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A b s t r a c t .  There exist numerous constitutive parameters  in models used for the 
prediction of high strain-rate responses of metallic materials in the finite-deformation 
regime. Each of these parameters  can possess various degrees of uncertainty, possibly 
due to (a) error in experimental  measurements  (b) a lack of consistent product ion 
methods or (c) the acquisition of data  from different manufacturers.  This  commu- 
nication investigates the overall system sensitivity that  results, due to consti tutive 
parameter  uncertainty, when employing the commonly used Johuson-Cook class of 
high strain-rate ballistic models. 

1 A class  o f  h i g h  s t r a i n - r a t e  ba l l i s t i c  m o d e l s .  In the ballistics literature, 
high strain-rate inelastic deformation of metallic materials is often described by 
constitutive equations of the form er = T(d, ep, ~p, 8), where er is the Cauchy stress, 

d d=~ �89 (Vx/L + (Vx/L) T) is the symmetric  part  of the velocity gradient (x being the 
Eulerian coordinates), ep is the plastic "strain" and 0 is the temperature.  A relatively 
common approach in describing high strain-rate processes is to employ the J aumann  
rate of the Cauchy stress, c r j  d_.~ ~. _ W .  o" -[- o ' .  W ,  where W def �89 _ ( V x i ~ ) T )  

is the vorticity tensor. A typical accompanying constitutive assumption is erj --- 
R!? : de, where de is defined by de = d - &p - e0, where the plastic (ep) and thermal  
(e0) "strains" should be interpreted as internal parameters,  which are not in tended 
to have any kinematical meaning at finite strains. Their  exact definition will be 
given shortly. In this work, the elastic mechanical properties (Ri~) are assumed to 

trd 
be isotropic with bulk and shear moduli  of ~ and #, i. e. ~ : d = 3~--~-1 ~- 2#d  ~, 

where trd -- d4i and d ~ = d - ~-~ 1. To complete the system of equations a yield 
surface and a flow rule are needed. In the ballistics literature, there are several 
models which a t t empt  to describe the response of metals at high strain-rates, for 
example the Johnson-Cook model  (Johnson and Cook [3], J o h n ~ n  and Holmquist  
[4] and Johnson and Cook [5]), the Zerilli-Armstrong model  (Zerilli and Armstrong 
[11], [12], [13]), the Steinberg-Guinan model (Steinberg and Guinan [10]) and the 
Follausbee-Kocks model (Follansbee and Kocks [2]). For reviews see Meyers [8], 
Lesuer [6] and Lesuer et al. [7]. The  most widely used model  appears to be the 
Johnson-Cook model  and its variants, which accounts for three main phenomena:  
(a) power-law work-hardening of the yield surface, ay oc ao -t- Allepll n, where ay is 
the yield stress, ao is the initial yield stress, n is the work-hardening exponent,  A 

is the hardening modulus and Ilepll dej ~/w : ep (b) logarithmic plastic strain-rate 
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dependency of the yield surface, ay c( b ll .ll and (c) thermal dependency of the 

yield surface, ay o( 8" d~ ~ ,  where 8m is the melting point and 8r is a reference 
temperature.  The Johnaon-Cook model concatenates these three basic ingredients 
to construct the following yield surface 

, l - - ( a o + A ,  i e p , ] n ) ( l + B l n ( ~ ) )  ( 1 - ~ , 8 * , r a ) & ,  (1) 

where O* = ~ .  Here a cut-off function has been added, where (~ = 0 if (1 - 

a* 18. Irn) < 0 and (I) = 1 otherwise. Therefore, if the material goes beyond melting, 
t~e yield surface, represented by , / ,  shrinlcs to zero. This yield relation must be 
used in conjunction with a flow rule for plastic flow. A particularly convenient rule 
is based on an over stress function of the form 

( (ef,,'lJ_- ,,'  'ded' x_0'nk Iio"II ) )  IIIo 'III' (2) 

where Ilcr'll a___a k/~_~rl : ql and lilt'Ill a___a V~7:  (rl. When licrll[ > >  J ,  there is 

maximum plastic flow, lii&plll d___ef ~ _-- ~7- The Johnson-Cook model also 
has a damage component (Johnson and Cook [5]), which is discussed later in the 
presentation. We remark that other classes of models may have advantages in terms 
of their insensitivity to constitutive parameter uncertainty. For a rigorous overview 
of a wide range of models see Naghdi [9]. Investigation of several models is beyond 
the scope of the present communication. 

2 H e a t  g e n e r a t i o n .  Interconversions of mechanical, thermal and chemical 
energy in a system are governed by the first law of thermodynamics,  where the 
time rate of change of the total energy, ]C + I ,  is equal to the work rate, 7 ~, in 
addition to the net heat supplied, 7 / +  Q, i.e. d (]C +/7)  = 7 ~ -t- 7/ + Q. Here 
the kinetic energy of a subvolume of material contained in a body ~, denoted w, 
i s  ~(~ def fw 1 �9 ---- ~pu �9 dw, the rate of work or power of external (volumetric) forces 

acting on w is given by 7 ~ de_f fw pb �9 iz dw -F fo~ er �9 n �9 i~ da, the heat flow into 

the volume through its control surface is Q d_ef _ fO~ q"  n da = - f~  V x  �9 q dw, the 

heat generated due to sources, such as chemical reactions, is 7-l d_e__f f,., pz  dw and the 

stored energy is/7 d_ef fw pw dw. Assuming that  the mass in the system is constant, 
one has f~ ,pdw = fw oPJdw o  = f~oPodWo, which implies p J  = Po where J is the 
Jacobian of the deformation gradient. Consequently, we have ~ fw 1 �9 ~ p u . / ~ d w  = 

f~o d l  ~ ( p J u  . i~)dwo -- L p i ~  . ~ d w .  We also have ~ L p w d w  -- ~ LopJwdwo = 

f~,  d ( p o ) w d w  o + f w p ~ d w .  By using the divergence theorem, we obtain j'ow ~x �9 n �9 

/~ da = f~(V~ �9 er)./~ dw + f~ cr : Vx/~ dw. Combining the results, enforcing a balance 
of momentum and arguing that  the volume w is arbitrary, leads to the local form 
p,(v - or : d + V x  �9 q - pz  -- O. Neglecting conduction, chemical changes and latent 



heat  of melting, one has p~b = ~ : d. Additionally,  if the following approximat ion  is 
made,  t ~  ~-, o" : ( d  - &p - eo) + p H O ,  these last two relations imply 
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p H O  ,-~ ~ : (~p + e0), (3) 

where, following the ballistics l i terature,  the thermal  "strain-rate" is usually taken 

to be of the  form ~0 d=~ ~/01, where ~/is the coefficient of  thermal  expansion. 
3 C o u p l e d  s o l u t i o n  p r o c e d u r e .  We now s tudy  the overall coupled system 

behavior at  a mater ia l  point  by controlling the displacement there via u = t x B . X ,  
where t is the time, B is a displacement control parameter  (a second-order tensor) 
and  where X are the referential coordinates of the mater ia l  point.  The  relations 
tha t  have been int roduced thus  far result  in a set of coupled nonlinear  differential 
equations. The system is solved by an explicit Euler  t ime marching scheme with  an 
internal  i terative staggering procedure to solve the coupled nonlinear  sys tem within 
each t ime step (Jr). The algori thm is as follows, under  displacement control, where 
K is an i terat ion counter wi th in  a t ime step: 

pHO~+6~,K = O.,+6,,K-X : (~+~,K--I  + ~0,+6~,K1 ) ~  =~ 1~,+6~,K = O.,+,,,~:--,=(~,+',.K--Z)p,+,t//_~,O.,%,,,K_,:t 

e 

0~+6~, K = O ~ + ~itO *+6~,K ~ (O*) ~+6~,g o~+~*,~-o, 

y t + , t . K =  (,~o+Ail~i§ l + B h a k  " ~,o (0-),+u.K -- , ] r  

�9 tT6t i ,K t : + 6 t , K  ,6~p ~ ._t;+St K 
~p =max 0,,7\ ~ - _ ~  ] j  iiio.,,~+a~,~:_,lll : : .  ~, = ~e,~,, ' 

, , ,+ , , ,K  = ~ + ( ~ :  ( ~ + , ,  _ ~,'-'+'"'~ _ ~ + , t , K )  + w , + , , .  ~ , ,+~, ,K- ,  _ ~ , , + , , , . - , .  w t + , ~ )  ~t 

R E P E A T  S T E P S  ( K  = K + 1) U N T I L  : II1,, "*+'~''K - 0"+'~"K-Xll I _< TOilll~,t+a~'KIIl 

U P D A T E  : ~r t = a t+at'P:, t = t + 6t  A N D  G O T O  N E X T  T I M E  S T E P .  

(a) 
Convergence can be addressed by considering, in abstract  terms, A(~r) = 3 r, where 

~r represents the solution at  t ime t. It  is convenient to  perform an operator  split 
A ( a )  - 3 r = G(cr) - ~r + ~ = 0. A straightforward iterative scheme is cr K = 
G ( a  K-z)  + ~b, where K -- 1, 2, 3, ... is the  index of i terat ion.  The  convergence of 
such a scheme is dependent  on the behavior of  G.  Namely, a sufficient condit ion for 
convergence is tha t  G is a contract ion mapping  for all a K ,  K ---- 1, 2, 3... Accordingly, 
we define the error as e g = r K - or. A necessary restr ict ion for convergence is 
i terative self consistency, i. e. the exact solut ion must  be represented by the scheme 
G(cr) + ~b -- o'. Enforcing this  restriction, a sufficient condi t ion for convergence is 
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the existence of a contraction mapping I leg l l  = IIor K -  orll = IIG(orK-1) -G(or) l l  _ 
 llor - o r l l ,  where, if A < 1 for each iteration K,  then e g -+ 0 for any arbitrary 
starting value orK--0 as K ~ c~. Since A ~ 6t, by time step reduction, one can 
control the convergence rates. For general remarks on iterative schemes of this 
type see Axelsson [1]. During the upcoming numerical simulations, the time steps 
were refined to insure fixed-point type convergence within each time step, as well as 
temporal discretization accuracy. 

4 N u m e r i c a l  s i m u l a t i o n s .  A common goal in ballistics research is to determine 
the amount of energy "stripped off" of a projectile by a target or ballistic "shield". 
Accordingly, we tracked a work-like (per unit mass) integral, 

1-[def j~0 T ( o r : d + _ _  H 0 ) d r ,  (5) 

P 

where T is the time needed to achieve complete damage. Following the Johnson- 
Cook model, complete failure occurs when an accumulated da.mage parameter at- 
tains unity, defined by 

:/9 def [T I1~11 dt 1, (6) 
J0 ef 

where ef = (Dx -~- D2 eD311~ll )(1 -~ D4Lne~l~-ll)(1 + D5~*r and where ~ = 0 if 8" < 0 

and r = 1 otherwise. The suggested parameters (Lesuer [6]) for Aluminum 2024- 
T3 are  (D1, D2, D3, D4,  D5) = (0.112, 0.123, -1 .5 ,  0.011, 0). The variable B n  was 
the deformation control variable, while all other total  components of B were set to 
zero. Bl l  was set to 304 m/s (1000 ft/s) in order to be consistent with an incoming 
projectile traveling at a (transverse) velocity of 304 rn/s (Figure 1). There exist 
quite a few material constants in the entire set of governing equations. Clearly, for 
the reasons given in the abstract,  the material parameters  may possess some level 
of uncertainty. We took variations of the form (mean values fxom Lesuer [6]): 

a ;  <_ ao = ~ 4- 6ao <_ a + (~o = 269 M P a )  
A -  < A = A 4- 6A ~_ A + (A  = 684 M P a )  
B -  < B ---- B 4- 6B _< B + (B ---- 0.0083) 
n -  _< n = ~4-6n_< n + (~ = 0.73) 
m -  _< m = ~4 -6m _<  m + ( ~  = 1.7) 
~o _< ~ = ~ 4- 6 ~  ~_ ~ ( ~  = 10 3 8 - 1  ) 

8;  _< 8, = 8~ 4- 68, _< 8 + (8~ = 295 K) 
Om _< 0m ---- 0"-~ 4- 6Om _< O~ (0-~ = 775 K) 
~-  <_~=~4-6~<__~+ ( ~ = 7 7 . 9 G P a )  
p -  _( p = ~ 4- 6# _</~+ (~ = 27.47 G P a )  
Y- 5 T/= ~4-6y < fl+ (7 = 10s-*) 
-y- _<7=~4-67<_7 + (~=lO-SK -*) 
Po <- po = po 4- 6po _< po + (po = 2770 k g / m  3) 
H -  < H = H 4- 6H _< H + (H = 875 N m / K k g )  

(7) 



We made the conservative assumption that  the variations are mutually uncorrelated. 
In order to attach some quantitative value to the effects of the material uncertainty, 

rI,~,ffi-H,~, A total of 1000 samples were compu- we defined the excursion in H as 1I . . . .  �9 
tationally tested (Figure 1). The overall excursion in II was approximately 46.7% 
for a + 5 % range of variation (a 10 % spread) in the material data. 
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Figure 1: LEFT: A controlled deformation of a material point. RIGHT: The vaxiation in II 
for 1000 samples, for a + 5 % range of variation in the material data for Aluminum 2024-T3. 

5 C o n c l u d i n g  r e m a r k s .  The excursions for all of the material parameters, 
when individually perturbed in a range of -4- 5 %, holding all other parameters 
fixed at their mean values, are given in Table 1. Only two material parameters led 
to amplified overall variation (> 10%) in response to the induced 10 % material 
uncertainty: the bulk and shear moduli of the material. As one would expect, the 
overall system is sensitive (13.7 %) to the shear modulus (#), since it dictates the 
deviatoric stress which controls the evolution of plastic strain. However, from the 
computational simulations, it has been identified that the overall system is most 
sensitive to the bulk modulus (~). When it alone was allowed to vary in a range 
of -t-5 %, the corresponding overall excursion was 22.6 %. This sensitivity can be 
explained by realizing that  the temperature strongly controls the response of the 
material when using the Johnson-Cook yield surface model. Therefore, we should 
expect that  the bulk modulus (n) plays a central role in the overall sensitivity due 
to the type of functional dependency of the production of heat on 7 a  : 1 in 

a :  ~p 
b = p H -  7r 1" (8) 

Therefore, the bulk modulus strongly affects the heat production (0), which in turn 
controls material thermal "softening" of the Johnson-Cook yield surface, which in 
turn controls the plastic strain-rate ~p via the overstress evolution law (Equation 2). 
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~ 1 7 6   I~ "~ o!; :oo " 0.00 0.00 0.00 0.00 0.00 2.56 6 7 2.63 0 [2  4 22.63 13.68 

I I , ~ - I L ~  for individual variations in the range of 4-5%. Table 1: Values of 100 x H . . . .  
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