Raman spectroscopy of graphene

Stefan Ulonska

Free University of Berlin

01/14/2014

Raman scattering

Microscopic description of Raman scattering Resonant Raman scattering Higher order scattering Symmetry selection rules

Raman spectroscopy of graphene Raman spectrum of graphene Characterization of graphene

Raman scattering

Microscopic description of Raman scattering Resonant Raman scattering Higher order scattering Symmetry selection rules

2 Raman spectroscopy of graphene

Visible light scattering on matter

Conservation requirements:

$$egin{aligned} &\hbar\omega_{sc}=\hbar\omega_{i}\pm\hbar\Omega_{ph}\ &ec{k}_{sc}=ec{k}_{i}\pmec{q}_{ph} \end{aligned}$$

$$\begin{split} \omega_{sc} &= \omega_i: \text{Rayleigh} \\ \omega_{sc} &= \omega_i - \Omega_{ph}: \text{Stokes} \\ \omega_{sc} &= \omega_i + \Omega_{ph}: \text{Anti-Stokes} \end{split}$$

Fundamental Raman selection rule

Considerations for \vec{q}_{ph}

Maximal magnitude $|\vec{q}| = 2 \cdot |\vec{k_i}|$ for backscattering.

Visible light at 530 nm: $\mathcal{O}(|\vec{k_i}|) = 10^{-3} \text{ Å}^{-1}$

Phonon Brillouin zone(BZ) edge: $\mathcal{O}(|\vec{q}_{ph}|) = \frac{\pi}{a} = \text{\AA}^{-1}$

Microscopic picture of Stokes process

Quantum state: |*photon*, *phonon*, *electron* \rangle Electronic: $|i\rangle \Rightarrow |n\rangle \Rightarrow |n^*\rangle \Rightarrow |i\rangle$

Individual transition rates

$$\begin{array}{ll} (1) & |\omega_{i},0,i\rangle \Rightarrow |0,0,n\rangle : \\ & K_{1} \propto \sum_{n} \frac{\langle 0,0,n \mid H_{\sigma} \mid \omega_{i},0,i\rangle}{\hbar\omega_{i} - (E_{n} - E_{i})} \\ (2) & |0,0,n\rangle \Rightarrow |0,ph,n^{*}\rangle : \\ & K_{2} \propto \sum_{n,n^{*}} \frac{\langle 0,ph,n^{*} \mid H_{\theta-ph} \mid 0,0,n\rangle}{\hbar\omega_{i} - \hbar\Omega_{ph} - (E_{n^{*}} - E_{n})} \\ (3) & |0,ph,n^{*}\rangle \Rightarrow |\omega_{sc},ph,i\rangle : \\ & K_{3} \propto \sum_{n,n^{*}} \frac{\langle \omega_{sc},ph,i \mid H_{\rho} \mid 0,ph,n^{*}\rangle}{\hbar\omega_{i} - \hbar\Omega_{ph} - \hbar\omega_{sc}} \end{array}$$

Electronic excitation <u>mediates</u> Raman scattering of photons

Electron remains unchanged after scattering: Same final state $|i\rangle$ as before photon absorption

Microscopic picture of Stokes process

Quantum state: |*photon*, *phonon*, *electron* \rangle Electronic: $|i\rangle \Rightarrow |n\rangle \Rightarrow |n^*\rangle \Rightarrow |i\rangle$

Individual transition rates

(1)
$$|\omega_i, 0, i\rangle \Rightarrow |0, 0, n\rangle$$
:
 $k_1 \propto \sum_n \frac{\langle 0, 0, n | H_{\sigma} | \omega_i, 0, i \rangle}{\hbar \omega_i - (E_n - E_i)}$
(2) $|0, 0, n\rangle \Rightarrow |0, ph, n^*\rangle$:
 $k_2 \propto \sum_{n, n^*} \frac{\langle 0, ph, n^* | H_{e-ph} | 0, 0, n \rangle}{\hbar \omega_i - \hbar \Omega_{ph} - (E_{n^*} - E_n)}$
(3) $|0, ph, n^*\rangle \Rightarrow |\omega_{sc}, ph, i\rangle$:
 $k_3 \propto \sum_{n, n^*} \frac{\langle \omega_{sc}, ph, i | H_{\rho} | 0, ph, n^* \rangle}{\hbar \omega_i - \hbar \Omega_{\rho h} - \hbar \omega_{sc}}$

Electronic excitation <u>mediates</u> Raman scattering of photons

Electron remains unchanged after scattering: Same final state $|i\rangle$ as before photon absorption

Microscopic picture of Stokes process

Quantum state: |*photon*, *phonon*, *electron* \rangle Electronic: $|i\rangle \Rightarrow |n\rangle \Rightarrow |n^*\rangle \Rightarrow |i\rangle$

Individual transition rates

(1)
$$|\omega_i, 0, i\rangle \Rightarrow |0, 0, n\rangle$$
:
 $K_1 \propto \sum_n \frac{\langle 0, 0, n | H_{\sigma} | \omega_i, 0, i \rangle}{\hbar \omega_i - (E_n - E_i)}$
(2) $|0, 0, n\rangle \Rightarrow |0, ph, n^*\rangle$:
 $K_2 \propto \sum_{n, n^*} \frac{\langle 0, ph, n^* | H_{e-ph} | 0, 0, n \rangle}{\hbar \omega_i - \hbar \Omega_{ph} - (E_{n^*} - E_n)}$
(3) $|0, ph, n^*\rangle \Rightarrow |\omega_{sc}, ph, i\rangle$:
 $K_3 \propto \sum_{n, n^*} \frac{\langle \omega_{sc}, ph, i | H_{\rho} | 0, ph, n^* \rangle}{\hbar \omega_i - \hbar \Omega_{\rho h} - \hbar \omega_{sc}}$

Electronic excitation <u>mediates</u> Raman scattering of photons

Electron remains unchanged after scattering: Same final state $|i\rangle$ as before photon absorption

Transition probability of first order Raman scattering

Neglecting other time orders_[2], the Raman scattering probability is given by Fermi's rule:

$$P = \frac{2\pi}{\hbar} \cdot |k_1 \cdot k_2 \cdot k_3|^2$$

Total transition probability

$$P = \frac{2\pi}{\hbar} \cdot \left|\sum_{n,n^*} \frac{\langle i \mid H_{\rho} \mid n^* \rangle \cdot \langle n^* \mid H_{e-ph} \mid n \rangle \cdot \langle n \mid H_{\sigma} \mid i \rangle}{\left[\hbar\omega_i - (E_n - E_i)\right] \cdot \left[\hbar\omega_i - \hbar\Omega_{ph} - (E_{n^*} - E_i)\right]}\right|^2 \cdot \delta(\omega_i - \Omega_{ph} - \omega_{sc})$$

• Matrix elements depend on symmetries of $H_{\rho,\sigma,e-ph}$ and $|i\rangle$, $|n\rangle$, $|n^*\rangle \Rightarrow$ Symmetry selection rules

 Vanishing (or small) denominators increase scattering probability ⇒ Resonant Raman scattering

Transition probability of first order Raman scattering

Neglecting other time orders_[2], the Raman scattering probability is given by Fermi's rule:

$$P = \frac{2\pi}{\hbar} \cdot |k_1 \cdot k_2 \cdot k_3|^2$$

Total transition probability

$$P = \frac{2\pi}{\hbar} \cdot |\sum_{n,n^*} \frac{\langle i | H_{\rho} | n^* \rangle \cdot \langle n^* | H_{e-ph} | n \rangle \cdot \langle n | H_{\sigma} | i \rangle}{[\hbar \omega_i - (E_n - E_i)] \cdot [\hbar \omega_i - \hbar \Omega_{ph} - (E_{n^*} - E_i)]} |^2 \cdot \delta(\omega_i - \Omega_{ph} - \omega_{sc})$$

- Matrix elements depend on symmetries of H_{ρ,σ,e-ph} and |i⟩, |n⟩, |n*⟩ ⇒ Symmetry selection rules
- Vanishing (or small) denominators increase scattering probability ⇒ Resonant Raman scattering

Resonant transition probability at critical points

$$P_{res} \approx \frac{2\pi}{\hbar} \cdot |\frac{\langle i \mid H_{\rho} \mid n \rangle \cdot \langle n \mid H_{e-ph} \mid n \rangle \cdot \langle n \mid H_{\sigma} \mid i \rangle}{[\hbar\omega_i - E_n] \cdot [\hbar\omega_{sc} - E_n]} + C|^2$$

2 resonant processes

 $\hbar\omega_i = E_n$: Incoming resonance $\hbar\omega_{sc} = E_n$: Outgoing resonance

- Resonant Raman scattering can be used to determine Ω_{ph} and critical points of e⁻ bandstructure
- Scattering signal enhancement $\approx 10^5 10^7$

Resonant transition probability at critical points

$$P_{\text{res}} \approx \frac{2\pi}{\hbar} \cdot |\frac{\langle i \mid H_{\rho} \mid n \rangle \cdot \langle n \mid H_{e-ph} \mid n \rangle \cdot \langle n \mid H_{\sigma} \mid i \rangle}{[\hbar\omega_i - E_n] \cdot [\hbar\omega_{sc} - E_n]} + C|^2 \cdot C|^$$

2 resonant processes

 $\hbar\omega_i = E_n$: Incoming resonance $\hbar\omega_{sc} = E_n$: Outgoing resonance

- Resonant Raman scattering can be used to determine Ω_{ph} and critical points of e⁻ bandstructure
- Scattering signal enhancement $\approx 10^5 10^7$

Second order Raman scattering

Two-phonon scattering

Momentum conservation: $\sum_i \vec{q}_i \approx 0$

Possible by exciting the same(overtone) or different phonon branches (combination)

⇒ Allows for study of phonon DOS in some materials

Other higher order processes

Electronic scattering on defects:

 \Rightarrow Important in graphene to study sample structure and quality

Second order Raman scattering

Two-phonon scattering

Momentum conservation: $\sum_i \vec{q}_i \approx 0$

Possible by exciting the same(overtone) or different phonon branches (combination)

⇒ Allows for study of phonon DOS in some materials

Other higher order processes

Electronic scattering on defects:

 \Rightarrow Important in graphene to study sample structure and quality

Result of group theory

All possible functions (electrons, phonons, physical properties) in a crystal transform uniquely under symmetry operations
 ⇒ A defined symmetry (e.g. A_{1g}, B_{2u}) can be assigned to each state in the crystal

 \Rightarrow Symmetry properties of a crystal and its functions are summarized in character tables

Symmetry of matrix elements

$$\mathcal{M} = \langle i \mid H_{\rho} \mid n^* \rangle \cdot \langle n^* \mid H_{e-\rho h} \mid n \rangle \cdot \langle n \mid H_{\sigma} \mid i \rangle$$

- $\mathcal{M} \neq 0$ only if $\Gamma(H_{\sigma}) \otimes \Gamma(H_{\rho}) \otimes \Gamma(H_{e-ph}) \neq 0$
- Dipole approximation: H_{σ} and H_{ρ} have the same symmetry as the polarization coordinates of the photons.
- H_{e-ph} transforms like the phonon with symmetry Γ_{ph}

Result of group theory

All possible functions (electrons, phonons, physical properties) in a crystal transform uniquely under symmetry operations
 ⇒ A defined symmetry (e.g. A_{1g}, B_{2u}) can be assigned to each state in the crystal

 \Rightarrow Symmetry properties of a crystal and its functions are summarized in character tables

Symmetry of matrix elements

$$\mathcal{M} = \langle i \mid \mathbf{H}_{\rho} \mid n^* \rangle \cdot \langle n^* \mid \mathbf{H}_{e-ph} \mid n \rangle \cdot \langle n \mid \mathbf{H}_{\sigma} \mid i \rangle$$

- $\mathcal{M} \neq 0$ only if $\Gamma(H_{\sigma}) \otimes \Gamma(H_{\rho}) \otimes \Gamma(H_{e-ph}) \neq 0$
- Dipole approximation: H_σ and H_ρ have the same symmetry as the polarization coordinates of the photons.
- H_{e-ph} transforms like the phonon with symmetry Γ_{ph}

Symmetry conditions on matrix elements

 $\Gamma(H_{\sigma})\otimes\Gamma(H_{
ho})\supset\Gamma_{ph}$

Excited phonon has to have the same symmetry as the product of the respective polarization coordinates of ${\rm H}_\rho$ and ${\rm H}_\sigma$

⇒ Determination of phonon symmetry via polarization dependent Raman signal

Symmetry conditions on matrix elements

 $\Gamma(H_{\sigma})\otimes\Gamma(H_{\rho})\supset\Gamma_{ph}$

Excited phonon has to have the same symmetry as the product of the respective polarization coordinates of ${\rm H}_\rho$ and ${\rm H}_\sigma$

⇒ Determination of phonon symmetry via polarization dependent Raman signal

Example: graphene, D_{6h} group

	Character table for D _{6h} point group													
	E	2C ₆	2C ₃	C2	3C'2	3C"2	i	28 ₃	28 ₆	σ _h	3σ _d	3σ _v	Linear, rotations	Quadratic
A _{1g}	1	1	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$

 H_{σ} , H_{ρ} along \vec{x} direction (polarizers)

 \Rightarrow Phonon with A_{1g} symmetry could be measured since it transforms like x²

1 Raman scattering

Raman spectroscopy of graphene Raman spectrum of graphene Characterization of graphene

Graphene recap

Crystal properties

- 2-dimensional material with hexagonal symmetry (D_{6h} space group)
- 2 carbon atoms per unit cell

Phonon dispersion of graphene

D_{6h} character table

	E	2C ₆	2C ₃	C ₂	3C'2	3C"2	i	28 ₃	28 ₆	σ _h	3σ _d	3σ _v	Linear, rotations	Quadratic
A _{lg}	1	1	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}, z^{2}$
A _{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R _z	
B _{lg}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
B _{2g}	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
E _{lg}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	$(\mathbf{R}_{\mathbf{x}}^{},\mathbf{R}_{\mathbf{y}}^{})$	(xz, yz)
E _{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0		(x^2-y^2, xy)
A _{lu}	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1		
A _{2u}	1	1	1	1	-1	-1	-1	-1	-1	-1	1	1	z	
B _{lu}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	2	
B _{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
E _{lu}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)	
E _{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

D_{6h} character table

	E	2C ₆	2C ₃	C2	3C'2	3C"2	i	28 ₃	28 ₆	σ _h	3σ _d	3σ _v	Linear, rotations	Quadratic
A _{lg}	1	1	1	1	1	1	1	1	1	1	1	1		$x^{2}+y^{2}$, z^{2}
A _{2g}	1	1	1	1	-1	-1	1	1	1	1	-1	-1	R _z	
B _{lg}	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1		
B _{2g}	1	-1	1	-1	-1	1	1	-1	1	-1	-1	1		
E _{lg}	2	1	-1	-2	0	0	2	1	-1	-2	0	0	$(\mathbf{R}_{\mathbf{x}},\mathbf{R}_{\mathbf{y}})$	(xz, yz)
E _{2g}	2	-1	-1	2	0	0	2	-1	-1	2	0	0		(x ² -y ² , xy)
			ire	to	orde	r Pa	n	nar	קרו	cti		m		4

First order	Raman	active	mode
-------------	-------	--------	------

B _{lu}	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1		
B _{2u}	1	-1	1	-1	-1	1	-1	1	-1	1	1	-1		
E _{lu}	2	1	-1	-2	0	0	-2	-1	1	2	0	0	(x, y)	
E _{2u}	2	-1	-1	2	0	0	-2	1	1	-2	0	0		

Raman spectrum of graphene

Raman spectrum of graphene

Stefan Ulonska (FU Berlin)

Raman spectroscopy of graphene

01/14/2014 19

Raman D peak in graphene

D

- Intervalley scattering with TO phonon at K-point, *q_{ph}* ≠ 0
- D peak requires defect scattering to conserve momentum

2D

- Double-resonant, intervalley scattering_[5] requires no defects
- Strong e⁻-ph coupling: 2D peak is more intense than G

Determination of defects and number of layers

Determination of defects and number of layers

Seminar paper[6]

"Position and fwhm of the G and 2D peak(...)confirm presence of single-layer graphene"

- Position of 2D peak depends on number of layers
- Additional layers increase FWHM of 2D peak (more e⁻ states for resonant scattering)
- Occurence of peaks at 1350 cm⁻¹ (D) and 1620 cm⁻¹ (D') reveal defects of graphene sample

Determination of defects and number of layers

Seminar paper[6]

"Position and fwhm of the G and 2D peak(...)confirm presence of single-layer graphene"

- Position of 2D peak depends on number of layers
- Additional layers increase FWHM of 2D peak (more e⁻ states for resonant scattering)
- Occurence of peaks at 1350 cm⁻¹ (D) and 1620 cm⁻¹ (D') reveal defects of graphene sample

Stefan Ulonska (FU Berlin)

Seminar paper[6]

"This is supported by a peak height ratio 2D/G of 2.8 which [indicates](...)an oxide layer of 300 nm thickness"

Interference effects of Raman signal and substrate allow for determination of layer thickness from peak ratio 2D/G

Phonon frequencies change under strain

$$\Delta \omega^{\pm} = \Delta \omega^{h} \pm \frac{1}{2} \Delta \omega^{S}$$
$$= -\omega^{0} \cdot \gamma \cdot \epsilon_{h} \pm \frac{1}{2} \omega^{0} \beta \cdot \epsilon_{S}$$

- Hydrostatic strain $\Delta \omega^h$ shifts phonon frequency
- Degenerate phonon modes split due to shear strain $\Delta \omega^S$
- Frequency shift allows for determination of strain tensor $ar{ar{\epsilon}}$

 \Rightarrow Raman signals sensitive to sample strain and relative orientation

Raman spectroscopy of graphene

Phonon frequencies change under strain

$$egin{aligned} \Delta \omega^{\pm} &= \Delta \omega^h \pm rac{1}{2} \Delta \omega^S \ &= - \omega^0 \cdot \gamma \cdot \epsilon_h \pm rac{1}{2} \omega^0 eta \cdot \epsilon_S \end{aligned}$$

- Hydrostatic strain $\Delta \omega^h$ shifts phonon frequency
- Degenerate phonon modes split due to shear strain $\Delta \omega^S$
- Frequency shift allows for determination of strain tensor \$\overline{\epsilon}\$

 \Rightarrow Raman signals sensitive to sample strain and relative orientation

Raman spectroscopy of graphene

Seminar paper_[6]

"In areas of plasmonic enhancement the graphene is under strain with a hydrostatic component \approx 0.8% and a shear component <0.4%"

- Frequency shift of peaks on Au nanostructure
- Modes broadened but not split in areas of strain
- ⇒ Calculate hydrostatic strain, approximate shear strain
- ⇒ Plasmonic signal enhancement in areas under strain

Seminar paper

"In areas of plasmonic enhancement the graphene is under strain with a hydrostatic component \approx 0.8% and a shear component <0.4%"

- Frequency shift of peaks on Au nanostructure
- Modes broadened but not split in areas of strain
- ⇒ Calculate hydrostatic strain, approximate shear strain
- ⇒ Plasmonic signal enhancement in areas under strain

Raman scattering

- Non-destructive technique to determine both electronic and vibrational properties
- Identification of phonon symmetry and energy
- Allows study of samples with both spatial and frequency resolution

Raman spectroscopy of graphene

- Identification of defects, substrate thickness and number of layers
- Resolution of regions under strain and determination of strain components
- Study electron-phonon and electron-electron interactions

• (...)

Raman scattering

- Non-destructive technique to determine both electronic and vibrational properties
- Identification of phonon symmetry and energy
- Allows study of samples with both spatial and frequency resolution

Raman spectroscopy of graphene

- · Identification of defects, substrate thickness and number of layers
- Resolution of regions under strain and determination of strain components
- Study electron-phonon and electron-electron interactions
- (...)

- [1] Popov. Non-adiabatic phonon dispersion of graphene. BJP, 2011.
- [2] Yu Cardona. Fundamentals of Semiconductors: Physics and Materials Properties. 2005.
- [3] webqc.org. D6h point group symmetry character tables. URL http://www.webqc.org/symmetrypointgroup-d6h.html.
- [4] Ferrari. Raman spectroscopy as a versatile tool for studying the properties of graphene. *Nature Nanotechnology*, 2013.
- [5] Reich. Double resonant raman scattering in graphite. PRL, 2000.
- [6] Heeg. Polarized plasmonic enhancement by au nanostructures probed through raman scattering of suspended graphene. *Nano Letters*, 2012.
- [7] Ferrari. Raman spectrum of graphene and graphene layers. PRL, 2006.
- [8] Yoon. Interference effect on raman spectrum of graphene on sio2 /si. PRB, 2009.
- [9] Mohiuddin. Uniaxial strain in graphene by raman spectroscopy: G peak splitting, grüneisen parameters, and sample orientation. *PRB*, 2009.