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Abstract. Recently [4] we have obtained some new algebraic results about βN, the

Stone-Čech compactification of the discrete set of positive integers and about βW ,
where W is the free semigroup over a nonempty alphabet with infinitely many vari-
ables adjoined. (The results about βW extend the Graham-Rothschild Parameter Sets
Theorem.) In this paper we derive some Ramsey Theoretic consequences of these re-
sults. Among these is the following, which extends the Finite Sums Theorem.

Theorem. Let N be finitely colored. Then there is a color class D which is
central in N and

(i) there exists a pairwise disjoint collection {Di,j : i, j ∈ ω} of central subsets
of D and for each i ∈ ω there exists a sequence 〈xi,n〉∞n=i in Di,i such that when-
ever F is a finite nonempty subset of ω and f : F → {1, 2, . . . , minF} one has that
Σn∈F xf(n),n ∈ Di,j where i = f(minF ) and j = f(max F ); and

(ii) at stage n when one is chosing (x0,n, x1,n, . . . , xn,n), each xi,n may be chosen
as an arbitrary element of a certain central subset of Di,i, with the choice of xi,n

independent of the choice of xj,n.
An analogous extension of the Graham-Rothschild Theorem is established. Also

included are new results about image partition regularity and kernel partition regularity
of matrices.

1. Introduction

Applications of the algebra of the Stone-Čech compactification βN of the set N of positive
integers to Ramsey Theory have fascinated the second author since he was almost young,
1975 to be precise. At that time he was made aware of the Galvin-Glazer proof of the Finite
Sums Theorem – a proof that is essentially trivial given that one knows that there is an
idempotent p = p + p in the compact right topological semigroup (βN,+). (His original

1This author acknowledges support received from the National Science Foundation (USA) via grant
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proof [9] was extraordinarily complicated, its only virtue being that it does not require the
axiom of choice [3].) The other authors’ interests are of only a slightly more recent origin.

There have been since 1975 many other Ramsey-Theoretic applications of the algebra
of the Stone-Čech compactification βS of a discrete semigroup S. Among these has been
the algebraic proof of the Central Sets Theorem. The notion of central sets in N is due to
H. Furstenberg. He defined central sets in terms of the notions of uniform recurrence and
proximality of topological dynamics and proved the following theorem. (We write Pf (A) for
the set of finite nonempty subsets of a set A and ω = N ∪ {0}.)

In [2] it was shown that there is a much simpler characterization characterization of
central sets. A subset of N is central if and only if it is a member of an idempotent in
the smallest ideal of (βN,+), and a proof of Theorem 1.1 using that description is quite
simple. (Later Shi and Yang showed [16] that the algebraic and topological dynamical
characterizations of central sets are equivalent in any semigroup.)

1.1 Theorem (Central Sets Theorem). Let n ∈ N and for each i ∈ {0, 1, . . . , n− 1}, let
〈yi,k〉∞k=0 be a sequence in N. Let C be a central subset of N. Then there exist a sequence
〈an〉∞n=0 in N and a sequence 〈Hn〉∞n=0 of finite nonempty subsets of ω such that maxHn <

minHn+1 for each n ∈ ω and
{∑

n∈F (an +
∑

t∈Hn
yf(t),t) : F ∈ Pf (ω) and f : F → {0, 1, . . . , k − 1}} ⊆ C .

Proof. [6, Proposition 8.21].

Central sets in N have many strong combinatorial properties. For example, they con-
tain solutions to any partition regular system of homogeneous linear equations. (See [12,
Theorem 15.16]). In fact for most Ramsey Theoretic results in N the configurations that
are guaranteed to be monochrome can be found in any central set. (Since one cell of any
partition of N must be central, this is a stronger conclusion.)

In Section 2 we establish the theorem which was stated in the abstract and a stronger
statement involving infinitely many sequences, and infinitely many pairwise disjoint central
sets.

In Section 3 we derive similar results about the free semigroup W on an arbitrary
nonempty alphabet, results that extend the Graham-Rothschild Theorem.

In Section 4 we use a recent extension of the Graham-Rothschild parameter sets theorem
to obtain a theorem about image partition regular matrices over arbitrary rings.

We use throughout the algebraic structure of the Stone-Čech compactification βS of a
discrete semigroup S. We take the points of βS to be the ultrafilters on S, the principal
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ultrafilters being identified with the points of T . Given a set A ⊆ S, A = {p ∈ βS : A ∈ p}.
The set {A : A ⊆ S} is a basis for the open sets (as well as a basis for the closed sets) of
βS.

There is a natural extension of the operation of S to βS. We use the same symbol
to denote the extension of the operation to βS as that used to denote the operation in S.
Assume here that the operation is denoted by ·. This natural extension makes (βS, ·) a
compact right topological semigroup with S contained in its topological center. This says
that for each p ∈ βS the function ρp : βS → βS is continuous and for each x ∈ S, the
function λx : βS → βS is continuous, where ρp(q) = q · p and λx(q) = x · q. Given p, q ∈ βS,
if s and t are restricted to S, one has p · q = lim

s→p
(lim
t→q

s · t).
A subset U of a semigroup S is called a left ideal if is nonempty and S · U ⊆ U . It

is called a right ideal if it is nonempty and U · S ⊆ U . It is called a two-sided ideal, or
simply an ideal, if it is both a left ideal and a right ideal. Any compact Hausdorff right
topological semigroup T has a smallest two sided ideal K(T ) which is the union of all of the
minimal left ideals of T and is also the union of all of the minimal right ideals of T . The
intersection of any minimal left ideal and any minimal right ideal is a group. In particular
there are idempotents in the smallest ideal. There is a partial ordering of the idempotents
of T determined by p ≤ q if and only if p = p · q = q · p. An idempotent p is minimal
with respect to this order if and only if p ∈ K(T ). Such an idempotent is called simply
“minimal”. Thus central subsets of S are those which are members of minimal idempotents
in βS. See [12] for an elementary introduction to the semigroup βS and for any unfamiliar
algebraic facts encountered in this paper.

We note that the Ramsey theoretic results in Section 2 and Section 3 depend heavily on
the brilliant contribution made to the theory of semigroup compactifications by Y. Zelenyuk,
through his study of absolute coretracts [17, 18].

2. Sums in Central Subsets of N

We introduce now a special semigroup. We shall see in Theorem 2.6 that there are copies
of this semigroup close to any minimal idempotent of βN.

2.1 Definition. Let A and B be nonempty sets such that B ∩ (A×B) = ∅ and let CA,B =
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B ∪ (A×B). Define an operation on CA,B as follows for a, c ∈ A and b, d ∈ B.

bd = d

b(c, d) = (c, d)

(a, b)d = (a, d)

(a, b)(c, d) = (a, d) .

If A and B are topological spaces, we assume that A×B has the product topology and that
CA,B has the topology for which B and A×B are clopen subspaces.

It is routine to verify that the operation given above is associative.

Given a semigroup S, a subset A of S, and x ∈ S, we let x−1A = {y ∈ S : xy ∈ A}. (If
the operation in S is written additively, we write −x+A = {y ∈ S : x+ y ∈ A}.) Note that
if p, q ∈ βS and A ⊆ S one has A ∈ pq if and only if {x ∈ S : x−1A ∈ q} ∈ p.

2.2 Lemma. Let S be a discrete semigroup, let H be a subsemigroup of βS and let F be a
finite subsemigroup of H. For each p ∈ H, let Bp ∈ p and define Ep = {x ∈ Bp : for all q ∈
F , x−1Bpq ∈ q}. Then

(1) for each p ∈ H, Ep ∈ p and

(2) for all p ∈ H, all q ∈ F and all x ∈ Ep, x−1Epq ∈ q.

Proof. Given p, q ∈ H one has Bpq ∈ pq so {x ∈ S : x−1Bpq ∈ q} ∈ p. Therefore, since F
is finite, Ep ∈ p.

To verify (2) let p ∈ H, let q ∈ F , and let x ∈ Ep. Then for each r ∈ F , x−1Bpqr ∈ qr

so {y ∈ S : y−1(x−1Bpqr) ∈ r} ∈ q. Therefore

x−1Bpq ∩
⋂

r∈F {y ∈ S : y−1(x−1Bpqr) ∈ r} ∈ q .

Also x−1Bpq ∩ ⋂
r∈F {y ∈ S : y−1(x−1Bpqr) ∈ r} ⊆ x−1Epq. (Given r ∈ F , y ∈ S, and

z ∈ y−1(x−1Bpqr), one has xyz ∈ Bpqr so z ∈ (xy)−1Bpqr.)

The proof of the following lemma is based on the proof of [13, Lemma 3.4].

2.3 Lemma. Let A and B be nonempty sets, let M be a right topological semigroup, and let
f : M → CA,B be a surjective homomorphism such that f−1[B] and f−1[A×B] are compact.
Assume that q′ is a minimal idempotent of f−1[B], q is a minimal idempotent of f−1[A×B],
q ≤ q′, f(q′) = y0, and f(q) = (x0, y0). Then there is a homomorphism g : CA,B → M

such that f ◦ g is the identity on CA,B, g[B] ⊆ K(f−1[B]), g[A × B] ⊆ K(f−1[A × B]),
g(y0) = q′, and g(x0, y0) = q.
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Proof. We first define g on B. Let b ∈ B. Since {b} is a left ideal of B, f−1[{b}] is a left
ideal of f−1[B]. Choose g(b) to be a minimal idempotent of f−1[B] which is in the left ideal
f−1[{b}] and the minimal right ideal q′f−1[B]. If b = y0 we can choose g(b) = q′. Since
q′ ∈ K(f−1[B]), g(b) ∈ K(f−1[B]). Since g(b) ∈ f−1[{b}], f(

g(b)
)

= b. If b1, b2 ∈ B then
both g(b1) and g(b2) are in the minimal right ideal q′f−1[B] so

g(b1)g(b2) = g(b2)

Since b2 = b1b2, this implies that the restriction of g to B is a homomorphism.

We next define g on A × {y0}. Let a ∈ A. Since {a} × B is a right ideal of CA,B,
f−1[{a} ×B] is a right ideal of f−1[A×B]. Choose g(a, y0) to be a minimal idempotent of
f−1[A×B] which is in the right ideal q′f−1[{a}×B] and the minimal left ideal f−1[A×B]q.
Since q ≤ q′, we can choose g(a, y0) = q if a = x0. Since q ∈ K(f−1[A × B]), g(a, y0) ∈
K(f−1[A×B]). Notice that f

(
g(a, y0)

)
is in the right ideal y0({a}×B) = {a}×B and the left

ideal (A×B)(x0, y0) = A×{y0}. Therefore, f
(
g(a, y0)

)
= (a, y0). Since g(a, y0) = q′g(a, y0)

and g(b)q′ = q′ for all b ∈ B,

g(b)g(a, y0) = g(a, y0)

for all b ∈ B. Moreover, if a1, a2 ∈ A then g(a1, y0) and g(a2, y0) are idempotents in the
same minimal left ideal implying

g(a1, y0)g(a2, y0) = g(a1, y0)

Finally, extend the definition of g to include all of A×B by defining g(a, b) = g(a, y0)g(b).
Notice that when b = y0 this definition agrees with our previous definition of g(a, b) since
g(a, y0) is in the left ideal f−1[A×B]q and q ≤ q′ = g(y0). Since g(a, y0) ∈ K(f−1[A×B]),
g(a, b) ∈ K(f−1[A×B]). Also,

f
(
g(a, b)

)
= f

(
g(a, y0)

)
f
(
g(b)

)
= (a, y0)b = (a, b)

Checking that g is a homomorphism is now routine.

For a ∈ A and b, b′ ∈ B

g(a, b)g(b′) = g(a, y0)g(b)g(b′) = g(a, y0)g(b′) = g(a, b′) = g
(
(a, b)b′

)

and

g(b′)g(a, b) = g(b′)g(a, y0)g(b) = g(a, y0)g(b) = g(a, b) = g
(
b′(a, b)

)
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For a1, a2 ∈ A and b1, b2 ∈ B

g(a1b1)g(a2, b2) = g(a1, y0)g(b1)g(a2, y0)g(b2)

= g(a1, y0)g(a2, y0)g(b2)

= g(a1, y0)g(b2)

= g(a1, b2)

= g
(
(a1, b1)(a2, b2)

)

The following elementary topological lemma will be needed later.

2.4 Lemma. Let X and Y be infinite discrete spaces, let g : X → Y and denote also by g
its continuous extension taking βX to βY . If D is a compact Gδ subset of βX, then g[D]
is a compact Gδ subset of βY .

Proof. For each U ⊆ X , g[U ] = g[U ]. (See for example [12, Lemma 3.30].) Thus g is an
open map. Let D be a compact Gδ subset of βX and pick open subsets Un of βX for each
n ∈ N such that D =

⋂∞
n=1 Un. Since g is continuous, g[D] is compact.

Using the fact that D is compact, inductively choose clopen Vn for each n ∈ N such
that D ⊆ Vn ⊆ Un and, if n > 1, Vn ⊆ Vn−1. Then D =

⋂∞
n=1 Vn and so g[D] ⊆ ⋂∞

n=1 g[Vn].
Since g is an open map, it suffices to show that

⋂∞
n=1 g[Vn] ⊆ g[D]. To this end let p ∈⋂∞

n=1 g[Vn] and for each n ∈ N, pick xn ∈ Vn such that p = g(xn). If y is a cluster point of
the sequence 〈xn〉∞n=1, then y ∈ D and p = g(y).

Given n ∈ N, we define supp(n) ⊆ ω by n =
∑

t∈supp(n) 2t and we let supp(0) = ∅. We
write H =

⋂∞
n=1 c�βN(N2n). Note that by [12, Lemma 6.6] all of the idempotents of βN are

in H.

2.5 Lemma. Let p be an idempotent in βN and let D be a compact Gδ subset of βN such
that p ∈ D. There is a compact Gδ subsemigroup V of βN, with p ∈ V ⊆ D ∩ H, which
contains idempotents q and q′ with the following properties:

(1) q ∈ K(V );

(2) q ≤ q′; and

(3) for every compact Gδ subsemigroup L of V which contains q and q′, there exist a
compact Gδ subsemigroup M of L which contains q and q′ and compact subspaces A and
B of βω, with |A| = |B| = 2c, such that there is a continuous surjective homomorphism
f : M → CA,B. Furthermore, q ∈ K(f−1[A×B]) ⊆ K(V ) and q′ ∈ K(f−1[B]).
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Proof. As in the proof of Lemma 2.4, D is the intersection of a decreasing sequence of
clopen sets. So, there is a decreasing sequence 〈Dn〉∞n=0 of subsets of N such that D =⋂∞

n=0 c�βN(Dn). For each n ∈ ω, let D�
n = {x ∈ Dn : −x+Dn ∈ p}. By [11, Lemma 4.14],

D�
n ∈ p and, for each x ∈ D�

n, −x+D�
n ∈ p. For each n ∈ ω and each t ∈ N, let

Qn,t = 2tN ∩D�
n ∩

⋂
{−x+D�

n : x ∈ D�
n ∩ {1, 2, . . . , t}}

and let Vn =
⋂∞

t=1 c�βN(Qn,t). It is routine to verify that Vn is a subsemigroup of βN such
that p ∈ Vn ⊆ c�βN(Dn) ∩ H. (For the details, see the proof of [10, Theorem 2.12].)

Let V =
⋂∞

n=0 Vn. Observe that V is aGδ subsemigroup of βN such that p ∈ V ⊆ D∩H.

We can inductively choose a sequence 〈sr〉∞r=1 in N so that, for each r ∈ N,

sr ∈ ⋂r
n=0

⋂r
t=1Qn,t and max

(
supp(sr)

)
< min

(
supp(sr+1)

)
.

Observe that c�βN({sr : r ∈ ω}) ∩ N
� ⊆ V .

Define φ : N → ω by φ(n) = max supp(n). Let E =
⋃∞

n=0 supp(s2n+1), let F = {n ∈
N : supp(n) ⊆ E} and let G = N\F . We put V0 = V ∩c�βNF and V1 = V ∩c�βNG = V \V0.
Note that c�βN{s2n+1 : n ∈ ω} \ N ⊆ V0 and c�βN{s2n : n ∈ ω} \ N ⊆ V1, and so V0 and V1

are nonempty.

Suppose that m,n ∈ N and max
(
supp(m)

)
< min

(
supp(n)

)
. If m ∈ G or n ∈ G, then

m+n ∈ G. If m ∈ F and n ∈ F , then m+n ∈ F. Recalling that x+y = lim
m→x

lim
n→y

(m+n), it

follows that V1 is an ideal of V and V0 is a subsemigroup of V . Consequently K(V1) = K(V )
by [12, Theorem 1.65]. Let q′ be any minimal idempotent of V0 and pick by [12, Theorem
1.60] a minimal idempotent q of V such that q ≤ q′. Note that q ∈ V1.

Define θ : N → ω by

θ(n) =
{

min(supp(n) \ E) if n ∈ G
1 if n ∈ N \G .

Denote also by θ and φ the continuous extensions of these functions taking βN to βω.

Now let L be a compact Gδ subsemigroup of V which contains q and q′. Put B =
φ[L∩V0]∩φ[L∩V1] and let M = φ−1[B]∩L. Note that B = φ[M ∩V0]. Put A = θ[M ∩V1].
Since q = q+ q′, φ(q) = φ(q′) by [12, Lemma 6.8] and so q and q′ are in M . By Lemma 2.4,
A and B are compact Gδ subsets of βN. Since q ∈ H, θ(q) and φ(q) are in N

∗ = βN \ N.
Since A and B meet N

∗, it follows from [12, Theorems 3.36 and 3.59], that |A| = |B| = 2c.
Let A and B have the relative topologies induced by βω.

Define f : M → CA,B by

f(x) =
{

φ(x) if x ∈M ∩ V0(
θ(x), φ(x)

)
if x ∈M ∩ V1 .
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Notice that f is continuous because θ and φ are continuous. We claim that f is a surjective
homomorphism. To see that f is a homomorphism it suffices to show that

(1) if x, y ∈ V , then φ(x+ y) = φ(y);

(2) if x ∈ V1 and y ∈ V , then θ(x+ y) = θ(x); and

(3) if x ∈ V1 and y ∈ V0, then θ(y + x) = θ(x).

For (1) see [12 Lemma 6.8]. To verify (2) it suffices to show that θ ◦ ρy and θ agree on
G, which is a member of x. So let n ∈ G and pick m ∈ N such that 2m > n. Then
θ ◦ ρy(n) = θ(n+ y) = θ ◦λn(y) and θ ◦λn is constantly equal to θ(n) on 2mN, a member of
y. To verify (3) it suffices to show that θ ◦ ρx is constantly equal to θ(x) on F , a member of
y. So let n ∈ F and pick m ∈ N such that 2m > n. Then θ ◦ ρx(n) = θ(n+ x) = θ ◦ λn(x)
so it suffices to show that θ ◦ λn and θ agree on 2mN ∩ G which is a member of x. So let
k ∈ 2mN ∩G. Then supp(n+ k) \ E = supp(k) \ E so θ ◦ λn(k) = θ(k).

To see that f is surjective let a ∈ A and b ∈ B. Pick x ∈M ∩ V1 and y ∈M ∩ V0 such
that θ(x) = a and φ(y) = b. Then f(y) = b and f(x+ y) = f(x)f(y) =

(
θ(x), φ(x)

)
φ(y) =(

θ(x), φ(y)
)

= (a, b).

Finally, observe that f−1[B] ⊆ V0 and f−1[A × B] ⊆ V1. Since q′ ∈ K(V0) and
q ∈ K(V1), q′ ∈ K(f−1[B]) and q ∈ K(f−1[A×B]).

2.6 Theorem. Let D be a central subset of N. There exists a sequence 〈pi〉∞i=0 of idempo-
tents in c�βND ∩K(βN) such that pi + pj �= pl + pm whenever (i, j) �= (l,m), pi + pj + pl =
pi + pl for all i, j, l ∈ ω, and {pi + pj : i, j ∈ ω} is discrete.

Proof. Let p be a minimal idempotent in βN for which D ∈ p. By Lemma 2.5, there is a
compact subsemigroup V of βN with p ∈ V ⊆ c�βND, and there are a compact subsemigroup
M of V and compact sets A and B, with |A| = |B| = 2c, for which there exists a continuous
surjective homomorphism f : M → CA,B. Furthermore,

K(f−1[A×B]) ⊆ K(V )

and therefore, since V meets K(βN), K(f−1[A × B]) ⊆ K(βN) [12, Theorem 1.65]. By
Lemma 2.3, there is an injective homomorphism g : CA,B → M for which g[A × B] ⊆
K(f−1[A×B]) ⊆ K(βN).

Let {ai : i ∈ ω} and {bi : i ∈ ω} be discrete subsets of A and B respectively, with
ai �= aj and bi �= bj when i �= j. For i ∈ ω, let pi = g(ai, bi). Then for i, j ∈ ω, we have
pi + pj = g(ai, bj). If i, j, l,m ∈ ω and (i, j) �= (l,m), then pi + pj �= pl + pm. Further, for
any i, j, l ∈ ω, pi + pj + pl = pi + pl.

Given i ∈ ω, let Ri and Ui be neighborhoods of ai and bi in A and B respectively
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such that Ri ∩
{
aj : j ∈ ω \ {i}} = ∅ and Ui ∩

{
bj : j ∈ ω \ {i}} = ∅. Then, since f is

continuous and f ◦ g is the identity on CA,B, we have that for any i, j ∈ ω, f−1[Ri × Uj ] is
a neighborhood of pi + pj in V1 which misses

{
pk + pl : (k, l) ∈ ω × ω \ {(i, j)}}.

To indicate precisely the ability to make many choices for the terms of our sequences
we formalize the notion of a tree. We are treating members of ω as ordinals, so 0 = ∅ and
for each n ∈ N, n = {0, 1, . . . , n− 1}.

2.7 Definition.

(a) T is a tree if and only if T is a nonempty set of functions, for each g ∈ T , domain(g) ∈ ω,
and if domain(g) = n > 0, then g|n−1 ∈ T .

(b) Let g be a function with domain(g) = n ∈ ω and let x be given. Then g�x =
g ∪ {(n, x)}.

(c) Given a tree T and g ∈ T , Bg = {x : g�x ∈ T}.
(d) Given a tree T , g is a path through T if and only if g is a function, domain(g) = ω, and

for each n ∈ ω, g|n ∈ T .

Given g in a tree T , Bg will be referred to as the set of successors of g.

The following theorem says very roughly that, given any central subset D of N there
exists a pairwise disjoint collection {Di,j : i, j ∈ ω} of central subsets of D and for each
i ∈ ω there exist very many sequences 〈xi,n〉∞n=i in Di,i such for any F ∈ Pf (N) and
any f : F → {1, 2, . . . ,minF}, all sums of the form

∑
n∈F xf(n),n lie in a Di,j which is

determined only by the first term and the last term in the sum. Somewhat less roughly it
says that

(i) given any central subset D of N, there exists a pairwise disjoint collection {Di,j :
i, j ∈ ω} of central subsets of D and for each i ∈ ω there exists a sequence 〈xi,n〉∞n=i

in Di,i such that whenever F ∈ Pf (ω) and f : F → {1, 2, . . . ,minF} one has that∑
n∈F xf(n),n ∈ Di,j where i = f(minF ) and j = f(maxF ); and

(ii) at stage n when one is chosing (x0,n, x1,n, . . . , xn,n), each xi,n may be chosen from a
central subset of Di,i , with the choice of xi,n independent of the choice of xj,n.

Notice in particular that if N is finitely colored, the central set D can be chosen to be
one of the color classes.

2.8 Theorem. Let D be a central subset of N. Then there exist a choice of Di,j for each
i, j ∈ ω and a tree T such that

(1) for each i, j ∈ ω, Di,j is a central subset of D;

(2) if i, j, l,m ∈ ω and (i, j) �= (l,m), then Di,j ∩Dl,m = ∅;
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(3) for each g ∈ T , if domain(g) = n, then there exist U0, U1, . . . , Un such that Bg =
U0 × U1 × . . .× Un, each Ui is central, and each Ui ⊆ Di,i; and

(4) if g is a path through T and for each n ∈ ω, g(n) = (x0,n, x1,n, . . . , xn,n), then whenver
F ∈ Pf (ω), f : F → {0, 1, . . . ,minF}, i = f(minF ), and j = f(maxF ), one has∑

n∈F xf(n),n ∈ Di,j.

Proof. Pick by Theorem 2.6 a sequence 〈pi〉∞i=0 of idempotents in c�βND ∩ K(βN) such
that pi + pj �= pl + pm whenever (i, j) �= (l,m), pi + pj + pl = pi + pl for all i, j, l ∈ ω, and
{pi + pj : i, j ∈ ω} is discrete.

For each i, j ∈ ω, pick Di,j ∈ pi + pj such that Di,j ⊆ D and, if (i, j) �= (l,m), then
Di,j ∩Dl,m = ∅. These sets then satisfy conclusions (1) and (2).

For i, j, k ∈ ω, let

Ek,pi+pj
= {x ∈ Di,j : for all l,m ∈ {0, 1, . . . , k} , −x+Di,m ∈ pl + pm} .

By Lemma 2.2 (with H =
{
pl + pm : l,m ∈ {0, 1, . . . , k} ∪ {i, j}}) we have that each

Ek,pi+pj
∈ pi + pj . Also, for all l,m ∈ {0, 1, . . . , k} and all x ∈ Ek,pi+pj

, one has that
−x+Ek,pi+pm

∈ pl + pm.

We define the tree T by defining Tn = {g ∈ T : domain(g) = n} inductively. Let
T0 = {∅} (of course). We let B∅ = E0,p0 so that T1 =

{{(0, x)} : x ∈ E0,p0

}
, i.e., g ∈ T1 if

and only if domain(g) = 1 = {0} and g(0) ∈ E0,p0 . Now let s ∈ N and assume that Tm has
been defined for m ∈ {0, 1, . . . , s} so that

(a) if m ∈ {0, 1, . . . , s − 1} and g ∈ Tm then there exist U0, U1, . . . , Um such that Bg =
U0 × U1 × . . .× Um and for each j ∈ {0, 1, . . . , m}, Uj ∈ pj and Uj ⊆ Dj,j and

(b) if m ∈ {1, 2, . . . , s}, g ∈ Tm, and for each n ∈ {0, 1, . . . , m − 1}, g(n) =
(x0,n, x1,n, . . . , xn,n), then whenever ∅ �= F ⊆ {0, 1, . . . , m − 1}, f : F → {0, 1, . . . ,
minF}, i = f(minF ), and j = f(maxF ), one has

∑
n∈F xf(n),n ∈ Emin F,pi+pj

.

Both hypotheses are satisfied for s = 1. We define Ts+1 by defining Bg for each g ∈ Ts.
(Then one has Ts+1 = {g��x : �x ∈ Bg}.) So let g ∈ Ts be given. For each n ∈ {0, 1, . . . , s−1}
let g(n) = (x0,n, x1,n, . . . , xn,n). Let

Yg =
{ ∑

n∈F xf(n),n : ∅ �= F ⊆ {0, 1, . . . , s− 1} and f : F → {0, 1, . . . ,minF}}
and note that Yg is finite. Let Ug,s = Es,ps

and for each j ∈ {0, 1, . . . , s− 1} let

Ug,j = Es,pj
∩ ⋂{−y +Ek,pi+pj

: i ∈ {0, 1, . . . , s− 1} , k ∈ {j, j + 1, . . . , s− 1} ,
and y ∈ Yg ∩

⋃s−1
n=0Ek,pi+pn

} .
For each j, Ug,j is a finite intersection of members of pj so is in pj . Let Bg = Ug,0 × Ug,1 ×
. . .× Ug,s.
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Induction hypothesis (a) is satisfied directly. To verify hypothesis (b) let h ∈ Ts+1

and for each n ∈ {0, 1, . . . , s}, let h(n) = (x0,n, x1,n, . . . , xn,n). Let g = h|s so that Bg =
Ug,0 ×Ug,1 × . . .×Ug,s. Let ∅ �= F ⊆ {0, 1, . . . , s}, f : F → {0, 1, . . . ,minF}, i = f(minF ),
and j = f(maxF ). If s /∈ F , then

∑
n∈F xf(n),n ∈ Emin F,pi+pj

by hypothesis. So assume
that s ∈ F . If F = {s}, then j = f(s) ∈ {0, 1, . . . , s} and xj,s ∈ Ug,j ⊆ Es,pj

as required. So
assume that ∅ �= G = F\{s} and letm = f(maxG). Then y =

∑
n∈G xf(n),n ∈ Emin G,pi+pm

so y ∈ Yg ∩ Emin G,pi+pm
. Also j ≤ minF ≤ s − 1, i ∈ {0, 1, . . . , s− 1}, and m ∈ {0, 1, . . . ,

s− 1} so xj,s ∈ Ug,j ⊆ −y + Emin F,pi+pj
and thus

∑
n∈F xf(n),n ∈ Emin F,pi+pj

.

Conclusions (1) and (2) of Theorem 2.8 contrast with earlier results involving finite
colorings in which separate cells for different kinds of expressions were guaranteed such as
[5, Theorem 1.1] and [11, Theorem 2.9]; in these results the different cells could be forced
to be in different color classes.

We observe that, if one is only concerned with choosing finitely many sequences, the
restriction on the range of f in conclusion (4) of Theorem 2.8 can be eliminated.

2.9 Corollary. Let D be a central subset of N and let k ∈ N. Then there exist a choice of
Di,j for each i, j ∈ {0, 1, . . . , k} and a tree T such that

(1) for each i, j ∈ {0, 1, . . . , k}, Di,j is a central subset of D;

(2) if i, j, l,m ∈ {0, 1, . . . , k} and (i, j) �= (l,m), then Di,j ∩Dl,m = ∅;
(3) for each g ∈ T there exist U0, U1, . . . , Uk such that Bg = U0 ×U1 × . . .×Uk, each Ui is

central, and each Ui ⊆ Di,i; and

(4) if g is a path through T and for each n ∈ ω, g(n) = (x0,n, x1,n, . . . , xk,n), then when-
ver F ∈ Pf (ω), f : F → {0, 1, . . . , k}, i = f(minF ), and j = f(maxF ), one has∑

n∈F xf(n),n ∈ Di,j.

Proof. Pick a tree T ′ as guaranteed by Theorem 2.8. Pick g0 ∈ T ′ such that domain(g0) = k.
Let T ′′ = {g ∈ T ′ : g|k = g0}. For g ∈ T ′′ define ϕ(g) with domain

(
ϕ(g)

)
= domain(g) − k

(so that ϕ(g0) = ∅) and, if domain(g) = n > k, i ∈ {0, 1, . . . , n − k − 1}, and g(k + i) =
(x0, x1, . . . , xn), then ϕ(g)(i) = (x0, x1, . . . , xk). Let T = {ϕ(g) : g ∈ T ′′}. If g ∈ T ′′,
domain(g) = n ≥ k, and Bg = U0 × U1 × . . .× Un then Bϕ(g) = U0 × U1 × . . .× Uk.

Let h be a path through T , for each n ∈ ω let h(n) = (x0,n, x1,n, . . . , xk,n), let F ∈
Pf (ω), let f : F → {0, 1, . . . , k}, let i = f(minF ), and let j = f(maxF ). Let m = maxF .
Then h|m+1 ∈ T . Pick g ∈ T ′′ with domain(g) = k+m+1 such that h|m+1 = ϕ(g). Then by
Theorem 2.8(3) g extends to a path g′ through T ′. For n ∈ ω let g′(n) = (y0,n, y1,n, . . . , yn,n).
Let G = k + F and define f ′ : G → {0, 1, . . . , k} ⊆ {0, 1, . . . ,minG} by f ′(n) = f(n − k).
Then

∑
n∈F xf(n),n =

∑
n∈G yf ′(n),n ∈ Di,j .
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3. Sums in Central Subsets of Semigroups of Variable Words
– Extending the Graham-Rothschild Theorem

Throught this section A will denote a nonempty countable set (the alphabet). We choose
a set V = {vn : n ∈ ω} (of variables) such that A∩V = ∅ and define W to be the semigroup
of words over the alphabet A ∪ V (including the empty word), with concatenation as the
semigroup operation. (Formally a word w is a function with domain k ∈ ω to the alphabet
and the length �(w) of w is k. We shall occasionally need to resort to this formal meaning,
so that if i ∈ {0, 1, . . . , �(w) − 1}, then w(i) denotes the (i+ 1)st letter of w.)

For each n ∈ N, we defineWn to be the set of words over the alphabetA∪{v0, v1, . . . , vn−1})
and we define W0 to be the set of words over A. We note that each Wn is a subsemigroup
of W .

3.1 Definition. Let n ∈ ω and let k ∈ {0, 1, . . . , n}. Then [A]
(
n
k

)
is the set of all words w

over the alphabet A ∪ {v0, v1, . . . , vk−1} of length n such that

(1) for each i ∈ {0, 1, . . . , k − 1}, if any, vi occurs in w and

(2) for each i ∈ {0, 1, . . . , k − 2}, if any, the first occurrence of vi in w precedes the first
occurrence of vi+1.

3.2 Definition. Let k ∈ N. Then the set of k-variable words is Sk =
⋃∞

n=k[A]
(
n
k

)
. Also

S0 = W0.

Given w ∈ Sn and u ∈ W with �(u) = n, we define w〈u〉 to be the word with length
�(w) such that for i ∈ {0, 1, . . . , �(w) − 1}

w〈u〉(i) =
{
w(i) if w(i) ∈ A
u(j) if w(i) = vj .

That is, w〈u〉 is the result of substituting u(j) for each occurrence of vj in w. (And if u is
the empty word, then w〈u〉 = w.)

The following theorem is commonly known as the Graham-Rothschild Theorem. The
original theorem [8] (or see [14]) is stated in a significantly stronger fashion. However this
stronger version is derivable from Theorem 3.3 in a reasonably straightforward manner. (See
[4, Theorem 5.1].)

3.3 Theorem (Graham-Rothschild). Let m,n ∈ ω with m < n, and let Sm be finitely
colored. There exists w ∈ Sn such that

{
w〈u〉 : u ∈ [A]

(
n
m

)}
is monochrome.

In Theorem 3.8 we will extend the Graham-Rothschild Theorem in a fashion similar to
the way the Finite Sums Theorem is extended by Theorem 2.8.
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3.4 Definition. Let u ∈ W with length n. Then hu : W → W is the homomorphism such
that, for all w ∈ A ∪ V ,

hu(w) =




w if w ∈ A
u(j) if w = vj and j < n
w if w = vj and j ≥ n .

Notice that if w ∈ Sn, u ∈ W , and the length of u is n, then hu(w) = w〈u〉. Given
u ∈ W , the function hu has a continuous extension from βW to βW . We shall also denote
this extension by hu, and observe that hu : βW → βW is a homomorphism. (See [12,
Corollary 4.22].)

The following theorem is a special case of the main algebraic result of [4]. We observe
that this theorem and, indeed, all the theorems in Section 3 are valid under far more
general assumptions than those stated above. They hold for the general parameter systems
introduced in [4], which we shall define in Section 4. We decided to restrict Section 3 to
comparatively simple parameter systems in which the transformations hu are much easier
to understand.

3.5 Theorem. Let p be a minimal idempotent in βS0. There is a sequence 〈pn〉∞n=0 such
that

(1) p0 = p;

(2) for each n ∈ N, pn is a minimal idempotent of βSn;

(3) for each n ∈ N, pn ≤ pn−1;

(4) for each n ∈ N and each u ∈ [A]
(

n
n−1

)
, hu(pn) = pn−1.

Further, p1 can be any minimal idempotent of βS1 such that p1 ≤ p0.

Proof. This is [4, Theorem 2.12] in the case where D = {e} and Te is the identity.

We shall refer to a sequence 〈pn〉∞n=0 with the properties stated in Theorem 3.5, as a
special reductive sequence. Note that by [4, Lemma 1.10], if 〈pn〉∞n=0 is a special reductive
sequence, 0 ≤ m < n, and u ∈ [A]

(
n
m

)
, then hu(pn) = pm.

For our Ramsey Theoretic application, Theorem 3.8, we only need pi,j,n for i, j ∈ ω

as produced by the following theorem. However, we think that the additional algebraic
structure described is of independent interest. We are treating cardinal numbers as ordinals,
so each is the set of its predecessors. In particular, the statement i ∈ 2c says that i is an
ordinal smaller than 2c.
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3.6 Definition. Let S be a semigroup and let ψ : ω → S. Then ψ is called an H-map if it
is bijective and if ψ(m+ n) = ψ(m)ψ(n) whenever m,n ∈ N satisfy max

(
supp(m)

)
+ 1 <

min
(
supp(n)

)
.

3.7 Theorem. Let C be a compact Gδ subset of βS0 which has a member which is a minimal
idempotent. There is a minimal idempotent p0 ∈ C such that, for every sequence 〈pn〉∞n=1

such that 〈pn〉∞n=0 is a special reductive sequence and every sequence 〈Cn〉∞n=0 for which Cn

is a compact Gδ subset of βSn and pn ∈ Cn for every n ∈ ω, there exists a choice of
pi,j,n ∈ K(βSn) for each i, j ∈ 2c and each n ∈ ω such that:

(1) for i, j, k, l ∈ 2c and n ∈ ω, if (i, j) �= (k, l), then pi,j,n �= pk,l,n;

(2) for i, j, k, l ∈ 2c and n,m ∈ ω, pi,j,npk,l,m = pi,l,n∨m;

(3) for i, j ∈ 2c and n,m ∈ ω, if m < n and u ∈ [A]
(
n
m

)
, then hu(pi,j,n) = pi,j,m;

(4) pi,j,m ∈ Cm for every m ∈ ω and every i, j ∈ 2c;

(5) for each n ∈ ω, {pi,j,n : i, j ∈ ω} is discrete; and

(6) for each n ∈ ω, p0,0,n = pn.

Proof. We regard S0 as embedded in the free group G generated by A and βS0 as embedded
in βG. We claim that G can be embedded algebraically in a compact metrizable topological
group. To see this, for each g ∈ G \ {∅} pick by [12, Theorem 1.23] a finite group Fg and a
homomorphism ϕ

g : G→ Fg such that ϕg(g) is not the identity of Fg. Let each Fg have the
discrete topology and let H = ×g∈G\{∅} Fg. Since G is countable, H is metrizable. Define
τ : G→ H by τ(h)(g) = ϕ

g(h).

By [12, Theorem 7.28], there is an H-map ψ : ω → G such that the continuous extension
from βω to βG (also denoted by ψ) is an isomorphism on H. Furthermore, ψ[H] contains
all the idempotents of G∗.

Let r be a minimal idempotent of βS0 for which r ∈ C. Choose V, q, q′ as guaranteed
by Lemma 2.5 with p = ψ−1(r) and D = ψ−1[C]. Let p−1 = ψ(q′) and p0 = ψ(q). We
observe that p0 is minimal in ψ[V ] and hence p0 ∈ K(βS0), because r ∈ ψ[V ] and so
K(βS0) ∩ ψ[V ] �= ∅. Note that p0 < p−1.

Let 〈pn〉∞n=1 and 〈Cn〉∞n=0 be sequences such that 〈pn〉∞n=0 is a special reductive sequence
and for each n ∈ ω, Cn is a compact Gδ subset of βSn with pn ∈ Cn. Choose a compact Gδ

subset C−1 of βS0 with p−1 ∈ C−1 e.g. C−1 could be βS0.

We shall define a subsemigroup Y of
⋃∞

n=−1 Cn such that pn ∈ Y for every n ∈
{−1, 0, 1, . . .} and Y ∩ βSn is a compact Gδ for every n ∈ ω.

Given n ∈ ω pick a countable subfamily Fn,0 of P(Sn) such that Cn =
⋂{B : B ∈ Fn,0}.

(We have that βSn is extremally disconnected by [7, Exercise 6M] or [12, Theorem 3.18(f)]
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and so Cn is the intersection of countably many clopen sets, each of which is of the form
B for some B ⊆ Sn by [12, Theorem 3.18(b)].) Similarly pick a countable subfamily F−1,0

of P(S0) such that C−1 =
⋂{B : B ∈ F−1,0}. Notice that for each n ∈ {−1, 0, 1, . . .},

Fn,0 ⊆ pn.

Inductively, let k ∈ ω and assume that we have chosen for each n ∈ {−1, 0, 1, . . .} a
countable subfamily Fn,k of pn. For each n ∈ {−1, 0, 1, . . .} let

Fn,k+1 = Fn,k ∪ {{w ∈W : w−1B ∈ pm} : m ∈ {−1, 0, 1, . . .} and B ∈ Fm∨n,k

} ∪
{w−1B : B ∈ Fm,k for somem ≥ n, w ∈W , and w−1B ∈ pn} .

Given B ∈ Fm∨n,k and m ∈ {−1, 0, 1, . . .}, {w : w−1B ∈ pm} ∈ pn because B ∈ pm∨n =
pnpm.

For each n ∈ {−1, 0, 1, . . .} let Fn =
⋃∞

k=0 Fn,k. Let

Y =
⋃∞

n=−1{s ∈ βW : Fn ⊆ s} .
We have immediately that Y ⊆ ⋃∞

n=−1 Cn, pn ∈ Y for every n ∈ {−1, 0, 1, . . .}, and Y ∩βSn

is a compact Gδ for every n ∈ ω. It remains to show that Y is a subsemigroup. To this
end, let m,n ∈ {−1, 0, 1, . . .} and let s, t ∈ βW with Fn ⊆ s and Fm ⊆ t. We show that
Fm∨n ⊆ st. So let B ∈ Fm∨n and pick k ∈ ω such that B ∈ Fm∨n,k. We need to show that
{w ∈ W : w−1B ∈ t} ∈ s. Now {w ∈ W : w−1B ∈ pm} ∈ Fn,k+1 ⊆ s. Given w ∈ W , if
w−1B ∈ pm, then w−1B ∈ Fm,k+1 ⊆ t.

Now L = ψ−1[Y ∩ βS0] ∩ V is a compact Gδ subsemigroup of V which contains q and
q′. By Lemma 2.5, there is a compact Gδ subsemigroup M of L which contains q and q′

and there are compact subsets B and D of βω, with |B| = |D| = 2c, for which there is a
continuous surjective homomorphism f : M → CB,D. Furthermore, q′ ∈ K(f−1[B × D])
and q ∈ K(f−1[D]). Let Z = ψ[M ] and f1 = f ◦ ψ−1. Then f1 : Z → CB,D is a continuous
surjective homomorphism. Furthermore, p0 ∈ K(f1−1[B × D]) and p−1 ∈ K(f1−1[D]),
because p0 = ψ(q) and p−1 = ψ(q′).

Pick by Lemma 2.3 a homomorphism g : CB,D → Z such that f1 ◦ g is the identity on
CB,D, g[D] ⊆ K(f1−1[B]), g[B ×D] ⊆ K(f1−1[B ×D]), g(y0) = p−1 and g(x0, y0) = p0 for
some x0 ∈ B and y0 ∈ D.

Note that for any a ∈ A,

(∗)

p0g(a, y0) = g(x0, y0)g(a, y0)

= g
(
(x0, y0)(a, y0)

)
= g(x0, y0)

= p0 .



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A04 16

Pick injective sequences 〈aj〉∞j=0 in B and 〈bj〉∞j=0 in D such that a0 = x0, b0 = y0,
and {aj : j ∈ ω} and {bj : j ∈ ω} are discrete. (One may do this because βω contains
no convergent sequences that are not eventually constant. See [7, Corollary 9.12] or [12,
Theorem 3.59].) Extend these sequences to enumerations 〈aj〉j∈2c and 〈bj〉j∈2c of B and D
respectively.

For i, j ∈ 2c and n ∈ ω, let pi,j,n = g(ai, y0)png(bj).

To verify conclusion (1), let i, j, k, l ∈ 2c, let n ∈ ω, and assume that pi,j,n = pk,l,n.
Then g(ai, y0)png(bj) = g(ak, y0)png(bl). Pick any u ∈ [A]

(
n
0

)
. Then

g(ai, bj) = g(ai, y0)g(x0, y0)g(bj) = g(ai, y0)p0g(bj) = hu

(
g(ai, y0)png(bj)

)
and g(ak, bl) = hu

(
g(ak, y0)png(bl)

)
so (i, j) = (k, l) since g is injective.

To verify conclusion (2), let i, j, k, l ∈ 2c and let n,m ∈ ω. Then

pi,j,npk,l,m = g(ai, y0)png(bj)g(ak, y0)pmg(bl)

= g(ai, y0)png
(
bj(ak, y0)

)
pmg(bl)

= g(ai, y0)pnp0g(ak, y0)pmg(bl)

= g(ai, y0)pnp0pmg(bl) by (∗)
= g(ai, y0)pm∨ng(bl)

= pi,l,m∨n .

To verify conclusion (3) let i, j ∈ 2c, let m,n ∈ ω with m < n and let u ∈ [A]
(
n
m

)
. Note

that since g(ai, y0) ∈ βS0 and g(bj) ∈ βS0, hu

(
g(ai, y0)

)
= g(ai, y0) and hu

(
g(bj)

)
= g(bj).

Thus
hu(pi,j,n) = hu

(
g(ai, y0)

)
hu(pn)hu

(
g(bj)

)
= g(ai, y0)pmg(bj)

= pi,j,m .

Conclusion (4) holds directly.

Conclusion (5) holds because {aj : j ∈ ω} and {bj : j ∈ ω} are discrete and f1 is
continuous. This implies that {pi,j,0 : i, j ∈ ω} is discrete. Since, for any u ∈ [A]

(
n
0

)
hu(pi,j,n) = pi,j,0, {pi,j,n : i, j ∈ ω} is discrete for every n ∈ ω.

To verify conclusion (6), let n ∈ ω. Then

p0,0,n = g(a0, y0)png(b0) = g(x0, y0)png(y0) = p0pnp−1 = pn

The following theorem is the main result of this section. However, its statement may
be a bit intimidating, so we shall attempt to describe loosely what it says. One starts
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with a finite coloring of Sn for each n ∈ ω and one chooses a monochrome central subset
Di,j,m of Sm for each i, j,m ∈ ω. Conclusion (5) tells us that for each j and m in ω one
may choose a sequence 〈wj,m,n〉∞n=j∨m in Sm so that all suitably restricted products of the
form

∏
n∈F wjn,mn,n〈un〉 lie in one of the chosen cells; the cell in which the product lies is

determined solely by jmin F , jmax F , and the number of variables in the result. Conclusion
(4) tells us that, having chosen the terms 〈wj,m,n〉kn=j∨m, one has a large number of choices
for terms of the form wj,m,k+1; specifically, there is a central set from which each such term
may be chosen. (The notation

∏
n∈F xn represents the product taken in increasing order of

indices.)

In conclusion (4) of the following theorem, we write “Bg = ×n
j=0×n

m=0Ug,j,m”. For-
mally a member of ×n

j=0×n
m=0Ug,j,m is a function with domain {0, 1, . . . , n} taking values

in ×n
m=0Ug,j,m. We shall pretend however that

×n
j=0×n

m=0Ug,j,m = ×(j,m)∈{0,1,...,n}×{0,1,...,n}Ug,j,m

so that one has x(j,m) ∈ Ug,j,m if x ∈ ×n
j=0×n

m=0Ug,j,m and j,m ∈ {0, 1, . . . , n}.

3.8 Theorem. Assume that the alphabet A is finite. Let C be a central subset of S0. For
each m ∈ ω, let Sm be finitely colored. There exist a choice of Di,j,m for i, j,m ∈ ω and a
tree T such that

(1) for each i, j ∈ ω, Di,j,0 ⊆ C;

(2) for each i, j,m ∈ ω, Di,j,m is a central subset of Sm and for each m ∈ ω,
⋃{Di,j,m :

i, j ∈ ω} is monochrome;

(3) if i, j, k, l,m ∈ ω and (i, j) �= (k, l), then Di,j,m ∩Dk,l,m = ∅;
(4) for each g ∈ T , if domain(g) = n, then for each j,m ∈ {0, 1, . . . , n} there exists a subset

Ug,j,m of Dj,j,m which is central in Sm such that Bg = ×n
j=0×n

m=0Ug,j,m; and

(5) if g is a path through T and for each n ∈ ω and each j,m ∈ {0, 1, . . . , n}, wj,m,n =
g(n)(j,m), then given any F ∈ Pf (ω), any f : F → {0, 1, . . . ,minF}, any α : F →
{0, 1, . . . ,maxF} with α(n) ≤ n for n ∈ F , and any δ ∈ ×n∈F

⋃min F
b=0 [A]

(α(n)
b

)
, if

j = f(maxF ), i = f(minF ), and

r = max
{
b : there exists n ∈ F such that δ(n) ∈ [A]

(α(n)
b

)}
,

then
∏

n∈F wf(n),α(n),n〈δ(n)〉 ∈ Di,j,r.

Proof. Choose p0 ∈ C as guaranteed by Theorem 3.7 and choose by Theorem 3.5 〈pn〉∞n=1

such that 〈pn〉∞n=0 is a special reductive sequence. For each n ∈ ω, let Cn be a monochrome
subset of Sn in pn. We may assume that C0 ⊆ C. Choose pi,j,n for each i, j, n ∈ ω as
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guaranteed by Theorem 3.7. For each i, j, n ∈ ω pick Mpi,j,n
∈ pi,j,n such that Mpi,j,n

⊆ Sn,
Mpi,j,n

⊆ Cn, and Mpi,j,n
∩Mpk,l,n

= ∅ if (i, j) �= (k, l). Let Di,j,n = Mpi,j,n
.

For each k ∈ ω, let Hk =
{
pi,j,n : i, j, n ∈ {0, 1, . . . , k}}. Then Hk is a finite subsemi-

group of βW . For p ∈ Hk, let Ek,p = {w ∈Mp : for all q ∈ Hk , w
−1Mpq ∈ q}. If p, q ∈ Hk

and y ∈ Ek,p we have by Lemma 2.2 that Ek,p ∈ p and y−1Ek,pq ∈ q.

We define the tree T by defining Tn = {g ∈ T : domain(g) = n} inductively. Let
T0 = {∅} (of course). Let U∅,0,0 = E0,p0,0,0, let B∅ = ×0

j=0×0
m=0U∅,j,m, and let T1 ={{(0, x)} : x ∈ B∅

}
.

Now let k ∈ N and assume that we have defined Tl for l ∈ {0, 1, . . . , k} such that

(a) if l ∈ {0, 1, . . . , k − 1} and g ∈ Tl, then Bg = ×l
j=0×l

m=0Ug,j,m where for each
j,m ∈ {0, 1, . . . , l}, Ug,j,m ∈ pj,j,m and Ug,j,m ⊆ Dj,j,m and

(b) if l ∈ {1, 2, . . . , k}, g ∈ Tl, and for each n ∈ {0, 1, . . . , l − 1} and each j,m ∈ {0, 1,
. . . , n}, wj,m,n = g(n)(j,m), then given any F with ∅ �= F ⊆ {0, 1, . . . , l − 1}, any
α : F → {0, 1, . . . ,maxF} with α(n) ≤ n for n ∈ F , any f : F → {0, 1, . . . ,minF},
and any δ ∈ ×n∈F

(⋃min F
b=0 [A]

(α(n)
b

))
, if i = f(minF ), j = f(maxF ), and r =

max
{
b : there exists n ∈ F with δ(n) ∈ [A]

(α(n)
b

)}
, then

∏
n∈F wf(n),α(n),n〈δ(n)〉 ∈ Emin F,pi,j,r

.

One sees directly that hypothesis (a) holds at k = 1. Hypothesis (b) says that if
w0,0,0 ∈ U∅,0,0 and δ(0) ∈ [A]

(
0
0

)
, Then w0,0,0〈δ(0)〉 ∈ E0,p0,0,0. Since then δ(0) is the empty

word, this is true.

We define Tk+1 by defining Bg for each g ∈ Tk and then letting

Tk+1 = {g�x : g ∈ Tk and x ∈ Bg} .

So let g ∈ Tk. For each n ∈ {0, 1, . . . , k − 1} and each j,m ∈ {0, 1, . . . , n}, let wj,m,n =
g(n)(j,m). Let

Yg =
{∏

n∈F wf(n),α(n),n〈δ(n)〉 : ∅ �= F ⊆ {0, 1, . . . , k − 1} ,
α : F → {0, 1, . . . ,maxF} , α(n) ≤ n for n ∈ F ,

f : F → {0, 1, . . . ,minF}, and δ ∈ ×n∈F

(⋃min F
b=0 [A]

(α(n)
b

))}
.

Note that Yg is finite.

Now let j,m ∈ {0, 1, . . . , k} and let

L1 =
⋂{

hu
−1[Ek,pj,j,r

] : r ∈ {0, 1, . . . , m} and u ∈ [A]
(
m
r

)}
.
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Notice that for any r ∈ {0, 1, . . . , m} and any u ∈ [A]
(
m
r

)
, hu(pj,j,m) = pj,j,r so hu

−1[Ek,pj,j,r
] ∈

pj,j,m. (If r < m, then hu(pj,j,m) = pj,j,r by Theorem 3.7(3) while if r = m, hu is the iden-
tity on W and hu

−1[Ek,pj,j,r
] = Ek,pj,j,m

.) Thus L1 ∈ pj,j,m and L1 ⊆ Ek,pj,j,m
. If j = k,

let Ug,j,m = L1. Then Ug,j,m ∈ pj,j,m.

Assume now that j ∈ {0, 1, . . . , k − 1}. Let

L2 =
⋂ {

hu
−1[y−1Et,pi,j,s∨b

] : for some b ∈ {0, 1, . . . , m ∧ (k − 1)}, some

t ∈ {b, b+ 1, . . . , k − 1}, some i, l, s, j ∈ {0, 1, . . . , t},
some y ∈ Yg ∩Et,pi,l,s

, and some u ∈ [A]
(
m
b

)}
Let Ug,j,m = L1 ∩ L2. To see that L2 ∈ pj,j,m let b ∈ {0, 1, . . . , m ∧ (k − 1)}, let

t ∈ {b, b+ 1, . . . , k− 1}, let i, l, s, j ∈ {0, 1, . . . , t}, let y ∈ Yg ∩Et,pi,l,s
, and let u ∈ [A]

(
m
b

)}
.

Then pi,l,s and pj,j,b are in Ht and pi,l,spj,j,b = pi,j,s∨b so by Lemma 2.2 y−1Et,pi,j,s∨b
∈ pj,j,b.

Since u ∈ [A]
(
m
b

)
, hu(pj,j,m) = pj,j,b and so hu

−1[y−1Et,pi,j,s∨b
] ∈ pj,j,m. Since Yg is finite,

L2 ∈ pj,j,m.

Let Bg = ×k
j=0×k

m=0Ug,j,m. Then hypothesis (a) is satisfied.

To verify hypothesis (b), let g′ ∈ Tk+1 and for each n ∈ {0, 1, . . . , k} and each j,m ∈
{0, 1, . . . , n}, let wj,m,n = g′(n)(j,m). Let g = g′|k and note that for all j,m ∈ {0, 1, . . . , k},
wj,m,k ∈ Ug,j,m. Let ∅ �= F ⊆ {0, 1, . . . , k}, let α : F → {0, 1, . . . ,maxF} with α(n) ≤ n for
n ∈ F , let f : F → {0, 1, . . . ,minF}, let δ ∈ ×n∈F

(⋃min F
b=0 [A]

(α(n)
b

))
, let i = f(minF ),

let j = f(maxF ), and let

r = max
{
b : there exists n ∈ F with δ(n) ∈ [A]

(α(n)
b

)}
.

Let z =
∏

n∈F wf(n),α(n),n〈δ(n)〉. We must show that z ∈ Emin F,pi,j,r
.

We may assume that k ∈ F . Let m = α(k) and u = δ(k). Pick b ∈ {0, 1, . . . , m} such
that u ∈ [A]

(
m
b

)
. Notice that b ≤ minF .

Assume first that F = {k}. Then i = j = f(k), r = b, and wf(k),α(k),k = wj,m,k ∈
Ug,j,m ⊆ hu

−1[Ek,pj,j,r
] so z = wj,m,k〈u〉 ∈ Ek,pi,j,r

as required.

Now assume that {k} ⊆� F and let G = F \ {k}. Let t = minF = minG, let

l = f(maxG), let s = max
{
a : there exists n ∈ G with δ(n) ∈ [A]

(α(n)
a

)}
, and let y =∏

n∈G wf(n),α(n),n〈δ(n)〉. Then z = ywj,m,k〈u〉 and y ∈ Yg ∩ Et,pi,l,s
. Notice that r = s ∨ b.

Since wj,m,k ∈ L2 we have wj,m,k〈u〉 = hu(wj,m,k) ∈ y−1Et,pi,j,r
so z ∈ Et,pi,j,r

.

4. Image Partition Regular Matrices

In this section we give an application of [4, Theorem 2.12] to the theory of image
partition regular matrices. We recall that a finite u×v matrix A with entries in ω is said to
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be image partition regular over N if, given any finite coloring of N, there exists �x ∈ N
v for

which the set of entries of A�x is monochrome. Many of the classical theorems of Ramsey
Theory can be expressed in terms of image partition regularity. For example, van der
Waerden’s Theorem which states that, given any finite coloring of N, there is an arbitrarily
long monochrome arithmetic progression, is equivalent to the claim that all matrices of the

form




1 0
1 1
1 2
1 3
...

...
1 l




are image partition regular over N. Image partition regularity over N has

been extensively studied. We shall see that some of the important theorems on this subject
are valid for matrices whose entries lie in more general sets.

We first need to introduce parameter systems more general than those defined in Section
3. In the process we will be redefining Wn, Sn, [A]

(
n
k

)
, and hu.

Let A be a nonempty set and let D be a set with a binary operation mapping (f, g) ∈
D × D to fg ∈ D. We assume that D has a nonempty set E of right identities for this
operation. We also assume that, for each f ∈ D, we have defined a mapping Tf : A → A.
We shall call (A,D,E, 〈Tf〉f∈D) a parameter system.

Given a parameter system (A,D,E, 〈Tf〉f∈D), we choose a set V = {νn : n ∈ ω} such
that A ∩ (D × V ) = ∅ and define W to be the semigroup of words over A ∪ (D × V ), with
concatenation as the semigroup operation. For each n ∈ N, we define Wn to be the set of
words over A ∪ (D × {ν0, ν1, · · · , νn−1}), and we define W0 to be the set of words over A.

4.1 Definition. Let n ∈ N and k ∈ {0, 1, . . . , n}. Then [A]
(
n
k

)
is the set of all words w ∈Wk

of length n such that:

(1) for each i ∈ {0, 1, · · · , k − 1}, if any, some member of E × {νi} occurs in w;

(2) for each i ∈ {0, 1, · · · , k − 1}, if any, the first member of D × {νi} which occurs in w is
in E × {νi}; and

(3) for each i ∈ {0, 1, · · · , k − 2}, if any, the first occurrence of a member of D × {νi} in w
precedes the first occurrence of a member of D × {νi+1}.

4.2 Definition. Let k ∈ N. Then Sk =
⋃∞

n=k[A]
(
n
k

)
.

For each u ∈ [A]
(
n
k

)
, we define hu : Sn → Sk by stating that, for each w ∈ Sn of length
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l, hu(w) is the word of length l defined as follows for i ∈ {0, 1, 2, · · · , l − 1} :

hu(w)(i) =




w(i) if w(i) ∈ A

Ts

(
u(j)

)
if w(i) = (s, νj) and u(j) ∈ A

(st, νm) if w(i) = (s, νj) and u(j) = (t, νm)

.

Note that the mappings hu of Definition 3.4 coincide with those defined in the preceding
paragraph in the special case in which D = {e}, a singleton, vj = (e, νj) for each j, and Te

is the identity mapping.

Theorem 3.5 is valid for any parameter system (A,D,E, 〈Tf〉f∈D) by [4, Theorem 2.12].
In this section, we shall apply Theorem 3.5 to a parameter system which we now proceed
to define.

Let (M,+) be a commutative semigroup with an identity 0M and let R be a set with
two distinguished elements, 0R and 1R. Suppose that there is a mapping (r,m) �→ rm from
R ×M to M with the following properties:

For every r ∈ R and every m,n ∈M ,

r(m+ n) = rm+ rn ,

0Rm = 0M , and

1Rm = m.

We give some examples of algebraic structures of this kind to show that they occur very
widely.

(a) R could be a ring and M could be an R-module.

(b) R could be ω and M could be an arbitrary commutative semigroup with an identity.

(c) If S is an arbitrary set, we could have M = (P(S),∪), R = P(S), and rm = r ∩m.

To define our parameter system, we choose D to be the union of disjoint copies of R
and M . We put R′ = R × {0}, M ′ = M × {1} and D = R′ ∪M ′. We define a binary
operation on D by putting d1d2 = d1 unless d1 ∈ M ′ and d2 ∈ R′. If m ∈ M and r ∈ R,
we put (m, 1)(r, 0) = (rm, 1). We put E = {(1R, 0)}. The alphabet A can be an arbitrary
non-empty set and the mappings Td can be arbitrary.

4.3 Definition. Let B be a finite matrix over R. We shall say that B is a first entries
matrix provided no row of B has all its entries equal to 0R and the first nonzero entries of
any two rows are equal if they occur in the same column.

The first nonzero entry of any row will be called a first entry.

4.4 Theorem. Let M and R satisfy the conditions stated in the preceding paragraphs. Let
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B be a finite s × t first entries matrix over R whose first entries are all equal to 1R. For
any central subset C of (M,+), there is a vector �x ∈M t such that B�x ∈ Cs.

Proof. For each k ∈ ω, we define fk : W → M as follows. For w ∈ W let �(w) be
the length of w and let Ik =

{
t ∈ {0, 1, . . . , �(w) − 1} : w(t) ∈ M ′ × {νk}

}
. Then let

fk(w) =
∑

t∈Ik
π
(
w(t)

)
, where π

(
(m, 1), νk

)
= m and

∑ ∅ = 0M . Notice that fk is a
homomorphism. We shall also use fk to denote the continuous extension of fk mapping βW
to βM . Notice that this extension is also a homomorphism by [12, Corollary 4.22].

Let q be a minimal idempotent of (βM,+) for which C ∈ q and pick a minimal idem-
potent p0 of βW0. We observe that f0[S1] = M , because if w =

(
(1R, 0), ν0

)(
(m, 1)ν0

)
,

then f0(w) = m. So by [12, Exercise 1.7.3], f0−1[{q}] meets K(βS1) and consequently
K(f0−1[{q}]) ⊆ K(βS1). We observe that f0−1[{q}]p0 ⊆ f0

−1[{q}], because f0(p0) = 0M

and f0 is a homomorphism. Note also that f0−1[{q}]p0 is a left ideal of f0−1[{q}]. Similarly,
p0f0

−1[{q}] is a right ideal of f0−1[{q}]. So we can choose a minimal idempotent p1 of
f0

−1[{q}] in f0−1[{q}]p0 ∩ p0f0
−1[{q}]. Then p1 ≤ p0 and p1 ∈ K(βS1).

By Theorem 3.5, pick a sequence 〈pk〉∞k=2 such that 〈pk〉∞k=0 is a special reductive se-
quence. Denote the entry in row i and column j of B by bi,j.

Given r ∈ {0, 1, . . . , s − 1}, define ur ∈ [A]
(
n
1

)
as follows. Pick a ∈ A. If the first

nonzero entry of row r of B is in column i and k ∈ {0, 1, . . . , t− 1}, then

ur(k) =
{

a if k < i(
(br,k, 0), ν0

)
if k ≥ i .

We claim that for any w ∈ Wt,

f0
(
hur

(w)
)

= fi(w) + br,i+1fi+1(w) + br,i+2fi+2(w) + . . .+ br,t−1ft−1(w) .

To see this, let the length of w be l and let j ∈ {0, 1, . . . , l−1}. If w(j) ∈ A or w(j) ∈ D×{νk}
for some k < i, then hur

(w)(j) ∈ A and so adds nothing to f0
(
hur

(w)
)
. If w(j) =

(
(x, 0), νk

)
for some k ∈ {i, i+1, . . . , t− 1} and some x ∈ R, then hur

(w)(j) =
(
(x, 0), ν0

)
, which again

adds nothing to f0 (hur
(w)). If w(j) =

(
(m, 1), νk

)
for some k ∈ {i, i + 1, · · · , t − 1} and

some m ∈M , then hur
(w)(j) =

(
(br,km, 1), ν0

)
. So br,km is added to f0

(
hur

(w)
)

whenever
m is added to fk(w).

Now f0
−1[C] ∈ p1 and for each r ∈ {0, 1, . . . , s− 1}, hur

(pt) = p1. Thus

⋂s−1
r=0 hur

−1
[
f0

−1[C]
] ∈ pt .

Pick w ∈ St ∩
⋂s−1

r=0 hur

−1
[
f0

−1[C]
]
. For i ∈ {0, 1, . . . , t − 1}, let xi = fi(w). Then, given

r ∈ {0, 1, . . . , m− 1}, ∑t−1
i=0 br,ixi = f0

(
hur

(w)
) ∈ C.
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4.5 Corollary. Let B and C be as stated in Theorem 4.3. There is a vector �x ∈ Ct such
that all the entries of B�x are in C.

Proof. We can apply Theorem 4.3 to the first entries matrix
(
I
B

)
, where I denotes the

identity t× t matrix.

4.6 Corollary. Suppose that R is a ring with multiplicative identity, that M is an infinite
R-module and that B is a finite first entries s × t matrix over R whose first entries have
inverses in R. Then, for any central subset C of (M,+), there exists �x ∈ (M \ {0M})t such
that the entries of B�x are all in C.

Proof. We may assume that 0M /∈ C, because C \ {0M} is a central set in (M,+). (By
[12, Theorem 4.36] K(βM) ⊆ βM \M so 0M is not a minimal idempotent.) Assume that
the first entries of B occur in the j1th , j2th , . . ., jkth columns, and that the first entries in
these columns are c1, c2, · · · , ck respectively. Let P denote the diagonal t× t matrix whose
ji

th diagonal entry is c−1
i for each i ∈ {1, 2, · · · , k} and whose other diagonal entries are 1R.

Then BP is a first entries matrix over R whose first entries are all 1R. Our claim follows
by applying Corollary 4.4 to this matrix in place of B, observing that P�x ∈ (M \ {0M})s if
�x ∈ (M \ {0M})t.

4.7 Corollary. Suppose that M is infinite and that M , R and B satisfy either the hypothe-
ses of Theorem 4.4 or those of Corollary 4.6. Then, for any finite coloring of M \ {0M},
there exists �x ∈ (M \ {0M})t such that the entries of B�x are monochrome.

Proof. There is a monochrome central subset of M \ {0M}.
A concept closely related to image partition regularity is that of kernel partition regu-

larity. We shall say that a finite s× t matrix B with entries in R is kernel partition regular
over a subset N of M if, for any finite coloring of N \ {0M}, there exists �x ∈ (N \ {0M})t,
with monochrome entries, such that all the entries of B�x are equal to 0M .

In the case in which R is a field, this concept is related to a computable condition,
called the columns condition, introduced by R. Rado.

4.8 Definition. Let R be a field and let B be an s× t matrix with entries from R. Then B
satisfies the columns condition over R if and only if there exist m and a t×m first entries
matrix H with entries from R such that BH = O, where O is the s×m matrix all of whose
entries are 0R.

It is easy to verify that this definition is equivalent to the original. (See [12, Definition
15.28] for the original definition.) A celebrated theorem, due to Rado [15], states that a
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finite matrix with entries in Z is kernel partition regular over N if and only if it satisfies the
columns condition over Q.

The following theorem is closely related to [12, Theorem 15.30] which was in turn based
on a result in [1].

4.9 Theorem. Assume that R is a field and that M is a vector space over R. Let B be a
finite s× t matrix over R.

(i) If B satisfies the columns condition and if M is infinite, then B is kernel partition
regular over M .

(ii) If R is finite and B is kernel partition regular over M , then B satisfies the columns
condition.

Proof. (i) If B satisfies the columns condition, BH = O for some first entries matrix H

with entries in R. Our claim follows by applying Corollary 4.7 to H in place of B.

(ii) Choose a Hamel basis X for M , and assign X a well-ordering. Every element
m ∈ M \ {0} can be expressed uniquely as m =

∑
x∈Fm

γ(m, x)x for some Fm ∈ Pf (X),
where each γ(m, x) ∈ R \ {0R}. We color M \ {0} according to the value of γ

(
m,min(Fm)

)
.

Since B is kernel partition regular over M , there exist m1, m2, · · · , mt ∈ M \ {0M} and
a ∈ R \ {0R} such that γ

(
mi,min(Fmi

)
)

= a for every i ∈ {1, 2, · · · , t} and all entries of

B



m1

m2
...
mt


 are equal to 0M . Let F =

⋃t
i=1 Fmi

. Write F as {x1, x2, . . . , xn}, with this

sequence arranged in increasing order. Define a t × n matrix H over R as the matrix of
coefficients of the elements m1, m2, . . . , mt relative to the basis {x1, x2, . . . , xn} of

∑n
i=1Rxi.

Then H is a first entries matrix for which BH = O.
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