly does the
statement mean: “Two electrons of equal spin cannot be in the same place”? How
far apart do two electrons of equal spin have to be to satisfy this constraint? We will
figure this out in this problem.
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In the previous problem we have found that the density-density correlation oper-
ator G�;� 0.x; x0/ D n� .x/n� 0.x0/ has non-vanishing matrix elements for 1-particle
states. Therefore we define the pair correlation operator

Og�;� 0.x; x0/ D G�;� 0.x; x0/ � ı�� 0ı.x � x0/n� .x/

D  C
� .x/ 

C
� 0 .x0/ � 0.x0/ �.x/

as a measure for the probability to find a fermion with spin orientation � at the
point x, when we know that there is another fermion with spin orientation � 0 at the
point x0. This ordering of operators eliminates the 1-particle matrix elements.

17.9a. Show that the corresponding combination of classical electron densities
divided by 2,

1

2
Qg�;� 0.x; x0/ D 1

2
n� .x/n� 0.x0/ � 1

2
ı�� 0ı.x � x0/n� .x/; (17.91)

can be interpreted as a probability density normalized to the number of fermion pairs
to find a fermion with spin projection „� in x and a fermion with spin projection
„� 0 in x0.

Hint: There are N" C N# D N fermions in the volume V . What do you get from
equation (17.91) by integrating over the volume?

17.9b. The ground state of a free fermion gas is

j�i D
Y

k;jkj	kF

aC
1=2.k/a

C
�1=2.k/j0i;

where kF is the Fermi wave number (12.18). Calculate the pair distribution function

g�;� 0.x; x0/ D h�jOg�;� 0.x; x0/j�i

of the free fermion gas in the ground state.
Hints for the solution of 9b: With discrete momenta

k D 2�

L
n

the anti-commutation relation for fermionic creation and annihilation operators
becomes

fa� .k/; aC
� 0.k0/g D ı�� 0ık;k0 :

The corresponding mode expansion for the annihilation operator in x-space becomes

 �.x/ D 1p
V

X
k

a� .k/ exp.ik � x/;
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and the inversion is

a� .k/ D 1p
V

Z
V

d3x �.x/ exp.�ik � x/:

Substitute the mode expansions for  and  C into the operator Og�;� 0.x; x0/. This
yields a four-fold sum over momenta

h�j
X

k;k0;q;q0

: : : j�i:

In the next step, you can use that

a� .k/j�i D ‚.kF � k/a� .k/j�i; h�jaC
� .q/ D ‚.kF � q/h�jaC

� .q/; (17.92)

because e.g. in the first equation, if k > kF, a� .k/ would simply anti-commute
through all the creation operators in j�i and yield zero through action on the vacuum
j0i. This reduces the four sums to sums over momenta inside the Fermi sphere,

h�j
X

fk;k0;q;q0g	kF

: : : j�i:

For the following steps, you can use that for fermionic operators .aC
� .k//

2 D 0 and
therefore

k � kF W aC
� .k/j�i D 0: (17.93)

This observation can be used to replace operator products with commutators or anti-
commutators, e.g.

q0 � kF W aC
� 0.q0/a� 0.k0/a� .k/j�i D ŒaC

� 0.q0/; a� 0.k0/a� .k/�j�i;
q � kF W aC

� .q/a� 0.k0/j�i D faC
� .q/; a� 0.k0/gj�i:

This helps to get rid of all the operators in g�;� 0.x; x0/. For the last steps, you have
to figure out what the sum over all momenta inside a Fermi sphere is,

P
k;jkj	kF

1

(you know this sum because you know that there are N Fermions in the system). For
another term, you have to use that for N � 1

1

V

X
k;jkj	kF

f .k/ ' 1

.2�/3

Z
k	kF

d3k f .k/:

Solution.

17.9a. Integration of equation (17.91) over x and x0 yields for identical spins e.g.

1

2

Z
d3x

Z
d3x0 Qg"".x; x0/ D 1

2
N".N" � 1/ D N"";
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which is the number of independent fermion pairs with both fermions having spin
up, and we also find

1

2

Z
d3x

Z
d3x0 Qg"#.x; x0/ D 1

2
N"N# D 1

2
N"#;

which is the number of independent fermion pairs with opposite spins if we take
into account that we want e.g. spin up in the location x and spin down in x0. Note
also that summation over spin polarizations then yields

X
�;� 0

Z
d3x

Z
d3x0 1

2
Qg�;� 0.x; x0/ D 1

2
N".N" � 1/C 1

2
N#.N# � 1/C N"N#

D 1

2
N.N � 1/ D N ;

i.e. the total number of independent fermions pairs.

17.9b. The discussion below is a modification of the discussion given by Schwabl
[36]. Other derivations of the exchange hole of the effective charge density
experienced by a Hartree-Fock electron in a metal can be found in [11, 17].

We have

g�;� 0.x; x0/ D 1

V2

X
k;k0;q;q0

exp
	
i.k � x C k0 � x0 � q � x � q0 � x0/




�h�jaC
� .q/a

C
� 0.q0/a� 0.k0/a� .k/j�i:

The observation (17.92) limits the sums over wave numbers,

g�;� 0.x; x0/ D 1

V2

X
fk;k0;q;q0g	kF

exp
	
i.k � x C k0 � x0 � q � x � q0 � x0/




�h�jaC
� .q/a

C
� 0.q0/a� 0.k0/a� .k/j�i:

For the next step we use (17.93), ‚.kF � q0/aC
� .q

0/j�i D 0, to replace operator
products with commutators or anti-commutators:

g�;� 0.x; x0/ D 1

V2

X
fk;k0;q;q0g	kF

exp
	
i.k � x C k0 � x0 � q � x � q0 � x0/




�h�jaC
� .q/Œa

C
� 0.q0/; a� 0.k0/a� .k/�j�i

D 1

V2

X
fk;k0;qg	kF

exp Œi.k � q/ � x� h�jaC
� .q/a� .k/j�i
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� ı�� 0

1

V2

X
fk;k0;qg	kF

exp
	
i.k � x C k0 � x0 � q � x � k � x0/




�h�jaC
� .q/a� 0.k0/j�i

D 1

V2

X
fk;k0g	kF

1 � ı�� 0

1

V2

X
fk;k0g	kF

exp
	
i.k � k0/ � .x � x0/



:

Here the notation � kF under the summation indicates that e.g. the summation over
k is over all vectors k inside the Fermi sphere: jkj � kF.

For the further evaluation we note that there are two fermions per momentum
inside the Fermi sphere, and therefore

1

V

X
k;jkj	kF

1 D N

2V
D n

2
:

This yields

g�;� 0.x; x0/ D n2

4
� ı�� 0

ˇ̌
ˇ̌
ˇ̌ 1V

X
k;jkj	kF

exp
	
ik � .x � x0/



ˇ̌
ˇ̌
ˇ̌
2

� n2

4
� ı�� 0

ˇ̌
ˇ̌ 1

.2�/3

Z
k	kF

d3k exp
	
ik � .x � x0/


ˇ̌ˇ̌2

D n2

4
� ı�� 0

ˇ̌
ˇ̌ 1

.2�/2

Z kF

0

dk
Z 1

�1
d� k2 exp

	
ikjx � x0j�


ˇ̌
ˇ̌2

D n2

4
� ı�� 0

1

4�4jx � x0j2
ˇ̌
ˇ̌Z kF

0

dk k sin
�
kjx � x0j�

ˇ̌
ˇ̌2

D n2

4
� ı�� 0

Œsin .kFjx � x0j/ � kFjx � x0j cos .kFjx � x0j/�2
4�4jx � x0j6 :

In particular, the result for equal spin orientation can be written as

4

n2
g�;� .x; x0/ D 1 � 9 Œsin .kFjx � x0j/ � kFjx � x0j cos .kFjx � x0j/�2

.kFjx � x0j/6 ;

where n D k3F=3�
2 (12.18) was used. This means that up to a distance of order

�F

2
D �

kF
D
� �
3n

� 1
3
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the probability to find a fermion of like spin is significantly reduced: The Pauli
principle prevents two fermions of like spin to be in the same place, even if there is
no interaction between the fermions.

The function 4
n2

g�;� .x; x0/ is plotted for three ranges of the variable
x D kFjx � x0j in Figures 17.1–17.3.

The first maximum 4
n2

g�;� .x; x0/ D 1 is reached at

kFjx � x0j � 4:4934;

i.e. depending on the maximal momentum in the fermion gas the minimal distance
between two fermions of the same spin orientation is given by the minimal
wavelength in the gas:

rhole � 0:7�F: (17.94)

On the other hand, the density of fermions with equal spin is n=2. Equal separation
between those fermions would correspond to a distance

a D
�
2

n

� 1
3

;

Fig. 17.1 The scaled pair correlation function 4g�;� .r/=n2 for 0 	 kFr 	 8
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Fig. 17.2 The scaled pair correlation function 4g�;� .r/=n2 for 4 	 kFr 	 16

and inserting the result for the Fermi momentum

kF D �
3�2n

� 1
3 ; �F D

�
8�

3n

� 1
3

yields

a D
�
3

4�

� 1
3

�F ' 0:62�F: (17.95)

Comparison with rhole (17.94) shows that the Pauli principle effectively repels
fermions of equal spin such that they try to fill the available volume uniformly. Note
that the existence of this exchange hole in the pair correlation between identical
fermions of like spin has nothing to do e.g. with any electromagnetic interaction
between the fermions. It is only a consequence of avoidance due to the Pauli
principle. Stated differently (and presumably in the simplest possible way): The
Pauli principle implies that free fermions of the same spin orientation try to occupy
a volume as uniformly as possible to avoid contact.

If we want to add free fermions to a fermion gas of constant volume we have to
increase the energy in the gas, thereby increasing the maximal momentum in the gas,



380 17 Non-relativistic Quantum Field Theory

Fig. 17.3 The scaled pair correlation function 4g�;� .r/=n2 for 0 	 kFr 	 0:5

to squeeze more fermions into the volume and reduce the mean distance between
fermions of like spin.

The presence of the exchange hole implies a local reduction of the charge density
of the other electrons seen by an electron in a metal (a “Hartree-Fock electron in a
jellium model” [11, 17, 25]),

�e.r/ D � e
n

2
� e

n

2

�
1 � 9

.kFr/6
Œsin .kFr/ � kFr cos .kFr/�2

�

D � en

�
1 � 9

2 .kFr/6
Œsin .kFr/ � kFr cos .kFr/�2

�
:

This effective electron charge density is plotted in Figure 17.4.
A fermion gas where the fermions fill the lowest possible energy states under the

constraint of the Pauli principle is denoted as a degenerate fermion gas. Addition of
a fermion to a degenerate free fermion gas or compression of the free fermion gas
costs energy according to (12.18), and effectively this amounts to a repulsive force
between the fermions. It is easy to calculate the corresponding degeneracy pressure
for the non-relativistic degenerate fermion gas. The total energy of the degenerate
free fermion gas is
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Fig. 17.4 The effective scaled electron charge density �e.r/=.�en/ in a metal is plotted for 0 	
kFr 	 8

E D 2V
Z

jkj	kF

d3k
.2�/3

„2k2
2m

D V
„2k5F
10�2m

D �4=3
„2
10m

.3N/5=3

V2=3
:

The degeneracy pressure is therefore

p D �@E

@V
D .3�2/2=3

„2
5m

n5=3:

The corresponding chemical potential is the Fermi energy, of course,

	 D @E

@N
D „2
2m
.3�2n/2=3 D „2

2m
k2F;

and the average energy per particle is E=N D 0:6	.

17.10. Show that the time-dependence of the Heisenberg picture operator
in (17.44) implies equivalence of the Heisenberg evolution equation (17.7) with
the Schrödinger equation for the single particle wave function hxjˆ.t/i.
Solution. We have found the following representations of a second quantized single
particle state associated with a general wave function hxjˆ.t/i,

jˆ.t/i D
Z

d3x C.x/j0ihxjˆ.t/i D
Z

d3x‰C.x;�t/j0ihxjˆ.0/i: (17.96)
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The first representation (cf. (17.42) for the Schrödinger picture state implies

i„ d

dt
jˆ.t/i D

Z
d3x C.x/j0ii„ @

@t
hxjˆ.t/i: (17.97)

On the other hand, the second representation (17.44) and the Heisenberg evolution
equation (17.7) imply

i„ d

dt
jˆ.t/i D

Z
d3x

�
� „2
2m
�‰C.x;�t/C V.x/‰C.x;�t/

�
j0ihxjˆ.0/i:

Partial integration of the kinetic term and the correspondence (17.96) together with
the linear independence of the states jxi D R

d3x C.x/j0i then imply that the
single particle wave function hxjˆ.t/i must satisfy the Schrödinger equation

i„ @
@t

hxjˆ.t/i D
�

� „2
2m
�C V.x/

�
hxjˆ.t/i:

17.11. The two-particle state (17.64) in the Schrödinger picture can also be written
in terms of Heisenberg picture field operators, cf. (17.44),

jˆa;a0.t/i D exp

�
� i

„Ht

�
jˆa;a0.0/i

D 1p
1C ıa;a0

X
�;� 0

Z
d3x

Z
d3x0‰C

a;� .x;�t/‰C
a0;� 0.x0;�t/j0i

�hx; � I x0; � 0jˆa;a0.0/i: (17.98)

Show that the Heisenberg evolution equations (17.80) with the Hamiltonian (17.73)
yield again the two-particle Schrödinger equations (17.74) and (17.75).

Show also that this derivation works for the general N-particle state and yields
the N-particle equation (17.78). For the potential terms you can use the product rule
for commutators,

ŒA;B1B2 : : :BN � D ŒA;B1�B2 : : :BN C
N�2X
ID1

B1 : : :BI ŒA;BIC1�BIC2 : : :BN

CB1 : : :BN�1ŒA;BN �:



Chapter 18
Quantization of the Maxwell Field: Photons

We will now start to quantize the Maxwell field A	.x/ D f�ˆ.x/=c;A.x/g similar to
the quantization of the Schrödinger field. The fact that electromagnetism has a gauge
invariance implies that there are more components than actual dynamical degrees of
freedom in the Maxwell field. This will make quantization a little more challenging
than for the Schrödinger field, but we will overcome those difficulties.

Electromagnetic field theory is implicitly relativistic, and quantized Maxwell
theory therefore also provides us with a first example of a relativistic quantum
field theory. Appendix B provides an introduction to 4-vector and tensor notation
in electromagnetic theory.

18.1 Lagrange density and mode expansion
for the Maxwell field

The equations of motion for the Maxwell field are the inhomogeneous Maxwell
equations (recall from electrodynamics that the homogeneous equations were solved
through the introduction of the potentials A	),

@	F	� D @	 .@
	A� � @�A	/ D �	0j�:

These equations can be written as

j� C 1

	0
@	 .@

	A� � @�A	/ D @L
@A�

� @	 @L
@.@	A�/

D 0

if we use the Lagrange density

L D j�A� � 1

4	0
F	�F

	� D �0

2
E2 � 1

2	0
B2 C j � A � %ˆ: (18.1)
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This Lagrangian provides us with the canonically conjugate momentum for the
vector potential A:

…A D @L
@ PA D �0. PA C rˆ/ D � �0E;

but

…ˆ D @L
@ P̂ D 0

vanishes identically! Therefore we cannot simply impose canonical commutation
relations between the four components A	 of the 4-vector potential and four conju-
gate momenta …� . To circumvent this problem we revisit Maxwell’s equations,

�ˆC r � PA D � 1

�0
%; (18.2)

r.r � A/ ��A C 1

c2
@2

@t2
A C 1

c2
@

@t
rˆ D 	0j: (18.3)

One way to solve the problem with …ˆ D 0 is to eliminate r � A from the
equations of motion through the gauge freedom

ˆ.x; t/ ! ˆf .x; t/ D ˆ.x; t/ � Pf .x; t/; (18.4)

A.x; t/ ! Af .x; t/ D A.x; t/C r f .x; t/; (18.5)

i.e. we impose the gauge condition r � Af D 0. The equation

�f .x; t/ D � r � A.x; t/

can be solved with the Green’s function G.r/ D .4�r/�1 for the Laplace operator,

�
1

4�jx � x0j D � ı.x � x0/;

see equations (11.11) and (11.17) for E D 0,

f .x; t/ D 1

4�

Z
d3x0 1

jx � x0jr � A.x0; t/:

This gauge is denoted as Coulomb gauge.
We denote the gauge transformed fields again with ˆ and A, i.e. we have

r � A.x; t/ D 0: (18.6)
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and

�ˆ D � 1

�0
%; (18.7)

1

c2
@2

@t2
A ��A C 1

c2
@

@t
rˆ D 	0j: (18.8)

We can now get rid of ˆ by solving (18.7) again with the Green’s function for the
Laplace operator,

ˆ.x; t/ D 1

4��0

Z
d3x0 %.x0; t/

jx � x0j : (18.9)

The resulting equation for A is

�
1

c2
@2

@t2
��

�
A.x; t/ D 	0j.x; t/C 	0

4�

Z
d3x0 x � x0

jx � x0j3
@

@t
%.x0; t/

D 	0j.x; t/C 	0

4�

Z
d3x0 r 1

jx � x0jr
0 � j.x0; t/

D 	0j.x; t/C 	0

4�

Z
d3x0 j.x0; t/ � r ˝ r 1

jx � x0j
D 	0J.x; t/: (18.10)

We can also evaluate the derivatives in the integral using

r ˝ r 1
r

D � r ˝ er

r2
D � 4�

3
1ı.x/ � 1 � 3er ˝ er

r3
: (18.11)

This yields

J.x; t/ D 2

3
j.x; t/C

Z
d3x0 3.x � x0/˝ .x � x0/ � jx � x0j21

4�jx � x0j5 � j.x0; t/:

The new current density J satisfies

r � J.x; t/ D 0: (18.12)

This follows from the definition of J in the first line of (18.10) and charge
conservation, or directly from the second or third line of (18.10), which can be
considered as projections of the vector j onto its divergence-free part. We also
require localization of charges and currents in the sense of

lim
jxj!1

jxjj.x; t/ D 0: (18.13)
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Equation (18.10) can be solved e.g. with the retarded Green’s function, cf.
equation (J.60),

�
1

c2
@2

@t2
��

�
G.x; t/ D ı.x/ı.t/; G.x; t/ D 1

4�r
ı
�

t � r

c

�
; (18.14)

in the form

AJ.x; t/ D 	0

Z
d3x0

Z
dt0 G.x � x0; t � t0/J.x0; t0/

D 	0

4�

Z
d3x0 1

jx � x0jJ
�

x0; t � jx � x0j
c

�
: (18.15)

This satisfies r � AJ.x; t/ D 0 due to (18.12, 18.13).
The vector field is only a special solution of the inhomogeneous equation (18.10),

and the general solution will be a superposition

A.x; t/ D AJ.x; t/C AD.x; t/

of the special inhomogeneous solution with the general solution of the homogeneous
equations

�
1

c2
@2

@t2
��

�
AD.x; t/ D 0: (18.16)

The homogeneous solution still has to satisfy the gauge condition r � AD D 0,
because the total vector potential A has to satisfy this condition.

Fourier decomposition

AD.x; t/ D 1

4�2

Z
d3k

Z
d! AD.k; !/ expŒi.k � x � !t/� ; (18.17)

AD.k; !/ D 1

4�2

Z
d3x

Z
dt AD.x; t/ expŒ�i.k � x � !t/�

transforms the condition r � AD.x; t/ D 0 and the equation (18.16) into

k � AD.k; !/ D 0 (18.18)

and

�
k2 � !2

c2

�
AD.k; !/ D 0: (18.19)
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Equation (18.18) is the statement that photons are transverse, whereas equa-
tion (18.19) implies that AD.k; !/ can be written as

AD.k; !/ D
r
�„	0c

k

2X
˛D1

�˛.k/
�
a˛.k/ı.! � ck/C aC̨.�k/ı.! C ck/

�
;

(18.20)
where the prefactor so far is a matter of convention and the two vectors �˛.k/ are a
Cartesian basis in the plane orthogonal to k:

�˛.k/ � �ˇ.k/ D ı˛ˇ; k � �˛.k/ D 0:

Inserting (18.20) into (18.17) yields

AD.x; t/ D
s

„	0c
.2�/3

Z
d3kp
2k

2X
˛D1

�˛.k/
�

a˛.k/ expŒi.k � x � ckt/�

C aC̨.k/ expŒ�i.k � x � ckt/�
�
; (18.21)

and for the fields

ED.x; t/ D � @

@t
AD.x; t/

D i

s
„	0c3
.2�/3

Z
d3k

r
k

2

2X
˛D1

�˛.k/
�

a˛.k/ expŒi.k � x � ckt/�

� aC̨.k/ expŒ�i.k � x � ckt/�
�
; (18.22)

BD.x; t/ D r � AD.x; t/

D i

s
„	0c
.2�/3

Z
d3kp
2k

2X
˛D1

k � �˛.k/
�

a˛.k/ expŒi.k � x � ckt/�

� aC̨.k/ expŒ�i.k � x � ckt/�
�
: (18.23)

Inversion of equations (18.21, 18.22) yields

a˛.k/ D
Z

d3xp
.2�/32	0„c

�˛.k/ �
�p

kAD.x; t/C i

c
p

k
PAD.x; t/

�

� expŒ�i.k � x � ckt/�;

aC̨.k/ D
Z

d3xp
.2�/32	0„c

�˛.k/ �
�p

kAD.x; t/ � i

c
p

k
PAD.x; t/

�

� expŒi.k � x � ckt/�:
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We can think of the vector potential (18.21) as a state jAD.t/i with components

hk; ˛jAD.t/i D
r„	0c

2k

�
a˛.k/ exp.�ickt/C aC̨.�k/ exp.ickt/

�
(18.24)

in wave vector space, and

hx; ijAD.t/i D
s

„	0c
.2�/3

Z
d3kp
2k

2X
˛D1

�i
˛.k/

�
a˛.k/ expŒi.k � x � ckt/�

C aC̨.k/ expŒ�i.k � x � ckt/�
�

(18.25)

in x space. This corresponds to transformation matrices

hx; ijk; ˛i D 1p
2�

3
�i
˛.k/ exp.ik � x/;

and we can easily check the completeness relations

hk; ˛jk0; ˇi D
Z

d3x
X

i

hk; ˛jx; iihx; ijk0; ˇi D ı.k � k0/�˛.k/ � �ˇ.k/

D ı.k � k0/ı˛ˇ; (18.26)

hx; ijx0; ji D
Z

d3k
X
˛

hx; ijk; ˛ihk; ˛jx0; ji

D 1

.2�/3

Z
d3k expŒik � .x � x0/�

X
˛

�i
˛.k/�

j
˛.k/

D 1

.2�/3

Z
d3k expŒik � .x � x0/�Pij

?.k/

D 1

.2�/3

Z
d3k expŒik � .x � x0/�

�
ıij � kikj

k2

�

D ı
ij
?.x � x0/: (18.27)

Here the equation

2X
˛D1

�˛.k/˝ �˛.k/ D 1 � Ok ˝ Ok (18.28)

has been used, cf. the decomposition of unity (4.14). Equation (18.27) defines the
transverse ı function.
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Energy-momentum tensor for the free Maxwell field

The Lagrange density for the free Maxwell field,

L D � 1

4	0
F	�F

	�; (18.29)

yields a canonical energy-momentum tensor

‚	
� D �	

�L � @	A�
@L

@.@�A�/
D 1

	0

�
@	A� � F�� � 1

4
�	

�F�F�
�

(18.30)

which is not gauge invariant. However, the free equation @�F�� D 0 implies a trivial
conservation law

� 1

	0
@�
�
@�A	 � F��

� D 0 (18.31)

which can be added to the conservation law for the free fields, @�‚	
� D 0. In this

way we can improve the energy-momentum tensor‚	
� to a gauge invariant energy-

momentum tensor

T	
� D ‚	

� � 1

	0
@�A	 � F�� D 1

	0

�
F	�F�� � 1

4
�	

�F�F�
�
: (18.32)

The corresponding energy-momentum density vector P	 D T	0=c yields the well
known expressions for the energy and momentum densities of electromagnetic
fields,

H D � cP0 D �T0
0 D �0

2
E2 C 1

2	0
B2; (18.33)

P D �0E � B: (18.34)

The components of the energy current density (the Poynting vector) are given by the
components �cT0i (because �@tT00 D �c@0T00 D c@iT0i):

S D 1

	0
E � B D c2P : (18.35)

We are interested in the energy and momentum densities for the free fields
AD.x; t/, because those will become the freely evolving field operators in the Dirac
picture.
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18.2 Photons

In the previous section we got rid of ˆ and even of the longitudinal component
of A. Now we might be tempted to impose canonical commutation relations
ŒAi.x; t/;…j.x0; t/�  i„ıijı.x � x0/. However, this would be inconsistent, since
equation (18.6) implies that application of @=@xi and summation over i on the left
hand side would yield zero, but on the right hand side would not yield zero! This
problem arises irrespective of whether we wish to quantize the full vector potential
A or only the free vector potential AD. Therefore we have to invoke the transverse ı-
function (18.27) to formulate the canonical commutation relations for the Maxwell
field. We will use these relations primarily for the Dirac picture operators, but we
omit the index D from now on,

ŒAi.x; t/; PAj.x0; t/� D i„
�0.2�/3

Z
d3k

�
ıij � kikj

k2

�
expŒik � .x � x0/�

D i„
�0.2�/3

Z
d3k

2X
˛D1

�˛;i.k/�˛;j.k/ expŒik � .x � x0/�;

or in short form

ŒAi.x; t/; PAj.x0; t/� D i„
�0
ı?

ij .x � x0/: (18.36)

This equation can also be written using the zero energy Green’s function G.x�x0/ D
hxjG.0/jx0i (cf. equations (J.18, J.19) and (J.24)),

ŒAi.x; t/; PAj.x0; t/� D i„
�0

�
ıijı.x � x0/C @i@jG.x � x0/

�
; (18.37)

and using (18.11) we find

ŒA.x; t/ ;̋ PA.x0; t/� D i„
�0

�
2

3
1 ı.x � x0/

C 3.x � x0/˝ .x � x0/ � jx � x0j21
4�jx � x0j5

�
: (18.38)

The remaining commutation relations are

ŒAi.x; t/;Aj.x0; t/� D 0; Œ PAi.x; t/; PAj.x0; t/� D 0: (18.39)

The relations (18.36, 18.39) yield for the operators a˛.k/, aC
ˇ .k

0/ harmonic oscillator
relations,

Œa˛.k/; aˇ.k0/�D0; ŒaC̨.k/; aC
ˇ .k

0/�D0; Œa˛.k/; aC
ˇ .k

0/� D ı˛ˇı.k � k0/:
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The prefactor in (18.20) was chosen such that no extra factor appears in the
commutation relation of a˛.k/ and aC

ˇ .k
0/.

The energy and momentum densities (18.33) and (18.34) yield energy and
momentum operators

H D
Z

d3x
�
�0

2
E2 C 1

2	0
B2
�

D
X
˛

Z
d3k „ck aC̨.k/a˛.k/; (18.40)

P D �0

Z
d3x E � B D

X
˛

Z
d3k „k aC̨.k/a˛.k/: (18.41)

From these expressions we can infer by the meanwhile standard methods that aC̨.k/
creates a photon of momentum „k, energy „ck and polarization �˛.k/, while a˛.k/
annihilates such a photon. In particular,

jk; ˛i D aC̨.k/j0i

is a single photon state with momentum „k, energy „ck and polarization �˛.k/.
In writing the k space integrals for H and P we have used the prescription

of normal ordering, i.e. writing the creation operators on the left side of the
annihilation operators. This ensures that vacuum expectation values of charges
and currents vanish. Many authors like to explicitly indicate normal ordering
for x space representations of charges or currents through double colons, e.g. for
equation (18.40) this would read

H D W
Z

d3x
�
�0

2
E2 C 1

2	0
B2
�

W D
X
˛

Z
d3k „ck aC̨.k/a˛.k/:

We will not use the double colon notation and instead use the implicit convention
that charges and currents have to be normal ordered in terms of creation and
annihilation operators.

If we want to construct a creation operator aC̨.x/ in x space (corresponding to
the operator  C.x/ in Schrödinger theory) we find

aC̨.x/ D 1p
2�

3

Z
d3k aC̨.k/ exp.�ik � x/

D 1

.2�/3

Z
d3k

Z
d3x0�˛.k/ �

 s
k

2	0c„A.x0; t/

� ip
2k	0c3„

PA.x0; t/
!

expŒik � .x0 � x/ � ickt�:
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The expression on the right hand side is time-independent and can just as well
be written in terms of the Schrödinger picture operators A.x/ D A.x; 0/ and
PA.x/ D PA.x; 0/. However, the important observation is that contrary to Schrödinger
theory, the original operator in x space, A.x; t/, is not a pure annihilation or creation
operator any more, but instead is a superposition of annihilation and creation
operators. This is a generic feature of relativistic field operators. The property
aC.x/ D  C.x/ is a special feature of the non-relativistic Schrödinger field. It
is because of this feature of the Schrödinger field that we did not have to use an
explicit double colon notation or an implicit agreement to use normal ordering in
Schrödinger field theory. Normal ordered expressions in x space were automatically
normal ordered in k space.

The time evolution of the free photon operators in k space is given by the standard
Heisenberg evolution equations,

aD˛.k; t/ D a˛.k/ exp.�ickt/ D exp

�
i

„Ht

�
a˛.k/ exp

�
� i

„Ht

�
; (18.42)

@

@t
aD˛.k; t/ D i

„ ŒH; aD˛.k; t/�; (18.43)

and therefore we also have for the field operators in x space

A.x; t/ D exp

�
i

„Ht

�
A.x/ exp

�
� i

„Ht

�
; (18.44)

but to recover the evolution equation (18.16) in x space we have to use iterated
Heisenberg evolution equations,

@

@t
A.x; t/ D i

„ ŒH;A.x; t/� D � E.x; t/; (18.45)

@2

@t2
A.x; t/ D � i

„ ŒH;E.x; t/� D � 1

„2 ŒH; ŒH;A.x; t/��: (18.46)

This is a general property of bosonic relativistic fields.

18.3 Coherent states of the electromagnetic field

We can directly apply what we have learned about coherent oscillator states to
construct a quantum state with the property that the operator E.x; t/ (18.22) yields
a classical electromagnetic wave as expectation value,
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hEjE.x; t/jEi D E.x; t/

D i

s
„	0c3
.2�/3

Z
d3k

r
k

2

2X
˛D1

�˛.k/
�

˛.k/ expŒi.k � x � ckt/�

� 
C̨.k/ expŒ�i.k � x � ckt/�
�
: (18.47)

The results of Section 6.5 imply that the state jEi can be unitarily generated out of
the vacuum1,

jEi D exp

 Z
d3k

2X
˛D1

�

˛.k/aC̨.k/ � 
C̨.k/a˛.k/

�! j0i:

The corresponding equations in the Schrödinger picture are

hE.t/jE.x/jE.t/i D E.x; t/;

jE.t/i D exp

 Z
d3k

2X
˛D1

�

˛.k; t/aC̨.k/ � 
C̨.k; t/a˛.k/

�! j0i; (18.48)

with


˛.k; t/ D 
˛.k/ exp.�ickt/:

The average photon number in the electromagnetic wave is

hni D hEj
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 Z

d3k
2X

˛D1
j
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!2
C
Z

d3k
2X

˛D1
j
˛.k/j2 ;

1R.J. Glauber, Phys. Rev. 131, 2766 (1963).
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�n D
p

hni D
 Z

d3k
2X

˛D1
j
˛.k/j2

!1=2
;

�n

hni D 1phni :

Every free quantum field has an expansion in terms of oscillator operators, and
therefore each quantum field has coherent states which yield classical expectation
values for the field. They are particularly important for electromagnetic fields
because classical electromagnetic waves are so abundant, readily available, and of
technical relevance. This is a consequence of boson statistics and of the vanishing
mass and charge of photons. Generating and packing together huge numbers of
photons is very inexpensive in terms of energy.

18.4 Photon coupling to relative motion

The discussion of photon interactions with atoms or molecules usually does not
involve discussions of photon interactions with the individual constituent electrons
and nuclei, but assumes either an effective coupling to the quasiparticles which
describe the relative motion between nuclei and electrons, or otherwise assumes
coupling of the photons to only one kind of particle in a many particle system.
A shortcut justification e.g. for assuming that photons should primarily couple
to electrons rather than nuclei in atoms is that physical intuition would indicate
that an electromagnetic wave should shake a lighter particle more easily than a
heavier particle. Indeed, when we calculate the cross section for photon scattering
off free charged particles in Section 22.3, we will find that scattering of low energy
photons is suppressed with the mass of the scattering particle like m�2, and for
high energy photons like m�1. Furthermore, atomic matrix elements for optical
dipole transitions scale like m�1 which also indicates a preference for coupling
to the lighter charged components in a composite system. However, the intuition
can be misleading. A simple counterexample is provided e.g. by the absorption
or emission of infrared photons by molecules. The dominant degrees of freedom
which undergo transitions in these cases are molecular vibrations or rotations, but
not electronic transitions, i.e. the dominant photon-matter interaction for infrared
photons concerns coupling to clusters of ions or atomic nuclei. What this means
is that we have to make judicious calls on which terms in a quantum electronics
or quantum electrodynamics Hamiltonian will make the dominant contributions to
photon interactions, depending on the photon energy range that we are interested
in and the available atomic or molecular transitions. However, if we use standard
atomic orbitals to model the states of the unperturbed matter system, then this does
imply an approximation of photon coupling to the quasiparticle which describes
relative motion, or to the electrons as the lightest charges. It is therefore instructive
to revisit the problem of separation of center of mass motion and relative motion in
the presence of electromagnetic fields.
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The two-particle Hamiltonian (7.1) with the electromagnetic vector potentials
included takes the form

H D 1

2m1

.p1 � q1A.x1; t//
2 C 1

2m2

.p2 � q2A.x2; t//
2

CV.jx1 � x2j/: (18.49)

Substitution of the single particle momenta with the total momentum and the
effective momentum in the relative motion (7.6) yields

H D 1

2M
.P � q1A.x1; t/ � q2A.x2; t//

2

C 1

2	

�
p�m2q1A.x1; t/ � m1q2A.x2; t/

M

�2
CV.jx1 � x2j/: (18.50)

Now we assume that the electromagnetic potentials vary weakly over the
extension of the two-particle system,

A.x1; t/ ' A.x2; t/ ' A.R; t/: (18.51)

This yields an effective Hamiltonian

H D 1

2M
.P � QA.R; t//2 C 1

2	
.p � qA.R; t//2 C V.jrj/; (18.52)

with the total charge Q D q1 C q2 in the kinetic term for center of mass motion, and
a reduced charge in the quasiparticle kinetic term,

q D m2q1 � m1q2
m1 C m2

; (18.53)

with inversions

q1 D m1

M
Q C q; q2 D m2

M
Q � q:

The equations of motion of the classical two-particle system are in the approxi-
mations B.x1; t/ ' B.x2; t/ ' B.R; t/, (same for E) given by

M RR D .Q PR C qPr/ � B C QE; (18.54)

	Rr D
 

q PR C 	Q Cp
M.M � 4	/q
M

Pr
!

� B C qE � @V

@r
: (18.55)

Even the simplifying assumption (18.51) does not allow for separation of the
center of mass motion any more, and the equations do not separate in terms of
center of mass and relative coordinates, nor in total and reduced masses or charges.
However, equations (18.54, 18.55) show that the coupling of photons to the center
of mass motion is suppressed with inverse total mass. Therefore the impact of the
photons on the relative motion dominates over the impact on center of mass motion,
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and in leading order we are left with an effective single-particle Hamiltonian for the
relative motion in the center of mass frame,

H D 1

2	
.p � qA.t//2 C V.jrj/: (18.56)

The corresponding statement at the classical level (18.54, 18.55) is that in leading
order of 	=M, the center of mass frame is preserved and we have an effective single
particle problem for relative motion,

	Rr D qPr � B C qE � @V

@r
:

Equation (18.53) for the effective charge q yields q D q1 if q2 D �q1, and
m2 � m1 also implies q ' q1. This entails that in atoms or molecules, we can
think of photons as effectively coupling to the electrons if the photon wavelengths
hc=E� are large compared to the size of the atoms or molecules. An alternative
justification of using effective single particle Hamiltonians like (18.56) for photon
interactions with bound systems is therefore also to discard the contribution for the
heavier particle with mass m2 in the original two-particle Hamiltonian (18.49), but
still assume the bound states jn; `;m`i which were derived for the relative motion
r D x1 � x2 to hold for the coordinate x1 of the lighter particle. This is an equivalent
approximation up to correction terms of the same order m1=m2 ' 	=M. However,
the approximation clearly becomes invalid if transitions for the lighter particles are
prohibited either by selection rules or by absence of suitable energy levels.

The derivation of (18.56) required negligible spatial variation of the photon
terms over the extension of the unperturbed wave functions for relative motion,
to justify minimal photon coupling into the Hamiltonian for relative motion.
Dipole approximation and minimal electromagnetic coupling to the Hamiltonian
for relative motion in a bound system therefore use the same premise.

18.5 Energy-momentum densities and time evolution
in quantum optics

Further discussions of photon-matter interactions and of time evolution of the
quantized Maxwell field require the Hamiltonian and momentum operators for
coupled electromagnetic and matter fields. The study of electromagnetic interactions
with non-relativistic matter fields is the domain of quantum optics or quantum
electronics.

A Lagrange density for coupled electromagnetic and non-relativistic matter
fields is

L D
X

a

�
i„
2

�
‰C

a � @‰a

@t
� @‰C

a

@t
�‰a

�
� qa‰

C
a ˆ‰a � „2

2ma
r‰C

a � r‰a

� i
qa„
2ma

A �
�
‰C

a

$r ‰a

�
� q2a
2ma

‰C
a A2‰a

�
� 1

4	0
F	�F

	�: (18.57)
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Here ˆ D �cA0 is the electric potential, and we use the definition of an alternating

derivative operator  C $r  �  C � r � r C � .
The summation over a refers to different kinds of non-relativistic particles (e.g.

electrons, protons etc.), and a summation over spin labels is implicitly understood.
Phase invariance yields the electric charge and current densities

% D j0=c D
X

a

qa‰
C
a ‰a; (18.58)

j D
X

a

qa

2ima

�
„‰C

a

$r ‰a � 2iqa‰
C
a A‰a

�
: (18.59)

Like the energy-momentum tensor (18.30), the canonical energy-momentum
tensor following from the Lagrange density (18.57) according to the general
result (16.16),

‚	
� D �	

�L C 1

	0
@	A� � F�� �

X
a

�
@	‰a

@L
@.@�‰a/

C @	‰
C
a

@L
@.@�‰C

a /

�
;

is not gauge invariant. Just like in the case of the free Maxwell field, we can cure
this by adding the trivially conserved tensor

ı‚	
� D � 1

	0
@�.A	F��/ D � A	j� � 1

	0
@�A	 � F��; @�ı‚	

� � 0:

The improved energy-momentum tensor t	� D ‚	
� C ı‚	

� yields in particular the
gauge invariant energy density for quantum optics,
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0 D �0
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„2r‰C

a � r‰a
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C
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i
; (18.60)

and the gauge invariant momentum density,

P D 1

c
t0i ei D �0E � B C 1

2i

X
a

�
„‰C

a

$r ‰a � 2iqa‰
C
a A‰a

�
: (18.61)

In materials science it is convenient to explicitly disentangle the contributions
from Coulomb and photon terms in Coulomb gauge r � A D 0. We split the electric
field components in Coulomb gauge according to

Ek D � rˆ (18.62)

and

E? D � @A
@t
: (18.63)
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The equation for the electrostatic potential decouples from the vector potential,

�ˆ D � 1

�0

X
a

qa‰
C
a ‰a;

and is solved by

ˆ.x; t/ D 1

4��0

Z
d3x0X

a

qa

jx � x0j‰
C
a .x

0; t/‰a.x0; t/:

Furthermore, the two components of the electric field are orthogonal in the Coulomb
gauge,

Z
d3x Ek.x; t/ � E?.x; t/ D

Z
d3k Ek.k; t/ � E?.�k; t/

D �
Z

d3xˆ.x; t/
@

@t
r � A.x; t/ D 0; (18.64)

and the contribution from Ek to the Hamiltonian generates the Coulomb potentials

HC D �0

2

Z
d3x E2k.x; t/D � �0
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D 1

2

Z
d3xˆ.x; t/%.x; t/

D
X
aa0

Z
d3x

Z
d3x0 qaqa0
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C
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8��0jx � x0j ; (18.65)

where the ordering of the field operators was performed to ensure correct expecta-
tion values for the interaction energy of 2-particle states after second quantization.
The summation may also implicitly include spinor indices.

The resulting Hamiltonian in Coulomb gauge therefore has the form
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(18.66)
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The momentum operator in Coulomb gauge follows from (18.61) andZ
d3x �0Ek � B D �

Z
d3x �0ˆ�A D

Z
d3x %A D
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d3x

X
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P D
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‰C
a r‰a C �0E? � B

!
: (18.67)

Recall that Heisenberg or Schrödinger picture field operators satisfy the same
canonical commutation relations as the Dirac picture operators because the quantum
pictures are related by unitary transformations. For the vector potential A.x; t/ in
Coulomb gauge this implies the same commutation relations (18.36, 18.39) as
for the Dirac picture vector potential. The Hamiltonian (18.66) then yields the
Schrödinger equations for the matter fields from

i„ @
@t
‰.x; t/ D Œ‰.x; t/;H�; (18.68)

and the electromagnetic wave equation in Coulomb gauge (18.10) from

i„ @
@t

A.x; t/ D ŒA.x; t/;H�;
@2

@t2
A.x; t/ D 1

„2 ŒH; ŒA.x; t/;H��: (18.69)

These relations imply that also after quantization of the Maxwell field, field
operators in the Heisenberg and Schrödinger pictures are still related according to

A.x; t/ D exp.iHt=„/A.x/ exp.�iHt=„/ ; (18.70)

and the derivation of scattering matrix elements with the automatic emergence of the
interaction picture proceeds exactly as in the previous cases of quantum mechanics
and non-relativistic quantum field theory,

Sfi D hf jUD.1;�1/jii; (18.71)

UD.t; t
0/ D exp

�
i

„H0t

�
exp

�
� i

„H.t � t0/
�

exp

�
� i

„H0t
0
�

D T exp

�
� i

„
Z t

t0
d� HD.�/

�
; (18.72)
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�
V exp
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� i

„H0t

�
; (18.73)
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where the identification of H0 D H � V depends on what part of H we can solve
and what part we wish to take into account through perturbation theory. I.e. we find
the same basic structure of time-dependent perturbation theory in terms of Hamilton
operators also after introduction of the relativistic photon operators. We will see in
Chapters 21 and 22 that this property persists in general in quantum field theory also
after introduction of other relativistic field operators.

18.6 Photon emission rates

The calculation of transition probabilities between Fock states requires time-
dependent perturbation theory in the second quantized formalism.

The relevant part of the Hamiltonian (18.66) for a coupled system of non-
relativistic charged particles and photons is

H D H0 C HI C HII

D
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!
; (18.74)

where V is an intra-atomic or intra-molecular potential and the interaction terms
between the charged particles and the photons are
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; HII D
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X
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 C
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Here we explicitly included the spin summations and wrote the Hamiltonian in terms
of the Schrödinger picture field operators ( PA.x/ � PA.x; 0/). In principle there is also
the electrostatic repulsion between the particles,

HC D q2

8��0

Z
d3x

Z
d3x0X

�;� 0

 C
� .x/ 

C
� 0 .x0/

1

jx � x0j � 0.x0/ �.x/:

However, we will only study transitions with single matter particles in the initial
state, where HC will not contribute.

For the following calculations we use hydrogen states as an example to illustrate
the method, and we use  �.x/ and  C

� .x/ as the Schrödinger picture field operators
of the effective quasiparticle which describes relative motion of the proton and
electron in the atom,
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jn; `;m`; � I t0i D j‰n;`;m`;� .t
0/i D
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d3x‰n;`;m` .x; t

0/ C
� .x/j0i
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d3x‰n;`;m` .x/ exp.�iH0t
0=„/ C

� .x/j0i; (18.75)

i.e.  �.x/ and  C
� .x/ are the Schrödinger picture field operators which arise from

quantization of the wave function hx; � j‰.t/i in Schrödinger’s wave mechanics. See
Problem 18.7 for the question why the state (18.75) is an eigenstate of H0.

According to our results from Section 18.4, the Hamiltonian (18.74) includes
an approximation if we use it for coupling the electromagnetic potential to the
hydrogen atom, because we introduced the photon operators through minimal
coupling into the effective single particle problem that resulted from separation of
the center of mass motion. This is a good approximation if the electromagnetic
potentials vary only weakly over the size of the atom, A.xp; t/ ' A.xe; t/. Indeed, it
is an excellent approximation for the study of transitions between bound hydrogen
states, because in these cases � > hc=13:6 eV D 91 nm.

We wish to calculate the photon emission rate, i.e. the transition rate from the
initial state (18.75) into a final state with the electron in another atomic state and a
photon with momentum „k and polarization �˛.k/,
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The relevant transition matrix elements for photon emission between t0 and t are
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�

is the time evolution operator on the states in the interaction picture.
The scattering matrix element is in leading order

Sfi D Sn0;`0;m0

`;�
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with the field operators in the Schrödinger picture. We also took into account that
the energy levels are ` dependent through fine structure. At this stage we are still
using A.x/, although our reasoning in Section 18.4 already indicated that any x
dependence in A.x/ must be negligible to justify minimal photon coupling into the
effective Hamiltonian for relative motion in the atom. We will return to this point
below.

Substitution of the mode expansion (18.21) for the photon operator and evalua-
tion of the second quantized matrix element transforms the transition matrix element
for photon emission into a matrix element of first quantized theory,

Sn0;`0;m0

`;�
0Ik;˛jn;`;m`;� ' 2�ı.!n0;`0In;` C ck/

iq

m„

r „	0c
16�3k

ı�� 0

�hn0; `0;m0̀ j�˛.k/ � p exp.�ik � x/jn; `;m`i:
(18.78)

The operators �˛.k/ � p and k � x commute, whence we do not encounter a normal
ordering problem in the first quantized matrix element.

Equation (18.78) can be interpreted as a first quantized matrix element of the
perturbation operator

V.t/ D � q

2m
.p � A.x; t/C A.x; t/ � p/ ; (18.79)

which contains an operator corresponding to a classical transversely polarized plane
wave

A.C/˛ .x; t/ D
r „	0c
16�3k

�˛.k/ expŒ�i.k � x � ckt/�: (18.80)

This classical plane wave apparently represents a single emitted photon of sharp
energy „ck and momentum „k, and second quantization helped us to determine
both the proper amplitude for the single photon wave and the k-dependent term in
the transition matrix element. The corresponding calculation for absorption of a
photon yields a first quantized matrix element of the perturbation operator (18.79)
with a single photon vector potential

A.�/˛ .x; t/ D
r „	0c
16�3k

�˛.k/ expŒi.k � x � ckt/�; (18.81)

see equation (18.93).
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We can understand the amplitudes of the single photon wave functions (18.80)
and (18.81) in the following way: The mode expansion (18.21) becomes in finite
volume V

A.x; t/ D
r„	0c

V

X
k

2X
˛D1

�˛.k/p
2k

�
a˛.k/ expŒi.k � x � ckt/�

C aC̨.k/ expŒ�i.k � x � ckt/�
�
; (18.82)

and the corresponding energy and momentum operators2 are

H D
X

k

X
˛

„ck aC̨.k/a˛.k/; P D
X

k

X
˛

„k aC̨.k/a˛.k/:

These equations tell us for a classical amplitude a˛.k/ that this amplitude would
(up to an arbitrary phase ') have to be a Kronecker ı with respect to momentum
and polarization to represent a single photon of momentum „k, energy „ck and
polarization �˛ , and therefore the classical vector potential for the single photon in
the continuum limit V ! 8�3 is

A�;k;˛.x; t/ D
r „	0c
16�3k

�˛.k/
�

expŒi.k � x � ckt C '/�

C expŒ�i.k � x � ckt C '/�
�

D 2

r „	0c
16�3k

�˛.k/ cos.k � x � ckt C '/: (18.83)

Note however that for emission only the plane wave with expŒ�i.k � x �
ckt C '/� contributes to the transition matrix element, whereas for absorption
only the other term contributes.

The vector potential in box normalization (18.82) does have the expected units
Vs/m, whereas the continuum limit vector potentials (18.21, 18.83) come in units of
m3=2Vs=m. This is related to the fact that their transition matrix elements squared
yield transition probability densities per volume unit d3k in the photon state space,
see e.g. equation (18.84) below. It is the same effect that we encountered in
scattering theory for momentum eigenstates exp.ik � x/=V1=2 in box normalization
or exp.ik � x/=.2�/3=2 in the continuum limit.

2Classically these equations would hold for time averages.
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Evaluation of the transition matrix element
in the dipole approximation

We have already emphasized that the coupling of the electromagnetic potentials
to the effective single particle model for relative motion in atoms assumes a long
wavelength approximation in the sense A.xp; t/ ' A.xe; t/, see equations (18.51)
and (18.56). Therefore the exponential factor exp.�ik � x/ must effectively be
constant over the extension of the atomic wave functions and can be replaced by
exp.�ik � x/ ' 1. For an estimate of the product jk � xj, we recall that the energy of
the emitted photon from an excited bound state cannot exceed the binding energy of
hydrogen,

hc

�
< �E1 D e2

8��0a0
D hc˛

4�a0
;

and therefore

� >
4�

˛
a0 ' 1:72 � 103a0; ka0 <

˛

2
' 3:65 � 10�3:

This confirms that the exponential factor will be approximately constant over the
extension of the wave functions,

hn0; `0;m0̀ j�˛.k/ � p exp.�ik � x/jn; `;m`i � hn0; `0;m0̀ j�˛.k/ � pjn; `;m`i:

The matrix element of the momentum operator between energy eigenstates is
usually converted into matrix elements of the position operator x using the first
quantized Hamiltonian H0 D .p2=2m/C V.x/ and the relation

ŒH0; x� D „
im

p:

This implies

hn0; `0;m0̀ jpjn; `;m`i D i
m

„ hn0; `0;m0̀ jŒH0; x�jn; `;m`i
D im!n0;`0In;`hn0; `0;m0̀ jxjn; `;m`i;

where „!n0;`0In;` D En0;`0 � En;`. In the case of emission we have !n0;`0In;` < 0. The
transition matrix element (18.78) therefore becomes

Sn0;`0;m0

`;�
0Ik;˛jn;`;m`;� ' � 2�ı.!n0;`0In;` C ck/q

r
	0c

16�3„k
ı�� 0!n0;`0In;`

�hn0; `0;m0̀ j�˛.k/ � xjn; `;m`i
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D ı.!n0;`0In;` C ck/q

r
	0c3k

4�„ ı�� 0

�hn0; `0;m0̀ j�˛.k/ � xjn; `;m`i:

The differential emission rate into a momentum volume element d3k around k of
a photon of polarization �˛.k/ is then with q D �e, ı.0/ ! T=2� ,

d�.˛/.k/n;`;m`;�!n0;`0;m0

`;�
0 D d3k

ˇ̌
ˇSn0;`0;m0

`;�
0Ik;˛jn;`;m`;�

ˇ̌
ˇ2

T

' 	0c3e2

8�2„ kı�� 0

ˇ̌hn0; `0;m0̀ j�˛.k/ � xjn; `;m`i
ˇ̌2
ı.!n;`In0;`0 � ck/d3k;

(18.84)

or after integration over the wave number k of the emitted photon,

d�.˛/.Ok/n;`;m`;�!n0;`0;m0

`;�
0

d�
D 	0e2

8�2„c
!3n;`In0;`0ı�� 0

� ˇ̌�˛.k/ � hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2
: (18.85)

Note that if we would have tried to calculate this only within a semi-classical first
quantized theory for the monochromatic perturbation (18.79, 18.80), the ı function
in energy and the units of the transition matrix element would have tempted us to
introduce a density %.En0/ of final hydrogen states per energy, similar to the Golden
Rule for transitions into a continuum. This factor would then have appeared instead
of the factor3 ı.En � En0 � „ck/d3k in (18.84). Indeed, we do have a transition into a
continuum of final photon states, but the semi-classical approximation would have
missed that and naive application of the Golden Rule would have tempted us to
include a wrong factor with an unjustified interpretation, see also Problem 18.11.

As a consequence of the ' dependence of the spherical harmonics, the vector

hn0; `0;m0̀ jxjn; `;m`i D hn0; `0;m0̀ jr sin# cos'jn; `;m`iex

C hn0; `0;m0̀ jr sin# sin'jn; `;m`iey C hn0; `0;m0̀ jr cos#jn; `;m`iez

has real x and z components and an imaginary y component. We know
already from the dipole selection rules from Section 15.1 that the z component
hn0; `0;m0̀ jzjn; `;m`i is only different from 0 if �m` D m0̀ � m` D 0, while the x
and y components are only different from 0 if �m` D ˙1.

The different conjugation properties and selection rules imply

3Recall that densities of states %.E/ � k2dk=dE in the V ! 1 limit have units of cm�3eV�1, see
the remark after equation (12.8).
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ˇ̌
�˛.k/ � hn0; `0;m0̀ jxjn; `;m`i

ˇ̌2 D
�
�˛.k/ � 	hn0; `0;m0̀ jxjn; `;m`iex

� hn0; `0;m0̀ jyjn; `;m`iey C hn0; `0;m0̀ jzjn; `;m`iez

 �

�
�
�˛.k/ � 	hn0; `0;m0̀ jxjn; `;m`iex C hn0; `0;m0̀ jyjn; `;m`iey

C hn0; `0;m0̀ jzjn; `;m`iez

 �

D 	
�˛.k/ � hn0; `0;m0̀ jxjn; `;m`iex


2 C 	
�˛.k/ � hn0; `0;m0̀ jzjn; `;m`iez


2
C 	

i�˛.k/ � hn0; `0;m0̀ jyjn; `;m`iey

2
:

This cannot be directly associated with an angle between the polarization �˛.k/
and one of the real vectors

hn0; `0;m0̀ jx˙jn; `;m`i D hn0; `0;m0̀ jxjn; `;m`iex ˙ ihn0; `0;m0̀ jyjn; `;m`iey

C hn0; `0;m0̀ jzjn; `;m`iez

because of missing cross terms of the form

˙ 2
	
�˛.k/ � hn0; `0;m0̀ jxjn; `;m`iex


 	
i�˛.k/ � hn0; `0;m0̀ jyjn; `;m`iey



:

However, we can write

ˇ̌
�˛.k/ � hn0; `0;m0̀ jxjn; `;m`i

ˇ̌2 D 1

2

ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2

� �cos2 �˛;� C cos2 �˛;C
�

where �˛;� and �˛;C are the angles between the polarization �˛.k/ and the real
vectors hn0; `0;m0̀ jx�jn; `;m`i and hn0; `0;m0̀ jxCjn; `;m`i, respectively.

This yields a differential emission rate

d�.˛/.Ok/n;`;m`;�!n0;`0;m0

`;�
0 D 	0e2

8�2„c
!3n;`In0;`0ı�� 0

ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2

�cos2 �˛;� C cos2 �˛;C
2

d�: (18.86)

The solid angle element d� D sin# d#d' measures the direction of the emission
vector k and the calculation of the total polarized emission rate �.˛/

n;`;m`!n0;`0;m0

`

requires integration over d�. We can do that e.g. by evaluating the angles �˛;˙
in terms of the angles f#˛; '˛g of the vector �˛.k/ and the angles f#˙; '˙g of
the vectors hn0; `0;m0̀ jx˙jn; `;m`i. However, a faster way is to choose in each
of the two terms the respective angle �˛;˙ and a corresponding azimuthal angle
�˛;˙ as integration variables. This reduces the calculation of the angular integrals to

Z 2�

0

d�˛;˙
Z �

0

d�˛;˙ sin �˛;˙ cos2 �˛;˙ D 4�

3
:
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The total emission rate for polarized photons is therefore

�
.˛/

n;`;m`;�!n0;`0;m0

`;�
0

D 	0e2

6�„c
!3n;`In0;`0ı�� 0

ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2
; (18.87)

and the total unpolarized emission rate is

�n;`;m`;�!n0;`0;m0

`;�
0 D 	0e2

3�„c
!3n;`In0;`0ı�� 0

ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2
: (18.88)

The relation �n;`;m`;�!n0;`0;m0

`;�
0 D 2�

.˛/

n;`;m`;�!n0;`0;m0

`;�
0

follows at a more formal

level from the fact that
2X

˛D1
�˛.k/˝ �˛.k/ D 1 � Ok ˝ Ok

is the projector onto the plane orthogonal to k, and therefore
X
˛

ˇ̌
�˛.k/ � hn0; `0;m0̀ jx˙jn; `;m`i

ˇ̌2 D ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2

sin2 �˙;

where �˙ are the angles between the wave vector k and the two real vectors
hn0; `0;m0̀ jx˙jn; `;m`i. Therefore we find for the unpolarized differential emission
rate

d�.Ok/n;`;m`;�!n0;`0;m0

`;�
0 D 	0e2

8�2„c
!3n;`In0;`0ı�� 0

ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌2

� sin2 �� C sin2 �C
2

d�; (18.89)

and this time the angular integrals yield

Z 2�

0

d�˙
Z �

0

d�˙ sin3 �˙ D 8�

3
;

which implies the total emission rate (18.88).
We had to write the polarized and unpolarized differential emission rates (18.86)

and (18.89) as averages over two real dipoles �ehn0; `0;m0̀ jx˙jn; `;m`i, where we
used the dipole selection rules for hydrogen states. For general atomic or molecular
states, all Cartesian components of hf jxjii may be complex, and we may have a sum
of two dipoles of different magnitude,

j�˛ � hf jxjiij2 D .�˛ � <hf jxjii/2 C .�˛ � =hf jxjii/2
D .<hf jxjii/2 cos2 �˛;1 C .=hf jxjii/2 cos2 �˛;2; (18.90)

X
˛

j�˛ � hf jxjiij2 D .<hf jxjii/2 sin2 �1 C .=hf jxjii/2 sin2 �2:
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This yields the same results as (18.86) in a different parametrization. The difference
between the construction in (18.86) and (18.90) is that we could construct two
dipoles of the same magnitude �e

ˇ̌hn0; `0;m0̀ jxjn; `;m`i
ˇ̌

in (18.86) and express the
result as an average, whereas the generic construction (18.90) yields a sum of two
dipoles of different magnitude.

Since we are observing photons of certain frequency with no regard to the
particular transition which generated those photons, it is customary to sum the
emission rate over degenerate final states and average over degenerate initial states.
The emission rate per excited atom for photons with angular frequency !n;`In0;`0

follows from (18.88) as

�n;`!n0;`0 D 1

2`C 1

X̀
m`D�`

`0X
m0

`D�`0

�n;`;m`!n0;`0;m0

`

D 	0e2

2�mc
!2n;`In0;`0

ˇ̌
fn0;`0jn;`

ˇ̌
: (18.91)

Here we have set � D � 0 and omitted the spin indices, and we used the
definition (15.29) of the averaged oscillator strength.

The quantity �n;`!n0;`0 � An;`!n0;`0 provides a quantum mechanical expression
for the Einstein A coefficient for spontaneous emission of photons. Einstein had
introduced this coefficient in 1916 in his balance equations for the origin of the
Planck spectrum.

We have seen that in leading order the relevant interaction Hamiltonian for
photon emission or absorption is

HI D
Z

d3x
X
�

i
q„
2m

A �
�
 C
�

$r  �

�
;

and in the Schrödinger picture this operator contains only time-independent field
operators A.x/,  �.x/.

Substitution of the mode expansions in terms of the momentum space operators
yields (note q ¤ jqj in the following equation):

HI D � q„
m

s
„	0c
.2�/3

Z
d3qp
2jqj

Z
d3k

X
�

X
˛

k � �˛.q/

� �cC
� .k C q/a˛.q/c� .k/C cC

� .k � q/aC̨.q/c� .k/
�
: (18.92)

The representation of interaction Hamiltonians in terms of c� .k/, cC
� .k/ is useful

for processes involving (quasi)free electrons, e.g. for the Compton effect (“free-free
scattering”) or for the discussion of electron-photon interactions in metals (assuming
e.g. a jellium model for the electrons). However, for the discussion of emission
or absorption from atomic or molecular bound states the x-representation is more
convenient.
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18.7 Photon absorption

We will continue to use energy labels n and n0 such that En > En0 . Therefore the
previously discussed transition n ! n0 involved photon emission, while the process
n0 ! n involves photon absorption. Later on we will also compare emission and
absorption rates, and it is desirable to make the distinction between emission and
absorption rates more visible in the notation. Therefore we will denote absorption
rates with the symbol Q� .

The leading order scattering matrix element for photon absorption due to a
transition from a state jn0; `0;m0̀ ; � 0I k; ˛i to a state jn; `;m`; � I 0i,

Sn;`;m`;� jn0;`0;m0

`;�
0Ik;˛ ' 1

i„
Z 1

�1
dt exp Œi.!n;`In0;`0 � ck/t� i

q„
2m

�hn; `;m`; � I 0j
Z

d3x
X
�

A.x/ �
�
 C
� .x/

$r  �.x/
�

jn0; `0;m0̀ ; � 0I k; ˛i

is just the negative complex conjugate of the emission matrix element (18.77). The
resulting scattering matrix element after evaluation of the field operators,

Sn;`;m`;� jn0;`0;m0

`;�
0Ik;˛ ' 2�ı.!n;`In0;`0 � ck/

iq

m„

r „	0c
16�3k

ı�� 0

�hn; `;m`j�˛.k/ � p exp.ik � x/jn0; `0;m0̀ i;
(18.93)

therefore has the form of a first quantized scattering matrix element with perturba-
tion (18.79) and vector potential (18.81).

The equality of the scattering matrix elements up to a phase factor also implies
that the absorption rate per k space volume of the incoming photons has the same
value as the corresponding emission rate (18.84) per k space volume of emitted
photons,

d Q�.˛/.k/n0;`0;m0

`;�
0!n;`;m`;�

d3k
D
ˇ̌
ˇSn;`;m`;� jn0;`0;m0

`;�
0Ik;˛

ˇ̌
ˇ2

T

' 	0c3e2

8�2„ kı�� 0

ˇ̌hn; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 ı.!n;`In0;`0 � ck/;

(18.94)

where q D �e was substituted.
This yields the differential absorption rate for polarized photons in terms of the

angles �˛;˙ between the vectors hn; `;m`jx˙jn0; `0;m0̀ i and the polarization �˛.k/,
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d Q�.˛/.k/n0;`0;m0

`;�
0!n;`;m`;�

d3k
' 	0c3e2

8�2„ kı�� 0

ˇ̌hn; `;m`jxjn0; `0;m0̀ iˇ̌2

�cos2 �˛;� C cos2 �˛;C
2

ı.!n;`In0;`0 � ck/:

The differential absorption rate for unpolarized photons, d Q�.k/ D P
˛ d Q�.˛/.k/,

depends on the angles �˙ between the vectors hn; `;m`jx˙jn0;
`0;m0̀ i and the incident vector k,

d Q�.k/n0;`0;m0

`;�
0!n;`;m`;�

d3k
' 	0c3e2

8�2„ kı�� 0

ˇ̌hn; `;m`jxjn0; `0;m0̀ iˇ̌2

� sin2 �� C sin2 �C
2

ı.!n;`In0;`0 � ck/: (18.95)

The total absorption rate between the specified states follows as

Q�n0;`0;m0

`;�
0!n;`;m`;� D 	0e2

3�„c
!3n;`In0;`0ı�� 0

ˇ̌hn; `;m`jxjn0; `0;m0̀ iˇ̌2 ; (18.96)

and the total absorption rate per atom for photons of angular frequency !n;`In0;`0 is

Q�n0;`0!n;` D 1

2`0 C 1

`0X
m0

`D�`0

X̀
m`D�`

Q�n0;`0;m0

`!n;`;m`

D 	0e2

2�mc
!2n;`In0;`0 fn;`jn0;`0 : (18.97)

This differs from the corresponding spontaneous emission rate (18.91) for photons
of angular frequency !n;`In0;`0 only through the different averaging factors for the
respective initial states,

Q�n0;`0!n;` D 2`C 1

2`0 C 1
�n;`!n0;`0 : (18.98)

The number of absorption events will be proportional to the flux of incoming
photons, and therefore another observable of interest is the absorption rate per flux
of incoming photons, i.e. the absorption cross section.

The photon flux or current density of monochromatic photons of momentum „k
can be calculated by dividing their energy current density S.k/ by their energy „ck.
Equations (18.22, 18.23, 18.35) and (18.83) yield

S.k/
„ck

D E � B
	0„ck

D c

.2�/3
Ok: (18.99)
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This is actually a photon flux dj.k/=d3k per k space volume due to the use of the
photon wave functions in the continuum limit4.

Equations (18.94) and (18.99) yield the polarized photon absorption cross section

�.˛/.k/n0;`0;m0

`!n;`;m` D d Q�.˛/.k/n0;`0;m0

`!n;`;m`

dj.k/

' �	0ce2

„ !n;`In0;`0

ˇ̌hn; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 ı.!n;`In0;`0 � ck/

D 4�2˛!n;`In0;`0

ˇ̌hn; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 ı.!n;`In0;`0 � ck/; (18.100)

where we encounter again Sommerfeld’s fine structure constant ˛D	0ce2=
4�„ (7.61) (not to be confused with the polarization index, of course).

To average (18.100) over the angles of the incident photons, we can use the
same methods that we applied for the calculation of the total polarized emission
rate (18.87), except for an extra factor of .4�/�1 from the averaging over directions.
This yields an isotropic cross section for polarized photons

�.˛/.k/n0;`0;m0

`!n;`;m` ' 4�2

3
˛!n;`In0;`0

ˇ̌hn; `;m`jxjn0; `0;m0̀ iˇ̌2
�ı.!n;`In0;`0 � ck/; (18.101)

and a total isotropic cross section

�.k/n0;`0;m0

`!n;`;m` ' 8�2

3
˛!n;`In0;`0

ˇ̌hn; `;m`jxjn0; `0;m0̀ iˇ̌2
�ı.!n;`In0;`0 � ck/: (18.102)

The average absorption cross section per atom for photons of angular frequency
!n;`In0;`0 follows then again through averaging over initial states and summation over
final states,

�.k/n0;`0!n;` D 1

2`0 C 1

`0X
m0

`D�`0

X̀
m`D�`

�.k/n0;`0;m0

`!n;`;m`

D 4�2„
m

˛fn;`jn0;`0ı.!n;`In0;`0 � ck/: (18.103)

We get a more realistic representation for absorption cross sections if we take
into account the representation (2.10) of the ı function,

4The result in box normalization is j.k/ D .c=V/Ok.
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ı.!n;`In0;`0 � ck/ D lim
�!0

1

2�

Z 1

�1
dt expŒi.!n;`In0;`0 � ck/t � � jtj�

D lim
�!0

1

�

�

.!n;`In0;`0 � ck/2 C �2
: (18.104)

Keeping a finite value of � yields a Lorentzian absorption line shape of half
width 2� ,

�.k/n0;`0!n;` D 4�„
m
˛fn;`jn0;`0

�

.!n;`In0;`0 � ck/2 C �2
: (18.105)

A finite width of line shapes arises from many sources. A certainly not exhaustive
list of mechanisms includes adiabatic switching of perturbations, lifetime broaden-
ing, pressure broadening, Doppler broadening, and broadening through chemical
shifts.

We have found � / ı�� 0 both for photon emission and absorption, i.e. no
spin-flips in either process. The same holds in arbitrary order with the Hamilto-
nian (18.74), since there are no spin flipping terms there. How then can a magnetic
field flip spins even for non-relativistic electrons? There is actually a term missing
in the Hamiltonian (18.74), the Pauli term:

HB D � q

m

Z
d3x

X
�;� 0

 C
� .x/S�;� 0 � .r � A.x// � 0.x/: (18.106)

This term induces spin flips through two of the three components of the vector of
Pauli matrices S D „�=2, and it follows from the non-relativistic expansion of
the relativistic wave equation for electrons, see Section 21.5. We could neglect the
Pauli term in the present calculation because a derivative on the vector potential
yields a factor k, whereas a derivative on the wave functions amounts approximately
to a factor of order 1=a0. The Pauli term is therefore suppressed when dipole
approximation � � a0 applies. E.g. for transition between bound states in
hydrogen, „ck < �E1 implies that HB is suppressed relative to HI by approximately
ka0 < ˛=2, which translates into a suppression of spin-flipping transitions between
bound hydrogen states by about ˛2=4 ' 1:3 � 10�5. An exception to negligibility
of spin-flipping transitions with low energy photons concerns situations where spin-
preserving electronic transitions do not exist in the same energy range. This is the
case e.g. for the 21 cm transition in hydrogen.

Photon absorption into continuous states

The spin labels are omitted in the following discussion because HI does not induce
spin flips.
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If we have photon absorption due to transition into continuous states, e.g. from
jn0; `0;m0̀ i to jE; `;m`i, we have to take into account the proper measure for the
continuous states from the completeness relation. E.g. for hydrogen states we
have (7.75)

1X
`D0

X̀
m`D�`

 1X
nD`C1

jn; `;m`ihn; `;m`j C
Z 1

0

dK K2jK; `;m`ihK; `;m`j
!

D
1X
`D0

X̀
m`D�`

 1X
nD`C1

jn; `;m`ihn; `;m`j C
Z

dE %.E/ jE; `;m`ihE; `;m`j
!

D 1;

and if we directly use the Coulomb wave states for the continuous energy eigenstates
without rescaling, jE; `;m`i D jK; `;m`i, we have in the continuous part of the
spectrum

%.E/ D ‚.E/K2 dK

dE
D ‚.E/

1

„3
p
2m3E:

The first order scattering matrix element with the interaction Hamiltonian HI then
yields a differential absorption rate for polarized photons

d Q�.˛/.k/n0;`0;m0

`!E;`;m`

d3kdE
D %.E/

ˇ̌
ˇSE;`;m`jn0;`0;m0

`Ik;˛
ˇ̌
ˇ2

T

' %.E/
e2ck

8�2�0

ˇ̌hE; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 ı.E � En0;`0 � „ck/; (18.107)

and integration over the energy E of the ionized state yields

d Q�.˛/.k/n0;`0;m0

`!E;`;m`

d3k
' e2c

8�2�0
k
h
%.E/

� ˇ̌hE; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 i
EDEn0 ;`0 C„ck

:

The photons appear in the initial state and are therefore taken into account by
dividing out their current density from the transition rate, thus yielding an absorption
cross section, see the general discussion for initial continuous states in Sections 13.5
and 13.6.

However, for photon absorption due to transition from a discrete into a contin-
uous atomic or electronic state we can also calculate a spectral absorption cross
section d�.˛/.k/=dE� since E� D „ck D E � En0;`0 implies dE� D dE. This allows
us to define a spectral absorption cross section for polarized photons according to
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d�.˛/.k/n0;`0;m0

`!E;`;m`

dE�
D d Q�.˛/.k/n0;`0;m0

`!E;`;m`

dEdj.k/

' %.E/
�e2

�0
k
ˇ̌hE; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 ı.E � En0;`0 � „ck/;(18.108)

where (18.99) was used. In practical applications of (18.108) the energy preserving
ı function could again be replaced by a Lorentzian line shape as in (18.104).

The absorption cross section for polarized photons with momentum „k follows
from �.˛/.k/ D d Q�.˛/.k/=dj.k/ D .8�3=c/d Q�.˛/.k/=d3k or from (18.108) as

�.˛/.k/n0;`0;m0

`!E;`;m` ' �e2

�0
k
h
%.E/

� ˇ̌hE; `;m`j�˛.k/ � xjn0; `0;m0̀ iˇ̌2 i
EDEn0 ;`0 C„ck

;

and averaging over the directions like in (18.101) yields

�.˛/.k/n0;`0;m0

`!E;`;m` D 1

2
�.k/n0;`0;m0

`!E;`;m`

' �e2

3�0
k
h
%.E/

ˇ̌hE; `;m`jxjn0; `0;m0̀ iˇ̌2 i
EDEn0 ;`0 C„ck

:

18.8 Stimulated emission of photons

Here we use box normalization in a volume V D L3, i.e. k D 2�n=L.
If we have already nk;˛ photons of momentum „k and polarization �˛.k/ in the

initial state,

jn; `;m`; � I nk;˛i D
Z

d3x C
� .x/

.aC̨.k//nk;˛p
nk;˛Š

j0ihxjn; `;m`i;

the basic oscillator relation hn C 1jaCjni D p
n C 1 yields for the leading order

scattering matrix elements the relation

Sn0;`0;m0

`;�
0Ink;˛C1jn;`;m`;� Ink;˛

D p
nk;˛ C 1Sn0;`0;m0

`;�
0Ik;˛jn;`;m`;� ;

i.e. the emission rate scales with the number of photons of momentum „k, energy
„ck D „!n;`In0;`0 and fixed polarization like

�
.˛/

n;`Ink;˛!n0;`0Ink;˛C1 D .nk;˛ C 1/�
.˛/

n;`I0!n0;`0I1
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D nk;˛ C 1

2`C 1

X̀
m`D�`

`0X
m0

`D�`0

�
.˛/

n;`;m`!n0;`0;m0

`

D .nk;˛ C 1/
	0e2

4�mc
!2n;`In0;`0

ˇ̌
fn0;`0jn;`

ˇ̌
:

The total polarized emission rate in the presence of the nk;˛ photons therefore differs
from the “spontaneous” emission rate �.˛/n;`I0!n0;`0I1 � �

.˛/

n;`!n0;`0 D �n;`!n0;`0=2 (cf.
equation (18.91)) by an additional “stimulated” emission rate

�
.s;˛/
n;`Ink;˛!n0;`0Ink;˛C1 D nk;˛�

.˛/

n;`I0!n0;`0I1 D nk;˛
	0e2

4�mc
!2n;`In0;`0

ˇ̌
fn0;`0jn;`

ˇ̌

which is proportional to the number of photons which are already present in the
system. This is sometimes metaphorically explained as a consequence of one of the
original photons stimulating the emission by shaking the excited state. However, in
the end it is nothing but a combinatorial quantum effect of indistinguishable photon
operators.

On the other hand, we find for the absorption of a photon in the initial state

jn0; `0;m0̀ ; � 0I nk;˛i D
Z

d3x C
� 0 .x/

.aC̨.k//nk;˛p
nk;˛Š

j0ihxjn0; `0;m0̀ i;

from hn � 1jajni D p
n the relation

Sn;`;m`;� Ink;˛�1jn0;`0;m0

`;�
0Ink;˛

D p
nk;˛Sn;`;m`;� jn0;`0;m0

`;�
0Ik;˛

D � p
nk;˛S


n0;`0;m0

`;�
0Ik;˛jn;`;m`;� :

Therefore the polarized absorption rate in the presence of nk;˛ photons of
momentum „k and polarization �˛.k/ is

Q�.˛/n0;`0Ink;˛!n;`Ink;˛�1 D nk;˛ Q�.˛/n0;`0I1!n;`I0

D nk;˛

2`0 C 1

`0X
m0

`D�`0

X̀
m`D�`

Q�.˛/
n0;`0;m0

`!n;`;m`
D nk;˛

	0e2

4�mc
!2n;`In0;`0 fn;`jn0;`0 :

This equals corresponding stimulated and total emission rates up to the different
averaging factors for the different initial states which enter into the averaged and
summed transition matrix elements,

Q�.˛/n0;`0Ink;˛!n;`Ink;˛�1 D 2`C 1

2`0 C 1
�
.˛/

n;`Ink;˛�1!n0;`0Ink;˛

D 2`C 1

2`0 C 1
�
.s;˛/
n;`Ink;˛!n0;`0Ink;˛C1:
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Note that it does not matter that we used the single photon absorption rate and
current density in the calculation (18.100) of the polarized photon absorption cross
section without explicitly taking into account the number nk;˛ of available photons.
The common factor nk;˛ cancels in the ratio

�.˛/.k/n0;`0;m0

`!n;`;m` D
d Q�.˛/

n0;`0;m0

`Ink;˛!n;`;m`Ink;˛�1
dJ.˛/.k/

D 8�3

nk;˛c

d Q�.˛/
n0;`0;m0

`Ink;˛!n;`;m`Ink;˛�1
d3k

:

18.9 Photon scattering

For the following calculations we switch back to a generic notation jn; 
i for atomic
or molecular states, where the energy levels En depend on the index set n and the
index set 
 enumerates the degenerate states.

Scattering concerns transitions which involve a photon both in the initial and
in the final state: jn; 
I k; ˛i ! jn0; 
0I k0; ˛0i. Here we consider scattering of
photons by bound non-relativistic systems, i.e. the initial state jn; 
i and the final
state jn0; 
0i of the scattering system are discrete, and we use minimal coupling
of the photon to effective single particle models for relative motion in the bound
system. We have seen in Section 18.4 that photon coupling to the relative motion
in materials effectively amounts to photon-electron coupling, and therefore we use
photon scattering off bound electrons as the relevant paradigm for the following
discussion.

To have a non-vanishing matrix element between different 1-photon states in
lowest order requires two copies of the photon operator A – one to annihilate
the initial photon and one to create the final photon. The relevant interaction
Hamiltonian for photon interactions with non-relativistic electrons is

Hint D
Z

d3x
�

� i
e„
2m

A �
�
 C $r  

�
C e2

2m
 CA2 C e„

2m
 C� � B 

�

D HI C HII C HB; (18.109)

where HB is the Pauli term (18.106). Summations over spinor indices are tacitly
understood. We have already substituted q D �e, because we have seen in
Section 18.4 that the coupling of long wavelength photons to bound systems
involving electrons can effectively be considered as coupling of the photons to a
charge �e if the charge binding the electron is q2 D e or if the mass m2 of the
binding charge is much larger than the electron mass, m2 � me. The reduced mass
m in the Hamiltonian (18.109) is usually also m ' me in excellent approximation5.

5An exception is positronium with m D me=2.
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We can get two copies of A from H2
I , HIHB, HBHI and H2

B in second order
perturbation theory, and from HII in first order perturbation theory. Among these
terms, only those involving the Pauli term can induce spin flips. However, we
will focus on photon energies in the soft X-ray regime, E� . 1 keV. Due to the
suppression of the Pauli term by about a0=� the allowed transition matrix elements
of HI in the soft X-ray regime are typically at least an order of magnitude larger than
the allowed matrix elements of HB, see the discussion after (18.106). This implies
that spin preserving scattering probabilities jSfij2 of order H4

I will generically be at
least two orders of magnitude larger than spin preserving scattering of order H2

I H2
B

or spin reversing scattering of order .HIHB/
2.

Therefore we neglect HB in the following calculations. The relevant scattering
matrix elements in order O.e2/ are then

Sn0;
0Ik0;˛0jn;
Ik;˛ D hn0; 
0I k0; ˛0jUD.1;�1/jn; 
I k; ˛ije2

D hn0; 
0I k0; ˛0jT exp

�
� i

„
Z 1

�1
dt HD.t/

�
jn; 
I k; ˛ije2

D S.I/
n0;
0Ik0;˛0jn;
Ik;˛ C S.II/

n0;
0Ik0;˛0jn;
Ik;˛;

with contributions from H2
I ,

S.I/
n0;
0Ik0;˛0jn;
Ik;˛ D � 1

„2
Z 1

�1
dt
Z t

�1
dt0 exp

	
i.!n0Cck0/t



exp

	�i.!nCck/t0



�hn0; 
0I k0; ˛0jHI exp

�
� i

„ H0.t � t0/
�

HIjn; 
I k; ˛i;

and from HII ,

S.II/
n0;
0Ik0;˛0jn;
Ik;˛ D

Z 1

�1
dt

i„ exp
	
i.!n0;n C !k0;k/t


 hn0; 
0I k0; ˛0jHIIjn; 
I k; ˛i:

The first order term S.II/ is the easier one to evaluate. Insertion of the mode
expansion (18.21) for the photon field yields

S.II/
n0;
0Ik0;˛0jn;
Ik;˛ D 	0ce2

8�2im
p

kk0 �˛0.k0/ � �˛.k/ı.!n0;n C !k0;k/

�
Z

d3x exp
	
i.k � k0/ � x



‰C

n0;
0.x/‰n;
.x/

D 	0ce2

8�2im
p

kk0 �˛0.k0/ � �˛.k/ı.!n0;n C !k0;k/

�
Z

d3q‰C
n0;
0.q C k � k0/‰n;
.q/:
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This leaves in dipole approximation exp
	
i.k � k0/ � x


 ' 1 the amplitude

S.II/
n0;
0Ik0;˛0jn;
Ik;˛ D 	0e2

8�2imk
�˛0.k0/ � �˛.k/ı.k0 � k/ın0nı
0
 ; (18.110)

i.e. only elastic photon scattering, but no Raman scattering from HII .
The term S.I/ splits into amplitudes with zero or two photons in virtual interme-

diate states,

S.I/
n0;
0Ik0;˛0jn;
Ik;˛ D S.I/;0

n0;
0Ik0;˛0jn;
Ik;˛ C S.I/;2
n0;
0Ik0;˛0jn;
Ik;˛:

We omit the indices in the amplitudes S.I/;0 and S.I/;2 in the following calculations.
The amplitude with no photons in the virtual intermediate state is

S.I/;0 D e2

4m2

XZ
n00;
00

Z 1

�1
dt
Z t

�1
dt0 exp

	
i.!n0;n00 C ck0/t



exp

	
i.!n00;n � ck/t0




�
Z

d3x0 hn0; 
0I k0; ˛0jA.x0/ �
�
 C.x0/

$r  .x0/
�

jn00; 
00I 0i

�
Z

d3x hn00; 
00I 0jA.x/ �
�
 C.x/

$r  .x/
�

jn; 
I k; ˛i:

The notation
PR

n00;
00 takes into account that the intermediate states can also be
part of the energy continuum of the scattering system.

We have already evaluated the time integrals in second order perturbation terms
in (13.43),

Z 1

�1
dt
Z t

�1
dt0 exp

	
i.!n0;n00 C ck0/t



exp

	
i.!n00;n � ck/t0 C �t0




D � 2� i
ı.!n0;n C !k0;k/

!n00;n � ck � i�
:

Evaluation of the matrix elements of the field operators then yields again in
dipole approximation exp.�ik0 � x0/ ' 1, exp.ik � x/ ' 1 the result

S.I/;0 D „	0ce2

32�2im2
p

kk0 ı.!n0;n C !k0;k/
XZ

n00;
00

1

!n00;n � ck � i�

�
Z

d3x0 �˛0.k0/ �
�
‰C

n0;
0.x0/
$r ‰n00;
00.x0/

�

�
Z

d3x �˛.k/ �
�
‰C

n00;
00.x/
$r ‰n;
.x/

�
: (18.111)

We can transform this from velocity into length form using the by now standard
trick „p D imŒH0; x� to find
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S.I/;0 D 	0ce2

8�2i„p
kk0 ı.!n0;n C !k0;k/

XZ
n00;
00

!n0;n00!n00;n

!n00;n � ck � i�

�hn0; 
0j�˛0.k0/ � xjn00; 
00ihn00; 
00j�˛.k/ � xjn; 
i: (18.112)

For the amplitude with two photons in the intermediate state we have to take into
account that for two-photon states

1

2

Z
d3	0

Z
d3	

X
ˇ0;ˇ

j	0; ˇ0I 	; ˇih	0; ˇ0I 	; ˇj D 1:

This yields

S.I/;2 D e2

8m2

Z
d3	0

Z
d3	

XZ
n00;
00

X
ˇ0;ˇ

Z 1

�1
dt
Z t

�1
dt0

� exp
	
i.!n0;n00Cck0�c � c0/t



exp

	
i.!n00;nCcCc0 � ck/t0




�
Z

d3x0hn0; 
0I k0; ˛0jA.x0/ �
�
 C.x0/

$r  .x0/
�
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00I 	0; ˇ0I 	; ˇi

�
Z

d3xhn00; 
00I 	0; ˇ0I 	; ˇjA.x/ �
�
 C.x/

$r  .x/
�

jn; 
I k; ˛i:

The matrix elements of the photon operators are given by

h	0; ˇ0I 	; ˇjA.x/jk; ˛i D
r

„	0c
16�3

�ˇ.	/ exp.�i	 � x/ı.	0 � k/ıˇ0˛

C
r

„	0c
16�30 �ˇ0.	0/ exp.�i	0 � x/ı.	 � k/ıˇ˛

and a corresponding conjugate expression. This yields in dipole approximation
Z

d3	0
Z

d3	
X
ˇ0;ˇ

exp
	
ic. C 0/.t0 � t/




�hk0; ˛0jA.x0/j	0; ˇ0I 	; ˇih	0; ˇ0I 	; ˇjA.x/jk; ˛i

' „	0c
8�3

ı˛˛0ı.k � k0/
Z

d3	
X
ˇ

�ˇ.	/˝ �ˇ.	/


exp

	
ic. C k/.t0 � t/




C „	0c
8�3

�˛.k/˝ �˛0.k0/p
kk0 exp

	
ic.k C k0/.t0 � t/



: (18.113)

The first term in (18.113) corresponds to an electron self-energy contribution
where the external photon does not interact with the electron, but there are two
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Fig. 18.1 A process with two
photons in an intermediate
state due to emission and
re-absorption of a virtual
photon. The straight line
represents the electron and
the wavy lines represent
photons

Fig. 18.2 The left diagram
corresponds to absorption of
the initial photon before
emission of the final photon.
The diagram on the right
hand side corresponds to
emission of the final photon
before absorption of the
initial photon

photons in the intermediate state due to emission and re-absorption of a virtual
photon by the electron, see Figure 18.1.

This is an effect which leads to a renormalization of the electron mass in quantum
field theory, but does not contribute to photon scattering.

The second term yields an expression for S.I/;2 which looks almost exactly like
S.I/;0 (18.111), except that the polarization vectors are swapped �˛0.k0/ $ �˛.k/,
and !n00;n � ck � i� is replaced by !n00;n C ck0 � i� in the denominator. After
transformation into the length form, S.I/;0 and S.I/;2 yield the following expression,

S.I/
n0;
0Ik0;˛0jn;
Ik;˛ D 	0ce2

8�2i„p
kk0 ı.!n0;n C !k0;k/

XZ
n00;
00

!n0;n00!n00;n

�
� hn0; 
0j�˛0.k0/ � xjn00; 
00ihn00; 
00j�˛.k/ � xjn; 
i

!n00;n � ck � i�

C hn0; 
0j�˛.k/ � xjn00; 
00ihn00; 
00j�˛0.k0/ � xjn; 
i
!n00;n C ck0 � i�

�
:

The first term corresponds to absorption of the initial photon before emission
of the final photon, whereas the second term corresponds to emission of the final
photon before absorption of the initial photon, see Figure 18.2.

The total scattering matrix element in order e2 is

Sn0;
0Ik0;˛0jn;
Ik;˛ D 	0ce2

8�2i
p

kk0 ı.!n0;n C !k0;k/

�
1

m
ın0nı
0
�˛0.k0/ � �˛.k/

C
XZ

n00;
00

!n0;n00!n00;n

� hn0; 
0j�˛0.k0/ � xjn00; 
00ihn00; 
00j�˛.k/ � xjn; 
i
„!n00;n � „ck � i�
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C hn0; 
0j�˛.k/ � xjn00; 
00ihn00; 
00j�˛0.k0/ � xjn; 
i
„!n00;n C „ck0 � i�

��
:

We separate the energy conserving ı function for the calculation of the scattering
cross section,

Sn0;
0Ik0;˛0jn;
Ik;˛ D � iMn0;
0Ik0;˛0jn;
Ik;˛ı.!n0;n C !k0;k/: (18.114)

The differential scattering rate per k space volume of incident photons is then

d�n;
Ik;˛!n0;
0Ik0;˛0

d3k
D d3k0

ˇ̌
Sn0;
0Ik0;˛0jn;
Ik;˛

ˇ̌2
T

D d3k0

2�

ˇ̌Mn0;
0Ik0;˛0jn;
Ik;˛
ˇ̌2
ı.!n0;n C !k0;k/;

and the differential scattering cross section for polarized photons is with the incident
photon current density per k space volume dj=d3k D cOk=.2�/3 (18.99),

d�n;
Ik;˛!n0;
0Ik0;˛0 D d�n;
Ik;˛!n0;
0Ik0;˛0

dj.k/

D 4�2

c

ˇ̌Mn0;
0Ik0;˛0jn;
Ik;˛
ˇ̌2
ı.!n0;n C !k0;k/d

3k0:(18.115)

This yields after integration over k0

d�n;
Ik;˛!n0;
0Ik0;˛0

d�
D 4�2

c2
k02 ˇ̌Mn0;
0Ik0;˛0jn;
Ik;˛

ˇ̌2 ˇ̌ˇ
k0Dk�.!n0 ;n=c/

: (18.116)

Substitution of our results for the scattering matrix element yields the result
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00ihn00; 
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C hn0; 
0j�˛.k/ � xjn00; 
00ihn00; 
00j�˛0.k0/ � xjn; 
i
„!n00;n C „ck0 � i�

� ˇ̌ˇ̌
ˇ
2

k0Dk�.!n0 ;n=c/

(18.117)

If there are non-vanishing transition matrix elements hn0; 
0j�˛0.k0/ � xjn00; 
00i
and hn00; 
00j�˛.k/ � xjn; 
i with the properties !n00;n ' ck and !n0;n00 ' �ck0,
or if there are any non-vanishing matrix elements hn0; 
0j�˛.k/ � xjn00; 
00i and
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hn00; 
00j�˛0.k0/ � xjn; 
i with the properties !n00;n ' �ck0 and !n0;n00 ' ck, then the
differential scattering cross section will be dominated by the resonantly enhanced
contributions from those matrix elements, and we will have !n0;n00!n00;n ' �c2kk0
for the dominant terms. In these cases we can approximate our result (18.117) by
the equation

d�

d�
' ˛2c2kk03

ˇ̌
ˇ̌
ˇ
XZ

n00;
00

� hn0; 
0j�˛0.k0/ � xjn00; 
00ihn00; 
00j�˛.k/ � xjn; 
i
!n00;n � ck � i�

C hn0; 
0j�˛.k/ � xjn00; 
00ihn00; 
00j�˛0.k0/ � xjn; 
i
!n00;n C ck0 � i�

� ˇ̌ˇ̌
ˇ
2

k0Dk�.!n0 ;n=c/

(18.118)

This is an equation for photon scattering which was proposed already in 1924
by Kramers and Heisenberg based on the correspondence principle6. However, note
that this is only a suitable approximation to the actual cross section (18.117) if the
near resonance conditions !n00;n ' ck and !n0;n00 ' �ck0, or !n00;n ' �ck0 and
!n0;n00 ' ck, can be fulfilled, and if there are allowed dipole transitions into the
intermediate nearly resonant levels.

Thomson cross section

The contribution from the first term in (18.117) coincides with the classical
Thomson cross section for elastic scattering of light which we will encounter again
in Section 22.3 when we discuss photon scattering off free electrons. The first term
yields for scattering of polarized photons

d�T

d�

ˇ̌
ˇ̌
˛!˛0

D
�
	0e2

4�m

�2 �
�˛0.k0/ � �˛.k/

�2 D
�
	0e2

4�m

�2
cos2 �˛˛0 ;

The resulting cross section for unpolarized light involves a sum over final
polarizations and an average over initial polarizations,

1

2

X
˛;˛0

�˛0.k0/ � �˛.k/˝ �˛.k/ � �˛0.k0/

D 1

2

X
˛0

�˛0.k0/ �
�
1 � Ok ˝ Ok

�
� �˛0.k0/

D 1

2
tr
h�
1 � Ok ˝ Ok

�
�
�
1 � Ok0 ˝ Ok0�i D 1C cos2 �

2
; (18.119)

6H.A. Kramers, W. Heisenberg, Z. Phys. 31, 681 (1925).
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where Ok � Ok0 D cos � , i.e. � is the scattering angle. This yields7

d�T

d�
D
�
	0e2

4�m

�2
1C cos2 �

2
; (18.120)

and

�T D 8�

3

�
	0e2

4�m

�2
: (18.121)

The first term in equation (18.117) would hypothetically dominate the cross
section d�=d� if the photon energy is much larger than all the excitation energies
of dipole allowed transitions, i.e. if ck � j!n00;nj for all hn00; 
00jxjn; 
i ¤ 0.
However, there will always be allowed transitions into intermediate continuum
states. Therefore the condition ck � j!n00;nj for all dipole allowed transitions will
not be fulfilled and the first term in (18.117) will never dominate light scattering by
atoms or molecules8. However, the Thomson cross section plays an important role
in the scattering of light by free electrons, which will be discussed in Section 22.3.

Rayleigh scattering

Molecules in a gas or a liquid have many dense lying rotational and vibrational
levels, and the condition of dipole allowed resonant excitation of intermediate levels
will practically always be fulfilled. The Kramers-Heisenberg formula (18.118) will
therefore always be an excellent approximation to (18.117) for molecules in a fluid
phase. In particular, the cross section for elastic photon scattering jgI k; ˛i !
jgI k0; ˛0i from a ground state jgi or a state jgi near the ground state will be

d�R

d�
' .˛ck2/2

ˇ̌
ˇ̌
ˇ̌
X

n;
;!n;g'ck

hgj�˛0.k0/ � xjn; 
ihn; 
j�˛.k/ � xjgi
!n;g � ck � i�

ˇ̌
ˇ̌
ˇ̌
2

: (18.122)

A formula for resonance fluorescence which is equivalent to (18.122) was given
for the first time by Viktor Weisskopf in his Ph.D. thesis9.

7The combination re � 	0e2=4�m D 2:82 fm is also denoted as the classical radius of the
electron.
8A loophole in this argument concerns the remote possibility that all the matrix elements
hn00; 
00jxjn; 
i with !n00 ;n & ck are extremely small.
9V. Weisskopf, Annalen Phys. 401, 23 (1931). He used a dipole operator H D �ex � PA.x; t/ for
atom-photon interactions throughout his calculations.



424 18 Quantization of the Maxwell Field: Photons

The reasoning with only one kind of resonantly enhanced terms is correct as
long as the alternative resonance condition !n;g ' �ck cannot be fulfilled, i.e.
as long as the energy Eg of the initial state jgi is less than „ck above the ground
state energy. This applies e.g. to molecules at room temperature. These molecules
will generically occupy states with energies less than 0.1 eV above their ground
state energy. Scattering of optical photons by these molecules can be described by
equation (18.122).

We can connect (18.122) to the polarizability properties of the scattering centers
by noting that the dynamical polarizability tensor (15.26) for !mn ' ! D ck has
exactly the same form as the tensor multiplying the polarization vectors in (18.122).
Therefore we can rewrite this equation also in the form

d�R

d�

ˇ̌
ˇ̌
˛!˛0

D
�	0
4�

�2
!4
�
�˛0.k0/ �˛.g/ � �˛.k/

�2
; (18.123)

where it is understood that the sum over intermediate levels in (15.26) is dominated
by terms which are almost resonant with the frequency ! of the elastically scattered
photons.

Directional averaging over the orientation of the molecules will lead to an
isotropic effective polarization tensor,

�˛0.k0/ �˛.g/ � �˛.k/ D ˛.g/�˛0.k0/ � �˛.k/;
d�R

d�

ˇ̌
ˇ̌
˛!˛0

D
�	0
4�
˛.g/

�2
!4 cos2 �˛˛0 ;

and averaging and summation over the polarizations of the incoming and scattered
photons (18.119) yields the same angular dependence on the scattering angle as for
Thomson scattering (18.120),

d�R

d�
D
�	0
4�
˛.g/

�2
!4
1C cos2 �

2
(18.124)

and

�R D 8�

3

�	0
4�
˛.g/

�2
!4: (18.125)

Equations (18.124, 18.125) are quantum mechanical versions of Lord Rayleigh’s
!4 law (Rayleigh 1871, 1899; see also Jackson [19] for a derivation of Rayleigh
scattering in classical electrodynamics). It is sometimes stated (but neither in [19]
nor in Weisskopf’s thesis) that Rayleigh scattering is a small frequency approxima-
tion in the sense that „! D „ck should be small compared to the internal excitations
of the scattering system. This is not true. The quantum mechanical derivation
(as well as Jackson’s classical derivation) does not require this assumption. The
only assumption that went into our derivation above was resonantly enhanced dipole
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scattering. Besides, energies of optical photons are not small compared to excitation
energies for nitrogen or oxygen molecules. Indeed, the assumption of resonantly
enhanced dipole scattering implies that the photon frequency ! D ck should be
comparable to the transition frequencies of some dipole allowed transitions.

18.10 Problems

18.1. We consider a gauge invariant Lagrange density which contains matter fields
ˆ.x/ besides the electromagnetic fields A	.x/,

L D Lm.ˆ;ˆ
C; @ˆ � i.q=„/Aˆ; @ˆC C i.q=„/ˆCA/ � 1

4	0
F	�F

	�:

Equation (16.13) yields for the conserved charged current density from phase
invariance

ıˆ.x/ D i

„q'ˆ.x/; ıˆC.x/ D � i

„q'ˆC.x/

after division by the irrelevant constant factor ' the expression

j	q D � 1

'
ıˆ � @L

@.@	ˆ/
� 1

'
ıˆC � @L

@.@	ˆC/

D � i

„qˆ � @L
@.@	ˆ/

C i

„qˆC � @L
@.@	ˆC/

:

On the other hand, the current density that appears in Maxwell’s equations

@	F	� D �	0j�

is j	 D @L=@A	. Why are those two current densities the same, j	q D j	?

18.2. Prove that the vector field (18.15) satisfies r � AJ.x; t/ D 0.

18.3. Show that in the gauge ˆ D 0 the conjugate momentum …A D @L=@ PA D
�0 PA also yields the Hamiltonian density H through the standard Lagrangian
expression

H D …A � PA � L D �0 PA2 � L:
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18.4. We can solve the Coulomb equation (18.2) for the scalar potential ˆ also
without invoking any particular gauge. How does this generalize equations (18.9)
and (18.10)?

Show that taking the divergence of the generalization of equation (18.10) yields
a trivially fulfilled equation.

18.5a. The action (18.29) of electromagnetic fields is invariant under Lorentz
transformations

�	 D � ıx	 D �'	�x�; '	� D �'�	;
ıA	.x/ D A0

	.x
0/ � A	.x/ D '	�A

�.x/:

Use a procedure similar to the derivation of the energy-momentum tensor (18.32) to
derive the densities and currents

M˛ˇ
	 D 1

c

�
x˛Tˇ

	 � xˇT˛
	
�

(18.126)

of the corresponding conserved charges

M˛ˇ D
Z

d3xM˛ˇ
0:

Hint: You have to add the improvement term @�.xˇA˛F	� � x˛AˇF	�/=	0 to j	

from equation (16.13) to get the gauge invariant expression (18.126) for the angular
momentum densities and currents.

18.5b. The angular momentum of the electromagnetic fields is

M D 1

2
ei�ijkMjk D

Z
d3x �0x � .E � B/; (18.127)

but what is the meaning of the conserved quantities M0i?
We define an energy weighted location of the electromagnetic fields,

hxi D 1

E

Z
d3x xH; (18.128)

where H is the energy density (18.33) of the electromagnetic fields. Show that the
conservation of M0i implies a conservation law for “center of energy” motion for
the freely evolving electromagnetic fields,

hxi.t/ D hxi.0/C c2P
E

t: (18.129)
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18.6. A helium-neon laser produces a light wave with a central wavelength of
632.8 nm and a power of 5 mW. Suppose the electric component is a sine oscillation
jE.x; t/j / sin.k � x � ckt/ and is polarized in x direction. We also assume that the
frequency profile is Gaussian with a relative width �f=f D 3:16 � 10�6. Which
photon state describes this light wave? How many photons does the electromagnetic
wave contain?

18.7. Show that the state

jn; `;m`; � I k; ˛i D
Z

d3x‰n;`;m` .x/ 
C
� .x/a

C̨.k/j0i

satisfies

H0jn; `;m`; � I k; ˛i D .En;` C „ck/jn; `;m`; � I k; ˛i;
where

H0 D
Z

d3x

 
„2
2m

X
�

r C
� � r � C

X
�

 C
� V � C �0

2
PA2 C .r � A/2

2	0

!
:

You have to use that the atomic orbital satisfies

� „2
2m
�‰n;`;m` .x/C V.x/‰n;`;m` .x/ D En;`‰n;`;m` .x/:

It is also useful to keep the x representation for the electronic part of H0, but to use
the k representation for the photon contributions in H0.

18.8. Calculate the emission rate for unpolarized photons from the 2p state to the
ground state of hydrogen in first order and dipole approximation.

Which estimate do you get from this for the lifetime of 2p states?
Which estimate do you get from this for the radiated power from decay of 2p

states?

18.9. Calculate the integrated photon absorption cross section,

G1s!2p D
Z 1

0

dk

k
�1;0!2;1.k/

due to the transition from 1s to 2p states in hydrogen.

18.10a. Show that the first order scattering matrix elements (18.78) and (18.93) for
emission and absorption can also be gotten in a semi-classical approximation from
a perturbation operator

V.t/ D � qx � E.x; t/ (18.130)
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with E.x; t/ corresponding to a single photon electric field

E.C/˛ .x; t/ D � PA.C/˛ .x; t/ D � i

r
„	0c3k
16�3

�˛.k/ expŒ�i.k � x � ckt/�

for emission, and to

E.�/˛ .x; t/ D � PA.�/˛ .x; t/ D i

r
„	0c3k
16�3

�˛.k/ expŒi.k � x � ckt/�

for absorption.

18.10b. If we would use the same substitution of semi-classical perturbation
operators V.t/ from (18.79) to (18.130) for the calculation of scattering in dipole
approximation exp.˙ik � x/ ' 1, we would find the Kramers-Heisenberg for-
mula (18.118) from (18.130), while (18.79) yields the correct result (18.117). Why
does the substitution (18.79) ! (18.130) not work beyond first order perturbation
theory, except in the case of resonances?

Hint: The justification for the transition from the velocity form to the length form
of matrix elements is based on

p
m

D i

„ ŒH; x� ) hf j p
m

jii D i!fihf jxjii:

18.11. Show that the transition rate (18.85) can formally be derived by incorrectly
assuming a Golden Rule for transition between the discrete states jn; `;m`i !
jn0; `0;m0̀ i in a semi-classical approximation (18.130) for the monochromatic
perturbation V.t/, if we use the density of final states

%.E/dE D d3k D d�k2dk D d�E2dE=.„c/3: (18.131)

This works because (18.131) is the density of continuous final states of the emitted
photon in the infinite volume limit, but we would have missed that important piece
of information if we would just have naively insisted on using the Golden Rule
for calculating the transition rate between states jn; `;m`i ! jn0; `0;m0̀ i due to
the monochromatic perturbation V.t/. Instead, we would have tried to make sense
of the energy preserving ı function by invoking a final electron density of states
%.En0/, e.g. by using some finite energy width of the final electron state. Any such
guess would certainly not have produced the correct factor E2, and we would also
have missed the factor d� because the final electron state jn0; `0;m0̀ i uses angular
momentum quantum numbers instead of angles.
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18.12. Ultraviolet photons with an energy E� D 10:15 eV are nearly resonant with
the n D 1 ! n00 D 2 transition in hydrogen. Use both the result (18.117) and the
Kramers-Heisenberg formula (18.118) to estimate the differential scattering cross
section for a photon scattering angle of �=2 if the incident photons are polarized in
z direction and move in x direction. Assume that the scattered photons move in y
direction with polarization ez cos˛ C ex sin˛.

18.13. Express the photon absorption cross sections from Section 18.7 using the
velocity form (instead of the length form) for the matrix elements.



Chapter 19
Quantum Aspects of Materials II

We have already seen in Chapter 10 that basic properties of electron states in
materials are determined by quantum effects. This impacts all properties of mate-
rials, including their mechanical properties, electrical and thermal conductivities,
and optical properties. An example of the inherently quantum mechanical nature
of electrical properties is provided by the role of virtual intermediate states in the
polarizability tensor in Section 15.3.

We will now continue to illustrate quantum effects in materials with a focus on
effects that require the use of second quantization or Lagrangian field theory, or at
least the knowledge of exchange interactions for a proper treatment. We will start at
the molecular level and then discuss the second quantization of basic excitations in
condensed materials.

The inception of the Schrödinger equation was accompanied by a large number
of immediate successes, including atomic theory, the quantum theory of photon-
atom interactions, and quantum tunneling. Another of these important successes was
the development of the theory of covalent chemical bonding, which was initiated
by Burrau1, Heitler and London2, and others. This is an extremely important and
well studied subject in chemistry and molecular physics, and yet it never seemed to
reach the level of popularity and recognition that other areas of applied quantum
mechanics enjoy. One reason for this lack of popularity might be the lack of
simple, beautiful model systems which can be solved analytically. Solvable model
systems are of great instructive and illustrative value, and often provide a level
of insight that is very hard to attain with systems which can only be analyzed by

1Ø. Burrau, Naturwissenschaften 15, 16 (1927); K. Danske Vidensk. Selsk., Mat.-fys. Medd. 7(14)
(1927).
2 W. Heitler, F. London, Z. Phys. 44, 455 (1927).
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approximation methods. However, the existence and stability of covalent bonds is
clearly an important property of molecules and of materials in general, and a basic
quantitative understanding of the covalent bond should be part of the toolbox of
every chemist, physicist and materials scientist. Indeed, there is a model system
which can be analyzed to some extent by analytic methods. If only basic qualitative
features are required, the analytic formulation can then be used for numerical
evaluations which do not require a huge amount of effort. This model system is
the hydrogen molecule ion HC

2 , which is also known as the dihydrogen cation. The
analysis of electron states for fixed locations of the two protons in this simplest
molecular system have been investigated already in the early years of quantum
mechanics3, and have been a subject of research ever since, both in terms of the
semi-analytic analysis in prolate spheroidal coordinates4 used in Section 19.2, and
in terms of high precision variational calculations5. Before specializing to HC

2 we
will discuss the interplay of nuclear and electronic coordinates and the role of the
Born-Oppenheimer approximation in molecular physics.

19.1 The Born-Oppenheimer approximation

Molecules can be described by first quantized Hamiltonians of the form

H D
X

i

p2i
2me

C
X

I

P2I
2MI

C
X
I<J

ZIZJe2

4��0jRI � RJj C
X
i<j

e2

4��0jri � rjj

�
X
i;J

ZJe2

4��0jri � RJj (19.1)

if we use properly anti-symmetrized wave functions for the electrons and sym-
metrized or anti-symmetrized wave functions for bosonic or fermionic nuclei of the
same kind. Here lower case indices enumerate electrons while upper case indices
refer to nuclei.

3 A.H. Wilson, Proc. Roy. Soc. London A 118, 617, 635 (1928); E. Teller, Z. Phys. 61, 458 (1930);
E.A. Hylleraas, Z. Phys. 71, 739 (1931); G. Jaffé, Z. Phys. 87, 535 (1934).
4See e.g. G. Hunter, H.O. Pritchard, J. Chem. Phys. 46, 2146 (1967); M. Aubert, N. Bessis, G.
Bessis, Phys. Rev. A 10, 51 (1974); T.C. Scott, M. Aubert-Frécon, J. Grotendorf, Chem. Phys.
324, 323 (2006).
5 B. Grémaud, D. Delande, N. Billy, J. Phys. B 31, 383 (1998); M.M. Cassar, G.W.F. Drake, J.
Phys. B 37, 2485 (2004); H. Li, J. Wu, B.-L. Zhou, J.-M. Zhu, Z.-C. Yan, Phys. Rev. A 75, 012504
(2007).
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Otherwise, we might just as well use the second quantized Schrödinger picture
Hamiltonian

H D
Z

d3x

 
„2
2me

r C
e .x/ � r e.x/C

X
A

„2
2MA

r C
A .x/ � r A.x/

!

C
Z

d3x
Z

d3x0 e2

4��0jx�x0j

 X
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ZAZB 
C
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C
B .x

0/ B.x0/ A.x/

C
X
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ZA
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 C

A .x/ 
C
A .x

0/ A.x0/ A.x/C 1

2
 C

e .x/ 
C
e .x

0/ e.x0/ e.x/

�
X

A

ZA 
C
e .x/ 

C
A .x

0/ A.x0/ e.x/

!
; (19.2)

where the labels A;B enumerate different kinds of nuclei. We assume that there
are Ne electrons and Nn D P

A NA nuclei in our molecule. Realistically, we would
restrict attention to valence electrons (rather than all electrons), and the numbers
A would enumerate different kinds of ion cores. However, in the example of the
hydrogen molecule ion below this distinction is void. The choice of kinetic terms
also assumes that all the particles are non-relativistic. Indeed, this also informs
the choice of interaction terms in the Born-Oppenheimer Hamiltonian. Electro-
magnetic interactions between non-relativistic charged particles are dominated
by the Coulomb interaction, but if there are relativistic charged particles in the
system, photon exchange between charged particles through their couplings to the
vector potential A.x/ becomes important. Domination of the Coulomb interaction
in the case of non-relativistic electron-nucleus and electron-electron scattering is
demonstrated in Sections 22.2 and 22.4, respectively. Equation (22.29) provides an
estimate of the relative importance of photon exchange versus Coulomb interactions
for non-relativistic electrons and nuclei.

Spin labels are suppressed in (19.2) and also in the corresponding states below,
because they enter trivially in the equations of motion6.

Note that even in the valence electrons plus ion cores approximation, the
Hamiltonians (19.1, 19.2) describe an incredibly complicated quantum mechanical
system, even in the case of a “simple” diatomic molecule. This is because the
complete spectrum of energy levels and eigenstates of (19.1) does not only include
bound molecular states (which is complicated enough), but also scattering states of
electrons and of molecular fragments. The Hamiltonian for the hydrogen molecule
H2 describes not only bound states of two protons and two electrons, but also
electron scattering off an HC

2 ion, atomic hydrogen-hydrogen scattering, proton
scattering off an H� ion, and a plasma of free protons and electrons. However, our

6We would have to be more careful if we would discuss expectation values, because exchange
integrals appear in the expectation values of potential terms, see Section 17.7.
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primary interest concerns an understanding of the nature of covalent bonds and of
ground state properties of molecules. In this case, we don’t have to include the
scattering states, and we can even neglect the motion of ion cores.

Born and Oppenheimer have pointed out that it makes intuitive sense to
separate nuclear and electronic motion by first solving the electronic problem
for fixed nuclear coordinates, and then substituting the electronic solution into a
remnant nuclear Schrödinger equation7. In the framework of quantized Schrödinger
theory this amounts to an electronic Hamiltonian

He D H �
Z

d3x
X

A

„2
2MA

r C
A .x/ � r A.x/ (19.3)

with corresponding parameter dependent electronic states

jnI X1; : : :XNni D
NeY

iD1

Z
d3xi  

C
e .xi/

NnY
ID1

 C
A.I/.XI/j0i

�hx1; : : : xNe jnI X1; : : :XNni: (19.4)

Here  C
e .xi/ is an electronic creation operator and  C

A.I/.XI/ is a creation operator
for a nucleus of species A at the location XI . The set of quantum numbers n specifies
the state (including the energy level), and the notation jnI X1; : : :XNni indicates that
the electronic state also depends on the location of the nuclei.

The equation of motion for the electronic states (19.4) with the Hamilto-
nian (19.3) then follows as in Section 17.6, except that here we use a time-
independent Schrödinger equation. The equation

Ee;n.X1; : : :XNn/jnI X1; : : :XNni D HejnI X1; : : :XNni
yields with the short hand notation hxjnI Xi � hx1; : : : xNe jnI X1; : : :XNni the
equation

Ee;n.X/hxjnI Xi D � „2
2me

X
i

@2

@x2i
hxjnI Xi C e2

4��0

�
0
@X

i<j

1

jxi � xjj �
X

i;I

ZA.I/

jxi � XIj C
X
I<J

ZA.I/ZA.J/

jXI � XJj

1
AhxjnI Xi: (19.5)

The Ne-electron wave functions hxjnI Xi are complete in the 3Ne-dimensional
configuration space of the electrons, and therefore the wave functions of the full
.Ne C Nn/-particle problem can be expanded in the form

hx;XjEi D
X

n

c.nI X/hxjnI Xi: (19.6)

7M. Born, J.R. Oppenheimer, Annalen Phys. 84, 457 (1927).
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The sum over the quantum numbers n also involves at least one integration over a
continuous quantum number for the scattering states.

On the level of the second quantized theory, the amplitude (19.6) corresponds to
the .Ne C Nn/-particle state

jEi D
NeY

iD1

Z
d3xi  

C
e .xi/

NnY
ID1

Z
d3XI  

C
A.I/.XI/j0ihx;XjEi

D
NnY

ID1

Z
d3XI

X
n

c.nI X/jnI Xi;

where the parameter-dependent electronic state jnI Xi is given in (19.4).
Substituting (19.6) into the full .Ne C Nn/-particle Schrödinger equation

HjEi D EjEi

yields the equation

X
n

 
NnX

ID1

„2
2MA.I/

@2

@X2
I

� Ee;n.X/C E

!
c.nI X/hxjnI Xi D 0: (19.7)

This can be resolved into a set of coupled equations for the nuclear factors
c.nI X/ through orthogonality of the electron factors hxjnI Xi. If this is done,
no approximation has been made so far to the problem to solve the molecular
Hamiltonian (19.2). However, if we are in the center of mass frame of the nuclei, and
if both rotational and vibrational excitations are small, we can neglect the nuclear
kinetic terms, and we find for these nuclear configurations X.0/ that their energy
levels can be approximated by

E D Ee;n.X.0//: (19.8)

The corresponding full molecular eigenstate in this approximation has a wave
function

hx;XjEe;n.X.0//i D ı.X � X.0//hxjnI X.0/i; (19.9)

and a corresponding second quantized state

jEe;n.X.0//i D
NeY

iD1

Z
d3xi  

C
e .xi/

NnY
ID1

Z
d3XI  

C
A.I/.XI/j0i

�hx;XjEe;n.X.0//i D jnI X.0/i:
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It might be tempting to conclude from (19.8) that the solution of the electronic
equation (19.5) eventually allows us to calculate the nuclear equilibrium configura-
tion X.0/ in the aftermath from a requirement Œ@Ee;n.X/=@X�XDX.0/ D 0. However,
this is not true: The energy level Ee;n.X/ for a general nuclear configuration X rep-
resents only the electronic energy plus the electrostatic nuclear potential energy for
that configuration. Equation (19.8) only states that within the Born-Oppenheimer
approximation, the energy Ee;n.X/ and the full molecular energy coincide in an
equilibrium configuration, but that does not imply that the two energies coincide in a
neighborhood of an equilibrium configuration. As a consequence the energy Ee;n.X/
and the full molecular energy can (and generically will) have different gradients with
respect to the nuclear configuration, even in a molecular equilibrium configuration.
The function Ee;n.X/may have non-vanishing gradient in the molecular equilibrium
configuration because it neglects the contributions from nuclear kinetic terms.

Therefore we have to use a priori knowledge of the equilibrium configuration
X.0/, e.g. from scattering experiments, to calculate the molecular energy in the
Born-Oppenheimer approximation. We cannot calculate both the energy and the
equilibrium configuration from (19.5).

19.2 Covalent bonding: The dihydrogen cation

The stability of molecules is an issue in classical physics in the same sense as the
stability of atoms is an issue. It is not surprising that sharing of electrons yields
a net attractive force between positively charged nuclei or atomic cores. Consider
e.g. two protons at separation b with an electron right in the middle between the
protons. The net classical electrostatic energy of the system / �3e2=b is attractive,
but the problem is again to prevent collapse of the system. The corresponding
quantum mechanical system is again stabilized by wave particle duality. Squeezing
the particles very tight together implies strongly peaked wave functions, hence too
much curvature in the wave functions, and the ensuing increase in kinetic energy
eventually cannot be compensated any more by gains in potential energy terms for
normalizable wave functions.

We apply the basic tenet of the Born-Oppenheimer approximation to the
hydrogen molecule ion HC

2 and determine approximate molecular orbitals under
the assumption that the two protons are fixed at their equilibrium separation b. The
distances of the electron from the two protons are given by

r2˙ D x2 C y2 C .z ˙ .b=2//2 (19.10)

if we assume that the two protons are located on the z axis at z D ˙b=2. A suitable
set of coordinates for the 2-center Coulomb problem are given by

�C D rC C r�; b � �C;

�� D rC � r�; � b � �� � b
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and the azimuthal angle ' around the z axis. These coordinates are known as prolate
spheroidal coordinates. They seem to have been used for the analysis of classical 2-
center gravitational or electrostatic problems and for acoustic and electromagnetic
radiation problems since the 19th century.

The surfaces �C D const: are ellipsoids with the protons in the focal points, while
the surfaces �� D const: are the corresponding hyperboloids. The �� coordinate
lines take us from one hyperboloid �� D const: to another hyperboloid �� D const:
for constant �C and '. For given value of �C, going from �� D �b to �� D b
takes us from the south pole of the ellipsoid �C D const: to its north pole, i.e. ��=b
is similar to the # coordinate on a sphere, except that we move from negative z to
positive z for increasing ��. The advantage of this is that z > 0 corresponds to �� >
0, but the right handed prolate spheroidal coordinate system is then f��; �C; 'g.

The �C coordinate lines are hyperbolas �� D const:, ' D const:with the protons
in the focal points. �C D b corresponds to the line �b=2 � z � b=2 on the z axis
and �C ! 1 takes us to infinite distance from the protons, i.e. �C plays a role
similar to the radius r in spherical coordinates.

We apply the methods of Section 5.4 to determine tangent vectors to the
coordinate lines and the relevant differential operators. We have

2r2 C b2

2
D r2C C r2� D 1

2
.�C/2 C 1

2
.��/2

and

z D �C��

2b
;

and this implies also

x2 C y2 D b2.�C/2 C b2.��/2 � .�C��/2 � b4

4b2
D Œ.�C/2 � b2�Œb2 � .��/2�

4b2
;

x D 1

2b

p
Œ.�C/2 � b2�Œb2 � .��/2� cos';

y D 1

2b

p
Œ.�C/2 � b2�Œb2 � .��/2� sin':

The dual basis vectors (5.21) are in the present case

r�C D 1

2rCr�
�
2�Cr � b��ez

�
; r�� D � 1

2rCr�
�
2��r � b�Cez

�
;

and

r' D xey � yex

x2 C y2
:
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This yields a diagonal inverse metric with components

gCC D 4
.�C/2 � b2

.�C/2 � .��/2
; g�� D 4

b2 � .��/2

.�C/2 � .��/2
;

g'' D 4b2

Œ.�C/2 � b2�Œb2 � .��/2�
;

and the volume measure (5.27) for d��d�Cd' follows as

p
g D �

gCCg��g''
��1=2 D 1

8b
Œ.�C/2 � .��/2�: (19.11)

The Laplace operator (5.26) in spheroidal coordinates is therefore

� D 4

.�C/2 � .��/2
	
@C
�
.�C/2 � b2

�
@C C @�

�
b2 � .��/2

�
@�



C 4b2

Œ.�C/2 � b2�Œb2 � .��/2�
@2': (19.12)

On the other hand, the coordinate dependence of the electrostatic potential of the
electron is

1

rC
C 1

r�
D 4�C

.�C/2 � .��/2
;

and therefore the Hamiltonian in the f�C; ��; 'g representation satisfies

me

2„2 Œ.�
�/2 � .�C/2�H D @C

�
.�C/2 � b2

�
@C C @�

�
b2 � .��/2

�
@�

C
�

b2

.�C/2 � b2
C b2

b2 � .��/2

�
@2' C mee2

2��0„2 �
C: (19.13)

The Hamiltonian H commutes with the azimuthal angular momentum operator
Lz, and therefore we can discuss the spectrum and eigenfunctions of H within the
subspaces of Lz eigenvalues m„,

 m.�
C; ��; '/ D 1p

2�
 .�C; ��/ exp.im'/:

Within these subspaces, the normalization condition on the bound electron states
becomes with (19.11),

Z 1

b
d�C

Z b

�b
d�� Œ.�C/2 � .��/2�

ˇ̌
 .�C; ��/

ˇ̌2 D 8b; (19.14)
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and the Hamiltonian Hm acting within these subspaces satisfies

me

2„2 Œ.�
�/2 � .�C/2�.Hm � E/ D DC;m.�C/ � D�;m.��/;

DC;m.�C/ D @C
�
.�C/2 � b2

�
@C � m2b2

.�C/2 � b2
C me

2„2E.�C/2 C mee2

2��0„2 �
C;

D�;m.��/ D @�
�
.��/2 � b2

�
@� � m2b2

.��/2 � b2
C me

2„2E.��/2:

Here the energy E differs from the energy Ee (19.8) of the molecule in the Born-
Oppenheimer approximation by the electrostatic energy of the nuclei,

Ee D E C e2

4��0b
: (19.15)

Since Hm is hermitian with respect to the scalar product appearing in (19.14), the
differential operators DC;m and D�;m must be hermitian with respect to the scalar
products

h Cj�CiC D
Z 1

b
d�C  C

C .�
C/�C.�C/

and

h �j��i� D
Z b

�b
d�C  C� .��/��.��/;

respectively. The corresponding Sturm-Liouville type boundary conditions can be
read off from the differential operators. We must certainly have

lim
�C!1

 C.�C/ D 0: (19.16)

For azimuthal quantum numbers m ¤ 0 we must also require

lim
�C!b

 C.�C/ D 0; lim
��!˙b

 �.��/ D 0: (19.17)

Note that �C D b corresponds to the interval �b=2 � z � b=2 on the z axis, while
�� D �b and �� D b correspond to the half-lines z � �b=2 and z � b=2 on the
z axis, respectively. The boundary conditions (19.17) therefore imply that the wave
functions

 m.�
C; ��; '/ D 1p

2�
 C.�C/ �.��/ exp.im'/

must vanish on the z axis if m ¤ 0, which apparently makes sense.
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We certainly should not expect that the molecular orbitals with m D 0 vanish
on the z axis, and the differential operators D˙;0 are actually hermitian on their
respective domains without extra boundary conditions at �� D ˙b or �C D b
except that the wave functions should remain finite in those points.

The point of this discourse about hermiticity of the operators D˙;m is that as a
consequence, separation of the electronic Schrödinger equation for the hydrogen
molecule ion HC

2 in terms of prolate spheroidal coordinates will not only give us
solutions, but a complete set of solutions in the form

 m;�.�
C; ��; '/ D 1p

2�
 C;�.�C/ �;�.��/ exp.im'/; (19.18)

D�;m.��/ �;�.��/ D � �;�.��/; � b � �� � b; (19.19)

DC;m.�C/ C;�.�C/ D � C;�.�C/: �C � b: (19.20)

Energy is a third quantum number which is treated as implicit in the notation for the
states.

The equation (19.19) and the equation (19.20) for e2 D 0 are relevant for
radiation problems and have been studied extensively, see [1] and references there.
The solutions are known as angular spheroidal functions and radial spheroidal
functions because of the angular and radial interpretation of the coordinates �� and
�C, respectively.

The �C ! 1 limit of equation (19.20) immediately tells us that we can satisfy
the boundary condition (19.16) only for negative energy,

me

2„2E D � 2;

and the asymptotic form of the solution should be

 C;�.�C/ D fC;�.�C/ exp.��C/  > 0: (19.21)

with lim�!1 fC;�.�/ exp.��/ D 0.
We wish to analyze in particular the sector m D 0, which should contain the

ground state of the HC
2 ion. Equation (19.20) with m D 0 has the form

@�
�
�2 � b2

�
@� �.�/ � 2�2 �.�/C 2

ae
� �.�/ D � �.�/; (19.22)

where we substituted �C ! � ,  C !  because in the following it will be clear
from presence or absence of the Coulomb term / 1=ae whether we are considering
the radial or the angular spheroidal coordinates and wave functions.

The length parameter

ae D 4��0„2
mee2

D 	

me
a

is closely related to the Bohr radius (7.62) of the hydrogen atom.
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Since our solution should remain finite at � D b, we make an ansatz

 C;�.�/ D
X
n�0

cn

�
� � b

b

�n

expŒ.b � �/�: (19.23)

Substitution into (19.22) yields a two-step recursion relation

2.n C 1/2cnC1 D
�
�C 2b2 C 2b � 2b

ae
C 4bn � n.n C 1/

�
cn

C 2b

�
n � 1

ae

�
cn�1: (19.24)

On the other hand,  �;�.��/ must satisfy the differential equation (19.22)
without electrostatic term: ae ! 1,

@�
�
�2 � b2

�
@� �.�/ � 2�2 �.�/ D � �.�/; (19.25)

and on the interval �b � � � b. This equation allows for even and odd solutions
under �� ! ���, and we expect the ground state solution to be even. Therefore we
try an ansatz

 �;�.�/ D
X
n�0

dn

�
�

b

�2n

; (19.26)

where we can set e.g.

d0 D 1 (19.27)

because the product form  C;�.�C/ �;�.��/=
p
2� of the ground state implies

a degeneracy between d0 and the coefficient c0 in the radial factor (19.23). The
constant c0 is then determined by the normalization condition (19.14).

Substitution of (19.26) into (19.25) yields the recursion relation

2.n C 1/.2n C 1/dnC1 D �
4n2 C 2n � �� dn � 2b2dn�1: (19.28)

The expansions (19.23) and (19.26) are not the standard expansions. For the
angular function (19.26) one rather uses an expansion in terms of Legendre
polynomials Pn.�=b/ (or associated Legendre polynomials Pm

n .�=b/ for m ¤ 0),
which are orthogonal polynomials in �b � � � b and satisfy (19.25) or (19.19) for
 D 0 and � D n.n C 1/. For the polynomial factors in the radial function (19.23)
one rather uses Laguerre polynomials Ln.2.� � b// or Lm

n .2.� � b//, because
Lm

n .2.��b// expŒ�.��b/� are complete orthogonal functions in b � � � 1. The
corresponding two-step recursion relations for the coefficients in these expansions
then follow from the differential equations and recursion relations of the orthogonal



442 19 Quantum Aspects of Materials II

polynomials. However, for our purposes the simpler expansions (19.23) and (19.26)
are sufficient for the illustration of basic solution techniques for the dihydrogen
cation.

We cannot go ahead and simply solve the recursion relations (19.24) and (19.28)
to some finite order to get approximate wave functions for the electron, because for
generic values of � and 2b2 the resulting wave functions will not be regular and
square integrable in the domains �b � �� � b and 1 � �C � 1. Therefore, one
first has to determine which pairs of parameters � and 2b2 allow for regular and
square integrable solutions.

A classical method for the approximate calculation of the allowed parameter
pairs � and 2b2 in a two-step recursion relation like (19.28) uses the ratios
fn D dnC1=dn with the initial condition from (19.28), f0 D ��=2. The recursion
relation (19.28) can then be written as an upwards recursion fn�1 ! fn,

fn D n

n C 1
� �

2.n C 1/.2n C 1/
� 2b2

2.n C 1/.2n C 1/fn�1
; (19.29)

or as a downwards recursion fnC1 ! fn,

fn D 2b2

2.n C 1/.2n C 3/ � � � 2.n C 2/.2n C 3/fnC1
: (19.30)

The requirement of finite limits  �;�.˙b/ of the angular wave function implies that
the solution of (19.29, 19.30) should satisfy

lim
n!1 fn D 0:

One way to derive the resulting condition on � and 2b2 in approximate form is
to use both relations (19.30) and (19.29) for fn with the approximation fN D 0 for
some N � n. Iteration of equation (19.30) in N � n � 1 steps yields a relation of
the form fn D f .�/n .�; 2b2; fN/ ' f .�/n .�; 2b2; 0/, while on the other hand fn is
also determined in n steps from equation (19.29) and f0 D ��=2 to yield functions
fn D f .C/n .�; 2b2/. The condition

f .�/n .�; 2b2; 0/ D f .C/n .�; 2b2/

then implicitly determines the relation between � and 2b2.
Another way to derive the relation between � and 2b2 writes the recursion

relation (19.28) as a matrix relation

F � d D �d

with matrix elements

Fn�0;n0�0 D .4n2 C 2n/ın;n0 � 2b2ın;n0C1 � 2.n C 1/.2n C 1/ın;n0�1:
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The condition

det.F � �1/ D 0 (19.31)

is then cut off for an .N C 1/� .N C 1/ submatrix F0	n	N;0	n0	N to yield a relation
between � and 2b2.

Once the relation between � and 2b2 is established, application of the same
techniques to (19.24) implies a relation between the remaining parameter 2b2

and the parameter b=ae. Since 2b2 / �E, this relation determines the quantized
energies of the even states (due to the even ansatz (19.26)), with m D 0.

Application of the same techniques with an odd ansatz for  �;�.��/ or to the
equations with general m yields the approximate energy levels and wave functions of
the electron in the dihydrogen cation with fixed centers. The matrix and determinant
condition for equation (19.24) are

Cn�0;n0�0 D
�

n.n C 1/C 2
b

ae
� 4nb � 2b � 2b2

�
ın;n0

C 2b

�
1

ae
� n

�
ın;n0C1 C 2.n C 1/2ın;n0�1;

det.C � �1/ D 0 (19.32)

Using only 3� 3 matrices F and C in the conditions (19.31) and (19.32) yields a
ground state energy

Ee D e2

4��0b
� 2„2

me
2 D �14:2 eV

with eigenvalues � D �0:490 and b D 1:42 for a bond length b D 105 pm.
Using the equivalent of a 4 � 4 matrix F and a 6 � 6 matrix C in the expansions
with Legendre and Laguerre polynomials, Aubert et al.8 found Ee D �16:4 eV with
b D 1:485 for b D 2a. Either way, we find that the ground state energy Ee is
smaller than the energy E1 D �13:6 eV of a hydrogen atom and a proton at large
distance, i.e. sharing the electron stabilizes the dihydrogen cation in spite of the
electrostatic repulsion of the protons. The actual dissociation energy D D E1 � Ee

for the dihydrogen cation is about 2.6 eV, i.e. the value of Aubert et al. from higher
order approximation of the recursion relations is much better, as expected.

The coefficients which follow from the relations (19.24), (19.28), (19.27)
and (19.14) for � D �0:490 and b D 1:42 are

d0 D 1; d1 D 0:2451; d2 D �0:0357;
c0 D 1:869; c1 D 0:3760; c2 D �0:0712: (19.33)

8 M. Aubert, N. Bessis, G. Bessis, Phys. Rev. A 10, 51 (1974).



444 19 Quantum Aspects of Materials II

Fig. 19.1 The function b3j .�C; ��/j2=2� for the approximate ground state (19.33) is displayed
along the symmetry axis of the dihydrogen cation. The protons are located at u D ˙1. The abscissa
u D 2z=b is u D ��=b in the range �1 < u < 1, where �C D b. Outside of this range we have
u D ��C=b for u < �1 (�� D �b) and u D �C=b for u > 1 (�� D b)

The resulting function b3j .�C; ��/j2=2� along the symmetry axis of the cation
is displayed in Figure 19.1. The abscissa u is related to the z coordinate from
equation (19.10) through u D 2z=b.

This low order approximation has already all the characteristic features of the
real ground state as confirmed by higher order approximations. The electronic
wave functions fall off with a linear exponential for large values of the radial
coordinate �C, and a double peak appears at the locations of the two protons.
However, higher order approximations yield lower energies with a corresponding
stronger exponential drop exp.��C/, b > 1:42. This implies that the values
of b3j .�C; ��/j2 along the symmetry axis are actually underestimated in the
approximation in Figure 19.1, and the cusps become more pronounced in higher
order approximations.

Cusps are inevitable in many-particle wave functions for charged particles. Kato
had demonstrated that these wave functions have cusps for coalescence of any two
charged particles9. Specifically, if r12 is the separation between two particles with
charges Z1e and Z2e, and if the wave function does not vanish for r12 ! 0, the
directional average of @ =@r12 in the limit r12 ! 0 satisfies

lim
r12!0

1

4�

Z �

0

d#
Z 2�

0

d' sin#
@ 

@r12
D �12 

ˇ̌
ˇ
r12D0

:

9T. Kato, Commun. Pure Appl. Math. 10, 151 (1957). See also R.T. Pack, W.B. Brown, J. Chem.
Phys. 45, 556 (1966) and Á. Nagy, C. Amovilli, Phys. Rev. A 82, 042510 (2010).
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The constant �12 is

�12 D Z1Z2˛
	12c

„ D Z1Z2
	12

me

1

ae
;

where 	12 D m1m2=.m1 C m2/ is the reduced mass of the charged particles. In
particular, coalescence of two electrons or of electrons and protons corresponds to

�e�e� D 1

2ae
and �e�pC D �1

a
:

19.3 Bloch and Wannier operators

The use of second quantized Hamiltonians is ubiquitous in condensed matter
physics, and in the following sections we will introduce very common and useful
examples for this, viz. the Hubbard Hamiltonian for electron-electron interactions,
phonons, and a basic Hamiltonian for electron-phonon coupling. We will motivate
the model Hamiltonians from basic Schrödinger field theory or the classical Hamil-
tonian for lattice vibrations, respectively, and refer the reader to more specialized
monographs for alternative derivations of these Hamiltonians.

However, before we embark on this journey, we should generalize the results
from Sections 10.1, 10.2 and 10.3 to three dimensions and combine them with what
we had learned in Chapter 17 about quantization and Schrödinger field operators.

The basic Schrödinger picture Hamiltonian for an electron gas has the form

H D
Z

d3x
Z

d3x0X
�;� 0

 C
� .x/ 

C
� 0 .x0/

e2

8��0 jx � x0j � 0.x0/ �.x/

C
Z

d3x
X
�

„2
2m

r C
� .x/ � r �.x/

D
Z

d3k
Z

d3k0
Z

d3q
X
�;� 0

aC
� .k C q/aC

� 0.k0 � q/
e2

16�3�0q2
a� 0.k0/a� .k/

C
Z

d3k
X
�

„2k2
2m

aC
� .k/a� .k/: (19.34)

Suppose that this electron gas exists in a lattice with basis vectors ai and dual
basis vectors ai (4.18). The lattice points are ` D niai with a triplet of integers ni.
However, we can also use the basis ai as a basis in R

3,

x D xiei D �iai; r D ei @

@xi
D ai @

@�i
:
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Note that the coordinates xi and the lattice basis vectors ai have the dimensions of
length, while the dual basis vectors have dimension length�1. The coordinates �i are
dimensionless.

A Brillouin zone B is a unit cell in the dual lattice stretched by a factor 2� and
then shifted such that the center of the Brillouin zone is a dual lattice point,

k D iai; �� < i � �; (19.35)

see also (10.10), where this notion was introduced for one-dimensional lattices.
The k vectors in a Brillouin zone have the following useful properties, which

are easily derived from Fourier transformation on a one-dimensional lattice10 i �
i C 2� ,Z

B
d3k expŒik � .` � `0/� D .2�/3 QVı`;`0 ; d3k D QVd1d2d3; (19.36)

X
`

expŒi.k � k0/ � `� D .2�/3 QVı.k � k0/: (19.37)

Recall that the volume of a unit cell QV in the dual lattice is related to the volume of
a unit cell in the direct lattice through QV D 1=V , (4.19).

If a unit cell in the lattice contains N ions, electrons in the lattice will also
experience a lattice potential

HV.x/ D �
X
`;A

nAe2

4��0 jx � r`;Aj ; (19.38)

where

r`;A D ` C rA 1 � A � N;

enumerates the locations of the ions in the unit cell ` D niai, and nAe is the effective
charge of the A-th ion. On the level of the quantized Schrödinger field theory, the
potential (19.38) adds the operator

HV D �
X
`;A

Z
d3x

X
�

 C
� .x/

nAe2

4��0 jx � r`;Aj �.x/; (19.39)

to the Hamiltonian (19.34). We will focus on this potential term in the remainder
of this section and neglect the electron-electron interaction term in (19.34). The
corresponding first quantized Hamiltonian

H D p2

2m
C HV.x/;

10We have seen the corresponding one-dimensional equations in (10.1–10.4). However, when
comparing equations (19.36) and (19.37) with (10.1–10.4) please keep in mind that the continuous
variables i play the role of x there, while the discrete lattice sites ` D niai compare to the discrete
momenta 2�n=a in equations (10.1–10.4), see also (10.12).
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is invariant under lattice translations,

exp

�
i

„` � p
�

H exp

�
� i

„` � p
�

D p2

2m
C HV.x C `/ D H;

and therefore admits a complete set of Bloch type eigenstates, see (10.14) for the
one-dimensional case. We can decompose the Schrödinger picture field operators
 �.x/ in terms of a complete set of Bloch type eigenstates

 �.x/ D
X

n

s
V

.2�/3

Z
B

d3k an;� .k/ exp.ik � x/un.k; x/; (19.40)

an;� .k/ D
s

V

.2�/3

Z
d3x exp.�ik � x/uC

n .k; x/ �.x/; (19.41)

with periodic Bloch factors

un.k; x C `/ D un.k; x/:

We denote integration over the unit cell of the lattice with
R

Vd3x. Normalization of
the Bloch energy eigenfunctions then yields

ımnı.k � k0/ D V

.2�/3

Z
d3x expŒi.k � k0/ � x�uC

m .k
0; x/un.k; x/

D V

.2�/3

X
`

expŒi.k � k0/ � `�

�
Z

V
d3x expŒi.k � k0/ � x�uC

m .k
0; x/un.k; x/; (19.42)

and with (19.37) we find
Z

V
d3x uC

m .k; x/un.k; x/ D ımn:

Equation (19.42) also implies with the canonical anticommutation relations for the
Schrödinger field operators  �.x/ and  C

� .x/ that the the operators an;� .k/ satisfy
the relations

fan;� .k/; an0;� 0.k0/g D 0 fan;� .k/; aC
n0;� 0.k0/g D ın;n0ı�� 0ı.k � k0/:

The second quantized state

jn; �; ki D aC
n;� .k/j0i
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is therefore a state with an electron in the first quantized orbital Bloch state

�n.k; x/ D
s

V

.2�/3
exp.ik � x/un.k; x/ (19.43)

and spin projection � . Equation (19.41) and the conjugate equation for aC
n;� .k/ are

a special case of our general observations (17.59) and (17.58) how annihilation and
creation operators for particles in specific states relate to the generic operators �.x/
and  C

� .x/.
Since the operators an;� .k/ are restricted to the Brillouin zone, or equivalently

are periodic in the rescaled dual lattice with the Brillouin zone as unit cell,

an;� .k/ D an;� .k C 2� Q̀/; Q̀ D niai;

we can expand them using equations (19.36, 19.37),

aC
n;� .k/ D

s
V

.2�/3

X
`

 C
n;� .`/ exp.ik � `/; (19.44)

 C
n;� .`/ D

s
V

.2�/3

Z
B

d3k aC
n;� .k/ exp.�ik � `/: (19.45)

The operators  n;� .`/ in the direct lattice satisfy

f n;� .`/;  n0;� 0.`0/g D 0 f n;� .`/;  
C
n0;� 0.`

0/g D ın;n0ı�� 0ı.` � `0/:

Substitution of (19.41) into (19.45) yields

 C
n;� .`/ D

Z
d3x wn.`; x/ C

� .x/

with the Wannier states

wn.`; x/ D V

.2�/3

Z
B

d3k un.k; x/ expŒik � .x � `/� D wn.x � `/: (19.46)

These states satisfy the usual completeness relations as a consequence of the
completeness relations of the Bloch states �n.k; x/,

Z
d3x wC

n .`; x/wn0.`0; x/ D ın;n0ı`;`0 ;

X
n;`

wn.`; x/wC
n .`; x

0/ D ı.x � x0/:
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The operator  C
n;� .`/ therefore generates an electron with spin projection � in the

Wannier state wn.`; x/.
We denote the operators an;� .k/ and aC

n;� .k/ as Bloch operators, and the operators
 n;� .`/ and  C

n;� .`/ as Wannier operators.

19.4 The Hubbard model

The Hubbard model treats electron-electron interactions in a tight binding approx-
imation. Therefore we wish to use the creation operators  C

n;� .`/ for electrons in
Wannier states.

The kinetic electron operator transforms into Wannier type operators accord-
ing to

H0 D
Z

d3x
X
�

„2
2m

r C
� .x/ � r �.x/

D
Z

d3x
X

�;n;`;n0;`0

 C
n;� .`/

„2
2m

rwC
n .`; x/ � rwn0.`0; x/ n0;� .`

0/: (19.47)

This has the form of a hopping Hamiltonian for jumps n0; `0 ! n; `,

H0 D
X

�;n;`;n0;`0

tn;`;n0;`0 C
n;� .`/ n0;� .`

0/ (19.48)

with a hopping parameter

tn;`;n0;`0 D
Z

d3x
„2
2m

rwC
n .`; x/ � rwn0.`0; x/:

On the other hand, the electron-electron interaction Hamiltonian becomes

Hee D 1

2

X
�;� 0;m;l;m0;l0;n;`;n0;`0

Um;l;m0;l0;n0;`0;n;` 
C

m;� .l/ 
C

m0;� 0 .l0/ n0;� 0 .`0/ n;� .`/

with the Coulomb matrix element

Um;l;m0;l0;n0;`0;n;` D
Z

d3x
Z

d3x0 wC
m .l; x/w

C
m0.l0; x0/

� e2

4��0 jx � x0jwn0.`0; x0/wn.`; x/:
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Hee would certainly be dominated by terms on the same lattice site, and if
we restrict the discussion to a single band index, the electron-electron interaction
Hamiltonian H D H0 C Hee assumes the simple form

H D
X

`;`0;�

t`;`0 C
� .`/ �.`

0/C U
X

`

n";`n#;`; (19.49)

with the spin polarized occupation number operators for lattice site `,

n�;` D  C
� .`/ �.`/:

The Hamiltonian (19.49) is known as the Hubbard Hamiltonian11. This Hamiltonian
was invented for the analysis of ferromagnetic behavior in transition metals, and
soon became a very widely used model Hamiltonian in condensed matter theory
not only for magnetic ordering, but also for the general investigation of electron
correlations, conductivity properties and disorder effects in many different classes
of materials12. However, the Hubbard model also provides basic insight into the
relevance of delocalized Bloch states versus localized Wannier states, as we will
now discuss.

We assume that the hopping term is invariant under translation and symmetric
between sites, i.e.

t`;`0 D t`�`0 D t�` D t��`:

If hopping is suppressed,

t`;`0 D tı`;`0 ;

the Hamiltonian involves only the number operators n�;` ,

H D t
X
�;`

n�;` C U
X

`

n";`n#;`; (19.50)

and the eigenstates and energy levels are given by N D N1 C 2N2 particle states

j�1; `1I : : : �N ; `Ni D  C
�1
.`1/ : : :  

C
�N
.`N/j0i

with energy

E.N1;N2/ D t.N1 C 2N2/C UN2:

11J. Hubbard, Proc. Roy. Soc. London A 276, 238 (1963), see also M.C. Gutzwiller, Phys. Rev.
Lett. 10, 159 (1963).
12See e.g. J.E. Hirsch, Phys. Rev. B 31, 4403 (1985); I. Affleck, J.B. Marston, Phys. Rev. B 37,
3774 (1988); Y.M. Vilk, A.-M.S. Tremblay, J. Physique I 7, 1309 (1997). More comprehensive
textbook discussions can be found in references [5, 11].
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Here N1 and N2 are the numbers of single and double occupied lattice sites,
respectively. This is also denoted as the atomic limit, since the electrons are fixed at
the atoms and the total energy is a sum of atomic terms.

On the other hand, if we can neglect the electron-electron interaction term, U D
0, we end up with a quadratic Hamiltonian

H D
X

`;�`;�

t�` 
C
� .` C�`/ �.`/: (19.51)

We can map the electron operators on lattice sites to electron operators (19.44)
in the Brillouin zone,

a� .k/ D
p

Vp
2�

3

X
`

 �.`/ exp.�ik � `/; (19.52)

This diagonalizes the Hamiltonian (19.51),

H D
Z
B

d3k E.k/
X
�

aC
� .k/a� .k/; (19.53)

E.k/ D
X
�`

t�` exp.�ik ��`/ D
X
�`

t�` cos.k ��`/: (19.54)

The single particle eigenstate of the Hamiltonian (19.53) with energy E.k/,

aC
� .k/j0i D

p
Vp
2�

3

X
`

 C
� .`/ exp.ik � `/j0i;

is a Bloch state, while the single particle eigenstate  C
� .`/j0i of the Hamilto-

nian (19.50) is a Wannier state. The magnitude of the hopping terms t�`¤0 relative
to U will therefore determine the importance of itinerant (or delocalized) Bloch
electron states versus localized Wannier electron states in the lattice.

19.5 Vibrations in molecules and lattices

Another basic excitation of lattices concerns oscillations of lattice ions or atoms
around their equilibrium configurations. This kind of excitation is particularly
amenable to description in classical mechanical terms, but at the quantum level lat-
tice vibrations are very similar to quantum excitations of the vacuum like electrons
or photons. In particular, elementary lattice vibrations can be spontaneously created
and absorbed like photons, and therefore require a quantum field theory which is
similar to the field theory for photons.
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We will discuss the classical theory of small oscillations of N-particle systems in
the present section as a preparation for the discussion of quantized lattice vibrations
in Section 19.6. We suspend summation convention in this section, because we often
encounter expressions with three identical indices in a multiplicative term, and also
terms like mi Rxi

j without summation over the repeated index.

Normal coordinates and normal oscillations

We consider an N particle system with potential V.r1; : : : rN/. The equilibrium
condition

riV.r1; : : : rN/
ˇ̌
ˇ
rjDr.0/j

D 0 (19.55)

implies for the second order expansion around an equilibrium configuration
r.0/1 ; : : : r

.0/
N ,

V.r1; : : : rN/ D V.r.0/1 ; : : : r
.0/
N /C 1

2

X
ijkl

Vik;jlxi
kxj

l;

where xi D ri �r.0/i parametrize the deviations from equilibrium and the coefficients
Vik;jl are

Vik;jl D @2

@yi
k@yj

l
V.r.0/1 C y1; : : : r

.0/
N C yN/

ˇ̌
ˇ
ymD0

:

The second order Lagrange function for small oscillations of the system,

L D 1

2

X
ik

mi Pxi
k Pxi

k � 1

2

X
ijkl

Vik;jlxi
kxj

l; (19.56)

yields 3N coupled equations of motion

mi Rxi
k D �

X
jl

Vik;jlxj
l: (19.57)

Fourier transformation

xi
k.t/ D

Z
d! ai

k.!/ exp.�i!t/; Œai
k.!/�C D ai

k.�!/; (19.58)

yields the conditions
X

jl

.Vik;jl � mi!
2ıijıkl/aj

l.!/ D 0: (19.59)
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Writing this in the form

X
jl

�
Vik;jlp
mimj

� !2ıijıkl

�p
mjaj

l.!/ D 0

tells us that the 3N-dimensional vector

Q.!/ D fpm1a1
1.!/; : : :

p
mNaN

3.!/g D QC.�!/ (19.60)

must have the form

Q.!/ D
3NX

ID1
ŒQIı.! � !I/C Q�Iı.! C !I/� ; (19.61)

where QI D fpm1aI;1
1; : : :

p
mNaI;N

3g D QC
�I is an eigenvector of the symmetric

3N � 3N matrix

�2
ik;jl D Vik;jlp

mimj
(19.62)

with eigenvalue !2I . We assume that r.0/1 ; : : : r
.0/
N is a stable equilibrium configuration

such that all eigenvalues of �2
ik;jl satisfy !2I � 0, and we define !I D

q
!2I � 0 as

the positive semi-definite roots.
Since �2 is a symmetric real 3N � 3N matrix, we can find 3N orthogonal

normalized real vectors

OQI D fpm1 OaI;1
1; : : :

p
mN OaI;N

3g

which solve the eigenvalue problem

�2 � OQI D !2I
OQI : (19.63)

The general solution QI (19.60) of the eigenvalue problem with eigenvalue !2I will
then have the form

QI D qI OQI

with arbitrary complex factors qI D jqI j exp.i'I/. The mode expansion (19.58) will
therefore take the form

xi
k.t/ D

3NX
ID1

OaI;i
k
	
qI exp.�i!I t/C qC

I exp.i!I t/



D 2

3NX
ID1

OaI;i
k jqI j Œcos.'I/ cos.!I t/C sin.'I/ sin.!I t/� : (19.64)
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Equation (19.63) and Vik;jl D Vjl;ik D VC
ik;jl imply the orthogonality relations

0 D
X
ijkl

.OaI;i
kVik;jl OaJ;j

l � OaI;i
kVik;jl OaJ;j

l/ D
X

ik

mi Oa˙I;1
k OaJ;j

k.!2I � !2J /:

This yields

X
ik

mi OaI;i
k OaJ;i

k D ıIJ; (19.65)

where we assume that eigenvectors OQI within degeneracy subspaces have been
orthonormalized.

Note that the normalization changes the dimensions and the physical meaning
of the coefficients. The amplitudes aI;i

k in equation (19.64) have the dimensions
of a length, and the related eigenvectors QI and factors qI have the dimension of
mass1=2 � length. The normalized eigenvectors OQI are dimensionless, and therefore
the related coefficients OaI;i

k have dimension mass�1=2. We will denote the related
3N dimensional vector OaI D fOaI;1

1; : : : ; OaI;N
3g as an amplitude vector.

The small oscillations of the system are then determined by the eigenmodes OaI

(or equivalently OQI), and how strongly these eigenmodes of oscillation are excited,

xi
k.t/ D

3NX
ID1

OaI;i
k
	
qI exp.�i!I t/C qC

I exp.i!I t/


; (19.66)

Pxi
k.t/ D � i

3NX
ID1

!I OaI;i
k
	
qI exp.�i!I t/ � qC

I exp.i!I t/


; (19.67)

qI D 1

2
exp.i!I t/

X
ik

mi OaI;i
k

�
xi

k.t/C i

!I
Pxi

k.t/

�
: (19.68)

The 3N complex amplitudes qI are denoted as normal coordinates of the
oscillating N particle system, and the related eigenmodes of oscillation are also
denoted as normal modes. Note from equations (19.66) or (19.68) that we can think
of the coefficients OaI;i

k also as the components of a 3N � 3N transformation matrix
between the 3N Cartesian coordinates xi

k.t/ and the 3N normal coordinates qI of the
oscillating system. These 3N �3N matrices satisfy the mass weighted orthogonality
properties (19.65) and

X
I

OaI;i
k OaI;j

l D 1

mi
ıijı

kl; (19.69)

which follows from re-substitution of qI (19.68) into xi
k.t/ (19.66).
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Appearance of the particular eigenvalue !2I D 0 implies that the system is
symmetric under rotations or translations. The corresponding amplitude vectors
OaI D fOaI;i

kg denote the tangential directions to rotations or translations of the system.
We have learned that small oscillations of a system are always superpositions of

the normal oscillation modes or eigenoscillations of the system. A priori this does
not seem to be particularly helpful to determine the actual small oscillations of a
system, because finding the eigenmodes is equivalent to the diagonalization of the
3N �3N matrix�2

ik;jl, which is anyhow the main task in the solution of the equations
of motion (19.57) using the Fourier ansatz (19.64).

However, if the equilibrium configuration of the system has symmetries, then we
can often guess the form of some of the eigenmodes which leaves us with a smaller
diagonalization problem for the determination of the remaining eigenmodes.

Eigenmodes of three masses

A simple example for the identification of normal modes of a coupled particle
system is given by three identical masses in a regular triangle, see Figure 19.2.

We will determine the eigenmodes in the plane of the triangle. The potential of
the coupled system in the harmonic approximation is

V D K

2

�
.jr1 � r2j � d/2 C .jr1 � r3j � d/2 C .jr2 � r3j � d/2

�

' K

2

�
.x1

1 � x2
1/2 C 1

4
.x1

1 � x3
1/2 C 1

4
.x2

1 � x3
1/2 C 3

4
.x1

2 � x3
2/2

C 3

4
.x2

2 � x3
2/2 C

p
3

2
.x1

1x1
2 � x1

1x3
2 � x2

1x2
2 C x2

1x3
2

� x3
1x1

2 C x3
1x2

2/
�
:

Fig. 19.2 Three elastically
bound masses with
equilibrium distance d

x1
1

x1
2

x2
1

x2
2

x3
1

x3
2

d
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The matrix Vik;jl is

V D m�2 D K

0
BBBBBBBB@

5
4

p
3
4

�1 0 � 1
4

�
p
3
4p

3
4

3
4

0 0 �
p
3
4

� 3
4

�1 0 5
4

�
p
3
4

� 1
4

p
3
4

0 0 �
p
3
4

3
4

p
3
4

� 3
4

� 1
4

�
p
3
4

� 1
4

p
3
4

1
2

0

�
p
3
4

� 3
4

p
3
4

� 3
4

0 3
2

1
CCCCCCCCA
;

and we must have

Det.V � m!21/ D 0:

Absence of external forces on the coupled system implies that there must be two
translational and one rotational eigenmode, see Figures 19.2 and 19.3,

OQ1 D 1p
3

0
BBBBBBB@

1

0

1

0

1

0

1
CCCCCCCA
; OQ2 D 1p

3

0
BBBBBBB@

0

1

0

1

0

1

1
CCCCCCCA
; OQ3 D 1

2
p
3

0
BBBBBBB@

1

�p
3

1p
3

�2
0

1
CCCCCCCA
:

The equations V � OQI D 0 for I D 1; 2; 3 are readily verified.
The symmetry reveals that another eigenmode can be read off from Figure 19.4.
This yields the corresponding normalized eigenvector

Fig. 19.3 The rotation
mode OQ3
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Fig. 19.4 The eigenmode
OQ4 D p

mOa4

OQ4 D p
m

0
BBBBBBB@

a4;11

a4;12

a4;21

a4;22

a4;31

a4;32

1
CCCCCCCA

D 1

2
p
3

0
BBBBBBB@

p
3

1

�p
3

1

0

�2

1
CCCCCCCA
;

and application of

!24
OQ4 D 1

m
V � OQ4;

yields for the corresponding frequency

!24 D 3K

m
:

So far we have found four eigenmodes of the planar system, and there must
still be two remaining eigenmodes, which must be orthogonal on the eigenmodes
OQ1; : : : OQ4. This yields for

OQI D p
m

0
BBBBBBB@

aI;1
1

aI;1
2

aI;2
1

aI;2
2

aI;3
1

aI;3
2

1
CCCCCCCA
; I D 5; 6

the conditions
p
3.aI;1

1 � aI;2
1/C aI;1

2 C aI;2
2 � 2aI;3

2 D 0;
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aI;1
1 C aI;2

1 C aI;3
1 D 0;

aI;1
2 C aI;2

2 C aI;3
2 D 0;

aI;1
1 C aI;2

1 � 2aI;3
1 C p

3.aI;2
2 � aI;1

2/ D 0;

with general solutions

OQID5;6  A

2
p
3

0
BBBBBBB@

p
3

�1
�p

3

�1
0

2

1
CCCCCCCA

C B

2
p
3

0
BBBBBBB@

1p
3

1

�p
3

�2
0

1
CCCCCCCA
:

Application of �2 reveals that these are degenerate eigenvectors with eigenvalue

!25 D !26 D 3K

2m
;

and an orthonormal basis in the degeneracy subspace is provided by

OQ5 D 1

2
p
3

0
BBBBBBB@

p
3

�1
�p

3

�1
0

2

1
CCCCCCCA
; OQ6 D 1

2
p
3

0
BBBBBBB@

1p
3

1

�p
3

�2
0

1
CCCCCCCA
:

The corresponding eigenmodes are shown in Figure 19.5.

Fig. 19.5 The eigenmodes OQ5 and OQ6
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The general small oscillation with ! > 0 is then given by
0
BBBBBBB@

x11.t/
x12.t/
x21.t/
x22.t/
x31.t/
x32.t/

1
CCCCCCCA

D
6X

ID4
OQIxI.t/

with

xI.t/ D xI.0/ cos.!I t/C PxI.0/

!I
sin.!I t/:

The diatomic linear chain

Lines of harmonically bound atoms provide important model systems for oscilla-
tions in solid state physics. We consider in particular a diatomic chain of 2N atoms
with masses m and M, respectively. This model is shown in Figure 19.6. The force
constant between the atoms is K and their equilibrium distance is a=2. The number
N of atom pairs is assumed to be even for simplicity.

We label the pairs of atoms with an index n, 1 � .N=2/ � n � N=2, and we use
periodic boundary conditions for the displadements xn and Xn,

xnCN D xn; XnCN D Xn:

The Lagrange function

L D
N=2X

nD1�.N=2/

�
m

2
Px2n C M

2
PX2n � K

2
.Xn � xn/

2 � K

2
.xn � Xn�1/2

�

yields equations of motion

mRxn D � K.2xn � Xn � Xn�1/; M RXn D � K.2Xn � xn � xnC1/; (19.70)

Fig. 19.6 A diatomic linear
chain with masses m and M
and lattice constant a

a

X

Mm m M

xn−1 Xn−1 xn n
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which can be solved using Fourier decomposition on a finite periodic chain,

xn.t/ D 1p
N

X
k

Qqk.t/ exp.inka/; (19.71)

Xn.t/ D 1p
N

X
k

QQk.t/ exp.inka/;

with

k D 2� Qn
Na

; 1 � N

2
� Qn � N

2
:

The geometric series

N=2X
nD1�.N=2/

exp

�
2� in

Qn � Qm
N

�
D exp

�
i�

�
2

N
� 1

�
.Qn � Qm/

�

�
N�1X
nD0

exp

�
2� in

Qn � Qm
N

�
D exp

�
i�

�
2

N
� 1

�
.Qn � Qm/

�

� 1 � expŒ2� i.Qn � Qm/�
1 � exp

	
2� i
N .Qn � Qm/
 D NıQn; Qm (19.72)

implies that the inversion of (19.71) is

Qqk.t/ D 1p
N

N=2X
nD1�.N=2/

xn.t/ exp.�inka/ D QqC
�k.t/:

Since the resulting system of ordinary differential equations for Qqk.t/ and QQk.t/ is
linear with constant coefficients, we also use Fourier transformation to the frequency
domain,

Qqk.t/ D
Z

d! Qqk.!/ exp.�i!t/;

and the coupled set of equations (19.70) separate into coupled pairs of equations for
different wave numbers k,

.m!2 � 2K/Qqk.!/C K.1C exp.�ika// QQk.!/ D 0; (19.73)

.M!2 � 2K/ QQk.!/C K.1C exp.ika//Qqk.!/ D 0: (19.74)
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This implies that there is a unique set of frequencies ! D !k for each wave
number k which has to satisfy

mM!4k � 2K.m C M/!2k C 2K2.1 � cos.ka// D 0:

This condition has two solutions (up to irrelevant overall signs of !k˙),

!2k˙ D K

�
1

M
C 1

m

�
˙ K

r
1

M2
C 1

m2
C 2

mM
cos.ka/

D K

�
1

M
C 1

m

�
˙ K

s�
1

M
C 1

m

�2
� 4

mM
sin2

�
ka

2

�
; (19.75)

and we have

Qqk.!/ D QqkCı.! � !kC/C Qqk�ı.! � !k�/:

Equation (19.75) reads in terms of the reduced mass 	 D mM=.m C M/ of the
atom pair in the unit cell

!2k˙ D K

	

 
1˙

s
1 � 4	

m C M
sin2

�
ka

2

�!
: (19.76)

An example of these dispersion relations with M D 1:5m is displayed in Figure 19.7.
Note that the Lagrange function for a single atom pair in the unit cell is

L D 1

2
.m C M/ PR2 C 	

2
Pr2 � K

2
r2; r D x � X; R D mx C MX

m C M
;

and therefore the oscillation frequency of the single pair is
p

K=	.
The frequencies at k D 0 are !0� D 0 and !0C D p

2K=	.
The solution of (19.73, 19.74) for !0� D 0: Qq0� D QQ0�, is a uniform translation

of the whole chain,

xn.t/ D Xn.t/ D Qq0�=
p

N:

The solution for !0C: mQq0C D �M QQ0C, is an oscillation

�
xn.t/
Xn.t/

�
D A

�
M

�m

�
cos

 s
2K

	
t C '

!
:

The acoustic solution for ka D � is

!.�=a/� D
r
2K

M
; Qq.�=a/� D 0;
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Fig. 19.7 The frequencies !k˙
from the dispersion relation (19.76) for M D 1:5m and 0 	 ka 	

� . The frequencies !k˙
are displayed in units of

p
K=	, where 	 is the reduced mass of the atom

pair in a unit cell

i.e. only the heavy atoms oscillate,

�
xn.t/
Xn.t/

�
D .�/nA

�
0

1

�
cos

 r
2K

M
t C '

!
:

On the other hand, the optical eigenmode with ka D � ,

!.�=a/C D
r
2K

m
; QQ.�=a/C D 0;

corresponds to an oscillation of the light atoms,

�
xn.t/
Xn.t/

�
D .�/nA

�
1

0

�
cos

 r
2K

m
t C '

!
:

The general longitudinal oscillation will be a superposition of all longitudinal
eigenvibrations.
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Quantization of N-particle oscillations

The Lagrange function (19.56) implies canonical commutation relations

Œxi
k.t/; Pxj

l.t/� D i„
mi
ıijı

kl; Œxi
k.t/; xj

l.t/� D 0; ŒPxi
k.t/; Pxj

l.t/� D 0:

This yields commutation relations for the normal coordinates

ŒqI ; qJ� D 0; ŒqI ; q
C
J � D „

2!I
ıIJ :

Therefore we find canonical annihilation and creation operators for the eigenvibra-
tions in the form

aI D
r
2!I

„ qI ; aC
I D

r
2!I

„ qC
I :

The discussion of the diatomic chain taught us that for lattice oscillations the
eigenmodes also depend on wave vectors in a Brillouin zone, and the following
section will show that there can be up to 3N branches if we have N atoms per unit
cell. Therefore we will have annihilation and creation operators for lattice vibrations
which are related to the corresponding normal modes through

aI.k/ D
r
2!I;k

„ qI.k/; aC
I .k/ D

r
2!I;k

„ qC
I .k/:

The elementary excitations aC
I .k/j0i of the lattice vibrations are denoted as

phonons.

19.6 Quantized lattice vibrations: Phonons

We will first generalize the previous discussion of vibrations in N-particle systems
to the case of three-dimensional lattices, and then quantize the lattice vibrations

We denote the three basis vectors of a three-dimensional lattice with ai, 1 �
i � 3. Each location ` D niai in the lattice denotes a particular location of a
corresponding unit cell, and we can use ` or equivalently the three integers ni

also to address the particular unit cell to which the point ` belongs. Suppose we
have N atoms (or ions) per unit cell in the lattice. We denote the displacement of
the A-th atom from its equilibrium value in cell ` by x`;A.t/, and in the harmonic
approximation the displacements satisfy equations of motion

mA Rx`;A C
X
`0;A0

V`;AI`0;A0 � x`0;A0 D 0; (19.77)
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corresponding to a Lagrange function

L D 1

2

X
`;A

mA Px2`;A � 1

2

X
`;AI`0;A0

x`;A � V`;AI`0;A0 � x`0;A0 : (19.78)

Substitution of Fourier transforms

x`;A.t/ D 1p
mA

Z
d! Q`;A.!/ exp.�i!t/

into the equations of motion (19.77) yields the eigenvalue conditions

X
`0;A0

�2
`;AI`0;A0 � Q`0;A0.!/ D !2Q`;A.!/ (19.79)

with the symmetric matrices

�2
`;AI`0;B D 1p

mAmB
V`;AI`0;B D �2T

`0;BI`;A: (19.80)

Translation invariance in the lattice implies that �2
`;AI`0;B cannot depend on ` C `0.

Therefore we can write

�2
`;AI`0;B D �2

A;B.` � `0/ D V

.2�/3

Z
B

d3k Q�2
A;B.k/ expŒik � .` � `0/�; (19.81)

with inversion

Q�2
A;B.k/ D

X
`

�2
A;B.`/ exp.�ik � `/:

Symmetry of the real matrix �2
`;AI`0;B under i; `;A $ j; `0;B implies

Q�2
iA;jB.k/ D

X
`

�2
iA;jB.`/ exp.�ik � `/ D

X
`

�2
jB;iA.�`/ exp.�ik � `/

D
X

`

�2
jB;iA.`/ exp.ik � `/ D Q�2;


jB;iA.k/ D Q�2;C
iA;jB.k/

D Q�2
jB;iA.�k/;

i.e.

Q�2.k/ D Q�2C
.k/ D Q�2T

.�k/: (19.82)
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Substitution of (19.81) and

Q`;A.!/ D V

.2�/3

Z
B

d3k QQk;A.!/ exp.ik � `/:

in (19.79) yields ,
X

B

Q�2
A;B.k/ � QQk;B.!/ D !2 QQk;A.!/: (19.83)

For fixed value of k, this is a hermitian eigenvalue problem for the 3N-dimensional
complex vector

QQk.!/ D f QQi
k;A.!/g; 1 � i � 3; 1 � A � N:

Reality of the displacement vectors x`;A.t/ implies Q`;A.!/ D QC
`;A.�!/ and

QQC
k .!/ D QQ�k.�!/:

For each point k in the Brillouin zone, there will be 3N solutions !2I .k/ and OQI.k/
of (19.83) which satisfy the orthogonality property

OQC
I .k/ � OQJ.k/ �

X
A

OQC
I;A.k/ � OQJ;A.k/ �

X
i;A

OQiC
I;A.k/ OQi

J;A.k/

D ıIJ : (19.84)

The hermiticity and transposition properties imply that we have as a consequence
of (19.83) for the normalized solutions,

X
B

Q�2
A;B.k/ � OQI;B.k/ D !2I .k/ OQI;A.k/; (19.85)

also the equations

X
B

Q�2
A;B.�k/ � OQC

I;B.k/ D !2I .k/ OQC
I;A.k/ (19.86)

and

X
A

OQI;A.k/ � Q�2
A;B.�k/ D !2I .k/ OQI;B.k/: (19.87)

Up to linear combinations within degeneracy subspaces, the general set of
solutions of the conditions (19.83) will then have the form

QQk.!/D
X

I

�
qI.k/ OQI.k/ı.! � !I.k//CqC

I .�k/ OQC
I .�k/ı.! C !I.�k//

�
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with complex factors qI.k/. This yields the general lattice vibration in terms of the
orthonormalized solutions of (19.83),

x`;A.t/ D V

.2�/3
p

mA

Z
B

d3k
X

I

h
qI.k/ OQI;A.k/ exp

�
iŒk � ` � !I.k/t�

�

C qC
I .k/ OQC

I;A.k/ exp
�

� iŒk � ` � !I.k/t�
�i
; (19.88)

Px`;A.t/ D
Z
B

d3k
X

I

�i!I.k/V
.2�/3

p
mA

h
qI.k/ OQI;A.k/ exp

�
iŒk � ` � !I.k/t�

�

� qC
I .k/ OQC

I;A.k/ exp
�

� iŒk � ` � !I.k/t�
�i
; (19.89)

qI.k/ D 1

2

X
`;A

exp
�

� iŒk � ` � !I.k/t�
�p

mA

� OQC
I;A.k/ �

�
x`;A.t/C i

!I.k/
Px`;A.t/

�
: (19.90)

The dual orthogonality relation to (19.84) follows from re-substitution of qI.k/
into (19.88),

V

.2�/3

Z
B

d3k
X

I

OQI;A.k/˝ OQC
I;B.k/ expŒik � .` � `0/� D ıABı`;`01: (19.91)

This is actually fulfilled due to two more fundamental completeness relations.
The first relation is completeness of 3N orthonormal unit vectors OQI.k/ �
f OQI;A.k/g1	A	N in a 3N-dimensional vector space,

X
I

OQI.k/˝ OQC
I .k/ D 1;

where 1 is the 3N � 3N unit matrix, or if the atomic indices are spelled out,

X
I

OQI;A.k/˝ OQC
I;B.k/ D ıAB1; (19.92)

where now 1 is the 3 � 3 unit matrix referring to the spatial indices. The second
relation is the completeness relation (19.36).

The canonical quantization relations

Œxi
`;A.t/; Pxj

`0;B
.t/� D i„

mA
ıABı`;`0ıij;

Œxi
`;A.t/; x

j
`0;B
.t/� D 0; ŒPxi

`;A.t/; Pxj
`0;B
.t/� D 0;
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imply

ŒqI.k/; qJ.k0/� D 0; ŒqI.k/; qC
J .k

0/� D „
2!I.k/

.2�/3

V
ıIJı.k � k0/;

i.e. the phonon annihilation operator for the Ith mode with wave vector k in the
lattice is

aI.k/ D 1

2

r
!I.k/V
�3„ qI.k/; (19.93)

and the displacement operators in terms of the phonon operators are given by

x`;A.t/ D
X

I

xI;`;A.t/; (19.94)

with

xI;`;A.t/ D
s

„V

.2�/3mA

Z
B

d3kp
2!I.k/

h
aI.k/ OQI;A.k/ exp

�
iŒk � `�!I.k/t�

�

C aC
I .k/ OQC

I;A.k/ exp
�

� iŒk � ` � !I.k/t�
�i
: (19.95)

The Lagrange function (19.78) implies a Hamiltonian for the lattice vibrations,

H D 1

2

X
`;A

mA Px2`;A C 1

2

X
`;AI`0;A0

p
mAmA0x`;A ��2

`;AI`0;A0 � x`0;A0 :

This yields after substitution of equations (19.94, 19.95) and use of the eigenvalue,
hermiticity and orthogonality conditions for the eigenvalue problem (19.85–19.87)
the result13

H D
Z
B

d3k
X

I

„!I.k/aC
I .k/aI.k/: (19.96)

It is uncommon but helpful for a better understanding of Bloch and Wannier
states of electrons to point out an analogy with lattice vibrations at this point.

13You also have to use that the matrix Q�2.k/ has a positive semi-definite square root Q�.k/, see
Problem 19.2. Therefore we also have e.g.

X
A;B

OQI;A.k/ � Q�2
A;B.�k/ � OQJ;B.�k/ D !I.k/!J.�k/

X
A

OQI;A.k/ OQJ;A.�k/:
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We have seen in Sections 10.1, 10.2 and 10.3 that electrons in lattices can be
described in terms of delocalized Bloch states  n.k; x; t/ D  n.k; x/ expŒ�i!n.k/t�
or corresponding Wannier states wn;�.x/, wn;�.x; t/. Here � labelled the different
cells in the lattice and n labelled the different electron energy bands in the periodic
potential of the crystal. We have encountered the corresponding states in three-
dimensional lattices in equations (19.43, 19.46). To make the connection to lattice
vibrations, we re-express the result (19.88) for the particular phonon energy band I
in the form

xI;`;A.t/ D V

.2�/3

Z
d3k QxI;k;A.t/ exp.ik � `/;

QxI;k;A.t/ D
X

`

xI;`;A.t/ exp.�ik � `/ D QxC
I;�k;A.t/

D qI.k/p
mA

OQI;A.k/ expŒ�i!I.k/t�

C qC
I .�k/p

mA

OQC
I;A.�k/ expŒi!I.�k/t�:

Instead of the continuous dependence of the Bloch or Wannier type wave functions
�n.k; x; t/  exp.ik � x/un.k; x; t/ and wn.`; x; t/ on location x, we have displace-
ment variables at the discrete locations f`;Ag in the lattice. However with the
correspondence of band indices n $ I, the Brillouin zone representation QxI;k;A.t/
of the displacements corresponds to the Bloch waves (19.43) for electron states,
while the set of displacements fxI;`;A.t/g1	A	N in the unit cell at ` corresponds to
the Wannier states (19.46).

19.7 Electron-phonon interactions

Phonons in the lattice of a solid material naturally couple to electrons through
the electrostatic interaction between the electrons and the ion cores. If we neglect
electron-electron interactions, the basic Schrödinger picture Hamiltonian for quan-
tized electrons in a lattice of ion cores with N atoms in the unit cell has the form

H D �
Z

d3x
X
�

 C
� .x/

0
@ „2
2m
�C

X
`;A

nAe2

4��0 jx � r`;Aj

1
A �.x/:

We assume that the A-th atom or ion in the unit cell couples to the electron
with an effective charge nAe, and we treat the atoms or ions as classical sources
of electrostatic fields. However, we treat the lattice vibrations on the quantum level,
which according to Sections 19.5 and 19.6 amounts to canonical quantization of the
lattice displacements

x`;A D r`;A � x.0/`;A:
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The leading order expansion of the Coulomb term

nAe

jx � r`;Aj ' nAe

jx � x.0/`;Aj
C nAe

.x � x.0/`;A/ � x`;A

jx � x.0/`;Aj3
(19.97)

corresponds to a dipole approximation in the language of Chapter 15, except that
here the dipole operator d`;A D nAex`;A is quantized according to (19.94, 19.95).
This yields an electron-phonon interaction Hamiltonian of the form

He�q D �
s

„V

.2�/3

Z
d3x

X
�;I;`;A

 C
� .x/ �.x/

Z
B

d3qp
2!I.q/

ep
mA

� E`;A.x/ �
h
aI.q/ OQI;A.q/ exp.iq � `/CaC

I .q/ OQC
I;A.q/ exp.�iq � `/

i
;

where we substituted the time-independent phonon operators x`;A.0/ for the Hamil-
tonian in the Schrödinger picture. For the electron operators, we could substitute
Bloch or Wannier type operators. However, Bloch operators make much more sense,
because the dipole approximation (19.97) is a small oscillation approximation in
the sense jx`;Aj 
 jx � x.0/`;Aj, or otherwise we should include quadrupole and
higher order terms. This implies that matrix elements of electron states with the
lattice electric fields E`;A.x/ must not be dominated by large terms from the ion
cores. The linear phonon coupling Hamiltonian He�q should therefore not be a
good approximation for the localized electrons in Wannier states. Evaluation of the
substitution of the free electron operators through Bloch operators (19.41) in He�q

uses the fact that integration over x can be split into summation over the lattice l and
integration over the unit lattice cell V ,Z

d3x f .x/ D
X

l

Z
V

d3x f .l C x/;

and that the lattice electric fields satisfy

E`;A.x/ D E0;A.x � `/:

We denote the Bloch operators for the electrons by cn;� .k/ to avoid confusion
with the phonon operators. This yields the following form for the electron-phonon
interaction operator,

He�q D �
s

„V

.2�/3

X
�;I;`;A;n;n0

Z
B

d3qp
2!I.q/

Z
B

d3k
Z

V
d3x

ep
mA

E`;A.x/ �
h
uC

n .k C q; x/cC
n;� .k C q/aI.q/ OQI;A.q/ expŒiq � .` � x/�

C uC
n .k � q; x/cC

n;� .k � q/aC
I .q/ OQC

I;A.q/ expŒiq � .x � `/�
i

�cn0;� .k/un0.k; x/: (19.98)
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We can also write this as

He�q D
X
�;I

Z
B

d3qp
2!I.q/

Z
B

d3k
	
cC
� .k C q/ � UI.k; q/ � c� .k/aI.q/

C aC
I .q/c

C
� .k/ � UC

I .k; q/ � c� .k C q/


; (19.99)

with coupling matrices between the phonons and the Bloch electrons,

UI;n;n0.k; q/ D �
s

„V

.2�/3

Z
V

d3x
X
`;A

ep
mA

expŒiq � .` � x/�

�uC
n .k C q; x/E`;A.x/ � OQI;A.q/un0.k; x/: (19.100)

The products in (19.99) contain summations over the electron energy band indices
n, n0.

Below we will need the following property of the electron-phonon coupling
functions,

UI;n;n0.k C q;�q/ D UC
I;n0;n.k; q/: (19.101)

The full Hamiltonian also contains the free Hamiltonian for the phonons and the
Bloch electrons

H0 D
Z
B

d3k

 X
I

„!I.k/aC
I .k/aI.k/C

X
�

cC
� .k/ � E.k/ � c� .k/

!

with

En;n0.k/ D „2
2m

�Z
V

d3x ruC
n .k; x/ � run0.k; x/

� ik �
Z

V
d3x uC

n .k; x/
$r un0.k; x/C k2ın;n0

�
: (19.102)

The two interaction terms in (19.99) describe absorption and emission of a
phonon of wave number q by a Bloch electron. The resulting exchange of virtual
phonons between electron pairs will generate an effective interaction between
the electrons. If interband couplings can be neglected, UI;n;n0.k; q/ / ın;n0 and
En;n0.k/ / ın;n0 , a simple method to estimate this phonon mediated electron-electron
interaction eliminates the first order phonon coupling through the Lemma 1 (6.22)
for exponentials of operators. A unitary transformation jˆi ! jˆ0i D exp.A/jˆi
with
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A D
X
�;I

Z
B

d3qp
2!I.q/

Z
B

d3k
1

E.k C q/ � E.k/ � „!I.q/

� 	aC
I .q/c

C
� .k/U

C
I .k; q/c� .k C q/ � cC

� .k C q/UI.k; q/c� .k/aI.q/



eliminates the leading order electron-phonon coupling term due to

ŒA;H0�C He�q D 0;

and generates a direct electron-electron coupling term

H.q/
e�e D

�
1

2

2

ŒA;H0�C ŒA;He�q�

�
cCcCcc

D 1

2
ŒA;He�q�

ˇ̌
ˇ
cCcCcc

D
X
�;� 0;I

Z
B

d3q
4!I.q/

Z
B

d3k
Z
B

d3k0 1

E.k C q/ � E.k/ � „!I.q/

� 	cC
� .k C q/cC

� 0.k0/UC
I .k

0; q/UI.k; q/c� 0.k0 C q/c� .k/

C cC
� .k/c

C
� 0.k0 C q/UC

I .k; q/UI.k0; q/c� 0.k0/c� .k C q/


:

In the next step we substitute

k ! k C q; k0 ! k0 C q; q ! �q;

in the second term in H.q/
e�e and use the properties (19.101) and !I.q/ D !I.�q/.

This yields

H.q/
e�e D

X
�;� 0;I

Z
B

d3q
4!I.q/

Z
B

d3k
Z
B

d3k0 cC
� .k C q/cC

� 0.k0/UC
I .k

0; q/

�UI.k; q/c� 0.k0 C q/c� .k/

�
�

1

E.k C q/ � E.k/ � „!I.q/
� 1

E.k C q/ � E.k/C „!I.q/

�

D „
2

X
�;� 0;I

Z
B

d3q
Z
B

d3k
Z
B

d3k0 1

ŒE.k C q/ � E.k/�2 � „2!2I .q/
:

�cC
� .k C q/cC

� 0.k0/UC
I .k

0; q/UI.k; q/c� 0.k0 C q/c� .k/: (19.103)

Phonons with frequencies which are large compared to the electron energy
difference,

„!I.q/ > jE.k C q/ � E.k/j ;
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lower the energy of a two-electron state, thus implying an energetically favor-
able correlation between electrons. Effectively, a negative coefficient of cC

� .k C
q/cC

� 0.k0/c� 0.k0 C q/c� .k/ also amounts to an electron-electron attraction. Com-
pare (19.103) with the simplified expression for free fermion operators,

H0 D ƒ
X
�;� 0

Z
d3q

Z
d3k

Z
d3k0 cC

� .k C q/cC
� 0.k0/c� 0.k0 C q/c� .k/:

In x space this becomes

H0 D .2�/3ƒ
X
�;� 0

Z
d3x C

� .x/ 
C
� 0 .x/ � 0.x/ �.x/;

which is an attractive interaction for ƒ < 0 and repulsive otherwise.
The possible instability of Fermi surfaces against phonon-induced energetically

favored correlations between electrons, and the ensuing suppression of electron
scattering, had been identified in the 1950s as the mechanism for low temperature
superconductivity14. Please consult [5, 17, 22, 25] for textbook discussions of low
temperature superconductivity.

19.8 Problems

19.1. Suppose we are using the Born-Oppenheimer approximation for the hydrogen
atom, i.e. we treat the proton as fixed at location Xp D 0. This would yield the same
energy levels and energy eigenfunctions that we had found in the exact solution in
Chapter 7, except that the reduced mass 	 D memp=.me C mp/ would be replaced
by the electron mass me in the result for the Bohr radius a, and therefore also in the
energy eigenvalues and the wave functions.

Show that the corresponding change in the mass value ı	 D me � 	 satisfies
ı	=	 D me=mp. Show also that in the center of mass frame, the neglected kinetic
energy of the proton is related to the kinetic energies of the electron and of the
relative motion according to

Kp D me

mp
Ke D me

me C mp
Kr:

Expand the ground state wave function in the Born-Oppenheimer approximation in
first order in me=mp in terms of the exact energy eigenstates from Chapter 7.

14J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957); see also H. Fröhlich, Phys.
Rev. 79, 845 (1950) and J. Bardeen, D. Pines, Phys. Rev. 99, 1140 (1955).
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1x xx2 3

Fig. 19.8 Three particles with masses m and M. It is supposed that the particles can only move
along the line connecting them

19.2. Show that the hermitian symmetric matrix Q�2.k/ (19.80) with eigenvalues
!2I .k/ � 0 and corresponding normalized eigenvectors OQI.k/ has square roots Q�.k/,

Q�2.k/ D Q�2
.k/:

Hint: The column vectors OQI.k/ can be used to form a unitary matrix Q.k/.

The matrix Q.k/ transforms Q�2.k/ into diagonal form, or in turn can be used to

generate Q�2.k/ from its diagonal form diag.!21.k/; : : : ; !
2
3N.k//. Use this obser-

vation to construct all the possible square roots Q�.k/ in terms of Q.k/ and
diag.˙!1.k/; : : : ;˙!3N.k//.

19.3. Suppose the three particles with masses m and M in Figure 19.8 can only
move in one dimension.

The potential energy of the system is

V D K

2
.x1 � x2/

2 C K

2
.x2 � x3/

2:

Calculate the eigenvibrations and the eigenfrequencies of the system.

Solution. The potential in matrix notation is

V D K

2
.x1; x2; x3/

0
@ 1 �1 0

�1 2 �1
0 �1 1

1
A
0
@ x1

x2
x3

1
A ;

and we have to find the eigenvectors of the corresponding matrix

�2 D K

0
B@

1
m � 1p

mM
0

� 1p
mM

2
M � 1p

mM

0 � 1p
mM

1
m

1
CA ; (19.104)

cf. 19.62.

Rather than trying to solve

det.�2 � !21/ D 0;
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we can infer two eigenmodes from the translation and reflection symmetry of the
system.

Invariance of the potential under translations x1 D x2 D x3 implies that one
eigenvector of �2 has the form

OQ!1D0 D 1p
2m C M

0
@

p
mp
Mp
m

1
A :

Reflection symmetry also suggests an eigenmode x1 D �x3, x2 D 0,

OQ!2 D 1p
2

0
@ 1

0

�1

1
A ;

and application of �2 yields the corresponding eigenvalue

!22 D K

m
:

The remaining eigenvector follows from orthogonality on OQ!1 and OQ!2 ,

OQ!3 D 1p
2.2m C M/

0
@

p
M

�2pmp
M

1
A ;

and application of �2 confirms that this is an eigenmode with frequency

!23 D K

m
C 2K

M
:

For the actual eigenvibration we have to go back to the amplitude vector
a!2 (19.60), because different masses participate in the oscillation. The normalized
amplitude vector (19.65) is

Oa!3 D 1p
2mM.2m C M/

0
@ M

�2m
M

1
A :

The eigenvibrations a!2 and a!3 are shown in Figure 19.9.
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Fig. 19.9 The
eigenvibrations a!2 and a!3

19.4. Calculate the positive semi-definite square root of the matrix �2 in equa-
tion (19.104). Use the hint from Problem 2.

Answer.

� D
p

K

2
p

mM.2m C M/

�
0
@M Cp

M.2m C M/ � 2pmM M �p
M.2m C M/

� 2pmM 4m � 2pmM
M �p

M.2m C M/ � 2pmM M Cp
M.2m C M/

1
A :

19.5. The electron-phonon interaction Hamiltonian (19.99) is very similar to the
electron-photon interaction Hamiltonian in the representation (18.92),

He�� D e„c

me

s
„	0
.2�/3

X
�;˛

Z
d3qp
2!.q/

Z
d3k k � �˛.q/

� 	cC
� .k C q/a˛.q/c� .k/C cC

� .k/a
C̨.q/c� .k C q/



: (19.105)

Which effective electron-electron interaction Hamiltonian H.�/
e�e would you get if

you eliminate the photon operators through a unitary transformation jˆi ! jˆ0i D
exp.A/jˆi similar to the transformation that we performed to transform He�q into

H.q/
e�e (19.103)?



Chapter 20
Dimensional Effects in Low-dimensional
Systems

Surfaces, interfaces, thin films, and quantum wires provide abundant examples
of quasi two-dimensional or one-dimensional systems in science and technol-
ogy. Quantum mechanics in low dimensions has become an important tool for
modeling properties of these systems. Here we wish to go beyond the simple low-
dimensional potential models of Chapter 3 and discuss in particular implications of
the dependence of energy-dependent Green’s functions on the number d of spatial
dimensions. However, if it is true that the behavior of electrons in certain systems
and parameter ranges can be described by low-dimensional quantum mechanics,
then there must also exist ranges of parameters for quasi low-dimensional systems
where the behavior of electrons exhibits inter-dimensional behavior in the sense
that there must exist continuous interpolations e.g. between two-dimensional and
three-dimensional behavior. We will see that inter-dimensional (or “dimensionally
hybrid”) Green’s functions provide a possible avenue to the identification and
discussion of inter-dimensional behavior in physical systems.

20.1 Quantum mechanics in d dimensions

Suppose an electron is strictly confined to a two-dimensional quantum well. Unless
the material in the quantum well has special dielectric properties, that electron
would still “know” that it exists in three spatial dimensions, because it feels the
1=r Coulomb interaction with other charged particles, and this 1=r distance law is
characteristic for three dimensions. If the electron would not just be confined to two
dimensions, but exist in a genuine two-dimensional world, it would experience a
logarithmic distance law for the Coulomb potential. The reason for the 1=r Coulomb
law in three dimensions is that the solution of the equation

�G.r/ D � ı.x/ (20.1)

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7_20
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in three dimensions is given by

G.r/ D 1

4�r
;

but in general the solution of equation (20.1) depends on the number d of spatial
dimensions. Appendix J explains in detail the derivation of the d-dimensional
version of G.r/ with the result

Gd.r/ D

8̂
ˆ̂<
ˆ̂̂:

.a � r/=2; d D 1;

� .2�/�1 ln.r=a/; d D 2;

�
�

d�2
2

� �
4
p
�

d
rd�2

��1
; d � 3:

(20.2)

The most direct application of these results are electrostatic potentials. Equa-
tion (20.1) implies that the electrostatic potential of a point charge q in d dimensions
is given by

ˆd.r/ D q

�0
Gd.r/: (20.3)

However, from the point of view of non-relativistic quantum mechanics, the
Green’s functions (20.2) are the special zero energy values of the energy-dependent
free Schrödinger Green’s functions, Gd.r/ D Gd.x;E D 0/. These energy
dependent Green’s functions satisfy

�Gd.x;E/C 2m

„2 EGd.x;E/ D � ı.x/: (20.4)

We have solved this condition in three dimensions in Section 11.1, see equa-
tion (11.17). The solution in d dimensions by two different methods is described
in Appendix J, with the result (J.27)

Gd.x;E/ D ‚.�E/p
2�

d

 p�2mE

„r

! d�2
2

K d�2
2

�p�2mE
r

„
�

C i
�

2

‚.E/p
2�

d

 p
2mE

„r

! d�2
2

H.1/
d�2
2

�p
2mE

r

„
�
: (20.5)

The functions K� and H.1/
� are modified Bessel functions and Hankel functions of

the first kind, respectively. These are exponential functions for d D 1 or d D 3,

K� 1
2
.x/DK 1

2
.x/D

r
�

2x
exp.�x/; H.1/

� 1
2

.x/ D iH.1/
1
2

.x/ D
r
2

�x
exp.ix/;
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and therefore

G1.x;E/ D „‚.�E/

2
p�2mE

exp

�
�p�2mE

jxj
„
�

C i
„‚.E/
2
p
2mE

exp

�
i
p
2mE

jxj
„
�
; (20.6)

and we recover the already known three-dimensional result from Section 11.1,

G3.x;E/ D ‚.�E/

4�r
exp

�
�p�2mE

r

„
�

C ‚.E/

4�r
exp

�
i
p
2mE

r

„
�
: (20.7)

These results also give us the screened or Yukawa potentials in d dimensions if
we substitute „=p�2mE ! �, see Figure 20.2.

The Figures 20.1 and 20.2 illustrate that long distance effects of interactions
become more prominent in lower dimensions, while short distance effects become
stronger with increasing number of dimensions.

Fig. 20.1 The Green’s functions (20.2) and the related specific electrostatic potentials ˆd.r/=q in
1, 2 and 3 dimensions. The blue curve is for d D 1, red is for d D 2 and the black curve is the
3-dimensional Coulomb potential
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Fig. 20.2 Yukawa potentials Vd.r/ with screening length �. The blue curve corresponds to d D 1,
red to d D 2 and black to d D 3

The Green’s function does not only determine interaction potentials, but also
has other profound implications for the behavior of particles in d dimensions. We
have already seen in Chapter 11 that potential scattering of particles of energy E D
„2k2=2m is described by energy-dependent Green’s functions. The d-dimensional
version of equation (11.20) is

 .x/ D exp.ik � x/
.2�/d=2

� 2m

„2
Z

ddx0 Gd.x � x0; „2k2=2m/V.x0/ .x0/

D exp.ik � x/
.2�/d=2

� i�m

.2�/d=2„2
Z

ddx0
�

k

jx � x0j
� d�2

2

�H.1/
d�2
2

�
kjx � x0j�V.x0/ .x0/; (20.8)

and we get the d-dimensional version of the leading order Born approximation
through the substitution of  .x0/ with the incoming plane wave.

Suppose the scattering potential V.x0/ is concentrated around x0 D 0 with finite
range R. The asymptotic form of the Hankel function for large argument x � 1,

H.1/
d�2
2

.x/ !
r
2

�x
exp

�
ix � i�

d � 1
4

�
;
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yields the asymptotic form for the scattered wave function in the limit jxj � R (here
we neglect again the normalization factors .2�/�d=2 because they cancel in the cross
section),

 .x/ D exp.ik � x/ � m

.2�/.d�1/=2„2
k.d�3/=2

r.d�1/=2 exp

�
ikr � i�

d � 3
4

�

�
Z

ddx0 expŒi.k � kOx/ � x0�V.x0/

D exp.ik � x/C f .kOx � k/
1

r.d�1/=2 exp.ikr/

D  .in/.x/C  .out/.x/; (20.9)

with the scattering amplitude

f .�k/ D � mk.d�3/=2

.2�/.d�1/=2„2 exp

�
�i�

d � 3
4

�Z
ddx exp.�i�k � x/V.x/

D � p
2�

mk.d�3/=2

„2 exp

�
�i�

d � 3
4

�
V.�k/: (20.10)

The d-dimensional version of (11.2),

d�

d�
D 1

jin.Ok/
dn.�/

d�dt
D lim

r!1 rd�1 jout.Ok0
/

jin.Ok/
; (20.11)

then yields the same relation between the scattering cross section and the scattering
amplitude as in three dimensions,

d�k

d�
D jf .kOx � k/j2 :

Note that the relative prominence of long distance effects in low dimensions
should be amplified in scattering effects, because the Green’s function generically
determines both the scattering potentials V.x0/ and the kernels Gd.x � x0;E/ which
are convoluted into the potentials to calculate the scattered wave functions.

Yet another instance where the number of dimensions plays a prominent role is
the density of states. We have seen this already in equations (12.12, 12.13). How-
ever, this result is also closely linked to the energy-dependent Green’s functions.

First we note that we can write the generalization of equation (20.4) for the
Hamilton operator H D H0 C V ,

�Gd;V.x; x0I E/C 2m

„2 ŒE � V.x/�Gd;V.x; x0I E/ D � ı.x � x0/: (20.12)

also in representation free operator notation,

.E � H/Gd;V.E/ D 1; (20.13)
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where the connection to (20.12) is recovered through the matrix elements1

hxjGd;V.E/jx0i D �2m

„2 Gd;V.x; x0I E/

The solution of (20.13) requires a small complex shift in E to avoid the
singularities on the real axis which arise from the real spectrum of H,

Gd;V.E/ D 1

E � H C i�
:

The positive imaginary shift yields the retarded Green’s function with only outgoing
spherical waves from scattering centers in scattering theory, and only forward
evolution in time, see Section 11.1.

The Hamilton operator in the denominator of G.E/ can be replaced by energy
eigenvalues if we use energy eigenstates

HjE0; �.E0/i D E0jE0; �.E0/i;
XZ

dE0 d�.E0/ jE0; �.E0/ihE0; �.E0/j D 1;

where �.E0/ is a set of degeneracy indices for energy level E0. This yields

Gd;V.E/ D
XZ

dE0 d�.E0/
jE0; �.E0/ihE0; �.E0/j

E � E0 C i�
: (20.14)

The connection to the density of states follows if we rewrite this with the
Sokhotsky-Plemelj relation (2.11),

Gd;V.E/ D P
XZ

dE0 d�.E0/
jE0; �.E0/ihE0; �.E0/j

E � E0

� i�
XZ

dE0 d�.E0/ ı.E � E0/jE0; �.E0/ihE0; �.E0/j: (20.15)

Comparison with equation (12.17) shows that

%d.E; x/ D � 1

�
=hxjGd;V.E/jxi D 2m

�„2=hxjGd;V.E/jxi: (20.16)

In particular, substitution of the free Green’s functions (20.5) yields again the
result (12.13) which we had initially derived from equation (12.12)

%d.E/ D g‚.E/

r
m

2�

d p
E

d�2

�.d=2/„d
: (20.17)

1These concepts are further discussed in Appendix J. However, it is not necessary to read
Appendix J before reading this section.
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For the derivation of (20.17) from (20.16) and (20.5), we recall that

hxjGd;V.E/jx0iˇ̌VD0 � Gd;V.x; x0I E/
ˇ̌
VD0 D Gd.x � x0;E/

is translation invariant for free particles, and use the property

<H.1/
d�2
2

�p
2mE

r

„
�ˇ̌
ˇ
r!0

D J d�2
2

�p
2mE

r

„
�ˇ̌
ˇ
r!0

 1

�.d=2/

 r
mE

2

r

„

! d�2
2

of the Hankel functions. The spin or helicity factor g arises from the summation over
spin states included in the summation over degeneracy indices � in equation (20.15)
if we take into account that the Green’s functions (20.5) in the presence of spin
multiply g � g unit matrices in spin space2.

20.2 Inter-dimensional effects in interfaces and thin layers

The dependence of energy-dependent Green’s functions on the number of
dimensions begs the question whether this can have observable consequences
in (quasi)two-dimensional or one-dimensional systems like interfaces, layers, thin
films, or nanowires. Indeed, the density of states %d.E/ (20.16) is often used to
estimate densities of electron states in low-dimensional systems in nanotechnology.
However, is this really justified? After all, we are still dealing with electrons with
non-vanishing extensions of their wave functions in every direction, including
directions perpendicular to any confining potential barriers. Wave functions can be
squeezed, but they will will never be genuine two-dimensional or one-dimensional.
Furthermore, if the behavior of low-energy particles in confining structures can
be approximated by the laws of one-dimensional or two-dimensional quantum
mechanics, there must exist a transition regime at higher energy levels, where
inter-dimensional effects between low-dimensional and three-dimensional behavior
should be observable.

To examine these questions, we consider a model system of electrons moving in
a bulk material which also contains a layer of thickness 2a located at z D z0. The
potential energy of the electrons inside the layer is shifted by an amount V0,

V.x/ � V.z/ D V0‚.z0 C a � z/‚.z � z0 C a/; (20.18)

and we also assume that electrons in the bulk move with (effective) mass m, while
the effective mass inside the layer is m
. This yields a Hamiltonian which in the first

2For spin or helicity, there is actually a transition from a tensor product to a trace operation in
making the connection between (20.15) and (20.16): 1 D P

s jsihsj ! P
shsjsi D g. Otherwise

equation (20.16) would yield the density of states per spin state.
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quantized formalism has the form

H D p2

2m
Œ1 �‚.z0 C a � z/‚.z � z0 C a/�

C‚.z0 C a � z/‚.z � z0 C a/

�
p2

2m

C V0

�
: (20.19)

We might expect two-dimensional behavior in the limit a ! 0 both from
the difference of effective mass in the interface and from the interface potential.
Indeed, the different effective mass m
 in the interface implies different propagation
properties inside the interface and yields quasi two-dimensional behavior both in
terms of propagators and in the density of states3, even for vanishing interface
potential. The corresponding second quantized Hamiltonian is

H D
Z

d2xk
Z

dz
„2
2m

r C.xk; z/ � r .xk; z/

C
Z

d2xk
„2
2	

rk C.x; z0/ � rk .xk; z0/; (20.20)

where the index k is used for two-dimensional vectors parallel to the interface at z0.
The parameter 	 has dimensions of mass per length.

In the following we will investigate the emergence of quasi two-dimensional
behavior from an attractive interface potential.

Two-dimensional behavior from a thin quantum well

We wish to examine the appearance of quasi two-dimensional behavior from a
quantum well potential, i.e. we assume m
 D m. An infinitely thin attractive
quantum well arises from the potential (20.18) if we set V0 D �W=2a and take
the limit a ! 0,

H D p2

2m
� Wı.z � z0/:

The corresponding Schrödinger equation separates, and the z component is
the Schrödinger equation with the attractive ı potential that we had solved in
Section 3.3. This implies three kinds of energy eigenstates. First we have eigenstates
which are moving along the interface,

hxjkk; i D
p


2�
exp

�
ikk � xk � jz � z0j

�
;  D m

„2W; (20.21)

E.kk; / D „2
2m

k2k � m

2„2W
2:

3R. Dick, Physica E 40, 2973 (2008); Nanoscale Res. Lett. 5, 1546 (2010).
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We also have free states with odd or even parity under z ! 2z0 � z, cf.
(3.21, 3.22),

hxjkk; k?;�i D 1

2
p
�
3

exp
�
ikk � xk

�
sinŒk?.z � z0/�; (20.22)

hxjkk; k?;Ci D exp
�
ikk � xk

� k? cosŒk?.z � z0/� �  sinŒk?jz � z0j�
2
q
�3.2 C k2?/

: (20.23)

The wave number k? in (20.22) and (20.23) is constrained to the positive half-line
k? > 0, and the energy levels of the free states are

E.kk; k?/ D „2
2m

�
k2k C k2?

�
:

The energy-dependent Green’s function

hxk; zjG.E/jx0
k; z

0i � hzjG.xk � x0
k;E/jz0i � � „2

2m
hzjG.xk � x0

k;E/jz0i

of this system must satisfy

�
�C 2m

„2 ŒE C Wı.z � z0/�

�
hzjG.xk;E/jz0i D � ı.xk/ı.z � z0/: (20.24)

We would not have to solve this equation explicitly, since we know the complete
set of energy eigenstates of the system. However, there is a neat way to solve these
kinds of problems which also works for interfaces in which particles move with
different effective mass4.

We can solve equation (20.24) in a mixed representation using

hkk; k?jG.E/jk0
k; z

0i D 1p
2�

5

Z
d2xk

Z
d2x0

k
Z

dz hxk; zjG.E/jx0
k; z

0i

� exp
h
i
�

k0
k � x0

k � kk � xk � k?z
�i

(20.25)

D hk?jG.kk;E/jz0iı
�

kk � k0
k
�
; (20.26)

hk?jG.kk;E/jz0i D 1p
2�

Z
d2xk

Z
dz hzjG.xk;E/jz0i

� exp
	�i

�
kk � xk C k?z

�

: (20.27)

4R. Dick, Int. J. Theor. Phys. 42, 569 (2003). See also the previous references.
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Substitution into equation (20.24) yields with  D mW=„2

expŒik?.z0 � z0/�p
2�

D
�

k2k C k2? � 2mE

„2
�

exp.ik?z0/ hk?jG.kk;E/jz0i

� 

�

Z
dq? exp.iq?z0/ hq?jG.kk;E/jz0i: (20.28)

This result implies that the retarded Green’s function hk?jG.kk;E/jz0i must have
the form

exp.ik?z0/ hk?jG.kk;E/jz0i D
�

expŒik?.z0 � z0/�p
2�

C f .kk;E; z0/
�

� 1

k2? C k2k � .2mE=„2/ � i�
; (20.29)

with the yet to be determined function f .kk;E; z0/ satisfying

f .kk;E; z0/ � 

�

Z
dk?

�
expŒik?.z0 � z0/� =

p
2�
�

C f .kk;E; z0/

k2? C k2k � .2mE=„2/ � i�
D 0;

which follows from substituting (20.29) back into (20.28).
The integral is readily evaluated with the residue theorem,

Z
dk?
�

exp.ik?z/

k2? C k2k � .2mE=„2/ � i�
D ‚.„2k2k � 2mE/q

k2k � .2mE=„2/

� exp

 
�
r

k2k � 2mE

„2 jzj
!

C i
‚.2mE � „2k2k/q
.2mE=„2/ � k2k

exp

 
i

r
2mE

„2 � k2kjzj
!
:

This yields the condition for f .kk;E; z0/ in the form
2
641 � „

0
B@‚.„

2k2k � 2mE/q
„2k2k � 2mE

C i
‚.2mE � „2k2k/q
2mE � „2k2k

1
CA
3
75 f .kk;E; z0/

D „p
2�

2
64‚.„

2k2k � 2mE/q
„2k2k � 2mE

exp

�
�
q

„2k2k � 2mE
jz0 � z0j

„
�

C i
‚.2mE � „2k2k/q
2mE � „2k2k

exp

�
i
q
2mE � „2k2k

jz0 � z0j
„

�375 ;
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and therefore we find with the proper treatment of poles for retarded Green’s
functions the result

hk?jG.kk;E/jz0i D 1p
2�

1

k2? C k2k � .2mE=„2/ � i�

"
exp.�ik?z0/

C „‚.„2k2k � 2mE/q
„2k2k � 2mE � „ � i�

exp

�
�ik?z0 �

q
„2k2k � 2mE

jz0 � z0j
„

�

C i„‚.2mE � „2k2k/q
2mE � „2k2k � i„

exp

�
�ik?z0 C i

q
2mE � „2k2k

jz0 � z0j
„

�#
:

(20.30)

Fourier transformation of equation (20.30) with respect to k? yields finally

hzjG.kk;E/jz0i D „‚.„2k2k � 2mE/

2
q

„2k2k � 2mE

"
exp

�
�
q

„2k2k � 2mE
jz � z0j

„
�

C „q
„2k2k � 2mE � „ � i�

exp

�
�
q

„2k2k � 2mE
jz � z0j C jz0 � z0j

„
�#

C i
„‚.2mE � „2k2k/
2
q
2mE � „2k2k

"
exp

�
i
q
2mE � „2k2k

jz � z0j
„

�

C i„q
2mE � „2k2k � i„

exp

�
i
q
2mE � „2k2k

jz � z0j C jz0 � z0j
„

�#
:

(20.31)

The limit  ! 0 in equations (20.30, 20.31), as well as in equation (20.34) below
reproduces the corresponding representations of the free retarded Green’s function
in three dimensions.

Our results describe the Green’s function for a particle in the presence of the thin
quantum well, but for arbitrary energy and both near and far from the quantum well.
Therefore we cannot easily identify any two-dimensional limit from the Green’s
function. To explore this question further, we will look at the density of electron
states in the presence of the quantum well.

The quantum well at z0 breaks translational invariance in z direction, and we have
with equation (20.16)

%.E; z/ D 4m

�„2=hxk; zjG.E/jxk; zi D m

�3„2=
Z

d2kk hzjG.kk;E/jzi;

where a factor g D 2 was taken into account for spin 1/2 states.
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If there is any quasi two-dimensional behavior in this system, we would expect
it in the quantum well region. Therefore we use the result (20.31) to calculate the
density of states %.E; z0/ in the quantum well. Substitution yields

%.E; z0/ D m

�3„2=
Z

d2kk hz0jG.kk;E/jz0i

D m

�„
Z 1

0

dk k ı
�p

„2k2 � 2mE � „
�

C m

�2„‚.E/
Z p

2mE=„

0

dk
k
p
2mE � „2k2

2mE � „2k2 C „22 ;

and after evaluation of the integrals,

%.E; z0/ D ‚.2mE C „22/ m

�„2

C‚.E/
m

�2„3
"p

2mE � „ arctan

 p
2mE

„

!#
: (20.32)

We can also express this in terms of the free two-dimensional and three-
dimensional densities of electron states (cf. (20.17)),

%.E; z0/ D %dD2
�
E C .„22=2m/

�

C %dD3.E/
"
1 � „p

2mE
arctan

 p
2mE

„

!#
: (20.33)

We note that the states which are exponentially suppressed perpendicular to
the quantum well indeed contribute a term proportional to the two-dimensional
density of states %dD2.E0/ with the kinetic energy E0 of motion of particles along the
quantum well, but with a dimensional proportionality constant  which is the inverse
penetration depth of those states. Such a dimensional factor has to be there, because
densities of states in three dimensions enumerate states per energy and per volume,
while %dD2.E0/ counts states per energy and per area. Furthermore, the unbound
states yield a contribution which approaches the free three-dimensional density of
states %dD3.E/ in the limit  ! 0. The result can also be derived directly from the
energy eigenstates (20.21–20.23) and the definition (12.15) of the local density of
states, see Problem 20.7. However, the derivation from the Green’s function, while
more lengthy for the pure quantum well, has the advantage to also work in the case
of an interface in which the electrons move with different effective mass.

The density of states in the quantum well region is displayed for binding energy
B D „22=2m D 1 eV, mass m D me D 511 keV=c2, and different energy ranges in
Figures 20.3 and 20.4.
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Fig. 20.3 The density of
states in the quantum well
location z D z0 for binding
energy B D 1 eV, mass
m D me D 511 keV=c2, and
energies �B 	 E 	 3 eV.
The red curve is the
contribution from states
bound inside the quantum
well, the blue curve is the
pure three-dimensional
density of states in absence of
a quantum well, and the black
curve is the density of states
according to equation (20.32)

Fig. 20.4 The density of
states (20.32) in the quantum
well location z D z0 for
higher energies
0 	 E 	 100 eV. The
binding energy, mass and
color coding are the same as
in Figure 20.3. The full
density of states (20.32)
approximates the
three-dimensional

p
E

behavior for energies E � B,
but there remains a finite
offset compared to %dD3 due
to the presence of the
quantum well

20.3 Problems

20.1. Derive the d-dimensional version of equation (11.28) for scattering off
spherically symmetric potentials.

20.2. Calculate the differential scattering cross sections for the potentials

20.2a. V.r/ D V0‚.R � r/,



490 20 Dimensional Effects in Low-dimensional Systems

20.2b. V.r/ D V0 exp.�r=R/,

20.2c. V.r/ D V0 exp.�r2=R2/,
in d dimensions in Born approximation. Which results do you find in particular for
d D 2?

20.3. Derive the optical theorem in d dimensions.

20.4. The solution (3.16) can also be considered as the bound state in a one-
dimensional pointlike quantum dot V.x/ D �Wı.x/,

 dD1.x/ D  exp.�jxj/;  D m

„2W;

with binding energy

B D �E D „22
2m

D m

2„2W
2:

No such states exist for higher-dimensional pointlike quantum dots V.x/ D
�Wı.x/, unless we also let the depth W go to zero in a judicious way.

Show that the following wave functions describe bound states in two-dimensional
and three-dimensional pointlike quantum dots if we let W go to zero,

 dD2.r/ D p
�

K0.r/;  dD3.r/ D
r


2�

exp.�r/

r
:

The binding energy of the states is

B D �E D „22
2m

:

Hint: Show that the bound states must be proportional to the energy-dependent
retarded Green’s functions.

Note that we cannot extend this construction to four or more dimensions because
the corresponding Green’s functions are not square integrable any more.

20.5. Suppose we consider a proton and an electron in d � 3 spatial dimensions.
The electromagnetic interaction potential of these particles is

Vd.r/ D �e2

�0
Gd.r/:

Suppose that there are normalizable bound energy eigenstates in this system. Which
relation between the expectation values hKi and hVi of kinetic and potential energy
would then be implied by the virial theorem (4.41)? Can atoms exist in d � 4

dimensions?
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20.6. Show that substitution of the Fourier transform

hkk; k?jG.E/jk0
k; k

0?i D
Z

d2xk
Z

d2x0
k
Z

dz
Z

dz0 hxk; zjG.E/jx0
k; z

0i
.2�/3

� exp
h
i
�

k0
k � x0

k C k0?z0 � kk � xk � k?z
�i

D hk?jG.kk;E/jk0?iı
�

kk � k0
k
�
;

with

hk?jG.kk;E/jk0?i D 1

2�

Z
d2xk

Z
dz hzjG.xk;E/jz0i

� exp
	�i

�
kk � xk C k?z � k0?z0�


in equation (20.24) yields with the same technique that we used to solve (20.28) the
result

hk?jG.E; kk/jk0?i D 1

k2? C k2k � .2mE=„2/ � i�

"
ı.k? � k0?/

C 

�

expŒi.k0? � k?/z0�
k02? C k2k � .2mE=„2/ � i�

 q„2k2k � 2mE‚.„2k2k � 2mE/q
„2k2k � 2mE � „ � i�

C
q
2mE � „2k2k‚.2mE � „2k2k/q

2mE � „2k2k � i„

!#
: (20.34)

Show also that Fourier transformation yields again the result (20.30).

20.7. Derive the result (20.32) directly from the energy eigenstates (20.21), (20.22)
and (20.23) for particles in the presence of the quantum well.

Solution.
The decomposition of unity in terms of the eigenstates is

Z
d2kk jkk; ihkk; j C

X
˙

Z
d2kk

Z 1

0

dk? jkk; k?;˙ihkk; k?;˙j D 1:

For the application of the definition (12.15) we have to take into account that

d2kk D kkdkkd' ! m

„2 dEd'
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holds both for the two dimensional integration measure d2kk from E D „2.k2k �
2/=2m, and also in the three-dimensional integration measure d2kk ^ dk?, where
E D „2.k2k C k2?/=2m. This yields with a factor of 4� from g D 2 for electrons and
from integration over ' the result

%.E; z0/D4�m

„2
 
‚.2mEC„22/ 

4�2
C‚.E/

Z p
2mE=„

0

k2?dk?
4�3.2Ck2?/

!
:

Evaluation of the integral yields again the result (20.32).

20.8. Generalize the derivation of the relation (20.16) to the relativistic case.

Solution.
The relativistic scalar Green’s function is

G D „2
p2 C m2c2 � i�

; hkjGjk0i D ı.k � k0/
k2 C .mc=„/2 � i�

;

see also (J.66–J.70). We can write this with H D c
p

p2 C .mc/2 in the form

G D � „2c2
E2 � H2 C i�

D � „2c2
2E

�
1

E � H C i�
C 1

E C H � i�

�
:

Here E D cp0 is still an operator, but we can make the transition to the energy-
dependent Green’s operator G.E/ with classical variable E D „ck0 through jki D
jki ˝ jk0i and

hk0jGjk00i D G.E/ı.k0 � k00/: (20.35)

Use of the Sokhotsky-Plemelj relation (2.11) yields

=G.E/ D �„2c2
2E

Œı.E � H/ � ı.E C H/�

D �„2c2
2E

XZ
n;�
Œı.E � En/ � ı.E C En/� jn; �ihn; �j; (20.36)

and therefore5

=hxjG.E/jxi D �„2c2
2E

	
%.E/ � %.E/
 : (20.37)

5A.C. Zulkoskey, R. Dick, K. Tanaka, Phys. Rev. A 89, 052103 (2014).
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Here %.E/ and %.E/ denote the densities of states of particles of energy E, and of
anti-particles (or holes) of energy E D �E, respectively.

We can test our result in the free (anti-)particle case where the density of states
per helicity state is

O%.E/ D %.E/C %.E/ D 2‚.E2 � m2c4/

.2
p
�„c/d�.d=2/

jEj
p

E2 � m2c4
d�2
; (20.38)

see equation (12.23).
The x-representation hxjG.E/jx0i D G.x � x0; !/ of the energy-dependent free

Green’s function has been calculated in Appendix J, equation (J.42). The modified
Bessel function K�.z/ with real argument is real, and the imaginary part of the
Hankel function iH.1/

� .z/ for real z satisfies [1]

lim
z!0

<H.1/
� .z/ D .z=2/�

�.� C 1/
:

Substitution into (J.42) for r D jx � x0j ! 0 yields

=hxjG.E/jxi D �„2c2
�.d=2/

‚.E2 � m2c4/

.2
p
�„c/d

p
E2 � m2c4

d�2
;

in agreement with equations (20.37) and (20.38).



Chapter 21
Relativistic Quantum Fields

The quantized Maxwell field provided us already with an example of a relativistic
quantum field theory. On the other hand, the description of relativistic charged par-
ticles requires Klein-Gordon fields for scalar particles and Dirac fields for fermions.
Relativistic fields are apparently relevant for high energy physics. However, rela-
tivistic effects are also important in photon-matter interactions, spectroscopy, spin
dynamics, and for the generation of brilliant photon beams from ultra-relativistic
electrons in synchrotrons. Quasirelativistic effects from linear dispersion relations
E / p in materials like Graphene and in Dirac semimetals have also reinvigorated
the need to reconsider the role of Dirac and Weyl equations in materials science. In
applications to materials with quasirelativistic dispersion relations c and m become
effective velocity and mass parameters to describe cones or hyperboloids in regions
of .E; k/ space.

We start our discussion of relativistic matter fields with the simpler Klein-Gordon
equation and then move on to the more widely applicable Dirac equation. We will
also discuss covariant quantization of photons, since this is more convenient for the
calculation of basic scattering events than quantization in Coulomb gauge.

21.1 The Klein-Gordon equation

A limitation of the Schrödinger equation in the framework of ordinary quantum
mechanics is its lack of covariance under Lorentz transformations1. On the other
hand, we have encountered an example of a relativistic wave equation in Chapter 18,

1However, we will see that in the second quantized formalism in the Heisenberg and Dirac
pictures, the time evolution of the field operators is given by Heisenberg equations of motion,
and the corresponding time evolution of states in the Schrödinger and Dirac pictures is given by
corresponding Schrödinger equations with relativistic Hamiltonians.

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7_21
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viz. the inhomogeneous Maxwell equation

@	 .@
	A� � @�A	/ D �	0j�:

This equation is manifestly covariant (or rather, form invariant) under Lorentz trans-
formations because it is composed of quantities with simple tensorial transformation
behavior under Lorentz transformations, and it relates a 4-vector @	F	� to a 4-vector
j� , such that the equation holds in this form in every inertial reference frame.

Another, simple reasoning to come up with a relativistic wave equation goes
as follows. We know that the standard Schrödinger equation for a free massive
particle arises from the non-relativistic energy-momentum dispersion relation E D
�cp0 D p2=2m upon substitution of the classical energy-momentum vector through
differential operators, p	 ! �i„@	. Following the same procedure in the relativistic
dispersion relation

� E2

c2
C p2 C m2c2 D p2 C m2c2 D 0

yields the free Klein-Gordon equation2

�
@2 � m2c2

„2
�
�.x/ D

�
� � 1

c2
@2

@t2
� m2c2

„2
�
�.x/ D 0: (21.1)

Furthermore, the gauge principle or minimal coupling prescription @	 !
D	 D @	 � i.q=„/A	 yields the coupling of the charged Klein-Gordon field to
electromagnetic potentials,

��
@ � i

q

„A.x/
�2 � m2c2

„2
�
�.x/ D

��
r � i

q

„A.x/
�2

� 1

c2

�
@

@t
C i

q

„ˆ.x/
�2

� m2c2

„2
#
�.x/ D 0: (21.2)

Complex conjugation of equation (21.2) leads to the Klein-Gordon equation for
a scalar field with charge �q. Therefore the charge conjugate Klein-Gordon field is
simply gotten by complex conjugation,

�c.x/ D �
.x/: (21.3)

The Klein-Gordon field is relevant in particle physics. E.g. �-mesons are
described by Klein-Gordon fields as soon as their kinetic energy becomes

2E. Schrödinger, Annalen Phys. 386, 109 (1926); W. Gordon, Z. Phys. 40, 117 (1926); O. Klein,
Z. Phys. 41, 407 (1927).
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comparable to their mass mc2'140MeV, when relativistic effects have to be taken
into account. Another important application of the Klein-Gordon field is the Higgs
field for electroweak symmetry breaking in the Standard Model of particle physics.

The Klein-Gordon field also provides a simple introduction into the relativistic
quantum mechanics of charged particles. Therefore it is also useful as a preparation
for the study of the Dirac field. We will focus in particular on the canonical quan-
tization of freely evolving Klein-Gordon fields, since this describes Klein-Gordon
operators in the practically relevant interaction picture representation. Conservation
laws for full scalar quantum electrodynamics are discussed in Problems 21.6a
and 21.7.

Mode expansion and quantization of the Klein-Gordon field

Fourier transformation of equation (21.1) yields the general solution of the free
Klein-Gordon equation in k D .!=c; k/ space,

�.k/ D �.k; !/ D hkj�.!/i

D
r
�

!k

	
a.k/ı.! � !k/C bC.�k/ı.! C !k/



; (21.4)

where !k is just the k space expression for the relativistic dispersion relation,

!k D c
q

k2 C .m2c2=„2/:
Frequency-time Fourier transformation (5.12) yields

hkj�.t/i D 1p
2!k

	
a.k/ exp.�i!kt/C bC.�k/ exp.i!kt/




and the general free Klein-Gordon wave function in x D .ct; x/ space is

�.x/ D hxj�.t/i D 1p
2�

3

Z
d3kp
2!k

�
a.k/ expŒi.k � x � !kt/�

C bC.k/ expŒ�i.k � x � !kt/�
�
: (21.5)

For the inversion of the Fourier transformation in the sense of solving for a.k/
and b.k/ we need equation (21.5) and

P�.x; t/ D ip
2�

3

Z
d3k

r
!k

2

�
� a.k/ expŒi.k � x � !kt/�

C bC.k/ expŒ�i.k � x � !kt/�
�
:
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Inversion of both equations yields

a.k/ D 1p
2�

3

Z
d3xp
2!k

�
!k�.x; t/C i P�.x; t/� expŒ�i.k � x � !kt/�

D 1p
2�

3

Z
d3xp
2!k

expŒ�i.k � x � !kt/� i
$
@t �.x; t/; (21.6)

b.k/ D 1p
2�

3

Z
d3xp
2!k

�
!k�

C.x; t/C i P�C.x; t/
�

expŒ�i.k � x � !kt/�

D 1p
2�

3

Z
d3xp
2!k

expŒ�i.k � x � !kt/� i
$
@t �

C.x; t/: (21.7)

Here the alternating derivative is defined as

f
$
@t g D f

@g

@t
� @f

@t
g:

Substituting (21.6, 21.7) back into (21.5) and formal exchange of integrations
yields

�.x; t/ D
Z

d3x0 K.x � x0; t � t0/
$
@t0 �.x0; t0/ (21.8)

with the time evolution kernel for free scalar fields,

K.x; t/ D 1

.2�/3

Z
d3k
!k

exp.ik � x/ sin.!kt/: (21.9)

This distribution satisfies the initial value problem
�
@2 � m2c2

„2
�
K.x; t/ D 0; K.x; 0/ D 0;

@

@t
K.x; t/

ˇ̌
ˇ̌
tD0

D ı.x/:

For canonical quantization we need the Lagrange density for the complex Klein-
Gordon field

L D „ P�C � P� � „c2r�C � r� � m2c4

„ �C ��

D � „c2@�C � @� � m2c4

„ �C ��; (21.10)

or the real Klein-Gordon field

L D „
2

P� � P� � „c2

2
r� � r� � m2c4

2„ �2 D � „c2

2
.@�/2 � m2c4

2„ �2: (21.11)

In the following we will continue with the discussion of the complex Klein-Gordon
field.
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Canonical quantization proceeds from (21.10) without any problems. The conju-
gate momenta

…� D @L
@ P� D „ P�C; …�C D @L

@ P�C D „ P�;

yield the canonical commutation relations in x space,

Œ�.x; t/; P�C.x0; t/� D iı.x � x0/; Œ�C.x; t/; P�.x0; t/� D iı.x � x0/;

Œ�.x; t/; P�.x0; t/� D 0; Œ�.x; t/; �.x0; t/� D 0; Œ�.x; t/; �C.x0; t/� D 0;

Œ P�.x; t/; P�.x0; t/� D 0; Œ P�.x; t/; P�C.x0; t/� D 0;

and in k space,

Œa.k/; aC.k0/� D ı.k � k0/; Œa.k/; a.k0/� D 0; Œb.k/; bC.k0/� D ı.k � k0/;

Œb.k/; b.k0/� D 0; Œa.k/; b.k0/� D 0; Œa.k/; bC.k0/� D 0:

The Lagrangian for interacting Klein-Gordon and Maxwell fields is

L D � c2

„
�„@	�C C iq�C � A	

� � .„@	� � iqA	 ��/ � m2c4

„ �C ��

� 1

4	0
F	�F

	�: (21.12)

The charge operator of the Klein-Gordon field

The Klein-Gordon Lagrangian (21.10) is invariant under phase transformations

�.x/ ! �0.x/ D exp
�

i
q

„˛
�
�.x/; ı�.x/ D i

q

„˛�.x/:

According to Section 16.2 this implies a local conservation law (16.13) for a
conserved charge Q. After cancelling the superfluous factor ˛, the charge following
from (16.14) is (after normal ordering of the integrand in k space, see the remarks
following equations (18.40, 18.41))

Q D � i
q

„
Z

d3x
�
@L
@ P� �� � �C � @L

@ P�C

�

D � iq
Z

d3x
� P�C.x; t/ ��.x; t/ � �C.x; t/ � P�.x; t/�

D q
Z

d3k
�
aC.k/a.k/ � bC.k/b.k/

�
: (21.13)
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The charge density iq�C $
@t � is not positive definite, and therefore division of

the charge density by q does not yield a probability density for the location of a
particle, contrary to the Schrödinger field. Lack of a single particle interpretation
is a generic property of relativistic fields which we had also encountered for the
Maxwell field.

Hamiltonian and momentum operators for the Klein-Gordon
field

The invariance of the Klein-Gordon Lagrangian (21.10) under constant translations

x	 ! x0	 D x	 C ıx	

implies a local conservation law (16.15) with corresponding conserved Hamilton
and momentum operators (16.17). This yields the following expressions for energy
and momentum of Klein-Gordon fields,

H D �‚0
0 D „ P�C � P� C „c2r�C � r� C m2c4

„ �C ��; (21.14)

H D
Z

d3xH D
Z

d3k „!k
�
aC.k/a.k/C bC.k/b.k/

�
; (21.15)

P D 1

c
ei‚i

0 D � @L
@ P� � r� � r�C � @L

@ P�C

D � „ P�C � r� � „r�C � P�; (21.16)

P D
Z

d3xP D
Z

d3k „k
�
aC.k/a.k/C bC.k/b.k/

�
: (21.17)

The commutation relations and the charge operator (21.13), the Hamilton
operator (21.15), and the momentum operators (21.17) imply that the operator aC.k/
creates a particle of momentum „k, energy „!k and charge q, while bC.k/ creates a
particle of momentum „k, energy „!k and charge �q.

The operators (21.5) and a.k; t/ D a.k/ exp.�i!kt/, aC.k; t/ D aC.k/
exp.i!kt/ are the field operators in the Dirac picture, or the free field operators
in the Heisenberg picture. They satisfy the Heisenberg evolution equations

@

@t
a.k; t/ D i

„ ŒH; a.k; t/�;
@

@t
�.x; t/ D i

„ ŒH; �.x; t/�;

with the free Hamiltonian (21.15). The corresponding integrals follow in the
standard way,
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a.k; t/ D exp

�
i

„Ht

�
a.k/ exp

�
� i

„Ht

�
;

�.x; t/ D exp

�
i

„Ht

�
�.x/ exp

�
� i

„Ht

�
;

etc. In the Schrödinger picture theory, this amounts to operators a.k/, �.x/, and time
evolution of the states

i„ d

dt
j‰.t/i D Hj‰.t/i

with the free Hamiltonian (21.15) for free states or a corresponding minimally
coupled Hamiltonian which follows from (21.12) for interacting states, see Prob-
lem 21.5. This is the statement that we have Heisenberg and Schrödinger type
evolution equations also in relativistic quantum field theory.

The Klein-Gordon equation also follows from the iterated Heisenberg equation,

@2

@t2
�.x; t/ D � 1

„2 ŒH; ŒH; �.x; t/��; (21.18)

cf. (18.46) for photons.

Non-relativistic limit of the Klein-Gordon field

We have in the non-relativistic limit

!k D c

r
k2 C m2c2

„2 ' mc2

„ C „k2

2m
;

and therefore in leading order also 1=
p
2!k ' p„=2mc2.

Suppose that the k-space amplitudes a.k/ and bC.k/ are negligibly small unless
„jkj 
 mc. In this case we can approximate equation (21.5) by

�.x; t/ ' 1p
2�

3

r „
2mc2

Z
d3k

"
a.k/ exp

 
ik � x � i

„k2

2m
t

!
exp

�
�i

mc2

„ t

�

C bC.k/ exp

 
�ik � x C i

„k2

2m
t

!
exp

�
i
mc2

„ t

�#
:

However, this expression automatically contains two fields

 .x; t/ D 1p
2�

3

Z
d3k a.k/ exp

"
i

 
k � x � „k2

2m
t

!#
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and

'.x; t/ D 1p
2�

3

Z
d3k b.k/ exp

"
i

 
k � x � „k2

2m
t

!#
;

which satisfy the free Schrödinger equation, i.e. the complex Klein-Gordon field
will reduce to a Schrödinger field  .x; t/ if the k-space amplitudes also satisfy
jha.k/ij � jhbC.k/ij.

Substitution of the remaining approximation

�.x; t/ '
r „
2mc2

 .x; t/ exp

�
�i

mc2

„ t

�
(21.19)

into the charge, current, energy and momentum densities of the Klein-Gordon field
yields the corresponding expressions for the Schrödinger field,

% D � iq
� P�C �� � �C � P�� ' q C ;

j D iqc2
�r�C �� � �C � r�� ' q

„
2im

�
 C � r �  � r C� ;

H D „ P�C � P� C „c2r�C � r� C m2c4

„ �C �� ' „2
2m

r C � r C mc2 C � ;

P D � „ P�C � r��„r�C � P� ' „
2i

�
 C � r � � r C� D m

q
j: (21.20)

Furthermore, the free Klein-Gordon equation (21.1) becomes with

1

c2
@2

@t2
�.x; t/ '

r „
2mc2

exp

�
�i

mc2

„ t

��
� m2c2

„2  .x; t/�i
2m

„
@

@t
 .x; t/

�

the free Schrödinger equation

i„ @
@t
 .x; t/ D � „2

2m
� .x; t/;

as it should, because we have already observed in the derivation of (21.19) that
 .x; t/ satisfies the free Schrödinger equation.

For the non-relativistic limit of the real Klein-Gordon field we find

�.x; t/ '
r „
2mc2

�
 .x; t/ exp

�
�i

mc2

„ t

�
C  C.x; t/ exp

�
i
mc2

„ t

��
;

but we have to include first order time derivatives of  .x; t/ and  C.x; t/ in the
evaluation of H and P, and then use the Schrödinger equation to find that remnant
fast oscillation terms proportional to exp.˙2imc2t=„/ reduce to boundary terms.
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21.2 Klein’s paradox

The commutation relations for the field operators a.k/ and bC.k/ imply that the
operator �.x; t/ (21.5) describes both particles and anti-particles simultaneously,
and therefore the Klein-Gordon equation cannot support a single particle interpre-
tation. This is also obvious from the charge operator (21.13) and the corresponding
lack of a conserved probability density for Klein-Gordon particles. Klein’s paradox
provides a particularly neat illustration of the failure of single particle interpretations
of relativistic wave equations.

Klein observed that using relativistic quantum fields to describe a relativistic
particle running against a potential step yields results for the transmission and
reflection probabilities which are incompatible with a single particle interpretation3.
This observation can be explained by pair creation in strong fields and the fact that
relativistic fields describe both particles and anti-particles simultaneously. We will
explain Klein’s paradox for the Klein-Gordon field.

In the following we can neglect the y and z coordinates and deal only with the x
and t coordinates. We are interested in a scalar particle of charge q scattered off a
potential step of height V > 0. The step is located at x D 0, and can be implemented
through an electrostatic potential ˆ.x/,

V.x/ D qˆ.x/ D � cqA0.x/ D V‚.x/: (21.21)

Minimal coupling then yields the free Klein-Gordon equation for x < 0, and4

.„@t C iV/2 � � „2c2@2x� C m2c4� D 0 (21.22)

for x > 0.
A monochromatic solution without any apparent left moving component for

x > 0 is (after omission of an irrelevant constant prefactor)

�.x; t/ D
�
Œexp.ikx/C ˇ exp.�ikx/� exp.�i!t/; x < 0
� expŒi.x � !t/�; x > 0:

(21.23)

The frequency follows from the solution of the Klein-Gordon equation in the two
domains,

! D c

r
k2 C m2c2

„2 D V

„ ˙ c

r
2 C m2c2

„2 : (21.24)

It has to be the same in both regions for continuity of the wave function at x D 0.

3O. Klein, Z. Phys. 53, 157 (1929). Klein actually discussed reflection and transmission of
relativistic spin 1/2 fermions which are described by the Dirac equation (21.38).
4We cannot try to discuss motion of particles of mass m in the presence of a potential by simply
including a scalar potential term in the form

�„2@2t � „2c2@2x C m2c4
�
� D ‚.x/V2� in the Klein-

Gordon equation. This would correspond to a local mass M.x/c2 D p
m2c4 �‚.x/V2 rather than

to a local potential, and yield tachyons in x > 0 for V2 > m2c4.
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The sign in the last equation of (21.24) depends on the sign of „! � V . We
apparently have to use the minus sign if and only if „! � V < 0. Note that in our
solution we always have „! � mc2.

Solving for  yields

 D ˙ 1

„

s
.„! � V/2

c2
� m2c2 2 R; .„! � V/2 > m2c4; (21.25)

 D i

„

s
m2c2 � .„! � V/2

c2
2 iRC; .„! � V/2 < m2c4: (21.26)

However, we have to be careful with the sign in (21.25). The group velocity in x > 0
for „! C mc2 < V (i.e. for the negative sign in (21.24)) is

d!

d
D � c

„p„22 C m2c2
;

i.e. we have to take the negative root for  for V > „! C mc2 to ensure positive
group velocity in the region x > 0. We can collect the results for  in the equations

V < „! � mc2 W  D 1
„
q

.„!�V/2

c2
� m2c2 2 RC;

„! � mc2 < V < „! C mc2 W  D i
„
q

m2c2 � .„!�V/2

c2
2 iRC;

V > „! C mc2 W  D � 1
„
q

.„!�V/2

c2
� m2c2 2 R�:

The current density j D iqc2.@x�
C �� � �C � @x�/ is

j D 2qc2k
�
1 � jˇj2� ; x < 0;

j D 2qc2j� j2; x > 0;  2 R;

j D 0; x > 0;  2 iR:
(21.27)

Note that in x > 0 we have j=q < 0 if V > „! C mc2, in spite of the fact of positive
group velocity in the region. Since charges q cannot move to the left in x > 0, this
means that the negative value of j=q in x > 0 for V > „! C mc2 must correspond
to right moving charges �q. We will see that this arises as a consequence of the
generation of anti-particles near the potential step for V > „! C mc2.

The junction conditions

1C ˇ D �; k.1 � ˇ/ D � (21.28)

yield

ˇ D k � 
k C 

; � D 2k

k C 
;
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Table 21.1 Reflection and transmission for different relations between height V of
the potential step and energy „! of the incident particle

�1 < V 	 0 1 >  � k 1 > R � 0 0 < T 	 1

0 	 V 	 „! � mc2 k �  � 0 0 	 R 	 1 1 � T � 0

„! � mc2 < V < „! C mc2  2 iRC R D 1 T D 0

„! C mc2 	 V 	 2„! 0 �  � �k 1 	 R 	 1 0 � T � �1
2„! 	 V < 1 �k �  > �1 1 � R > 1 �1 	 T < 0

and the corresponding reflection and transmission coefficients are

R D jˇj2 D k2 C jj2 � 2k<
k2 C jj2 C 2k< ; (21.29)

T D <
k

j� j2 D 4k<
k2 C jj2 C 2k< D 1 � R: (21.30)

The resulting behavior of the reflection coefficient is summarized in Table 21.1.
For an explanation of the unexpected result R > 1 for V > „! C mc2 � 2mc2,

recall that the solution for V > „! C mc2 in x > 0 has  < 0. If we write the
solution as

�.x; t/ D � expŒ�i.�x C !t/�; x > 0; (21.31)

and compare with the anti-particle contribution to the free solution (21.5), we
recognize the solution in the region x > 0 as an anti-particle solution with
momentum „0 D �„ > 0 and energy

Ep D � „! < 0; mc2 � V � Ep � �mc2: (21.32)

This is acceptable, because the anti-particle has charge �q and therefore experiences
a potential U D �V in the region x > 0. Further support for this energy assignment
for the anti-particles comes from the equality for the kineticCrest energy of the
anti-particles,

Kp D c
p

„22 C m2c2 D V � „!; mc2 � Kp � V � mc2: (21.33)

We expect Ep D Kp � V at least in the non-relativistic limit for the anti-particles.
The anti-particles move to the right, d.�!/=d.�/ > 0, and yield a negative

particle current density j=q / �q0=q D �0 < 0 due to the opposite charge. We
therefore get R > 1 and T < 0 for V �„! > mc2 due to pair creation. The generated
particles move to the left because they are repelled by the potential V > mc2 C „!.
They add to the reflected particle in x < 0 to generate a formal reflection coefficient
R > 1. The anti-particles move to the right because they can only move in the
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2

V−mc2

hf

V−hf

mc

−V

Energy region for particles from pair creation

V

−V

Energy region for anti−particles from pair creation

V−hf
Anti−particle kinetic+rest energy

x

Particle energy

mc2

2−mc

−hf

Fig. 21.1 Particles of charge q experience the potential V for x > 0, while anti-particles with
charge �q experience the potential �V . If the potential satisfies V > 2mc2, it can produce particles
with energy Ep, mc2 	 Ep D hf 	 V � mc2, in the region x < 0 and anti-particles with energy
Ep D �hf , mc2 � V 	 Ep 	 �mc2, in the region x > 0. This corresponds to a kinetic+rest energy
Kp D V � hf , mc2 	 Kp 	 V � mc2, see equation (21.33). Pair creation is most efficient for
hf D Ep D Kp D �Ep D V=2

attractive potential �V in x > 0. The movement of charges �q to the right generates
a negative apparent transmission coefficient T D jx>0=jin < 0.

Please note that the last two lines in Table 21.1 do not state that extremely large
potentials V � 2mc2 are less efficient for pair creation. They only state that a
potential V > 2mc2 is particularly efficient for generation of particle–anti-particle
pairs with energies Ep D Kp D �Ep D „! D V=2.

The conclusion in a nutshell is that if we wish to calculate scattering in the
potential V > 2mc2 for incident particles with energies in the pair creation region
mc2 � „! � V � mc2, then the ongoing pair creation will yield the seemingly
paradoxical results R > 1 and T D 1 � R < 0, see Figure 21.1.
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Please note that a more satisfactory discussion of energetics of the problem would
also have to take into account the dynamics of the electromagnetic field ˆ D V=q,
and then use the Hamiltonian density (21.132) of quantum electrodynamics with
scalar matter. This would also imply an additional energy cost for separating the
oppositely charged particles and anti-particles. The potential V would therefore
decay due to pair creation until it satisfies the condition V � 2mc2, when pair
creation would seize and the standard single particle results 0 � T D 1 � R � 1

apply for incident particles with any energy, or the potential would have to be
maintained through an external energy source.

21.3 The Dirac equation

We have seen in equation (21.13) that the conserved charge of the complex
Klein-Gordon field does not yield a conserved probability, and therefore has no
single particle interpretation. This had motivated Paul Dirac in 1928 to propose a
relativistic wave equation which is linear in the derivatives5,

i„�	@	‰.x/ � mc‰.x/ D 0: (21.34)

Since the relativistic dispersion relation p2 C m2c2 D 0 implies that the field ‰
should still satisfy the Klein-Gordon equation, equation (21.34) should imply the
Klein-Gordon equation. Applying the operator i„�	@	 C mc yields

� „2�	��@	@�‰.x/ � m2c2‰.x/ D 0:

This is the Klein-Gordon equation if the coefficients �	 can be chosen to satisfy

f�	; ��g D � 2�	�: (21.35)

In four dimensions, equation (21.35) has an up to equivalence transformations
unique solution in terms of .4�4/-matrices (see Appendix G for the relevant proofs
and for the construction of � matrices in d spacetime dimensions).

The Dirac basis for � matrices is

�0 D
��1 0

0 1

�
; �i D

�
0 � i

�� i 0

�
; (21.36)

where the .4�4/-matrices are expressed in terms of .2�2/-matrices. Another often
used basis is the Weyl basis:

�0 D
�
0 1

1 0

�
; �i D

�
0 � i

�� i 0

�
: (21.37)

5P.A.M. Dirac, Proc. Roy. Soc. London A 117, 610 (1928). Dirac’s relativistic wave equation was
a great success, but like every relativistic wave equation, it also does not yield a single particle
interpretation. It immediately proved itself by explaining the anomalous magnetic moment of the
electron and the fine structure of spectral lines, and by predicting positrons.
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The two bases are related by the orthogonal transformation

�
	
W D 1

2

�
1 1

�1 1

�
� �	D �

�
1 �1
1 1

�
;

�
	
D D 1

2

�
1 �1
1 1

�
� �	W �

�
1 1

�1 1

�
:

The Dirac equation with minimal photon coupling

�	.i„@	 C qA	/‰.x/ � mc‰.x/ D 0 (21.38)

follows from the Lagrange density of quantum electrodynamics,

L D c‰
	
�	.i„@	 C qA	/ � mc



‰ � 1

4	0
F	�F

	�; ‰ D ‰C�0: (21.39)

The conserved current density for the phase invariance

‰0 D exp
�

i
q

„˛
�
‰

is

j	 D cq‰�	‰; % D j0=c D q‰C‰; j D cq‰�‰: (21.40)

Variation of (21.39) with respect to the vector potential shows that j	 appears as the
source term in Maxwell’s equations,

@	F	� D �	0j�:

Solutions of the free Dirac equation

We temporarily set „ D 1 and c D 1 for the construction of the general solution of
the free Dirac equation.

Substitution of the Fourier ansatz

‰.x/ D
Z

d4p

.2�/2
‰.p/ exp.ip � x/

into (21.34) yields the equation

.�	p	 C m/‰.p/ D 0: (21.41)
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We can use any representation of the � matrices to find

det.�	p	 C m/ D .m2 C p2/2 D .m2 C p2 � E2/2 D .E2.p/ � E2/2;

i.e. the solutions of (21.41) must have the form

‰.p/ D
r

�

E.p/
u.p/ı.E � E.p//C

r
�

E.p/
v.�p/ı.E C E.p// (21.42)

with E.p/ D p
p2 C m2 and

	
� � p � �0E.p/C m


 � u.p/ D 0; (21.43)
	
� � p C �0E.p/C m


 � v.�p/ D 0: (21.44)

The normalization factors in (21.42) are included for later convenience when we
quantize the Dirac field.

To find the eigenspinors u.p/, v.�p/, we observe

.�	p	 C m/.m � �	p	/ D m2 C p2;

i.e. the columns 
iC.p/ of the matrix .m � �	p	/EDE.p/ solve equation (21.43)
while the columns 
i�.p/ of the matrix .m � �	p	/ED�E.p/ solve equation (21.44).
However, only two columns of each of the two matrices 
i˙.p/ are linearly
independent.

We initially use a Dirac basis (21.36) for the � matrices. A suitable basis for the
general solution of the free Dirac equation is then given by the spin basis in the
Dirac representation,

u.p; 12 / D u".p/ D 1p
E.p/C m


1C.p/

D 1p
E.p/C m

0
BB@

E.p/C m
0

p3
pC

1
CCA ; (21.45)

u.p;� 1
2 / D u#.p/ D 1p

E.p/C m

2C.p/

D 1p
E.p/C m

0
BB@

0

E.p/C m
p�

�p3

1
CCA ; (21.46)
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v.�p;� 1
2 / D v#.�p/ D 1p

E.p/C m

3�.p/

D 1p
E.p/C m

0
BB@

�p3
�pC

E.p/C m
0

1
CCA ; (21.47)

v.�p; 12 / D v".�p/ D 1p
E.p/C m


4�.p/

D 1p
E.p/C m

0
BB@

�p�
p3
0

E.p/C m

1
CCA ; (21.48)

where p˙ D p1˙ ip2 was used. The spin labels indicate that u.p;˙ 1
2 / describes spin

up or down particles, while v.p;˙ 1
2 / describes spin up or down anti-particles.

It is also convenient to express the 4-spinors (21.45–21.48) in terms of the
2-spinors

�" D
�
1

0

�
; �# D

�
0

1

�
;

in the form

u".p/ D 1p
E.p/C m

�
.E.p/C m/�"
.p � � / ��"

�
;

u#.p/ D 1p
E.p/C m

�
.E.p/C m/�#
.p � � / ��#

�
;

v#.p/ D 1p
E.p/C m

�
.p � � / ��"

.E.p/C m/�"

�
;

v".p/ D 1p
E.p/C m

�
.p � � / ��#

.E.p/C m/�#

�
:

The general solution of the free Dirac equation then has the form

‰.x/ D 1p
2�

3

Z
d3pp
2E.p/

X
s2f#;"g

	
bs.p/u.p; s/ exp.ip � x/

C dC
s .p/v.p; s/ exp.�ip � x/



; (21.49)

where p0 D E.p/ is understood: p � x D p � x � E.p/t.
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Calculations involving 4-spinors are often conveniently carried out with „ D 1

and c D 1, and restoration of the constants is usually only done in the final results
from the requirement of correct units. For completeness I would also like to give the
general solution of the free Dirac equation with the constants „ and c restored. We
can choose the basic spinors (21.45–21.48) to have units of square roots of energy,
e.g.

u".k/ D 1p
E.k/C mc2

0
BB@

E.k/C mc2

0

„ck3
„ckC

1
CCA ; (21.50)

and the solution (21.49) is

‰.x/ D 1p
2�

3

Z
d3kp
2E.k/

X
s2f#;"g

	
bs.k/u.k; s/ exp.ik � x/

C dC
s .k/v.k; s/ exp.�ik � x/



(21.51)

with k � x � k � x � !.k/t. In these conventions the Dirac field has the same
dimensions length�3=2 as the Schrödinger field. The free field ‰.x/ also describes
the freely evolving field operator ‰D.x/ in the interaction picture.

Some useful algebraic properties of the spinors (21.45–21.48) are frequently used
in the calculations of cross sections and other observables,

uC.k; s/ � u.k; s0/ D 2E.k/ıss0 ; vC.k; s/ � v.k; s0/ D 2E.k/ıss0 ; (21.52)

uC.k; s/ � v.�k; s0/ D 0; u.k; s/ � v.k; s0/ D 0; (21.53)

u.k; s/ � u.k; s0/ D 2mc2ıss0 ; v.k; s/ � v.k; s0/ D �2mc2ıss0 ; (21.54)

u.k;C/ � v.�k;�/ D �2cp3; u.k;C/ � v.�k;C/ D �2cp�; (21.55)

u.k;�/ � v.�k;�/ D �2cpC; u.k;�/ � v.�k;C/ D 2cp3: (21.56)

The following equations contain 4 � 4 unit matrices 1 on the right hand sides,

X
s

u.k; s/uC.k; s/C
X

s

v.�k; s/vC.�k; s/ D 2E.k/1; (21.57)

X
s

u.k; s/u.k; s/ D mc21 � c�	p	
ˇ̌
ˇ
cp0DE.k/

; (21.58)

X
s

u.�k; s/u.�k; s/ D mc21C c�	p	
ˇ̌
ˇ
cp0D�E.k/

; (21.59)
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X
s

v.k; s/v.k; s/ D � mc21 � c�	p	
ˇ̌
ˇ
cp0DE.k/

; (21.60)

X
s

v.�k; s/v.�k; s/ D � mc21C c�	p	
ˇ̌
ˇ
cp0D�E.k/

: (21.61)

It is actually clumsy to write down unit matrices when their presence is clear from
the context, and the action e.g. of the scalar mc2 on a 4-spinor ‰ has the same effect
as the matrix mc21. Therefore we will usually adopt the practice of not writing down
4 � 4 unit matrices explicitly.

Equations (21.52) and (21.53) are used e.g. in the inversion of the Fourier
representation (21.51),

bs.k/ D 1p
2�

3

Z
d3xp
2E.k/

exp.�ik � x/uC.k; s/ �‰.x/; (21.62)

ds.k/ D 1p
2�

3

Z
d3xp
2E.k/

exp.�ik � x/‰C.x/ � v.k; s/: (21.63)

Substituting these equations back into (21.51) yields

‰.x; t/ D
Z

d3x0 W.x � x0; t � t0/ �‰.x0; t0/ (21.64)

with the time evolution kernel

W.x; t/ D 1

.2�/3

Z
d3k
2E.k/

exp.ik � x/
X

s

Œu.k; s/uC.k; s/ exp.�i!.k/t/

C v.�k; s/vC.�k; s/ exp.i!.k/t/�

D 1

.2�/3

Z
d3k
E.k/

exp.ik � x/ŒE.k/ cos.!.k/t/

C ic.„� � k � mc/�0 sin.!.k/t/�: (21.65)

This satisfies the initial value problem

.i„�	@	 � mc/W.x; t/ D 0; W.x; 0/ D ı.x/: (21.66)

It is related to the time evolution kernel (21.9) of the Klein-Gordon field through

iW.x; t/�0 D c
�

i� � @C mc

„
�
K.x; t/: (21.67)

It is sometimes useful to express equation (21.49) and the corresponding equation
in k space in bra-ket notation, similar to equations (18.24, 18.25) for the Maxwell
field. With the definitions

bC;s.k/ D bs.k/; b�;s.k/ D dC
s .�k/;

uC;s.k/ D us.k/; u�;s.k/ D vs.�k/;
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we can write the free Dirac field in the forms

hk; �; sj‰.t/i D b�;s.k/ expŒ�i�!.k/t� (21.68)

and

hx; aj‰.t/i D
Z

d3kp
2�

3

X
�2fC;�g

X
s2f";#g

b�;s.k/ua
�;s.k/p

2„!.k/ expŒi.k � x � �!.k/t/�;

where a 2 f1; : : : 4g is a Dirac spinor index, � 2 fC;�g labels particles .C/ or anti-
particles .�/, and s is the spin label. The equations (21.52) and the first equation in
(21.53) are

uC
�;s.k/ � u� 0;s0.k/ D 2„!.k/ı�;� 0ıs;s0 : (21.69)

Equation (21.54) is

u�;s.k/ � u�;s0.k/ D 2mc2�ıss0 ; (21.70)

and equation (21.57) is

X
�;s

u�;s.k/uC
�;s.k/ D 2„!.k/1: (21.71)

The x representations of the spinor momentum eigenstates are

hx; ajk; �; si D exp.ik � x/

4�
p
�„!.k/ua

�;s.k/; (21.72)

and using equations (21.69, 21.71) we can easily verify the relations

hk; �; sjk0; � 0; s0i D ı�;� 0ıs;s0ı.k � k0/; hx; ajx0; a0i D ıa;a0ı.x � x0/: (21.73)

Charge operators and quantization of the Dirac field

We can apply the results from Section 16.2 to calculate the energy and momentum
operator for the Dirac field. The free Dirac Lagrangian

L D c‰
�
i„�	@	 � mc

�
‰ (21.74)

yields the positive definite normal ordered Hamiltonian

H D
Z

d3x c‰.x; t/ .mc � i„� � r/‰.x; t/
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D
Z

d3k „!.k/
X

s2f#;"g

	
bC

s .k/bs.k/C dC
s .k/ds.k/



; (21.75)

but only if we assume anti-commutation properties of the ds and dC
s operators.

The normal ordered momentum operator is then

P D
Z

d3x‰C.x; t/
„
i
r‰.x; t/

D
Z

d3k „k
X

s2f#;"g

	
bC

s .k/bs.k/C dC
s .k/ds.k/



: (21.76)

The electromagnetic current density (21.40) yields the charge operator

Q D q
Z

d3x‰C.x; t/‰.x; t/

D q
Z

d3k
X

s2f#;"g

	
bC

s .k/bs.k/ � dC
s .k/ds.k/



: (21.77)

The normalization in equation (21.51) has been chosen such that the quantization
condition

f‰˛.x; t/; ‰ˇC.x0; t/g D ı˛ˇı.x � x0/

for the components of ‰.x/ yields

fb.k; s/; bC.k0; s0/g D ıss0ı.k � k0/; fd.k; s/; dC.k0; s0/g D ıss0ı.k � k0/;

with the other anti-commutators vanishing. The equations (21.75–21.77) then imply
that the operator bC.k; s/ creates a fermion of mass m, momentum „k and charge q,
while dC.k; s/ creates a particle with the same mass and momentum, but opposite
charge �q.

For an explanation of the spin labels of the spinors u.k;˙ 1
2
/, we notice that the

spin operators corresponding to the rotation generators

Mi D � iLi D 1

2
�ijkMjk

are both in the Dirac and in the Weyl representation given by

Si D „
2
�ijkSjk D i„

4
�ijk�j�k D „

2

�
� i 0

0 � i

�
; (21.78)
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see Appendix H for an explanation of generators of Lorentz boosts and rotations for
Dirac spinors.

Equation (21.78) implies that the rest frame spinors u.0;˙ 1
2
/ transform under

rotations around the z axis as spinors with z-component of spin „s D ˙„=2.
For an explanation of the spin labels of the spinors v.p;˙ 1

2
/, we have to look at

charge conjugation. Both in the Dirac and the Weyl representation of � matrices we
have

�

	 D �2�	�2:

Therefore complex conjugation of the Dirac equation

Œi�	@	 C q�	A	.x/ � m�‰.x/ D 0;

followed by multiplication with i�2 from the left yields

Œi�	@	 � q�	A	.x/ � m�‰c.x/ D 0

with the charge conjugate field

‰c.x/ D i�2‰

.x/: (21.79)

In particular, we have

vc.k; 12 / D i�2v

.k; 12 / D u.k; 12 /

and

vc.k;� 1
2 / D i�2v


.k;� 1
2 / D �u.k;� 1

2 /;

i.e. the negative energy spinors for charge q, momentum „k and spin projection
„s correspond to positive energy spinors for charge �q, momentum „k and spin
projection „s.

21.4 The energy-momentum tensor for quantum
electrodynamics

We use the symmetrized form of the QED Lagrangian (21.39),

L D c‰

�
�	
�

i„
2

$
@	C qA	

�
� mc

�
‰ � 1

4	0
F	�F

	�: (21.80)

This yields according to (16.16) a conserved energy-momentum tensor
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‚	
� D �	

�L � @	‰ @L
@.@�‰/

� @	‰ @L
@.@�‰/

� @	A�
@L

@.@�A�/

D �	
�

�
c‰

�
��
�

i„
2

$
@�C qA�

�
� mc

�
‰ � 1

4	0
F�F�

�

� i„
2

c‰��
$
@	 ‰ C 1

	0
@	A�F��:

According to the results of Section 16.2, this yields on-shell conserved charges,
i.e. we can use the equations of motion to simplify this expression. The Dirac
equation then implies

‚	
� D � i„

2
c‰��

$
@	 ‰ C 1

	0
@	A�F�� � 1

4	0
�	

�F�F�:

We can also add the identically conserved improvement term

� 1

	0
@�
�
A	F��

� D � 1

	0
@�A	F�� � 1

	0
A	@�F��

D � 1

	0
@�A	F�� � qcA	‰�

�‰;

where Maxwell’s equations @	F	� D �	0qc‰��‰ have been used. This yields the
gauge invariant tensor

t	
� D ‚	

� � 1

	0
@�
�
A	F��

�

D � i„
2

c‰��
$
@	 ‰ � qc‰��A	‰ C 1

	0
F	�F�� � �	� 1

4	0
F�F�: (21.81)

However, we can go one step further and replace t	� with a symmetric energy-
momentum tensor. The divergence of the spinor term in t	� is

@�

�
i„
2
‰��

$
@	 ‰ C q‰��A	‰

�
D � q‰F	��

�‰; (21.82)

where again the Dirac equation was used.
The symmetrization of t	� also involves the commutators of � matrices,

S	� D i

4
Œ�	; ��� D �0 � SC

	� � �0: (21.83)

Since we can write a product always as a sum of an anti-commutator and a
commutator, we have

�	 � �� D � �	� � 2iS	�; (21.84)
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and the commutators also satisfy6

�	˛�ˇ � �	ˇ�˛ C iŒS˛ˇ; �	� D 0: (21.85)

Equations (21.83–21.85) together with

„2@2‰ D i„�	@	 .mc‰ � q��A�‰/

D i„q
	
@	 .A

	‰/C 2iS	�@	 .A�‰/

C mc Œmc‰ � q��A�‰�

imply also

@�

�
i„
2
‰�	

$
@� ‰ C q‰�	A�‰

�
D � q‰F	��

�‰: (21.86)

Therefore the local conservation law @�T	� D 0 also holds for the symmetrized
energy-momentum tensor

T	
� D � c

2
‰

�
i„
2
��

$
@	C i„

2
�	

$
@� C q��A	 C q�	A�

�
‰

C 1

	0
F	�F�� � �	� 1

4	0
F�F�: (21.87)

This yields in particular the Hamiltonian density

H D � T0
0 D c‰C

�
i„
2

$
@0C qA0

�
‰ C �0

2
E2 C 1

2	0
B2

D c‰

�
mc � i„

2
� � $r � q� � A

�
‰ C �0

2
E2 C 1

2	0
B2; (21.88)

and the momentum density with components Pi D Ti
0=c,

P D 1

2
‰C

� „
2i

$r � qA
�
‰ C 1

2
‰�

�
i„
2

$
@0C qA0

�
‰ C �0E � B: (21.89)

Elimination of the time derivatives using the Dirac equation yields

P D ‰C
� „
2i

$r � qA
�
‰ C �0E � B C 1

2
r � .‰C � S �‰/: (21.90)

6The commutators S	� provide the spinor representation of the generators of Lorentz trans-
formations. Furthermore, equation (21.85) is the invariance of the � matrices under Lorentz
transformations, see Appendix H.
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The spin contribution PS D r � .‰C � S �‰/=2 with the vector of 4 � 4 spin
matrices S D i„���=4 (21.78) appears here as an additional contribution compared
to the orbital momentum density PO D P � PS that follows directly from the
tensor (21.81). The spin term in the momentum density (21.90) generates the spin
contribution in the total angular momentum density J D x � P D M C S from
S D x � PS ! ‰C � S �‰ if the symmetric energy-momentum tensor is used in
the calculation of angular momentum. This is explained in Problem 21.16c, see in
particular equations (21.147–21.150).

Energy and momentum in QED in Coulomb gauge

In materials science it is convenient to explicitly disentangle the contributions from
Coulomb and photon terms in Coulomb gauge r � A D 0. We split the electric field
components in Coulomb gauge according to

Ek D � rˆ; E? D � @A
@t
: (21.91)

The equation for the electrostatic potential decouples from the vector potential in
Coulomb gauge,

�ˆ D � q

�0
‰C‰;

and is solved by

ˆ.x; t/ D q

4��0

Z
d3x0 1

jx � x0j‰
C.x0; t/‰.x0; t/:

Furthermore, the two components (21.91) of the electric field are orthogonal in
Coulomb gauge,

Z
d3x Ek.x; t/ � E?.x; t/ D

Z
d3k Ek.k; t/ � E?.�k; t/

D �
Z

d3xˆ.x; t/
@

@t
r � A.x; t/ D 0; (21.92)

and the contribution from Ek to the Hamiltonian is

HC D �0

2

Z
d3x E2k.x; t/ D ��0

2

Z
d3xˆ.x; t/�ˆ.x; t/

D 1

2

Z
d3xˆ.x; t/%.x; t/
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D q2
X
ss0

Z
d3x

Z
d3x0 ‰

C
s .x; t/‰

C
s0 .x0; t/‰s0.x0; t/‰s.x; t/

8��0jx � x0j ; (21.93)

where the summation is over 4-spinor indices. The presentation of the ordering of
the field operators was conventionally chosen as the correct ordering in the non-
relativistic limit, cf. (18.65), but (21.93) must actually be normal ordered such that
the particle and anti-particle creation operators bC

s .k/ and dC
s .k/ appear leftmost

in the Coulomb term in the forms bCdCdb, dCdCdd, etc. Substituting the mode
expansions ‰  b C dC and normal ordering therefore leads to the attractive
Coulomb terms between particles and their anti-particles.

The resulting Hamiltonian in Coulomb gauge therefore has the form

H D
Z

d3x
�

c‰.x; t/ Œmc � � � .i„r C qA.x; t//� ‰.x; t/

C �0

2
E2?.x; t/C 1

2	0
B2.x; t/

�

C q2
X
ss0

Z
d3x

Z
d3x0 ‰

C
s .x; t/‰

C
s0 .x0; t/‰s0.x0; t/‰s.x; t/

8��0jx � x0j : (21.94)

This Hamiltonian yields the corresponding Dirac equation in the Heisenberg form

i„ @
@t
‰.x; t/ D Œ‰.x; t/;H�

if canonical anti-commutation relations are used for the spinor field. The Coulomb
gauge wave equation (18.10) with the relativistic current density j (21.40) follows
in the form

i„ @
@t

A.x; t/ D ŒA.x; t/;H�;
@2

@t2
A.x; t/ D 1

„2 ŒH; ŒA.x; t/;H��: (21.95)

if the commutation relations (18.36, 18.39) are used. This confirms the canonical
relations between Heisenberg, Schrödinger and Dirac pictures, and the consistency
of Coulomb gauge quantization with the transverse ı function (18.27) also in
the fully relativistic theory. It also implies appearance of the Dirac picture time
evolution operator in the scattering matrix in the now familiar form.

The momentum operator in Coulomb gauge follows from (21.90) and

Z
d3x �0Ek � B D �

Z
d3x �0ˆ�A D

Z
d3x %A D q

Z
d3x‰CA‰

as

P D
Z

d3x
�
‰C „

i
r‰ C �0E? � B

�
; (21.96)

where boundary terms at infinity were discarded.
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21.5 The non-relativistic limit of the Dirac equation

The Dirac basis (21.36) for the � -matrices is convenient for the non-relativistic limit.
Splitting off the time dependence due to the rest mass term

‰.x; t/ D ‡.x; t/ exp

�
�i

mc2

„ t

�
D
�
 .x; t/
�.x; t/

�
exp

�
�i

mc2

„ t

�
(21.97)

in the Dirac equation (21.38) yields the equations

.i„@t � qˆ/ C c� � .i„r C qA/� D 0; (21.98)

.i„@t � qˆC 2mc2/� C c� � .i„r C qA/ D 0: (21.99)

This yields in the non-relativistic regime

� ' � 1

2mc
� � .i„r C qA/ (21.100)

and substitution into the equation for  yields Pauli’s equation7

i„@t D � 1

2m
.„r � iqA/2 � q„

2m
� � B C qˆ : (21.101)

The spin matrices for spin-1/2 Schrödinger fields are the upper block matrices in the
spin matrices (21.78) for the full Dirac fields, S D „�=2, see also Section 8.1 and
in particular equation (8.12).

If the external magnetic field B is approximately constant over the extension of
the wave function  .x; t/ we can use

A.x; t/ D 1

2
B.t/ � x:

Substitution of the vector potential in equation (21.101) then yields the following
linear terms in B in the Hamiltonian on the right hand side,

i
q„
2m
.B � x/ � r � q

m
B � S D � q

2m
B � .M C 2S/

D � q

e

	B

„ B � .M C 2S/ : (21.102)

7W. Pauli, Z. Phys. 43, 601 (1927). Pauli actually only studied the time-independent Schrödinger
equation with the Pauli term in the Hamiltonian, and although he mentions Schrödinger in the
beginning, he seems to be more comfortable with Heisenberg’s matrix mechanics in the paper.
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Here 	B D e„=2m is the Bohr magneton, and we used the short hand notation
�i„x � r ! M for the x representation of the angular momentum operator. Recall
that this operator is actually given by

M D x � p D � i„
Z

d3x jxix � rhxj:

Equation (21.102) shows that the Dirac equation explains the double strength
magnetic coupling of spin as compared to orbital angular momentum (often denoted
as the magneto-mechanical anomaly of the electron or the anomalous magnetic
moment of the electron). The corresponding electromagnetic currents in the non-
relativistic regime are

% D q C ;

j D cq
�
 C�� C �C� 

�

D � q

2m

�
 C� ˝ � � .i„r C qA/ � .i„r C � q CA/ � � ˝ � 

�
;

where � ˝ � is the three-dimensional tensor with the .2 � 2/-matrix entries � i � � j
(we can think of it as a .3 � 3/-matrix containing .2 � 2/-matrices as entries).
Substitution of

� ˝ � D 1C iei ˝ ej"ijk� k

yields

j D q

2im

�
 C � „r � „r C � � 2iq CA 

�C js; (21.103)

with a spin term

js D q„
2m

r � � C� 
�
:

However, this term does not accumulate or diminish charges in any volume,
r � js D 0, and can therefore be neglected in the calculation of electric currents.

The non-relativistic approximations for the Lagrange density L, the energy
density H and the momentum density P are

L D i„
2

�
 C � @

@t
 � @

@t
 C � 

�
� q Cˆ C q„

2m
 C� � B 

C 1

2m
.i„r C � q CA/ � .i„r C qA / � 1

4	0
F	�F

	�; (21.104)

H D 1

2m
.„r C C iq CA/ � .„r � iqA / � q„

2m
 C� � B 

C �0

2
E2 C 1

2	0
B2; (21.105)
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P D „
2i

�
 C � r � r C � � � q CA C �0E � B: (21.106)

The Hamiltonian and momentum operators in Coulomb gauge are

H D
Z

d3x
�

� 1

2m
 C.x; t/Œ„r � iqA.x; t/�2 .x; t/

C �0

2
E2?.x; t/C 1

2	0
B2.x; t/ � q„

2m
 C.x; t/� � B.x; t/ .x; t/

�

C q2
2X

ss0D1

Z
d3x

Z
d3x0  

C
s .x; t/ 

C
s0 .x0; t/ s0.x0; t/ s.x; t/

8��0jx � x0j : (21.107)

and (cf. equation (21.96))

P D
Z

d3x
�
 C „

i
r C �0E? � B

�
: (21.108)

It is interesting to note that if we write the current density (21.103) as

j D J C q„
2m

r � � C� 
� D J C q

e
	Br � � C� 

�

we can write Ampère’s law with Maxwell’s correction term as

r �
�

B � q

e
	0	B 

C� 
�

D r � Bclass D 	0J C 	0�0
@

@t
E;

i.e. the “spin density”

S.x; t/ D „
2
 C.x; t/� .x; t/

adds a spin magnetic field to the magnetic field Bclass which is generated by orbital
currents J and time-dependent electric fields E,

B.x; t/ D Bclass.x; t/C 2q

e„	0	BS.x; t/ D Bclass.x; t/C 	0
q

m
S.x; t/:

Higher order terms and spin-orbit coupling

We will discuss higher order terms in the framework of relativistic quantum
mechanics, i.e. our basic quantum operators are x and p etc., but not quantum fields.
This also entails a semi-classical approximation for the electromagnetic fields and
potentials.
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For the discussion of higher order terms, we write the Dirac equation in
Schrödinger form,

i„ d

dt
j‡.t/i D H.t/j‡.t/i;

with the Hamilton operator

H.t/ D .�0 � 1/mc2 C qˆ.x; t/C c ˛ � Œp � qA.x; t/�: (21.109)

The operator ˛ is

˛ D �0�; ˛i
ab D haj˛ijbi D �0ac�

i
cb;

and hx; aj‡.t/i D ‡a.x; t/ is the a-th component of the 4-spinor ‡ (21.97) in x
representation.

We continue to use the Dirac basis (21.36) of � matrices in this section, such that
as a matrix valued vector ˛ is given by

˛ D
�
0 �

� 0

�
:

The part of the Hamiltonian (21.109) which mixes the upper and lower compo-
nents of the 4-spinor ‡ is

K.t/ D c ˛ � Œp � qA.x; t/�:

Operators which mix upper and lower 2-spinors in 4-spinors are also denoted as odd
terms in the Hamiltonian.

We can remove the odd contribution K.t/ by using the anti-hermitian operator

T.t/ D �0

2mc2
K.t/ D 1

2mc
� � Œp � qA.x; t/�;

ŒT.t/; �0mc2� D �K.t/; (21.110)

which implies subtraction of K.t/ from the new transformed Hamiltonian
expŒT.t/�H.t/ expŒ�T.t/�. However, we also have to take into account that the
transformed state j‡T.t/i D expŒT.t/�j‡.t/i satisfies the equation

i„ d

dt
j‡T.t/i D expŒT.t/�H.t/ expŒ�T.t/�j‡.t/i

C i„d expŒT.t/�

dt
expŒ�T.t/�j‡.t/i:
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Therefore the transformed Hamiltonian is actually

HT.t/ D expŒT.t/�H.t/ expŒ�T.t/� � i„ expŒT.t/�
d

dt
expŒ�T.t/�

D
1X

nD0

1

nŠ

n
ŒT.t/;H.t/� � i„

1X
nD0

1

nŠ

n
ŒT.t/; d=dt�

D
1X

nD0

1

nŠ

n
ŒT.t/;H.t/�C i„

1X
nD1

1

nŠ

n�1
Œ T.t/; dT.t/=dt�

D
1X

nD0

1

nŠ

n
ŒT.t/;H.t/� � iq„

2mc

1X
nD1

1

nŠ

n�1
Œ T.t/;� � PA.t/�:

We also wish to expand the Hamiltonian up to terms of order .E=mc2/3, where
E contains contributions from the kinetic energy of the particle and from its
interactions with the electromagnetic fields.

Equation (21.110) implies

HT.t/ D .�0 � 1/mc2 C qˆ.t/C mc2
4X

nD2

1

nŠ

n
ŒT.t/; �0�

C
3X

nD1

1

nŠ

n
ŒT.t/; qˆ.t/C K.t/� � iq„

2mc
� � PA.t/

� iq„
2mc

2X
nD1

1

.n C 1/Š

n
ŒT.t/;� � PA.t/�C O

� E
mc2

�4
:

The relevant commutators are

ŒT.t/; qˆ.t/� � iq„
2mc

� � PA.t/ D iq„
2mc

� � E.x; t/;

2

ŒT.t/; qˆ.t/� � iq„
2mc

ŒT.t/;� � PA.t/� D iq„
2mc

ŒT.t/;� � E.t/�

D � q„2
4m2c2

r � E.x; t/ � i
q„2
4m2c2

�r � E.x; t/
� �
�

� 0

0 �

�

� q„
2m2c2

�
E.x; t/ � Œp � qA.x; t/�

� �
�

� 0

0 �

�
;

ŒT.t/;K.t/� D �0

mc2
K2.t/ D �0

m
Œp � qA.x; t/�2 � q„

m
B.x; t/ �

�
� 0

0 ��

�
;
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2

ŒT.t/;K.t/� D � 1

m2c4
K3.t/;

3

ŒT.t/;K.t/� D � �0

m3c6
K4.t/:

and

mc2
2

ŒT.t/; �0� D ŒK.t/;T.t/� D � �0

mc2
K2.t/;

mc2
3

ŒT.t/; �0� D 1

m2c4
K3.t/; mc2

4

ŒT.t/; �0� D �0

m3c6
K4.t/:

We don’t need to evaluate the final higher order commutator

C.3/
odd.t/ D

3

ŒT.t/; qˆ.t/� � iq„
2mc

2

ŒT.t/;� � PA.t/�;

because this is an odd term of order .E=mc2/3, which is eliminated in the next step
through a unitary transformation, to which it contributes in order .E=mc2/4. We
only need to observe that C.3/

odd.t/ contains one term proportional to � , and other
terms proportional to

� i �
�
� j 0

0 � j

�
D ıij

�
0 1

�1 0

�
C i�ijk�k;

such that f�0;C.3/
odd.t/g D 0. This will become relevant for the elimination of C.3/

odd.t/
in the next step.

However, for now our transformed Hamiltonian is

HT.t/ D .�0 � 1/mc2 C qˆ.t/C �0

2mc2
K2.t/ � �0

8m3c6
K4.t/

� q„2
8m2c2

r � E.t/ � i
q„2
8m2c2

�r � E.t/
� �
�

� 0

0 �

�

� q„
4m2c2

�
E.t/ � Œp � qA.x; t/�

� �
�

� 0

0 �

�

C iq„
2mc

� � E.t/ � 1

3m2c4
K3.t/C 1

6
C.3/

odd.t/C O
� E

mc2

�4
:

The last line contains three odd contributions

L.t/ D iq„
2mc

� � E.t/ � 1

3m2c4
K3.t/C 1

6
C.3/

odd.t/;
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which we can eliminate exactly as in the previous step by using a unitary
transformation j‡WT.t/i D expŒW.t/�j‡T.t/i with

W.t/ D �0

2mc2
L.t/ D iq„

4m2c3
˛ � E.t/ � �0

6m3c6
K3.t/C O

� E
mc2

�4
:

This yields a new Hamiltonian

HWT.t/ D expŒW.t/�HT.t/ expŒ�W.t/� � i„ expŒW.t/�
d

dt
expŒ�W.t/�

D
1X

nD0

1

nŠ

n
ŒW.t/;HT.t/�C i„

1X
nD1

1

nŠ

n�1
Œ W.t/; dW.t/=dt�;

which is in the required order

HWT.t/ D .�0 � 1/mc2 C qˆ.t/C �0

2mc2
K2.t/ � �0

8m3c6
K4.t/

� q„2
8m2c2

r � E.t/ � i
q„2
8m2c2

�r � E.t/
� �
�

� 0

0 �

�

� q„
4m2c2

�
E.t/ � Œp � qA.x; t/�

� �
�

� 0

0 �

�

� q�0

6m3c6
ŒK3.t/; ˆ.t/�C iq„

8m3c5
Œ˛ � E.t/; �0K2.t/�

C i„dW.t/

dt
C O

� E
mc2

�4
:

This contains again an odd piece

M.t/ D i„dW.t/

dt
� q�0

6m3c6
ŒK3.t/; ˆ.t/�C iq„

8m3c5
Œ˛ � E.t/; �0K2.t/�

which is eliminated by another unitary transformation of the form j‡FWT.t/i D
expŒF.t/�j‡WT.t/i with

F.t/ D �0

2mc2
M.t/ D � q„2

8m3c5
� � PE.t/C O

� E
mc2

�4
:

The resulting Hamiltonian after this transformation still contains an odd piece

N.t/ D � i
q„3
8m3c5

� � RE.t/
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which is eliminated in a final transformation

G.t/ D �0

2mc2
N.t/ D O

� E
mc2

�4
:

Therefore up to terms of order O.E=mc2/4, we finally find an equation which is
diagonal in upper and lower 2-spinors

j‡FWT.t/i D expŒF.t/� expŒW.t/� expŒT.t/�j‡.t/i; (21.111)

i„ d

dt
j‡FWT.t/i D HFWT.t/j‡FWT.t/i (21.112)

with

HFWT.t/ D .�0 � 1/mc2 C qˆ.t/C �0

2mc2
K2.t/ � �0

8m3c6
K4.t/

� q„2
8m2c2

r � E.t/ � i
q„2
8m2c2

�r � E.t/
� �
�

� 0

0 �

�

� q„
4m2c2

�
E.t/ � Œp � qA.x; t/�

� �
�

� 0

0 �

�
: (21.113)

The transformation (21.111, 21.113) is known as a Foldy-Wouthuysen transfor-
mation8.

The Hamiltonian acting on the upper 2-spinor is

H.t/ D Œp � qA.x; t/�2

2m
C qˆ.x; t/ � q„

2m
B.x; t/ � � � q„2

8m2c2
r � E.x; t/

� q„
8m2c2

�
i„r � E.x; t/C 2E.x; t/ � Œp � qA.x; t/�

� � �

� 1

8m3c2
�
Œp � qA.x; t/�2 � q„B.x; t/ � � �2 : (21.114)

The first three terms are again the Pauli Hamiltonian from (21.101).
It is of interest to write some of the higher order terms in the Hamiltonian

(21.114) also in terms of the charge density %.x; t/ which generates the electro-
magnetic fields.

The term

� q„2
8m2c2

r � E.x; t/ D � q„2
8m2c2�0

%.x; t/ (21.115)

8L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29 (1950).
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amounts to a contact interaction between the particles described by equa-
tion (21.112) (e.g. electrons) and the particles which generate the electromagnetic
fields. This term is known as the Darwin term. The contact interaction has the
counter-intuitive property to lower the interaction energy between like charges, but
recall that it emerged from eliminating the anti-particle components up to terms of
order O.E=mc2/4. It should not surprise us that a positronic component in electron
wave functions contributes an attractive term to the electron-electron interaction.
The Hamiltonian (21.114) is in excellent agreement with spectroscopy if radiative
corrections are also taken into account, see e.g. [18].

The term

� i
q„2
8m2c2

�r � E.x; t/
� � � D i

q„
4m2c2

PB.x; t/ � S (21.116)

is apparently a coupling between spin S D „�=2 and induced potentials from time-
dependent charge-current distributions.

In the static case we can write the E.x/ � p term in (21.114) in the form

� q

2m2c2
�
E.x/ � p

� � S D � 	0q

8�m2

Z
d3x0 %.x0/

jx � x0j3M.x � x0;p/ � S:

Here

M.x � x0;p/ D .x � x0/ � p

is the orbital angular momentum operator with respect to the point x0, and the
E.x/ � p term apparently contains a charge weighted sum over angular momentum
operators. The E.x/ � p term is therefore the origin of spin-orbit coupling. In
particular, for a radially symmetric charge distribution

E.x/ D � x
r

dˆ.r/

dr

one finds

� q

2m2c2
�
E.x/ � p

� � S D q

2m2c2r

dˆ.r/

dr
M � S: (21.117)

This implies equation (8.20) for spin-orbit coupling in hydrogen atoms.
So far we have emphasized the emergence of M � S terms from the E.x/�p term,

and historically the coupling of spin and orbital angular momentum had provided
the initial motivation for the designation as spin-orbit coupling term. However, the
direct coupling of orbital momentum p and spin provides just as good a reason for
the name spin-orbit coupling, and another important special case of the E.x/ � p
term arises for a uni-directional electric field e.g. in z direction. In this case the term
takes the form

� q

2m2c2
�
E.x/ � p

� � S D � q

2m2c2
Ez.z/

�
pxSy � pySx

�
: (21.118)



21.6 Covariant quantization of the Maxwell field 529

For homogeneous electric field this yields a spin-orbit coupling term of the form
˛R.pxSy � pySx/ with constant ˛R. This particular form of a spin-orbit coupling term
is known as a Rashba term9. Spin-orbit coupling was always relevant not only for
atomic and molecular spectroscopy, but also for electronic energy band structure
in materials where they are often significantly enhanced e.g. due to low effective
masses. In recent years spin-orbit coupling terms in low-dimensional systems, and
Rashba terms in particular, have also attracted a lot of interest because of their
relevance for spintronics10.

21.6 Covariant quantization of the Maxwell field

We have seen in Section 18.2 how to quantize the Maxwell field and describe
photons in Coulomb gauge. This is useful if our problem contains non-relativistic
charged particles, since the Hamiltonian in Coulomb gauge conveniently describes
the electromagnetic interaction between the charged particles through Coulomb
terms. The free interaction picture photon operators A.x; t/ or the corresponding
Schrödinger picture operators A.x/ are then only needed for the calculation of
absorption, emission or scattering of external photons. Exchange of virtual pho-
tons provides only small corrections to Coulomb interactions for non-relativistic
charged particles. The relevant Hamiltonian is (21.107) with Schrödinger fields and
Coulomb terms for all the different kinds of charged particles.

Coulomb gauge can also be used for problems involving relativistic fermions.
These can be described by the Hamiltonian (21.94) including Dirac fields and
Coulomb interaction terms for all the different kinds of spin-1=2 particles in the
problem. Indeed, we will calculate basic scattering processes involving relativistic
charged particles in Sections 22.2 and 22.4 in Coulomb gauge, and the calculations
will explicitly show how the Coulomb interaction terms between charged particles
dominate over photon exchange terms if the kinetic energies of the charged particles
are small compared to their rest energies, see in particular equation (22.29).

However, if the problem indeed contains relativistic charged particles, then the
interaction of those particles with other charged particles is more conveniently
described through a covariant quantization of photons in Lorentz gauge,

@	A	.x/ D 0: (21.119)

9E.I. Rashba, Sov. Phys. Solid State 2, 1109 (1960); Yu.A. Bychkov, E.I. Rashba, JETP Lett. 39,
78 (1984); J. Phys. C 17, 6039 (1984).
10See e.g. J. Nitta, T. Akazaki, H. Takayanagi, T. Enoki, Phys. Rev. Lett. 78, 1335 (1997); D.
Grundler, Phys. Rev. Lett. 84, 6074 (2000); J. Sinova et al., Phys. Rev. Lett. 92, 126603 (2004);
E.Y. Sherman, D.J. Lockwood, Phys. Rev. B 72, 125340 (2005); K.C. Hall et al., Appl. Phys. Lett.
86, 202114 (2005); P. Pietiläinen, T. Chakraborty, Phys. Rev. B 73, 155315 (2006); E. Cappelluti,
C. Grimaldi, F. Marsiglio, Phys. Rev. Lett. 98, 167002 (2007).
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Suppose the potential A	.x/ does not satisfy the Lorentz gauge condition. We
can construct the Lorentz gauge vector potential A	.x/ by performing a gauge
transformation

A	.x/ D A	.x/C @	f .x/ (21.120)

with

f .x/ D
Z

d4x0 G.mD0/
d .x � x0/@0

	A	.x0/

D
Z

d3x0 1

4�jx � x0j@
0
	A	.x0/

ˇ̌
ˇ
ct0Dct�jx�x0j: (21.121)

Here

G.mD0/
d .x/ D 1

c
G.r;mD0/

d .x; t/ D 1

4�r
ı.r � ct/

is the retarded massless scalar Green’s function, cf. (J.37, J.60). This also helps us
to solve Maxwell’s equations in Lorentz gauge,

@	@
	A�.x/ D �	0j�.x/ (21.122)

in the form

A	.x/ D A	LW.x/C A	D.x/; (21.123)

where the Liénard-Wiechert potentials

A	LW.x/ D 	0

Z
d4x0 G.mD0/

d .x � x0/j	.x0/

D 	0

4�

Z
d3x0 1

jx � x0j j	
�
x0; ct � jx � x0j� (21.124)

solve the inhomogeneous Maxwell equations (21.122) and satisfy the Lorentz gauge
condition due to charge conservation. The remainder A	D.x/ must therefore satisfy

@	@
	A�D.x/ D 0; @	A	D.x/ D 0: (21.125)

To quantize this, we observe that Maxwell’s equations in Lorentz gauge follow
from the Lagrange density of electromagnetic fields (18.1) if we take into account
the Lorentz gauge condition,

L D A	j	 � 1

2	0
@�A	 � @�A	: (21.126)
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This yields canonically conjugate momentum fields for all components of the vector
potential,

…	 D @L
@ PA	 D �0 PA	:

The principles of canonical quantization and the Lorentz gauge condition then
motivate the following quantization condition for electromagnetic potentials in
Lorentz gauge (with k0 D jkj),

ŒA	.x/; PA�.x0/�tDt0 D i„
�0

Z
d3k

�
�	� � k	k�

k2 � i�

�
expŒik � .x � x0/�

.2�/3
:

The general solution of (21.125)

A	D.x/ D hx; 	jADi D
s

„	0c
.2�/3

�
Z

d3kp
2jkj

3X
˛D1

�	˛ .k/
�

a˛.k/ exp.ik � x/C aC̨.k/ exp.�ik � x/
�
; (21.127)

k � �˛.k/ D 0;

3X
˛D1

�	˛ .k/�
�
˛.k/ D �	� � k	k�

k2 � i�
;

satisfies the quantization condition if

Œa˛.k/; aC
ˇ .k

0/� D ı˛ˇı.k � k0/ (21.128)

and the other commutators vanish.
A possible choice for the polarization vectors �	˛ .k/ is e.g. to choose �	1 .k/ and

�
	
2 .k/ as spatial orthonormal vectors without time-like components and perpendic-

ular to k such that

2X
˛D1

�˛.k/˝ �˛.k/ D 1 � Ok ˝ Ok;

and choose

�3.k/ D .jkj; k0 Ok/p�k2 C i�
:

This formalism can be motivated as a limiting case of the quantization of massive
vector fields, and it has the advantage of faster and easier calculation of scattering
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amplitudes involving electromagnetic interactions of relativistic charged particles,
because there are no separate amplitudes for photon exchange and Coulomb
interactions, which need to be added to give the full scattering amplitude. The
spatially longitudinal photons generated by aC

3 .k/, k � �3.k/ D k0�03.k/ ¤ 0,
incorporate the contributions from the Coulomb interactions11. Why then don’t we
see photon states aC

3 .k/j0i? These photon states are actually spurious gauge degrees
of freedom. We could perform another gauge transformation

A	.x/ ! QA	.x/ D A	.x/C @	g.x/ (21.129)

with

g.x; t/ D
Z t

�1
dt0
�

cA0.x; t0/ �
Z

d3x0 %.x0; t0/
4��0jx � x0j

�

C
Z

d3x0 r 0 � A.x0;�1/

4�jx � x0j D
Z

d3x0 r 0 � A.x0; t/
4�jx � x0j ; (21.130)

which takes us right back to Coulomb gauge,

QA0.x/ D
Z

d3x0 %.x0; t/c
4��0jx � x0j ; r � QA.x/ D 0;

without any freely oscillating time-like component. Since aC
3 .k/j0i was the only

photon state with a time-like component, (21.129) has removed that photon state.
We can think of the photons with longitudinal spatial components and corresponding
time-like components as virtual place holders for the Coulomb interaction.

21.7 Problems

21.1. Show that for an appropriate class of integration contours C in the complex
k0 plane the scalar propagator (21.9) can be written in the form

K.x/ D � 1

.2�/4c

I
C

dk0
Z

d3k
exp.ik � x/

k2 C .mc=„/2 :

11Of course, this implies that one cannot naively invoke Hamiltonians with Coulomb interaction
terms if we describe photons in Lorentz gauge. Otherwise we would overcount interactions.
Remember that the Coulomb interaction terms came from the contributions to Hamiltonians from
electromagnetic fields in Coulomb gauge, see Section 21.4.
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21.2. We have discussed the non-relativistic limit of the Klein-Gordon field in the
case jhbC.k/ij 
 jha.k/ij. However, there must also exist a non-relativistic limit for
the anti-particles. How does the non-relativistic limit work in the case of negligible
particle amplitude jha.k/ij 
 jhbC.k/ij?

21.3. Derive the energy density H and the momentum density P for the real Klein-
Gordon field.

21.4. Calculate the non-relativistic limits for the Hamilton operator H and the
momentum operator P of the real Klein-Gordon field.

21.5. Derive the energy-momentum tensor for QED with scalar matter (21.2),

T�
	 D � ��	„c2

�
@��

C C i
q

„�
CA�

� �
@�� � i

q

„A��
�

� ��	m2c4

„ �C�

� ��	 1

4	0
F��F�� C „c2

�
@��

C C i
q

„�
CA�

� �
@	� � i

q

„A	�
�

C „c2
�
@	�C C i

q

„�
CA	

� �
@�� � i

q

„A��
�

C 1

	0
F��F

	�: (21.131)

The corresponding densities of energy, momentum, and energy current are

H D T00 D �0

2
E2 C 1

2	0
B2 C m2c4

„ �C� C „
� P�C � i

q

„�
Cˆ

� � P� C i
q

„ˆ�
�

C „c2
�
r�C C i

q

„�
CA
�

�
�
r� � i

q

„A�
�
; (21.132)

P D 1

c
eiT

i0 D �0E � B � „
� P�C � i

q

„�
Cˆ

� �
r� � i

q

„A�
�

� „
�
r�C C i

q

„�
CA
� � P� C i

q

„ˆ�
�
; (21.133)

S D ceiT
0i D c2P :

Solution. The Lagrange density for quantum electrodynamics with scalar matter is

L D � „c2
�
@�C C i

q

„�
CA
�

�
�
@� � i

q

„A�
�

� m2c4

„ �C �� � 1

4	0
F	�F

	�:

This yields according to (16.16) a conserved energy-momentum tensor

‚	
� D �	

�L � @	�C @L
@.@��C/

� @	� @L
@.@��/

� @	A�
@L

@.@�A�/
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D �	
�L C „c2@	�

C �@�� � i
q

„A��
�

C „c2
�
@��C C i

q

„�
CA�

�
@	�

C 1

	0
@	A�F��:

To find a gauge invariant energy-momentum tensor we add the identically
conserved improvement term

� 1

	0
@�
�
A	F��

� D � 1

	0
@�A	F�� � 1

	0
A	@�F��

D � 1

	0
@�A	F�� C iqc2

�
�CA	 � @�� � @��C � A	�

�C 2
q2c2

„ �CA	A��;

where Maxwell’s equations

@	F	� D �	0 @L
@A�

D i
q

�0

�
�C � @�� � @��C ���C 2

q2

�0„�
CA��

were used. This yields the gauge invariant tensor (21.131) from

T	
� D ‚	

� � 1

	0
@�
�
A	F��

�
:

21.6. If we write the solution (21.5) of the free Klein-Gordon equation as the sum
of the positive and negative energy components,

�.x/ D �C.x/C ��.x/;

�C.x/ D 1p
2�

3

Z
d3kp
2!k

a.k/ expŒi.k � x � !kt/� ;

��.x/ D 1p
2�

3

Z
d3kp
2!k

bC.k/ expŒ�i.k � x � !kt/� ;

the charge densities %˙ D �iq. P�C
˙ ��˙ � �C

˙ � P�˙/ are separately conserved, and
therefore we can also identify conserved particle and anti-particle numbers

N˙ D ˙Q˙
q

D ˙1

q

Z
d3x %˙.x; t/:

21.6a. Show that the conserved current density for QED with scalar matter (21.2) is

j	 D iqc2
�
@	�

C �� � �C � @	� C 2i
q

„�
C � A	 ��

�
:
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21.6b. Why is it not possible to derive separately conserved (anti-)particle numbers
N˙ for the scalar particles in the interacting theory (21.2)?

21.7. Show that contrary to the case of spinor electrodynamics, it is not possible
in relativistic scalar electrodynamics to derive a Coulomb gauge Hamiltonian
(although Coulomb gauge can still be imposed on the Maxwell field, of course).

Why can we nevertheless find a Coulomb gauge Hamiltonian in the non-
relativistic limit for the scalar fields?

Hint: The Gauss law of scalar electrodynamics in Coulomb gauge takes the form

�ˆ D � i
q

�0

�
�C � @t� � @t�

C �� C 2i
q

„�
Cˆ�

�
:

21.8. Show that the junction conditions (21.28) are necessary and sufficient to
ensure that the Klein-Gordon equation holds at the step of the potential.

21.9. Generalize the reasoning from Section 21.2 to the case of oblique incidence
against the potential step, e.g. by considering a scalar boson running against the
potential (21.21) with initial momentum components „kx > 0 and „ky > 0.

Remarks on the Solution. The ansatz for the Klein-Gordon wave function which
complies with the boundary conditions on the incoming particle and the requirement
of smoothness for all times t and values of y along the interface x D 0 is

�.x; y; t/ D
�
Œexp.ikxx/C ˇ exp.�ikxx/� expŒi.kyy � !t/�; x < 0;
� expŒi.xx C kyy � !t/�; x > 0:

The frequency follows again from the solution of the Klein-Gordon equation in the
two domains,

! D c

r
k2x C k2y C m2c2

„2 D V

„ ˙ c

r
2x C k2y C m2c2

„2 : (21.134)

All other pertinent results follow also exactly as in Section 21.2 if we make the

substitutions k ! kx,  ! x and mc !
q

m2c2 C „2k2y . This applies in particular

also to Table 21.1 and Figure 21.1. In particular, we have generation of pairs of
particles and anti-particles in the energy range

c
q

„2k2y C m2c2 < „! D c
q

„2k2x C „2k2y C m2c2 < V � c
q

„2k2y C m2c2

if the height of the potential step satisfies

V > 2c
q

„2k2y C m2c2:
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The wave number x in this energy range is

x D � 1

„

s
.„! � V/2

c2
� m2c2 � „2k2y ;

and writing the solution for x > 0 as

�.x; y; t/ D � expŒ�i.�xx � kyy C !t/�; x > 0;

shows that it is an anti-particle solution with energy Ep D �„! and momentum
components �„x > 0, �„ky < 0. The kinetic+rest energy of the generated anti-
particles in the region x > 0 is

Kp D c
q

„22x C „2k2y C m2c2 D V � „!; (21.135)

and the energy of the anti-particles is just the sum of their kinetic+rest energy and
their potential energy, Ep D Kp � V .

21.10. Calculate the boson number operator

Nb D
Z

d3k
�
aC.k/a.k/C bC.k/b.k/

�

for the free Klein-Gordon field in x representation.

21.11. Show that scattering of a Klein-Gordon field off a hard sphere yields
the same result (11.36) as the non-relativistic Schrödinger theory, except that the
definition k D p

2mE=„ (where E is the kinetic energy of the scattered particle) is
replaced by

k D 1

„c

p
„2!2 � m2c4:

The hard sphere is taken into account through a boundary condition of vanish-
ing Klein-Gordon field on the surface of the sphere, like the condition on the
Schrödinger wave function in Section 11.3, i.e. we do not model it as a potential. We
could think of the hard sphere in this case as arising from a hypothetical interaction
which repels particles and anti-particles alike (just like gravity is equally attractive
for particles and anti-particles).

21.12. You could also model an impenetrable wall for a Klein-Gordon field in the
manner of the hard sphere of Problem 11. Which wave function for the Klein-
Gordon field do you get if the impenetrable wall prevents the field from entering
the region x > 0? Why does this result not contradict the Klein paradox?
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21.13. Calculate the fermion number operator

Nf D
Z

d3k
X

s2f#;"g

	
bC

s .k/bs.k/C dC
s .k/ds.k/




for the free Dirac field in x representation.

21.14. Calculate the reflection and transmission coefficients for a Dirac field of
charge q in the presence of a potential step qˆ.x/ D V.x/ D V‚.x/. How do your
results compare with the results for the Klein-Gordon field in Section 21.2?

21.15a. What are the non-relativistic limits of the spinor plane waves (21.72)?

21.15b. Verify the relations (21.73) for the relativistic spinor plane wave states.

21.16. Angular momentum in relativistic field theory

21.16a. Show that if T	� is a symmetric conserved energy momentum tensor, then
the currents

M˛ˇ
	 D 1

c

�
x˛Tˇ

	 � xˇT˛
	
�

(21.136)

are also conserved:

@	M˛ˇ
	 D 0: (21.137)

21.16b. The quantities M˛ˇ
	 have the properties M˛ˇ

0 D x˛Pˇ � xˇP˛ and are
therefore associated with angular momentum conservation and conservation of the
center of energy motion (18.128, 18.129) in relativistic field theories. Show that
invariance of the relativistic field theory

L D � „c2
�
@	�

C C i
Q

„ �
CA	

�
�
�
@	� � i

Q

„ A	�

�
� m2c4

„ �C ��

C c‰

�
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i„
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$
@	C qA	

�
� mc

�
‰ � 1

4	0
F	�F

	�: (21.138)

under rotations and Lorentz boosts

�	 D � ıx	 D �'	�x�; '	� D �'�	; (21.139)

ı�.x/ � �0.x0/ � �.x/ D 0; ıA	.x/ D '	�A�.x/; (21.140)

ı‰.x/ D i

2
'˛ˇS˛ˇ �‰.x/; ı‰.x/ D � i

2
'˛ˇ ‰.x/ � S˛ˇ; (21.141)
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yields the conservations laws (21.137) from the results of Section 16.2 if proper
improvement terms are added. The Lorentz generators S˛ˇ in the spinor representa-
tion are defined in equation (H.12).

21.16c. We have seen in the previous problem that invariance of the relativistic
theory (21.138) under the rotations ıxi D ' ijxj D �ijkxj'k yields densities of con-
served charges Mij

0 which we can express in vector form through Mij
0 D �ijkJk,

Ji D �ijkMjk
0=2, i.e. J D x �P . On the other hand, we have seen in Problem 16.6

that the total angular momentum density J of non-relativistic fermions contains a
spin term which is not proportional to any space-time coordinates x˛ , and yet we
have also seen in Problem 16.7 that only the combination of both terms in (16.26)
yields the density of a conserved quantity in the presence of spin-orbit coupling.
How can that be?

Replace time derivatives on spinor fields in the momentum density using the
Dirac equation. This yields spin contributions to the momentum density. Show
that partial integration of the resulting spin contributions to the angular momentum
density yields spin terms which reduce to the spin term in equation (16.26) in the
non-relativistic limit.

Solution for 16b. The electric current density for the Lagrange density (21.138) is

j	q D @L
@A	

D � iQc2�C
�$
@	� 2i

Q

„ A	
�
� C qc‰�	‰: (21.142)

Addition of the identically conserved improvement term

� 1

	0
@�
�
x˛AˇF	�

� D � 1

	0
AˇF	˛ � 1

	0
x˛@�Aˇ � F	� � x˛Aˇj	q

to the conserved current (16.13) for the transformation (21.139–21.141) yields the
gauge invariant conserved current

j	 D �'	�x�L C '˛ˇx˛

�
„c2

�
@	�C C i

Q

„ �
CA	

��
@ˇ� � i

Q

„ Aˇ�

�

C „c2
�
@ˇ�

C C i
Q

„ �
CAˇ

��
@	� � i

Q

„ A	�

�

� i
„c

2
‰�	

�$
@ˇ� 2i

q

„Aˇ

�
‰ C 1

	0
Fˇ�F

	�

�

C'˛ˇ
„c

4
‰
�
�	S˛ˇ C S˛ˇ�

	
�
‰: (21.143)
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The divergence of the spinor contributions to this current density is

@	j	‰ D '˛ˇ
„c

4
@	
	
‰
�
�	S˛ˇ C S˛ˇ�

	
�
‰

 � c

2
'˛ˇ‰�˛

�
i„

$
@ˇC 2qAˇ

�
‰

� c

2
'˛ˇx˛@	

�
‰�	

�
i„

$
@ˇC 2qAˇ

�
‰

�
: (21.144)

The relation (21.85) implies that on-shell

'˛ˇ
„c

4
@	
	
‰
�
�	S˛ˇ C S˛ˇ�

	
�
‰

 � c

2
'˛ˇ‰�˛

�
i„

$
@ˇC 2qAˇ

�
‰ D 0;

and comparison of (21.82) and (21.86) implies that we can write the remaining part
of @	j	‰ in the form

@	j	‰ D � c

4
'˛ˇx˛@	

�
‰�	

�
i„

$
@ˇC 2qAˇ

�
‰C‰�ˇ

�
i„

$
@	C 2qA	

�
‰

�

D � c

4
'˛ˇ@	

�
x˛‰�

	

�
i„

$
@ˇC 2qAˇ

�
‰ C x˛‰�ˇ

�
i„

$
@	C 2qA	

�
‰

�
:

The conserved current (21.144) is therefore equivalent to the conserved current

j	 D 1

2
'˛ˇ

�
x˛Tˇ

	 � xˇT˛
	
� D c

2
'˛ˇM˛ˇ

	; (21.145)

with the symmetric stress-energy tensor for the Lagrange density (21.138) (cf.
(21.87, 21.131))

T	
� D �	

�L� c

2
‰

�
i„
2
��

$
@	C i„

2
�	

$
@� C q��A	 C q�	A�

�
‰C 1

	0
F	�F��

C „c2
�
@	�

C C i
Q

„ �
CA	

��
@�� � i

Q

„ A��

�

C „c2
�
@��C C i

Q

„ �
CA�

��
@	� � i

Q

„ A	�

�
: (21.146)

Solution for 16c. We discuss the angular momentum densities in vector form,
Ji D �ijkMjk

0=2 D �ijkxjPk, with the momentum densities Pk D Tk
0=c (cf.

(21.89, 21.133)),

P D 1

2
‰C

� „
2i

$r � qA
�
‰ C 1

2
‰�

�
i„
2

$
@0� q

c
ˆ

�
‰ C �0E � B

� „
�

P�C � i
Q

„ �
Cˆ

��
r� � i

Q

„ A�
�

� „
�

r�C C i
Q

„ �
CA
��

P� C i
Q

„ˆ�
�
: (21.147)
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The � matrices satisfy

�i � �j D � ıij

�
1 0

0 1

�
C 1

2
�ijk�kmn�m � �n D � ıij

�
1 0

0 1

�
C 2

i„�ijkSk

with the vector of 4�4 spin matrices S D i„� ��=4, cf. (21.78). The Dirac equation
then implies

‰�

�
i„
2

$
@0� q

c
ˆ

�
‰ D ‰C

� „
2i

$r � qA
�
‰ C r � .‰C � S �‰/;

and we can write the momentum density in the form

P D ‰C
� „
2i

$r � qA
�
‰ C 1

2
r � .‰C � S �‰/C �0E � B

� „
�

P�C � i
Q

„ �
Cˆ

��
r� � i

Q

„ A�
�

� „
�

r�C C i
Q

„ �
CA
��

P� C i
Q

„ˆ�
�
: (21.148)

The spin term PS D r �.‰C � S �‰/=2 in the momentum density contributes a term
to the angular momentum of the form

JS D
Z

d3x x � 1

2
Œr � .‰C � S �‰/� D

Z
d3x‰C � S �‰; (21.149)

such that we can write the total angular momentum density also in the form

J D M C S; (21.150)

with a spin contribution S D ‰C � S �‰, and an orbital angular momentum M D
x � PO with the orbital momentum density:

PO D ‰C
� „
2i

$r � qA
�
‰ � „

�
P�C � i

Q

„ �
Cˆ

��
r� � i

Q

„ A�
�

� „
�

r�C C i
Q

„ �
CA
��

P� C i
Q

„ˆ�
�

C �0E � B: (21.151)

Substitution of the non-relativistic approximations in the Dirac representation of
the � matrices (cf. (21.19, 21.97)),

�.x; t/ !
r „
2mc2

�.x; t/ exp

�
�i

mc2

„ t

�
;

‰.x; t/ D
�
 .x; t/
�.x; t/

�
exp

�
�i

mc2

„ t

�
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into (21.148) yields after neglecting the subleading � components (cf. (21.100))

PO D  C
� „
2i

$r � qA
�
 C �C

� „
2i

$r � QA
�
� C �0E � B (21.152)

and

S D „
2
 C � � � : (21.153)

If we would not have used the equations and motion and equation (21.85) to write
the conserved current in the form (21.145), the spin term S D ‰C � S �‰ would have
come from the last line in equation (21.143).

21.17. New charges from local phase invariance?
We have derived expressions for charge and current densities from phase

invariance

ı‰.x/ D i
q

„'‰.x/; ı‰C.x/ D � i
q

„'‰
C.x/;

of Lagrange densities, see e.g. (16.31, 16.32) for the charge and current densities of
non-relativistic charged matter fields, and (21.142) for relativistic charged matter
fields. In the final expressions we always divided out the irrelevant constant
parameter '. However, introduction of the electromagnetic potentials rendered the
Lagrange densities invariant under local phase transformations

ı‰.x/ D i
q

„'.x/‰.x/; ı‰C.x/ D � i
q

„'.x/‰
C.x/; ıA	.x/ D @	'.x/:

In this case we cannot discard the phase parameter '.x/ from the current densities
for the local symmetry. Does this provide us with additional useful notions of
conserved charges for quantum electronics and quantum electrodynamics?

21.17a. Show that application of the result (16.13) to local phase transformations
yields current densities

J	 D 'j	 C 1

	0
F	�@�'; (21.154)

where j	 are the current densities which were derived for constant phase parameter
', e.g. (16.31, 16.32) or (21.142).

Show that the currents J	 can also be written in the strong form12

J	 D 1

	0
@� .'F	�/ : (21.155)

12A current J	 is sometimes denoted as strongly conserved if the local conservation law @	J	 D 0

is an identity.
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21.17b. Show in particular that the charge density Q' D J0=c can be written in the
form

Q' D �0r � .'E/ ; (21.156)

and that the current density is

J D 1

	0
r � .'B/ � �0@t .'E/ : (21.157)

Apply these results to a static charge distribution %.x/ D j0.x/=c. The charge

Q' D
Z

d3xQ'.x; t/

is only conserved if Q' charges do not escape or enter at jxj ! 1:

lim
jxj!1

Z
d2� jxjx � J.x; t/ D 0:

Show that this implies

lim
jxj!1

P'.x; t/ D 0:

Show also that Q' differs from the standard electric charge

Q D
Z

d3x %.x/

only by a constant factor

Q' D h'iQ; (21.158)

where

h'i D 1

4�

Z
d2� lim

jxj!1
'.x; t/

is the angular average of the phase parameter '.x; t/ at jxj ! 1.

21.18. Show for a free electron that equation (21.100) implies that a positron
component � in the wave function is not negligible any more relative to the electron
wave function  at a distance of order

d ' 4mc

„ �x2 ' 104 nm�1�x2 D 1011 cm�1�x2: (21.159)
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This implies that we cannot use the wave packet for a strongly localized free electron
with �x D 1Å beyond a distance of about 0:1µm from the center. However, for a
free electron wave packet with �x D 1mm the limit (21.159) is much larger than
the confines of any physics or chemistry lab and therefore of no concern.

Show also that at time t, the estimate for the usable range of the wave packet is

d.t/ . 4mc

„ �x.0/�x.t/: (21.160)

21.19. Show that the Foldy-Wouthuysen transformation (21.111) can also be
written as

j‡FWT.t/i D expŒF.t/C W.t/C T.t/C C.t/C O.E=mc2/4�j‡.t/i;

with

C.t/ D q„
16m3c4

�0
�„r � E.x; t/C 2iE.x; t/ � Œp � qA.x; t/�

�

C i
q„2

16m3c4
�r � E.x; t/

� �
�

� 0

0 ��

�
:

21.20. We have derived the equations (12.21, 12.23) for particles which satisfy the
relativistic dispersion equation. In the meantime, we have seen that at the quantum
level these particles are described by scalar fields �, spinors  , or vector fields A	.
The factor g counts spin and internal symmetry degrees of freedom and has the form
g D gs � drep.G/, where drep.G/ is the dimension of the representation of the internal
symmetry group G under which the fields transform.

21.20a. Scalar fields have gs D 1. Show that in d C 1 space-time dimensions,
gs D 2b.d�1/=2c for Dirac fields and gs D d � 1 for vector fields.

Hint: A Dirac spinor in d C 1 space-time dimensions has 2b.dC1/=2c components,
see Appendix G (note that there d denotes the number of space-time dimensions).

21.20b. We have seen that scalar fields can be either real or complex (and similar
remarks apply to spinor and vector fields if we go beyond quantum electrodynamics
into the standard model of particle physics). However, a complex field has twice as
many degrees of freedom as a real field. Should g therefore not include an additional
factor gc with gc D 2 for complex fields and gc D 1 for real fields?

21.21. Formulate the basic relations for basis kets jx; 	i, jk; ˛i for the potentials
jADi in Lorentz gauge in analogy to the corresponding relations (18.24–18.27) in
Coulomb gauge.
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21.22. Show that the two representations given in equation (21.130) for the gauge
transformation function g.x; t/ are indeed equivalent (hint: use the fact that A	.x/
satisfies the Gauss law r � E D %=�0).

Show also that the gauge transformation (21.129, 21.130) takes us from any
vector potential A	.x/ which satisfies Maxwell’s equations into the vector potential
in Coulomb gauge.



Chapter 22
Applications of Spinor QED

We have seen in Chapter 18 that inclusion of the quantized Maxwell field did
not change the basic formalism of time-dependent perturbation theory, see equa-
tions (18.71–18.73), and this property also persists after promotion of the matter
fields in the Hamiltonian to relativistic Klein-Gordon or Dirac fields. In the follow-
ing sections we will use the Hamiltonian (21.94) of spinor quantum electrodynamics
for the calculation of scattering processes. However, we first should generalize our
previous results for the scattering matrix to the case of two free particles in the initial
and final state.

22.1 Two-particle scattering cross sections

We have discussed events with one free particle in the initial or final state of a scat-
tering event in the framework of potential scattering theory in Chapters 11 and 13,
or in photon emission, absorption or scattering off bound electrons in Sections 18.6–
18.9. The techniques that we have discussed so far cover many applications of
scattering theory, but eventually we also wish to understand scattering involving
two (quasi-)free particles in the initial and final states. Electron scattering off atomic
nuclei, electron-electron scattering, electron-photon scattering, or electron-phonon
scattering provide examples of these kinds of scattering events which happen all
the time in materials. In these cases we are discussing scattering events with two
particles in the initial or final states. We should therefore address the question how
to generalize the equations from Sections 13.6 and 18.9, which dealt with the case
of one free particle in the initial and final state.

Let us recall from Section 13.6 that with a free particle with wave vectors k and
k0 in the initial and final state, the scattering matrix element for a monochromatic
perturbation W.t/  exp.�i!t/

Sk0;k D hk0jUD.1;�1/jki D � iMk0;kı.!.k
0/ � !.k/ � !/

© Springer International Publishing Switzerland 2016
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has dimension length3 due to the length dimensions of the external states, and yields
a differential scattering cross section

d�k!k0 D d3k0
ˇ̌
Sk0;k

ˇ̌2
Tdj.k/=d3k

D d3k0
ˇ̌Mk0;k

ˇ̌2
2�dj.k/=d3k

ı.!.k0/ � !.k/ � !/:

Here we substituted the more precise notation dj.k/=d3k for the incoming current
density jin per k space volume. Substitution of the current density for a free particle
of momentum „k

dj.k/
d3k

D v

.2�/3

yields

vd�k!k0 D 4�2
ˇ̌Mk0;k

ˇ̌2
ı.!.k0/ � !.k/ � !/d3k0; (22.1)

see also equation (18.115), where we found this equation for photon scattering off
atoms or molecules.

Now suppose that we have two free particles with momenta k and q in the
initial state, and they scatter into free particles with momenta k0 and q0 in the final
state. We also assume that the scattering preserves total energy and momentum. The
corresponding scattering matrix element

Sk0;q0Ik;q D hk0; q0jUD.1;�1/jk; qi D � iMk0;q0Ik;qı.k0 C q0 � k � q/ (22.2)

has dimension length6. This is consistent with the fact that
ˇ̌
Sk0;q0Ik;q

ˇ̌2
is a transition

probability density per volume units d3k0d3q0d3kd3q in wave vector space.
For ease of the present discussion, we also assume that the scattering particles

are different, like in electron-photon or electron-phonon scattering, and we will use
markers e and � to label quantities referring to the different particles. The notation
is motivated from electron-photon scattering, but we will develop the formalism in
this section with general pairs of particles of masses me and m� in mind.

Suppose the two particles have momentum 4-vectors

pe D „k D „.!e=c; k/; p� D „q D „.!�=c; q/

relative to the laboratory frame in which we observe the collisions. The scattering
rate will be proportional to the product

d%e.k/
d3k

dj� .q/
d3q

D d%e.k/
d3k

d%�.q/
d3q

Qve� ;

where

Qve� D c2
ˇ̌
ˇ̌ k
!e

� q
!�

ˇ̌
ˇ̌ (22.3)
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is the relative speed between the two particles that we assign from the point of view
of our laboratory frame. The speed Qve� is usually replaced with another measure for
relative speed between the two particles,

ve� D c3

!e!�

s
.k � q/2 � m2

em2
�c4

„4 ; (22.4)

which agrees with Qve� in laboratory frames in which the two momentum vectors pe

and p� are parallel or anti-parallel, or where the laboratory frame coincides with the
rest frame of one of the two particles:

Qv2e� � v2e� D c6

!2e!
2
�

jkj2 jqj2 �1 � cos2 #
�
:

Here # is the angle between pe and p� . E.g. in the rest frame of the e-particle,
„ke D „.!e=c; 0/ D .mec; 0/, we find

ve� D c

!�

s
!2� � m2

�c4

„2 D c2
jp� j
E�

D v� ;

and in the center of mass frame of the two particles, k D �q, we also find the
difference of particle velocities,

v2e� D c2
„4.!e!�Cc2k2/2�m2

em2
�c8

„4!2e!2�

D c4
2„2c2k4C2„2!e!�k2 C c4k2.m2

eCm2
� /

„2!2e!2�
Dc4k2

!2e C !2� C 2!e!�

!2e!
2
�

D
�

c2
k
!e

� c2
q
!�

�2
: (22.5)

As a byproduct we also find another useful formula for the relative speed in the
center of mass frame,

ve� D c2jkj!e C !�

!e!�
: (22.6)

Please keep in mind that (22.6) is the relative particle speed assigned to the two
colliding particles by an observer at rest in the center of mass frame, but not the
speed of one particle relative to the other particle as measured in the rest frame of
one of the particles.

The differential cross section for two-particle scattering can then be defined
through the equation
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vd�k;q!k0;q0 D vd3k0d3q0
ˇ̌
Sk0;q0Ik;q

ˇ̌2
VT.d%e=d3k/.dj�=d3q/

D d3k0d3q0
ˇ̌
Sk0;q0Ik;q

ˇ̌2
VT.d%e=d3k/.d%�=d3q/

: (22.7)

In words, we divide the scattering rate d3k0d3q0 ˇ̌Sk0;q0Ik;q
ˇ̌2

d3kd3q=T between
wave vector volumes d3kd3q ! d3k0d3q0 by the number of scattering centers Vd%e

in the phase space volume Vd3k and the incoming particle flux dj� in the wave vector
volume d3q to calculate d�k;q!k0;q0 .

If we substitute the scattering amplitude Mk0;q0Ik;q for the scattering matrix
element and use for the 4-dimensional ı function in momentum space the equation

ı4.0/ D lim
k!0

1

.2�/4

Z
d4x exp.ik � x/ D cVT

.2�/4
;

we find

vd�k;q!k0;q0 D d3k0d3q0 c
ˇ̌Mk0;q0Ik;q

ˇ̌2
.2�/4.d%e=d3k/.d%�=d3q/

ı4.k0 C q0 � k � q/: (22.8)

The density per x space volume and per unit d3k of k space volume for
momentum eigenstates is

d%

d3k
D 1

.2�/3
:

This yields

vd�k;q!k0;q0 D 4�2c
ˇ̌Mk0;q0Ik;q

ˇ̌2
ı4.k0 C q0 � k � q/d3k0d3q0: (22.9)

Note from equation (22.2) that the two-particle scattering amplitude Mk0;q0Ik;q has
the dimension length2 while the single-particle scattering amplitude Mk0;k has
dimension length3/time due to the use of a ı function in frequencies rather than
wave numbers in the single-particle case.

We can derive a single-particle scattering cross section from (22.9) by integrating
over the final wave number of one of the two particles, e.g. q0, while considering its
initial wave number fixed, e.g. q D 0. This yields

vd�k!k0 D v

Z
d3q0 d�k;0!k0;q0

d3q0

D 4�2c2
ˇ̌Mk0;k�k0Ik;0

ˇ̌2
ı.!.k0/ � !.k/ � !q/d

3k0;

with

!q D !.q D 0/ � !.q0 D k � k0/

and a resulting single particle scattering amplitude Mk0;k D cMk0;k�k0Ik;0.
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Measures for final states with two identical particles

To explain the necessary modifications of the previous results if we have two
identical particles in the final state, we first consider decay of a normalizable state
jii into two identical particles with momenta „k1 and „k2.

The initial state belongs to a set of orthonormal states, hijji D ıij. For the
final states with two identical particles, we have to take into account that the
decomposition of unity on identical 2-particle states is

1identical 2�particle states D 1

2

Z
d3k1

Z
d3k2 jk1; k2ihk1; k2j

D 1

2

Z
d3k1

Z
d3k2 aC.k1/aC.k2/j0ih0ja.k2/a.k1/:

If the scattering matrix allows only for decay into the two-particle states, unitarity
UC

D UD D 1 (or equivalently SCS D 1) implies

1

2

Z
d3k1

Z
d3k2 jhk1; k2jUD.1;�1/jiij2 D 1:

The proper probability density for the transition jii ! jk1; k2i is therefore

wi!k1;k2 D 1

2
d3k1d3k2 jhk1; k2jUD.1;�1/jiij2 :

Equation (22.9) for the two-particle scattering cross section must therefore be
modified if the final state contains two identical particles,

vd�k1;k2!k0

1;k
0

2
D 4�2c

ˇ̌
ˇMk0

1;k
0

2Ik1;k2
ˇ̌
ˇ2 ı4.k0

1 C k0
2 � k1 � k2/

�1
2

d3k0
1d
3k0
2; (22.10)

and the total two-particle cross section is

� D
Z

d3k0
1

Z
d3k0

2

d�k1;k2!k0

1;k
0

2

d3k0
1d
3k0
2

D 1

2

Z
d3k0

1

Z
d3k0

2 4�
2 c

v

ˇ̌
ˇMk0

1;k
0

2Ik1;k2
ˇ̌
ˇ2 ı4.k0

1 C k0
2 � k1 � k2/: (22.11)

However, if we want to derive an effective single-particle differential scattering
cross section d�=d� from d�k1;k2!k0

1;k
0

2
by integrating over the momentum of one

particle and the magnitude of momentum of the second particle using the energy-
momentum conserving ı function, we have to take into account that the particle
observed in direction d� can be either one of the two scattered particles:
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d�

d�
D
Z

d3k0
1

Z 1

0

djk0
2j jk0

2j2
d�k1;k2!k0

1;k
0

2

d3k0
1d
3k0
2

C
Z

d3k0
2

Z 1

0

djk0
1j jk0

1j2
d�k1;k2!k0

1;k
0

2

d3k0
1d
3k0
2

:

In the center of mass frame this reduces to a factor of 2,

d�

d�
D 2

Z
d3k0

2

Z 1

0

djk0
1j jk0

1j2
d�k1;k2!k0

1;k
0

2

d3k0
1d
3k0
2

: (22.12)

If we then wish to calculate the total two-particle scattering cross section (22.11)
from the single-particle differential cross section (22.12), we have to compensate
with a factor 1/2,

� D 1

2

Z
d�

d�

d�
: (22.13)

In practice one is often only interested in the effective single-particle differential
cross section (22.12) and the total two-particle scattering cross section � . The
factor 1/2 is then usually neglected in the differential two-particle cross section
d�k1;k2!k0

1;k
0

2
=.d3k0

1d
3k0
2/, so that the factor of 2 is not needed in the calculation of

d�=d� (22.12) because it has been absorbed in d�k1;k2!k0

1;k
0

2
=.d3k0

1d
3k0
2/. However,

the factor 1/2 is still needed in the calculation of the total two-particle cross section
� from d�=d� according to equation (22.13).

22.2 Electron scattering off an atomic nucleus

As a first application of two-particle scattering, we discuss scattering of an electron
off an atomic nucleus. We assume that the nucleus is also a fermion and that the
electrons are not energetic enough to resolve the internal structure of the nucleus.
In that case we can use an effective description of the nucleus through Dirac field
operators for a particle of charge Ze and mass M for the nucleus.

The Coulomb gauge Hamiltonian (21.94) has the form

H D H0 C He� C HN� C HC; (22.14)

where the free part H0 contains the kinetic and mass terms and we have separated
the different interaction terms.

The electron-photon and nucleus-photon interaction terms are

He� D ec
Z

d3x .x; t/� � A.x; t/ .x; t/

and

HN� D �Zec
Z

d3x‰.x; t/� � A.x; t/‰.x; t/;



22.2 Electron scattering off an atomic nucleus 551

respectively. The relevant part of the Coulomb interaction term is the term describ-
ing the interaction of the electron and the nucleus,

HeN D �Z
e2

4��0

X
cc0

Z
d3x

Z
d3X

 C
c .x; t/‰

C
c0 .X; t/‰c0.X; t/ c.x; t/

jx � Xj ;

where the sum is over 4-spinor indices. The relevant leading order matrix element
contains two terms,

Sfi D � iMfiı.k C K � k0 � K0/ D S.�/fi C S.C/fi ;

which correspond to photon exchange,

S.�/fi D hK0; S0I k0; s0jZe2

„2 T
Z

d4x
Z

d4X .x/� � A.x/ .x/

�‰.X/� � A.X/‰.X/jK; SI k; si; (22.15)

or Coulomb scattering,

S.C/fi D hK0; S0I k0; s0j iZe2	0c

4�„
Z

d4x
Z

d3X

�
X
cc0

 C
c .x; t/‰

C
c0 .X; t/‰c0.X; t/ c.x; t/

jx � Xj jK; SI k; si: (22.16)

We first calculate the Coulomb contribution to the scattering amplitude. Evalua-
tion of the operators yields

S.C/fi D i
Ze2	0c

8.2�/7„
uC

s0 .k0/ � us.k/uC
S0 .K0/ � uS.K/p

Ee.k0/Ee.k/EN.K0/EN.K/

�
Z

d4x
Z

d3X
expŒi.K � K0/ � X C i.k � k0/ � x�

jx � Xj
� expŒ�i.!e.k/C !N.K/ � !e.k0/ � !N.K0//t�:

In the next step we use the Fourier decomposition of the Coulomb potential

Z
d3x

exp.�iq � x/
jxj D 4�

q2
(22.17)

to find

S.C/fi D i
Ze2	0c

4.2�/2„
uC

s0 .k0/ � us.k/uC
S0 .K0/ � uS.K/p

Ee.k0/Ee.k/EN.K0/EN.K/

�ı.k C K � k0 � K0/
jk � k0j2 : (22.18)
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For the evaluation of the photon exchange contribution (22.15), we first note that
the photon operators between the photon vacuum states yield

h0jTA.x/˝ A.X/j0i D „	0c
.2�/3

Z
d3q
2jqj

X
˛

�˛.q/˝ �˛.q/

�
h
‚.t�T/ expŒiq � .x � X/�C‚.T � t/ expŒ�iq � .x � X/�

i
q0D!� .q/=cDjqj

D „	0c
.2�/3

1

2� i

Z
d4q

expŒiq � .x � X/�

q2 � i�

�
1 � q ˝ q

q2

�
:

Evaluation of the fermion operators yields

hK0; S0I k0; s0j .x/� .x/˝‰.X/�‰.X/jK; SI k; si

D us0.k0/�us.k/˝ uS0.K0/�uS.K/

4.2�/6
p

Ee.k0/Ee.k/EN.K0/EN.K/
expŒi.k � k0/ � xCi.K � K0/ � X�:

Assembling the pieces yields

S.�/fi D Ze2	0c

4i.2�/2„
ı.k C K � k0 � K0/p

Ee.k0/Ee.k/EN.K0/EN.K/

1

.k � k0/2 � i�

�us0.k0/�us.k/
�
1C .k � k0/˝ .K � K0/

jk � k0j2
�

uS0.K0/�uS.K/;

where k � k0 D �.K � K0/ from momentum conservation was used in the projection
term. Substitution of the free Dirac equation for the external fermion states yields

S.�/fi D Ze2	0c

4i.2�/2„
ı.k C K � k0 � K0/p

Ee.k0/Ee.k/EN.K0/EN.K/

1

.k � k0/2 � i�

�
�

us0.k0/�us.k/ � uS0.K0/�uS.K/

C uC
s0 .k0/us.k/

ŒEe.k/�Ee.k0/�ŒEN.K/�EN.K0/�
„2c2jk�k0j2 uC

S0 .K0/uS.K/
�

and energy conservation yields finally

S.�/fi D Ze2	0c

4i.2�/2„
ı.k C K � k0 � K0/p

Ee.k0/Ee.k/EN.K0/EN.K/

1

.k � k0/2 � i�

�
�

us0.k0/�us.k/ � uS0.K0/�uS.K/

� us0.k0/�0us.k/
.Ee.k/ � Ee.k0//2

„2c2jk � k0j2 uS0.K0/�0uS.K/
�
: (22.19)
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The sum Sfi D S.�/fi C S.C/fi contains a term

1

jk � k0j2
�
1C .Ee.k/ � Ee.k0//2

„2c2.k � k0/2 � i�

�
D 1

.k � k0/2 � i�
:

This yields finally the scattering matrix element

Sfi D � iMfiı.k C K � k0 � K0/

D Z˛

4� i

us0.k0/�	us.k/uS0.K0/�	uS.K/p
Ee.k0/Ee.k/EN.K0/EN.K/

ı.k C K � k0 � K0/
.k � k0/2 � i�

; (22.20)

where the fine structure constant ˛ D 	0ce2=4�„ (7.61) was substituted.
The differential scattering cross section for electron-nucleus scattering is then

given by (22.9)

veNd� D 4�2cjMfij2ı.k C K � k0 � K0/d3K0d3k0

with the relativistic expression for the relative velocity of the electron and the
nucleus,

veN D c3

Ee.k/EN.K/

p
„4.K � k/2 � m2M2c4; (22.21)

where m is the electron mass. Integration over the momentum K0 of the scattered
nucleus and the magnitude k0 of the scattered electron momentum yields

veN
d�

d�k0

D 4�2cjMfij2 k02

j@f .k0/=@k0j
ˇ̌
ˇ̌
f .k0/D0

; (22.22)

where k0 has to satisfy the condition

f .k0/ D
q
.k0 � K � k/2 C .Mc=„/2 C

p
k02 C .mc=„/2

�
p

K2 C .Mc=„/2 �
p

k2 C .mc=„/2 D 0: (22.23)

Usually we are not interested in the scattering with fixed initial and final spin
polarizations. Therefore we average over initial spins and sum over final spins to
calculate the unpolarized scattering cross section,

jMfij2 ! 1

4

X
s;s0;S;S0

jMfij2: (22.24)
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We will further evaluate these expressions for the case of negligible momenta
and momentum transfers compared to Mc. We can take this into account through the
limit M ! 1. The condition (22.23) then reduces to the elastic electron scattering
condition k D k0 which yields

k02

j@f .k0/=@k0j D k
p

k2 C .mc=„/2:

Furthermore, using the Dirac representation (21.36) of the � matrices yields with
equations (21.45, 21.46, 21.50) for the 4-spinors the limit

lim
M!1

uS0.K0/�	uS.K/p
EN.K0/EN.K/

D 2ıSS0�	0: (22.25)

Note that this equation is invariant under similarity transformations of the � matrices
and therefore holds in every representation. Furthermore, the speed veN (22.21)
becomes the electron speed in the rest frame of the heavy nucleus, veN D
c2„k=Ee.k/.

The spin polarized scattering amplitude following from (22.20) in the heavy
nucleus limit is

Mfi D � Z˛

2�

us0.k0/�0us.k/p
Ee.k0/Ee.k/

ıSS0

.k � k0/2 � i�
: (22.26)

The remaining electron spin averaging is easily accomplished using equa-
tion (21.58),

1

2

X
ss0

ˇ̌
us0.k0/�0us.k/

ˇ̌2 D c2

2
tr
	
.mc � „k � �/�0.mc � „k0 � �/�0
 :

The trace theorems for products of � matrices in Appendix G, in particular
equation (G.19) and equation (G.20) in the form

tr
�
��

0�	�
0
� D 8�

0�	
0 C 4�	; (22.27)

and the vanishing traces of odd numbers of � matrices yield

1

2

X
ss0

ˇ̌
us0.k0/�0us.k/

ˇ̌2 D 2m2c4 C 4„2c2k0k00 C 2„2c2k � k0

D 2c2.„2k0k00 C „2k � k0 C m2c2/:

This yields the unpolarized differential scattering cross section for electrons in the
field of a heavy nucleus,

d�

d�k0

D Z2˛2

2„2
2m2c2 C „2k2.1C cos �/

k4.1 � cos �/2
; (22.28)
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where k � jkj. The Rutherford scattering formula (11.45) follows for „k 
 mc.
Electron scattering off a heavy nucleus is equivalent to scattering in an external
Coulomb field Ze=4��0r. This is known as Mott scattering1. From our calculation,
we can easily understand why scattering off heavy nuclei is equivalent to scattering
in an external Coulomb field. The Coulomb scattering matrix element (22.18) yields
already the amplitude (22.26) in the heavy nucleus limit, while the photon exchange
matrix element (22.19) vanishes in that limit. If we take into account that terms of
the form us0.k0/�us.k/=

p
Ee.k0/Ee.k/ are of order „2jkjjk0j=m2c2 
 1 in the non-

relativistic limit, we find that the ratio between the photon exchange amplitude and
the Coulomb amplitude in the non-relativistic limit is of order

ˇ̌
ˇ̌
ˇ
S.�/fi

S.C/fi

ˇ̌
ˇ̌
ˇ ' .Ee.k/ � Ee.k0//2

„2c2.k � k0/2
' „2.k2 � k02/2

4m2c2.k � k0/2

D k � k0

jk � k0j � „2.k C k0/˝ .k C k0/
4m2c2

� k � k0

jk � k0j 
 1; (22.29)

If we denote the average velocity of the incoming and the scattered electron
with ve, equation (22.29) tells us that photon exchange is suppressed by about
p2e=m2c2 D v2e=c2 compared to the Coulomb interaction in the non-relativistic
limit. That is the reason why Coulomb gauge is convenient for the description of
systems with non-relativistic charged particles. We can use Coulomb potentials in
the calculation of scattering events and bound states of the non-relativistic particles
without worrying about photon exchange. The photon terms are only needed for
photon absorption and emission, and for photon scattering. On the other hand, if we
are primarily concerned with interactions of relativistic charged particles, then use
of a Hamiltonian like (21.88) with covariantly gauged photons as in Section 21.6 is
more efficient.

22.3 Photon scattering by free electrons

Photon scattering by free or quasifree electrons is also known as Compton scatter-
ing. The cross section for this process had been calculated in leading order by Klein
and Nishina2.

The electron-photon interaction term from (21.94) is

He� D ec‰� � A‰: (22.30)

We denote the wave vectors of the incoming photon and electron with q and k,
respectively. The relevant second order matrix element for scattering of photons by

1N.F. Mott, Proc. Roy. Soc. London A 124, 425 (1929).
2O. Klein, Y. Nishina, Z. Phys. 52, 853 (1929).
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free electrons is

Sfi D Sk0;s0Iq0;˛0jk;sIq;˛

D � e2c2

„2
Z

d3x
Z

d3x0
Z 1

�1
dt
Z t

�1
dt0 hk0; s0I q0; ˛0j exp

�
i

„H0t

�

�‰.x/� � A.x/‰.x/ exp

�
� i

„H0.t � t0/
�
‰.x0/� � A.x0/‰.x0/

� exp

�
� i

„H0t
0
�

jk; sI q; ˛i

D � e2

„2
Z

d4x
Z

d4x0‚.t � t0/hk0; s0I q0; ˛0j‰.x/� � A.x/‰.x/

�‰.x0/� � A.x0/‰.x0/jk; sI q; ˛i:
Here A.x/ � AD.x; t/ and ‰.x/ � ‰D.x; t/ are the freely evolving field

operators (18.21, 21.51) in the interaction picture.
We can insert a decomposition of unity between the two vertex operators

‰� � A‰ with a fermionic and a photon factor,

1 D 1f ˝ 1� :

The relevant parts in the photon factor have zero or two intermediate photons,

1� ) j0ih0j C 1

2

X
ˇ;ˇ0

Z
d3K

Z
d3K0 jK; ˇI K0; ˇ0ihK; ˇI K0; ˇ0j;

while for the intermediate fermion states only states with one intermediate electron
or with two intermediate electrons and a positron contribute,

1f )
X
�

Z
d3	 bC

� .	/j0ih0jb� .	/

C 1

2

X
�;� 0;�

Z
d3	

Z
d3	0

Z
d3� bC

� .	/b
C
� 0.	

0/dC
� .�/j0i

�h0jd�.�/b� 0.	0/b� .	/:

The full photon matrix element is

hq0; ˛0jA.x/˝ A.x0/jq; ˛i D „	0c
16�3

pjqjjq0j
�
�˛0.q0/˝ �˛.q/

� exp
	
i.q � x0 � q0 � x/


C �˛.q/˝ �˛0.q0/ exp
	
i.q � x � q0 � x0/


 �
;
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where the first term arises from the term without intermediate photons and the
second term arises from the term with two intermediate photons after integrating
the intermediate photon momenta K and K0.

Evaluation of the fermion matrix element with an electron in the intermediate
state yields

X
�

hk0; s0j‰.x/�‰.x/bC
� .	/j0i ˝ h0jb� .	/‰.x0/�‰.x0/jk; si

D
X
�

expŒi � .x � x0/ � ik0 � x C ik � x0�
.2�/64E.	/

p
E.k0/E.k/

us0.k0/�u� .	/˝ u� .	/�us.k/:

We can substitute the sum over intermediate u spinors using equation (21.58),
X
�

hk0; s0j‰.x/�‰.x/bC
� .	/j0i ˝ h0jb� .	/‰.x0/�‰.x0/jk; si

D expŒi � .x � x0/ � ik0 � x C ik � x0�
.2�/64E.	/

p
E.k0/E.k/

ei ˝ ej

�us0.k0/� i
�
mc2 � „c� � 	 � �0E.	/� � jus.k/:

Assembling the pieces so far then yields the amplitude with a single intermediate
fermion,

S.1/fi D �
Z

d3	

E.	/

Z
d4x

Z
d4x0 e2‚.t � t0/

8.2�/9�0„c
pjqjjq0jE.k/E.k0/

�us0.k0/
h �

�˛0.q0/ � �� �mc2 � „c	 � � � �0E.	/� .�˛.q/ � �/
� exp

	
i. � k0 � q0/ � x C i.k C q � / � x0


C .�˛.q/ � �/ �mc2 � „c	 � � � �0E.	/� ��˛0.q0/ � ��

� exp
	
i. � k0 C q/ � x C i.k � q0 � / � x0
 ius.k/: (22.31)

The fermion matrix element with three intermediate fermions is

1

2

X
�;� 0;�

hk0; s0j‰.x/�‰.x/bC
� .	/b

C
� 0.	

0/dC
� .�/j0i

˝h0jd�.�/b� 0.	0/b� .	/‰.x0/�‰.x0/jk; si

D �
X
�

ı.	0 � k0/ı.	 � k/
expŒi� � .x � x0/C ik � x � ik0 � x0�

.2�/64E.�/
p

E.k0/E.k/

�v�.�/�us.k/˝ us0.k0/�v�.�/:
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The last line has been simplified from an expression which is symmetric in the
intermediate momenta 	 and 	0 by taking into account that those momenta will be
integrated.

We can substitute the sum over intermediate v spinors using equation (21.60),

1

2

X
�;� 0;�

hk0; s0j‰.x/�‰.x/bC
� .	/b

C
� 0.	

0/dC
� .�/j0i

˝h0jd�.�/b� 0.	0/b� .	/‰.x0/�‰.x0/jk; si

D ı.	0 � k0/ı.	 � k/
expŒi� � .x � x0/C ik � x � ik0 � x0�

.2�/64E.�/
p

E.k0/E.k/

�ei ˝ ejus0.k0/� j
�
mc2 C „c� � � C �0E.�/

�
� ius.k/:

If we substitute � ! 	 (after integration over the intermediate electron
momenta) for the wave vector of the intermediate positron, the contribution from
three intermediate fermions to the scattering matrix element is

S.3/fi D �
Z

d3	

E.	/

Z
d4x

Z
d4x0 e2‚.t � t0/

8.2�/9�0„c
pjqjjq0jE.k/E.k0/

�us0.k0/
h �

�˛0.q0/ � �� �mc2 C „c	 � � C �0E.	/
�
.�˛.q/ � �/

� exp
	
i. C k C q/ � x � i. C k0 C q0/ � x0


C .�˛.q/ � �/ �mc2 C „c	 � � C �0E.	/
� �

�˛0.q0/ � ��

� exp
	
i. C k � q0/ � x � i. C k0 � q/ � x0
 ius.k/: (22.32)

We can simplify Sfi D S.1/fi C S.3/fi by swapping x $ x0 in S.3/fi and taking into
account thatZ

d4
.mc2 � „c� � /f .	/
2 C .m2c2=„2/ � i�

exp.i � x/

D �
Z

d3	
Z

d0
exp.i	 � x/.mc2 � „c� � /f .	/ exp.�i0ct/

Œ0 � .!.	/=c/C i��Œ0 C .!.	/=c/ � i��

D 2� ic‚.t/
Z

d3	 exp.i	 � x/
mc2 � „c	 � � C �0E.	/

2!.	/
f .	/ exp.�i!.	/t/

� 2� ic‚.�t/
Z

d3	 exp.i	 � x/
mc2 � „c	 � � � �0E.	/

�2!.	/ f .	/ exp.i!.	/t/

D i�c‚.t/
Z

d3	

!.	/
.mc2 � „c� � /f .	/ exp.i � x/

ˇ̌
ˇ̌
0D!.	/=c

C i�c‚.�t/
Z

d3	

!.	/
.mc2 C „c� � /f .	/ exp.�i � x/

ˇ̌
ˇ̌
0D!.	/=c

: (22.33)
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This yields the total scattering matrix element in the form

Sfi D
Z

d4
Z

d4x
Z

d4x0 ie2

4.2�/10�0„2c
pjqjjq0jE.k/E.k0/

�us0.k0/
h �

�˛0.q0/ � �� mc � „� � 
2 C .m2c2=„2/ � i�

.�˛.q/ � �/

� exp
	
i. � k0 � q0/ � x C i.k C q � / � x0


C .�˛.q/ � �/ mc � „� � 
2 C .m2c2=„2/ � i�

�
�˛0.q0/ � ��

� exp
	
i. � k0 C q/ � x C i.k � q0 � / � x0
 ius.k/:

After performing the trivial integrations, we find

Sfi D ı.k0 C q0 � k � q/
ie2

16�2�0„2c
pjqjjq0jE.k/E.k0/

�us0.k0/
h �

�˛0.q0/ � �� mc � „� � .k C q/

.k C q/2 C .m2c2=„2/ � i�
.�˛.q/ � �/

C .�˛.q/ � �/ mc � „� � .k � q0/
.k � q0/2 C .m2c2=„2/ � i�

�
�˛0.q0/ � �� ius.k/: (22.34)

The first contribution to the amplitude corresponds to absorption of a photon
with wave vector q followed by emission of a photon with wave vector q0, see
Figure 22.1, while the second contribution to the amplitude corresponds to emission
of the photon with wave vector q0 before absorption of the photon with wave vector
q as shown in Figure 22.2.

The denominators in (22.34) can be simplified by noting that k2C.m2c2=„2/ D 0,
q2 D q02 D 0, and

k � q D k � q � jqj
q

k2 C .m2c2=„2/ < 0:

e− k

q

k+q
q’

k+q−q’

Fig. 22.1 Absorption of the incoming photon with momentum „q before emission of the outgoing
photon with momentum „q0. The virtual intermediate electron has 4-momentum „.k Cq/. The left
panel uses particle labels and the right panel uses momentum labels
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Fig. 22.2 Emission of the
outgoing photon with
momentum „q0 before
absorption of the incoming
photon with momentum „q.
The virtual intermediate
electron has 4-momentum
„.k � q0/

e − k

q

q’

k−q’ k+q−q’

This yields with the definition ˛ D e2=.4��0„c/ (7.61) of Sommerfeld’s fine
structure constant the result

Sfi D ı.k0 C q0 � k � q/
i˛

8�„pjqjjq0jE.k/E.k0/

�us0.k0/
h �

�˛0.q0/ � �� mc � „� � .k C q/

k � q
.�˛.q/ � �/

� .�˛.q/ � �/ mc � „� � .k � q0/
k � q0

�
�˛0.q0/ � �� ius.k/: (22.35)

The spin and helicity polarized differential scattering cross section then follows
from (22.9),

vd�k;sIq;˛!k0;s0Iq0;˛0 D cd3k0d3q0 ˛2ı.k0 C q0 � k � q/

16„2jqjjq0jE.k/E.k0/

�
ˇ̌
ˇ̌us0.k0/

h �
�˛0.q0/ � �� mc � „� � .k C q/

k � q
.�˛.q/ � �/

� .�˛.q/ � �/ mc � „� � .k � q0/
k � q0

�
�˛0.q0/ � �� ius.k/

ˇ̌
ˇ̌2 : (22.36)

Spin-polarized cross sections are usually of less physical interest than electron-
photon cross sections which average over polarizations of initial electron states and
sum over the polarizations of the final electron states3,

d�kIq;˛!k0Iq0;˛0 D 1

2

X
s;s0

d�k;sIq;˛!k0;s0Iq0;˛0 :

3However, spin polarized cross sections for electron scattering will likely become important in the
framework of spintronics and spin based quantum computing.
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Use of the property (21.58)

X
s

us.k/us.k/ D mc2 � „c�	k	
ˇ̌
ˇ
k0D!.k/=c

and of the relations .u/C D �0u, �C
	 D �0�	�

0, yields

vd�kIq;˛!k0Iq0;˛0 D d3k0d3q0˛2c3ı.k0 C q0 � k � q/

32„2jqjjq0jE.k/E.k0/
tr

" �
mc � „� � k0�

�
��

�˛0.q0/ � �� mc � „� � .k C q/

k � q
.�˛.q/ � �/

� .�˛.q/ � �/ mc � „� � .k � q0/
k � q0

�
�˛0.q0/ � ��

�
.mc � „� � k/

�
�
.�˛.q/ � �/ mc � „� � .k C q/

k � q

�
�˛0.q0/ � ��

� ��˛0.q0/ � �� mc � „� � .k � q0/
k � q0 .�˛.q/ � �/

�#
: (22.37)

This can be evaluated using the trace theorems for � matrices from Appendix G.
The full evaluation of d�kIq;˛!k0Iq0;˛0 needs in particular the trace theorems (G.20–
G.22) for products of 4, 6 and 8 � matrices.

We can simplify the evaluation in the rest frame of the initial electron,

k D 1

„c

 p
m2c4 C „2k2

„ck

!
) mc

„
�
1

0

�
:

We can also use that �˛.q/ � q D �˛.q/ � q D 0 implies

.� � q/ .�˛.q/ � �/ D � .�˛.q/ � �/ .� � q/:

This reduces products according to

.mc � „� � .k C q// .�˛.q/ � �/ .mc � „� � k/

D �
mc C mc�0 � „� � q

�
.�˛.q/ � �/mc

�
1C �0

�
D .�˛.q/ � �/ �mc � mc�0 C „� � q

�
mc
�
1C �0

�
D m„c .�˛.q/ � �/ .� � q/

�
1C �0

�
:
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The resulting cross section in the rest frame of the electron before scattering is

d�0Iq;˛!k0Iq0;˛0 D d3k0d3q0˛2„2ı.k0 C q0 � k � q/

32m2cjqjjq0jE.k0/
tr

" �
mc � „� � k0�

�
��

�˛0.q0/ � �� .�˛.q/ � �/ � � q

jqj C .�˛.q/ � �/ ��˛0.q0/ � �� � � q0

jq0j
� �
1C �0

�

�
�
� � q

jqj .�˛.q/ � �/ ��˛0.q0/ � ��C � � q0

jq0j
�
�˛0.q0/ � �� .�˛.q/ � �/

�#
:

(22.38)

Traces over products of an odd number of � matrices vanish. The terms under
the trace proportional to mc2 contain products of six � matrices, but two of these
products vanish due to .� � q/2 D �q2 D 0 and .� � q0/2 D �q02 D 0. The remaining
two terms involving six � matrices turn out to yield the same result, such that the
contribution to the trace term from products of six � matrices is

tr6 D 8mc

jqjjq0j
�

q � q0 � 2.�˛.q/ � �˛0.q0//2q � q0

C 2.�˛.q/ � �˛0.q0//.�˛.q/ � q0/.�˛0.q0/ � q/
�
: (22.39)

For the traces over products of eight � matrices, we observe that those which
contain the products .� � q/�0.� � q/ or .� � q0/�0.� � q0/ can be simplified to products
of six � matrices due to

�	�0��q	q� D �� 2�	0�� � �0�	��� q	q� D � 2jqj��q�:
This yields for the sum of those terms which contain the products .� � q/�0.� � q/ or
.� � q0/�0.� � q0/ the result

tr8a D 8„
jqj
�
2.�˛0.q0/ � k0/.�˛0.q0/ � q/ � k0 � q

�

C 8„
jq0j

�
2.�˛.q/ � k0/.�˛.q/ � q0/ � k0 � q0�;

and after substitution of k0 D k C q � q0,

tr8a D 16mc C 8„
jqj
�

q � q0 C 2.�˛0.q0/ � q/2
�

� 8„
jq0j

�
q � q0 C 2.�˛.q/ � q0/2

�
: (22.40)
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The traces over products of eight � matrices which contain terms .� � q/�0.� � q0/
or .� � q0/�0.� � q/ can also be reduced to traces over products of six � matrices by
using the fact that �0 can only by contracted with one of the three � matrices in
products with 4-vectors. This yields after a bit of calculation and after substitution
of k0 D k C q � q0,

tr8b D 16mc
�
2.�˛.q/ � �˛0.q0//2 � 1

�
� 8mc

jqjjq0j
�

q � q0

� 2.�˛.q/ � �˛0.q0//2q � q0C2.�˛.q/ � �˛0.q0//.�˛.q/ � q0/.�˛0.q0/ � q/
�

� 16 „
jqj .�˛0.q0/ � q/2 C 16

„
jq0j .�˛.q/ � q0/2: (22.41)

The total trace term is therefore

tr D tr6 C tr8a C tr8b

D 32mc.�˛.q/ � �˛0.q0//2 C 8„
�
1

jqj � 1

jq0j
�

q � q0;

and combining all the terms yields

d�0Iq;˛!k0Iq0;˛0 D d3k0d3q0˛2„2ı.k0 C q0 � k � q/

4m2cjqjjq0jE.k0/

�
�
4mc.�˛.q/ � �˛0.q0//2 C „

�
1

jqj � 1

jq0j
�

q � q0
�
: (22.42)

The product q � q0 is directly related to the photon scattering angle,

q � q0 D � jqjjq0j .1 � cos �/ :

However, energy and momentum conservation also imply

q � q0 D � 1

2
.q � q0/2 D � 1

2
.k0 � k/2 D m2c2

„2 � mc

„ k00 D mc

„
�jq0j � jqj� :

The relation between scattering angle and scattered photon wave number is therefore

cos � D 1 � mc

„
�
1

jq0j � 1

jqj
�
; jq0j D mcjqj

mc C „jqj .1 � cos �/
: (22.43)

This is of course nothing but the Compton relation (1.11) for the wavelength of the
scattered photon in terms of the scattering angle,

�0 D �C h

mc
.1 � cos �/ :
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The four-dimensional ı function

ı.k0 C q0 � k � q/ D ı

�q
k02 C .m2c2=„2/C jq0j � .mc=„/ � jqj

�

�ı.k0 C q0 � q/

reduces the six-dimensional final state measure d3k0d3q0 to the two-dimensional
measure d�.Oq0/ � d� over direction of the scattered photon after integration
over d3k0 and djq0j. We include already the factor jq0jE.k0/ in the denominator in
equation (22.42) in the calculation:

Z
d3k0

Z 1

0

djq0j jq0j
E.k0/

f .jq0j/ı.k0 C q0 � k � q/

D
Z 1

0

djq0j jq0jf .jq0j/
c
p„2jq0j2 C „2jqj2 � 2„2jq0jjqj cos � C m2c2

�ı
�p

jq0j2 C jqj2 � 2jq0jjqj cos � C .m2c2=„2/C jq0j � .mc=„/ � jqj
�

D 1

c

� jq0jf .jq0j/
mc C „jqj.1 � cos �/

�
jq0jDmcjqj=ŒmcC„jqj.1�cos �/�

D mjqj
Œmc C „jqj .1 � cos �/�2

f

�
mcjqj

mc C „jqj .1 � cos �/

�
:

This yields the Klein-Nishina cross section

d�0Iq;˛!q�q0Iq0;˛0 D d�
˛2„2

4mc Œmc C „jqj .1 � cos �/�2

�
 
4mc.�˛.q/ � �˛0.q0//2 C „2jqj2 .1 � cos �/2

mc C „jqj .1 � cos �/

!
: (22.44)

Averaging over the initial photon polarization and summing over the final
polarization (18.119) yields the unpolarized differential cross section

d�0Iq!q�q0Iq0 D 1

2

X
˛;˛0

d�0Iq;˛!q�q0Iq0;˛0Dd�
˛2„2

2mc Œmc C „jqj .1 � cos �/�2

�
 

mc.1C cos2 �/C „2jqj2 .1 � cos �/2

mcC„jqj .1 � cos �/

!
: (22.45)
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The resulting total cross section is

�0Iq!q�q0Iq0 D �˛2

mc„jqj3
"
2„jqj2.mc/3C8.mc/2„jqjC9mc.„jqj/2C.„jqj/3

.mc C 2„jqj/2

� 	2.mc/2C2mc„jqj�.„jqj/2
 ln

�
1C2„jqj

mc

�#
: (22.46)

Photons below the hard X-ray regime satisfy „jqj 
 mc. This limit is also
often denoted as the non-relativistic limit of Compton scattering because the kinetic
energy imparted on the recoiling electron is small in this case,

„2.q � q0/2 ' 2„2q2 .1 � cos �/ 
 m2c2:

The cross section in the non-relativistic limit yields the Thomson cross sec-
tion (18.120, 18.121) for photon scattering,

d�0Iq;˛!q�q0Iq0;˛0

d�
D
�
˛„
mc

�2
.�˛.q/ � �˛0.q0//2;

d�0Iq!q�q0Iq0

d�
D
�
˛„
mc

�2
1C cos2 �

2
;

�0Iq!q�q0Iq0 D 8�

3

�
˛„
mc

�2
� �T D 6:652 � 10�9 Å2 D 0:6652 barn: (22.47)

The unpolarized differential scattering cross section (22.45) for Compton scat-
tering is displayed for various photon energies in Figure 22.3. Forward scattering is
energy independent, but scattering in other directions is suppressed with energy.

The energy dependence of the total Compton scattering cross section (22.46) is
displayed in Figure 22.4.

22.4 Møller scattering

The leading order scattering cross section for electron-electron scattering was
calculated in the framework of quantum electrodynamics by C. Møller4.

The Hamiltonian (21.94) in Coulomb gauge r � A D 0 for the photon field is

H D H0 C HI C HC; (22.48)

4C. Møller, Annalen Phys. 406, 531 (1932).
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Fig. 22.3 The differential scattering cross section (22.45) for scattering angle 0 	 � 	 � . The
energy of the incident photon is E� D 0 (top black curve), E� D 0:2mc2 (center blue curve) and
E� D 2mc2 (lower red curve)

with the electron-photon interaction term

HI � He� D ec
Z

d3x‰.x; t/� � A.x; t/‰.x; t/

and the Coulomb interaction term

HC D e2

8��0

X
ss0

Z
d3x

Z
d3x0‰C

s .x; t/‰
C
s0 .x0; t/

1

jx � x0j‰s0.x0; t/‰s.x; t/:

Note that the summation is over Dirac indices, which are related to spin projections
through the corresponding u or v spinors.
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Fig. 22.4 The total Compton scattering cross section (22.46) in units of the Thomson cross
section (22.47) for incident photon energy 0 < E� < 2mc2

The corresponding Hamiltonian on the states in the interaction picture is

HD.t/ D ec
X

s

Z
d3x‰s.x; t/� � A.x; t/‰s.x; t/

C e2

8��0

X
ss0

Z
d3x

Z
d3x0‰C

s .x; t/‰
C
s0 .x0; t/

1

jx � x0j‰s0.x0; t/‰s.x; t/

with the freely evolving field operators A.x; t/ (18.21) and ‰.x; t/ (21.51) of the
interaction picture.

The scattering matrix element for electron-electron scattering

Sfi � Sk0

1;s
0

1Ik0

2;s
0

2jk1;s1Ik2;s2

D hk0
1; s

0
1I k0

2; s
0
2jT exp

�
� i

„
Z 1

�1
dt HD.t/

�
jk1; s1I k2; s2i
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becomes in leading order O.e2/

Sfi D S.�/fi C S.C/fi ;

with the photon contribution

S.�/fi D � e2

„2
Z

d4x
Z

d4x0‚.t � t0/hk0
1; s

0
1I k0

2; s
0
2j‰.x/� � A.x/‰.x/

�‰.x0/� � A.x0/‰.x0/jk1; s1I k2; s2i

and the Coulomb term

S.C/fi D 	0e2

8� i„hk0
1; s

0
1I k0

2; s
0
2j
Z

d4x
Z

d4x0‰C.x/‰C.x0/

�ı.ct � ct0/
jx � x0j ‰.x0/‰.x/jk1; s1I k2; s2i:

We evaluate S.�/fi first. Substitution of the relevant parts of the mode expansions
yields (here we also use summation convention for the helicity and spin polarization
indices)

S.�/fi D � e2

„2
„	0c
8.2�/9

Z
d4x

Z
d4x0‚.t � t0/

Z
d3q0

1p
E.q0

1/

Z
d3q0

2p
E.q0

2/

Z
d3q0pjq0j

�
Z

d3q1p
E.q1/

Z
d3q2p
E.q2/

Z
d3qpjqj expŒi.q0Cq0

2�q0
1/ � x�i.q C q1 � q2/ � x0�

�u.q0
1; �/�u.q0

2; �
0/ � �ˇ.q0/�˛.q/ � u.q1; s/�u.q2; s

0/h0jb.k0
1; s

0
1/b.k

0
2; s

0
2/

�bC.q0
1; �/b.q

0
2; �

0/aˇ.q0/aC̨.q/bC.q1; s/b.q2; s0/bC.k2; s2/bC.k1; s1/j0i:

Elimination of the photon operators yields

S.�/fi D 	0e2c

8.2�/9„
Z

d4x
Z

d4x0‚.t � t0/
Z

d3q0
1p

E.q0
1/

Z
d3q0

2p
E.q0

2/

Z
d3q
jqj

�
Z

d3q1p
E.q1/

Z
d3q2p
E.q2/

expŒi.q C q0
2 � q0

1/ � x � i.q C q1 � q2/ � x0�

�u.q0
1; �/�u.q0

2; �
0/ � �˛.q/�˛.q/ � u.q1; s/�u.q2; s

0/h0jb.k0
1; s

0
1/b.k

0
2; s

0
2/

�bC.q0
1; �/b

C.q1; s/b.q0
2; �

0/b.q2; s0/bC.k2; s2/bC.k1; s1/j0i;
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where fermionic operators were also re-ordered such that only the connected
amplitude contributes. Evaluation of the fermionic operators yields

S.�/fi D e2

8„
	0c

.2�/9

Z
d4x

Z
d4x0

Z
d3q
jqj

‚.t � t0/ expŒiq � .x � x0/�p
E.k0

1/E.k
0
2/E.k1/E.k2/

�
h
u.k0

2; s
0
2/�u.k1; s1/ � �˛.q/�˛.q/ � u.k0

1; s
0
1/�u.k2; s2/

�
�

expŒi.k1 � k0
2/ � x � i.k0

1 � k2/ � x0�C expŒi.k2 � k0
1/ � x � i.k0

2 � k1/ � x0�
�

� u.k0
1; s

0
1/�u.k1; s1/ � �˛.q/�˛.q/ � u.k0

2; s
0
2/�u.k2; s2/

�
�

expŒi.k1 � k0
1/ � x � i.k0

2 � k2/ � x0�

C expŒi.k2 � k0
2/ � x � i.k0

1 � k1/ � x0�
�i
:

This yields after changing the integration variables x $ x0 in the second and fourth
term

S.�/fi D e2

8„
	0c

.2�/9
1p

E.k0
1/E.k

0
2/E.k1/E.k2/

Z
d4x

Z
d4x0

Z
d3q
jqj

�
�

u.k0
2; s

0
2/�u.k1; s1/ � �˛.q/�˛.q/ � u.k0

1; s
0
1/�u.k2; s2/

� expŒi.k1 � k0
2/ � x C i.k2 � k0

1/ � x0�

� u.k0
1; s

0
1/�u.k1; s1/ � �˛.q/�˛.q/ � u.k0

2; s
0
2/�u.k2; s2/

� expŒi.k1 � k0
1/ � x C i.k2 � k0

2/ � x0�
�

�
�
‚.t � t0/ expŒiq � .x � x0/�C‚.t0 � t/ expŒiq � .x0 � x/�

�
:

We can use the following equation with !.q/ D c
p

q2 C .m2c2=„2/
Z

d4q
f .q/ exp.iq � x/

q2 C .m2c2=„2/ � i�
D �

Z
d3q

Z
d!

cf .q/ exp.iq � x/ exp.�i!t/

Œ! � !.q/C i��Œ! C !.q/ � i��

D 2�ci‚.t/
Z

d3qf .q/ exp.iq � x/
exp.�i!.q/t/

2!.q/

� 2�ci‚.�t/
Z

d3qf .q/ exp.iq � x/
exp.i!.q/t/

�2!.q/

D i�c ‚.t/
Z

d3q
!.q/

f .q/ exp.iq � x/

ˇ̌
ˇ̌
!D!.q/

C i�c ‚.�t/
Z

d3q
!.q/

f .q/ exp.�iq � x/

ˇ̌
ˇ̌
!D!.q/

(22.49)
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to find

S.�/fi D 	0e2c

4i„.2�/10
1p

E.k0
1/E.k

0
2/E.k1/E.k2/

Z
d4x

Z
d4x0

Z
d4q

q2 � i�

�
�

u.k0
2; s

0
2/�u.k1; s1/ � �˛.q/�˛.q/ � u.k0

1; s
0
1/�u.k2; s2/

� expŒi.k1 � k0
2 C q/ � x C i.k2 � k0

1 � q/ � x0�

� u.k0
1; s

0
1/�u.k1; s1/ � �˛.q/�˛.q/ � u.k0

2; s
0
2/�u.k2; s2/

� expŒi.k1 � k0
1 C q/ � x C i.k2 � k0

2 � q/ � x0�
�
:

The integrations then yield

S.�/fi D 	0e2c

16i�2„
ı.k1 C k2 � k0

1 � k0
2/p

E.k0
1/E.k

0
2/E.k1/E.k2/

�
�

u.k0
2; s

0
2/�u.k1; s1/ � �˛.k0

2 � k1/�˛.k0
2 � k1/ � u.k0

1; s
0
1/�u.k2; s2/

.k0
2 � k1/2 � i�

� u.k0
1; s

0
1/�u.k1; s1/ � �˛.k0

1 � k1/�˛.k0
1 � k1/ � u.k0

2; s
0
2/�u.k2; s2/

.k0
1 � k1/2 � i�

�
:

Taking into account the energy-momentum conserving ı function, the transversal
projectors can e.g. be written as

�˛.k0
1 � k1/˝ �˛.k0

1 � k1/ D 1C .k0
1 � k1/˝ .k0

2 � k2/
.k0
1 � k1/2

:

The Dirac equation implies

u.k0; s0/� � .k0 � k/u.k; s/ D E.k0/ � E.k/
„c

u.k0; s0/�0u.k; s/:

This yields the photon exchange contribution to the electron-electron scattering
matrix element,

S.�/fi D 	0ce2

16i�2„
ı.k1 C k2 � k0

1 � k0
2/p

E.k0
1/E.k

0
2/E.k1/E.k2/

�
�

u.k0
2; s

0
2/�u.k1; s1/ � u.k0

1; s
0
1/�u.k2; s2/

.k0
2 � k1/2 � i�

� u.k0
1; s

0
1/�u.k1; s1/ � u.k0

2; s
0
2/�u.k2; s2/

.k0
1 � k1/2 � i�
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� u.k0
2; s

0
2/�

0u.k1; s1/u.k0
1; s

0
1/�

0u.k2; s2/
.k0
2 � k1/2 � i�

ŒE.k0
2/ � E.k1/�2

„2c2.k0
2 � k1/2

C u.k0
1; s

0
1/�

0u.k1; s1/u.k0
2; s

0
2/�

0u.k2; s2/
.k0
1 � k1/2 � i�

ŒE.k0
1/ � E.k1/�2

„2c2.k0
1 � k1/2

�
: (22.50)

For the evaluation of the Coulomb term, substitution of the mode expansions and
evaluation of the operators in S.C/fi yields

S.C/fi D	0ce2

8� i„
2

4.2�/6
p

E.k0
1/E.k

0
2/E.k1/E.k2/

Z
d4x

Z
d4x0 ı.ct � ct0/

jx � x0j

�
�

uC.k0
1; s

0
1/u.k1; s1/u

C.k0
2; s

0
2/u.k2; s2/ exp

	
i.k0

2 � k2/ � x0Ci.k0
1 � k1/ � x




� uC.k0
2; s

0
2/u.k1; s1/u

C.k0
1; s

0
1/u.k2; s2/ exp

	
i.k0

1 � k2/ � x0Ci.k0
2 � k1/ � x


 �

D 	0ce2

16� i„
1

.2�/6
p

E.k0
1/E.k

0
2/E.k1/E.k2/

�
Z

d4x
Z

d3x0 exp
	
i.k0

1 C k0
2 � k1 � k2/ � x



jx � x0j

�
�

u.k0
1; s

0
1/�

0u.k1; s1/u.k0
2; s

0
2/�

0u.k2; s2/ exp
	
i.k0

2 � k2/ � .x0 � x/



� u.k0
2; s

0
2/�

0u.k1; s1/u.k0
1; s

0
1/�

0u.k2; s2/ exp
	
i.k0

1 � k2/ � .x0 � x/

 �
:

In the next step we use the Fourier decomposition (22.17) of the Coulomb
potential to find

S.C/fi D 	0ce2

16�2i„
ı.k0

1 C k0
2 � k1 � k2/p

E.k0
1/E.k

0
2/E.k1/E.k2/

�
�

u.k0
1; s

0
1/�

0u.k1; s1/u.k0
2; s

0
2/�

0u.k2; s2/
.k0
2 � k2/2

� u.k0
2; s

0
2/�

0u.k1; s1/u.k0
1; s

0
1/�

0u.k2; s2/
.k0
2 � k1/2

�
: (22.51)

For the addition of S.�/fi and S.C/fi , we observe

1

.k0 � k/2

�
Œ!.k0/ � !.k/�2

c2.k0 � k/2
C 1

�
D 1

.k0 � k/2
(22.52)
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to find

Sfi D i
	0ce2

16�2„
ı.k0

1 C k0
2 � k1 � k2/p

E.k0
1/E.k

0
2/E.k1/E.k2/

�
�

u.k0
1; s

0
1/�

	u.k1; s1/u.k0
2; s

0
2/�	u.k2; s2/

.k0
1 � k1/2

� u.k0
2; s

0
2/�

	u.k1; s1/u.k0
1; s

0
1/�	u.k2; s2/

.k0
2 � k1/2

�

D � iMfiı.k1 C k2 � k0
1 � k0

2/; (22.53)

where the last equation defines the scattering amplitude

Mfi � Mk0

1;s
0

1Ik0

2;s
0

2jk1;s1Ik2;s2
for Møller scattering.

The two contributions to the scattering amplitude can be interpreted as virtual
photon exchange with virtual photon 4-momentum k1 � k0

1 or k1 � k0
2, respectively.

This is shown in Figure 22.5.
The scattering amplitude (22.53) yields the spin polarized differential cross

section (22.10)

vd�k0

1;s
0

1Ik0

2;s
0

2jk1;s1Ik2;s2 D 4�2c
ˇ̌
ˇMk0

1;s
0

1Ik0

2;s
0

2jk1;s1Ik2;s2
ˇ̌
ˇ2

�ı.k1 C k2 � k0
1 � k0

2/
1

2
d3k0

1d
3k0
2;

where

v D c3

E.k1/E.k2/

p
.„2k1 � k2/2 � m4c4 (22.54)

is the relative speed (22.4) between the two electrons with momentum 4-vectors „k1
and „k2.

Fig. 22.5 Contributions to
the Møller scattering
amplitude (22.53)
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The differential cross section is often averaged over initial spin states and
summed over final spin states,

d�k0

1Ik0

2jk1Ik2 D 1

4

X
s1;s2;s0

1;s
0

2

d�k0

1;s
0

1Ik0

2;s
0

2jk1;s1Ik2;s2 :

The property (21.58)

X
s

u.k; s/u.k; s/ D mc2 � „c�	k	
ˇ̌
ˇ
k0D!.k/=c

yields

vd� D c

2
d3k0

1d
3k0
2

�
	0ce2

16�„
�2

ı.k1 C k2 � k0
1 � k0

2/

E.k0
1/E.k

0
2/E.k1/E.k2/

�
 

1

.k0
1 � k1/4

tr
	�

mc2 � „c� � k0
1

�
�	
�
mc2 � „c� � k1

�
��



�tr
	�

mc2 � „c� � k0
2

�
�	
�
mc2 � „c� � k2

�
��



C 1

.k0
2 � k1/4

tr
	�

mc2 � „c� � k0
2

�
�	
�
mc2 � „c� � k1

�
��



�tr
	�

mc2 � „c� � k0
1

�
�	
�
mc2 � „c� � k2

�
��



� 2

.k0
1 � k1/2.k0

2 � k1/2
tr
	�

mc2 � „c� � k2
�
�	
�
mc2 � „c� � k0

2

�

� ��
�
mc2 � „c� � k1

�
�	
�
mc2 � „c� � k0

1

�
��

 !
; (22.55)

where it is understood that all 4-momenta of electrons are on shell. The 4-momenta
of the intermediate photons are then automatically off shell with dominant spacelike
components, .k0 � k/2 > 0 (except in the zero momentum transfer limit k0 D k).

The traces in equation (22.55) are readily evaluated using the contraction and
trace theorems for � matrices from Appendix G. This yields together with 4-
momentum conservation k0

1 C k0
2 D k1 C k2 the result

vd� D cd3k0
1d
3k0
2

�
e2c

4��0„
�2

ı.k1 C k2 � k0
1 � k0

2/

E.k0
1/E.k

0
2/E.k1/E.k2/

�
�„4.k1 � k2/2 C „4.k1 � k0

2/
2 C 2m2c2„2k1 � k0

1 C 2m4c4

.k0
1 � k1/4
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C „4.k1 � k2/2 C „4.k1 � k0
1/
2 C 2m2c2„2k1 � k0

2 C 2m4c4

.k0
2 � k1/4

C 2
„4.k1 � k2/2 C 2m2c2„2k1 � k2

.k0
1 � k1/2.k0

2 � k1/2

�
: (22.56)

We further evaluate the cross section through integration over d3k0
2 and djk0

1j in
the center of mass frame k1 C k2 D 0 of the colliding electrons. If we integrate
over the final states d3k0

2 of one of the electrons to get a single-electron differential
cross section d�=d�, we have to include a factor of 2 because we could just as well
observe the electron with momentum k0

2 being scattered into the direction d�, see
equation (22.12).

It is convenient to define k D k1, k0 D k0
1. The integration with the energy-

momentum ı function then yields

Z
d3k0

2

Z 1

0

djk0j jk0j2f .k; k0; k0
2/ı.k

0
2 C k0/

�ı
�
2

q
jk0j2 C .mc=„/2 � 2

p
jkj2 C .mc=„/2

�

D jkj
2

p
jkj2 C .mc=„/2f .k; jkjOk0

;�jkjOk0
/:

The scalar products in the center of mass frame are

k1 � k2 D �2jkj2 � .mc=„/2;
k1 � k0

1 D �jkj2.1 � cos �/ � .mc=„/2;
k1 � k0

2 D �jkj2.1C cos �/ � .mc=„/2;
where � is the angle between k and k0. The relative speed (22.54) of the electrons in
the center of mass frame is

v D 2c„jkjp„2jkj2 C m2c2
:

The differential scattering cross section is then with the factor of 2 from
equation (22.12), and using the fine structure constant ˛ D e2=.4��0„c/,

d�

d�
D ˛2

„4k4.3C cos2 �/2 C m2c2.4„2k2 C m2c2/.1C 3 cos2 �/

4„2k4.„2k2 C m2c2/ sin4 �
: (22.57)

This is symmetric under � ! .�=2/ � � with a minimum for scattering angle
� D �=2 and divergences in forward and backward direction. This divergence in the
zero momentum transfer limit is due to the vanishing photon mass, or in other words
due to the infinite range of electromagnetic interactions. It is the same divergence
which rendered the Rutherford cross section non-integrable.
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Equation (22.57) looks fairly complicated, but in terms of energy it essentially
entails that Møller scattering is suppressed with kinetic energy K like K�2: The low
energy result for K ' „2k2=2m 
 mc2 is

d�

d�
D
�

˛„c

4K sin2 �

�2
.1C 3 cos2 �/;

and the high energy result for K ' „ck � mc2 is

d�

d�
D
�
˛„c

2K

3C cos2 �

sin2 �

�2
:

With respect to low-energy electron-electron scattering, we also note that the
scattering matrix element (22.53) is dominated by the Coulomb contribution (22.51)
if the electrons are non-relativistic, „jkj 
 mc, „jk0j 
 mc. The estimate (22.29)
for the ratio of scattering amplitudes in the low energy limit applies here too, and
this confirms again the domination of Coulomb interactions between non-relativistic
charged particles.

22.5 Problems

22.1. Derive the relation (22.9) between the differential scattering cross section and
the scattering amplitude in box normalization.

22.2. Calculate the differential scattering cross section for scattering of a relativistic
charged scalar particle off a heavy nucleus. Assume that the heavy nucleus is non-
relativistic and that the scalar particle cannot resolve its substructure, such that you
can describe the nucleus with Schrödinger field operators.

22.3. Calculate the differential scattering cross section d�0Iq;˛!k0Iq0=d� for
electron-photon scattering with polarized initial photons, i.e. sum over the
polarizations of the scattered photons but do not average over the initial polarization.

22.4. Show that the differential cross sections (22.42, 22.44) for Compton scatter-
ing can also be written in the form

d�0Iq;˛!k0Iq0;˛0 D d3k0d3q0˛2„2ı.k0 C q0 � k � q/

4mjqjjq0jE.k0/

�
�
4.�˛.q/ � �˛0.q0//2 C jq0j

jqj C jqj
jq0j � 2

�
; (22.58)

d�0Iq;˛!q�q0Iq0;˛0

d�
D
�
˛„jq0j
2mcjqj

�2 �
4.�˛.q/ � �˛0.q0//2 C jq0j

jqj C jqj
jq0j � 2

�
:
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22.5. Calculate the kinetic energy imparted on the recoiling electron in Compton
scattering as a function of jqj and � .

22.6. Derive the scattering amplitude for electron-nucleus scattering using covari-
ant quantization for the photon.

22.7. Derive the scattering amplitude for Compton scattering using covariant
quantization for the photons.

22.8. Derive the scattering amplitude for Møller scattering using covariant quanti-
zation for the photon.



Appendix A:
Lagrangian Mechanics

Lagrangian mechanics is not only a very beautiful and powerful formulation of
mechanics, but it is also needed as a preparation for a deeper understanding
of all fundamental interactions in physics. All fundamental equations of motion
in physics are encoded in Lagrangian field theory, which is a generalization of
Lagrangian mechanics for fields. Furthermore, the connection between symmetries
and conservation laws of physical systems is best explored in the framework of the
Lagrangian formulation of dynamics, and we also need Lagrangian field theory as a
basis for field quantization.

Suppose we consider a particle with coordinates x.t/ moving in a potential V.x/.
Then Newton’s equation of motion

mRx D �rV.x/

is equivalent to the following statement (Hamilton’s principle, 1834): The action
integral

SŒx� D
Z t1

t0

dt L.x; Px/ D
Z t1

t0

dt
�m

2
Px2 � V.x/

�

is in first order stationary under arbitrary perturbations x.t/ ! x.t/ C ıx.t/ of the
path of the particle between fixed endpoints x.t0/ and x.t1/ (i.e. the perturbation is
only restricted by the requirement of fixed endpoints: ıx.t0/ D 0 and ıx.t1/ D 0).
This is demonstrated by straightforward calculation of the first order variation of S,

ıSŒx� D SŒx C ıx� � SŒx� D
Z t1

t0

dt ŒmPx � ı Px � ıx � rV.x/�

D �
Z t1

t0

dt ıx � .mRx C rV.x// : (A.1)
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Partial integration and ıx.t0/ D 0, ıx.t1/ D 0 were used in the last step.
Equation (A.1) tells us that ıSŒx� D 0 holds for arbitrary path variation with fixed
endpoints if and only if the path x.t/ satisfies Newton’s equations,

mRx C rV.x/ D 0:

This generalizes to arbitrary numbers of particles (x.t/ ! xI.t/, 1 � I � N), and to
the case that the motion of the particles is restricted through constraints, like e.g. a
particle that can only move on a sphere1. In the case of constraints one substitutes
generalized coordinates qi.t/ which correspond to the actual degrees of freedom of
the particle or system of particles (e.g. polar angles for the particle on the sphere),
and one ends up with an action integral of the form

SŒq� D
Z t1

t0

dt L.q; Pq/:

The function L.q; Pq/ is the Lagrange function of the mechanical system with
generalized coordinates qi.t/, and a shorthand notation is used for a mechanical
system with N degrees of freedom,

.q; Pq/ D .q1.t/; q2.t/; : : : ; qN.t/; Pq1.t/; Pq2.t/; : : : ; PqN.t//:

First order variation of the action with fixed endpoints (i.e. ıq.t0/ D 0, ıq
.t1/ D 0) yields after partial integration

ıSŒq� D SŒq C ıq� � SŒq� D
Z t1

t0

dt

 X
i

ıqi
@L

@qi
C
X

i

ı Pqi
@L

@Pqi

!

D
Z t1

t0

dt
X

i

ıqi

�
@L

@qi
� d

dt

@L

@Pqi

�
; (A.2)

where again fixation of the endpoints was used.
ıSŒq� D 0 for arbitrary path variation qi.t/ ! qi.t/C ıqi.t/ with fixed endpoints

then immediately tells us the equations of motion in terms of the generalized
coordinates,

@L

@qi
� d

dt

@L

@Pqi
D 0: (A.3)

1And it also applies to relativistic particles, see Appendix B.
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These equations of motion are called Lagrange equations of the second kind or
Euler-Lagrange equations or simply Lagrange equations. The quantity

pi D @L

@Pqi

is denoted as the conjugate momentum to the coordinate qi.
The conjugate momentum is conserved if the Lagrange function depends only on

the generalized velocity component Pqi but not on qi, dpi=dt D 0.
Furthermore, if the Lagrange function does not explicitly depend on time, we

have

dL

dt
D pi Rqi C @L

@qi
Pqi:

The Euler-Lagrange equation then implies that the Hamilton function

H D pi Pqi � L

is conserved, dH=dt D 0.
For a simple example, consider a particle of mass m in a gravitational field

g D �gez. The particle is constrained so that it can only move on a sphere of
radius r. An example of generalized coordinates are angles # , ' on the sphere,
and the Cartesian coordinates fX;Y;Zg of the particle are related to the generalized
coordinates through

X.t/ D r sin#.t/ � cos'.t/;

Y.t/ D r sin#.t/ � sin'.t/;

Z.t/ D r cos#.t/:

The kinetic energy of the particle can be expressed in terms of the generalized
coordinates,

K D m

2
Pr2 D m

2

� PX2 C PY2 C PZ2� D m

2
r2
� P#2 C P'2 sin2 #

�
;

and the potential energy is

V D mgZ D mgr cos#:

This yields the Lagrange function in the generalized coordinates,

L D m

2
Pr2 � mgZ D m

2
r2
� P#2 C P'2 sin2 #

�
� mgr cos#;
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and the Euler-Lagrange equations yield the equations of motion of the particle,

R# D P'2 sin# cos# C g

r
sin#; (A.4)

d

dt

� P' sin2 #
� D 0: (A.5)

The conjugate momenta

p# D @L

@ P# D mr2 P#

and

p' D @L

@ P' D mr2 P' sin2 #

are just the angular momenta for rotation in # or ' direction. The Hamilton function
is the conserved energy

H D p# P# C p' P' � L D p2#
2mr2

C p2'
2mr2 sin2 #

C mgr cos# D K C U:

The immediately apparent advantage of this formalism is that it directly yields
the correct equations of motion (A.4, A.5) for the system without ever having to
worry about finding the force that keeps the particle on the sphere. Beyond that
the formalism also provides a systematic way to identify conservation laws in
mechanical systems, and if one actually wants to know the force that keeps the
particle on the sphere (which is actually trivial here, but more complicated e.g.
for a system of two particles which have to maintain constant distance), a simple
extension of the formalism to the Lagrange equations of the first kind can yield
that, too.

The Lagrange function is not simply the difference between kinetic and potential
energy if the forces are velocity dependent. This is the case for the Lorentz force.
The Lagrange function for a non-relativistic charged particle in electromagnetic
fields is

L D m

2
Px2 C qPx � A � qˆ:

This yields the correct Lorentz force law mRx D q.E C v � B/ for the particle, cf.
Section 15.1. The relativistic versions of the Lagrange function for the particle can
be found in equations (B.24, B.25).
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Direct derivation of the Euler-Lagrange equations
for the generalized coordinates qa from Newton’s
equation in Cartesian coordinates

We can derive the Euler-Lagrange equations for the generalized coordinates of a
constrained N-particle system directly from Newton’s equations. This works in the
following way:

Suppose we have N particles with coordinates xi
j, 1 � i � N, 1 � j � 3, moving

in a potential V.x1:::N/. The Newton equations

d

dt
.mi Pxi

j/C @

@xi
j
V.x1:::N/ D 0

can be written as

� d

dt

@

@Pxi
j

� @

@xi
j

��1
2

X
k

mk Px2k � V.x1:::N/
�

D 0; (A.6)

or equivalently

� d

dt

@

@Pxi
j

� @

@xi
j

�
L.x1:::N ; Px1:::N/ D 0; (A.7)

with the Lagrange function

L.x1:::N ; Px1:::N/ D 1

2

X
i

mi Px2i � V.x1:::N/: (A.8)

If there are C holonomic constraints on the motion of the N-particle system, we
can describe its trajectories through 3N � C generalized coordinates qa, 1 � a �
3N � C:

xi
j D xi

j.q; t/: (A.9)

Note that in general xi
j.q; t/ will implicitly depend on time t through the time

dependence of the generalized coordinates qa.t/, but it may also explicitly depend
on t because there may be a time dependence in the C constraints2.

The velocity components of the system are

Pxi
j D dxi

j

dt
D
X

a

Pqa
@xi

j

@qa
C @xi

j

@t
: (A.10)

2A simple example for the latter would e.g. be a particle that is bound to a sphere with radius R.t/,
where R.t/ is a given time-dependent function.
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This implies in particular the equations

@Pxi
j

@Pqa
D @xi

j

@qa
(A.11)

and

@Pxi
j

@qa
D
X

b

Pqb
@2xi

j

@qa@qb
C @2xi

j

@t@qa
: (A.12)

Substitution of (A.11) into (A.12) yields

@Pxi
j

@qa
D
X

b

Pqb
@2 Pxi

j

@qb@Pqa
C @2 Pxi

j

@t@Pqa
: (A.13)

Equation (A.11) also yields

@2 Pxi
j

@Pqa@Pqb
D 0;

and this implies with (A.13)

d

dt

@Pxi
j

@Pqa
D
X

b

Pqb
@2 Pxi

j

@qb@Pqa
C @2 Pxi

j

@t@Pqa
D @Pxi

j

@qa
: (A.14)

With these preliminaries we can now look at the following linear combinations of
the Newton equations (A.7):

X
i;j

@xi
j

@qa
�
� d

dt

@L

@Pxi
j

� @L

@xi
j

�
D 0:

Insertion of equations (A.11, A.14) yields

X
i;j

h@Pxi
j

@Pqa

d

dt

@L

@Pxi
j

� @xi
j

@qa

@L

@xi
j

C
� d

dt

@Pxi
j

@Pqa
� @Pxi

j

@qa

� @L

@Pxi
j

i
D 0;

or after combining terms:

d

dt

X
i;j

�@Pxi
j

@Pqa

@L

@Pxi
j

�
� @L

@qa
D 0: (A.15)
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However, the coordinates xi
j are independent of the generalized velocities Pqa, and

therefore equation (A.15) is just the Lagrange equation (A.3):

d

dt

@L.q; Pq/
@Pqa

� @L.q; Pq/
@qa

D 0: (A.16)

Symmetries and conservation laws in classical mechanics

We call a set of first order transformations

t ! t0 D t � �.t/; qa.t/ ! q0
a.t

0/ D qa.t/C ıqa.t/ (A.17)

a symmetry of a mechanical system with action

SŒq� D
Z t1

to

dt L.q.t/; Pq.t/; t/

if it changes the form dt L.q.t/; Pq.t/; t/ in first order of �.t/ and ıqa.t/ at most by a
term of the form dB D dt.dB=dt/:

ı.dt L.q; Pq; t// � dt0 L.q0.t0/; Pq0.t0/; t0/ � dt L.q.t/; Pq.t/; t/

D dt
d

dt
Bıq;�.q.t/; t/: (A.18)

To see how this implies conservation laws in the mechanical system, we have to
evaluate ı.dt L.q; Pq; t// for the transformations (A.17). We have to take into account
that (A.17) implies

dt0 D dt.1 � P�.t// ; d

dt0
D .1C P�.t// d

dt
;

and therefore also

ı Pqa.t/ D d

dt0
q0

a.t
0/ � d

dt
qa.t/ D P�.t/ d

dt
qa.t/C d

dt
ıqa.t/:

The first order change in dt L is therefore

ı.dt L/ D dt0 L.q0.t0/; Pq0.t0/; t0/ � dt L.q.t/; Pq.t/; t/

D dt

�
ıqa

@L

@qa
C
�

P� d

dt
qa C d

dt
ıqa

�
@L

@Pqa
� P�L � � @L

@t

�
:
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Now we substitute

ı Pqa
@L

@Pqa
D d

dt

�
ıqa

@L

@Pqa

�
� ıqa

d

dt

@L

@Pqa

and

P�
�

Pqa
@L

@Pqa
� L

�
D d

dt

�
� Pqa

@L

@Pqa
� �L

�
� � Rqa

@L

@Pqa
� � Pqa

d

dt

@L

@Pqa
C �

dL

dt

D d

dt

�
� Pqa

@L

@Pqa
� �L

�
C � Pqa

�
@L

@qa
� d

dt

@L

@Pqa

�
C �

@L

@t
:

This yields

ı.dt L/ D dt .ıqa C � Pqa/

�
@L

@qa
� d

dt

@L

@Pqa

�

C dt
d

dt

�
.ıqa C � Pqa/

@L

@Pqa
� �L

�
: (A.19)

Comparison of equations (A.18) and (A.19) implies an on-shell conservation law

d

dt
Qıq;� D 0

with the conserved charge

Qıq;� D �

�
L � Pqa

@L

@Pqa

�
� ıqa

@L

@Pqa
C Bıq;� : (A.20)

Bıq;� is the one-dimensional version of the current K	 in Lagrangian field theory and
Qıq;� is the one-dimensional version of the conserved current J	, see the paragraph
after equation (16.14). Bıq;� D 0 in most cases. However, a noticeable exception
are Galilei boosts in nonrelativistic N-particle mechanics (where I enumerates the
particles). The Lagrange function

L D 1

2
mI Px2I � VI<J.jxI � xJj/ (A.21)

satisfies (A.18) for Galilei transformations �.t/ D 0, ıxI.t/ D �vt. In this case
B D �mIxI.t/ � v and the conservation law

Q D mIv � ŒPxI.t/t � xI.t/� D v � ŒPt � MX.t/�
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assures uniform center of mass motion X.t/ with velocity P=M. Other familiar
symmetry transformations of (A.21) include time translations �.t/ D const., which
yields energy conservation,

H D � Q=� D PxI � @L

@PxI
� L D 1

2
mI Px2I C VI<J.jxI � xJj/;

spatial translations ıxI.t/ D � D const., which yields conservation of total
momentum,

P D � @Q

@�
D mI PxI ;

and rotations ıxI.t/ D ' � xI.t/, which yields conservation of total angular
momentum,

M D � @Q

@'
D mIxI � PxI :

The corresponding conserved charges from the symmetries of the Lagrange

function L D �mc
q

c2 � Px2.t/ of a free relativistic particle are

p D @L

@Px D mPxp
1 � .Px=c/2

;

H D cp0 D Px � p � L D mc2p
1 � .Px=c/2

D c
p

p2 C m2c2;

M D x � p;

and the conserved charges which follow from Lorentz invariance ıx	 D !	�x� ,
!	� D �!�	, are

M	� D x	p� � x�p	;

which of course includes the charges Li D �ijkMjk=2 from rotations. See also
Appendix B.



Appendix B: The Covariant Formulation
of Electrodynamics

Electrodynamics is a relativistic field theory for every frequency or energy of
electromagnetic waves because photons are massless. Understanding of electro-
magnetism and of photon-matter interactions therefore requires an understanding of
special relativity. Furthermore, we also want to understand the quantum mechanics
of relativistic electrons and other relativistic particles, and the covariant formulation
of electrodynamics is also very helpful as a preparation for relativistic wave
equations like the Klein-Gordon and Dirac equations.

Lorentz transformations

The scientific community faced several puzzling problems around 1900. Some
of these problems led to the development of quantum mechanics, but two of the
problems motivated Einstein’s Special Theory of Relativity:

• In 1881 and 1887 Michelson had demonstrated that light from a terrestrial light
source always moves with the same speed c in each direction, irrespective of
Earth’s motion.

• The basic equation of Newtonian mechanics, F D d.mu/=dt, is invariant under
Galilei transformations of the coordinates:

t0 D t; x0 D x � vt: (B.1)

Therefore any two observers who use coordinates related through a Galilei
transformation are physically equivalent in Newtonian mechanics.

However, in 1887 (at the latest) it was realized that Galilei transformations do not
leave Maxwell’s equations invariant, i.e. if Maxwell’s equations describe electro-
magnetic phenomena for one observer, they would not hold for another observer

© Springer International Publishing Switzerland 2016
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moving with constant velocity v relative to the first observer (because it was
assumed that the coordinates of these two observers are related through the Galilei
transformation (B.1)). Instead, Voigt (1887) and Lorentz (1892–1904) realized that
Maxwell’s equations would hold for the two observers if their coordinates would be
related e.g. through a transformation of the form

ct0 D ct � .v=c/xp
1 � .v2=c2/

; x0 D x � vtp
1 � .v2=c2/

; y0 D y; z0 D z; (B.2)

and they also realized that coordinate transformations of this kind imply that light
would move with the same speed c in both coordinate systems,

�x2 C�y2 C�z2 � c2�t2 D �x02 C�y02 C�z02 � c2�t02: (B.3)

Voigt was interested in the most general symmetry transformation of the wave
equations for electromagnetic fields, while Lorentz tried to explain the results of
the Michelson experiment.

In 1905 Einstein took the bold step to propose that then the coordinates
measured by two observers with constant relative speed v must be described by
transformations like (B.2), but not by Galilei transformations1. This was a radical
step, because it implies that two observers with non-vanishing relative speed assign
different time coordinates to one and the same event, and they also have different
notions of simultaneity of events. The same statement in another formulation: Two
different observers with non-vanishing relative speed slice the four-dimensional
universe differently into three-dimensional regions of simultaneity, or into three-
dimensional universes. Einstein abandoned the common prejudice that everybody
always assigns the same time coordinate to one and the same event. Time is not
universal. The speed of light in vacuum is universal.

In the following we use the abbreviations

ˇ D v

c
; � D 1p

1 � ˇ2 :

The transformation (B.2) and its inversion then read

ct0 D �.ct � ˇx/; x0 D �.x � ˇct/; y0 D y; z0 D z; (B.4)

ct D �.ct0 C ˇx0/; x D �.x0 C ˇct0/: (B.5)

The spatial origin x0 D y0 D z0 D 0 of the .ct0; x0; y0; z0/ system satisfies x D
ˇct D vt (use x0 D 0 in x0 D �.x � ˇct/), and therefore moves with velocity vex

1This idea was also enunciated by Poincaré in 1904, but Einstein went beyond the statement of the
idea and also worked out the consequences.
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relative to the .ct; x; y; z/ system. In the same way one finds that the spatial origin of
the .ct; x; y; z/ system moves with velocity �ve0

x through the .ct0; x0; y0; z0/ system.
Therefore this is the special Lorentz transformation between two coordinate frames
with a relative motion with speed v in x-direction as seen from the unprimed frame,
or in .�x0/-direction as seen from the primed frame.

Equation (B.2) tells us that for motion in a certain direction (x-direction in (B.2)),
the coordinate in that direction is affected non-trivially by the transformation, while
any orthogonal coordinate does not change its value. This immediately allows for a
generalization of (B.2) in the case that the relative velocity v points in an arbitrary
direction.

It is convenient to introduce a rescaled velocity vector ˇ D v=c and the
corresponding unit vector Ǒ D ˇ=ˇ D v=v. The .3 � 3/-matrix Ǒ ˝ ǑT projects
any vector x onto its component parallel to ˇ,

xkˇ D Ǒ ˝ ǑT � x;

while the component orthogonal to ˇ is

x?ˇ D x � xkˇ D .1 � Ǒ ˝ ǑT/ � x:

From the form of the special Lorentz transformation (B.2) we know that the
coordinate jxkˇj parallel to v will be rescaled by a factor

� D 1p
1 � .v2=c2/

D 1p
1 � ˇ2 ;

and be shifted by an amount ��vt D ��ˇct. Similarly, the time coordinate ct will
be rescaled by the factor � and be shifted by an amount ��ˇjxkˇj. Finally, nothing
will happen to the transverse component x?ˇ . We can collect these observations in
a .4 � 4/-matrix equation relating the two four-dimensional coordinate vectors,

�
ct0
x0
�

D
�

� � �ˇT

� �ˇ 1 � Ǒ ˝ ǑT C � Ǒ ˝ ǑT

�
�
�

ct
x

�

This is the general Lorentz transformation between two observers if the spatial
sections of their coordinate frames were coincident at t D 0. The most general
transformation of this kind also allows for constant shifts of the coordinates and for
a rotation of the spatial axes,

�
ct0
x0
�

D
�

� � �ˇT

� �ˇ 1 � Ǒ ˝ ǑT C � Ǒ ˝ ǑT

�
�
�
1 0T

0 R

�
�
�

ct � cT
x � X

�
; (B.6)

where R is a 3 � 3 rotation matrix. Without the coordinate shifts this is the most
general orthochronous Lorentz transformation, where orthochronous refers to the
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fact that we did not include a possible reversal of the time axis. With the coordinate
shifts included, (B.6) is denoted as an inhomogeneous Lorentz transformation or
a Poincaré transformation. The Poincaré transformations (B.6) and the subset of
Lorentz transformations (T D 0, X D 0) form the Poincaré group and the Lorentz
group, respectively. The Lorentz group is apparently a subgroup of the Poincaré
group, and the rotation group is a subgroup of the Lorentz group.

In four-dimensional notation the 4-vector of coordinates is x	 D .ct; x/, and the
4-vector short hand for equation (B.6) is

x0	 D ƒ	
�.x

� � X�/: (B.7)

where the .4 � 4/ transformation matrix ƒ is

ƒ D fƒ	
�g D

�
� � �ˇT

� �ˇ 1 � Ǒ ˝ ǑT C � Ǒ ˝ ǑT

�
�
�
1 0T

0 R

�
: (B.8)

A homogeneous Lorentz transformation of this form is denoted as a proper
orthochronous Lorentz transformation if we also exclude inversions of an odd
number of spatial axis2. This is equivalent to the requirement detR D 1.

We will see below that it plays a role where we attach the indices for the explicit
numerical representation of the matrix ƒ in terms of matrix elements. Usually,
if a matrix is given for ƒ without explicitly defining index positions, the default
convention is that it refers to a superscript row index and a subscript column index,
as above,ƒ D fƒ	

�g. This is important, because as soon as a boost is involved (i.e.
ˇ ¤ 0), we will find that e.g.

ƒ	
�.ˇ/ D ƒ�

	.�ˇ/ ¤ ƒ�
	.ˇ/:

The transformation equation (B.6) is the general solution to the following
problem: Find the most general coordinate transformation fct; xg D fct; x; y; zg !
fct0; x0g D fct0; x0; y0; z0g which leaves the expression �x2 � c2�t2 invariant, i.e.
such that for arbitrary coordinate differentials c�t; �x we have

�x2 � c2�t2 D �x02 � c2�t02: (B.9)

This equation implies in particular that if one of our observers sees a light wave
moving at speed c, then this light wave will also move with speed c for the second
observer,

�x2 � c2�t2 D 0 , �x02 � c2�t02 D 0:

2The two factors of a proper orthochronous Lorentz transformation can be written as exponentials.
This is discussed in Appendix H.
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In fact it suffices to require only that anything moving with speed c will also
have speed c in the new coordinates, and that the spatial coordinates are Cartesian
in both frames. Up to rescalings of the coordinates the most general coordinate
transformation is then the general inhomogeneous Lorentz transformation (B.6).

Any constant offset X	 between coordinate systems vanishes for differences of
coordinates. Equation (B.7) therefore implies the following equation for Lorentz
transformation of coordinate differentials,

dx0	 D ƒ	
˛dx˛: (B.10)

The condition (B.9),

dx2 � c2dt2 D dx02 � c2dt02

can also be written as

�	�dx0	dx0� D �˛ˇdx˛dxˇ (B.11)

with the special .4 � 4/-matrix (1 is the 3 � 3 unit matrix)

�	� D
��1 0T

0 1

�
;

Equation (B.9) also implies

�	�dx0	dy0� D �˛ˇdx˛dyˇ

for any pair of Lorentz transformed 4-vectors dx and dy (simply insert the 4-vector
dx C dy into (B.11)). This implies that Lorentz transformations leave the Minkowski
metric �	� invariant:

�	�ƒ
	
˛ƒ

�
ˇ D �˛ˇ: (B.12)

If we multiply this equation with the components �ˇ� of the inverse Minkowski
tensor, we find

�	�ƒ
	
˛ƒ

�
ˇ�

ˇ� D ı˛
� � �˛

� :

This tells us a relation between the .4 � 4/-matrix ƒ with “pulled indices” and its
inverse ƒ�1:

ƒ	
� � �	�ƒ

�
ˇ�

ˇ� D .ƒ�1/�	: (B.13)
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Explicitly, if

fƒ	
�g D

�
� � �ˇT

� �ˇ 1 � Ǒ ˝ ǑT C � Ǒ ˝ ǑT

�
�
�
1 0T

0 R

�

then

fƒ	
�g � f�	�ƒ�

��
��g D

�
� �ˇT

�ˇ 1 � Ǒ ˝ ǑT C � Ǒ ˝ ǑT

�
�
�
1 0T

0 R

�
:

We can also “pull” or “draw” indices on 4-vectors, e.g. dx˛ � �˛ˇdxˇ D
.�cdt; dx/. Let us figure out how this 4-vector transforms under the Lorentz
transformation (B.10):

dx0
	 D �	�dx0� D �	�ƒ

�
˛dx˛ D �	�ƒ

�
˛�

˛ˇdxˇ D ƒ	
ˇdxˇ D dxˇ.ƒ

�1/ˇ	:

4-vectors with this kind of transformation behavior are denoted as covariant 4-
vectors, while dx	 is an example of a contravariant 4-vector. Another example of a
covariant 4-vector is the vector of partial derivatives

@	 � @

@x	
D
�
1

c

@

@t
;r
�
:

We can check that this is really a covariant 4-vector by calculating how it transforms
under Lorentz transformations. According to the chain rule of differentiation we find

@0
	 � @

@x0	 D @x˛

@x0	
@

@x˛
:

However, we have

dx˛ D .ƒ�1/˛�dx0� ) @x˛

@x0	 D .ƒ�1/˛	

and therefore

@0
	 D .ƒ�1/˛	@˛ D ƒ	

˛@˛:

Pairs of co- and contravariant indices do not transform if they are summed over.
Assume e.g. that F˛ˇ are the components of a 4 � 4 matrix which transform
according to

F˛ˇ ! F0	� D ƒ	
˛ƒ

�
ˇF˛ˇ:

The combination @˛F˛ˇ then transforms under Lorentz transformations according to

@0
	F0	� D ƒ	

˛@˛ƒ
	
ˇƒ

�
�Fˇ� D ƒ�

��
˛
ˇ@˛Fˇ� D ƒ�

�@˛F˛� ;
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i.e. the summed index pair does not contribute to the transformation. Only “free”
indices (i.e. indices which are not paired and summed from 0 to 3) transform under
Lorentz transformations.

The manifestly covariant formulation of electrodynamics

Electrodynamics is a Lorentz invariant theory, i.e. all equations have the same
form in all coordinate systems which are related by Poincaré transformations.
However, this property is hardly recognizable if one looks at Maxwell’s equations
in traditional notation,

r � E D 1

�0
%; r � E C @

@t
B D 0;

r � B D 0; r � B � 1

c2
@

@t
E D 	0j:

“Lorentz invariance” seems far from obvious: How, e.g. would the electric and
magnetic fields transform under a Lorentz transformation of the coordinates?
Apparently we seem to have three 3-dimensional vectors and one scalar in the
equations. We can combine the current density j and the charge density % into a
current 4-vector

j� D .%c; j/:

For the field strengths it helps to recall that the homogeneous Maxwell’s equations
are solved through potentials ˆ, A,

B D r � A; E D � @

@t
A � rˆ:

If one combines the potentials into a 4-vector,

A	 D .�ˆ=c;A/;

it is possible to realize that the electromagnetic field strengths Ei, Bi are related to
antisymmetric combinations of the 4-vectors @	, A� ,

F	� D @	A� � @�A	 D

0
BB@

0 �E1=c �E2=c �E3=c
E1=c 0 B3 �B2
E2=c �B3 0 B1
E3=c B2 �B1 0

1
CCA : (B.14)
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This electromagnetic field strength tensor F was introduced by Minkowski in
19073. The matrix elements F	� are its covariant components. The contravariant
components of F are

F	� D �	˛��ˇF˛ˇ D @	A� � @�A	 D

0
BB@

0 E1=c E2=c E3=c
�E1=c 0 B3 �B2
�E2=c �B3 0 B1
�E3=c B2 �B1 0

1
CCA :

From this one can easily read off the transformation behavior of the fields under
Lorentz transformations,

x	 ! x0	 D ƒ	
˛x˛;

@	 ! @0
	 D ƒ	

˛@˛;

A	.x/ ! A0
	.x

0/ D ƒ	
˛A˛.x/

F	�.x/ ! F0
	�.x

0/ D @0
	A0

�.x
0/ � @0

�A
0
	.x

0/ D ƒ	
˛ƒ�

ˇ.@˛Aˇ.x/ � @ˇA˛.x//

D ƒ	
˛ƒ�

ˇF˛ˇ.x/:

Evaluation of F0
	�.x

0/ for a boost

fƒ	
�g D

�
� � �ˇT

� �ˇ 1 � Ǒ ˝ ǑT C � Ǒ ˝ ǑT

�

yields with ˇ D v=c

E0.x0; t0/ D �
�

E.x; t/C v � B.x; t/
�

� .� � 1/ Ǒ� Ǒ � E.x; t/
�

D �
�

E.x; t/C v � B.x; t/
�

� �2

.� C 1/c2
v
�
v � E.x; t/

�
;

B0.x0; t0/ D �

�
B.x; t/ � 1

c2
v � E.x; t/

�
� .� � 1/ Ǒ� Ǒ � B.x; t/

�

D �

�
B.x; t/ � 1

c2
v � E.x; t/

�
� �2

.� C 1/c2
v
�
v � B.x; t/

�
;

3H. Minkowski, Math. Ann. 68, 472 (1910). A translation of his results for dielectric materials into
contemporary tensor notation can be found in R. Dick, Annalen Phys. (Berlin) 18, 174 (2009).
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or expressed in terms of the field strength components parallel and perpendicular to
the relative velocity v between the two observers,

E0
k.x

0; t0/ D Ek.x; t/; B0
k.x

0; t0/ D Bk.x; t/;

E0?.x0; t0/ D �
�

E?.x; t/C v � B?.x; t/
�
;

B0?.x0; t0/ D �

�
B?.x; t/ � 1

c2
v � E?.x; t/

�
:

Electric and magnetic fields mix under Lorentz transformations, i.e. the distinction
between electric and magnetic fields depends on the observer.

The equations

@	F	� D �	0j�

are the inhomogeneous Maxwell’s equations

r � E D 1

�0
%; r � B � 1

c2
@

@t
E D 	0j;

while the identities (with the 4-dimensional �-tensor, �0123 D �1)

��	�@�F	� D 2��	�@�@	A� � 0

are the homogeneous Maxwell’s equations

r � B D 0; r � E C @

@t
B D 0:

These identities can also written in terms of the dual field strength tensor

QF	� D 1

2
�	�˛ˇF˛ˇ D

0
BB@
0 �B1 �B2 �B3

B1 0 E3=c �E2=c
B2 �E3=c 0 E1=c
B3 E2=c �E1=c 0

1
CCA

as

@	 QF	� D 0:

The gauge freedom A	.x/ ! A0
	.x/ D A	.x/ C @	f .x/ apparently leaves the field

strength tensor F	� invariant. In conventional terms this is

ˆ0.x/ D ˆ.x/ � Pf .x/; A0.x/ D A.x/C r f .x/:
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We have written Maxwell’s equations explicitly as equations between 4-vectors,

@	F	� D �	0j�; @	 QF	� D 0;

and this ensures that they hold in this form for every inertial observer. This is the
form invariance (or simply “invariance”) of Maxwell’s equations under Lorentz
transformations.

With the identification of the current 4-vector j	 D .%c; j/, the local conservation
law for charges can also be written in manifestly Lorentz invariant form,

@

@t
%C r � j D @	j	 D 0:

Relativistic mechanics

In special relativity it is better to express everything in quantities which transform
linearly with combinations of the matrices ƒ and ƒ�1. As a consequence of the
transformation law

dx0	 D ƒ	
�dx�; (B.15)

ordinary velocities dx=dt and accelerations d2x=dt2 transform nonlinearly under
Lorentz boosts, due to the transformation of the time coordinates in the denomina-
tors. Therefore it is convenient to substitute the physical velocities and accelerations
with “proper” velocities and accelerations, which do not require division by a
transforming time parameter t.

Suppose the x0-frame is the frame of a moving object. In its own frame
the trajectory of the object is x0 D 0. However, we know that the Lorentz
transformation (B.15) leaves the product dx	dx	 invariant,

dx0	dx0
	 D dx02 � c2dt02 D dx	dx	 D dx2 � c2dt2:

Therefore we have in particular for the time dt0 � d� measured by the moving
object along its own path x0 D 0

d�2 D dt2 � 1

c2
dx2 D

�
1 � v2

c2

�
dt2;

i.e. up to a constant

� D
Z

dt
p
1 � .v2=c2/ D

Z
dt

�
:
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This is an invariant, i.e. it has the same value for each observer. Every observer will
measure their own specific time interval �t between any two events happening to
the moving object, but all observers agree on the same value

�� D
Z �t

0

dt
p
1 � .v2=c2/

which elapsed on a clock moving with the object.
The time �� measured by an object between any two events happening to the

object is denoted as the proper time or eigentime of the object.
The definition of eigentime entails a corresponding definition of the proper

velocity or eigenvelocity of an object in an observer’s frame: Divide the change in
the object’s coordinates dx in the observer’s frame by the time interval d� elapsed
for the object itself while it was moving by dx:

U D dx
d�

D �
dx
dt

D �v:

This is a hybrid construction in the sense that a set of coordinate intervals dx
measured in the observer’s frame is divided by a coordinate interval d� measured in
the object’s frame4.

The notion of proper velocity may seem a little artificial, but it is useful because
it can be extended to a 4-vector using the fact that fdx	g D .dx0; dx/ D .cdt; dx/ is
a 4-vector under Lorentz transformations. If we define

U0 D dx0

d�
D cdt

d�
D �c;

then

U	 D dx	=d� D .U0;U/ D �.c; v/

is a 4-vector which transforms according to U	 ! U0	 D ƒ	
˛U˛ under Lorentz

transformations. This 4-velocity vector satisfies

U2 � U	U	 � �	�U
	U� D U2 � .U0/2 D �c2:

The conservation laws
X

i

p.in/i D
X

i

p.out/
i

X
i

E.in/i D
X

i

E.out/
i

4There is a limit v 	 c on the physical speed v D jvj of moving objects. No such limit holds for
the “eigenspeed” jUj, but the speed of signal transmission relative to an observer is v, not jUj.



598 B. The Covariant Formulation of Electrodynamics

for momentum and energy in a collision would not be preserved under Lorentz
transformations if the nonrelativistic definitions for momentum and energy would be
employed, due to the nonlinear transformations of the particle velocities. This would
mean that if momentum and energy conservation would hold for one observer, they
would not hold for another observer with different velocity!

However, the conservation laws are preserved if energy and momentum trans-
form linearly, like a 4-vector, under Lorentz transformations. We have already
identified 4-velocities fU	g D �.c; v/ with the property limˇ!0 U D v.

This motivates the definition of the 4-momentum

p0 D mU0; p D mU;

i.e. the relativistic definition of the spatial momentum of a particle of mass m and
physical velocity v is

p D mU D �mv D mvp
1 � .v2=c2/

: (B.16)

The physical meaning of the fourth component

p0 D mU0 D �mc D mcp
1 � .v2=c2/

can be inferred from the nonrelativistic limit: v 
 c yields

p0 ' mc

�
1C v2

2c2

�
:

This motivates the identification of cp0 with the energy of a particle of mass m and
speed v:

E D cp0 D �mc2 D mc2p
1 � .v2=c2/

: (B.17)

Division of the two equations (B.16) and (B.17) yields

v D c2
p
E
; (B.18)

and subtracting squares yields the relativistic dispersion relation

E2 � c2p2 D m2c4: (B.19)

This is usually written as p	p	 D �m2c2.
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Equations (B.19) and (B.18) imply in particular for massless particles the
relations E D cp and v D c.

For the formulation of the relativistic version of Newton’s law, we observe that
the rate of change of 4-momentum with eigentime defines a 4-vector with the units
of force,

f 	 D d

d�
m

dx	

d�
D dp	

d�
D �

d

dt
p	:

It transforms linearly under Lorentz transformations because we divided a 4-vector
dx	 or dp	 by invariants d�2 or d� , respectively.

By convention one still defines three-dimensional forces according to

F D d

dt
p D 1

�
f ;

i.e. F is not the spatial component of a 4-vector, but f D �F is.
For the 0-component f 0 we find with the relativistic dispersion relation E D

c
p

p2 C m2c2,

f 0 D d

d�
m

dx0

d�
D d

d�

�
m�

dx0

dt

�
D d

d�
.�mc/ D d

d�

E

c
D d

d�

p
p2 C m2c2

D pp
p2 C m2c2

� d

d�
p D v

c
� d

d�
p D v

c
� f : (B.20)

The 4-vector of the force is therefore

.f 0; f / D .ˇ � f ; f / D .�ˇ � F; �F/:

Multiplication of (cf. (B.20))

d

d�

E

c
D v

c
� f

with c=� gives energy balance in conventional form,

d

dt
E D cp

p2 C m2c2
p � d

dt
p D v � d

dt
p D v � F:

The nonrelativistic Newton equation for motion of a charged particle in electro-
magnetic fields contains the Lorentz force

F D qE C qv � B:



600 B. The Covariant Formulation of Electrodynamics

We can get a hint at how the relativistic equation has to look like by expressing this
combination of fields in terms of the field strength tensor (B.14),

Ei D cFi
0 D Fi

0

dx0

dt
; "i

jkBk D Fi
j:

The latter equation implies

.v � B/i D "i
jkv

jBk D Fi
jv

j;

and therefore

Fi D qEi C q"i
jkv

jBk D qFi
0

dx0

dt
C qFi

j
dxj

dt
D qFi

�

dx�

dt
:

This would be a spatial part of a 4-vector if we would not derive with respect to the
laboratory time t, but with respect to the eigentime � of the charged particle:

f i D �Fi D qFi
�

dx�

d�
:

The time component is then

f 0 D qF0i
dxi

d�
D q�

1

c
Ei

dxi

dt
D �qˇ � E

and the electromagnetic force 4-vector is

f 	 D qF	�
dx�

d�
D .�qˇ � E; �q.E C v � B//:

The equation of motion of the charged particle in 4-vector notation is therefore

m
d2x	

d�2
D qF	�

dx�

d�
;

or

mRx	.�/ D qF	�.x.�//Px�.�/: (B.21)

The time component yields after rescaling with c=� again the energy balance
equation

dE

dt
D qv � E: (B.22)

The spatial part is after rescaling with ��1:

d

dt
p D q.E C v � B/: (B.23)
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The only changes in (B.22, B.23) with respect to the nonrelativistic equations are
the velocity dependences of E and p:

p D mvp
1 � .v2=c2/

; E D mc2p
1 � .v2=c2/

:

The equations (B.21) are completely equivalent to equations (B.23) and (B.22).
Note that equation (B.22) is a consequence of (B.23) just like the equation (B.21)
with 	 D 0 is also a consequence of the other three equations with spatial values
for 	.

The virtue of equations (B.21) is the manifest covariance of these equations,
since linearly transforming equations between 4-vectors must hold in every inertial
frame. Contrary to this, covariance is not apparent in the equations (B.22, B.23),
but since they are equivalent to the manifestly covariant equations (B.21), they
also must hold in every inertial frame. Covariance is only hidden in the nonlinear
transformation behavior of equations (B.22, B.23). However, for practical purposes
the equations (B.22, B.23) are often more useful.

The relativistic Lagrange function for a charged particle in terms of the laboratory
time t is

L.t/ D � mc
q

c2 � Px2.t/C qPx.t/ � A.x.t/; t/ � qˆ.x.t/; t/: (B.24)

This yields the canonical momentum

pcan D @L.t/
@Px D mcvp

c2 � v2
C qA D p C qA;

and the equations of motion in the form (B.23). The relativistic action is

S D
Z

dt L.t/ D
Z �

�mc
p

c2dt2 � dx2 C qdx � A � qdtˆ
�

D
Z

d�

 
�mc

r
��	� dx	

d�

dx�

d�
C qA	

dx	

d�

!
D
Z

d� L.�/: (B.25)

The formulation in terms of the eigentime � of the particle yields the canonical
momentum (use �	�.dx	=d�/.dx�=d�/ D �c2 from the equation c2d�2 D ��	�
dx	dx� after the derivative)

pcan;	 D @L.�/
@Px	 D m�	�

dx�

d�
C qA	 D p	 C qA	;

and the Lagrange equation is the manifestly covariant formulation (B.21) of the
equations of motion.
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The gauge-dependent contributions qA	 to the conserved momenta disappear in
the fully covariant energy-momentum tensor of a classical charged particle of mass
m and charge q coupled to electromagnetic fields,

T�
	 D 1

	0

�
F��F

	� � 1

4
��
	F��F��

�
C
Z

d� mcU�.�/U
	.�/ı.x � x.�//

D 1

	0

�
F��F

	� � 1

4
��
	F��F��

�
C mc

v�v
	

p
c2 � v2 ı.x � x.t//: (B.26)

Contrary to the 4-velocity U	, the four quantities v	 D dx	=dt D U	=� D .c; v/
are not components of a 4-vector, but still convenient for the representation of
the classical energy-momentum tensor after integration over the eigentime of the
particle.

The corresponding results for the energy density, energy current density and
momentum density of the classical particle plus fields system are

H D cP0 D T00 D �0

2
E2 C 1

2	0
B2 C mc3p

c2 � v2 ı.x � x.t//; (B.27)

S D ceiT
0i D 1

	0
E � B C mc3vp

c2 � v2 ı.x � x.t//; (B.28)

P D 1

c
eiT

i0 D �0E � B C mcvp
c2 � v2 ı.x � x.t// D 1

c2
S; (B.29)

and the stress tensor is

T D
�
�0

2
E2 C 1

2	0
B2
�
1 � �0E ˝ E � 1

	0
B ˝ B

C mc
v ˝ vp
c2 � v2 ı.x � x.t//: (B.30)

Relativistic center of mass frame

Considerations of two-particle systems in relativistic quantum mechanics also
require the relativistic notion of center of mass frames. If two particles have
momenta p1 and p2 in an inertial frame, every inertial frame with the property
that the total momentum P0 D p0

1 C p0
2 of the two-particle system in that frame

vanishes is traditionally denoted as a center of mass frame for the two-particle
system, although “zero total momentum frame” would be a more appropriate name.
We will nevertheless continue to use the traditional name “center of mass frame”.
Two center of mass frames for the system then differ at most by a combination of
a translation and a rotation and possibly an inversion of the time axis. According
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to equation (B.6) the task to actually transform into a center of mass frame then
amounts to find a Lorentz boost into a frame moving with velocity v D cˇ such that
with E D E1 C E2

P0
k D �Pk � �ˇ

E

c
D 0 (B.31)

and

P0? D P? D 0: (B.32)

The condition (B.32) implies that we have to choose ˇkP, and that Pk D P, P0
k D P0.

The condition (B.31) is then solved by

ˇ D c
P
E
;

� D Ep
E2 � c2P2

:

(B.33)

The momentum vectors of the two particles in the center of mass frame are therefore

p0
1;? D p1;? D � p2;? D � p0

2;?;

and

p0
1;k D Ep

E2 � c2P2

�
p1;k � P

E
E1

�
D E2p1;k � E1p2;kp

E2 � c2P2
D � p0

2;k:

The corresponding energies in the center of mass frame are

E0
1 D Ep

E2 � c2P2

�
E1 � c2

P
E

� p1;k
�

D E21 � c2p21 C E1E2 � c2p1 � p2p
E2 � c2P2

;

E0
2 D E22 � c2p22 C E1E2 � c2p1 � p2p

E2 � c2P2
:

For consistency we notice

E0 D E0
1 C E0

2 D
p

E2 � c2P2;

as also implied by P02 D P2 with P0 D 0.
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We also note that if we define the center of energy of the two-particle system,

R D x1E1 C x2E2
E1 C E2

;

and if the particles do not interact, then the center of energy velocity is exactly the
velocity (B.33) of the center of mass frame,

PR D c2
p1 C p2
E1 C E2

D cˇ:

If the particles interact, we need to also take into account the contributions from the
fields which mediate the interactions to the center of energy and to the energy and
momentum balances of the system, see (18.128, 18.129).



Appendix C: Completeness of Sturm-Liouville
Eigenfunctions

Completeness of eigenfunctions of self-adjoint operators is very important in
quantum mechanics. Formulating exact theorems and proofs in general situations
is a demanding mathematical problem. However, the setting of Sturm-Liouville
problems with homogeneous boundary conditions in one dimension is sufficiently
simple to be treated in a single appendix.

Sturm-Liouville problems

Sturm-Liouville problems are linear boundary value problems consisting of a
second order differential equation

d

dx

�
g.x/

d .x/

dx

�
� V.x/ .x/C E%.x/ .x/ D 0 (C.1)

in an interval a � x � b and homogeneous boundary conditions1 (Sturm 1836,
Liouville 1837)

 .a/ D 0;  .b/ D 0: (C.2)

The functions g.x/, V.x/ and %.x/ are real and continuous in a � x � b, and we also
assume that the functions g.x/ and %.x/ are positive in a � x � b.

1General Sturm-Liouville boundary conditions would only require linear combinations of  .x/
and  0.x/ to vanish at the boundaries, but for our purposes it is sufficient to impose the special
conditions  .a/ D 0,  .b/ D 0.
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In ket notation without reference to a particular representation, we would write
equation (C.1) as

E%.x/j .E/i D 1

„2 pg.x/pj .E/i C V.x/j .E/i:

We can assume  .x/ � hxj .E/i to be a real function, and in this appendix we
always assume that a and b are finite. We also require first order differentiability of
g.x/ and continuity of V.x/ and %.x/.

We can also assume  0.a/ > 0. We know that  0.a/ ¤ 0 because  0.a/ D
0 together with  .a/ D 0 and the Sturm-Liouville equation (C.1) would imply
 .x/ D 0. Furthermore, linearity of the Sturm-Liouville equation implies that we
can always change the sign of  .x/ to ensure  0.a/ > 0.

Multiplication of equation (C.1) with  .x/ and integration yields

HŒ � �
Z b

a
dx
�
g.x/ 02.x/C V.x/ 2.x/

� D E
Z b

a
dx %.x/ 2.x/ � Eh j i

where the last equation defines the scalar product

h�j i D
Z b

a
dx %.x/�.x/ .x/: (C.3)

It is easy to prove that (C.3) defines a scalar product since h j i � 0 and h j i D
0 ,  .x/ D 0, and

0 � h C ��j C ��i D h j i C 2�h j�i C �2h�j�i (C.4)

has a minimum for

� D � h j�i
h�j�i ;

which after substitution in (C.4) yields the Schwarz inequality

h j�i2 � h j ih�j�i:

The Sturm-Liouville equation (C.1) arises as an Euler-Lagrange equation from
variation of the action

SŒ � D Eh j i � HŒ �

D
Z b

a
dx
�
E%.x/ 2.x/ � g.x/ 02.x/ � V.x/ 2.x/

�
(C.5)

with fixed endpoints  .a/ and  .b/.
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The stationary values of SŒ � for arbitrary fixed endpoints  .a/ and  .b/ are

SŒ �
ˇ̌
ˇ
on�shell

D g.a/ .a/ 0.a/ � g.b/ .b/ 0.b/;

where the designation “on-shell” means that  .x/ satisfies the Euler-Lagrange
equation (C.1) of SŒ �.

If we think of the Sturm-Liouville problem as a one-dimensional scalar field
theory, G.x/ D 1=4g2.x/ would play the role of a metric in a � x � b and HŒ �
would be the energy of the field  .x/ if  .x/ is normalized, h j i D 1.

Suppose  i.x/ and  j.x/ are solutions of the Sturm-Liouville problem (C.1, C.2)
with eigenvalues Ei and Ej, respectively. Use of the Sturm-Liouville equation (C.1)
and partial integration yields

Ei

Z x

a
d� %.�/ j.�/ i.�/ D

Z x

a
d�  j.�/

�
V.�/ i.�/ � d

d�

�
g.�/

d

d�
 i.�/

��

D
Z x

a
d�
�
V.�/ j.�/ i.�/C g.�/ 0

j .�/ 
0
i .�/

� � g.x/ j.x/
d

dx
 i.x/;

and after another integration by parts we find

.Ei �Ej/

Z x

a
d� %.�/ i.�/ j.�/ D g.x/

�
 i.x/

d

dx
 j.x/ �  j.x/

d

dx
 i.x/

�
: (C.6)

This equation implies for Ei D Ej

d

dx
ln i.x/ D d

dx
ln j.x/;

i.e.  i.x/ has to be proportional to  j.x/: There is no degeneracy of eigenvalues in
the one-dimensional Sturm-Liouville problem.

For x D b, equation (C.6) implies the orthogonality property

.Ei � Ej/h ij ji D 0

and taking into account the absence of degeneracy yields

h ij ji / ıij:

Liouville’s normal form of Sturm’s equation

We can gauge the functions g.x/ and %.x/ away through a transformation of
variables
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x ! X D
Z x

a
d�

s
%.�/

g.�/
;  .x/ ! ‰.X/ D .%.x/g.x//1=4  .x/:

This yields

0 � X � B D
Z b

a
dx

s
%.x/

g.x/
; ‰.0/ D 0; ‰.B/ D 0;

and the Sturm-Liouville equation (C.1) assumes the form of a one-dimensional
Schrödinger equation,

d2

dX2
‰.X/ � V.X/‰.X/C E‰.X/ D 0 (C.7)

with

V.X/ D V.x/

%.x/
C g.x/%00.x/C %.x/g00.x/

4%2.x/
� 5g.x/%02.x/

16%3.x/
� g02.x/
16g.x/%.x/

C g0.x/%0.x/
8%2.x/

:

Second order differentiability of %.x/ and g.x/ is usually assumed. However, we
only have to require continuity of the positive functions %.x/ and g.x/ since we can
deal with ı-function singularities in one-dimensional potentials,.

Equation (C.7) is Liouville’s normal form of the Sturm-Liouville equation.

Nodes of Sturm-Liouville eigenfunctions

For the following reasoning we assume that we have smoothly continued the
functions V.x/, %.x/ > 0 and g.x/ > 0 for all values of x 2 R. It does not matter
how we do that.

To learn more about the nodes of the eigenfunctions  i.x/ of the Sturm-Liouville
boundary value problem, let us now assume that  .x; �/ and  .x; 	/ are solutions
of the incomplete initial value problems

�%.x/ .x; �/ D V.x/ .x; �/ � d

dx

�
g.x/

d .x; �/

dx

�
;  .a; �/ D 0; (C.8)

	%.x/ .x; 	/ D V.x/ .x; 	/ � d

dx

�
g.x/

d .x; 	/

dx

�
;  .a; 	/ D 0; (C.9)
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with � > 	, but contrary to the boundary value problem (C.1, C.2) we do not
impose any conditions at x D b. In that case there exist solutions to the Sturm-
Liouville equations for arbitrary values of the parameters �;	, and we can again
require

d .x; �/

dx

ˇ̌
ˇ̌
xDa

> 0;
d .x; 	/

dx

ˇ̌
ˇ̌
xDa

> 0:

We recall the following facts from the theory of differential equations: The solution
 .x; �/ to the initial value problem (C.8) is unique up to a multiplicative constant,
and  .x; �/ depends continuously on the parameter �.

The last fact is important, because it implies that the nodes y.�/ of  .x; �/,
 .y.�/; �/ D 0, depend continuously on �. Continuity of y.�/ is used in the
demonstration below that the boundary value problem (C.1, C.2) has a solution for
every value of b.

Multiplication of equation (C.8) with  .x; 	/ and equation (C.9) with  .x; �/,
integration from a to x > a, and subtraction of the equations yields

.� � 	/
Z x

a
d� %.�/ .�; �/ .�; 	/

D
Z x

a
d�

�
 .�; �/

d

d�

�
g.�/

d .�; 	/

d�

�
�  .�; 	/ d

d�

�
g.�/

d .�; �/

d�

��

D g.x/

�
 .x; �/

d .x; 	/

dx
�  .x; 	/d .x; �/

dx

�
: (C.10)

Now assume that y.	/ is the first node of  .x; 	/ larger than a:

 .y.	/; 	/ D 0; y.	/ > a:

Substituting x D y.	/ in (C.10) yields

.� � 	/
Z y.	/

a
dx %.x/ .x; �/ .x; 	/ D g.y.	// .y.	/; �/

d .x; 	/

dx

ˇ̌
ˇ̌
xDy.	/

:

(C.11)

We know that

.� � 	/%.x/ .x; 	/ > 0

for a < x < y.	/ and that

g.y.	//
d .x; 	/

dx

ˇ̌
ˇ̌
xDy.	/

< 0:
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This implies  .x; �/ must change its sign at least once for a < x < y.	/, and in
particular y.�/ < y.	/:

The location of the leftmost node y.�/ > a of the function  .x; �/ moves closer
to a if � increases.

We are not really concerned with differentiability properties of the leftmost node
y.�/, but we can express the previous observation also as

y.�/ > a;
dy.�/

d�
< 0:

Now assume that � is small enough2 so that even y.�/ > b. Then we can increase
the parameter � until we reach a value � D E1 such that y.E1/ D b. This is then the
lowest eigenvalue of our original Sturm-Liouville boundary value problem (C.1),
and the corresponding eigenfunction is

 1.x/ D  .x; � D E1/: (C.12)

The eigenfunction  1.x/ for the lowest eigenvalue E1 has no nodes in a < x < b.
Now we consider the first and the second node of  .x; 	/ for x > a,

a < y.	/ � y1.	/ < y2.	/;  .y1.	/; 	/ D 0;  .y2.	/; 	/ D 0;

and we integrate from y1.	/ to y2.	/,

.� � 	/
Z y2.	/

y1.	/
dx %.x/ .x; �/ .x; 	/

D
Z y2.	/

y1.	/
dx

�
 .x; �/

d

dx

�
g.x/

d .x; 	/

dx

�
�  .x; 	/ d

dx

�
g.x/

d .x; �/

dx

��

D g.y2.	//  .y2.	/; �/
d .x; 	/

dx

ˇ̌
ˇ̌
xDy2.	/

� g.y1.	//  .y1.	/; �/
d .x; 	/

dx

ˇ̌
ˇ̌
xDy1.	/

:

We know

.� � 	/%.x/ .x; 	/ < 0

2The alert reader might worry that all y.�/ might be smaller than b, so that there is no finite small
value � with y.�/ > b, or otherwise that all y.�/ might be larger than b, so that no finite value E1
with y.E1/ D b would exist. These cases can be excluded through Sturm’s comparison theorem,
to be discussed later.
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for y1.	/ < x < y2.	/, and

g.y1.	//
d .x; 	/

dx

ˇ̌
ˇ̌
xDy1.	/

< 0; g.y2.	//
d .x; 	/

dx

ˇ̌
ˇ̌
xDy2.	/

> 0:

This tells us that  .x; �/ has to change sign in the interval y1.	/ < x < y2.	/, i.e.
it must have at least one node there. We know that the first node y1.�/ < y1.	/ is
outside of this interval. Therefore we can infer that at least the second node y2.�/
of  .x; �/ must be smaller than y2.	/: y2.�/ < y2.	/. We can repeat this reasoning
for the pair of adjacent nodes yn�1.	/, yn.	/ of  .x; 	/, and we always find for
� > 	 that yn.�/ < yn.	/,

a < yn.�/;  .yn.�/; �/ D 0;
dyn.�/

d�
< 0:

All nodes of the function  .x; �/ on the right hand side of x D a move closer to a if
� increases.

Therefore we can repeat the reasoning above which had let us to the first solution
 1.x/ with eigenvalue E1 of our Sturm-Liouville problem. To find the second
eigenfunction, we increase � > E1 until we hit a value � D E2 such that y2.E2/ D b,
and the corresponding eigenfunction

 2.x/ D  .x;E2/

will have exactly one node y1.E2/ in the interval, a < y1.E2/ < b.
The corresponding result for yn.�/ tells us that in the n-th step we will find a

parameter � D En with yn.En/ D b and eigenfunction

 n.x/ D  .x;En/;

and this function will have n � 1 nodes a < y1.En/ < y2.En/ < : : : < yn�1.En/ <

yn.En/ D b inside the interval.

Sturm’s comparison theorem and estimates for the locations
of the nodes yn.�/

Sturm’s comparison theorem makes a statement about the change of the nodes yn >

a of the solution  .x; �/ of

d

dx

�
g.x/

d .x; �/

dx

�
C .�%.x/ � V.x//  .x; �/ D 0;  .a; �/ D 0; (C.13)
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if the functions g.x/, %.x/ and V.x/ change. To prove the comparison theorem, we do
not use Liouville’s normal form, but perform the following simple transformation
of variables,

X D
Z x

a

dx0

g.x0/
; ‰.X; �/ D  .x; �/:

This transforms (C.13) into the following form,

d2‰.X; �/

dX2
C .�R.X/ � V.X//‰.X; �/ D 0; ‰.0; �/ D 0; (C.14)

R.X/ D g.x/%.x/ > 0; V.X/ D g.x/V.x/;

and the nodes Yn > 0 of ‰.X; �/ are related to the nodes yn > a of  .x; �/ through

Yn D
Z yn

a

dx

g.x/
: (C.15)

Now we consider another Sturm-Liouville problem of the form (C.14), but with
different functions

�S.X/ � W.X/ > �R.X/ � V.X/;

d2ˆ.X; �/

dX2
C .�S.X/ � W.X//ˆ.X; �/ D 0; ˆ.0; �/ D 0; (C.16)

and we denote the positive nodes ofˆ.X; �/ with Zn. We also require again‰0.0/ >
0, ˆ0.0/ > 0. Equations (C.14, C.16) imply

Z Yn

Yn�1

dX ŒV.X/ � W.X/ � � .R.X/ � S.X//� ‰.X; �/ˆ.X; �/

D ˆ.Yn; �/
d‰.X; �/

dX

ˇ̌
ˇ̌
XDYn

�ˆ.Yn�1; �/
d‰.X; �/

dX

ˇ̌
ˇ̌
XDYn�1

: (C.17)

The following terms in (C.17) have all the same sign,

ŒV.X/ � W.X/ � � .R.X/ � S.X//� ‰.X; �/
ˇ̌
ˇ
Yn�1<X<Yn

;

d‰.X; �/

dX

ˇ̌
ˇ̌
XDYn�1

; � d‰.X; �/

dX

ˇ̌
ˇ̌
XDYn

:

This implies that ˆ.X; �/ must change its sign in Yn�1 < X < Yn, and since this
must hold for every n � 1 we find

Zn < Yn:
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Increasing �R.X/ � V.X/ moves the nodes Yn > 0 of the function ‰.X; �/ to the
left. From this we can first derive bounds for the nodes Yn > 0 which arise from the
nodes of the solutions of

‰00
min.X; �/C .�Rmax � Vmin/‰min.X; �/

D ‰00
min.X; �/C gmax .�%max � Umin/‰min.X; �/ D 0; (C.18)

‰min.0; �/ D 0;

and

‰00
max.X; �/C .�Rmin � Vmax/‰max.X; �/

D ‰00
max.X; �/C gmin .�%min � Umax/‰max.X; �/ D 0; (C.19)

‰max.0; �/ D 0:

Here we use the bounds of the continuous functions g.x/, V.x/, %.x/ on a � x � b,

0 < gmin � g.x/ � gmax; Umin � V.x/ � Umax;

0 < %min � %.x/ � %max:

The solutions of both equations (C.18) and (C.19) have nodes if (recall that both
g.x/ > 0 and %.x/ > 0)

� > Umin=%max;

and the two solutions are

‰min.X; �/ / sin
�p

gmax .�%max � Umin/X
�
;

‰max.X; �/ / sin
�p

gmin .�%min � Umax/X
�
:

This yields bounds for the nodes Yn > 0 of ‰.X; �/,

n�p
gmax .�%max � Umin/

� Yn � n�p
gmin .�%min � Umax/

: (C.20)

However, we also know from equation (C.15) that gminYn � yn � a � gmaxYn, and
therefore3

3These bounds can be strengthened by a longer proof, but the present result is completely sufficient
for our purposes.
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a C gminn�p
gmax .�%max � Umin/

� yn � a C gmaxn�p
gmin .�%min � Umax/

: (C.21)

This implies in particular that there is no accumulation point for the nodes yn of
 .x; �/, and yn must grow like n for large n.

For our previous proof that  1.x/ (C.12) has its first node at y1 D b, we needed
the assumption that there are small enough values of � such that the first node y1.�/
of  .x; �/ satisfies y1.�/ > b. We can now confirm that from the lower bound
in (C.21). It will suffice to choose

Umin

%max
< � <

Umin

%max
C g2min�

2

%maxgmax.b � a/2
: (C.22)

We also needed the assumption that for large enough � the first node y1.�/ > a
would be smaller than b. This is easily confirmed from the upper bound in (C.21).
It is sufficient to choose

� >
Umax

%min
C g2max�

2

%mingmin.b � a/2
: (C.23)

Eigenvalue estimates for the Sturm-Liouville problem

We have found that the Sturm-Liouville boundary value problem (C.1, C.2) has an
increasing, non-degenerate set of eigenvalues

E1 < E2 < : : :

and arises as an Euler-Lagrange equation for the action

SŒ � D Eh j i � HŒ � (C.24)

D
Z b

a
dx
�
E%.x/ 2.x/ � g.x/ 02.x/ � V.x/ 2.x/

�
:

For every continuous function  .x/ in a � x � b we define the normalized function

O .x/ D  .x/ph j i :

Since SŒ � is homogeneous in  ,  .x/ is a stationary point of SŒ � if and only if
O .x/ is a stationary point of

SŒ O � D E � HŒ O �;
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which implies also that O .x/ is a stationary point of the functional

HŒ O � D HŒ �

h j i D
R b

a dx
	
g.x/ 02.x/C V.x/ 2.x/



R b

a dx %.x/ 2.x/
: (C.25)

We have already found that there is a discrete subset O n.x/, n 2 N, of stationary
points of HŒ O � which satisfy the boundary conditions O n.a/ D 0, O n.b/ D 0, and
are mutually orthogonal,

h O mj O ni D ımn:

Use of the Sturm-Liouville equation and the boundary conditions yields the
values of the functional HŒ O � at the stationary points O n.x/,

HŒ O n� D En:

We already know E1 < E2 < : : :, and therefore we have found that the functional
HŒ O � has a minimum

HŒ O 1� D E1

on the space of functions

Fa;b D f .x/; a � x � bj .a/ D 0;  .b/ D 0; h j i D 1g ;
and in general we have a minimum

HŒ O n� D En

on the space of functions

F .n/
a;b D f .x/; a � x � bj .a/ D 0;  .b/ D 0; h j i D 1; h ij i D 0;

1 � i � n � 1g :

The explicit form of HŒ O � in equation (C.25) shows that all the eigenvalues En

increase if g.x/ increases or V.x/ increases or %.x/ decreases.
However, those continuous functions must be bounded on the finite interval a �

x � b,

0 < gmin � g.x/ � gmax; Umin � V.x/ � Umax;

0 < %min � %.x/ � %max:

Therefore we can replace those functions with their extremal values to derive
estimates for the eigenvalues En.
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The Sturm-Liouville problems for the extremal values are

gmin=max 
00
n .x/C �

En;min=max%max=min � Umin=max
�
 n.x/ D 0;

 n.a/ D 0;  n.b/ D 0;

with solutions

 n.x/ / sin
�

n�
x � a

b � a

�

and corresponding eigenvalues

En;min=max D 1

%max=min

�
Umin=max C gmin=max

n2�2

.b � a/2

�
:

This implies the bounds

1

%max

�
Umin C gmin

n2�2

.b � a/2

�
� En � 1

%min

�
Umax C gmax

n2�2

.b � a/2

�
: (C.26)

In particular, at most a finite number of the lowest eigenvalues En can be negative,
and the eigenvalues for large n must grow like n2.

Both of these observations are crucial for the proof that the set  n.x/ of
eigenfunctions of the Sturm-Liouville problem (C.1, C.2) provide a complete basis
for the expansion of piecewise continuous functions in a � x � b.

Completeness of Sturm-Liouville eigenstates

We now assume that the Sturm-Liouville eigenstates are normalized,

h ij ji D ıij:

Let �.x/ be an arbitrary smooth function on a � x � b with �.a/ D 0 and �.b/ D 0,
and define

'n.x/ D �.x/ �
nX

iD1
 i.x/h ij�i:

Then we have

0 � h'nj'ni D h�j�i �
nX

iD1
h ij�i2;
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i.e. for all n we have a Bessel inequality

h�j�i �
nX

iD1
h ij�i2:

We also have h'nj ii D 0, 1 � i � n, and 'n.a/ D 0, 'n.b/ D 0, i.e.

'n.x/ 2 F .nC1/
a;b :

Therefore the minimum property of the eigenvalue EnC1 implies

EnC1 � HŒ'n�

h'nj'ni : (C.27)

We have

HŒ'n� D HŒ�� � 2
nX

iD1
h ij�i

Z b

a
dx
�
g.x/�0.x/ 0

i .x/C V.x/�.x/ i.x/
�

C
nX

i;jD1
h ij�ih jj�i

Z b

a
dx
�
g.x/ 0

i .x/ 
0
j .x/C V.x/ i j.x/

�
:

In the first sum, partial integration and use of the Sturm-Liouville equation yields

Z b

a
dx
�
g.x/�0.x/ 0

i .x/C V.x/�.x/ i.x/
� D Ei

Z b

a
dx %.x/�.x/ i.x/

D Eih ij�i:
In the double sum, partial integration and use of the Sturm-Liouville equation yields

Z b

a
dx
�
g.x/ 0

i .x/ 
0
j .x/C V.x/ i j.x/

� D Ei

Z b

a
dx %.x/ i.x/ j.x/

D Eiıij:

This implies

HŒ'n� D HŒ�� �
nX

iD1
Eih ij�i2: (C.28)

Since at most finitely many of the eigenvalues Ei can be negative, equation (C.28)
tells us that the functional HŒ'n� must remain bounded from above for n ! 1,
e.g. for

E1 < E2 < � � � < EN < 0 � ENC1 < : : :
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we have the bound

HŒ'n� � HŒ��C
NX

iD1
jEijh ij�i2:

On the other hand, equation (C.27) yields for n > N (to ensure EnC1 > 0),

h'nj'ni D h�j�i �
nX

iD1
h ij�i2 � HŒ'n�

EnC1

and since EnC1 grows like n2 for large n while HŒ'n� must remain bounded, we find
the completeness relation

lim
n!1h'nj'ni D lim

n!1

Z b

a
dx %.x/

 
�.x/ �

nX
iD1

 i.x/h ij�i
!2

D 0 (C.29)

or equivalently,

h�j�i D lim
n!1

nX
iD1

h�j iih ij�i:

Completeness of the series

1X
iD1

 i.x/h ij�i  �.x/

in the sense of equation (C.29) is denoted as completeness in the mean, and is
sometimes also expressed as

l:i:m:n!1
nX

iD1
 i.x/h ij�i D �.x/;

where l.i.m. stands for “limit in the mean”. Completeness in the mean says that the
series

P1
iD1  i.x/h ij�i approximates �.x/ in the least squares sense.

Completeness in the mean also implies for the two piecewise continuous
functions f and g

f .x/˙ g.x/ 
1X

iD1
 i.x/h ijf i ˙

1X
iD1

 i.x/h ijgi

and therefore

hf jgi D 1

4
.hf C gjf C gi � hf � gjf � gi/ D lim

n!1

nX
iD1

hf j iih ijgi: (C.30)
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Completeness in the sense of (C.30) is enough for quantum mechanics, because it
says that we can use the completeness relation

1 D lim
n!1

nX
iD1

j iih ij

in the calculation of matrix elements between sufficiently smooth functions (where
“sufficiently smooth D continuously differentiable to a required order” depends
on the operators we use). This is all that is really needed in quantum mechanics.
However, for piecewise smooth functions, the relation also holds pointwise almost
everywhere (see Remark 3 below).

I would like to add a few remarks:

1. The completeness property (C.29) also applies to piecewise continuous functions
in a � x � b and functions which do not vanish at the boundary points, because
every piecewise continuous function can be approximated in the mean by a
smooth function which vanishes at the boundaries.

2. If �.x/ is a smooth function satisfying the Sturm-Liouville boundary conditions,
as we have assumed in the derivation of (C.29), the series under the integral sign
will even converge uniformly to �.x/,

lim
n!1

nX
iD1

 i.x/h ij�i D �.x/;

i.e. for all a � x � b and all values � > 0, there exists an n.�/ such that

ˇ̌
ˇ̌
ˇ�.x/ �

nX
iD1

 i.x/h ij�i
ˇ̌
ˇ̌
ˇ < � if n � n.�/: (C.31)

Uniformity of the convergence refers to the fact that the same n.�/ ensures (C.31)
for all a � x � b.

3. If �.x/ is piecewise smooth in a � x � b, it can still be expanded pointwise
in Sturm-Liouville eigenstates. Except for points of discontinuity of �.x/, and
except for the boundary points if �.x/ does not satisfy the same boundary
conditions as the eigenfunctions  i.x/, the expansion

�.x/ D lim
n!1

nX
iD1

 i.x/h ij�i

holds pointwise, and the series converges uniformly to �.x/ in every closed
interval which excludes discontinuities of �.x/ (and the series converges to the
arithmetic mean in the points of discontinuity). The boundary points must also
be excluded if �.x/ does not satisfy the Sturm-Liouville boundary conditions.



Appendix D: Properties of Hermite Polynomials

We use the following equation as a definition of Hermite polynomials,

Hn.x/ D exp

�
1

2
x2
��

x � d

dx

�n

exp

�
�1
2

x2
�
; (D.1)

because we initially encountered them in this form in the solution of the harmonic
oscillator in Chapter 6. We can use the identity

�
x C d

dx

�
f .x/ D exp

�
�1
2

x2
�

d

dx

�
exp

�
1

2
x2
�

f .x/

�

to rewrite equation (D.1) in the form

Hn.x/ D exp

�
1

2
x2
��
2x � exp

�
�1
2

x2
�

d

dx
exp

�
1

2
x2
��n

exp

�
�1
2

x2
�

D
�

exp

�
1

2
x2
��
2x � exp

�
�1
2

x2
�

d

dx
exp

�
1

2
x2
��

exp

�
�1
2

x2
��n

D
�
2x � d

dx

�n

1; (D.2)

or we can use the identity

�
x � d

dx

�
f .x/ D � exp

�
1

2
x2
�

d

dx

�
exp

�
�1
2

x2
�

f .x/

�

to rewrite equation (D.1) in the Rodrigues form

Hn.x/ D exp
�
x2
� �� d

dx

�n

exp
��x2

�
: (D.3)
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The Rodrigues formula implies

1X
nD0

Hn.x/
zn

nŠ
D

1X
nD0

�
exp

�
x2
� @n

@zn
exp

��.x � z/2
��

zD0
zn

nŠ

D exp
�
x2
�

exp
��.x � z/2

� D exp
�
2xz � z2

�
: (D.4)

The residue theorem then also yields the representation

Hn.x/ D nŠ

2� i

I
dz

exp
�
2xz � z2

�
znC1 ; (D.5)

where the integration contour encloses z D 0 in the positive sense of direction, i.e.
counter clockwise.

Another useful integral representation for the Hermite polynomials follows
from (D.2) and the equation

Z 1

�1
du .2u/n exp

��.u C v/2
� D

Z 1

�1
du

�
� 2v � @

@v

�n

exp
��.u C v/2

�

D
�

� 2v � @

@v

�n p
�:

This yields in particular for v D �ix,

Z 1

�1
du .2u/n exp

��.u � ix/2
� D in

p
�Hn.x/: (D.6)

Combination of equations (D.4) and (D.6) yields Mehler’s formula1,

1X
nD0

Hn.x/Hn.x
0/

zn

nŠ
D

1X
nD0

Hn.x/
1p
�nŠ

Z 1

�1
du .�2iuz/n exp

��.u � ix0/2
�

D 1p
�

Z 1

�1
du exp

��4ixuz C 4u2z2
�

exp
��.u � ix0/2

�

D 1p
1 � 4z2

exp

 
�4z

z
�
x2 C x02� � xx0

1 � 4z2

!
: (D.7)

This requires jzj < 1=2 for convergence. In Sections 6.3 and 13.1 we need this in
the form for jzj < 1,

1F.G. Mehler, J. Math. 66, 161 (1866).
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1X
nD0

Hn.x/Hn.x
0/

zn

2nnŠ
exp

�
�x2 C x02

2

�

D 1p
1 � z2

exp

 
�
�
1C z2

� �
x2 C x02� � 4zxx0

2 .1 � z2/

!
: (D.8)

Indeed, applications of this equation for the harmonic oscillator are usually in
the framework of distributions and require the limit jzj ! 1. In principle we should
therefore replace the corresponding phase factors z in Sections 6.3 and 13.1 with
z exp.��/, and take the limit � ! C0 after applying any distributions which are
derived from (D.8).



Appendix E:
The Baker-Campbell-Hausdorff Formula

The Baker-Campbell-Hausdorff formula explains how to combine the product
of operator exponentials exp.A/ � exp.B/ into a single operator exponential
expŒˆ.A;B/�, if the series expansion for ˆ.A;B/ provided by the Baker-Campbell-
Hausdorff formula converges.

We try to determine ˆ.A;B/ as a power series in a parameter �,

expŒ�A� � expŒ�B� D expŒˆ.�A; �B/�; ˆ.�A; �B/ D
1X

nD1
�ncn.A;B/:

We also use the notation of the adjoint action of an operator A on an operator B,

A.ad/ ı B D �ŒA;B�:
We start with

expŒ˛A� � expŒˇB� D expŒˆ.˛A; ˇB/�:

This implies with Lemma (6.22) the equations

B D expŒ�ˆ.˛A; ˇB/�
@

@ˇ
expŒˆ.˛A; ˇB/� D

1X
nD1

.�/n
nŠ

n
Œˆ.˛A; ˇB/; @ˇ�

D �
1X

nD1

.�/n
nŠ

n�1
Œ ˆ.˛A; ˇB/; @ˇˆ.˛A; ˇB/�

D
1X

nD1

1

nŠ

�
ˆ.˛A; ˇB/.ad/

�n�1 ı @ˇˆ.˛A; ˇB/

D expŒˆ.˛A; ˇB/.ad/� � 1
ˆ.˛A; ˇB/.ad/

ı @ˇˆ.˛A; ˇB/
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and

A D � expŒˆ.˛A; ˇB/�
@

@˛
expŒ�ˆ.˛A; ˇB/� D �

1X
nD1

1

nŠ

n
Œˆ.˛A; ˇB/; @˛�

D
1X

nD1

1

nŠ

n�1
Œ ˆ.˛A; ˇB/; @˛ˆ.˛A; ˇB/�

D
1X

nD1

1

nŠ

��ˆ.˛A; ˇB/.ad/
�n�1 ı @˛ˆ.˛A; ˇB/

D 1 � expŒ�ˆ.˛A; ˇB/.ad/�

ˆ.˛A; ˇB/.ad/
ı @˛ˆ.˛A; ˇB/:

For the inversion of these equations, we notice

�
exp.z/ � 1

z

��1
D z

exp.z/ � 1 D z
exp.�z=2/

exp.z=2/ � exp.�z=2/

D z

2

exp.z=2/C exp.�z=2/

exp.z=2/ � exp.�z=2/
� z

2

D z

2
coth

z

2
� z

2
D 1C

1X
nD1

.�/nC1

.2n/Š
Bnz2n � z

2
;

�
1 � exp.�z/

z

��1
D z

1 � exp.�z/
D z

exp.z=2/

exp.z=2/ � exp.�z=2/

D z

2

exp.z=2/C exp.�z=2/

exp.z=2/ � exp.�z=2/
C z

2

D z

2
coth

z

2
C z

2
D 1C

1X
nD1

.�/nC1

.2n/Š
Bnz2n C z

2
;

where the coefficients Bn are Bernoulli numbers.
The previous equations yield (with ˆ.˛A; ˇB/.ad/ ı A D �Œˆ.˛A; ˇB/;A�)

@˛ˆ.˛A; ˇB/ D ˆ.˛A; ˇB/.ad/

2
coth

ˆ.˛A; ˇB/.ad/

2
ı A

� 1

2
Œˆ.˛A; ˇB/;A�;

@ˇˆ.˛A; ˇB/ D ˆ.˛A; ˇB/.ad/

2
coth

ˆ.˛A; ˇB/.ad/

2
ı B

C 1

2
Œˆ.˛A; ˇB/;B�;
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@�ˆ.�A; �B/ D
h
@˛ˆ.˛A; ˇB/C @ˇˆ.˛A; ˇB/

i
˛DˇD�

D ˆ.�A; �B/.ad/

2
coth

ˆ.�A; �B/.ad/

2
ı .A C B/

C 1

2
ŒA � B; ˆ.�A; �B/�;

i.e.

@�ˆ.�A; �B/ D A C B C
1X

nD1

.�/nC1

.2n/Š
Bn � Œˆ.�A; �B/.ad/�2n ı .A C B/

C 1

2
ŒA � B; ˆ.�A; �B/�: (E.1)

Equation (E.1) provides us with a recursion relation for the n-th order coefficient
functions cn.A;B/,

.n C 1/cnC1.A;B/ D 1

2
ŒA � B; cn.A;B/�C

bn=2cX
mD1

.�/mC1

.2m/Š
Bm

�
X

1	k1;k2;:::k2m
k1C:::Ck2mDn

Œck2m.A;B/; Œ: : : ; Œck2 .A;B/; Œck1 .A;B/;A C B�� : : :��; (E.2)

with

c0.A;B/ D 0; c1.A;B/ D A C B:

The floor function bxc maps to the next lowest integer smaller or equal to x, i.e.
bn=2c D n=2 if n is even, bn=2c D .n � 1/=2 if n is odd.

The result (E.2) yields for the next three terms

c2.A;B/ D 1

2
ŒA;B�;

c3.A;B/ D 1

12
ŒA � B; ŒA;B��C 1

6
B1ŒA C B; ŒA C B;A C B��

D 1

12
ŒA; ŒA;B��C 1

12
ŒB; ŒB;A��;

c4.A;B/ D 1

96
ŒA � B; ŒA; ŒA;B��C ŒB; ŒB;A���

C 1

16
B1ŒA C B; ŒŒA;B�;A C B��
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D 1

96

�
ŒA; ŒA; ŒA;B��� � ŒB; ŒB; ŒB;A���C ŒA; ŒB; ŒB;A���

�ŒB; ŒA; ŒA;B��� � ŒA; ŒA; ŒA;B���C ŒB; ŒB; ŒB;A���

CŒA; ŒB; ŒB;A��� � ŒB; ŒA; ŒA;B���
�

D 1

48
ŒA; ŒB; ŒB;A��� � 1

48
ŒB; ŒA; ŒA;B��� D 1

24
ŒA; ŒB; ŒB;A���:

The Jacobi identity

ŒA; ŒB;C��C ŒB; ŒC;A��C ŒC; ŒA;B�� D 0

was used in the last step for c4.



Appendix F:
The Logarithm of a Matrix

Exponentials of square matrices G, M D exp G D P1
nD0 Gn=nŠ, are frequently

used for the representation of symmetry transformations. Indeed, the properties of
continuous symmetry transformations are often discussed in terms of their first order
approximations 1C G, where it is assumed that continuity of the symmetries allows
for parameter choices such that max jGijj 
 1. It is therefore of interest that the
logarithm G D ln M of invertible square matrices can also be defined, although the
existence of G does not imply that it can be chosen to satisfy max jGijj 
 1 for M
close to the unit matrix, see below.

Suppose M is a complex invertible square matrix which is related to its Jordan
canonical form through

M D T � ˚n Jn � T�1:

Each of the smaller square matrices Jn has the form

J D �1 (F.1)

or the form

J D

0
BBBBBBBB@

� 1 0 0 : : : 0 0 0

0 � 1 0 : : : 0 0 0
:::
:::
:::
:::
:::
:::
:::
:::

0 0 0 0 : : : � 1 0

0 0 0 0 : : : 0 � 1

0 0 0 0 : : : 0 0 �

1
CCCCCCCCA
; (F.2)

and det.M/ ¤ 0 implies that none of the eigenvalues � can vanish.

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7
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In the case (F.1) we have

J D exp.ln�1/ ; ln J D ln�1:

However, it is also possible to construct the logarithm of a Jordan block matrix (F.2).
The direct sum of the logarithms of all the matrices Jn then yields the logarithm of
the matrix M,

M D exp.T � ˚n ln Jn � T�1/; ln M D T � ˚n ln Jn � T�1:

Suppose the Jordan matrix (F.2) is a .�C 1/� .�C 1/ matrix. We define .� C 1/

� .� C 1/ matrices Nn, 0 � n � �, according to .Nn/ij D ıiCn;j, i.e. N0 is the
.� C 1/ � .� C 1/ unit matrix and N1	n	� has non-vanishing entries 1 only in the
n-th diagonal above the main diagonal. These matrices satisfy the multiplication law
Nm � Nn D ‚.� � m � n C �/NmCn, which also implies Nn D .N1/

n.
Each .� C 1/ � .� C 1/ Jordan block can be written as J D �N0 C N1, and its

logarithm can be defined through

X D ln J D

0
BBBBBBBB@

ln� ��1 ���2=2 ��3=3 : : : .�/��1���=�
0 ln� ��1 ���2=2 : : : .�/��2��.��1/=.� � 1/
:::

:::
:::

:::
:::

:::

0 0 0 0 : : : ���2=2
0 0 0 0 : : : ��1
0 0 0 0 : : : ln�

1
CCCCCCCCA

D N0 ln� �
�X

nD1

.��/�n

n
Nn: (F.3)

We can prove exp.X/ D J in the following way. The N-th power of X is (here
0 < � < 1 is introduced to avoid the ambiguity of the ‚ function at 0)

XN D N0.ln�/
N C .�/N

�C1�NX
1	n1;n2:::nN

‚

 
� C � �

NX
iD1

ni

!

� .��/
�n1�n2�:::�nN

n1 � n2 � : : : � nN
Nn1Cn2C:::CnN

:

� .�/NN ln�
�C2�NX

1	n1;n2:::nN�1

‚

 
� C � �

N�1X
iD1

ni

!

� .��/
�n1�n2�:::�nN�1

n1 � n2 � : : : � nN�1
Nn1Cn2C:::CnN�1
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C .�/N
�

N
2

�
.ln�/2

�
�C3�NX

1	n1;n2:::nN�2

‚

 
� C � �

N�2X
iD1

ni

!

� .��/
�n1�n2�:::�nN�2

n1 � n2 � : : : � nN�2
Nn1Cn2C:::CnN�2

C : : :

� N.ln�/N�1
�X

nD1

.��/�n

n
Nn:

We can combine terms in the form

XN D N0.ln�/
N C

NX
mD1

.�/m
�

N
m

�
.ln�/N�m

�
�C1�mX

1	n1;n2:::nm

‚

 
� C � �

mX
iD1

ni

!
.��/�n1�n2�:::�nm

n1 � n2 � : : : � nm
Nn1Cn2C:::Cnm

D N0.ln�/
N C

�X
MD1

.��/�MNM

min.N;M/X
mD1

.�/m
�

N
m

�
.ln�/N�m

�
MC1�mX

1	n1;n2:::nm
n1Cn2C:::CnmDM

1

n1 � n2 � : : : � nm
:

This is after isolation of the term with M D 1 in the sum,

XN D N0.ln�/
N C N

.ln�/N�1

�
N1 C‚.� � 2C �/

�
�X

MD2
.��/�MNM

 min.N;M/X
mD1

.�/m
�

N
m

�
.ln�/N�m

�
MC1�mX

1	n1;n2:::nm
n1Cn2C:::CnmDM

1

n1 � n2 � : : : � nm

!
:

Only the first two terms survive in

exp.X/ D 1C
1X

ND1

XN

NŠ
D �N0 C N1 D J
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because the sum over N in the term of order M reduces to

1X
NDm

.ln�/N�m

.N � m/Š
D �;

and the remaining sums yield for M � 1

MX
mD1

.�/m
mŠ

MC1�mX
1	n1;n2:::nm

n1Cn2C:::CnmDM

1

n1 � n2 � : : : � nm

D 1

2� i

I
jzj<1

dz
MX

mD1

.�/m
mŠ

1X
n1;n2:::nmD1

zn1Cn2C:::Cnm�M�1

n1 � n2 � : : : � nm

D 1

2� i

I
jzj<1

dz
1X

mD1

.�/m
mŠ

1X
n1;n2:::nmD1

zn1Cn2C:::Cnm�M�1

n1 � n2 � : : : � nm

D 1

2� i

I
jzj<1

dz
1X

mD1

.�/m
mŠ

 1X
nD1

zn

n

!m

z�M�1

D 1

2� i

I
jzj<1

dz
1X

mD1

Œln.1 � z/�m

mŠ
z�M�1

D 1

2� i

I
jzj<1

dz
�
z�M�1 � z�M

� D �ıM;1:

Equation (F.3) is a special case of a general procedure to define functions M !
f .M/ of square matrices [16], and for every n 2 Z, the matrix X C 2� inN0 is also a
logarithm of J.

A glance at (F.3) tells us that we should avoid matrices with Jordan blocks in
their eigenvalue decomposition if we want to find logarithms with the property
max j.ln M/ijj 
 1 for max jMij �ıijj 
 1. This can be achieved if we use hermitian
and unitary matrices, and if M does not satisfy this condition, we can use its polar
decomposition

M D H � U D .M � MC/1=2 � Œ.M � MC/�1=2 � M� (F.4)

in terms of a hermitian and a unitary factor, or a symmetric and an orthogonal factor
if M is real. The factors will then have logarithms with small matrix elements
if M is close to the unit matrix, i.e. the analysis of continuous symmetries in
finite-dimensional vector spaces eventually requires the analysis of up to two first
order transformations 1 C ln H and 1 C ln U. This is the case e.g. for Lorentz
transformations, where H is the pure boost part and U is the rotation.



Appendix G: Dirac � matrices

It is useful for the understanding and explicit construction of � matrices to discuss
their properties in a general number d of spacetime dimensions. � matrices in more
than four spacetime dimensions are regularly used in theories which hypothesize the
existence of extra spacetime dimensions. On the other hand, variants of the Dirac
equation in two space dimensions or three spacetime dimensions have also become
relevant in materials science for the description of electrons in Graphene and other
two-dimensional materials.

�-matrices in d dimensions

The condition (21.35), f�	; ��g D �2�	� , implies that any product of n gamma
coefficients �˛ � �ˇ � : : : � �! can be reduced to a product of n � 2 coefficients if
two indices have the same value. We can also re-order any product such that the
indices have increasing values. These observations imply that the d coefficients �	
can produce at most 2d linearly independent combinations

1; �0; �1; : : : ; �d�1; �0 � �1; �0 � �2; : : : ; �0 � �1 � : : : � �d�1: (G.1)

We are actually interested in matrix representations of the algebra generated
by (21.35), and consider the coefficients �	 and the objects in (G.1) as matrices
in the following. We first discuss the case that d is an even number of spacetime
dimensions, and we define multi-indices J through

�J D �	1 � �	2 � : : : � �	n ; 	1 < 	2 < : : : < 	n; n.J/ D n: (G.2)

It is easy to prove that

tr.�J/ D 0: (G.3)

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7
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For even n.J/ this follows from the anti-commutativity of the � -matrices and the
cyclic invariance of the trace. For odd n.J/ this follows from the fact that there is at
least one � -matrix not contained in �J , e.g. �1, and therefore

tr.�J/ D �tr.�21 ��J/ D �tr.�1 ��J � �1/ D tr.�21 ��J/ D �tr.�J/ D 0:

The product �I ��J reduces either to a �-matrix �K if I ¤ J, or otherwise

�2I D ˙1;

and this implies orthogonality of all the �-matrices and 1,

tr.�I ��J/ / ıIJ :

For even number of spacetime dimensions d this implies that all the 2d matrices
in (G.1) are indeed linearly independent, and therefore a minimal matrix represen-
tation of (21.35) requires at least .2d=2 � 2d=2/-matrices. We will see by explicit
construction that such a representation exists, and because 2d=2 is the minimal
dimension, the representation must be irreducible, i.e. cannot split into smaller
matrices acting in spaces of lower dimensions. The representation also turns out
to be unique up to similarity transformations

�	 ! � 0
	 D A � �	 � A�1:

For odd number of spacetime dimensions d, we also define the matrices �J

according to (G.1), but now the previous proof of tr.�J/ D 0 only goes through
for all the matrices �J except for the last matrix in the list,

�0;1;:::d�1 D �0 � �1 � : : : � �d�1:

For odd d, this matrix contains an odd number of � -matrices, and it contains all
� -matrices, such that the previous proof of vanishing trace for odd n.J/ does not go
through for this particular matrix. Furthermore, this matrix has the properties

Œ�0;1;:::d�1; �J� D 0; (G.4)

�20;1;:::d�1 D .�/.dC2/.d�1/=21 D .�/.d�1/=21: (G.5)

Commutativity with all other matrices implies that in every irreducible represen-
tation

�0;1;:::d�1 D ˙.�/.d�1/=41; (G.6)

see the following subsection for the proof.



G. Dirac � matrices 635

This also implies that every product �J of n.J/ � .d C 1/=2 � matrices is up to
a numerical factor a product �I of n.I/ D d � n.J/ � .d � 1/=2 � matrices,

h
�J

i
n.J/�.dC1/=2 D

h
1 ��J

i
n.J/�.dC1/=2 /

h
�0;1;:::d�1 ��J

i
n.J/�.dC1/=2

/
h
�I

i
n.I/	.d�1/=2:

Therefore there are only 2d�1 linearly independent matrices in (G.1) for odd d,
and the minimal possible dimension of the representation is only 2.d�1/=2. The
explicit construction later on confirms that the minimal dimension also works for
odd number of spacetime dimensions. There are two different equivalence classes
of matrix representations with dimension 2.d�1/=2.

We can summarize the results on the dimensions of � matrices in d space(-time)
dimensions by the statement the irreducible representations of the Dirac algebra
are provided by 2bd=2c � 2bd=2c matrices, where the floor function in the exponents
rounds to the next lowest integer and is also often written in terms of Gauss brackets:
bd=2c � Œd=2�G D d=2 if d is even, bd=2c � Œd=2�G D .d � 1/=2 if d is odd.

Proof that in irreducible representations 
0;1;:::d�1 / 1
for odd spacetime dimension d

�0;1;:::d�1 commutes with all �J . Suppose that we have an irreducible matrix
representation of (G.1) in a vector space V of dimension dimV . If � is an eigenvalue
of �0;1;:::d�1 / 1,

det.�0;1;:::d�1 � �1/ D 0;

we have

dim
�
.�0;1;:::d�1 � �1/ � V

�
� dimV � 1;

and

�J � .�0;1;:::d�1 � �1/ � V D .�0;1;:::d�1 � �1/ ��J � V:

The last equation would imply that .�0;1;:::d�1 � �1/ � V , if non-empty, would be
an invariant subspace under the action of the � -matrices, in contradiction to the
irreducibility of V . Therefore we must have

.�0;1;:::d�1 � �1/ � V D ;; �0;1;:::d�1 D �1
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in every irreducible representation. Equation (G.5) tells us that

� D ˙.�/.d�1/=4:

The proof is simply an adaptation of the proof of Schur’s lemma from group
theory.

Recursive construction of �-matrices in different dimensions

We will use the following conventions for the explicit construction of � -matrices:
Up to similarity transformations, the � -matrices in two spacetime dimensions are

�0 D
�
0 1

1 0

�
; �1 D

�
0 1

�1 0
�
: (G.7)

For the recursive construction in higher dimensions d � 3 we now assume that
�	, 0 � 	 � d � 2, are � -matrices in d � 1 dimensions.

For the construction of � -matrices in an odd number d of spacetime dimensions
there are two inequivalent choices,

�0 D ˙ i.d�3/=2�0�1 : : : �d�2 D ˙
��1 0

0 1

�
; �i D �i; 1 � i � d � 2;

�d�1 D � i�0: (G.8)

For the construction of � -matrices in an even number d � 4 of spacetime
dimensions there is only one equivalence class of representations,

�0 D
�
0 1

1 0

�
; �i D

�
0 ��0�i

�0�i 0

�
; 1 � i � d � 2;

�d�1 D
�
0 ��0
�0 0

�
: (G.9)

Note that it does not matter from which of the two possible representations ˙�0 in
the odd number d � 1 of lower dimensions we start since �0 intertwines the two
possibilities,

�0�i�0 D ��i; 1 � i � d � 1:

The possibility of similarity transformations implies that there are infinitely many
equivalent possibilities to construct these bases of � -matrices. The construction
described here was motivated from the desire to have Weyl bases (i.e. all �	 have
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only off-diagonal non-vanishing .2.d=2/�1 � 2.d=2/�1/ blocks) in even dimensions,
and to have the next best solution, viz. Dirac bases (i.e. �0 D ˙diag.1;�1/, all
� i like in a Weyl basis), in odd dimensions. Note that all the representations (G.8)
and (G.9) of the � -matrices in odd or even dimensions fulfill

�C
0 D �0; �C

i D ��i;

or equivalently

�C
	 D �0�	�0: (G.10)

Every set of � -matrices is equivalent to a set satisfying equation (G.10). We will
prove this in the following subsection.

Proof that every set of �-matrices is equivalent to a set
which satisfies equation (G.10)

In this section we do not use summation convention but spell out all summations
explicitly.

We define 2bd=2c � 2bd=2c matrices X0 D �0, Xi D i�i,

fX	;X�g D 2ı	�

and prove that the matrices X	 are equivalent to a set of unitary matrices Y	. Since
the matrices Y	 also satisfy Y�1

	 D Y	, unitarity also implies hermiticity of Y	. We

use the abbreviation N D 2bd=2c, and consider the set S of N � N matrices

1; XI D X	1 � : : : � X	n ; n � On D
�

d; d even
d�1
2
; d odd

This set does not form a group, but only a group modulo Z2. But this is sufficient
for the standard argument for equivalence to a set of unitary matrices.

The N � N matrix

H D 1 C
X

I

XC
I � XI D HC

is invariant under right translations in the set S (i.e. right multiplication of all
elements by some fixed element Z), because that just permutes the elements, up
to possible additional minus signs which cancel in H,

H D ZC � Z C
X

I

.XI � Z/C � .XI � Z/:
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H also has N positive eigenvalues, because

H � ˛ D h˛ ˛;  C̨ � ˇ D ı˛ˇ; (G.11)

implies

h˛ D  C̨ � H � ˛ D 1C
X

I

jXI � ˛j2 > 0: (G.12)

If we define the matrix ‰ with columns  ˛ , equations (G.11) and (G.12) imply

diag.h1; : : : hN/ D ‰C � H �‰; H D ‰ � diag.h1; : : : hN/ �‰C:

Now define

Y	 D ‰ � diag.
p

h1; : : :
p

hN/ �‰C � X	 � .‰ � diag.
p

h1; : : :
p

hN/ �‰C/�1:

These matrices are indeed unitary,

YC
	 � Y	 D

�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1 � XC

	

�
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C�2 � X	

�
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1

D
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1 � XC

	 � H � X	

�
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1

D
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1

�ŒXC
	 � X	 CP

I.ZI � X	/
C � .ZI � X	/�

�
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1

D
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1 � H

�
�
‰ � diag

�p
h1; : : :

p
hN

�
�‰C��1 D 1;

which concludes the proof of equivalence of the matrices X	 to a set of matrices Y	
which are both unitary and hermitian.
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Equivalence of the � matrices to hermitian or anti-hermitian matrices also implies
that every reducible representation of � matrices is fully reducible.

Uniqueness theorem for � matrices

Every irreducible matrix representation of the algebra generated by (21.35) is
equivalent to one of the representations constructed in the previous section.

We first consider the case of even number of dimensions d. The theorem says that
in this case every irreducible matrix representation of (21.35) is equivalent to the
representation in terms of 2d=2 � 2d=2 constructed in equation (G.9).

Proof. Suppose the N1 � N1 matrices �1;	 and the N2 � N2 matrices �2;	, 0 � 	 �
d � 1, are two sets of matrices which satisfy the conditions (21.35). V1 is the N1-
dimensional vector space in which the matrices �1;	 act. We use the representations
from the previous section, equation (G.9), for the matrices �2;	. This implies N1 �
N2 D 2d=2.

We denote the components of the matrices �1;	 and �2;	 with �1;	a
b and �2;	˛ˇ ,

respectively, and define again multi-indices J for the two sets of � matrices (cf.
equation (G.2)),

�r;J D �r;	1 � �r;	2 � : : : � �r;	n ; 1 � r � 2; 	1 < 	2 < : : : < 	n; n.J/ D n:

The squares of these matrices satisfy

�r;I
2 D ˙1 D sI1; (G.13)

where the sign factor

sI D .�/n.I/Œn.I/C1�=2�	1	1 (G.14)

arises as the product of the factor .�/n.I/Œn.I/�1�=2 from the permutations of �
matrices times a factor .�/n.I/ from the sign on the right hand side of (21.35). Only
�	1	1 appears on the right hand side of (G.14) because we have only one timelike
direction. For the case of general spacetime signature one could simply include the
product �	1	1�	2	2 : : : �	n	n .

The results from the previous section for even d tell us that a set �r;I with fixed
r, after augmentation with the Nr � Nr unit matrix �r;0 D 1, contains 2d linearly
independent matrices.

We define the N1 � N2 different N1 � N2 matrices Ea
˛ with components

.Ea
˛/bˇ D ıa

bı˛ˇ:
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We use these matrices to form the N1 � N2 matrices

�a
˛ D Ea

˛ C
X

J

sJ�1;J � Ea
˛ ��2;J;

i.e. in components,

.�a
˛/bˇ D ıa

bı˛ˇ C
X

J

sJ.�1;J/
b

a.�2;J/
˛
ˇ: (G.15)

Suppose I ¤ J. The conditions (21.35) imply that there is always a multi-index
K ¤ I such that

�r;I ��r;J D ˙�r;K ;

and inversion of this equation yields

sIsJ�r;J ��r;I D ˙ sK�r;K :

This implies

�1;I ��a
˛ D �1;I � Ea

˛ C Ea
˛ ��2;I C

X
J¤I

sJ�1;I ��1;J � Ea
˛ ��2;J

D
�

sI�1;I � Ea
˛ ��2;I C Ea

˛

C
X
J¤I

sIsJ�1;I ��1;J � Ea
˛ ��2;J ��2;I

�
��2;I

D
�

sI�1;I � Ea
˛ ��2;I C Ea

˛ C
X
K¤I

sK�1;K � Ea
˛ ��2;K

�
��2;I

D �a
˛ ��2;I : (G.16)

We know that the matrices (G.15) are not null matrices, �a
˛ ¤ 0, because we

know that the 2d matrices f1; �2;Jg are linearly independent,

ıa
b1 C

X
J

sJ.�1;J/
b

a�2;J ¤ 0:

This implies that the N1-dimensional vector space V1 with basis vectors e1;b, 1 �
b � N1, contains non-vanishing sets of N2 D 2d=2 � N1 basis vectors

e1;ˇ D e1;b.�a
˛/bˇ; 1 � ˇ � 2d=2 � N1;
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which are invariant under the action of the � matrices,

e1;b.�1;	/bc.�a
˛/cı D e1;b.�a

˛/bˇ.�2;	/
ˇ
ı:

Therefore the representation of � matrices in V1 is either reducible into invariant
subspaces of dimension 2d=2, or we have N1 D 2d=2. In the latter case we must have

det.�a
˛/ ¤ 0;

because representations spaces of dimension 2d=2 are irreducible, and therefore

�1;	 D �a
˛ � �2;	 � .�a

˛/�1

is equivalent to the representation from the previous section for even d. Thus
concludes the proof for even d.

For odd d we observe that the matrices �	, 0 � 	 � d�2, form a set of � matrices
for a .d � 1/-dimensional Minkowski space, which according to the previous result
is either reducible or equivalent to the corresponding representation (G.9) from the
previous section. However, using those matrices, the missing matrix �d�1 can easily
be constructed according to the prescription

�d�1 D ˙.�/.d�1/.d�2/=4�0 � �1 � : : : � �d�2: (G.17)

Now assume that the matrices �	, 0 � 	 � d�2, are 2.d�1/=2�2.d�1/=2 matrices,
i.e. they form an irreducible representation of � matrices for a .d � 1/-dimensional
Minkowski space. In that case completeness of the set

�J D �	1 � �	2 � : : : � �	n ; 0 � 	1 < 	2 < : : : < 	n � d � 2 (G.18)

in GL.2.d�1/=2/ implies that (G.17) are the only options for the construction of
�d�1. Completeness of the set (G.18) also implies that the two options for the sign
in (G.17) correspond to two inequivalent representations.

On the other hand, if the matrices �	, 0 � 	 � d � 2, form a reducible
representation of � matrices for a .d � 1/-dimensional Minkowski space, they
must be equivalent to matrices with irreducible 2.d�1/=2 � 2.d�1/=2 matrices O�	,
0 � 	 � d � 2, in diagonal blocks. Then one can easily prove from the anti-
commutation relations and the completeness of the set

O�J D O�	1 � O�	2 � : : : � O�	n ; 0 � 	1 < 	2 < : : : < 	n � d � 2

in 2.d�1/=2-dimensional subspaces that the matrix �d�1 must consist of 2.d�1/=2 �
2.d�1/=2 blocks which are proportional to O�0 � O�1 � : : : � O�d�2. The property �2d�1 D �1

can then be used to demonstrate that �d�1 must be equivalent to a matrix which only
has matrices

O�d�1 D ˙.�/.d�1/.d�2/=4 O�0 � O�1 � : : : � O�d�2
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in diagonal 2.d�1/=2 � 2.d�1/=2 blocks, i.e. a representation of � matrices for odd
number d of dimensions is either equivalent to one of the two irreducible 2.d�1/=2-
dimensional representations distinguished by the sign in (G.17), or it is a reducible
representation.

In the recursive construction of � matrices described above, I separated the two
equivalence classes of irreducible representations through the sign of �0 instead
of �d�1, cf. (G.8). We can cast the sign from �d�1 to �0 through the similarity
transformation

�0 ! �0 � �d�1 � �0 � �0 � �d�1 D ��0;
�d�1 ! �0 � �d�1 � �d�1 � �0 � �d�1 D ��d�1;

�i ! �0 � �d�1 � �i � �0 � �d�1 D �i; 1 � i � d � 2:

Contraction and trace theorems for � matrices

Here we explicitly refer to four spacetime dimensions again. The generalizations to
any number of spacetime dimensions are trivial.

Equation (21.35) implies

���� D � 4:

The higher order contraction theorems then follow from (21.35) and application of
the next lower order contraction theorem, e.g.

���	�� D f�� ; �	g�� � �	���� D 2�	;

���	���� D 4�	�; ���	������ D 2�����	:

The trace of a product of an odd number of � matrices vanishes. The trace of a
product of two � matrices is determined by their basic anti-commutation property,

tr
�
�	��

� D � 4�	�: (G.19)

The trace of a product of four � matrices is easily evaluated using their anti-
commutation properties and cyclic invariance of the trace

tr
�
����	��

� D 8���	� � tr
�
������	

� D 8���	� � tr
�
�	�����

�
D 8���	� � 8�	��� C tr

�
��	����

�
D 8���	� � 8�	��� C 8�	��� � tr

�
����	��

�
;
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i.e.

tr
�
����	��

� D 4���	� � 4�	��� C 4�	���: (G.20)

For yet higher orders we observe

tr
�
�˛1 : : : �˛2n�	��

� D � 2�	� tr.�˛1 : : : �˛2n/ � tr
�
�	�˛1 : : : �˛2n��

�
D � 2�	� tr.�˛1 : : : �˛2n/C tr

�
�˛1�	�˛2 : : : �˛2n��

�
C 2�	˛1 tr.�˛2 : : : �˛2n��/

D � 2�	� tr.�˛1 : : : �˛2n/ � tr
�
�˛1 : : : �˛2n�	��

�

� 2
2nX

iD1
.�/i�	˛i tr

�
�˛1 : : : �˛i�1�˛iC1

: : : �˛2n��
�
;

i.e. we have a recursion relation

tr
�
�˛1 : : : �˛2n�	��

� D � �	� tr.�˛1 : : : �˛2n/

�
2nX

iD1
.�/i�	˛i tr

�
�˛1 : : : �˛i�1�˛iC1

: : : �˛2n��
�
:

This yields for products of six � matrices

tr
�
��������	��

� D � 4������	� C 4������	� � 4������	� C 4������	�

� 4������	� C 4������	� � 4������	� C 4������	�

� 4������	� C 4�������	 � 4�������	 C 4�������	

� 4������	� C 4������	� � 4������	�; (G.21)

and the trace of the product of eight � matrices contains 105 terms,

tr
�
�˛�ˇ��������	��

� D 4������	��˛ˇ � 4������	��˛ˇ C 4������	��˛ˇ

� 4������	��˛ˇ C 4������	��˛ˇ � 4������	��˛ˇ C 4������	��˛ˇ

� 4������	��˛ˇ C 4������	��˛ˇ � 4�������	�˛ˇ C 4�������	�˛ˇ

� 4�������	�˛ˇ C 4������	��˛ˇ � 4������	��˛ˇ C 4������	��˛ˇ

� 4����	��ˇ�˛� C 4����	��ˇ�˛� � 4��	����ˇ�˛� C 4���	ˇ����˛�

� 4�	��ˇ����˛� C 4�ˇ�	�����˛� � 4����	ˇ���˛� C 4��	��ˇ���˛�

� 4��ˇ�	����˛� C 4���	ˇ����˛� � 4��	�ˇ����˛� C 4��ˇ�	����˛�

� 4����ˇ��	�˛� C 4����ˇ��	�˛� � 4��ˇ����	�˛� C 4����	��ˇ�˛�
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� 4����	��ˇ�˛� C 4��	����ˇ�˛� � 4���	ˇ����˛� C 4�	��ˇ����˛�

� 4�ˇ�	�����˛� C 4����	ˇ���˛� � 4��	��ˇ���˛� C 4��ˇ�	����˛�

� 4���	ˇ����˛� C 4��	�ˇ����˛� � 4��ˇ�	����˛� C 4����ˇ��	�˛�

� 4����ˇ��	�˛� C 4��ˇ����	�˛� � 4�����	��ˇ�˛ C 4�����	��ˇ�˛

� 4��	�����ˇ�˛ C 4����	ˇ����˛ � 4��	��ˇ����˛ C 4��ˇ�	�����˛

� 4����	ˇ����˛ C 4��	��ˇ����˛ � 4��ˇ�	�����˛ C 4����	ˇ����˛

� 4��	��ˇ����˛ C 4��ˇ�	�����˛ � 4�����ˇ��	�˛ C 4�����ˇ��	�˛

� 4��ˇ�����	�˛ C 4����	��ˇ�˛� � 4����	��ˇ�˛� C 4��	����ˇ�˛�

� 4���	ˇ����˛� C 4��	�ˇ����˛� � 4��ˇ�	����˛� C 4���	ˇ����˛�

� 4��	�ˇ����˛� C 4��ˇ�	����˛� � 4����	ˇ���˛� C 4��	��ˇ���˛�

� 4��ˇ�	����˛� C 4����ˇ��	�˛� � 4����ˇ��	�˛� C 4��ˇ����	�˛�

� 4�������ˇ�˛	 C 4�������ˇ�˛	 � 4�������ˇ�˛	 C 4����ˇ����˛	

� 4����ˇ����˛	 C 4��ˇ������˛	 � 4����ˇ����˛	 C 4����ˇ����˛	

� 4��ˇ������˛	 C 4�����ˇ���˛	 � 4�����ˇ���˛	 C 4��ˇ������˛	

� 4����ˇ����˛	 C 4����ˇ����˛	 � 4��ˇ������˛	 C 4������	ˇ�˛�

� 4������	ˇ�˛� C 4������	ˇ�˛� � 4����ˇ�	��˛� C 4����ˇ�	��˛�

� 4��ˇ���	��˛� C 4����ˇ�	��˛� � 4����ˇ�	��˛� C 4��ˇ���	��˛�

� 4�����ˇ�	�˛� C 4�����ˇ�	�˛� � 4��ˇ����	�˛� C 4����ˇ�	��˛�

� 4����ˇ�	��˛� C 4��ˇ���	��˛�: (G.22)



Appendix H:
Spinor representations of the Lorentz group

The explicit form of the Lagrange density (21.74) for the Dirac field and the
appearance of the factor ‰ D ‰C � �0 are determined by the requirement of
Lorentz invariance of L and the transformation properties of spinors under Lorentz
transformations. However, before we can elaborate on these points, we have to
revisit the Lorentz transformation (B.8), which is also denoted as the vector
representation because it acts on spacetime vectors. We can discuss this in general
numbers n of spatial dimensions and d D n C 1 of spacetime dimensions.

Generators of proper orthochronous Lorentz transformations
in the vector and spinor representations

We can write the two factors of a proper orthochronous Lorentz transformation (B.8)
as exponentials of Lie algebra elements,

ƒ.u; �/ D ƒ.u/ �ƒ.�/ D exp.u � K/ � exp

�
1

2
�ijLij

�
: (H.1)

For the boost part we use explicit construction to prove that every proper Lorentz
boost can be written in the form exp.u � K/.

For the rotation part we can use the general result that every element of a compact
Lie group can be written as a single exponential of a corresponding Lie algebra
element, or we can use the fact that a general n � n rotation matrix consists of
n orthonormal row vectors, which fixes the general form in terms of n.n � 1/=2

parameters, and then demonstrate that the n.n � 1/=2 parameters �ij of exp.�ijLij=2/

provide a general parametrization of n orthonormal row vectors.

© Springer International Publishing Switzerland 2016
R. Dick, Advanced Quantum Mechanics, Graduate Texts in Physics,
DOI 10.1007/978-3-319-25675-7
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Alternatively, we can consider (H.1) as an example for the polar decomposi-
tion (F.4) and infer the representation in terms of matrix exponentials from the
results on matrix logarithms in Appendix F.

The boost part is

ƒ.u/ D exp.u � K/ D exp
�
�i0Li0

� D exp
�
i�i0Mi0

�
(H.2)

and the spatial rotation is

ƒ.�/ D exp

�
1

2
�ijLij

�
D exp

�
i

2
�ijMij

�
; (H.3)

where �ij is the rotation angle in the ij plane. The generators are (in the vector
representation),

�
L	�

��
� D i

�
M	�

��
� D �

��	��� � ����	�
�
: (H.4)

These matrices generate the Lie algebra so.1; d � 1/,

ŒL	�;L�� � D ���L	� C �	�L�� � �	�L�� � ���L	�

D � .L	�/��L�� � .L	�/� �L��: (H.5)

In 4-dimensional Minkowski space, the angles �ij are related to the rotation angles
'i around the xi-axis according to

'i D 1

2
�ijk�jk; �ij D �ijk'k: (H.6)

To see how the boost vector u is related to the velocity v D cˇ, we will explicitly
calculate the boost matrix ƒ.u/. We have with a contravariant row index and a
covariant column index, as in (B.8),

u � K D uiLi0 D iuiMi0 D

0
BBB@

0 �u1 : : : �ud�1
�u1 0 : : : 0
:::

:::
:::

�ud�1 0 : : : 0

1
CCCA D

�
0 �uT

�u 0

�
;

.u � K/2 D
�

u2 0T

0 u ˝ uT

�
; .u � K/2n D u2n

�
1 0T

0 Ou ˝ OuT

�
; (H.7)

.u � K/2nC1 D u2nC1
�

0 �OuT

�Ou 0

�
: (H.8)
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For the interpretation of the .d � 1/� .d � 1/ matrices Ou ˝ OuT and 1� Ou ˝ OuT , note
that for every .d � 1/-dimensional spatial vector r

rk D Ou. OuT � r/ D . Ou ˝ OuT/ � r

is the part rk of the vector which is parallel to u, and

r? D r � rk D .1 � Ou ˝ OuT/ � r

is the part of the vector which is orthogonal to u.
Substitution of the results (H.7, H.8) into (H.2) yields for the boost in the direction
Ou D Ǒ

ƒ.u/ D
�

cosh.u/ 0T

0 1C Ou ˝ OuT.cosh.u/ � 1/
�

C sinh.u/

�
0 �OuT

�Ou 0

�

D
�

� � �ˇT

� �ˇ 1 � Ou ˝ OuT C � Ou ˝ OuT

�
;

i.e.

� D cosh.u/; ˇ D tanh.u/; u D artanh.ˇ/ D 1

2
ln

�
1C ˇ

1 � ˇ
�
:

The parameter u is usually denoted as the boost parameter or rapidity of the Lorentz
transformation.

It may also be worthwhile to write down the corresponding rotation matrix in
4-dimensional Minkowski space. If we use the 3 � 3 matrices from Section 7.4 for
the spatial subsections of the rotation matrices1 Lmn,

.Li/jk D 1

2
�imn.Lmn/jk D �ijk; (H.9)

the rotation matrices take the following form,

ƒ.�/ D exp

�
1 0T

0 ' � L

�
D
�
1 0T

0 exp.' � L/

�
; (H.10)

with the 3 � 3 rotation matrix

exp.' � L/ D O' ˝ O'T C
�
1 � O' ˝ O'T

�
cos' C O' � L sin': (H.11)

Application of the matrix O' � L generates a vector product,

. O' � L/ � r D � O' � r:

1In this Appendix we use underscore only for 2� 2 matrices.



648 H. Spinor representations of the Lorentz group

The anticommutation relations (21.35) imply that the properly normalized
commutators of � -matrices,

S	� D i

4
Œ�	; ��� (H.12)

also provide a representation of the Lie algebra so(1,d-1) (H.5),

ŒS	�; S�� � D i
�
�	�S�� C ���S	� � ���S	� � �	�S��

�
D i.L	�/�

�S�� C i.L	�/�
�S��: (H.13)

See equations (H.16–H.18) for the proof.
This representation of the Lorentz group is realized in the transformation of Dirac

spinors  .x/ under Lorentz transformations

x0 D ƒ.�/ � x D exp

�
1

2
�	�L	�

�
� x;

 0.x0/ D U.ƒ/ � .x/ D exp

�
i

2
�	�S	�

�
� .x/: (H.14)

The anticommutation relations (21.35) also imply invariance of the � -matrices
under Lorentz transformations x0 D ƒ.�/ � x,

� 0	 D ƒ	
�.�/ exp

�
i

2
��S�

�
� �� � exp

�
� i

2
���S��

�
D �	; (H.15)

see equation (H.19). This invariance property of the � -matrices also implies form
invariance of the Dirac equation under Lorentz transformations,

i„�	@0
	 

0.x0/ � mc 0.x0/ D exp

�
i

2
��S�

�
�
�

i„�	@	 .x/ � mc .x/
�
;

i.e. all inertial observers can use the same set of � -matrices, and the Dirac equation
has the same form for all of them.

Verification of the Lorentz commutation relations
for the spinor representations

The anti-commutation relations (21.35) imply

Œ�	��; ��� D �	f��; ��g � f�	; ��g�� D 2�	��� � 2����	
D 2.L	�/�

��� ; (H.16)
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where the matrices L	� were given in (H.4). Equation (H.16) also implies

ŒS	�; ��� D i.L	�/�
��� (H.17)

and

ŒS	�; S�� � D i

4
ŒS	�; Œ��; �� �� D i

4
ŒŒS	�; ���; �� � � i

4
ŒŒS	�; �� �; ���

D � 1

4
.L	�/�

�Œ��; �� �C 1

4
.L	�/�

�Œ��; ���

D i.L	�/�
�S�� C i.L	�/�

�S��: (H.18)

Equation (H.17) implies the Lorentz invariance of the � -matrices,

exp

�
i

2
�	�S	�

�
�� exp

�
� i

2
��S�

�
D
�

exp

�
�1
2
�	�L	�

�� �

�

��

D ƒ�1.�/���� : (H.19)

Scalar products of spinors and the Lagrangian
for the Dirac equation

The hermiticity relation (G.10) implies the following hermiticity property of the
Lorentz generators,

SC
	� D �0S	��

0;

and therefore

 0C.x0/ D  C.x/ � �0 exp

�
� i

2
�	�S	�

�
�0:

The adjoint spinor

 .x/ D  C.x/ � �0

therefore transforms inversely to the spinor  .x/,

 
0
.x/ D  .x/ � exp

�
� i

2
�	�S	�

�
;

and the product of spinors

 .x/ ��.x/ D  C.x/ � �0 ��.x/
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is Lorentz invariant. This yields a Lorentz invariant Lagrangian for the Dirac
equation,

L D i„c

2

�
 .x/ � �	 � @	 .x/ � @	 .x/ � �	 � .x/

�
� mc2 .x/ � .x/: (H.20)

The spinor representation in the Weyl and Dirac bases
of �-matrices

In even dimensions, the construction (G.9) yields � -matrices of the form

�0 D
�
0 1

1 0

�
; �i D

�
0 � i

�� i 0

�
; (H.21)

with hermitian .2.d=2/�1 � 2.d=2/�1/ matrices � i, which satisfy

f� i; � jg D 2ıij: (H.22)

The spinor representation of the Lorentz generators in this Weyl basis is

S0i D i

2
�0�i D i

2

��� i 0

0 � i

�
; (H.23)

Sij D i

4
Œ�i; �j� D � i

4

 
Œ� i; � j� 0

0 Œ� i; � j�

!
: (H.24)

This is the advantage of a Weyl basis: The 2d=2 components of a spinor explicitly
split into two Weyl spinors with 2.d=2/�1 components. The two Weyl spinors
transform separately under proper orthochronous Lorentz transformations. A Dirac
spinor representation in even dimensions is therefore reducible under the group of
proper orthochronous Lorentz transformations. However, the form of S0i tells us that
the two Weyl spinors are transformed into each other under time or space inversions.
Therefore the representation of the full Lorentz group really requires the full 2d=2-
dimensional Dirac spinor.

The rotation generators in the Dirac representation in even dimensions are the
same as in the Weyl basis, but the boost generators become

S0i D � i

2

�
0 � i

� i 0

�
: (H.25)

For an odd number of spacetime dimensions our construction provides � -matrices
of the form,
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�0 D ˙
��1 0

0 1

�
; �i D

�
0 � i

�� i 0

�
; 1 � i � d � 2;

�d�1 D �i

�
0 1

1 0

�
:

The rotation generators Sij, 1 � i; j � d � 2, are the same as in d � 1 dimensions,
but rotations of the .i; d � 1/ plane are generated by

Si;d�1 D 1

2

�
� i 0

0 �� i

�
; (H.26)

and the boost generators are off-diagonal,

S0i D � i

2

�
0 � i

� i 0

�
; S0;d�1 D ˙1

2

�
0 �1
1 0

�
: (H.27)

The proper orthochronous Lorentz group therefore mixes all the 2.d�1/=2 compo-
nents of a Dirac spinor in odd dimensions.

Construction of the vector representation from the spinor
representation

Equation (21.35) implies

tr.�	��/ D �2bd=2c�	�: (H.28)

This and the invariance of the � -matrices (H.15) can be used to reconstruct the
vector representation of a proper orthochronous Lorentz transformation from the
corresponding spinor representation,

ƒ	
�.�/ D �2�bd=2ctr

�
exp

�
� i

2
��S�

�
� �	 � exp

�
i

2
���S��

�
� ��
�
: (H.29)

We can also use equation (H.28) to transform every vector into a spinor of order 2
(or every tensor of order n into a spinor of order 2n),

x.�/ D x	�	; x	 D �2�bd=2ctrŒ�	 � x.�/� ;

and the invariance of the � -matrices implies

x0	 D ƒ	
�.�/x

� , x0.�/ D exp

�
i

2
��S�

�
� x.�/ � exp

�
� i

2
���S��

�
:
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Construction of the free Dirac spinors from Dirac
spinors at rest

We use c D 1 and d D 4 in this section. The Dirac equation in momentum
space (21.41) is for a Dirac spinor  .E; 0/ at rest

.m � E�0/ .E; 0/ D 0: (H.30)

The hermitian 4 � 4 matrix �0 can only have eigenvalues ˙1, which each must be
two-fold degenerate because �0 is traceless. Therefore Dirac spinors at rest must
correspond to energy eigenvalues E D ˙m. To construct the free Dirac spinors for
arbitrary on-shell momentum 4-vector we can then use a boost into a frame where
the fermion has on-shell momentum 4-vector ˙p,

�˙E
0

�
!

�˙pp2 C m2

˙p

�
D ƒ �

�˙m
0

�
; (H.31)

and equation (H.14) then implies

 .˙
p

p2 C m2;˙p/ D U.ƒ/ � .˙m; 0/:

The Lorentz boost which takes us from the rest frame of the fermion into a frame
where the fermion has on-shell momentum 4-vector ˙p is

ƒ.u/ D fƒ	
�.u/g D

�
� � �ˇT

� �ˇ 1 � Ou ˝ OuT C � Ou ˝ OuT

�

D 1

m

 p
p2 C m2 pT

p m1 � mOp ˝ OpT Cp
p2 C m2 Op ˝ OpT

!
;

i.e. with E.p/ � p
p2 C m2,

� D cosh.u/ D 1

m

p
p2 C m2 D E.p/

m
; �ˇ D Ou sinh.u/ D � p

m
; (H.32)

v D ˇ D � pp
p2 C m2

:

The minus sign makes perfect sense: We have to transform from the particle’s rest
frame into a frame which moves with speed v D �vparticle relative to the particle to
observe the particle with speed vparticle D p=E.p/.
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The rapidity parameter of the particle is

u D artanh.ˇ/ D 1

2
ln

�
1C ˇ

1 � ˇ
�

D 1

2
ln

 p
p2 C m2 C jpjp
p2 C m2 � jpj

!

D ln

 p
p2 C m2 C jpj

m

!
:

The general boost matrix acting on the spinors is

U.u/ D exp
�
iuiSi0

� D exp

�
1

2
ui�0�i

�
D cosh

�u

2

�
C Ou � �0� sinh

�u

2

�
;

U2.u/ D exp
�
2iuiSi0

� D exp
�
ui�0�i

� D cosh.u/C Ou � �0� sinh.u/ :

In the present case we have

U2.u/ D 1

m

�p
p2 C m2 � p � �0�

�
;

i.e. we can also write

U.u/ D 1p
m

qp
p2 C m2 � p � �0�: (H.33)

The corresponding boost matrices in the Dirac representation (21.36) are

�0�i D
�

0 �� i

�� i 0

�
;

U.u/ D
�

cosh
�

u
2

� �OuT � � sinh
�

u
2

�
�Ou � � sinh

�
u
2

�
cosh

�
u
2

�
�

D 1p
m

�
E.p/ p � �
p � � E.p/

�1=2
:

For the evaluation of the hyperbolic functions, we note

cosh
�u

2

�
D
r

cosh.u/C 1

2
D
r

E.p/C m

2m
;

sinh
�u

2

�
D
r

cosh.u/ � 1
2

D
r

E.p/ � m

2m
D jpjp

2m.E.p/C m/
:

This yields

U.u/ D 1p
2m.E.p/C m/

�
E.p/C m p � �

p � � E.p/C m

�
: (H.34)
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The rest frame spinors satisfying equation (H.30) in the Dirac representation are

u.0; 12 / D

0
BB@

p
2m
0

0

0

1
CCA ; u.0;� 1

2 / D

0
BB@

0p
2m
0

0

1
CCA ;

v.0;� 1
2 / D

0
BB@

0

0p
2m
0

1
CCA ; v.0; 12 / D

0
BB@

0

0

0p
2m

1
CCA ;

and application of the spinor boost matrix (H.34) yields the spinors u.p;˙ 1
2
/ and

v.p;˙ 1
2
/ in agreement with equations (21.45–21.48). The initial construction there

from m � � � p gave us the negative energy solutions v.�p;˙ 1
2
/ for momentum 4-

vector .�E.p/; p/, whereas the construction from equation (H.31) gave us directly
the negative energy solutions v.p;˙ 1

2
/ for momentum 4-vector �p D .�E.p/;�p/,

which in either derivation are finally used in the general free solution (21.49).



Appendix I: Transformation of fields
under reflections

In this Appendix we will assume d D 4 for the number of spacetime dimensions.
The proper orthochronous Lorentz transformations were introduced in Appendix B
and we have discussed exponential representations of boosts and rotations in
equations (H.1–H.27). However, the relativistic line element ds2 D ��	�dx	dx�

is also invariant under reflections1

P	 W dx	 ! �dx	; dx� ! dx�.� ¤ 	/:

The product of any two spatial reflections is a rotation of the corresponding spatial
plane by � , cf. (H.10, H.11),

PiPj D exp.i�Mij/;

and this implies that we can write any particular spatial reflection as a combination
of the reflection P D P1P2P3 of all spatial directions with a rotation by � ,

Pi D P exp

�
i

2
��ijkMjk

�
:

Therefore it is sufficient to discuss the two discrete Lorentz transformations T D P0
(reversal of time direction) and P. The spatial inversion P is also denoted as a parity
transformation.

1The reflections dt ! �dt or dxi ! �dxi (or up to constant shifts, t ! �t, xi ! �xi) are
usually denoted as time or space inversions. This convention likely originated from the fact that in
algebraic fields (here “field” refers to the mathematical definition of a set which allows for addition,
subtraction, multiplication, and division where possible) x ! �x is the inversion operation with
respect to addition. However, the operations P	 are reversals of time or spatial directions which
arise from reflections at 3-dimensional hyperplanes located at some coordinate value X	: x	 !
2X	 � x	. Therefore we prefer the designation reflections for these transformations.

© Springer International Publishing Switzerland 2016
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We can determine the transformation properties of fields under P and T from the
requirement that electrodynamics should be invariant under these transformations,
i.e. we postulate that the equations

Œ„@ � iQA�2� � m2c2� D 0; �	Œi„@	 C qA	�‰ � mc‰ D 0; (I.1)

� 1

	0c
@	F	� D q‰��‰ C iQc

�
@��C �� � �C � @�� C i

Q

„ �
CA��

�
(I.2)

hold in this form also for an observer that uses reflected spatial axes or uses
decreasing values of t to label the future.

We know already from classical electrodynamics how electromagnetic fields and
charge distributions transform under P and T, see e.g. [19],

T W t0 D �t; x0 D x; j00.x; t/ D j0.x;�t/; j0.x; t/ D �j.x;�t/;

E0.x; t/ D E.x;�t/; B0.x; t/ D �B.x;�t/;

P W t0 D t; x0 D �x; j00.x; t/ D j0.�x; t/; j0.x; t/ D �j.�x; t/;

E0.x; t/ D �E.�x; t/; B0.x; t/ D B.�x; t/:

The transformation properties of the electromagnetic fields imply that (up to gauge
transformations) the vector potentials transform according to

T W A0
0.x; t/ D A0.x;�t/; A0.x; t/ D �A.x;�t/;

P W A0
0.x; t/ D A0.�x; t/; A0.x; t/ D �A.�x; t/:

The components of A	.x/ transform under P like the derivative operators @	, such
that the covariant derivatives transform like D0

0 D D0, D0
i D �Di. We can therefore

get the correct transformation behavior of the currents on the right hand side of
Maxwell’s equations (I.2) and preserve the matter equations (I.1) if we transform
the matter fields (up to gauge transformations) according to

P W �0.x; t/ D �.�x; t/; ‰0.x; t/ D �0‰.�x; t/:

On the other hand, the partial derivatives and vector potentials pick up relative minus
signs under time reversal T:

„@0 � iqA0.x; t/ D �„@0
0 � iqA0

0.x; t
0/; „r � iqA.x; t/ D „r C iqA.x; t0/:

The transformation properties of scalar and spinor fields under time reversal
therefore need to invoke complex conjugations to preserve the matter equations
of motion (I.1), and they need to reverse the signs of some of the derivatives of
the Dirac field after complex conjugation while leaving the other derivative terms
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unchanged. In a Dirac of Weyl basis of � matrices (21.36, 21.37), this can be
achieved (up to gauge transformations) through the transformation laws2

T W �0.x; t/ D �
.x;�t/; ‰0.x; t/ D �1�3‰

.x;�t/:

Relativistic electrodynamics is invariant under P and T and also under charge
conjugation (21.3, 21.79). However, as a general property relativistic field theories
only need to be invariant under the combination CPT, see e.g. Vol. I of [41], which
also provides original references for the CPT theorem. In our conventions, CPT acts
on scalar and spinor fields and real vector potentials according to

CPT W �0.x/ D �.�x/; ‰0.x/ D �5‰.�x/; A0
	.x/ D A	.�x/:

Here the �5 matrix is defined as

�5 D i�0�1�2�3:

It takes the following explicit forms in the Dirac or Weyl representations:

�
.D/
5 D

�
0 1

1 0

�
; �

.W/
5 D

�
1 0

0 �1
�
:

2Time reversal and charge conjugation also require a transposition of operator products if the
fermionic field ‰ is not a c number field but an operator.



Appendix J: Green’s functions in d dimensions

We denote the number of spatial dimensions with d in this appendix, and we suspend
the use of summation convention until we reach (J.62).

Green’s functions are solutions of linear differential equations with ı function
source terms. Basic one-dimensional examples are provided by the conditions

d

dx
S.x/ � S.x/ D � ı.x/; d2

dx2
G.x/ � 2G.x/ D � ı.x/; (J.1)

with solutions

G.x/ D a

2
exp.�jxj/C a � 1

2
exp.jxj/C A exp.x/C B exp.�x/; (J.2)

and

S.x/ D d

dx
G.x/C G.x/

D a‚.�x/ exp.x/C .a � 1/‚.x/ exp.x/C 2A exp.x/

D C exp.x/C‚.�x/ exp.x/ D C0 exp.x/ �‚.x/ exp.x/; (J.3)

C0 D C C 1 D 2A C a:

That the functions (J.2, J.3) satisfy the conditions (J.1) is easily confirmed by using

d

dx
jxj D ‚.x/ �‚.�x/;

d

dx
‚.˙x/ D ˙ı.x/:

The solutions of the conditions in the limit  ! 0 are

G.x/ D ˛x C ˇ � jxj
2
; S.x/ D d

dx
G.x/ D ˛ C ‚.�x/ �‚.x/

2
: (J.4)
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The appearance of integration constants signals that we can impose boundary
conditions on the Green’s functions. An important example for this is the require-
ment of vanishing Green’s functions at spatial infinity, which can be imposed if the
real part of  does not vanish. For positive real  this implies the one-dimensional
Green’s functions

G.x/ D 1

2
exp.�jxj/; S.x/ D ‚.�x/ exp.x/:

However, in one dimension we cannot satisfy the boundary condition of vanishing
Green’s functions at infinity if  D 0, and we will find the same result for the scalar
Green’s function G.x/ in two dimensions. We can satisfy conditions that the Green’s
functions (J.4) should vanish on a half-axis x < 0 or x > 0 for  D 0 by choosing
˛ D �1=2, ˇ D 0. On the other hand, if  D ik is imaginary with k > 0, the
Green’s function

G.x/ D i

2k
exp.ikjxj/

describes the spatial factor of outgoing waves expŒi.kjxj � !t/�, i.e. the one-
dimensional version of outgoing spherical waves.

Green’s functions for Schrödinger’s equation

We are mostly concerned with Green’s functions associated with time-independent
Hamilton operators

H D p2

2m
C V.x/ D

Z
ddx jxi

�
� „2
2m
�C V.x/

�
hxj:

Note that the number of spatial dimensions d is left as a discrete variable.
The inversion condition for the energy-dependent Schrödinger operator,

.E � H/Gd;V.E/ D 1 (J.5)

is in x representation the condition

�
E C „2

2m
� � V.x/

�
hxjGd;V.E/jx0i D ı.x � x0/: (J.6)

The equations (J.5) and (J.6) show that we should rather talk about a Green’s
operator Gd;V.E/ (or a resolvent in mathematical terms), with matrix elements
hxjGd;V.E/jx0i. We will instead continue to use the designation Green’s function
both for Gd;V.E/ and the Fourier transformed operator Gd;V.t/ and for all their



J. Green’s functions in d dimensions 661

representations in x or k space variables (or their matrix elements with respect to any
other quantum states). The designation Green’s function originated from the matrix
elements Gd;V.x; x0I E/ � hxjGd;V.E/jx0i. These functions preceded the resolvent
Gd;V.E/ because the inception of differential equations preceded the discovery of
abstract operator concepts and bra-ket notation.

The Green’s function Gd;V.E/ can eventually be calculated perturbatively in terms
of the free Green’s function Gd.E/ � Gd;VD0.E/. The equations

.E � H0/Gd;V.E/ D 1C VGd;V.E/; .E � H0/Gd.E/ D 1; (J.7)

yield

Gd;V.E/ D Gd.E/C Gd.E/VGd;V.E/

D Gd.E/C Gd.E/VGd.E/C Gd.E/VGd.E/VGd;V.E/

D
1X

nD0
Gd.E/ .VGd.E//

n D
1X

nD0
.Gd.E/V/

n Gd.E/: (J.8)

From the geometric series appearing in (J.8) we can also find the representations

Gd;V.E/ D Gd.E/
1

1 � VGd.E/
D 1

1 � Gd.E/V
Gd.E/

which are of course equivalent to the original condition .E�H/Gd;V.E/ D 1 through

.E � H0 � V/�1 D
�
.E � H0/

h
1 � .E � H0/

�1 V
i��1

D
�
1 � .E � H0/

�1 V
��1

.E � H0/
�1

and the corresponding relation with E � H0 extracted on the right hand side of V .
Whether the formal iteration (J.8) yields a sensible numerical approximation

depends on the potential V , the energy E, and on the states for which we wish to
calculate the corresponding matrix element of Gd;V.E/. We defined H0 D p2=2m
as the free Hamiltonian, and we have used the first two terms of (J.8) in potential
scattering theory in the Born approximation. Other applications of series like (J.8)
in perturbation theory would include a solvable part V0 of the potential in H0 and
use only a perturbation V 0 D V � V0 for the iterative solution. However, our main
concern in the following will be the free Green’s function Gd.E/.

The variable E in (J.5) can be complex, but Gd;V.E/ will become singular for
values of E in the spectrum of H. It is therefore useful to explicitly add a small
imaginary part if E is constrained to be real, which is the most relevant case for
us. To discuss the implications of a small imaginary addition to E, consider Fourier
transformation of (J.5) into the time domain. Substitution of
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Gd;V.E/ D
Z 1

�1
dt Gd;V.t/ exp.iEt=„/; (J.9)

Gd;V.t/ D 1

2�„
Z 1

�1
dE Gd;V.E/ exp.�iEt=„/; (J.10)

yields

�
i„ d

dt
� H

�
Gd;V.t/ D ı.t/: (J.11)

We can solve this equation in the form

Gd;V.t/ D a

i„‚.t/Kd;V.t/C a � 1
i„ ‚.�t/Kd;V.t/ D a �‚.�t/

i„ Kd;V.t/; (J.12)

if Kd;V.t/ is the solution of the time-dependent Schrödinger equation

�
i„ d

dt
� H

�
Kd;V.t/ D 0

with initial condition Kd;V.0/ D 1. Indeed, we have found this solution and used it
extensively in Chapter 13. It is the time evolution operator

Kd;V.t/ D U.t/ D exp

�
� i

„Ht

�
: (J.13)

Equations (J.12) and (J.13) imply that the Green’s function in the energy represen-
tation is

Gd;V.E/ D a

i„
Z 1

0

dt expŒi.E � H C i�/t=„�

� 1 � a

i„
Z 0

�1
dt expŒi.E � H � i�/t=„�

D a

E � H C i�
C 1 � a

E � H � i�
; (J.14)

with a small shift � > 0.
The time-dependent Green’s function (J.12) solves the inhomogeneous equation

�
i„ d

dt
� H

�
F.t/ D J.t/
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in the form

F.t/ D F0.t/C
Z 1

�1
dt0 Gd;V.t � t0/J.t0/

D F0.t/C a

i„
Z t

�1
dt0 exp

�
� i

„H.t � t0/
�

J.t0/

C a � 1
i„

Z 1

t
dt0 exp

�
� i

„H.t � t0/
�

J.t0/; (J.15)

where F0.t/ is an arbitrary solution of the Schrödinger equation

�
i„ d

dt
� H

�
F0.t/ D 0:

The Green’s function (J.12, J.14) with a D 1 is the retarded Green’s function,
because the solution (J.15) receives only contributions from J.t0/ at times t0 < t
for a D 1. The Green’s function with a D 0 is denoted as an advanced Green’s
function, because it determines F.t/ from back evolution of future values of J.t/.

We will now specialize to the retarded free Green’s function. So far we have
found the following representations for this Green’s function,

Gd.t/ D ‚.t/

i„ exp

�
� it

2m„p2
�
; (J.16)

Gd.E/ D � 2m

„2 Gd.E/ D 1

E C i� � .p2=2m/
: (J.17)

The rescaled Green’s function Gd.E/ is an inverse Poincaré operator

�
�C 2mE

„2
�

hxjGd.E/jx0i D � ı.x � x0/; (J.18)

and has been introduced to make the connection with electromagnetic Green’s
functions and potentials more visible.

The equations (J.16, J.17) do not generate any spectacular dependence on the
number d of spatial dimensions in the k-space representation of the retarded free
Green’s functions,

hkjGd.t/jk0i D ‚.t/

i„ exp

�
�i

„t

2m
k2
�
ı.k � k0/ � Gd.k; t/ı.k � k0/;

hkjGd.E/jk0i D ı.k � k0/
k2 � .2mE=„2/ � i�

� Gd.k;E/ı.k � k0/; (J.19)
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and also the d-dependence of the mixed representations is not particularly
noteworthy, e.g.

hxjGd.t/jki D hxjkiGd.k; t/ D ‚.t/

i„p
2�

d exp

�
ik � x � i

„t

2m
k2
�
;

hxjGd.E/jki D hxjkiGd.k;E/ D 1p
2�

d

exp.ik � x/

k2 � .2mE=„2/ � i�
:

The x-representation of the time-dependent Green’s function,

hxjGd.t/jx0i D 1

.2�/d

Z
ddkGd.k; t/ expŒik � .x � x0/� � Gd.x � x0; t/;

is

Gd.x; t/ D ‚.t/

i„.2�/d
Z

ddk exp

�
i

�
k � x � „t

2m
k2
��

D ‚.t/

i„
r

m

2� i„t

d

exp

�
i
mx2

2„t

�
: (J.20)

This equation holds in the sense that Gd.x � x0; t � t0/ has to be integrated with an
absolutely or square integrable function J.x0; t0/ to yield a solution F.x; t/ (J.15) of
an inhomogeneous Schrödinger equation.

The representation of the retarded free Green’s function in the time-domain
is interesting in its own right, but in terms of dependence on the number d of
dimensions, the operator i„Gd.t/ and its representations i„Gd.k; t/ and i„Gd.x; t/ are
simply products of d copies of the corresponding one-dimensional Green’s function
i„G1.t/ and its representations. Free propagation in time separates completely in
spatial dimensions1.

The interesting dimensional aspects of the Green’s function appear if we
represent it in the energy domain and in x-space,

hxjGd.E/jx0i D 1

.2�/d

Z
ddk Gd.k;E/ expŒik � .x � x0/�

� Gd.x � x0;E/: (J.21)

This requires a little extra preparation.

1This is a consequence of the separation of the free non-relativistic Hamiltonian H0 D p2=2m.
However, this property does not hold in relativistic quantum mechanics, and therefore the free
time-dependent Green’s function in the relativistic case is not a product of one-dimensional Green’s
functions, see (J.44).
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Polar coordinates in d dimensions

Evaluation of the d-dimensional Fourier transformation in (J.21) involves polar
coordinates in d-dimensional k space. Furthermore, it is also instructive to derive the
zero energy Green’s function Gd.0/ directly in x space, which is also conveniently
done in polar coordinates. Therefore we use x space as a paradigm for the discussion
of polar coordinates in d dimensions with the understanding that in k space,

r D p
x2 is replaced with k D

p
k2.

We define polar coordinates r; �1; : : : �d�1 in d dimensions through

x1 D r sin �1 � sin �2 � : : : � sin �d�2 � sin �d�1; ' D �

2
� �d�1

x2 D r sin �1 � sin �2 � : : : � sin �d�2 � cos �d�1;
:::

xd�1 D r sin �1 � cos �2;

xd D r cos �1:

This yields corresponding tangent vectors along the radial coordinate lines,
cf. (5.18),

ar D @x
@r

D er;

and along the �i coordinate lines

ai D @x
@�i

D r sin �1 � sin �2 � : : : sin �i�1ei:

Here we defined the unit tangent vector along the �i coordinate line

ei D ai

jaij :

This should not be confused with Cartesian basis vectors since we do not use any
Cartesian basis vector in this section.

The induced metric is g	� D a	 � a� , see Section 5.4. This yields in the present
case

g	�
ˇ̌
ˇ
	¤� D 0; grr D 1;

and

gii D r2 sin2 �1 � sin2 �2 � : : : � sin2 �i�1; 1 � i � d � 1:
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The Jacobian determinant (5.28) of the transformation from polar to Cartesian
coordinates and the related volume measure (5.27) are then

p
g D rd�1 sind�2 �1 � sind�3 �2 � : : : � sin �d�2

and

ddx D drd�1 : : : d�d�1 rd�1 sind�2 �1 � sind�3 �2 � : : : � sin �d�2: (J.22)

In particular, the hypersurface area of the .d � 1/-dimensional unit sphere is

Sd�1 D 2�

d�2Y
nD1

Z �

0

d� sinn � D 2
p
�

d

�.d=2/
: (J.23)

The gradient operator r D P
	 a	@	 is

r D er
@

@r
C

d�1X
iD1

ei

r sin �1 � sin �2 � : : : � sin �i�1
@

@�i
:

For the calculation of the Laplace operator, we need the derivatives (recall that we
do not use summation convention in this appendix)

ej � @er

@�j
D sin �1 � sin �2 � : : : sin �j�1

and

ej � @ei

@�j
D ıj;iC1 cos �i C‚.j > i C 1/ cos �i � sin �iC1 � : : : � sin �j�1:

This yields

� D @2

@r2
C d � 1

r

@

@r
C 1

r2

d�1X
iD1

1

sin2 �1 � sin2 �2 � : : : � sin2 �i�1
@2

@�2i

C 1

r2

d�2X
iD1

d�1X
jDiC1

cot �i

sin2 �1 � sin2 �2 � : : : � sin2 �i�1
@

@�i
:

We only need the radial part of the Laplace operator for the direct calculation of
the zero energy Green’s function Gd.x;E D 0/ � Gd.r/. The condition

�Gd.r/ D 1

rd�1
d

dr
rd�1 d

dr
Gd.r/ D � ı.x/
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implies after integration over a spherical volume with radius r,

Sd�1rd�1 d

dr
Gd.r/ D 2

p
�

d

�.d=2/
rd�1 d

dr
Gd.r/ D �1:

This yields

Gd.r/ D

8̂
ˆ̂<
ˆ̂̂:

.a � r/=2; d D 1;

�.2�/�1 ln.r=a/; d D 2;

�
�

d�2
2

� �
4
p
�

d
rd�2

��1
; d � 3:

(J.24)

The integration constant determines for d D 1 and d D 2 at which distance a the
Green’s function vanishes. For d � 3 the vanishing integration constant / a2�d is
imposed by the usual boundary condition limr!1 Gd�3.r/ D 0.

The free Green’s function in the x-representation with full energy dependence is
still translation invariant and isotropic, hxjGd.E/jx0i � Gd.x � x0;E/ D Gd.jx �
x0j;E/, and can be gotten from integration of the condition

�Gd.x;E/C 2m

„2 EGd.x;E/ D � ı.x/: (J.25)

The result (J.24) motivates an ansatz

Gd.x;E/ D fd.r;E/Gd.r/: (J.26)

This will solve (J.25) if the factor fd.r;E/ satisfies

d2

dr2
fd.r;E/C 3 � d

r

d

dr
fd.r;E/C 2m

„2 Efd.r;E/ D 0; fd.0;E/ D 1:

This yields together with the requirement Gd.x;E/jE<0 2 R and analyticity in E
(and the convention

p�EjE>0 D �i
p

E),

Gd.x;E/ D ‚.�E/p
2�

d

 p�2mE

„r

! d�2
2

K d�2
2

�p�2mE
r

„
�

C i
�

2

‚.E/p
2�

d

 p
2mE

„r

! d�2
2

H.1/
d�2
2

�p
2mE

r

„
�
; (J.27)

where the conventions and definitions from [1] were used for the modified Bessel
and Hankel functions.



668 J. Green’s functions in d dimensions

The result (J.27) tells us that outgoing spherical waves of energy E > 0 in d
dimensions are given by Hankel functions,

Gd.x;E > 0/ D i�

2
p
2�

d

 p
2mE

„r

! d�2
2

H.1/
d�2
2

�p
2mE

r

„
�
;

with asymptotic form

Gd.x;E > 0/
ˇ̌
ˇ
kr�1

' 1

2k

�
k

2�r

� d�1
2

exp

�
ikr � i

d � 3
4

�

�
;

while d-dimensional Yukawa potentials of range a are described by modified Bessel
functions,

Vd.r/ D 1p
2�

d
rd�2

� r

a

� d�2
2

K d�2
2

� r

a

�
;

with asymptotic form

Vd.r � a/ ' exp.�r=a/

2
p

ad�3p
2�r

d�1 :

The result (J.27) can also be derived through Fourier transformation (J.21) from
the energy-dependent retarded Green’s function in k space,

Gd.x;E/ D 1

.2�/d

Z
ddk Gd.k;E/ exp.ik � x/;

Gd.k;E/ D 1

k2 � .2mE=„2/ � i�
;

or in terms of poles in the complex k plane (where k � jkj for d > 1),

Gd.k;E/ D ‚.E/

.k �p
2mE=„2 � i�/.k Cp

2mE=„2 C i�/

C ‚.�E/

.k � i
p�2mE=„2/.k C i

p�2mE=„2/ : (J.28)

This yields for d > 1 (for the # integral see [32], p. 457, no. 6)
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Gd.x;E/ D Sd�2
.2�/d

Z 1

0

dk
Z �

0

d#
kd�1 exp.ikr cos#/

k2 � .2mE=„2/ � i�
sind�2 #

D 1

2d�1p�dC1
�
�

d�1
2

�
Z 1

0

dk
Z �

0

d#
kd�1 exp.ikr cos#/

k2 � .2mE=„2/ � i�
sind�2 #

D 1p
2�

dp
rd�2

Z 1

0

dk

p
k

d

k2 � .2mE=„2/ � i�
J d�2

2
.kr/

D ‚.�E/p
2�

d

 p�2mE

„r

! d�2
2

K d�2
2

�p�2mE
r

„
�

C i
�

2

‚.E/p
2�

d

 p
2mE

„r

! d�2
2

H.1/
d�2
2

�p
2mE

r

„
�
: (J.29)

For the k integral for E > 0 see [33], p. 179, no. 28. The real part of the
integral for E < 0 is given on p. 179, no. 35. The integrals can also be performed
with symbolic computation programs, of course. The k integral actually diverges
for d � 5, but recall that we have found the same solution for arbitrary d from
the ansatz (J.26). Fourier transformation of (J.28) for d D 1 directly yields the
result (20.6), which also coincides with (J.29) for d D 1.

The time evolution operator in various representations

We have seen that the Green’s function Gd;V.t/ in the time domain is intimately
connected to the time evolution operator

U.t/ D exp.�iHt=„/

through equations (J.12, J.13). We can also define an energy representation for the
time evolution operator in analogy to equations (J.9, J.10),

U.E/ D
Z 1

�1
dt U.t/ exp.iEt=„/ D 2�„ı.E � H/: (J.30)

Indeed, we have encountered this representation of the time evolution operator
already in the frequency decomposition (5.14) of states,

j .!/i D p
2�U.„!/j .t D 0/i:

The free d-dimensional evolution operator in the time domain is simply the
product of d one-dimensional evolution operators,
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U0.t/ D exp

�
� it

2m„p2
�
;

hkjU0.t/jk0i D U0.k; t/ı.k � k0/; U0.k; t/ D exp

�
�i

„t

2m
k2
�
;

hxjU0.t/jki D 1p
2�

d exp

�
ik � x � i

„t

2m
k2
�
;

and

hxjU0.t/jx0i D 1

.2�/d

Z
d3k exp

	
ik � .x � x0/



U0.k; t/ D U0.x � x0; t/;

U0.x; t/ D
r

m

2� i„t

d

exp

�
i
mx2

2„t

�
:

Just like for the free Green’s functions, the dependence on d becomes more
interesting in the energy domain. The equation

U0.k;E/ D 2�„ı
 

E � „2k2
2m

!
D �

r
2m

E
ı

 
jkj �

p
2mE

„

!

yields

U0.x;E/ D 1

.2�/d

Z
ddk exp.ik � x/U0.k;E/

D ‚.E/Sd�2
2d.�„/d�1

p
2m

dp
E

d�2 Z �

0

d# exp
�

i
p
2mE

r

„ cos#
�

sind�2 #

D ‚.E/
m

„

 
1

�„r

r
mE

2

! d�2
2

J d�2
2

�p
2mE

r

„
�
: (J.31)

We have encountered several incarnations of the time evolution equation

j .t/i D U0.t � t0/j .t0/i;
e.g. with hkj i � hkj .0/i,

hxj .t/i D
Z

ddk hxjU0.t/jkihkj i

D 1p
2�

d

Z
ddk exp

�
i

�
k � x � „t

2m
k2
��
 .k/

D
Z

ddx0 U0.x � x0; t � t0/hx0j .t0/i:
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Equation (J.31) implies with j i � j .t D 0/i the .x; !/ representation for free
states in terms of their .x; t D 0/ representations,

hxj .!/i D 1p
2�

Z
dt exp.i!t/ hxj .t/i

D 1p
2�

Z
ddx0

Z
dt exp.i!t/ hxjU0.t/jx0ihx0j i

D 1p
2�

Z
ddx0 hxjU0.„!/jx0ihx0j i

D ‚.!/
mp
2�„

�
1

�

r
m!

2„
� d�2

2

�
Z

ddx0 J d�2
2

 r
2m!

„ jx � x0j
!

hx0j ipjx � x0jd�2 : (J.32)

In turn, equation (5.12) implies for the initial state

j i D 1p
2�

Z
d! j .!/i;

and therefore the kernel in (J.32) must yield a d-dimensional ı function,

mp
2�

d„

Z 1

0

d!

 r
2m!

„
1

jxj

! d�2
2

J d�2
2

 r
2m!

„ jxj
!

D ı.x/;

or in terms of magnitude of wave number,

1p
2�

d

Z 1

0

dk k

�
k

r

� d�2
2

J d�2
2
.kr/ D ı.x/: (J.33)

However, this is just the familiar relation

1

.2�/d

Z
ddk exp.ik � x/ D ı.x/

after evaluation of the angular integrals in polar coordinates in k space.
In particular, for d D 1 we find

hxj .!/i D ‚.!/

r
m

�„!
Z

dx0 cos

 r
2m!

„ .x � x0/
!

hx0j i: (J.34)
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In two dimensions we find

hxj .!/i D ‚.!/
mp
2�„

Z
d2x0 J0

 r
2m!

„ jx � x0j
!

hx0j i; (J.35)

and in three dimensions we find

hxj .!/i D ‚.!/
mp
2�3„

Z
d3x0 sin

 r
2m!

„ jx � x0j
!

hx0j i
jx � x0j : (J.36)

The free states in the .x; !/ representation are a superposition of stationary radial
waves, where each point contributes with weight hx0j i.

Relativistic Green’s functions in d spatial dimensions

Although the theory in this subsection is relativistic, we will not use manifestly
Lorentz covariant 4-vector notation like x D .ct; x/, k D .!=c; k/ for the space-time
and momentum variables because we are also interested in mixed representations of
the Green’s functions like G.x; !/. For the manifestly covariant notation see the
note at the end of this Appendix.

The relativistic free scalar Green’s function in the time domain must satisfy

�
� � 1

c2
@2

@t2
� m2c2

„2
�

Gd.x; tI x0; t0/ D � ı.x � x0/ı.t � t0/: (J.37)

This yields after transformation into .k; !/ space

Gd.k; !I k0; !0/ D Gd.k; !/ı.k � k0/ı.! � !0/; (J.38)

where the factor Gd.k; !/ is

Gd.k; !/ D 1

k2 � !2

c2
C m2c2

„2 � i�
: (J.39)

The shift �i�, � > 0, into the complex plane is such that this reproduces the retarded
non-relativistic Green’s function (J.19) in the non-relativistic limit

! ) mc2 C E

„ ;

when terms of order O.E2/ are neglected. However, in the relativistic case this yields
both retarded and advanced contributions in the time domain. This convention for
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the poles in the relativistic theory was introduced by Richard Feynman2 and yields
the Green’s functions of Stückelberg and Feynman.

The solution in x D .ct; x/ space is then

Gd.x; tI x0; t0/ D Gd.x � x0; t � t0/;

Gd.x; t/ D 1

2�

Z
d! Gd.x; !/ exp.�i!t/; (J.40)

Gd.x; !/ D 1

.2�/d

Z
ddk Gd.k; !/ exp.ik � x/: (J.41)

The integral is the same as in (J.29) with the substitution

2m

„2 E ! !2

c2
� m2c2

„2 ;

i.e.

Gd.x; !/ D ‚.mc2 � „j!j/p
2�

d

 p
m2c4 � „2!2

„cr

! d�2
2

�K d�2
2

�p
m2c4 � „2!2 r

„c

�

C i
�

2

‚.„j!j � mc2/p
2�

d

 p„2!2 � m2c4

„cr

! d�2
2

�H.1/
d�2
2

�p
„2!2 � m2c4

r

„c

�
: (J.42)

The ! D 0 Green’s functions

�
� � m2c2

„2
�

Gd.x/ D � ı.x/; Gd.x/ D 1p
2�

d

�mc

„r

� d�2
2

K d�2
2

�mc

„ r
�
;

yield again the results (J.24) in the limit m ! 0, albeit with diverging integration
constants in low dimensions,

adD1 D „
mc
; adD2 D 2„

mc
exp.��/:

In terms of poles in the complex k plane, the complex shift in (J.39) implies

2R.P. Feynman, Phys. Rev. 76, 749 (1949).
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Gd.k; !/ D c2‚.„! � mc2/�
ck �p

!2 � .mc2=„/2 � i�
� �

ck Cp
!2 � .mc2=„/2 C i�

�

C c2‚.mc2 � „!/�
ck � i

p
.mc2=„/2 � !2

� �
ck � i

p
.mc2=„/2 � !2

� : (J.43)

However, in terms of poles in the complex ! plane, equation (J.39) implies

Gd.k; !/ D � c2�
! � c

p
k2 C .mc=„/2 C i�

� �
! C c

p
k2 C .mc=„/2 � i�

� :

Fourier transformation to the time domain therefore yields a representation of the
relativistic free Green’s function which explicitly shows the combination of retarded
positive frequency and advanced negative frequency components,

Gd.k; t/ D 1

2�

Z
d! Gd.k; !/ exp.�i!t/

D ic‚.t/
exp

�
�i
q

k2 C .mc=„/2 ct

�

2

q
k2 C .mc=„/2

C ic‚.�t/
exp

�
i
q

k2 C .mc=„/2 ct

�

2

q
k2 C .mc=„/2

: (J.44)

On the other hand, shifting both poles into the lower complex ! plane,

G.r/
d .k; !/ D � c2�

! � c
p

k2 C .mc=„/2 C i�
� �
! C c

p
k2 C .mc=„/2 C i�

� ;

yields the retarded relativistic Green’s function

G.r/
d .k; t/ D 1

2�

Z
d! G.r/

d .k; !/ exp.�i!t/

D c‚.t/
sin

�q
k2 C .mc=„/2 ct

�
q

k2 C .mc=„/2
D c2‚.t/Kd.k; t/; (J.45)
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cf. equation (21.9). If Kd.x; t/ exists, then one can easily verify that the properties

�
� � 1

c2
@2

@t2
� m2c2

„2
�
Kd.x; t/ D 0;

Kd.x; 0/ D 0;
@

@t
Kd.x; t/

ˇ̌
ˇ̌
tD0

D ı.x/

imply that G.r/
d .x; t/ D c2‚.t/Kd.x; t/ is a retarded Green’s function.

On the other hand, shifting both poles into the upper complex ! plane,

G.a/
d .k; !/ D � c2�

! � c
p

k2 C .mc=„/2 � i�
� �
! C c

p
k2 C .mc=„/2 � i�

� ;

yields the advanced relativistic free Green’s function

G.a/
d .k; t/ D 1

2�

Z
d! G.a/

d .k; !/ exp.�i!t/

D �c‚.�t/
sin

�q
k2 C .mc=„/2 ct

�
q

k2 C .mc=„/2

D �c2‚.�t/Kd.k; t/ D G.r/
d .k;�t/: (J.46)

Retarded relativistic Green’s functions in .x; t/ representation

Evaluation of the Green’s functions G.r/
d .x; t/ and Gd.x; t/ for the massive Klein-

Gordon equation is very cumbersome if one uses standard Fourier transformation
between time and frequency. It is much more convenient to use Fourier transforma-
tion with imaginary frequency, which is known as Laplace transformation. We will
demonstrate this for the retarded Green’s function. We try a Laplace transform of
G.r/

d .x; t/ in the form3

3Assuming only <w � 0 assumes that the retarded Green’s functions are integrable along the time
axis. This makes physical sense since the impact of a perturbation which occurred at time t0 D 0

at the point x0 D 0 that is felt at the point x should decrease with time. The assumption can also be
justified a posteriori from the explicit results (J.58–J.60), which show that the Green’s functions
for d 	 3 oscillate and decay for t ! 1. For Laplace transforms of less well behaved functions
G.x; t/ one can require <w > � if exp.��t/G.x; t/ is bounded for t ! 1. The vertical integration
contour for the inverse transformation (J.48) must then be to the right of � � i1 ! � C i1.



676 J. Green’s functions in d dimensions

gd.x;w/ D
Z 1

0

dt exp.�wt/G.r/
d .x; t/; <w � 0: (J.47)

The completeness relation for Fourier monomials,

ı.t/ D 1

2�

Z 1

�1
d! exp.�i!t/ D 1

2� i

Z i1

�i1
dw exp.wt/

then yields the inversion of (J.47),

G.r/
d .x; t/ D 1

2� i

Z i1

�i1
dw exp.wt/gd.x;w/: (J.48)

The condition (J.37) on the d-dimensional scalar Green’s functions then implies

�
� � w2

c2
� m2c2

„2
�

gd.x;w/ D � ı.x/ (J.49)

with solution

gd.x;w/ D 1

.2�/d

Z
ddk

exp.ik � x/

k2 C .w=c/2 C .mc=„/2 :

In one dimension this yields

g1.x;w/ D
c exp

�
�pw2 C .mc2=„/2 jxj=c

�

2
p

w2 C .mc2=„/2 : (J.50)

In higher dimensions, we need to calculate

gd.x;w/ D Sd�2
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d# kd�1 sind�2 #
exp.ikr cos#/
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d

Z 1

0

dk
kd�1

k2 C .w=c/2 C .mc=„/2
1p

kr
d�2 J d�2

2
.kr/: (J.51)

We can formally reduce (J.51) for d � 3 to the corresponding integrals in lower
dimensions by using the relation

�
�1

x

d

dx

�n J�.x/

x�
D J�Cn.x/

x�Cn
;

However, this would not save the day for the non-existent functions G.r/
d�4.x; t/, although we can

find functions gd.x;w/ (J.54, J.55) for every number d of dimensions.
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see number 9.1.30, p. 361 in [1]. This yields for d D 2n C 1

1p
kr

d�2 J d�2
2
.kr/ D k�2n

�
�1

r

@

@r

�n p
krJ� 1

2
.kr/

D
r
2

�
k�2n

�
�1

r

@

@r

�n

cos.kr/; (J.52)

and for d D 2n C 2,

1p
kr

d�2 J d�2
2
.kr/ D k�2n

�
�1

r

@

@r

�n

J0.kr/: (J.53)

The resulting relations for the Green’s functions in the .x;w/ representations are
then

g2nC1.x;w/ D
�

� 1

2�r

@

@r

�n
1

�

Z 1

0

dk
cos.kr/

k2 C .w=c/2 C .mc=„/2

D
�

� 1

2�r

@

@r

�n c exp
�
�pw2 C .mc2=„/2 r=c

�

2
p

w2 C .mc2=„/2 ; (J.54)

and

g2nC2.x;w/ D
�

� 1

2�r

@

@r

�n
1

�

Z 1

0

dk
kJ0.kr/

k2 C .w=c/2 C .mc=„/2

D
�

� 1

2�r

@

@r

�n
1

2�
K0
�p

w2 C .mc2=„/2 r

c

�
: (J.55)

Inverse Laplace transformation yields the retarded Green’s functions G.r/
d .x; t/,

G.r/
2nC1.x; t/ D

�
� 1

2�r

@

@r

�n c

2
‚.ct � r/J0

�
mc

p
c2t2 � r2=„

�
; (J.56)

G.r/
2nC2.x; t/ D

�
� 1

2�r

@

@r

�n c

2�

‚.ct � r/p
c2t2 � r2

cos
�

mc
p

c2t2 � r2=„
�
: (J.57)

We note that the retarded Green’s functions for fixed r decrease like t�.nC1/ D
t�b.dC1/=2c for t ! 1, except the ı function singularities become unacceptable for
d � 4.

The retarded relativistic Green’s functions in one, two and three dimensions are
therefore

G.r/
1 .x; t/ D c

2
‚.ct � jxj/J0

�
mc

p
c2t2 � x2=„

�
; (J.58)
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G.r/
2 .x; t/ D c

2�

‚.ct � r/p
c2t2 � r2

cos
�

mc
p

c2t2 � r2=„
�
; (J.59)

and

G.r/
3 .x; t/ D c

4�r
ı.r � ct/ � mc2

4�„
‚.ct � r/p

c2t2 � r2
J1
�

mc
p

c2t2 � r2=„
�
: (J.60)

The .x; t/ representations of the corresponding advanced Green’s functions then
follow from (J.46) as

G.a/
d .x; t/ D G.r/

d .x;�t/:

The propagator function Kd.x; t/ for the free Klein-Gordon fields follows from
(J.45, J.46) as

c2Kd.x; t/ D G.r/
d .x; t/ � G.a/

d .x; t/: (J.61)

The functions G.r/
d�4.x; t/ and Kd�4.x; t/ do not exist, but the corresponding

functions G.r/
d .k; t/ D c2‚.t/Kd.k; t/ (J.45) and G.r/

d .k; !/ exist in any number of
dimensions.

Green’s functions for Dirac operators in d dimensions

We now restore summation convention. The Green’s functions for the free Dirac
operator must satisfy

�
i�	@	 � mc

„
�

Sd.x; t/ D � ı.x/ı.t/: (J.62)

Since the Dirac operator is a factor of the Klein-Gordon operator, the solutions
of the equations (J.62) and (J.37) are related by

Sd.x; t/ D
�

i�	@	 C mc

„
�

Gd.x; t/ (J.63)

and

Gd.x; t/ D
Z

ddx0
Z

dt0 Sd.x0 � x; t0 � t/ � Sd.x0; t0/

D
Z

ddx0
Z

dt0 Sd.x0; t0/ � Sd.x0 C x; t0 C t/: (J.64)
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The free Dirac Green’s function in wave number representation is (here k2 �
k	k	)

Sd.k/ D „ mc � „�	k	
„2k2 C m2c2 � i�

; (J.65)

where the pole shifts again correspond to the Feynman propagator with retarded and
advanced components.

Green’s functions in covariant notation

The relativistic free scalar Green’s function satisfies

p2 C m2c2

„2 Gd D 1; (J.66)

i.e. in the k D .!=c; k/ domain

hkjGdjk0i D Gd.k/ı.k � k0/; (J.67)

where the factor Gd.k/ is

Gd.k/ D 1

k2 C .m2c2=„2/ � i�
: (J.68)

This yields after transformation into x D .ct; x/ space (D D d C 1/,

hxjGdjx0i D 1

.2�/D

Z
dDk

Z
dDk0 hkjGdjk0i expŒi.k � x � k0 � x0/�;

D 1

.2�/D

Z
dDk Gd.k/ expŒik � .x � x0/� D Gd.x � x0/; (J.69)

which satisfies

�
@2 � m2c2

„2
�

hxjGdjx0i D
�
@02 � m2c2

„2
�

hxjGdjx0i D � ı.x � x0/: (J.70)

The relation to (J.37–J.60) is

hxjGdjx0i D 1

c
Gd.x; tI x0; t0/; hkjGdjk0i D cGd.k; !I k0; !0/;

Gd.k/ D Gd.k; !/:
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Translation invariance (J.67, J.69) implies that the Green’s function in mixed
representation is proportional to plane waves, hxjGdjki D Gd.k/hxjki.

The fermionic Green’s function satisfies

� � p C mc

„ Sd D 1; Sd D mc � � � p

„ Gd; (J.71)

or in various representations,

�
i� � @ � mc

„
�

hxjSdjx0i D � ı.x � x0/; (J.72)

hkjSdjk0i D Sd.k/ı.k � k0/; hxjSdjki D Sd.k/hxjki; (J.73)

Sd.k/ D
�mc

„ � � � k
�

Gd.k/ D .mc=„/ � � � k

k2 C .m2c2=„2/ � i�
; (J.74)

hxjSdjx0i D Sd.x � x0/ D 1

c
Sd.x � x0; t � t0/

D 1

.2�/D

Z
dDk Sd.k/ expŒik � .x � x0/�

D
�

i� � @C mc

„
�

Gd.x � x0/: (J.75)

The pole shifts in (J.68, J.74) correspond to the Feynman conventions. For the
retarded Green’s functions G.r/

d and S.r/d both poles have to be shifted into the lower
k0 plane. Note that as a consequence of (J.75) the fermionic Green’s function also
satisfies

i@0
	Sd.x � x0/�	 C mc

„ Sd.x � x0/ D ı.x � x0/: (J.76)

Green’s functions as reproducing kernels

Suppose that V is a .d C 1/-dimensional spacetime volume with boundary @V . The
equation (J.70) and the Klein-Gordon equation imply for a free field �.x/ and for x
in V the relation

�.x/ D
Z
V

dDx0 �.x0/
�

m2c2

„2 � @02
�

Gd.x � x0/

D
Z
V

dDx0 @0	
�

Gd.x � x0/
$
@0
	 �.x

0/
�
:
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The Gauss theorem in D spacetime dimensions then yields a representation for all
values of �.x/ inside of V in terms of the values of the Klein-Gordon field on the
boundary @V ,

�.x/ D
Z
@V

ddx0 n	
�

Gd.x � x0/
$
@0
	 �.x

0/
�
; (J.77)

where n	 is an outward bound normal vector with n0 D 1 on spacelike boundaries
t0 D constant, t0 > t, and n0 D �1 on t0 D constant, t0 < t. If Gd.x � x0/ is in
particular the retarded Green’s function,

G.r/
d .x � x0/ D c‚.t � t0/Kd.x � x0; t � t0/; (J.78)

or the advanced Green’s function,

G.a/
d .x � x0/ D c‚.t0 � t/Kd.x � x0; t0 � t/; (J.79)

and @V contains only the spacelike surface t0 < t, or only the spacelike surface
t0 > t, then (J.77) is the solution (21.8) of the initial value problem (t0 < t) or future
value problem4 (t0 > t) for the Klein-Gordon field.

For free Dirac fields the Dirac equation and (J.76) implies for x 2 V the equation

 .x/ D i
Z
@V

ddx0 n	Sd.x � x0/�	 .x0/: (J.80)

This yields again the initial/final value solution (21.64) if @V contains only the
spacelike surface t0 < t or only the spacelike surface t0 > t, since the retarded and
advanced Green’s functions are related to the time evolution kernel (21.65) through

S.r/d .x � x0/ D i‚.t � t0/Wd.x � x0; t � t0/�0;

S.a/d .x � x0/ D �i‚.t0 � t/Wd.x � x0; t � t0/�0;

see also equations (J.75), (J.78), (J.79) and (21.67).

Liénard-Wiechert potentials in low dimensions

The massless retarded Green’s functions solve the basic electromagnetic wave
equation for the electromagnetic potentials in Lorentz gauge,

4The future value problem or backwards evolution problem asks the question: Which field
configuration �.x/ at time t yields the prescribed field configuration �.x0/ at time t0 > t through
time evolution with the equations of motion?
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�
@	@

	 � m2c2

„2
�

A�.x/ D �	0j�.x/; @	A	.x/ D 0;

A	.x/ D 	0

Z
ddC1x0 G.r/

d .x � x0/j	.x0/:

In three dimensions this yields the familiar Liénard-Wiechert potentials from the
contributions of the currents on the backward light cone of the spacetime point x,

A	dD3.x; t/ D 	0

4�

Z
d3x0 1

jx � x0j j	
�

x0; t � 1

c
jx � x0j

�
: (J.81)

However, in one and two dimensions, the Liénard-Wiechert potentials sample
charges and currents from the complete region inside the backward light cone,

A	dD1.x; t/ D 	0c

2

Z 1

�1
dx0
Z t�.jx�x0j=c/

�1
dt0 j	.x0; t0/; (J.82)

A	dD2.x; t/ D 	0c

2�

Z
d2x0

Z t�.jx�x0j=c/

�1
dt0

j	.x0; t0/p
c2.t � t0/2 � .x � x0/2

: (J.83)

Stated differently, a ı function type charge-current fluctuation in the spacetime
point x0 generates an outwards traveling spherical electromagnetic perturbation on
the forward light cone starting in x0 if we are in three spatial dimensions. However,
in one dimension the same kind of perturbation fills the whole forward light cone
uniformly with electromagnetic fields, and in two dimensions the forward light
cone is filled with a weight factor Œc2.t � t0/2 � .x � x0/2��1=2. How can that
be? The electrostatic potentials (J.24) for d D 1 and d D 2 hold the answer
to this. Those potentials indicate linear or logarithmic confinement of electric
charges in low dimensions. Therefore a positive charge fluctuation in a point x0
must be compensated by a corresponding negative charge fluctuation nearby. Both
fluctuations fill their overlapping forward light cones with opposite electromagnetic
fields, but those fields will exactly compensate in the overlapping parts in one
dimension, and largely compensate in two dimensions. The net effect of these
opposite charge fluctuations at a distance a is then electromagnetic fields along
a forward light cone of thickness a, i.e. electromagnetic confinement in low
dimensions effectively ensures again that electromagnetic fields propagate along
light cones. This is illustrated in Figure J.1.
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−+

ct

x

Fig. J.1 The contributions of nearby opposite charge fluctuations at time t D 0 in one spatial
dimension generate net electromagnetic fields in the hatched “thick” light cone region
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Symbols
N-point function, 285
ı function, 25
� tensor, 126
� matrices, 507, 633

Construction in d dimensions, 636
Dirac basis, 507
Invariance under Lorentz transformations,

648
Weyl basis, 508

�5 matrix, 657
f -sum rule, 316
2-spinor, 160

A
Absorption cross section, 267
Active transformation, 81
Adjoint operator, 77
Amplitude vector, 454
Angular momentum, 125

in relative motion, 122
in relativistic field theory, 537

Angular momentum density
for electromagnetic fields, 426
for scalar Schrödinger field, 330
for spin 1/2 Schrödinger field, 331
in relativistic field theory, 537

Angular momentum operator, 125
Addition, 163
Commutation relations, 127
in polar coordinates, 125

Annihilation operator, 105
for non-relativistic particles, 340
for photons, 391

for relativistic fermions, 514
for relativistic scalar particles, 499

Anti-commutator, 335
Auger process, 263

B
Baker-Campbell-Hausdorff formula, 110, 625
Berry phase, 280
Bethe sum rule, 319
Bloch factor, 187
Bloch function, 187
Bloch operators, 449
Bloch state, 187
Bohmian mechanics, 154
Bohr magneton, 521
Bohr radius, 141

for nuclear charge Ze, 144
Boost parameter, 647
Born approximation, 213
Born-Oppenheimer approximation, 432
Boson number operator, 536
Bra-ket notation, 63, 72

in linear algebra, 72
in quantum mechanics, 73

Brillouin zone, 188, 446

C
Canonical quantization, 333
Capture cross section, 266
Center of mass motion, 121
Charge conjugation, 496

Dirac field, 515
Klein-Gordon field, 496
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Charge operator
for the Dirac field, 513
for the Klein-Gordon field, 499
for the Schrödinger field, 336

in terms of Schrödinger picture
operators, 340

Christoffel symbols, 96
in terms of metric, 101

Classical electron radius, 423
Clebsch-Gordan coefficients, 165
Coherent states, 112

for the electromagnetic field, 392
overcompleteness, 116

Color center, 58
Spherical model, 152

Commutator, 86
Commutators involving operator products, 337
Completeness in the mean, 618
Completeness of eigenstates, 30, 605
Completeness relations, 34

Example with continuous and discrete
states, 50

for Fourier monomials, 186
for free spherical waves, 139
for hydrogen eigenstates, 151
for spherical harmonics, 135
for Sturm-Liouville eigenfunctions, 618
for time-dependent Wannier states, 192
for transformation matrices for photon

wave functions, 388
for Wannier states, 191, 449
in cubic quantum wire, 90
in linear algebra, 68

Compton scattering, 555
Non-relativistic limit, 565
Scattering cross section, 565

Confluent hypergeometric function, 141
Conjugate momentum, 579
Conservation laws, 324
Conserved charge, 326

and local phase invariance, 541
Conserved current, 326

and local phase invariance, 541
Correlation function, 285
Coulomb gauge, 384
Coulomb potential, 398

Domination for low-energy interactions,
555

Coulomb waves, 147
Covalent bonding, 436
Covariant derivative, 304
Creation operator, 105

for non-relativistic particles, 340
for photons, 391

for relativistic fermions, 514
for relativistic scalar particles, 499

D
Darwin term, 528
Decay rate, 256
Degeneracy pressure, 381
Density of states, 227

in d dimensions, 234
in radiation, 234
in the energy scale, 233
inter-dimensional, 488
non-relativistic particles, 234

Differential scattering cross section, 269
for photons, 421

Dihydrogen cation, 432
Dimensions of states, 92
Dipole approximation, 308
Dipole line strength, 317
Dipole selection rules, 308
Dirac � matrices, see � matrices
Dirac equation, 507

Free solution, 510
Non-relativistic limit, 520
Relativistic covariance, 648
with minimal coupling, 508

Dirac picture, 242, 247
in quantum field theory, 349

Dirac’s ı function, 25
Dual bases, 66

E
Eddington tensor, 126
Effective mass, 198
Ehrenfest’s theorem, 24

for N particles, 364
Electric dipole line strength, 317
Electromagnetic coupling, 301
Electron-electron scattering, 565
Electron-nucleus scattering, 550
Electron-photon scattering, 555
Energy-momentum tensor, 327

for scalar quantum electrodynamics, 533
for classical charged particle in

electromagnetic fields, 602
for spinor quantum electrodynamics, 515
for the Maxwell field, 389
in quantum optics, 396

Energy-time uncertainty relation, 56, 89
Euler-Lagrange equations, 322, 579

for field theory, 323
Exchange hole, 379
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Exchange integral, 367
Exchange interaction, 367

F
Fermi momentum, 237
Fermion number operator, 537
Field operator, 334
Field quantization, 333
Fine structure constant, 140
Floor function, 627
Fock space, 341
Foldy-Wouthuysen transformation, 527
Fourier transformation

between frequency and time domain, 90
Fourier transforms, 25
Frequency-time Fourier transformation, 90

G
Gauss bracket, 635
Gaussian wave packet, 53

Free evolution, 54
Width, 53

Golden Rule, 261
Golden Rule #1, 263
Golden Rule #2, 265
Green’s function, 52, 209

Relations between scalar and spinor
Green’s functions, 678

advanced, 663
for Dirac operator, 678
in d dimensions, 659
inter-dimensional, 487
retarded, 52, 210, 247, 482, 487, 663

Group, 124
Group theory, 124

H
Hamiltonian density

for spinor QED, 517
for the Dirac field, 513
for the Klein-Gordon field, 500
for the Maxwell field, 389
for the Schrödinger field, 328
in Coulomb gauge, 519
in scalar QED, 533

Hard sphere, 216
Harmonic oscillator, 103

Coherent states, 112
Eigenstates, 106

in k-representation, 108
in x-representation, 107

Eigenvalues, 106
Solution by the operator method, 104

Hartree-Fock equations, 372
Heisenberg evolution equation, 247
Heisenberg Hamiltonian, 367
Heisenberg picture, 242, 247
Heisenberg uncertainty relations, 85
Hellmann-Feynman theorem, 82
Hermite polynomials, 107, 621
Hermitian operator, 32
Higher order commutator, 110
Hubbard model, 449
Hydrogen atom, 139

bound states, 139
ionized states, 147

Hydrogen molecule ion, 436

I
Induced dipole moment, 312
Interaction picture, see Dirac picture
Ionization rate, 256

J
Junction conditions for wave functions, 48

K
Kato cusp condition, 445
Klein’s paradox, 503

Oblique incidence, 535
Klein-Gordon equation, 496

Non-relativistic limit, 501
with minimal coupling, 496

Klein-Nishina cross section, 564
Kramers-Heisenberg formula, 422
Kronig-Penney model, 193
Kummer’s function, 141
Kummer’s identity, 149

L
Ladder operators, 105
Lagrange density, 321

for the Dirac field, 513, 650
for the Klein-Gordon field, 498
for the Maxwell field, 383
for the Schrödinger field, 323

Lagrange function, 578
for particle in electromagnetic fields, 301
for small oscillations in N particle system,

452
Lagrangian field theory, 321
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Laue conditions, 70
Liénard-Wiechert potentials, 681
Lippmann-Schwinger equation, 209
Lorentz group, 125, 590

Generators, 646
Spinor representation, 648

in Weyl and Dirac bases, 650
Vector representation, 646

Construction from the spinor
representation, 651

Lorentzian absorption line, 412
Lowering operator, 105

M
Matrix logarithm, 629
Maxwell field, 383

Covariant quantization, 529
Quantization in Coulomb gauge, 390

Mehler formula, 109, 246, 622
Minimal coupling, 304

in the Dirac equation, 508
in the Klein-Gordon equation, 496
in the Schrödinger equation, 302
to relative motion in two-body problems,

394
Mollwo’s law, 58

Spherical model, 152
Momentum density

for the Dirac field, 513
for the Klein-Gordon field, 500
for the Maxwell field, 389
for the Schrödinger field, 328
in Coulomb gauge, 519
in scalar QED, 533
in spinor QED, 517

Mott scattering, 555
Møller operators, 254
Møller scattering, 565

N
Noether’s theorem, 326
Non-linear Schrödinger equation, 365
Non-relativistic limit

Dirac equation, 520
Klein-Gordon equation, 501

Normal coordinates, 454
Normal modes, 454
Normal ordering, 391

for Dirac fields, 514
for Klein-Gordon fields, 499
for photons, 391

Number operator, 106

for the Schrödinger field, 336
in terms of Schrödinger picture

operators, 340

O
Occupation number operator, 106
Optical theorem, 216
Oscillator strength, 314

P
Parabolic coordinates, 100, 221
Parity transformation, 655
Passive transformation, 65
Path integrals, 283
Pauli equation, 520
Pauli matrices, 159
Pauli term, 412
Perturbation theory, 171, 241

and effective mass, 198
Time-dependent, 241
Time-independent, 171

with degeneracy, 176, 181
without degeneracy, 171, 175

Phonons, 463
Photoelectric effect, 15
Photon, 390
Photon coupling

to Dirac field, 508
to Klein-Gordon field, 496

Photon coupling to relative motion, 394
Photon flux, 410
Photon scattering, 416
Planck’s radiation laws, 7
Poincaré group, 125, 590
Polar coordinates in d dimensions, 665
Polarizability tensor

Dynamic, 312
Frequency dependent, 313
Static, 310

Potential scattering, 207
Potential well, see Quantum well
Probability density, 20
Propagator, 52, 247

Q
Quantization

of the Dirac field, 513
of the Klein-Gordon field, 497
of the Maxwell field, 390
of the Schrödinger field, 334
Phonons, 463
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Quantum dot, 44
Quantum field, 334
Quantum virial theorem, 80
Quantum well, 44
Quantum wire, 44

R
Raising operator, 105
Rapidity, 647
Rashba term, 528
Rayleigh scattering, 423
Rayleigh-Jeans law, 6
Reduced mass, 121
Reflection coefficient

for ı function potential, 49
for a square barrier, 42
for Klein’s paradox, 505

Relative motion, 121
Relativistic spinor momentum eigenstates, 513
Relativistic spinor plane wave states, 513
Reproducing kernels, 680
Rotation group, 124

Defining representation, 128
Generators, 129
Matrix representations, 127

Rutherford scattering, 220

S
Scalar, 160
Scattering

Coulomb potential, 220
Hard sphere, 216

Scattering amplitude, 269
in potential scattering, 213

Scattering cross section, 208
for two particle collisions, 545

Scattering matrix, 254, 353
for ı potential in one dimension, 49
with vacuum processes divided out, 353

Schrödinger equation
Time-dependent, 19
Time-independent, 38

Schrödinger picture, 242
Schrödinger’s equation, 17
Second quantization, 333
Self-adjoint operator, 30, 77
Separation of variables, 97
Shift operator, 109
Sokhotsky-Plemelj relations, 29
Sommerfeld’s fine structure constant, 140
Spherical Coulomb waves, 147
Spherical harmonics, 132

Spin, 353
Spin-orbit coupling, 163, 522, 528

Vector model, 332
Spinor, 160
Squeezed states, 117
Stark effect, 309
Stefan-Boltzmann constant, 10
Stimulated emission, 414
Stress-energy tensor, see also energy-

momentum tensor, 328
Summation convention, 64
Symmetric operator, 32
Symmetries and conservation laws, 324
Symmetry group, 124

T
Tensor product, 64
Thomas-Reiche-Kuhn sum rule, 316
Thomson cross section, 422, 565
Time evolution operator, 52, 243

Two evolution operators in the interaction
picture, 249

as solution of initial value problem, 245
Composition property, 245
for harmonic oscillator, 246
on states in the interaction picture, 248
Unitarity, 245

Time ordering operator, 243
Tonomura experiment, 23
Transition frequency, 253
Transition probability, 253
Transmission coefficient

for ı function potential, 49
for a square barrier, 42
for Klein’s paradox, 505

Transverse ı function, 388
Tunnel effect, 42
Two-particle state, 357
Two-particle system, 121

U
Uncertainty relations, 85
Unitary operator, 78

V
Vector, 160
Vector addition coefficients, 165
Virial theorem, 79

W
Wannier functions, 190
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Wannier operators, 449
Wannier states, 190

Completeness relations, 191
Time-dependent, 192

Wave packets, 51
Wave-particle duality, 16
Wien’s displacement law, 5

Y
Yukawa potentials, 479

Z
Zeeman term, 158

from minimal coupling, 318
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