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Humans have observed and experienced dynamic random 
phenomena for millennia through our contact with earthquakes, 
winds, ocean waves, rough roads and trails. Before people could 
easily conceptualize harmonic motions, they observed random 
vibration. Today, random vibration is thought of as the random 
motion of a structure excited by a random input. The mathematical 
theory of random vibration is essential to the realistic modeling 
of structural dynamic systems. This article summarizes the work 
of some key contributors to the theory of random vibration from 
its inception in 1905, with the work of Einstein, to the present. 
Several graphical examples are included.

In 1827, upon observing the motion of particles of pollen in a 
fluid suspension, Robert Brown, a Scottish botanist, speculated that 
particle motions were due, not to some vitality in the particles, but 
to molecular-kinetic motion in the fluid. That is, he speculated that 
unobservable particles in the fluid were impacting the particles 
from the pollen to excite their motion. The motion became known 
as Brownian motion.

In 1905, Albert Einstein wrote the first paper on random vibra-
tion,1,2 “On the Movement of Small Particles Suspended in a 
Stationary Liquid Demanded by the Molecular-Kinetic Theory of 
Heat.” (Einstein wrote several other famous papers in 1905, among 
them, his paper on the special theory of relativity and his paper 
on the photoelectric effect. He won the Nobel Prize in Physics for 
the latter work.) He developed equations governing the distribu-
tion of motions of a particle suspended in a fluid in a derivation 
understandable to most undergraduate students of thermodynam-
ics. Along the way, he developed a way of understanding random 
processes because the theory of random processes did not exist 
at that date, at least, in the form it exists today. Einstein’s work 
spawned a flurry of activity in random vibration.

This article summarizes the work of Einstein and some of those 
who followed in his footsteps. It summarizes the milestones in 
random vibration from 1905 to the present, including development 
of an alternate to Einstein’s technique for analysis of random vibra-
tion, definition of the spectral density of a stationary random process, 
development of the fundamental relation of random vibration in scalar 
and matrix forms, estimation of spectral density, specification of nonsta-
tionary random processes, random vibration of random structures, and 
many others. Many examples are provided.

Einstein’s Introduction of Random Vibration
By the start of the twentieth century the idea that gases and fluids 

might be composed of molecules that move freely and energeti-
cally was well established. In fact, Robert Brown had speculated 
as early as 1827 that that the motion of inert particles in a fluid 
medium is caused by the molecular-kinetic effect, the impingement 
of unobservable particles in a fluid medium upon a microscopic, 
observable, particle. If we were to observe the Brownian motion 
of a particle suspended in a fluid, we would see a sequence like 
that shown in Figure 1.

Through 1905 a mathematical theory for the so-called Brown-
ian movement had not been developed. In 1905 Albert Einstein1,2 
developed a mathematical theory to describe Brownian movement. 
Einstein did not use a direct approach to solve the problem. (A 
direct approach would write the equation governing motion of the 
particle in Brownian motion, and then find the probabilistic re-
sponse character from the character of the input.) Rather, he argued 
that if the molecular-kinetic theory of heat is applicable in describ-
ing the Brownian motion of particles, then pressures on Brownian 
particles can be established. Those pressures would cause the dif-
fusion of small particles in a suspension. (He assumed the particles 
to be spherical.) He developed a diffusion equation governing the 
probability density function (PDF) of a collection of Brownian 

particles. During development 
of the diffusion equation, he 
made assumptions that would 
later characterize the molecu-
lar excitation as an ideal white 
noise, an excitation with signal 
content over a very broad band 
of frequencies. (See the fol-
lowing section for description 
of white noise.) The diffusion 
equation Einstein obtained is 
(for a single, one-dimensional 
component of motion):

  

where f(x,t), – • < x < • , t ≥ 0 
is the PDF of particle displace-
ment at displacement location 

x and at time t and D is the coefficient of diffusion. The initial con-
dition at t = 0 specifies that the PDF starts as a Dirac delta function; 
that is, there is complete certainty that displacement motion starts 
at the origin. For Einstein’s formulation the coefficient of diffusion 
is D = (RT/N)(1/6pcf r) where R is the universal gas constant, T is 
the absolute temperature, N is Avagadro’s number, cf is the coef-
ficient of viscosity of the fluid, and r is the radius of the sphere.

The solution to Eq. 1 is:

where the subscript on f indicates that we are interested in the 
displacement random variable, X(t), at time t. Note that the standard 
deviation of the response is:

The standard deviation of the displacement response grows, 
without bound, as the square root of time. The reason is that 
there is no force applied to the system (a spring) that causes the 
displacements to oscillate about the origin. If we were interested 
in characterizing the response of a Brownian particle we would 
use Eq. 2 to answer questions regarding the unfolding of random 
particle response in time. 

However, structural dynamicists are interested in considering 
structural response. The simple mechanical system equivalent to 
the one Einstein considered is the structure shown in Figure 2; it 
is a mass tied to ground with a damper (and no spring). Let m and 
c be the mass and damping constant of the structure with units 
of lb-sec2/in and lb-sec/in, and let Sww, be the two-sided spectral 
density of the white noise excitation with units of lb2/(rad/sec). 
Equivalence between the mechanical system and the Brownian 
particle is established when D = Swwm2/2c2. Figure 3 shows five 
marginal PDFs of the displacement response at normalized times 
t = 2Dt= 0.1,1,4,7,10 and the minus/plus one standard deviation 
curves. The mechanical system parameters are arbitrary and the 
response depends only on the coefficient of diffusion D.

Einstein did not consider explicitly the time-domain response of 
the system of interest; however, we can do so, easily. The equation 
governing motion of the system in Figure 2 is:

where x(t), t > 0 is the displacement response, dots denote dif-
ferentiation with respect to time, the initial conditions specify 
the response, and w(t), t > 0 is a white noise realization from a 
random source. (The response x(t) is not capitalized, here, be-
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Figure 1. The locations of a Brownian 
particle on the x-y plane, observed at 
a fixed interval of time, and on a pre-
established length scale. The particle 
starts at the origin (red circle), and 
ends at the tenth observation (green 
circle).
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excites. (The excitation must approximate the ideal white noise 
with band-limited white noise.) Figure 4a shows a realization of 
band-limited white noise excitation with signal content in the 
frequency band [–50,50] Hz and two-sided spectral density Sww 
= 1 lb2 / (rad/sec). Figure 4b is the velocity response of a system 
with mass, m = 1 lb-sec2/in, and damper, c = 1 lb-sec/in. Figure 
4c is the displacement response of the same system. Note that the 
input is simply one excitation from an infinite ensemble of pos-
sibilities; therefore, additional trials would yield other inputs and 
corresponding responses.

Because the problem Einstein solved yields the probabilistic 
description of the motion of a mass attached via a viscous damper 
to a fixed boundary and excited with white noise, his develop-
ment can be thought of as the first solution to a random vibration 
problem and the dawning of the era of random vibration analysis.

However, the fact is that structural dynamicists are more inter-
ested in structures that are supported on resilient elements; such 
structures usually display oscillatory responses. The simplest form 
of oscillatory structure is the single-degree-of-freedom (SDOF) 
structure shown in Figure 5. This is the fundamental model of 
structural dynamics, one whose response is treated in practically 
every text on random vibration. (See, for example, the fundamental 
texts,4,5 the intermediate texts,3,6 or the more advanced texts.7,8) 
The first successful treatments of such a structure were by Smo-
luchowski9 and Furth10, independently in 1916 and 1917. They 
developed a form of the diffusion equation for the SDOF structure 
that would, eventually, become known as the Fokker-Planck equa-
tion. Interestingly, the case they considered is the over-damped 
(non-oscillatory) system. They referred to the system we call the 
SDOF structure as the “harmonically bound particle.”

The limitation of over-damping would eventually be overcome, 
but in the short term, Ornstein11 developed the idea of analyzing 
random vibrations, directly, based on the governing equation of 
motion. The equation governing motion of the SDOF structure is

where m, c, X and W are defined as before, and k denotes the stiff-
ness of the spring that attaches the SDOF mass to ground. (The 
excitation and response, W(t) and X(t) are capitalized, here because 
they are formally considered to be random processes.) The initial 
conditions on this equation must involve the joint probability 
distribution of displacement and velocity. The method Ornstein 
developed forms the basis for the method we use today to perform 
random vibration analysis.

Uhlenbeck and Ornstein12 wrote a paper that elaborated on 
Ornstein’s solution to Eq. 4. In that paper they described the ex-
citation and response in terms of their moments (averages). This 
use of moments was an extremely important innovation; to a great 
degree, it constructed a foundation for the framework most random 
vibration analysts use today for the solution of random vibration 
problems. Specifically, to start, they described the input excitation 
as having zero mean and autocorrelation function (a term not in 
use at the time) defined:

cause we consider the exciting force to be a sample of the input 
random process, not the random process, itself.) We can generate 
a sample excitation3 from the white noise random process, and 
then compute the velocity and displacement responses the input 
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Figure 2. The structural dynamic system equivalent to the system analyzed 
by Einstein.

Figure 3. Five separate marginal PDFs of the displacement response of the 
system in Figure 2 at normalized times t = 2Dt = 0.1,1,4,7,10. (Blue, Eq. 2a, 
plotted above the t – x  plane) Standard deviation of the response. (Red, Eq. 
2b, plotted in the t – x plane).

Figure 4. (a) Sample excitation from a band-limited random source with 
two-sided spectral density, Sww = 1 lb2/(rad/sec), with frequency content in 
[–50,50) Hz; (b) velocity response of structure of Figure 2, with m = 1 lb-sec2 
/in, and c = 1 lb-sec/in, to the input in Figure 4a. (c) displacement response 
of the structure of Figure 2, with m = 1 lb-sec2/in, and c = 1 lb-sec/in, to 
the input in Figure 4a.
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Figure 5. Single-degree-of-freedom (SDOF) structure with mass m stiffness 
k and damping c excited by input force W(t).
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random processes; i.e., random processes in a statistical steady-
state whose realizations extend from the infinite past to the infinite 
future. No such random source actually exists; however, many 
random phenomena realize steady-state signals over relatively long 
periods of time. Those are the sources we seek to model. Weiner’s 
definition of spectral density is based on the idea of autocorrelation 
function. The autocorrelation function of a random process is the 
average value, over all time, of the product of the process at time 
t, times the process at time t + t. For a stationary random process, 
this average is a function of t, only. The mathematical definition is:

where x,(t), – • < t < • is a random process realization, i.e., a signal 
that comes from a stationary random source. The definition makes 
the assumption that a realization of a stationary random process 
representative of all other realizations is used; the assumption 
amounts to an assumption that the random source is ergodic.

The autocorrelation function, while indispensible in many 
frameworks, is a blunt tool for the interpretation of the character of 
a random process. For example, Figures 7a and 7b show a segment 
of a finite duration realization of a structural acceleration response 
random process and its estimated autocorrelation function. The 
time history of Figure 7a does not clearly reveal the character of 
the random source, and neither does the estimated autocorrelation 
function of Figure 7b. Weiner defined the spectral density as the 
Fourier transform of the autocorrelation function.

where w is circular frequency in units of rad/sec, and i = -1  is the 
imaginary unit. (This formula defines the two-sided spectral density, used 
in random vibration analysis. The one-sided spectral density is used to 
present experimental results, and most frequently, to plot spectral densi-
ties; it is written as a function of cyclic frequency, with units of cycles/sec 
= Hertz.) Weiner then proceeded to develop many of its features. Among 
other things, the spectral density is non-negative. The autocorrelation 
function is recoverable from the spectral density because the operation 
of Fourier transformation is invertible.

Because of this and because the autocorrelation function is 
defined (see Eq. 7), RXX (t) = E[X(t)X(t +t)], it follows that:

That is, the area under the spectral density curve equals the mean 
square of the random process. Beyond this preliminary conclusion, 
Eq. 8c also shows that the mean square is built up from components 
in different frequency ranges, and this fact can be used to draw 
important conclusions about a random motion. (See, for example, 
the following paragraph.)

Figure 7c shows the estimated spectral density of the random 
process that is the source of the time history shown in Figure 7a. 
The area under the spectral density curve is the mean square of the 
random process, sX g2 21 23= .  , and the value of the autocorrelation 
function at t = 0. The graph of the spectral density is a sequence of 
peaks. Because the signal upon which the spectral density estimate 
is based is the acceleration response of a structure, the peaks indi-
cate mean square response signal content at the modal frequencies 
of the structure. The spectral density is easily interpretable; the 
contribution to total mean square response by each mode can be 
directly approximated.

An important historical note that relates to spectral density in-
volves, so-called, ideal white noise. Ideal white noise is a random 
process that possesses a spectral density that is constant over all 
frequencies (equal energy per unit frequency), from minus infinity 
to infinity. (The terminology comes from a reference to the spectrum 
of light.) Of course, such a random process has spectral density 
with infinite area, and therefore, infinite mean square signal con-
tent; it cannot exist, in nature. It does excite measures of response 
in some structures with finite signal content, therefore, it is often 
used in simple modeling applications.3

where Sww is the constant spectral density of an ideal white noise 
random process, and d (◊) is the Dirac delta function. (The paper 
formally defining spectral density appeared in 1930, but Uhlenbeck 
and Ornstein were, apparently, not aware of it. Therefore, they 
did not use it specifically in their definition of the coefficient on 
the right hand side.) They proceeded to show that the response 
random process, X(t), – • < t < •, has zero mean and mean square:

and they specified that the response has a Gaussian probabil-
ity distribution. In this expression, wn k m= /  is the natural 
frequency of the SDOF structure, z = 0 5. /c mk  is the system 
damping factor (zŒ [0,1]), and w w zd n= -1 2  is its damped natural 
frequency. Their result demonstrates the practical result that the 
standard deviation of displacement response approaches a finite 
limit, s p zwX ww nS m( ) /• = ( ) ( )2 3 2 , as t Æ •. The limit is reached 
within one percent when (0.18/z) cycles of response have been 
executed. Though Uhlenbeck and Ornstein did not express the 
response autocorrelation function, and they did not refer to input 
or response spectral density, their presentation must be considered 
the first to use “modern” techniques of random vibration analysis.

An example that shows the result developed by Uhlenbeck and 
Ornstein is provided in Figure 6. Six separate marginal PDFs of the 
displacement response of an SDOF structure excited by ideal white 
noise are shown, plotted above the normalized time versus normal-
ized displacement plane. In the graph, time, t = wnt, is normalized 
by the natural frequency of the SDOF structure. Displacement, x = 
x/sX (•), is normalized by the root-mean-square response at t Æ •, 
and the PDF is normalized as s s xt wX X Xf

n
( ) ( )( / )• •( ), where fx(t)(◊) 

is the PDF of displacement response.
Many more contributions have been made to the theory of 

random vibration, and some of them will be summarized later, in 
the section titled “Random Vibration in Engineering Structural 
Dynamics.”

Weiner and the Definition of Spectral Density
It is quite unlikely that the mathematical theory of random vibra-

tion would have realized the widespread use it enjoys, today, if 
Norbert Weiner had not developed the idea of spectral density.13 
(He named it spectral intensity. Today, it is also called mean square 
spectral density, power spectral density, and by other descriptive 
names.) His paper is a 242-page, mathematically dense, presen-
tation that formally defines spectral density and pursues many 
other topics including a definition of cross-spectral density, and 
other spectral quantities. He attributed his inspiration to papers by 
Schuster.14-16 Schuster had made several efforts to define a form 
of spectral density, but had never defined it using a limit as did 
Weiner, and as we do today.

Strictly speaking, the spectral density exists only for stationary 

Figure 6. Six marginal PDFs of the displacement response of an SDOF 
structure developed by Uhlenbeck and Ornstein.12
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Weiner developed many other measures of stationary random 
process behavior and many more features of those measures and 
stationary random processes, themselves. Some will be mentioned, 
briefly, in the following section. Is should be noted that in 1934 
Khintchine17 published a paper in which he independently de-
fined spectral density. For that reason, Eqs. 8a and 8b are called 
the Weiner-Khintchine relations.

Random Vibration in Engineering Structural Dynamics
The modern field of random vibrations of mechanical systems 

and probabilistic structural dynamics, in general, has gained im-
portance as the awareness that real mechanical environments are 
stochastic has broadened. Today random vibration analyses are 
performed frequently and in practical settings, usually within the 
framework of a commercial finite element code. Commercial finite 
element codes include, in general, rather limited capabilities to 
perform probabilistic structural dynamic analyses, at least without 
much pre- and post-processing. The most common analyses are 
those wherein the auto- (and, perhaps, cross-) spectral densities of 
stationary excitation random processes are specified, and response 
auto- and cross-spectral densities are computed. 

Steven Crandall is normally credited as the person (in the United 
States) who made the topic of random vibrations of mechanical 
systems accessible to practicing engineers. He organized a summer 
program at the Massachusetts Institute of Technology devoted to 
presentations on the fundamental topics in random vibrations. The 
presentations are published in Reference 18 and cover analysis of 
and design for random vibration, testing, data analysis, spectral 
density estimation, and other topics. 

Chapters 1, 2, and 418, by Crandall19, Siebert20, and Crandall21, 
cover deterministic mechanical vibrations, the description of ran-
dom processes, and a basic introduction to random vibration. In 
Chapter 4, Crandall combined the ideas of the previous chapters 
to obtain, what he called, the fundamental relation of random 
vibrations; although the result is much more general, he wrote 
the relation for a linear SDOF structure. Given that a structure 
is excited by a stationary, Gaussian random input, Q(t), – • < t < 
•, with spectral density SQQ(w), – • < w < •, and given that the 
structure has frequency response function (FRF), H(w),– • < w < 
•, the spectral density of the structural response is:

where |◊|2 denotes the modulus squared of the complex FRF. In 
order to maintain an intuitive quality in the development, Cran-
dall wrote the relation for the force-input/displacement-output 
FRF of an SDOF system, but, in fact, the relation is valid for any 
(appropriate) measure of input, any measure of response, and any 
single-input/single-output (SISO) FRF.

Reconsider the example presented in the previous section. The 
single input to the structure was a stationary, Gaussian random 
force with the spectral density shown in Figure 8a. The FRF of the 
structure has the modulus squared shown in Figure 8b. The FRF 
relates input force to acceleration response. The spectral density 
of the acceleration response is shown in Figure 8c.

The remainder of Crandall’s Chapter 4 and the other chapters in 
Reference 18 developed many more features of random vibration 
excitations and responses, and many more techniques for analysis 
of response behaviors. All are worthy of attention, even in today’s 
environment. One chapter that deserves special attention is the 
one covering “Instrumentation for Random Vibration Analysis,” by 
Rona.22 In it he describes an intuitive framework for understanding 
the meaning of spectral density, and a means for estimating spectral 
density from analog signals using that framework. The method 
he described was used in the laboratory until the late 1960s to 
estimate spectral density, then modified into a digital framework 
for spectral density estimation after the fast Fourier transform23 
(FFT) became available.

The fundamental relation of random vibration, Eq. 9, was 
popularized among practicing engineers by Crandall, but it had 
been developed in many forms by others who preceded him. 
The earliest reference, found by this author, to a relation like the 
fundamental relation of random vibrations appears in a paper 
written by Carson.24 His version of spectral density was defined 
in the frequency domain, but without taking the limit as t Æ •. 
In a paper written in 1931,25 Carson defined the spectral density 
as we do today, taking the limit. His work dealt with the effects 
of noise on an electrical communications system, and in his first 
paper, he named the spectral density the energy spectrum of ran-
dom interference. In his latter paper, Carson named the spectral 
density the energy-frequency spectrum.

Wiener also pursued the fundamental relation of random vibra-
tion in his 1930 paper.13 He did so in a far-ranging section entitled 
“Spectra and Integration in Function Space.” Without writing the 
formula, he stated the relation that is most fundamental to the mod-
ern practice of random vibrations of linear mechanical systems. He 

Figure 8. (a) Spectral density of a stationary, Gaussian force random process 
that is input to a structure; (b) modulus squared of the frequency response 
function of a single-input/single-output structure (FRF relates input force 
to response acceleration); (c) spectral density of the random acceleration 
structural response.

(9)S H SXX QQ( ) | ( )| ( )w w w w= - • < < •2    

Figure 7. (a) Realization of a stationary random process; (b) estimated 
autocorrelation function of the source of the random signal in Figure 7a; 
(c) estimated spectral density function of the source of the random signal 
in Figure 7a.
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In addition, the differentials dZ(w1) and dZ(w2) are uncorrelated 
when w1 π w2. The quantity SXX (w, t) = | AX (w, t)|2 Szz(w), – • < w 
< •, teT, is the evolutionary spectral density of the nonstationary 
random process. At a given time t it describes the distribution of 
mean square signal content of the random process.

The expression in Eq. 11 is abstract, and it might be unfamiliar 
to all but specialists in the field of random processes, but writing 
it in computational form clarifies it greatly. Let Xj,j = 0,…, n – 1 
denote a zero-mean, nonstationary random process with discrete 
parameter; i.e., defined at times tj = jDt, j = 0,…, n – 1. A realiza-
tion of this random process might be generated using the formula:

where Akj is the discrete time (j) and discrete frequency (k) 
equivalent of AX (w,t), ei2pjk/n corresponds to eiwt, and the Dzk,k 
= –n/2 + 1,…,n/2 are complex-valued samples from a normal 
source. The signal covers the frequency interval [–1/2Dt, 1/2Dt]. 
The real and imaginary parts of each Dzk come from uncorrelated 
random variables, and the variates that make up Dzk1 and Dzk2 all 
come from uncorrelated sources when k1 π k2. We would choose 
D Dz z A Ak k kj kj- -= =* *,and  if we wish for the realization, xj,j = 0,…, 
n – 1, to be a real-valued function of time.

To picture how signals are generated with Eq. 12, define n = 
512, Dt = 0.001 sec, and tj = jDt, j = 0,…, n – 1; because of the 
time increment and the number of steps in the time signal, the 
frequency increment is Df = 1/nDt = 1.953 Hz, and fk = kDf, k = 
0,…, n/2 + 1. Define:

where

and

stated the result for a white noise excitation in three ways; here are 
two of them. First, he wrote, “the spectral density of (random linear 
system response) is half the square of the modulus of the Fourier 
transform of (the system impulse response function).” Later, “if a 
linear resonator is stimulated by a uniformly haphazard sequence 
of impulses, each frequency responds with an amplitude propor-
tional to that which it would have if stimulated by an impulse of 
that frequency and of unit energy.”

The excitation he is referring to is a type of white noise. Wiener 
thus provided what is probably the original expression of the 
fundamental relation including the use of limits in the definition 
of spectral density. Wang and Uhlenbeck26 appear to be the first 
authors to write the fundamental relation of random vibration in 
matrix form.

Although the volume edited by Crandall served as a 
popular and intuitive introduction to random vibration, it 
was preceded by some research and development activity 
in the engineering community. For example, Miles28 wrote a 
paper in 1954 on the subject of fatigue of randomly excited 
structures (perhaps the first on that subject) in which he sug-
gested a widely cited approximation. He suggested that the 
spectral density of one mode of the displacement or velocity 
response of a randomly excited, lightly damped structure 
can be approximated as the spectral density of the response 
to white noise. In equation form:

where SXX(w),– • < w < • is the spectral density of a response 
random process, SQQ(wn) is the spectral density of an excitation 
random process evaluated at the fundamental frequency wn of an 
SDOF structure, and |H (w)|2, – • < w < • is the modulus squared 
of the FRF of an SDOF structure. Thomson and Barton29 extended 
Miles’s approximation to multiple-degree-of-freedom (MDOF) 
structures in 1957.

Y. C. Fung wrote a paper in 195530 that was far ahead of its 
time. In it he developed a means for treating nonstationary 
random vibration. The objective of his main development 
was to obtain the formula for the expected value of the nth 
power of the nonstationary random response of a linear 
structure given information on the character of a nonstation-
ary random excitation. He needed to establish a means for 
characterizing a nonstationary random process and did so 
in both the time and frequency domains.

There were other developments in random vibration prior to 
1958 and many of them are summarized in Reference 31.

Current Issues
There are many topics in the field of random vibration where 

much potential for development remains. Among those are the 
practical characterization of nonstationary random processes, 
including excitations and responses, the characterization of 
structures, themselves, as random, and the random vibration of 
nonlinear structures.

Nonstationary random Processes. Interest in nonstationary ran-
dom processes arose as early as the 1940s when they were required 
for use in quantum mechanics investigations.32 Several approaches 
for modeling nonstationary random processes were proposed in the 
following years, including the one, already mentioned, by Fung.30 
However, it was 1965 before Priestley33,34 defined a framework that 
is today considered the fundamental definition of nonstationary 
random processes. Formally, the nonstationary random process, 
X(t), tŒT, is defined

where the form is known as a stochastic integral. (Definition of a 
similar, stationary, form goes back to the famous paper by Wiener.13) 
The function, AX(w,t), – • < w < •, tŒT, depends on frequency w 
and time t. The function eiwt is Euler’s harmonic function. The in-
crement of the integral dZ(w) is a complex, random, infinitesimal. 
Its real and imaginary parts are usually taken to be zero-mean, 
uncorrelated, Gaussian random variables defined so that E [|dZ 
(w)|2] = Szz(w)dw, where Szz(w), – • < w < • is a spectral density. 

Figure 9. (a) Surface plot to the amplitude/frequency term Akj in a stochastic 
representation of a nonstationary random process; (b) one component of a 
nonstationary random process realization with Akj from Figure 9a; (c) one 
realization from a nonstationary random process with Akj from Figure 9a.
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The surface plot of the function Akj, k = 0,…,256, j = 0,…,511, 
is shown in Figure 9a. (Components with positive frequency 
index, only, are shown.) Consider the component at k = ±99. 
At that frequency index (and for this realization) Dz = 0.1872 + 
0.0841i is the complex variate drawn from a normal source. The 
single frequency component at k = ±99 is shown in Figure 9b. It 
is simply a slowly modulated harmonic function with amplitude 
that comes from a random source. When all 257 components are 
summed, the result is the signal shown in Figure 9c. The random 
vibration response of a linear structure to a nonstationary input 
with this form is easily established. Prior to Priestley’s development 
of the evolutionary spectrum model, another means for modeling 
nonstationary random processes was under development35,36; it 
is the Karhunen-Loeve expansion (KLE).37-39 It is a more efficient 
framework for representing nonstationary random processes. It 
expresses a discrete parameter random process Xj,j = 0,…,n – 1, as:

where X is the n ¥ 1 column vector of random variables in the random 
process, V is the n ¥ n matrix of orthonormal eigenvectors of the co-
variance matrix of X, W is the n ¥ n, diagonal matrix of non-negative 
eigenvalues of the covariance matrix of X, U0 is an n ¥ 1 column vec-
tor of zero-mean, unit variance, uncorrelated random variables that 
underlie the representation, and mX is the n ¥ 1 vector containing the 
mean of the random process. The efficiency of the KLE is that it can be 
approximated using a fraction of its terms. Assume that the diagonal 
terms in W are arranged in descending order from top to bottom. Only 
those terms, say, m < n, that contribute “substantially” to the sum of the 
diagonal are retained in the m ¥ m matrix, w. The matrix w1/2 contains 
the amplitudes of the representation. The corresponding vectors of V are 
retained in the n ¥ m matrix v. The matrix v contains the characteristic 
shapes of the representation. U is an m ¥ 1 vector of random variables. 
These are the randomizing factors of the representation.

Normally, the mean vector and covariance matrix of a nonstation-
ary random process are not known from theoretical considerations, 
but data from a random source can be measured. These data can 
then be used to estimate the mean vector and covariance matrix of 
the random process. The eigenvalue decomposition of the covari-
ance matrix can be computed to estimate the KLE parameters v 
and w. If the joint distribution of the random variables in U can 
be approximated, then the parameters and vector of random vari-
ables can be used in Eq. 14 to generate realizations of the random 
process Xj,j = 0,…,n – 1.

For example, 20 measured realizations of a short-duration random 
process (shock) are available; they are shown in Figure 10a. The surface 
plot of the covariance matrix estimated from the measured samples 
is shown in Figure 10b. (The “hashy” character of the surface is a 
reflection of estimation noise.) The estimated covariance matrix is 
decomposed using an eigenvalue analysis and eigenvalue analysis, m 
= 10 components are retained in the KLE approximation. The retained 
shape functions are shown in Figure 10c. The square roots of the (re-
tained) eigenvalues are shown in Figure 10d. The random vector U is 
assumed to have a jointly Gaussian distribution. Forty realizations of 
the random process were generated using the estimated parameters 
with 40 generated 10 ¥ 1 vectors, U, of uncorrelated, standard, normal, 
random variables and the form of Eq. 14. They are shown in red in 
Figure 10e along with the original, measured random process realiza-
tions. They show that the KLE can generate an accurate representation 
of a nonstationary random process source.

The KLE provides a good representation of many nonstationary 
random processes whether they are functions of time or another 
parameter. The important thing to remember about the KLE is that 
an approximation to it can be estimated whenever a collection of 
realizations from a random source is available. Therefore, it can 
be very useful in Monte Carlo applications.

Stochastic Structure Modeling. Most of the earliest practitioners 
of random vibration analysis recognized that physical structures 
are random, as well as the inputs that excite them. However, they 
considered the degree of randomness of excitations to normally be 
greater than that of the excited structures, and they concentrated on 
developing a theory of random vibration that considered structural 
properties deterministic. Still, some early researchers considered 

structural randomness and its effects.40-42

Several researchers sought a general theory for analysis of sto-
chastic structures. Ghanem and Spanos37 developed a technique 
with a good potential for wide use because their technique is based 
on the finite element method. The technique, called stochastic finite 
elements (SFE), is too complicated to explain in fine detail, here, 
but the following steps indicate how it works (a simple example 
is presented later):
1. Write the partial differential equation (PDE) governing the struc-

ture of interest. The equation includes (a) independent variables 
like time and spatial coordinates, (b) dependent variables – the 
variables to be solved for – like displacement and acceleration, 

Figure 10. (a) Twenty realizations from a nonstationary random source; (b) 
estimated covariance of the random source of  the signals in Figure 10a; 
(c) estimated shape functions of the KLE of the source of signals in Figure 
10a; (d) estimated amplitudes of the KLE of the source of the signals in 
Figure 10a; (e) generated realizations (red) from the approximate source of 
the realizations in Figure 10a (blue), assuming that U is jointly Gaussian.

(14)X = VW1/2 U0 + mX @ vw1/2 U + mX 
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and (c) parameters that are 
usually written as coefficients 
on the left side of the PDE, like 
area, modulus of elasticity, 
mass, moment of inertia, etc.
2. Represent the PDE coef-
ficients that are random as 
a random field in the KLE 
framework. (This can be done 

directly, with the use of finite elements, for one-, two-, and three-
dimensional fields.) The randomizing coefficient of the KLE – U 
in Eq. 14 – may be Gaussian or non-Gaussian. The randomness 
is modeled as Gaussian, here, and is denoted x, where x is a 
vector of standard normal random variables. Denote the random 
coefficient a (u, x), where u is a spatial coefficient, and let na 
denote the number of terms retained in the KLE approximation.

3. Represent the dependent variable in the KLE framework. The 
randomizing coefficient of the KLE will normally not be Gauss-
ian, and Ghanem and Spanos recommend that the random vec-
tor U be represented with a polynomial chaos. The polynomial 
chaos is a Hermite polynomial expansion written in standard 
normal random variables. Of course, the random variables that 
appear in the coefficient expression, above, also appear in the 
solution expression, here, because the system response depends 
on the random features of the system characteristics. Denote 
the response x(a (u,x), t), and let nx denote the number of terms 
retained in the polynomial chaos approximation.

4. Perform a finite element expansion on the KLE shape func-
tions of the coefficient, a (u,x ) and the shape functions of the 
response polynomial chaos, x (a (u,x), t), to obtain a discrete set 
of stochastic governing equations. The governing equation has 
dimension N ¥ N, where N is the number of degrees-of-freedom 
in the finite-element model.

5. Use the characteristics of the standard normal random variables 
and the expectation operation on the governing equation to ob-
tain a collection of simultaneous, ordinary differential equations 
governing the shape functions and amplitudes of the solution, 
x (a (u,x), t). The number of equations relates to the desired ac-
curacy of the solution approximation, embodied in na and nx.

6. Solve the collection of matrix ODEs to obtain a specific expres-
sion for x (a (u,x), t). Use the expression to infer the characteristics 
of system response.
An example elucidates how the SFE method can be used in many 

different, sometimes very simple, ways. Consider a slender beam, 
shown in Figure 11, with a random vibration load on the tip. The 
beam is excited in the vertical plane and responds in the vertical 
plane. We seek, in the following, to excite realizations of a random 
beam with realizations of a nonstationary random process; this is 
a Monte Carlo analysis.

The Euler-Bernoulli version (applicable to shallow beams with-
out shear and rotation effects) of the equation governing motion 
of a slender beam is:

Its solution is made specific through specification of boundary 
conditions (BC) and initial conditions (IC). We take the BC to be 
x(u,t) |u=0 = 0 and ∂x(u,t)/∂u|u=0 = 0. We take the IC to be x(u,t) |t=0 
= 0 and ∂x(u,t)/∂t|t=0 = 0. 

The load is applied at the tip, only, therefore, w(u,t) = d(u – L)
Q (t), t > 0. Q(t) is simulated at discrete times with, Qj,jŒ[0,…,511], 
the type of nonstationary random process modeled in the previ-
ous example; the load is Gaussian. The load is defined at times tj 
= jDt, j = 0,…,511, with Dt = 1 ¥ 10–4 sec. Twenty realizations of 
the load random process are shown by the curves in Figure 12; 
as many realizations of the excitation as desired can be generated 
from the KLE model.

We could carry out the operations described in the six steps listed 
above; however, we intervene early in the process to simplify the 
analysis. Let a (u) = E(u)I(u), uŒ [0, L], denote a Gaussian random 
field with mean ma(u), uŒ [0, L], and autocovariance function 

Caa(u1,u2) = s2exp[–b (u2 - u1) 2],u1,u2Œ [0, L]. The mean is defined 
as a constant, ma(u) = 2.557 ¥ 105 lb-in2. The parameters of the au-
tocovariance are s 2 = (2.557 ¥ 104) 2 (lb-in2) 2. The beam length is 
L = 20 in. The finite-element discretization is uj = j,jŒ [0,1...20], i.e., 
the uj identify the nodes of the finite-element mesh. The random 
field a (u) is defined as constant within each beam element, so the 
discretization for a (u) identifies the coefficient at locations (1/2) 
(uj + uj+1), uj = j,jŒ [0,1...19]. The autocovariance function for the 
field a (u) is shown in Figure 13a. Some realizations drawn from 
the KLE model of the random field are shown in Figure 13b; as 

 Q(t)

L

Figure 11. Shallow beam with random 
tip load.

Figure 12. Twenty realizations of short-duration random load applied to 
the tip of beam. 

Figure 13a. Autocovariance function, Caa (u1,u2) u1,u2 e [0, L], of the random 
field a(u), uu[0, L]; (b) realizations drawn from the KLE approximation of the 
random field with autocovariance in Figure 13a, and mean ma (u) = 2.667 ¥ 
105 lb-in2; (c) 20 realizations of stochastic beam tip acceleration response 
(beam has a(u) = E (u)I(u), u e[0, L] that is a random field; some realizations 
of a (u) are shown in Figure 13b) to a short duration random load applied to 
the tip of the beam. (20 realizations of the load are shown in Figure 12); (d) 
approximate probability density function of the peak absolute acceleration 
response at the tip of the beam; beam and load are stochastic, and PDF is 
very clearly non-Gaussian.
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many realizations as desired can be drawn from the KLE of a (u).
For purposes of this example, we choose to generate 100 realiza-

tions of the random excitation. We generate 100 realizations of the 
stochastic beam, each one excited by one of the inputs. Twenty of 
the 100 computed acceleration responses are shown in Figure 13c. 
The analyst may be interested in knowing the probability distribu-
tion of some measure of the stochastic response, say, peak absolute 
acceleration at the tip of the beam. Figure 13d shows the kernel 
density estimator (KDE),43 an approximation to the PDF) of the 
peak absolute acceleration based on the 100 computed responses.

The SFE method can be used in many more ways. For example, 
modal analysis can be directly performed on models leading to a 
probabilistic description of a stochastic beam. The probabilistic 
description of the modes can then be used to investigate random 
structural response.

Random Vibration of Nonlinear Structures. Throughout the his-
tory of random vibration it has been recognized that real structures 
are nonlinear. Some structures are only slightly nonlinear and can 
be treated as linear; some are so nonlinear that the nonlinearity 
must be accommodated in analysis. Some structures are nonlinear 
because of very localized effects. Hundreds of papers and texts 
dealing with random vibration of nonlinear structures have been 
written, for example.7,44-46 Through a decade, or so, ago, treatments 
of nonlinear random vibrations were very specialized and not 
generally applicable to practical nonlinear structures. 

Then it was recognized that nonlinear behavior in many, stiff 
structures emanates not from the behavior of the overall structure, 
but from the behavior of some much localized effects, for example, 
in mechanical joints. That is, the main components of the struc-
ture behave approximately linearly, but a few components behave 
nonlinearly. That realization led to procedures for the analysis of 
practical-scale, nonlinear structures.47,48 The more recent develop-
ments are based on work done several decades ago.

In 1965 Hurty49 wrote a paper describing a method for writing the 
equations of a linear, dynamic structure in terms of the modes of the 
component parts of the structure. Because structural components 
can often be accurately characterized in terms of a relatively small 
number of lower frequency modes, the method provides the poten-
tial for great efficiency in the sense that the number of equations 
required to characterize the structural dynamics is greatly reduced, 
relative the number of degrees-of-freedom (DOF) represented in the 

component models. Craig and Bampton50 rediscovered and slightly 
modified the method in 1968, and the method is amply described 
in Ref. 51. The method has come to be known as the Craig-Bampton 
method. The essence of the original technique is this:
1. Perform a classical, structural dynamic modal reduction on linear 

structural components restraining components against motion 
at DOF where connections occur.

2. Identify, via static analysis, deformations of component internal 
DOF in terms of component boundary DOF. Take the resulting 
deformations to represent the so-called “restraint modes.” (These 
are included in the following transformation to help convergence 
of the representation.)

3 Construct a transformation matrix consisting of dynamic mode 
shapes from 1 and the static model shapes from 2.

4. Write the equation governing linear structural dynamics of the 
overall structure including linear constraint equations that tie 
the components together.

5. Organize the component transformation matrices into an overall 
structure transformation matrix to reduce the equations of mo-
tion. The number of reduced equations governing the overall 
structure equals the sum of the number of dynamic modes 
retained in the components plus the number of boundary DOF 
in the components. This quantity may be substantially lower 
than the total DOF in the structural model including all the 
components.
To this point, none of the development is aimed specifically at random 

vibration or nonlinear analysis, but the method can be used to perform 
random vibration computations. To extend the technique to the analysis 
of locally nonlinear structures Simmermacher47 modified steps 4 and 
5, above. In writing the governing structural dynamic equations for the 
system, he wrote constraint equations that incorporate a nonlinear restor-
ing force. Further, he made the parameters of the nonlinear mechanical 
connection jointly distributed random variables. The joint distribution 
of the random variables is based on data from laboratory experiments. In 
a sense, he wrote a simple stochastic differential equation that could be 
solved using Monte Carlo simulation.

Hasselman48 went further. He modeled the linear structural 
components as random entities, and he did so in a framework 
compatible with experimental modal analysis. His representation of 
modal randomness in structural components is second order; that 
is, he encapsulates a representation of randomness in the covari-
ance matrix of modal mass, stiffness and damping. He obtains the 
covariance matrix of modal randomness for each component from 
a comparison of model-derived component modes to experimental 
component modes. With this representation and a mode synthesis 
procedure, structural randomness, as represented by the covariance 
matrix of random structural characteristics, is modeled.

Conclusion
The history of the mathematical theory of random vibrations of 

mechanical systems spans the previous century, starting with the 
work of Einstein, and continues to the present. The theory is es-
sential to the representation and interpretation of realistic inputs 
and responses of structures. This article briefly presents some 
developments in that history through the present time. Although 
the groundwork for random vibration analysis was laid over that 
entire period, the work dealing with application to structural and 
mechanical systems started in earnest in the 1950s. Numerous 
papers and texts contributing to the development of random vibra-
tions have been summarized.

For the convenience of the reader Figure 14 summarizes some 
of the names from the history of random vibration, the years of 
their contributions, and a phrase describing their contributions.

Smouluchowski, 
Furth
Analysis of 
second-order 
system; 1916, 
1917

Einstein
Brownian motion 
of particle, 1905

Schuster
Pre-spectral 
density,1905

Ornstein
Moment-based 
RV, 1919

Wang, 
Uhlenbeck
RV of MDOF 
structure,1945

Karhunen-Loeve
(1947)
Priestley (1967)
Nonstationary 
random 
processes

Wiener
Spectral density 
(and much 
more),1930

Crandall
Intro RV to 
engineers,1958

Ghanem, Spanos
Stochastic 
FEM,1991

Fung
RV, 
nonstationarity, 
(and more), 1953

Hurty (1965)
Simmermacher 
(2005)
Hasselman (2010)
Substructures, 
stochasitc systems

Figure 14. History of random vibration.
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