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Randomization Time for the Overhand Shuffle
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This paper analyzes repeated shuffling of a deck of N cards. The measure
studied is a model for the popular overhand shuffle introduced by Aldous and
Diaconis. It is shown that convergence to the uniform distribution requires at
least order N 2 shuffles, and that order N Z log(N) shuffles suffice. For a 52-card
deck, more than 1000 shuffles are needed.
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1. THE OVERHAND SHUFFLE (~o

The two most common methods of shuffling a deck of playing cards are the
riffle shuffle and the overhand shuffle. The riffle shuffle is performed by
splitting the deck into two halves and interlacing them. Aldous and
Diaconis have shown in Ref. I that approximately 2 log N riffle shuffles
suffices to randomize a deck (the meaning of this will be made more precise
below). In particular, about 7 riffle shuffles are sufficient to randomize a
52-card deck. This paper shows that the overhand shuffle takes order of N 2

or more shuffles to randomize a 52-card deck, explaining why it is only the
second most popular shuffle.

To perform an overhand shuffle, hold the deck of cards in your right
hand and slide a small packet of cards off the top of the deck into your left
hand. Repeat this process, putting each successive packet on top of the
previous one, until all the cards are in your left hand, so the order of the
cards gets reversed in clumps.

The overhand shuffle is frequently used by casual card players. It
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should be noted here that a version of this shuffle called the "strip shuffle"
is sometimes used in Las Vegas. In this version, the deck is flat on the table
and successive packets are taken off the top of the deck and dropped on
each other in reverse order.

Shuffling a deck of cards induces a permutation on it which is not
predictable. Thus a single shuffle corresponds to a probability measure on
the symmetric group SN of permutations of an N-card deck. Following
Aldous and Diaconis,"' successive shuffles can be treated as independent,
so repeating a shuffle corresponds to convolving the measure with itself.

When modeling the overhand shuffle, we shall find it convenient to
look at the deck backwards after an odd number of shuffles. In this case,
each shuffle reverses the order of the cards within any given packet but
keeps the relative order of the packets fixed. If a is the order reversing
involution, we will have a(O),a ' _ (°P for all our distributions, so looking at
the deck backwards every second shuffle will not change anything.

To choose an overhand shuffle at random, let e,, e2,..., eN_-, be
i ndependent Boolean variables, each being "Yes" with probability p. For
convenience, we shall let q = I - p throughout this paper. Now choose the
packets by separating the i th card from the i + 1st exactly when e, = "Yes."

Example. Suppose a 13-card deck is initially in the order

A23-456789-T-JQ-K

Suppose p= 1/4 and (e, e12)=NNYNNNNNYYNY. Then the
packets are as shown and the new order is

3 2 A 9 8 7 6 5 4 T Q J K

Formally, UP is the distribution such that (,P(n)= pkq" k -' if 7r is of
the form (r, , r, - 1,..., 1, r2,..., r, + l ,..., N, N - l ,..., rk + 1) and 0 otherwise.
Note that if p = q = 1/2 then t(,, is closest to uniform since every possible
resulting permutation is equally likely. 4, can also be viewed as a Markov
chain whose states are arrangements of the deck, where the next state is
gotten by applying a random permutation from the prescribed measure.

2. THE MAIN RESULTS

Let P and Q be probability distributions on SN and define

I P-QI=1/2 Y IP(n)-Q(n)I
' e S,y

or equivalently

1 P-QI =max{P(A)-Q(A): A -SN)
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Let U be the uniform distribution on SN. Let Pk denote the con-
volution of P with itself k times. Then we have the following upper bound
theore.

Theorem 1. (Upper bound theorem.) For any p there is a k such
that for all r, N e Z'

I (()kN''[Iog(N)+rlog121)_UI<(l/2)r 1P

Letting r = [ I + log2(e )1, we can think of this as saying that it takes at
most kN 2 [log(N) + r log 2 ] shuffles to come within a of the uniform dis-
tribution. The asymptotic upper bound given by this theorem for fixed p
and a while N -* oo is on the order of N2 log N. If N is fixed but E -+ 0, the
bound is logarithmic in r, which agrees with the Perron--Frobenius theory
(see Ref. I ).

Note that the distance function we use is quite unforgiving. For
example, let E be the distribution selecting any even permutation with
uniform probability on the subset of even permutations. If you choose a
permutation randomly from E and then look at the cards one by one, you
will never have any clue as to the identity of the next card until you reach
the penultimate card, at which point you will know the relative order of the
last 2 cards with certainty. So you do not have much information, yet
I E-UI=1/2.

The proof of the upper bound theorem uses a coupling argument. If
the reader wants a more detailed account of coupling than the one given in
this paragraph, see Ref. 2. Define a probability distribution, WP, on pairs of
shuffles of two decks having the property that %P restricted to either deck is
just (JP. Formally, %',, is a probability distribution on SN x SN such that c ,
restricted to either coordinate is distributed identically to (OP. The joint dis-
tribution of WP is rigged so that the two decks eventually become identically
arranged and stay that way. If the second deck begins in a random
arrangement, it is tempting but incorrect to believe that the first deck is
random as soon as it agrees with the second deck. What is true, however, is
that for any fixed M, if the first deck and the initially random second deck
agree after M shuffles with probability I -e, then I(7-UI _e.

Most of the work comes in determining M. One particularly long
calculation is summarized as Lemma 1. Although the truth of Lemma I
may seem intuitively clear, the author knows of no short or elegant proof.
Since the argument we use relies on some calculations done in Section 4 we
postpone the proof of Lemma I until Section 5. A lower bound is given in
Section 4. Asymptotically, this bound is on the order of N2 so it is lower
than the upper bound by an asymptotic factor of log N. In Section 6 we
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present some numerical determinations of the upper and lower bounds for
a 52-card deck which show that the constant factors in the two bounds

serve to make the bounds very far apart (35 versus 370,000,000,000) even
for N as small as 52. Some empirical evidence is presented indicating that
the tightest numerical bound in the case N= 52 is between 1000 and 3000.

3. PROOF OF THE UPPER BOUND THEOREM

We define the process WP , dependent on the states of the two decks, as
follows. Find the set, S, of all positions, j, such that the jth card in deck I
is the same as the jth card in deck 2. We call these the matched cards and
matched positions. We will make sure that matched cards remain matched

while allowing the two permutations of the decks to be as independent as
possible on the unmatched cards.

Pick j e S and choose Boolean variables e;, ej + , ,... one by one, each
with probability p of being "Yes," until a "Yes" is reached. Do the same for

e; _ 1 , e,-21... as well, so that the boundaries of the packet containing
position j have been determined. Pick another j e S for which e; or e; _ , has
not been determined and again choose e1.e;+,.... and e;_,,e;_z,... until
you reach a "Yes" or a k such that e k has already been chosen. Continue
doing this until S is used up; at this point the packet boundaries for all the
matched cards have been chosen. Now choose the remaining variables
e; and e; independently. Shuffle deck I with an overhand shuffle

corresponding to the variables (e; ,..., eN _ 1 ) and use the variables
(e; ,..., e

2 _,
1 ) to shuffle deck 2.

Remark. The shuffle does not really depend on the order in which
the positions in S are picked; imagine that e 1 	e N , are already deter-
mined but that you look at as few as possible in order to determine the
boundaries of every packet containing a matched card. Later we will use a
similar argument to choose a shuffle in

%P
by first choosing some variables,

e,' and e] in nonoverlapping positions, and then going through the usual
process, choosing ek = e' or e k = ek whenever possible and the rest indepen-
dently.

Example. The decks begin like this:

Deck 1: A 2 3 4 56 7 8 9 T J Q K

Deck2: 8 4 J K 5 7 A 6 9 T 3 Q 2

and the random Boolean variables produce this diagram
below:

as explained
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1
A 2 3 4 5 6 7 8 9 T J Q K

8 4 J K 5 7 A 6 9 T 3 Q 2

S = { 5, 9, 10, 12 }, as shown by the J's. Say p = 1/2. For j = 5 suppose
e,= Y, e,=N, e 3 =N, e 2 =Y. For j=9 we find that e 9 =N, e 10 =N,
e„ = Y, e, = Y. For j = 1 0, e; and e; , have already been chosen. For
j = 12, we find

e]2=
Y. We let

ell
= ek = e k fork = 2, 3, 4, 5, 8, 9, 10, 11, 12.

We now choose the reamaining variables independently and find e; = Y,

e', = N, e', = Y, e; = N, eb = Y, e; = Y. The packets shown in boxes are
necessarily the same for both decks. The Boolean variables indicated by
presence or absence of vertical slashes were chosen independently. The new

order is

Deck 1: A 12

Deck 2: 4 8

j
5 4 3

5 K J

11
7 618

7IA16

111
J T 9

3T9

Q K

2

Note that all matched cards remain matched and some new matches

( marked by 11) may be created. It is clear that the distribution of shuffles

restricted to either deck I or deck 2 is just (O,,. Now we have to calculate
how many shuffles it takes before the two decks are identically arranged
with probability at least I - 1/2' ' regardless of their initial states.

Suppose that the jth card in deck I is identical to the (j+ 1)st card in
deck 2. Then if ei , = eJ 1 = e,1 + , = e~ + , = Y, and e,' e~ , then the identical

cards become matched. The probability of this happening is at least 2p s q,

with equality when all six are chosen independently. Let

f(N) =[log[(l/2')N]/log(l -2p s q)1

so that if we wait for a given card to have a position in deck I equal or

next to its position in deck 2 at least f(N) times, it has probability at most

(I/2')N of being unmatched. Now we appeal to a lemma whose proof is
deferred to Section 5.

Lemma 1. For each p there is a constant, y, independent of N such

that if the coupled shuffle WP is repeated yN 2 times, the probability that a

given card has had a position in deck I equal to or within I of its position

in deck 2 at some point is at least 3/4 for any initial states of the two decks.

Assuming this lemma, we finish proving the theorem. For convenience
refer to the event of a card, c, having a position in deck I equal to or differ-

ing by I from its position in deck 2 as E(c). Then after 2j'(N)yN 2 shuffles,
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the probability, x, that E(c) has not occurred at least f(N) times can be
bounded by considering the shuffles in blocks of yN2 . If E(c) has not
occurred at least f(N) times then at least of the blocks must contain no
such occurrence. The number of ways of selecting at least f(N) blocks from
2f(N) is less than 2/' N) so

x<2/(N)(l/4)/(N)=(1/2)/(N)

But (I -2p5q)/'N)< (1/2')N and 1/2. I -2p 5 q, so
x< l/2f'N) < 1/2'N

Then for any card, c, we have

prob(c is unmatched after 2f(N)yN 2 shuffles)

5 prob(E(c) failed to occur at least f(N) times)

+ prob(E(c) occurred f(N) times but c is still unmatched)

<(l/2')N+(l/2')N=1/2' 'N
So the probability that there exists an unatched card after 2f(N)yN 2

shuffles is less than N(1 /2' - ' N) = 1/2' - '. Since f(N) is bounded by
[log(N) + r l og 2] times a constant slightly larger than 1/log( I - 2p -'q) ',
we can choose a k ~z- 2y/log( I - 2p 5 q) -- ' and the theorem is proved.

	

El

4. LOWER BOUNDS

Following the position of a single card gives a lower bound on the
number of overhand shuffles it takes to randomize a deck. The analysis of
the motion of a single card will also be used in the next section to prove
Lemma 1. The argument proceeds by getting bounds on the mean and
variance.

For any card c, let a, (respectively, b,) denote the number of cards
after (respectively, before) c in the same packet as c. We will supress the
subscripts when no ambiguity arises. If c is in position j before a shuffle
then it is in position j + a, - b, afterwards. In a random shuffle, a, is a
random variable with prob(a, = m) = pq'", truncated at N- pos(c), where
pos(c)=j when c is in the jth position. The variable, b,, is distributed
similarly but truncated at pos(c)-I..

Define

pos(c) = pos(c) - (N + 1 )/2

Here are some easy facts about a, - b,.
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Lemma 2. (1) E(a,
-b,)

has opposite sign to pos(c)

(2) E(a,-b,)=0

	

if and only if pos(c)=0

(3) I E(ac-b,)I <, Ipos(e)I

Proof. The first two facts are obvious. To prove the third, assume
pos(c) > 0 (the other case is identical). Then a c can be written as
min{a ' , N-pos(c)} where ac is a geometric variable truncated at
pos(c) - I so it is distributed identically to h,. Then a, - b, is symmetric
about zero, so I E(a,-b,)I=E(a,-a,),<pos(c)-I-[N-pos(c)]=
2 pos(c ).

	

U

Lemma 3. Var(a, - b,) < 2p/q 2 .

Proof. a c and b, are independent, so Var(a, - b,) = Var(a,) +
Var(b,). The variances of the truncated variables are less then the variances
of the corresponding untruncated variables. More precisely, an untruncated
geometric variable has variance q/p 2 , while a geometric variable X
truncated at R has variance

R+1
Var(X) =

p2Cl -g
Rp(2R+I+ q

p~]

Hence Var(a,-h,)<_2q/p'-.

	

LI
Let pos(c)' denote the value of pos(c) after one more shuffle. Then

E(pos(c)') 2 = E(pos(c) + a. - b,) 2

= E(pos(c)) 2 + 2pos(c) E(a,-b,) + E(a c -b c ) 2

5 pos(c) 2 + E(a c -b,) 2 - IE(a,-h,)I 2

by facts (1)-( 3) above

= pos(c ) 2 + Var(a, - h, )

E(pos(c)) 2 + 2q/p 2

After M shuffles, induction gives

E(pos(c)) 2 - [original
FO-S(C)

] 2 < 2qM/p 2

This is true for any card, c. In particular, choosing c to be as near to the
middle of the deck as possible gives p`os(c)=0 or 1/2 originally, depending

on whether N is odd or even, so E(pos(c)) 2 < 2qM/p 2 + 1 /4. The fact that

this is linear in M will i mply the quadratic lower bound as follows.
In the uniform distribution, E(pos(c)) 2 =N 2 - 1/12. For a dis-

tribution, Q, with IQ - UI <- t, it is clear that
f

(x - N + 1/2 ) 2 dQ is
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minimized when Q agrees with U except that the 1/2Ne lowest values and
the 1/2Ne highest values are changed to LN/2J. In this case

I (x-N+ 1/2) 2 dQ= 1/12N 2(1 -e) 2 plus an error of less than N/2
introduced when a is not a multiple of 2/N. So

1 (9p -U1 <E

f (x-N+1/2)2d((9p)~(I-e ) 2 ( N 2/12-N/2)

~M> (1 -e) 2 (N 2/6 -
N/2)p 2/q

5. PROOF OF LEMMA 1

In order to show that the event E(c) is likely to have occurred after a
certain number of shuffles we use an "uncoupling" argument. Begin with a

second pair of decks, decks 3 and 4, arranged exactly the same as decks 1
and 2 respectively. Decks 3 and 4 will be shuffled in a manner that is easier
to analyze, but that usually gives the same result as the shuffle of decks I
and 2. The argument then consists of establishing that E(c) is likely to have
occurred in decks 3 and 4 by the allotted time, and that if decks 1 and 2
have ever deviated from decks 3 and 4 then E(c) was likely to have
occurred in decks I and 2 at the time of the first deviation.

Formally, the process )1,, will be defined on four decks. The card that

we are interested in will be called el' ), i = 1, 2, 3, 4, depending on which
deck it is in. Assume that decks 1 and 3 start out identically arranged and
that decks 2 and 4 do as well. At the start, consider the decks "coupled."
Now follow these rules:

If the decks have become uncoupled then shuffle decks I and 2 with a
random shuffle from the distribution %;,. In this case decks 3 and 4 receive

independent random shuffles from the distribution ((r,.
If the decks are still coupled then pos(c`)=pos(c

1
'

1
) and pos(c'

-
' ) =

pos(c1 4)). Choose Boolean variables e' and e4 until the packets containing c 1 3 '
and c

141
are determined. If the packets containing c

1' and c
14 ' both contain

position j for some j then say the decks have become uncoupled. In this case

decks 1 and 2 receive a random shuffle from W„ by letting e, = e' for all defined
values of el letting e,=e 4

when e4 is defined but e' is not, and using any method
of completing this to a coupled shuffle from v, (the remark near the beginning
of Section 3 tells us that we can choose a shuffle from 1,, beginning this way
without prejudicing it). Decks 3 and 4 use all the defined values of e,' and e,,

but complete the shuffles to independent shuffles from (r,,. If the positions in the
packets containing cl" and c

j41
do not overlap then the decks are still con-

sidered coupled. The Boolean variables e,, e 1 , and e,2 are chosen to give a shuffle

with distributions WP according to the provision choose e,=e; =e' whenever the
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l atter is defined and choose e,=e?=e4
whenever the latter is defined. (Again the

remark in Section 3 says this is a valid way of chosing a shuffle from %o . ) Once
more, complete the shuffles on decks 3 and 4 to independent shuffles from toe .

Note that fill, restricted to decks I and 2 is just W, while a//p restricted to
decks 3 and 4 is 6o x 4,. This construction allows us to analyze the motion
of et 11 and

c(2)
in two cases, depending on whether or not they have always

"acted independently." Fix a card c and define the following random times:

let T denote the first time the process 9l,, becomes uncoupled; let T 12 be the
first time E(c) occurs in decks I and 2; let T34 be the first time E(c) occurs
i n decks 3 and 4; let TP0, be the first time that pos(ej 31 ) -pos(e (41 ) changes

sign. Now use the following lemmas.

Lemma 4. If pqt N 11/2 (1 (1+N)<112 and q(N
-11/ 2

< p, then
prob(Tpos < 16p 2 N 2/q) _> 1/4.

Lemma 5. For any t, prob(T 34 S
t)

>1 [p 2/(p 2 + q)] prob(Tpos 5 t).

Lemma 6. For any t prob(T12 5t)>- [p4/(p 4 +q)] prob(T,<t).

Assuming these lemmas for the moment, the proof of Lemma 1,

and hence of the Upper Bound Theorem, can be completed as follows.
Combining Lemmas 4 and 5 with t = 1 6p 2 N 2/q in Lemma 5, it follows that
for N sufficiently large,

prob(T34 5 1 6p 2 N 2/q) % p 2/(4p 2 + 4q)

	

(5.1)

Now T > t and T34 1< t together imply T 1 2 < t. So

prob(T 1 2 1< 1 6p 2 N 2
/q)

3 max { p 2/(4p 2
+ 4q) - prob(T < 16p 2 N 2/q)

[p4/(q+p4)]
prob(T<, 1

6p 2 N 2 /q)}

p 6/(q + 2p4 )(4p 2
+ 4q)

where the first inequality is a consequence of (5.1) and Lemma 6 and

the second is an instance of max {a - y, yb } 3 ah/(1 + b). Let 6 =

p
6/(q + 2p4 )(4p 2 +4q) and y = ( 1 6p2/q)F l og(l/4)/log(1 - b)], so that

prob(T 1 2 > 1 6p 2 N 2/q)< I -S. By repeating blocks of 1 6p 2 N 2/q shuffles up

to a total of yN 2 shuffles in all, we can force prob(T 1 2 < yN 2 ) > 3/4. Now

just adjust y for the finitely many small values of N that do not fit the

hypotheses of Lemma 4 and Lemma I is proved. It remains to prove

Lemmas 4, 5, and 6.
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Proof of Lemma 4. Recall that s/lp restricted to decks 3 and 4 gives
independent overhand shuffles. So the two cards c 1 3I and c 1 4, undergo a
series of independent overhand shuffles. Assume without loss of generality
that initially pos(cj 3 ') < pos(cj 4 '). Recall from Section 4 the quantities a,.,3
and b,.u,. Call these a and b and let a' and b' denote the correspnding
quantities for deck 4. From a given initial position we want to track the
motion of c 13 ' and c 141 so put subscripts in the foregoing variables that
increase with each move. In other words let pos,(c) denote the position of c
after i shuffles from the given position; then a b a' and b' are independent
random variables gotten by truncating some geometric random variables
a b, a' and b' at pos, ._ 1 (c' 3 ') - 1, N-pos,__ 1 (c

1 3 '), pos,_,(c 141 ) - 1, and
N-pos;

1(c(4)),

respectively. We want to determine when pos,(c(3))-
pos,(c 1 41 ) becomes non-negative.

Now define a new sequence of variables {d,:i>0}, that give us a
l ower bound on pos,(c) and are easier to work with. Let d o = pos„(c (3 j) -
pos„(c14') and d; = d, , + z, where z, = a; - b, - a; + b", a; is a' truncated at
pos(c 13 ') -I and b° is h' truncated at N-pos(c 1 3 '), so the truncation is
according to deck 3 instead of deck 4. This makes a, - a; and b; - b; and
hence z, symmetric about zero. Since a; <, a; and b">-b' when
pos,_ 1 (cj 3 ') ~ pos, _ ( (c 1 3 '), it is clear that d, < pos,(c 13 ') - pos,(c 1 4 ') as long
as posj(c 1 3 j) pos;(c 14 ') for all j < i.

Clearly, E(d,) = d o for all i. Since the variables z, are all independent,
the variance of d, is given by

j Var(z1 ) = Y [Var(a;-a,)+Var(b1-b,")]

i-I> Y max{Var(a;-a;'), Var(b,-b, )}
i=u

For each j, either a; and a; are truncated at a value of at least ( N - 1 )/2, or
else b; and b, are truncated at a value of at least (N - 1)/2. Then the
maximum is at least

( N+I(/2
-l -qjN 1

j
2p[2(N-1)/2+1 +q P

so the variance of d, is at least iq/2p 2 by the hypotheses of the lemma.
Now define a stopping time r = min { t : Id, - do l 3 2 Id o l }. Note that

r < oc almost surely. Then E(d, - d o )' 5 4N
2

since Id, - do l < I d, - I - d o l +
I z,I ,<N+N=2N. But E(d')>-q/2p2E(r), so E(r)<8p 2 N 2/q. Then
prob(r < 1 6p 2 N 2 /q) > 1/2. Since z, is symmetric around 0, prob(d; >_ 0 for
some j<16p

2 N 2/q)<1/4. Since pos,(cj 3 ') -pos,(c 14 ') >_d, until it changes
sign, Lemma 4 is proved.

	

0
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Proof of Lemma 5. 1 claim that from any initial arrangement the
probability of E(c) in decks 3 and 4 on the next shuffle is at least p 2 /q
times the probability that pos(c

( 3 ') -pos(c14 ') changes sign on that shuffle.
Assuming this for the moment, let .aJ, be the a algebra of events up' to the
i th shuffle and let B, 9 .4, be the event T34 A TPo, > 1. Then for any t,

prob(T34 = 1 ) >-

	

prob(T34=t1A,-1)

> [P2/(p2+q)]
J

prob(T34 A Tpo, = tI~F, -1)

=[PZl(P2+q)] prob(T34 A T,,,,, = 1)

and summing over t gives prob(T34 5 t) 3 prob(min { T34 , TPo, } t )

P 2 /(P Z + q) >, prob(Tpo, S 1) P2/(P' + q).
To show the claim, suppose c (3 ' and c 1 4 ' are in positions j and j + s

and define a, a', b, and b' as before. Then E(c) occurs iff s + b + a' -
(b'+a)=0, I, or -1. Similarly, the event D(c), defined to occur when
pos(cj 3 ') -pos(c 1 41 ) changes sign without the occurrence of E(c), occurs if
and only ifs + b + a'- (b'+ a) < -1. Now prob(E(c) I s, b, a') is unaffected
by the truncation; it is just the probability that two independent geometric
random variables sum to s + b + a' or to s + b + a' ± I. But
prob(D(c) I s, b, a') is strictly reduced by the truncation.

The probability that b' + a = r is (r + l) p
2q', so letting t = s + b +

a' - 1, the ratio prob(E(c) I s, b, a')/prob(D(c) I s, b, a') is at least

(t+ 1) p
2q'+(t+2) p 2 q' + ' + (t+3) p

2 q ' +2

(t+4)p
2 q'+ 3

+(t+5)p
22q'

+4 +

_ (t+ I ) +(t+2)q+(t+3)q2

Y,, 3 (1 + 1 + i)q'

3(t+ I )q 2 	

Y_;13 (t +4)q'+Y_ra4 (i-3)q'

3(t + 1)q 2

(t
+4)p-lq3+ p - 2 q 4

3(t+l)p 2

(i+4) pq+q 2

3(t+ I)p 2

(t+4)q-(t+4)q 2 +q 2

3(t+l)p 2

,p 2 /q

	

since 1 >s-l _> l
(i+4)q
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Summing over all triples s, b, a' gives the inequality for unconditional
probabilities.

	

El

Proof of Lemma 6. The method is analogous to the method of

proving Lemma 5. We will show that from any position that is still
coupled, the probability of E(c) occurring in decks I and 2 within one
shuffle is at least p

4/q times as great as the probability that the decks
uncouple. It follows that the probability of the former event occurring
before any time i is at least p 4/(1 + p4 ) times the probability of the latter
occurring before time t.

Assume without loss of generality that pos(ct t
t)

= pos(ct't) = j and
pos(ct 2 j) = pos(ct4t) = j + s, s > 0. If the decks uncouple then either

case (a): e; =e] + , _

	

=e; + ,_, =No; or

case (b): For some k >, 0, e; = e,+1 = " = e;+,-2-a
ei+,-,-k=Yes and e°+.,--1=e4'+.,-2= ... =e°+,_k_,=No.

So prob (uncoupling) S prob(case a) + prob(case b) = q' + spq'. The
probability of E(c) is at least probability that c is the first card in its packet
and moves forward to some position, j + r (0 < r < s), while

e(2)
is the last

card in its packet and moves backwards to position j + r + 1. For this to
occur it is necessary that ei_ , = Yes, ej' e;+ , , = No, ej

l
+ , = Yes,

ei+'+l
= Yes ,

e;+.+2 = "'
= eJ2 + ,. ,= No and ej

2
+ , = Yes. The probability

of this is therefore sp4q' - 2 . So the ratio of the two probabilities is at least

SP4q'-2/(q'+sPq')=p4/q[Pq+(qls)] p 4/q(P+q)=P4/q, as desired. U

6. NUMERICAL BOUNDS

A very fine overhand shuffle of a 52-card deck might have p = 1/2. For

a more typical shuffle, p might be 1/4. (In fact I have often seen people
shuffle with p x 1/15. You do not need any fancy calculations to see that 5
or 6 such shuffles do virtually nothing to a 52-card deck.) Upper and lower
bounds are given for the number of shuffles needed to come within a of
uniform for various e.

For the upper bound use e= 1/2 and verify that the hypotheses of
Lemma 4 hold. Then calculate the following values:

P

	

f(N)

	

b

	

1 6p
2

/q

	

yN
2

	

( N
2

/6
-

N/2)P 2
/q

1/2

	

170

	

1/120

	

8

	

3.5 x 10
1

	

210
1/4

	

3700

	

1/10000

	

4/3

	

5 x 10'

	

35

= No,
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So the bounds are

Lower bounds

	

Upper bound
e = 1/2

	

t = 1/4

	

c -+ oo

	

t = 1/2

p= 1/2

	

50

	

120

	

210

	

1.2 x 10
9

p = 1/4

	

9

	

20

	

35

	

3.7 x 10"

A small amount of numerical evidence indicates that the actual num-
ber of shuffles needed to make x (90 - Ul < 1/2 for a 52-card deck with

p = 1/2 is between 1000 and 3000. The bound of 1000 comes from counting
the number of inversions in the permutation and comparing it to the

median number under the uniform distribution; even after 1000 shuffles,
the chance is less than 0.2 that the number of inversions exceeds the
median. The bound of 3000 comes from running 16, on a home computer;
the median coupling time seems to be less than 3000 shuffles.

An interesting question not addressed in this paper is what happens

when p is allowed to vary with N. It is not known, for example, how to

choose p as an asymptotic function of N in order to achieve fastest mixing.

The lower bound in Section 4 generalizes to order of ( pN) 2 , but in addition

there is a lower bound of N/p gotten by seeing when most pairs of adjacent

cards have been separated. When p = N-
1/3

these bounds coincide at order

of N 41 ' shuffles. Whether this is the fastest possible mixing (possibly up to

factors of log N) is still open.
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