Randy Fort
David Shao
CS 249
Kernel Support for Distributed Systems

November 22t, 2005

Randy Fort
The Torvalds/Tanenbaum Debate

November 22t, 2005

The Torvalds/TTanenbaum Debate

“WWhat is the Tlervalds/Tranenbaum Debate, andlwhat does
it have torde with' Distributed Systems?

— A series of postings on comp.os.minix inwhich Andrew
Tlanenbaum started a thread saying “Linux Is
Obsolete”

— Posted from 29 January to 10 February of 1992

— Started a long discussion of Micro vs. Mono kernels

— Difficult to piece together the mosaic of the whole story
— Started a long discussion of Micro vs. Mono kernels

— Was probably the first serious public criticism of
microkernels

TypicallMach qguotes of'the era

*Optimizing this;one [IPC] pathl can result in significant
perfermance gains.” [7]

. ..all pagers can be implemented externally:and called by
the kernel for the user.” [7]

*“An unusual feature off Mach, and a key to the systems
efficiency is the blending ofi memory and IPC features” [7]

*Further experimental research on Mach appears ended [3]

To put this discussion into perspective:
Wihen it oceurred in 1992:
DOS and Windows: 3.1l were the common Operating Systems.
O/S 2 was a viable contender for the desktop market.
Windows as a standalone product was 3+ years away.
TThe 386 was the dominating chip.
And the 486 had not come out on the market.

Microsoft was still a small company: selling DOS and Word for DOS.
Lotus 123 ruled the spreadsheet space.

And WordPerfect ruled the word processing market.
Netscape, Yahoo, Excite, Google, EBay--simply did not exist [2].

Linus was under pressure because he abandoned the idea of microkernels
In academia [2].

How Didithe Debate Start?

— LINUX'1SiObsolete’ - Andrew: Tlanenbaum
* Microkernels
* Portability
* Minix/Amoeba

— CON:

* “Your job Is being a professor and researcher: That's
one hell of a good excuse for some of the brain-
damages of minix. | can only hope (and assume) that
Amoeba doesn’t suck like minix does.”

A Briefi Mach Kernel History.

*From| 19651 te) 1994, Carmegie-\Vellon University: (CVIU)
developed the to support distrbuted and parallel
computation

*Main design goal wasi te dramatically reduce the size and
complexity of the kernel

*The rest of the OS would run as system services in user
level processes

*“For some time it appeared that every operating system;in
the world would be based on Mach by the late 1990s."[3]

*Mach was was an “academic darling”, and was everything
short of a cure for cancer and world hunger.

What is a Monolithic Kernel?

*A moenelithic kermellis a single executanle handling all'kernel
fiunctions.

— Viemory Isidivided inte kernell space andl User space.

— Scheduling

— Process management

— Signaling

— Device /O

— Paging

— Swapping
*Because many of these functions have low level code, it
may appear to be more architecture specific.

What are the Pros/Cons of Monolithic Kernels

— PRO:
* Single executable works fine iiyeu have the memory.
* Easy implementation of threading for file 1/©
* \ery efiicient
* Easier toimplement 277
— CON:
* Memory footprint increases in direct proportion to code size

* More complicated monolithic structure requires considerably.
more time and! effort to . understand

* Harder to maintain 2?2?

“Most users could probably care less if the internals of the operating
system they use is obsolete. They are rightly more interested in its
performance and capabilities at the user level. | would generally agree
that microkernels are probably the wave of the future. However, it is in my
opinion easier to implement a monolithic kernel. It is also easier for it to
turn into a mess in a hurry as it is modified. ” [2] — Ken Thompson

What is a Mach/Microkernel Kernel?

*\Vlest ofi the OS runs outside the kernel.
*fhese proecesses communicate by message passing.

*T'he Kernel's jobiis simple: handle message passing
and lew level process management.

*Processed outside the kernel include:
—File system
—Memory management

—|/O drivers

*Since the kernel is very small, and all other processes
run outside of it, it may appear more portable.

What are the Pros/Cons

— PRO:
s Simplerto understand
* Good distributed structure

* Other “servers™ are easily replaced
— CON:

* 20-25% slower than monolithic

* Complicated message passing infrastructure

* System services creep back into kernel

* More complex exception handling in the kernel

What are some more Cons

— CON:
* Separation of processes could not be realized:

— “Development of Mach showed that performance problems
forces services originally implemented on top of a
microkernel back into the kernel, increasing size...” [6]

* The size and speed benefits never materialized.

— In fact, they were “larger and slower than monolithic
kernels partially because of the complications of modern
virtual memory system (copy-on-write facility)” [6]

What are still more Cons

e HUGE Overhead due to IPC mechanisms

—0On a 486 (50 MHz), a null* system calllwould have a
round trip of about 40 uS. On Mach 3, the call alone was 114
uS, with the total call taking 500 uS™ [8]

—A study by Chen and Bershad determined that
performance was 66% worse that a monolithic kernel [3,8]

What are even more Cons

Inraimicrekernel, the kernel is supposed torbe isolated fromi the server

PrOCESSES, providing and elegant separation and maintainability
advantages. Thisimeans the kernel, whichiis in theory a message and
hardware handler, has not idea what the OS consists of.

What important bit of information would you really really really: like to know.
about those processes???

MEMORY PAGING Il

With no intimate knowledge of kernel interaction (which is easy on a
monolithic kernel), you must adopt a one size fits all memory paging

solution.

How IS it Different in Practice?

\Vienolithic:

Kernel system, calls (traps) when a system call is
iINVoked, the code “traps™ into the kernel and the code IS
executed, the flow of execution returns to the calling
fiunction.

Microkernel:

System calls post messages, and a context switch
occurs passing control back to the microkernel via IPC
messages. Shared memory used for this role.

Mach IPC in Practice

text region)
e NESSAE
I .‘______-

threads FI: i
"'-.:I . - |I --._:-_-: p-:-rt
program !

P_ colnter F: .'I ‘

|
::"'] ¢
-

Figure B.2 Mach's basic abstractions.

All IPC happens through messaging. [7]

Mach IPC in Practice

destination port
I art

messages control

memaory cache object memary cache object

Figure B.5 Mach messages.

All IPC happens through messaging. [7]

What Is a Microkernel (supposedito be)in a
Nutshell?

—A smalllcoeordinating microkernel
—All' other processes operate outside the kernel
—Other processes are called “servers”

—All processes communicate via message
passing
—Shared memory IPC used extensively

Observations on Microkernels

“So at the time | started work en Linux i 1991, people
assumed portability: would come fromi aimicrekernel approach.
You see, this was sort of the research darling at the time for
computer scientists.” Linus Tervalds|2]

“‘microkernel — based operating systems seem to be widely
regarded by the research community and the industry as a
panacea, whereas, If monolithic operating systems are not
guite treated with contempt, they are certainly regarded as old
fashioned.” Sape Mullender [1]

Linus® Observation on Portability

Wy peint is that writing arnew: ©S that I1s; clesely tied terany
particular piece ol hardware,... Is basicallyy wreng™ — Andrew
Tanenbaumi[2]

‘But my point Isi that the operating system isn't tied to any
processor line: UNIX runs en most real processors in
existence. Yes, the implementation is hardware-specific, but
there's a HUGE difference. .”

“In fact, the whole linux kernel is much smaller than the 386-
dependent things in mach:” - Linus Torvalds [2]

Tanenbaum's Eolly (1993)

SA multithreaded file systemiis only a perormance hack.
VWhen there is only’ one job active, the nermal case onia
small PC; it buys you nething and adds complexity te the
code. On machines fast enough to support multiple
USEers, you probably have enough buifer cache to insure
a hit cache hit rate, in which case multithreading also
buys you nething. It is only a win when there are multiple
processes actually doing real disk |/O. Whether it is worth
making the system more complicated for this case is at
least debatable.” [2] Andrew Tanenbaum

Tanenbaum in 2002

Aniimportant' preperty ofi threadsiis that they can
provide a convenient means of allowing blecking system
calls without blocking the entire process In which the
thread Is running. This; property makes threads
particularly attractive to use in distributed systems as it
makes it much easier to express communication in the
for of maintaining multiple logical connection at the same
time.” [5] Andrew Tanenbaum

The Verdict of History

1985: GNU HURD in development

Trivial development since 1994 (0.2)

1991: Linux started development

2005 Widespread global usage

1992: 3 million microkernel Amigas

2005: What is an Amiga?

1990: Early version of the Mach
“microkernel” released

The microkernel was larger than the
monolithic kernel it was supposed to
replace

1990: First Mach kernel with all
servers running in user space is
released

Overall system performance
compared to monolithic kernels was
66% slower [8]

1985: Mach development at CMU

1994: RIP

Bibliography

* [1] Sape Mullenderlender, Distributed Systems, Addison Wesley, 1993

* [2] Chris DiBona, et al , Open Sources: Voices from the Open Source Revolution, O’Reilly and Associates:
* [3] Mach kernel: http://en.wikipedia.org/wiki/Mach_kernel

* [4] Boykin, Joseph, Programming Under Mach

* [5] Tanenbaum, Andrew S, and Maarten van Steen, Distributed Systems, Pearson Education, 2002

* [6] Nikolai Bezroukov et al, Portraits of Open Source Pioneers,

* [7] Silberschatz A and P. Galvin, Operating System Concepts, Addison Wesley, 1994

* [8] J. Bradley Chen, Brian N. Bershad. “The Impact of Operating System Structure on Memory System
Performance”, The Fourteenth Symposium on Operating System Principles

http://www.softpanorama.org/

David Shao
|A-32 Architecture and OS Kernel
Design

November 229, 2005

OvVerview.

IA-52, 64-pIl extensions, and address spaces
Context switches and the LD

— Futex
— Local data
* Virtualization

Protection Levels for IA-32

Protection Rings

Operating
System
Kernel

Operating System
Services

Applications

* Kernel vs. user: ring 0 vs. ring 3
* Analogy: UNIX group permissions
* Source: Figure 4-3, p. 4-9, Intel Vol. 3

16-bit Origins

« 26 = 65536
* Source: [Intel3, page 3-5]

Linear Address Space
{or Physical Memory)

Stack

Data
segments
registers
FS, GS
added in

i 3 8 6 Figure 3-4. Multi-Segment Model

Descriptor Tlables

Global
iptor Descriptor
> (GDOT) Table (LDT)

Seagment
Selector

First Descriptor in
SDT is Mot Used

GDTR Register .
Limit [[Lirmit |
Base Address

Base Address

Figure 3-10. Global and Local Descriptor Tables

* 8192 max descriptors in a table
* Source: [Intel3, page 3-18]

Why a New OS for 32-bits, Not 64

* Entire process address space could fit within 232
bytes, but not 2% bytes. Write new 32-bit OS to
use virtual_ memaory.

* Mullender speculates: if had 64-bit address
space, could an OS fit all process address
spaces?

 Sad answer—won’t even have full 64-bits to use.

Linear Address lransiation

Linear Address ° 4KB — 212 ByteS page
31 22 M1 12 1 - 20 "
Size; and 22’ possible
12 4-KByte Page pa g es
> o PageTabe L * 4B = 32 bits entry size
Page Directory .
o 2'%/4 = 20 entries/page
= | » Each page directory
— 1024 PDE * 1024 PTE = 2°° Pages entry can pOint tO a

CR3 (PDBR)

page table that can
point to 2'° pages
° 210* 210 — 220
° 220 * 212 — 232 bytes
Source: [Intel3, page 3-23] covered

*32 bits aligned onto a 4-KByte boundary.

Figure 3-12. Linear Address Translation (4-KByte Pages)

Why' 64-bits IsiNot Always 64-bits

* Assume 8 byte (64-bit) entry size, 4kB page size.
Suppose one wants to address 28 bytes physical
memory.

* 4k /8 = 512 entries / page = 2° entries / page max
° 248/212 = 236 pages

* (2°)* = 236, so FOUR levels of indirection!

* Gef that but no more in AMD64/EM64T, so far

* Source: [Intel3, Figure 3-24, page 3-40]

Linear Address
48 47 39 38 30 29 21 20

IA-32e Page-Table Entry.

Page Table Entry (4-KByte Fage} 30 _12+1=28

5 28 + 12 = 40-bit
I maximum

1211 98 ;r 65 4 3 210 physical address

Page Base Address space?
Flag Purpose
D (Dirty) Has page been written to?
U/S (User/Supervisor) | Privilege level to access page?
R/W (Read/Write) Writes allowed to page?
EXB Execute-disable bit ("NX")

* Source: [Intel3, Figure 3-26, p. 3-42]

Transilation Lookaside Buffer

* Translation Lookaside Buffer (TLB)—hardware cache
of how linear (virtual) addresses mapped to physical
addresses

* Not easily controlled by software even in Ring 0

* Instruction TLB (4KB page)—up to 128 entries; Data
TLB (4KB page)—up to 64 entries
* Flushed if page-directory base register

* (Global) pages can have flag set (G) so that TLB
entries not invalidated

* Source: [Intel3, page 2-17 and Table 10-1, page 10-2]

Context Switch/Microkernels on |IA-32

* Context switch requires a change of address
spaces.

 Changing address spaces forces on IA-32
invalidation of non-global TLB' entries.

* But tables for address spaces are themselves in
memory. Non-cached memory access relatively
expensive.

 Example microkernel problem: Implementing a
filesystem in userspace doubles context switches
for file access.

Mutex Using| Eutexes

* Mutex: mutual exclusion, at most one thread holds
lock

* Drepper’s example uses shared object (in C++) with
lock() and unlock() methods

* Acquire lock (maybe waiting), perform work, release
lock, wake up one waiter if possible.

* Three states: 0 for “unlocked”, 1 for “locked but no
waiters”, 2 for “locked and maybe waiters”.

* Shared object has state as private instance variable
* Source: [Drepper]

(Machine) Atomic Instructions

Return previous value of state AND change state
without another process/thread interrupting
 Assembly language instructions that can work in
userland

* Source: [Drepper, Appendix A, page 11; Intel2A,
page 3-144; Intel2B, page 4-363 |

Instruction Description
XCHG &state, new Exchange
CMPXCHG &state, expected, new | Compare and
exchange
ATOMIC DEC &state Atomic decrement
ATOMIC_INC &state Atomic increment

Added Kernel FEunctionality

lutex:_ walt(&state, expected)

— IF value of state equals expected, add thread to
&state’s wait queue and return after thread
woken up or error

— ELSE immediately return, unexpected state
futex_wake(&state, number)
— Wake number waiting on &state queue.

Works for inter-process because kernel keeps
queue based on physical memory address.

Above not actual system calls for Linux
Source [Drepper, Appendix A, page 11]

Acquiring Lock

1. Use CMPXCHG to test whether “unlocked” and
try to change to “locked but no waiters”.

2. IF successful now have lock and no need to
invoke kernel. DONE.

3. ELSE keep using XCHG to set state to 2 “locked
and maybe waiters”, then test if previous state
was “unlocked”, state 0

* IF previous state was state 0, now have lock.
DONE.

* ELSE previous state was 1 or 2 (lock held).
Use futex_wait with expected state 2. After
return from futex_wait, restart step 3 above.

* Source: [Drepper, Section 6, pages 7-8]

Releasing Lock

Use atomic_dec on state.

IF previous state was “locked but no waiters”, no
need to ask kernel to wake up waiter. Lock had been
released by previous atomic_dec. DONE.

ELSE previous state was “locked and maybe
waiters”.

— Set state to “unlocked”, releasing lock.

— Use futex_wake to ask kernel to awaken exactly
one waiter, if possible. (Only one thread can have
the lock at any given time. If all threads woke,
cache line passing between CPUs expensive.)
DONE.

Source: [Drepper, page 4 and page 8]

Atomic Implementation: Few CPUs

* Synchronize on access to one bus shared by all
processors

* Simplest cache coherency mechanism: each
processor simply listens on bus for cache
messages

Above called snoopy cache
Source: http://www.unitedmedia.com/comics/peanuts/

Thread-Local Data in Linux

* Opportunity: Thread-local data located at similar
offsets

* Source: [DrepperT, page 6]

[Nhread register (pointer)

tlsoffset . rlsoffser ﬂ.s-qﬁ."s-erj ' TLS Blocks for
32 2 f .
¢ Dynamically—loaded modules

Figure 2: Thread-local storage data structures, variant II

Evolution Between Linux 2.4 and 2.6

Local
Descriptor
Table (LDT)

I
|

Segment
Selector

-
I
2.4

DT,
limit of
5192

threads

Base Address

Figure 3-10. Global and Local Descriptor Tables

* Kept 1-to-1 threading model, rejected M-to-N
(many-to-many)
* Source [Intel3, page 3-18; DrepperN, page 10]

vVirtualization

11
@B - - oo
1

Hardware

W | e

Intel, AMD Both Back Virtualization

* Moore’s Law not really about speed but about
shrinking circuit size

* How to use extra chip room: both Intel and AMD
introducing multi-core processors

* Both adding instructions to support full
virtualization. Ring 0 software works unmodified.

* Intel’s additions (“Vanderpool”)—renamed to Intel
Virtualization Technology?

 AMD’s additions: “Pacifica”

* Totally different instruction sets, in contrast to
ANMDG64 vs. EM64T

* Reference: [AMDYV and IntelV]

Xen

* Developed at the University of Cambridge
Computer Laboratory, Systems Research Group

* hitp://www.cl.cam.ac.uk/Research/SRG/nhetos/xen/
* Original goal: “wide area distributed computing”
* Has had funding from Microsoft, HP, Intel, efc.

* Xen source code GPLed. No restrictions on
guest OSes using Xen APL.

* Hypervisor runs on Linux.

* Xen + LAMP (Linux, Apache, MySQL, PHP)
mindshare?

(Xen)Virtualization Terminology

* A hypervisor, or virtual machine monitor (VIVIV),
reqgulates how each guest OS uses hardware.

* Rather than completely emulating hardware,
paravirtualization may. require guest OS to be
partially rewritten

* Tradeoff between fully emulating x86 and partially
rewriting O. Ring 0 software might need to be
rewritten to be ring 1.

* Xen’s API consists of hypercalls

AMD! Virtualization

* Feature difference: ANVID supporits “tagged 11-5*

* Address Space Identifier (ASID) added to TLB
entries

* Process switch without TLB flush?

* Cannot given ASID flush only its TLB entries?
* For one page and one ASID can flush

* Reference [AMDYV, pages 28-29]

References

 [AMDV] Secure Virtual Machine Architecture Reference Manual, Revision
3.01, May, 2005. Downloaded October 2005 from htip://www.amd.com/us-
en/Processors/TechnicalResources/0,,30_ 182739 7044,00.htm/

* [Drepper] Drepper, Ulrich. Futexes Are Tricky. Version: December 13,
2004. Downloaded October 2005 from
htip://people.redhat.com/~drepper/futex.pdf

* [DrepperN] Drepper, Ulrich and Ingo Molnar. The Native POSIX Thread
Library for Linux. Version: February 21, 2005. Downloaded October 2005
from http://people.redhat.com/~drepper/nptli-design.pdf

* [DrepperT] Drepper, Ulrich. ELF Handling for Thread-Local Storage.
Version: February 8, 2003. Downloaded October 2005 from
http://people.redhat.com/~drepper/tls.pdf

References(cont.)

[Intel1] 1A-32 Intel® Architecture Software Developer’s Manual, Volume 1: Basic
Architecture, version September 2005, downloaded October 2005 from
hitp://developer.intel.com/design/pentium4/manuals/index_new.htm

[intel2A] |1A-32 Intel® Architecture Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-M, version September 2005, downloaded October
2005 from hiip://developer.intel.com/design/pentium4/manuals/index_new.htm

[Intel2B] 1A-32 Intel® Architecture Software Developer’s Manual, Volume 2B:
Instruction Set Reference, N-Z, version September 2005, downloaded October
2005 from htip://developer.intel.com/design/pentium4/manuals/index_new.htm

[Intel3] 1A-32 Intel® Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, version September 2005, downloaded October
2005 from htip://developer.intel.com/design/pentium4/manuals/index_new.htm

[IntelV] Intel® Virtualization Technology Specification for the I1A-32 Intel®
Architecture, version April 2005, downloaded October 2005 from
http://www.intel.com/technology/computing/vptech/

References (cont.)

* Pratt, lan, et al. Xen Status Report. Ottawa Linux
Symposium 2005 presentation. Downloaded October 2005
from http.//www.cl.cam.ac.uk/netos/papers/2005-xen-ols. ppt

