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Range Image Segmentation Based on Differential 
Geometry: A Hybrid Approach 
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Abstract-One of the most significant problems arising out of range 
data analysis is image segmentation. This correspondence describes a 
hybrid approach to the problem, where hybrid refers to a comhination 
of both region- and edge-based considerations. The range image of 
3-D objects is divided into surface primitives which are homogeneous in 
their intrinsic differential geometric properties and do not contain dis- 
continuities in either depth or surface orientation. The method is based 
on the computation of partial derivatives which are obtained by a se- 
lective local hiquadratic surface fit. Then by computing the Gaussian 
and mean curvatures, an initial region-based segmentation is obtained 
in the form of a curvature sign map. Two additional initial edge-based 
segmentations are also computed from the partial derivatives and depth 
values: jump and roof edge maps. The three image maps are then com- 
bined to produce the final segmentation. Experimental results were ob- 
tained for both synthetic and real range data of polyhedral and curved 
objects. 
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I. INTRODUCTION 
In recent years, digital range data, referred to as a range image 

or range (depth)  map ,  have become available for the analysis of 
three-dimensional (3-D) objects owing to the development of var- 
ious active and passive range finding techniques [SI, [ I l l .  Con- 
ventional intensity images exhibit ambiguities in their interpreta- 
tion as shapes of 3-D objects because of the complexities of object 
shape, reflectance and illumination. Range data provide direct ge- 
ometrical information about the shape of visible surfaces so that 
some problems in 3-D object description and recognition should be 
solved more easily using range images rather than intensity images. 
In particular, an active range imaging system usually produces a 
dense range map which is useful for analyzing curved as well as 
polyhedral objects. Recently considerable attention has been paid 
to the problem of describing and a recognizing 3-D objects using 
range data [2]. 

The most significant problem in the early stages of image anal- 
ysis is image segmentation, a process of partitioning an image into 
meaningful parts or extracting important image features from it. In 
general, image segmentation techniques are based on the common 
assumption that meaningful object components are homogeneous 
in image properties and that there exist abrupt changes in properties 
between the components. Segmentation techniques for range ini- 
ages can be classified into two categories: region- and edge-based 
approaches. A region-based approach. which is called region seg- 
mentation, attempts to group pixels into surface regions based on 
the homogeneity or similarity of surface properties. On the other 
hand, an edge-based approach, which is also referred to as edge 
detection, attempts to extract discontinuities in properties that form 
the closed boundaries of components. 

Region-based methods for range images usually partition the im- 
age into surface regions which are approximately planar or quadric 
surfaces; see [9], [ 131, [ 151. These approaches require the assump- 
tion that parts of object surfaces can be globally well approximated 
by a particular function. On the other hand, edge detection tech- 
niques in range images are intended to isolate discontinuities in 
both depth and surface orientation; for example, see [ 6 ] ,  [18]. 
Edge-based approaches have been successful for analyzing poly- 
hedral objects but have not been widely used for curved ones. 

Besl and Jain [3] have proposed an attractive idea for surface 
characterization from the point of view of differential geometry [8]. 
[ 121. Smooth surfaces are locally characterized by a combination 
of the signs of Gaussian and mean curvatures, and are classified 
into one of eight surface types. However, there still remains a prob- 
lem. Differential geometry is a theory for smooth differentiable sur- 
faces, while the usual object surfaces are not entirely smooth but 
piecewise smooth. The problem is how the surface curvatures can 
bc accurately calculated for piecewise smooth surfaces. Some of 
the solutions appearing in the literature are as follows: only 
shrunken surface regions are used as seeds for region growing [4]; 
surface curvatures are only computed for smooth areas after de- 
tecting jump discontinuities [ 191; curvature-based classification is 
performed for segmented surface regions [20]. 

We propose a hybrid approach to the problem of range image 
segmentation. where “hxbrid” refers to a combination of region- 
and edge-based considerations. The range image of an object is 
divided into surface primitives which are homogeneous in their in- 
trinsic differential geometric properties and do  not contain discon- 
tinuities in either depth or surface orientation. The method employs 
a selective surface fit and is based on the computation of first and 
second partial derivatives determined by locally approximating ob- 
ject surfaces using biquadratic polynomials. Then by computing 
thc Gaussian and mean curvatures and examining their signs. an 
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initial region-based segmentation is obtained in the form of a cur- 
vature sign map. Two initial edge-based segmentations are also 
computed from the partial derivatives and depth values. One de- 
tects jump edges by computing differences in depth, while the other 
highlights roof edges by differences in surface normals. The three 
initial image maps are then combined to produce the final range 
image segmentation. 

The structure of this correspondence is as follows. In Section 11, 
we first briefly discuss differential geometric properties of 3 - D  sur- 
faces, especially the surface curvatures, and then show how to 
compute them for piecewise smooth surfaces. In Section 111, our 
hybrid segmentation method is described in detail. We attempt to 
apply the method to synthetic and real range images in Section IV. 
Finally, Section V offers some conclusions. 

11. COMPUTlNG DIFFERENTIAL GEOMETRIC PROPERTIES OF 
PIECEWISE SMOOTH SURFACES 

We first discuss the estimation of surface curvatures for describ- 
ing 3-D object surfaces using differential geometry and then pro- 
pose a technique for locally estimating them. It should be noted 
that differential geometry is a theory of smooth differentiable sur- 
faces. However, objects are usually not entirely smooth over all 
their surfaces, but are piecewise smooth. The problem is how to 
accurately estimate curvature properties for piecewise smooth sur- 
faces. The proposed selective local surface fit method is composed 
of three steps: 1) the selection of the best fit surface function to a 
local window centered at each point; 2) the determination of the 
best window orientation for each point; 3) the computation of sur- 
face curvatures from analytically calculated partial derivatives using 
the selected best window. 

A .  Surface Curvature and Range Data 
Gaussian curvature is an intrinsic surface property which refers 

to an isometric invariant of a surface [8]. Both Gaussian and mean 
curvatures have the attractive characteristics of translational and 
rotational invariance. As pointed out by Besl and Jain [3], the signs 
of Gaussian and mean curvatures, denoted by K and H ,  respec- 
tively, yield a set of eight surface primitives. These possess desir- 
able invariance properties including view-independency, and are 
powerful enough to describe visible surfaces. Given a coordinate 
system in which the z (depth) axis is directed toward the viewer, 
the eight surface primitives are: peak ,  p i t ,  ridge, valley, p a t ,  min- 
imal,  saddle ridge, and saddle valley surfaces. See [3] for detailed 
discussions as well as the pictorial shapes of these primitives. 

It should be noted that the Gaussian and mean curvatures are 
local characteristics of a surface. This implies that they can be used 
for characterizing the surface in situations where occlusion is a 
problem. Thus we observe that it is attractive to use their signs as 
local surface shape descriptors for range image segmentation. 

A depth surface is a range image observed from a single view 
can be represented by a digital graph (Monge patch) surface. That 
is, a depth or range value at a point ( x ,  y )  is given by a single- 
valued function z ( x ,  y ) .  In this case, the Gaussian and mean cur- 
vatures are only related to the first and second partial derivatives 
of the function z with respect to x and y [8]. Thus the numerical 
computation of the surface curvature map only requires the first and 
second partial derivative estimates at each surface point. 

B. Selective Local Surface Fit 
We first determine the best fit function for the window centered 

at each point ( x ,  y ) .  Then for each (x ,  y )  we choose the best win- 
dow which provides a minimum fitting error among all the over- 
lapping windows at that point. 

I )  Analytical Surface Fit: At each pixel in the range image, we 
locally determine a continuous differentiable function which fits the 
depth map surface. Note that what is being considered here is not 
a global fit but a local one. At least second order differentiability 
is needed for the function and i t  should be analytically simple. Sur- 
face fitting must not be sensitive to noise and quantization effects 

in the range images. Generally, we would expect higher order func- 
tions to fit the given data; however, this implies that such functions 
will not only approximate the local object shape but also the un- 
desirable noise effects. These considerations lead us to choose the 
following biquadratic form which includes six independent param- 
eters: 

z(x, y) = ax2 + by2 + c.ry + dr + ey + f .  ( 1 )  
We employ a local biquadratic surface fit within a ( 2 m  + 1 ) x 

(2m + 1 ) window centered at a point (x, y )  and denoted by W ( x ,  
y ) .  We use a standard linear least squares method which was orig- 
inally employed by Beaudet [ I ]  for obtaining partial derivative es- 
timators. The coefficients a-f can be obtained effectively by mask 
operators (see [22] for details). The coefficients are associated with 
a particular point (x ,  y )  and therefore represented as a ( x ,  y ) ,  b ( x ,  
y ) ,  c ( x ,  y ) ,  d ( x ,  y ) ,  and f ( x ,  y ) ,  respectively. The sum of the 
squared fitting error for the window W ( x ,  y )  is referred to as E ’ ( x ,  
y ) :  

!?I tn 

E 2 ( x ,  y) = , c { a i 2  + bj2 + cij 
, = - m / = - m  

+ di + ej + f - z(x + i , y  + j ) } 2  ( 2 )  

2) Selecting the Best Window: We recall that differential ge- 
ometry is only useful for describing smooth differentiable surfaces, 
but unfortunately real objects are not entirely smooth. To accu- 
rately estimate the surface curvatures even in the vicinity of a dis- 
continuity, the surface fit window for computing the partial deriv- 
atives must not overlap a discontinuity in the range data. We suggest 
a method for selecting the best window which does not overlap a 
discontinuity. For each point ( x ,  y ) ,  we choose the best window 
W ( x  - U ,  y - U )  which provides a minimum fitting error among 
the covering ( 2 m  + 1) x ( 2 m  + 1 )  windows: 

( 3 )  

This method is based on the fact that the surface fitting error in- 
creases in the neighborhood of a discontinuity. In practice, this 
selective surface fit is actually applied to only those points where 
E’ is greater than a threshold. 

Once the best window W ( x  - U ,  y - U )  has been determined, 
the surface fit at a point ( x ,  y )  is represented by a set of coefficients 
{ a ( .  - U ,  y - U ) ,  b ( x  - U ,  y - U ) .  c(x  - U ,  y - zj), d ( x  - U ,  

y - v ) , e ( x  - U ,  y - U), f ( x  - U ,  y - z j ) } ,  where ( - U ,  - 2 1 )  is 
a displacement from the point ( x ,  y )  to the center of the best win- 
dow. The fitted depth value at the point ( x .  y )  is then given by: 

z(x, y )  = a ( x  - U ,  y - U ) U ’  + b ( x  - U ,  y - z ) ) z j 2  

~ ’ ( x  - u ,  y - 2 ) )  = min { ~ ’ ( k ,  l ) : ( k ,  I )  E ~ ( x ,  y)} .  

+ c ( x  - U ,  y - V ) U Z ’  

+ f ( .  - U ,  y - U ) .  

+ d ( x  - U ,  y - L J ) U  + e(.u - U ,  y - V ) Z J  

(4)  
We can also derive an edge preserving smoothing operator from 
(4). Such an operator is useful for smoothing range data corrupted 
by noise and quantization errors while preserving significant dis- 
continuities 122). 

This surface fit may be referred to as the selective local surface 
Jit.  While the idea behind the method comes from facet model 
smoothing of intensity images [ l o ] ,  this is the first application of 
the idea in range images. The basic approach is also similar to 
selective averaging 1211, edge preserving smoothing [ 141, and 
computational molecules [7], [ 171. 

C. Computing Purtial Derivatives und Curvatures 
Consider the computation of surface properties at an individual 

point in a range image. At the outset, the first and second partial 
derivatives are estimated based on the selective local surface fit. 
The surface curvatures are then calculated from the partial deriv- 
atives. 

By using the selective local surface fit and symbolically differ- 



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE. VOL. I I .  NO. 6. JUNE 1989 

~ 

645 

entiating ( l ) ,  the first and second partial derivative estimates are 
obtained at a point (x, y )  as follows: 

az 
ax - (x, y)  = 2a(x  - U, y - zj)u + c ( x  - U, y - U)U 

+ d(x - U, y - U )  

U ,  y - v)u 

+ e ( x  - U, y - U )  

Substituting the mask operators (see [22] for details) for the coef- 
ficients into (5) - (9) ,  we obtain a set of the partial derivative esti- 
mators which include the displacement (offset) ( -U, -U). A set 
of 5 X 5 finite difference operators are shown in the Appendix. 
Note that the operators with no displacements are equivalent to  the 
second order operators proposed by Beaudet [ I ] .  

The Gaussian and mean curvatures are computed using the par- 
tial derivatives given above. Fig. 1 shows that the selective local 
surface fit method improves the curvature estimates when com- 
pared to the fixed nonadaptive window method. It can be observed 
that surface points are correctly characterized by using the pro- 
posed surface fit technique even in the neighborhood of discontin- 
uities. 

I v .  HYBRID APPROACH TO RANGE IMAGE SEGMENTATION 

A .  What Is Meant by Range Image Segmentation? 
We wish to partition a range image into meaningful surface re- 

gions without using any domain-specific knowledge. The problem 
to be discussed here is how to define a domain-independent seg- 
mentation of range data; in other words, what is a meaningful sur- 
face region in the range data? Special types of objects and their 
shapes are not assumed. A scene may be composed of several ob- 
jects and there may be occlusions. The only assumption used here 
is that an object surface is partially composed of smooth differen- 
tiable surfaces. 

Considering the above, the surface region is defined to be the 
largest four-connected component which satisfies the following two 
conditions: 

1) The surface area is homogeneous in its view-independent dif- 
ferential geometric properties; in other words, the signs of the 
Gaussian and mean curvatures are constant within the area. 

2 )  The area does not contain any significant discontinuities in 
either depth or surface orientation. 

The first condition is not sufficient for the definition of the sur- 
face region, since distinct surfaces having the same combination of 
curvature signs may appear to be adjacent to each other. This case 
can easily occur in a range image; for example, two planar surfaces 
meet at a straight line in a polyhedral object where they share a 
roof edge; two distinct surfaces of the same surface type may share 
a jump edge at an occluding contour. This supports the necessity 
for integrating edge information into a region-based scheme for 
range image segmentation. 

B. Description of the Approach 
Here we present an overview of our approach to range image 

segmentation. The computational flow consists of the following 
three major steps: 

1)  Local Surface Characterization: The first and second partial 
derivatives are first estimated at each surface point. These should 
be accurately computed not only as  a smooth surface but also in 

Fig. 1. Comparison of the selective local surface fit with the conventional 
nonadaptive window method for computing curvature sign maps. In this 
figure, the Gaussian and mean curvature sign maps are pesented for a 
synthetic range image which contains an ellipsoid and a partially oc- 
cluded torus. Positive curvature is shown in white, zero curvature in 
gray, and negative curvature in black. The selective local surface fit was 
performed at the points whose error of fits E' was greater than a certain 
thresholds (0. I ) .  Other thresholds needed to produce the sign maps were 
set equally for both methods. The window size used was 5 X 5. (a) 
shaded image; (b) Gaussian and (c) mean curvature sign maps using the 
nonadaptive method; (d) Gaussian and (e) mean curvature sign maps 
using the selective local surface fit. 

the neighborhood of a discontinuity using the selective local sur- 
face fit. By using these partial derivatives, the surface normal and 
surface curvatures can be calculated. 

2) Initial Segmentation: Three kinds of initial segmentation are 
computed in parallel: a region-based segmentation in the form of 
a curvature sign map (KH-sign map) and two edge-based segmen- 
tations embodying the jump and roof edge maps. 

3) Final Segmentation: The three initial segmentation maps are 
combined to produce the final segmentation in which each region 
must satisfy the surface region conditions mentioned earlier. Since 
the first step has been described earlier, the following discussion 
focusses on the initial and final segmentation stages. 

C. Region-Based Initial Segmentation: Curvature Sign Map 
The initial region-based segmentation is equivalent to the method 

of Besl and Jain [3], except for the use of the selective local surface 
fit. Theoretically surface points can be classified into one of eight 
surface primitives according to  the signs of K and H .  However, in 
practice thresholding about zero is required to obtain the curvature 
sign map. For example, the range image of a flat surface does not 
yield Gaussian and mean curvature values which are exactly equal 
to zero. This is usually caused by noisy variations in depth and 
quantization effects. We select thresholds which are symmetric 
about zero for the Gaussian and mean curvatures; these are referred 
to as K,,,,, and H,,,,,, respectively. 

The selection of K,,,, and H,,,, poses a problem. We note that 
the following constraint is available: 

This condition comes from the fact that if ( I O )  is not satisfied, some 
surface points may fall into a prohibitive zone in ( K ,  H )  space 
where K > 0 and H = 0. Besl and Jain have suggested a method 
for setting these parameters in which the maxima of both curvatures 
are employed as criteria [ 3 ] .  However, the optimal values of these 
thresholds are generally thought to depend on the noise level in the 
range images. It can reasonably be argued that the noise variations 
are caused by the range finder and the calibration process and is 
not dependent upon the underlying objects.' If we assume that these 

'We are indebted to Gerhard Roth at the McGill Research Centre for 
Intelligent Machines for this suggestion. 
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two factors are fixed, a systematic approach to threshold selection 
can be proposed as follows: 1 )  compute K and H for a reference 
j u t  surface obtained by the scanner; 2) set K,,,, and H,,,, to the 
minimum values necessary to classify the surface as flat while sat- 
isfying the constraint of ( IO) .  

Small surface regions regarded as noise may be present, and to 
erase these the KH-sign map is contracted and then expanded. First 
each surface region in the map is contracted by one pixel, consid- 
ering four-connectedness for pixel connectivity. The surface region 
is then iteratively expanded until all unlabeled pixels are elimi- 
nated. Existing contraction and expansion operators for binary im- 
ages can be used. The resulting map is referred to as a refined KH- 
sign map. 

D. Edge-Based Initial Segmentation 
In this section we briefly mention the detection of discontinuities 

in depth and surface orientation. 
1 )  Detecting Depth Discontinuity: Jump Edge Map: The jump 

edge magnitude, denoted by MJulnpr is computed as the maximum 
difference in depth between a point and its eight neighbors. This is 
formulated for a point (x, y )  as  follows: 

MJUmp(X, y )  

= m a x { / z ( x , y ) - z ( x + k , ? . + l ) I : - ~  < k , [ <  I 1 
where z represents a value of the fitted polynomial computed from 
(4). The edge image is thresholded for the final segmentation. At 
present the threshold is automatically determined based on the mean 
and standard deviation of the edge magnitude. 

2) Detecting Surface Orientation Discontinuity: Roof Edge 
Map: A roof edge can be located by surface normal analysis. The 
roof edge magnitude, denoted by Mroof, is computed as the maxi- 
mum angular difference between adjacent unit surface normals. This 
is formally given as: 

M,<,<,~(X,  y )  = max {cos-' (n(x, y )  . n(x  + k ,  y + I ) ) :  

-1 5 k ,  I s  I }  (12) 

where n dcnotes a unit surface normal obtained from estimates of 
the first partial derivative. This must also be thresholded to coni- 
bine it with the KH-sign and jump edge map at the final segnien- 
tation stage. 

Recall in the previous section that the discontinuities in the range 
image were roughly estimated by using the surface fit error for se- 
lecting the best window at each point. The surface fit error high- 
lights the discontinuities but cannot discriminate jump and roof dis- 
continuities. The discrimination of these edge types is thought to 
be important for later object analysis. It is for this reason that we 
employ different operators for locating these discontinuities. 

E. Final Segmentation 
We present a method for integrating the three initial segmenta- 

tion maps to produce the final segmentation. The method is com- 
posed of thc following three steps: 1) superimposing the edge maps 
onto the KH-sign map; 2) component analysis of surface regions: 
3) expansion of surface regions. 

I )  Superimposing Edge Maps onto (he KH-Sign Map: After the 
initial region-based segmentation, the KH-sign map exists in the 
form of a labeled image in which each point has a value from the 
set 1 to 8 corresponding to the determined surface type. At this 
stage the thresholded edge maps are superimposed onto the KH- 
sign map to produce a surface-edge map,  in which each edge point 
has a value of -2 or - 1 if it is regarded as a jump or roof edge, 
respectively. In other words, the surface-edge map is composed of 
surface points having positive values and edge points having neg- 
ative values. 

2) Component Analysis: T o  generate a region map, an existing 
four-connected component labeling algorithm is independently em- 

ployed for each surface type in the surface-edge map. The edge 
points are not labeled and are kept unchanged. Thus the resulting 
region map is not a complete segmentation; i.e., it is composed of 
surface points which possess region numbers as their labels and 
edge points with negative labels. 

3)  Expansion of Surface Regions: Each surface region in the 
previously obtained partial region map is expanded in parallel to 
generate a final region map using the following two steps. First, 
each surface region having a positive label is conditionally ex- 
panded so that the expansion does not cross the boundaries of sur- 
face regions in the refined KH-sign map. However, there still re- 
main edge points with negative labels which correspond to the 
surface points entirely overlapped by edge points. Each surface re- 
gion is then unconditionally expanded in parallel until all edge 
points are erased. 

Simultaneously, to produce the final surface type map corre- 
sponding to the above region map, each surface region in the sur- 
face-edge map is expanded in the same manner as described above. 
As a consequence, surface regions entirely overlapped by edge 
points are not recovered; i.e., small surface regions on discontin- 
uities are thereby eliminated. 

IV. EXPERIMENTAL RESULTS 
We have obtained experimental results for the proposed seg- 

mentation method using both synthetic and real range data. In the 
results shown here, the first and second partial derivatives were 
computed using 5 x 5 operators. 

A. Synthetic Range Data 
We first present the results for synthetic data. These are repre- 

sented in the form of a 2-D array consisting of floating point num- 
bers which indicate the depth values relative to a background and 
do  not suffer from either noise or quantization effects. 

Fig. 2 shows the boundary representations for the final region 
and surface type maps for the synthetic data in Fig. 1 .  The thresh- 
olds about zero for K and H were selected as K,,,,, = 0.00001 and 
H,,,,, = 0.003, respectively. The jump and roof edge maps were 
thresholded using the values of mean plus standard deviation of 
their magnitudes. It can be seen that the horizontal ellipsoid and 
the outside surface of the torus are discriminated in the region map, 
while these are merged in the surface type map because of their 
characteristics as peak surfaces. Thus distinct adjacent surface re- 
gions of the same surface type are isolated by employing edge in- 
formation. 

B. Real Range Data 
Real range images used in the experiments were obtained using 

a laser range scanner [ 161. The images were originally provided as 
a 2-D array of pixels with values 12 bits long and proportional to 
the z values. These were then calibrated, resulting in floating point 
data. These range images do  not suffer as much from quantization 
effects when compared to the typical 8 bit images reported in the 
literature. However, they do  contain some shadow effects. Al- 
though the image size is 256 X 256, in order to limit the compu- 
tation time experiments were carried out with 128 x 128 images 
obtained by resampling. 

Experimental results for real data are illustrated in Fig. 3 .  The 
scene consists of both curved and polyhedral objects. Spherical and 
cylindrical objects which are partially occluded can be seen in the 
image. In this case. edge preserving smoothing was applied twice 
to the range image before the computation of the partial deriva- 
tives. By noting the values of K and H in the background (regarded 
as a flat surface), the thresholds K,,,,, and H,,,,, were manually set 
to 0.0004 and 0.02. respectively. Jump and roof edge maps were 
thresholded by the mean of the edge magnitude. Fairly good results 
were obtained for extracting and describing the surfaces of spher- 
ical, cylindrical and polyhedral objects. Note that the polyhedral 
objects are excellently partitioned into their planar surfaces due to 
the integration of the edges with curvature sign map. However. a 
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Fig. 3 .  Experimental results 
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(k) 
Fig. 3. (Conrinued.) (8) Jump edge map; (h) roof edge map; (i) surface- 

edge map; ( j )  region map; (k) surface type map. 

few small surface regions appear at the comer of planar surfaces 
and in the vicinity of image borders. These are created by the im- 
possibility of selecting windows which do not overlap any discon- 
tinuities; that is, all possible windows overlap discontinuities. 

V .  CONCLUSIONS 
In this correspondence, we have proposed a hybrid approach to 

range image segmentation. We first locally approximate a depth 
surface using a selective surface fit and analytically compute the 
partial derivatives. The Gaussian and mean curvatures and the sur- 
face normal are then computed at individual points. By using these 
quantities, three kinds of initial segmentation maps are generated 
in parallel: I )  KH-sign map; 2 )  jump edge map; 3) roof edge map. 
Finally, these maps are combined into the final segmentation. 

The usefulness of this approach has been proven experimentally 
for both synthetic and real range data containing polyhedral and 
curved objects. The contributions of this paper are summarized as 
fol lo ws : 

1) Surface points are accurately characterized as one of eight 
possible view-independent surface types, even in the vicinity of 
discontinuities in depth and surface orientation. This is accom- 
plished by the use of the proposed local surface fit technique. 

2) Adjacent distinct surface regions of the same surface type can 
be discriminated. This advantage is due to the integration of edge 
information into a region-based segmentation scheme. 

3) In addition to segmented region maps, rich descriptions of 
the surface and boundary of a region are obtained [22]. These are 
thought to be useful for further object recognition. Major problems 
that remain can be stated as follows: 

1 )  The thresholds K,,,, and H,ero for the Gaussian and mean cur- 
vature sign maps were selected manually. Different values of the 
thresholds yield different KH-sign maps, and subsequently differ- 
ent region maps. The threshold selection technique should be in- 
vestigated further. 

2 )  The proposed selective local surface fit will usually accu- 
rately estimate surface curvatures in the neighborhood of discon- 
tinuities. However, as can been seen in the experimental results 
sometimes all possible windows overlap discontinuities and wrong 
curvature estimates are subsequently obtained. A possible solution 
to this problem is to use a variable window size (multiscale ap- 
proach) or variable window shape (e.g., [14]). 

The present work provides an input to the 3-D object recognition 
process. Our segmentation method yields a rich description of a 
scene in terms of its surface primitives. Local and global proper- 
ties, for example the surface type, edge type and surface area are 
part of this description. Such features are then used as matching 
primitives for 3-D object recognition. In particular, view-indepen- 
dent characteristics of surfaces, together with region-based de- 
scriptions, are quite useful for recognizing curved as well as 
polyhedral objects. 
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APPENDIX 

A set of 5 X 5 operators for estimating the first and second partial derivatives using the selective local surface fit is given below. 
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