Raman and Coherent anti-Stokes Raman Scattering (CARS) Spectroscopy and Imaging

Selected Topics in Biophotonics (EAD289)

James Chan, Ph.D. Lawrence Livermore National Laboratory NSF Center for Biophotonics Science and Technology (CBST)

January 29, 2009

Outline

- Motivation Why Raman?
- Background theory on Raman spectroscopy
- Spontaneous Raman spectroscopy and imaging
- Background theory on Coherent Anti-Stokes Raman Scattering (CARS)
- CARS Instrumentation
- Brief Introductions to F-CARS, E-CARS, M-CARS
- Application of CARS to cell imaging
- Applications
- Summary

Live cell imaging requires the development of new optical microscopy methods

- Specificity
- Sensitivity
- Dynamic live cell imaging
- Long term live cell imaging

Current state of conventional optical microscopy

Phase contrast

Fluorescence

(+) Low cost(+) Easy to use

(-) No chemical information(-) Low 3D-resolution

(+) Specific labeling(+) 3D information with confocal and multiphoton microscopy

(-) Photobleaching - no long term studies(-) Toxicity, cell fixation - perturbs cell function

Raman scattering is the interaction of photons and intrinsic molecular bonds

Classical picture of Raman and Rayleigh scattering with a diatomic molecule

 $E = E_o \cos (\omega_i t)$ Electric field of incident light oscillating at frequency $\mu_{ind} = \alpha E = \alpha E_o \cos (\omega_i t)$ Induced dipole from this E-field $\alpha = \alpha_o + (r - r_{eq}) (d\alpha / dr)$ Molecular polarizability changes with bond length $r - r_{eq} = r_{max} \cos (\omega_{vib} t)$ The bond length oscillates at vibrational frequency $\alpha = \alpha_o + (d\alpha / dr)r_{max}\cos(\omega_{vib} t)$ Polarizability oscillates at vibrational frequency

 $\mu_{ind} = \alpha_o E_o \cos(\omega_i t) + (1/2) E_o r_{max} (d\alpha / dr) [\cos((\omega_i + \omega_{vib}) t) + \cos((\omega_i - \omega_{vib}) t)]$ Rayleigh Anti-Stokes Stokes

Raman spectra of cells provide a wealth of biological information

Raman shift =
$$(1/\lambda_{incident}) - (1/\lambda_{scattered})$$

Confocal Raman microscope for microspectroscopy and imaging

Conventional single cell Raman spectroscopy is usually performed on surfaces

Optical trapping combined with Raman spectroscopy simplifies the analysis of single cells

- Advantages:
 - Rapid sampling of many particles in solution
 - Reduces background signals from surfaces
 - Maximizes Raman signals
 - Enables manipulation and sorting of particles

Chan et. al., Analytical Chemistry, 76 599 (2004)

Optical trapping immobilizes a particle within the laser focus

- Tight focusing condition
- High intensity gradients in both axial and lateral directions
- Stable 3-D optical trapping with a single laser beam
- Trapping of organelles and whole cells have been demonstrated

Pediatric leukemia: Normal and malignant cells can be discriminated by their Raman fingerprint

Mean Raman spectra Raji B Intensity (au) Normal B Intensity (au) Jurkat T Normal T 1200 600 800 1000 1400 1600 Raman shift (cm⁻¹) Reproducible within group spectra

Cancer spectral markers

Chan et. al., Biophysical Journal 90 648-656 (2006)

Multivariate statistical techniques are used to separate and classify cell data

Principal component analysis (PCA)

Raman images of formaldehyde fixed human cells

Single, fixed lens epithelial

cell in buffer

Single, fixed peripheral blood lymphocyte in buffer

2850 cm⁻¹ symmetric CH_2 protein vibration, 120 mW 657 nm laser ~ 400 nm resolution, 1 hour acquisition time

Uzunbajakava et. al., Biopolymers, V72, 1-9 (2003)

Raman mapping combined with fluorescence microscopy for multi-modal analysis

Raman mapping of chemical components in

GFP mitochondria

CBST

Huang et. al., Biochemistry, V44, 10009-10019 (2005)

Advantages and limitations of spontaneous Raman spectroscopy/imaging

Advantages

- Minimally invasive technique
- Non-photobleaching signal for live cell studies
- Works under different conditions (temperatures and pressures)
- Chemical imaging without exogenous tags
- Works with different wavelengths

Limitations

- Fluorescence interference
- Limited spatial resolution
- Weak signal long integration times

Raman scattering is extremely inefficient (10⁻³⁰ cm² cross sections) 1 in 10⁸ incident photons are Raman scattered

- More sensitive (stronger signals) than spontaneous Raman microscopy faster, more efficient imaging for real-time analysis
- Contrast signal based on vibrational characteristics, no need for fluorescent tagging.
- CARS signal is at high frequency (lower wavelength) minimal fluorescence interference
- Higher resolution

CARS uses two laser frequencies to interact resonantly with a specific molecular vibration

molecules resonant at ω_{vib}

CARS signals are generated at wavelengths shorter than the excitation wavelengths (anti-Stokes)

CARS is a third order nonlinear optical process, requiring high intensity laser pulses

Polarization

$$P(t) = \chi^{(1)} E(t) + \chi^{(2)} E(t)^2 + \chi^{(3)} E(t)^3 + \dots$$

Higher order terms becomes important when peak powers are high

For CARS,
$$P_{AS} = \chi^{(3)} E_p^2 E_s$$

Requires high intensity, pulsed laser sources (ps, fs)

 $I_{AS} = I_p^2 I_S [sin (\Delta kz/2) / (\Delta kz/2)]^2$

Phase matching conditions

First CARS microscope demonstrated in 1982

- Drawbacks of this configuration for biological imaging
 - Laser wavelengths at 565-700 nm
 - Phase matching configuration difficult to implement practically

- Tight focusing conditions relax phase matching conditions
- Advancement in laser technology
- Near IR light reduces potential laser damage to cells, tissue
- Collinear geometry makes it much easier to implement
- 3-D sectioning, through cells, tissue

Tight focusing using a high NA objective is key for CARS microscopic imaging

Intensity distribution of an optical field focused by a 1.4 NA objective

- Phase matching condition relaxed
- Tight focus generates highest intensity at laser focus
- CARS signal generated within focal volume
- 3-D sectioning capability

Two synchronized Ti:Sapphire lasers provide two frequencies for CARS excitation

Optical parametric oscillators are another type of system used for CARS microscopy

Wavenumber

Ps pulses focus all energy to a single Raman band to maximize coherent vibration, at expense of losing peak intensity and multiplex advantage with fs pulses

First demonstration on 910 nm polystyrene beads

Zumbusch et. al., Phys. Rev. Lett. V82, 4142 (1999)

Jitter between two laser trains affects the quality of the CARS image

0.5 μm polystyrene beads0.3 mW, 0.1 mW pump, stokes22 seconds to acquire image

Jones et. al., Rev. Sci. Instrum. V73, 2843 (2002)

Examples of live cell imaging

853 nm (100 μW) and 1135 nm (100 μW) tuned to Raman shift of 2913 cm^-1 C-H vibration

Unstained live bacterial cells. Signal due to cell membranes.

Unstained live HeLa cells. Bright spots due to mitochondria.

Example : CARS image of protein, nucleic acid in a single cell

Unstained live human epithelial cell

Laser powers - 2 and 1 mW, tuned to 1570 cm⁻¹ (protein, nucleic acid) image acquired in 8 min, smallest feature <300 nm

Cheng et. al., J. Phys. Chem. B. V105,1277 (2001)

Example : CARS image of MSC-derived adipocytes rich in lipid structures

CARS tuned to 2845 cm⁻¹ lipid mode

MSC-derived adipocytes (fat cells)

Courtesy: Iwan Schie, Tyler Weeks, Gregory McNerney

Raman spectrum of bacterial spore

CARS image of spores on glass substrate

Long-term dynamic cell processes can be monitored with CARS microscopy

Conversion of 3T3-L1 fibroblast cells to adipocyte (fat) cells

Imaging of triglyceride droplets at 2845 cm⁻¹ (lipid vibration)

Tracking trajectories of organelles inside single living cells

Two photon fluorescence - mitochondria

CARS image of lipid droplets overlaid on TPF image Trajectory of droplets by repeated CARS imaging

Radiation pattern in the forward and backward directions may not be symmetrical

Incoherent microscopy : Radiation is symmetrical in both forward and backward direction (Fluorescence, 2 photon fluorescence, Spontaneous Raman)

Coherent microscopy : Radiation pattern is <u>not</u> symmetrical (CARS, SHG, THG)

Bulk scatterers add constructively in the forward direction

F-CARS detects large scatters, E-CARS detects small scatterers

Volkmer et. al., Phys. Rev. Lett. V87, 0239011 (2001)

Comparison of F-CARS and E-CARS image

Dark image due to destructive interference in E-CARS

/ Nuclear membrane edge visible in F-CARS, large axial length Cytoplasm overwhelmed

by solvent signal

Cheng et. al., Biophys. Journal, V83, 502-509 (2002)

Detection of F-CARS and E-CARS using one detector is possible by temporal separation of the two signals

Schie et. al., Optics Express, V16, 2168-2175 (2008)

Nonresonant background is a major issue in CARS microscopy

Electronically excited state ω_{s} ω'_p ω_{as} ω_p $\omega_{\rm s} | \omega'_{\rm p} | \omega_{\rm as}$ ω_{as} ω'_{p} $\omega_{\rm p}$ ω_{s} $\omega_{\rm p}$ v=1 v=1 v=0 ′=0 Non-resonant Resonant Two-photon enhanced CARS contribution non-resonant contribution (A) (C) (B)

Polarization CARS (P-CARS) – Cheng et. al, Optics Letters, V26 1341 (2001) Epi-CARS (E-CARS) – suppression of bulk background solvent

Dual pump CARS microscopy can be used to subtract nonresonant background

CBST

Autofluorescence (2-photon) from the sample may overwhelm the CARS signal

- Raman lifetimes ~ ps
- Fluorescence lifetimes ~ ns

time gate 0-0.6 ns

time gate 2-10 ns

Multiplexed CARS (M-CARS) has been developed for CARS <u>spectroscopy</u>

Population of multiple levels simultaneously (ps-fs combination)

CARS spectrum of DOPC vesicle in the C-H stretching region (~150 cm^{-1})

Cheng et. al., J. Phys. Chem. B, V106, 8493-8498 (2002)

Supercontinuum generation in a photonic crystal fiber can function as a broad source for M-CARS

2845 cm⁻¹ vibration C-H lipid Stratum 0 µm deep corneum 100 µm D 70 nm deep Е 100 µm deep шm 100 aut

Application : CARS *in-vivo* imaging

Adipocytes of the dermis Evans et. al., PNAS, V102 16807 (2005) Adipocytes of subcutaneous layer

Applications : Fiber-based CARS endoscopy

Legare et. al., Opt. Express, V14 4427 (2006)

Application : CARS cytometry for <u>rapid</u>, <u>label-less</u> cancer cell detection and sorting

We have demonstrated optical trapping combined with CARS for faster spectral analysis

Trapped polystyrene bead using two CARS beams

<u>Potential solution for faster</u> <u>chemical analysis of cells</u>

Microsecond temporal resolution

Chan et. al., IEEE J. Sel. Topics. Quant. Elec. V11 858 (2005)

Application: Microfluidic CARS cytometry

Wang et. al., Optics Express V16 5782 (2008)

- Raman-based spectroscopy and imaging offers unique capabilities
- CARS is a new technique for live cell spectroscopy and imaging with chemical contrast without using tags.
- Motivation for CARS development due to limitations of spontaneous Raman spectroscopy (signal strength, resolution)
- Inherent Raman signals do not photobleach, enabling long term cell studies
- There are many forms of CARS (F-CARS, E-CARS, P-CARS, M-CARS) being developed since 1999.
- Applications
 - In-vivo CARS
 - Fiber based CARS for endoscopy
 - Microfluidic CARS-based flow cytometry for single cell analysis

Thank you!

chan19@llnl.gov