
Chapter 2 

Rates of Change 
and the 

Chain Ru 

The rate at which one variable is changing with respect to another can be 
computed using differential calculus. 

In Chapter 1, we learned how to differentiate algebraic functions and, thereby, 
to find velocities and slopes. In this chapter, we will learn some applications 
involving rates of change. We will also develop a new rule of differential 
calculus called the chain rule. This rule is important for our study of related 
rates in this chapter and will be indispensable when we come to use trigono- 
metric and exponential functions. 

2.1 Rates of Change and the 
Second Derivative 
If y = f(x), then f'(x) is the rate of change of y with respect to x. 

The derivative concept applies to more than just velocities and slopes. To 
explain these other applications of the derivative, we shall begin with the 
situation where two quantities are related linearly. 

Suppose that two quantities x and y are related in such a way that a 
change Ax in x always produces a change Ay in y which is proportional to 
Ax; that is, the ratio Ay/Ax equals a constant, m. We say that y changes 
proportionally or linearly with x. 

For instance, consider a hanging spring to which objects may be at- 
tached. Let x be the weight of the object in grams, and let y be the resulting 
length of the spring in centimeters. It is an experimental fact called Hooke's 
law that (for values of Ax which are not too large) a change Ax in the weight 
of the object produces a proportional change Ay in the length of the spring. 
(See Fig. 2.1.1 .) 

If we graph y against x, we get a segment of a straight line with slope 
Figure 2.1.1. Hooke's law 
states that the change in m = -  A~ 
length Ay is proportional to Ax 
the change in weight Ax. as shown in Fig. 2.1.2. The equation of the line is y = rnx + b, and the 
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100 Chanter 2 Rates sf Change and the Chain Rule 

function f(x) = mx + b is a linear function. The slope m of a straight line 
represents the rate of change o f y  with respect to x .  (The quantity b is the length 
of the spring when the weight is removed.) 

proportionally to x when 
Ay/Ax is constant. 

C 

v 

Example 4 Suppose that y changes proportionally with x, and the rate of change is 3. If 
y = 2 when x = 0, find the equation relating y to x .  

Solution The rate of change is the slope: m = 3. The equation of a straight line with this 
slope is y = 3x + b,  where b is to be determined. Since y = 2 when x = 0, b 
must be 2; hence y = 3x + 2. A 

The variable y changes proportionally with x when y is related to x by a 

Example 2 Let S denote the supply of hogs in Chicago, measured in thousands, and let P 
denote the price of pork in cents per pound. Suppose that, for S between 0 
and 100, P changes linearly with S .  On April 1 ,  S = 50 and P = 163; on April 
3, a rise in S of 10 leads to a decline in P to 161. What happens if S falls 
to 30? 

Solution Watch the words of and to! The rise in S of 10 means that AS = 10; the 
decline of P to 161 means that A P  = 16 1 - 163 = - 2. Thus the rate of change 
is -6  = - L  , . (The minus sign indicates that the direction of price change is 

opposite to the direction of supply change.) We have P = - 4 S + b for some 
b. Since P = 163 when S = 50, we have 163 = - f .50 + b,  or b = 163 + 10 
= 173, so P = - 15 S + 173. When S = 30, this gives P = -6 + 173 = 167. At 
this point, then, pork will cost $1.67 a pound. A 

If the dependence of p~ = j ( x )  on x is not linear, we can still introduce the 
notion of the average rate of change of y with respect to x, just as we 
introduced the average velocity in Section 1.1. Namely, the difference quotient 

is called the average rate of change of y with respect to x on the interval between 
x ,  and x ,  + Ax. For functions f which are not linear, this average rate of 
change depends on the interval chosen. If we fix x ,  and let Ax approach 0,  the 
limit of the average rate of change is the derivative f'(x,),  which we refer to as 
the rate of change of y with respect to x at the point xo. This may be referred to 
as an instantaneous rate of change, especially when the independent variable 
represents time. 
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2.1 Rates of Change and the Second Derivative 101 

Example 3 An oil slick has area y = 30x3 + l00x square meters x minutes after a tanker 
explosion. Find the average rate of change in area with respect to time during 
the period from x = 2 to x = 3 and from x = 2 to x = 2.1. What is the 
instantaneous rate of change of area with respect to time at x = 2? 

Solution The average rate of change from x = 2 to r = 3 is 

(30 . 33 + 100. 3 - 30 . z3 - 100 . 2) square meters square meters 
= 670 

1 minute minute 

From x = 2 to x = 2.1, the average rate is calculated in a similar way to be 

47.83 = 478.3 square meters 
0.1 minute 

Finally, the instantaneous rate of change is found by evaluating the 
derivative 90x2 + 100 at x = 2 to obtain 460. Since the instantaneous rate of 
change is a limit of average rates, it is measured in the same units, so the oil 
slick is growing at a rate of 460 square meters per minute after 2 minutes. A 

If two quantities x and y are related by y = f(x), the derivative f'(xo) 
represents the rate of change of y with respect to x at the point xo. It is 
measured in (units of y)/(units of x). 

A positive rate of change is sometimes called a rate of increase. 

Example 4 A circle with radius r millimeters has area A = ar2  square millimeters. Find 
the rate of increase of area with respect to radius at r, = 5. Interpret your 
answer geometrically. 

Solution Were A = f(r) = rr2.  Since a is a constant, the derivative f'(r) is 2ar, and 
f'(5) = 1071. Notice that the rate of change is measured in units of (square 
millimeters)/millimeters, which are just millimeters. The value 2ar of the rate 
of change can be interpreted as the circumference of the circle (Fig. 2.1.3). A 

Figure 2.1.3. The rate of 
change of A with respect to 
r is 271r, the circumference 
of the circle. 

In the next two examples, a negative rate of change indicates that one 
quantity decreases when another increases. Since Ay = f(xo + Ax) - f(x,), 
it follows that Ay is negative when f(xo + Ax) < f(xo). Thus, if Ay/Ax is 
negative, an increase in x produces a decrease in y .  This leads to our stated 
interpretation of negative rates of change. If a rate of change is negative, its 
absolute value is sometimes called a rate of decrease. 

Example 5 Suppose that the price of pork P depends on the supply S by the formula 
P = 160 - 3s + (0.01)S2. Find the rate of change of P with respect to S when 
S = 50. (See Example 2 for units.) 
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182 Chapter 2 Rates of Change and the Chain Rule 

Sslartlon The rate of change is the derivative of f(S)  = 0.01 S2 - 3 S  + 160 with respect 
to x = S at x, = 50. The derivative is f'(S) = 0.02S - 3. When S = 50, we get 
f'(50) = 1 - 3 = -2. Thus the price is decreasing by 2 cents per pound per 
thousand hogs when S = 58. thousand. A 

Example 6 A reservoir contains lo8 - 104t - 80t2 - lot3 + 5t5 liters of water at time I, 

where t is the time in hours from when the gates are opened. How many liters 
per hour are leaving the reservoir after one hour? 

Solution The rate of change of the amount of water in the reservoir is the derivative of 
the polynomial 10' - 104t - 80t2 - lot3 + 5t5, namely - lo4 - 160t - 30t2 + 
25t4. At t = 1, this equals - lo4 - 160 - 30 + 25 = - 10,165 liters per hour. 
This is negative, so 10,165 liters per hour are leaving the reservoir after one 
hour. A 

We now reconsider the velocity and acceleration of a particle moving on a 
straight line. Suppose for the moment that the line is vertical and designate 
one direction as "+"and the other as "-" . We shall usually choose the 
upward direction as "+," but consistently using the other sign would give 
equivalent results. We also choose some point as the origin, designated by 
x = 0, as well as a unit of length, such as meters. Thus, if our designated origin 
represents the level of the Golden Gate Bridge, x = 100 would designate a 
location 100 meters\,,above the bridge along our vertical straight line, and 
x = - 10 would indicate a location 10 meters beneath the bridge (Fig. 2.1.4). 

Figure 2.1.4. A coordinate 
system with " +" upwards 
and x = 0 at  bridge level. I 

Suppose that, at time t, a particle has location x = f(t) along our line. We 
call [ f(t  + At) - f(t)]/At the average velocity and dx/dt = f'(t) the instanta- 
neous velocity; this can either be positive, indicating upward motion, or can 
be negative, indicating downward motion. 

Example 7 Suppose that x = 0 represents the level of the Golden Gate Bridge and that 
x = f(t) = 8 + 6t - 5t2 represents the position of a stone at time t in seconds. 

(a) Is the stone above the bridge, at the bridge, or below the bridge at t = 0? 
How about at t = 2? 

(b) Suppose that the average velocity during the interval from to to to + At is 
negative; what can be said about the height at time to + At? 

(c) What is the instantaneous velocity at t = I ?  

Solullon (a) At t = 0, x = 8, so the stone is 8 meters above the level of the bridge. At 
t = 2, x = 8 + 6 . 2 - 5 . 4  = 0, so the stone is at the level of the bridge. 

(b) It is less than that at time to. 
(c) We compute dx/dt = 6 - 10 t, which at t = 1 is -4. Thus, the instanta- 

neous velocity is 4 meters per second downward. A 
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2.1 Rates of Change and the Second Derivative 403 

( p o s i t ~ o n )  .V Of course, these interpretations of positive and negative velocity also apply to 
horizontal motion, like that which we discussed at the beginning of Chapter 1. 
In particular, we may let x denote the position along a road with larger values 
of x corresponding to points further east, say. Then d x / d t  > 0 indicates that 
motion is eastward; d x l d t  < 0 indicates westward motion. The magnitude, or 

I 
I 

absolute value, of the velocity is called the speed. 
If we graph x = f(t)  against t ,  the slope of the graph indicates whether 

t ,  , (l,me, the velocity is positive or negative. (See Fig. 2.1.5.) 

Figure 2.1.5. The velocity is Note that the instantaneous velocity v = d x l d t  = f'(t) is usually itself 

positive until = t ,  and changing with time. The rate of change of v with respect to time is called 
negative afterward. acceleration; it may be computed by differentiating v = f'(t) once again. 

Example 8 Suppose that x = j(t) = $ t 2  - t + 2 denotes the position of a bus at time t.  

(a) Find the velocity as a function of time; plot its graph. 
(b) Find and plot the speed as a function of time. 
(c) Find the acceleration. 

Solution (a) The velocity is v = d x / d t  = t t - 1 (see Fig. 2.1.6(a)). 

11 = velocity 

lul = speed 

Figure 2.1.6. (a) Velocity 
and (b) speed as functions 

The acceleration dv/dt is I 
constant and positive. (b)  

(b) The speed 101 = I t t - 1 I [see Fig. 2.1.6(b)]. 
(c) The acceleration is d v l d t  = 4. A 
In this example, the acceleration happens to be constant and positive, indicat- 
ing that the velocily is increasing at a constant rate. Note, though, that the 
speed decreases and then increases; it decreases when the velocity and acceler- 
ation have opposite signs and increases when the signs are the same. This may 
be illustrated by an example. If your car is moving backwards (negative 
velocity) but you have a positive acceleration, your speed decreases until your 
car reverses direction, moves forward (positive velocity), and the speed in- 
creases. 

Since acceleration is the derivative of the velocity and velocity is already 
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104 Chapter 2 Rates of Change and the Chain Rule 

a derivative, we have an example of the general concept of the second 
derivative, i.e., the derivative of the derivative. If y = f(x), the second deriva- 
tive is denoted fU(x) and is defined to be the derivative of f'(x). In Leibniz 
notation we write d?/dx2 for the second derivative of y = f(x). Note that 
d?/dx2 is not the square of dy/dx, but rather represents the result of the 
operation d/dx performed twice. 

If an object has position x (in meters) which is a function x = f(t) of time 
t (in seconds), the acceleration is thus denoted by f"(t) or d2x/dt2. It is 
measured in meters per second per second, i.e., meters per second2 or feet per 
second2. 

To compute the second derivative f"(x): 

1. Compute the first derivative f'(x). 
2. Calculate the derivative of f'(x); the result is f "(x). 

The second derivative of y = f(x) is written in Leibniz notation as 

The second derivative of position with respect to time is called accelera- 

If we plot the graph y =j(x),  we know that f'(x) represents the slope of the 
tangent line. Thus, if the second derivative is positive, the slope must be 
increasing as we move to the right, as in Fig. 2.1.7(a). Likewise, a negative 
second derivative means that the slope is decreasing as we increase x, as in 
Fig. 2.1.7(b). 

derivative f "(x). (a) f"  > 0. 
(b) f"  < 0. 

( a )  increasing slope tneans positlve 
second der~vative 

change of slope with I - 
( h )  decreasing slope means 

trcgativc second d c r ~ v a t ~ v c  

respect to x is the second 

Example 9 Calculate the second derivative of 

c 

x + l  (a) f(x) = x4 + 2x3 - 8x, (b) f(x) = -. 
6 

d 2  d 2  (c) - (3x2 - 2x + I), (d) - (8r2 + 21. + 10). 
dx2 dr 

Solution (a) By our rules for differentiating polynomials from Section 1.4, 

f'(x) = 4x3 + 6x2 - 8. 

Now we differentiate this new polynomial: 

fU(x)  = 12x2 + 12x - 0 = 12(x2 + x). 
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2.1 Rates of Change and the Second Derivative 105 

(b) By the quotient rule from Section 1.5, 

By the quotient rule again, 

d2(3x2 - 2x + 1) d and so = -(6x - 2) = 6, 
dx dx 

a constant function. 

d 2  (d) 7 (8r2 + 2r + 10) = ( - f ) [ ($) (8r2  + 2r + 10) 
dr 1 

Next we consider a word problem involving second derivatives. 

Example 10 A race car travels mile in 6 seconds, its distance from the start in feet after t 
seconds being f(t) = 44t2/3 + 132t. 

(a) Find its velocity and acceleration as it crosses the finish line. 
(b) How fast was it going halfway down the track? 

Solullon (a) The velocity at time t is v = f'(t) = 88t/3 + 132, and the acceleration is 
a = f"(t) = y .  Substituting t = 6, we get v = 308 feet per second (= 210 
miles per hour) and a x 29.3 feet per second2. 

(b) To find the velocity halfway down, we do not substitute t = 3.00 in 
v = f'(t)-that would be its velocity after half the time has elapsed. The 
total distance covered is f(6) = (44)(36)/3 + (132)(6) = 1320 feet ( = a 
mile). Thus, half the distance is 660 feet. To find the time t corresponding 
to the distance 660, we write f(t) = 660 and solve for t using the quadratic 
formula: 

t2 + 9t - 45 = 0 (multiply by &), 

t = 
- 9 r t J 8 i i 8 7 j ;  

2 
= - 12.58,3.58 (quadratic formula). 

Since the time during the race is positive, we discard the negative root and 
retain t = 3.58. Substituting into v = f'(t) = 88t/3 + 132 gives v x 237 feet 
per second (e 162 miles per hour). A 

We end this section with a discussion of some concepts from economics, 
where special names are given to certain rates of change. 

Imagine a factory in which x worker-hours of labor can produce y = f(x) 
dollars worth of output. First, suppose that y changes proportionally with x .  
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906 Chapter 2 Rates of Change and the Chain Rule 

Figure 2.1.8. A possible 
productivity curve; the 
slope of the tangent line is 
the marginal productivity. 

Then Ay = f i x ,  + Ax)  - f(x,)  represents the amount of extra output pro- 
duced if Ax extra worker-hours of labor are employed. Thus, A y / A x  is the 
output per worker-hour. This average rate of change is called the productivity 
of labor. 

Next, suppose that f ( x )  is not necessarily linear. Then A y / A x  is the extra 
output per extra worker-hour of extra labor when Ax extra worker-hours are 
employed. The limiting value, as Ax becomes very small, is f'(xo). This 
instantaneous rate of change is called the marginal productivity of labor at the 
level x,. 

In Fig. 2.1.8 we sketch a possible productivity curve y  = f ( x ) .  Notice that 
as x ,  becomes larger and larger, the marginal productivity f'(x,) (= dollars of 
output per worker-hour at level x,) becomes smaller. One says that the law of 
diminishing returns applies. 

f Y = Output in dollars 

I 
.x(, 1 

1 I C 

1 I ~ O O  20b0  3 d 0 0  4obo i = worker-hours 

Example I 1  A bagel factory produces 30x - 2 x 2  - 2  dollars worth of bagels for each x  
worker hours of labor. Find the marginal pr~ductivity when 5 worker koqrs 
.we smpto9eh. 

Solution The output is f i x )  = 30x - 2 x 2  - 2  dollars. The marginal productivity at 
x ,  = 5 is f'(5) = 30 - 4 .  5 = 10 dollars per worker-hour. Thus, at xo = 5, 
production would increase by 10 dollars per additional worker-hour. a 
Next we discuss marginal cost and marginal revenue. Suppose that a company 
makes x calculators per week and that the management is free to adjust x .  
Define the following quantities: 

C ( x )  = the cost of making x  calculators (labor, supplies, etc.) 
R ( x )  = the revenue obtained by producing x  calculators (sales). 
P i x )  = R  ( x )  - C ( x )  = the profit. 

Even though C ( x ) ,  R ( x ) ,  and P ( x )  are defined only for integers x ,  
economists find it useful to imagine them defined for all real x .  This works 
nicely if x  is so large that a change of one unit, Ax = 1, can legitimately be 
called "very small." 

The derivative C f ( x )  is called the marginal cost and R 1 ( x )  is the marginal 
revenue: 

the cost per calculator for producing 
C ' ( x )  = marginal cost = 

additional calculators at production level x. 

the revenue per calculator obtained by 
R  ' ( x )  = marginal revenue = producing additional calculators at 

production level x .  

Since P i x )  = R ( x )  - C ( x ) ,  we get P' (x )  = R r ( x )  - C 1 ( x ) ,  the profit per addi- 
tional calculator at production level x .  This is the marginalprofit. If the price 
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2.1 Rates of Change and the Second Derivative 107 

per unit is f ( x )  and  x calculators are  sold, then R ( x )  = xf(x) .  By the product 
rule, the marginal revenue is Ri (x )  = xf ' (x)  + f (x) .  

Example 12 Suppose that it costs (30x + 0.04x2)/(1 + 0.0003x3) dollars if x calculators 
are made, where 0 < x < 100, and  that calculators are priced a t  100 - 0 . 0 5 ~  
dollars. If all x calculators are sold, what is the marginal profit? 

Solution The revenue is R = x(100 - 0.05x), so the profit is P = x(100 - 0 . 0 5 ~ )  - 
(30x + 0.04x2)/(1 + 0.0003x3). The marginal profit is therefore dP/dx ,  which 
may be calculated using the sum a n d  quotient rules as follows: 

Exercises for Seetion 2.1 
In Exercises 1-4, assume that y changes proportionally 
with x and the rate of change is r. In each case, find y 
as a function of x, as in Example 1. 

1. r = 5 , y  = 1 when x =4 .  
2. r =  - 2 , y=  10 when x =  15. 
3. r = $ , y =  1 when x = 3. 
4. r = l O , y = 4 w h e n x =  -1. 

5. If the price of electricity changes proportionally 
with time, and if the price goes from 2 cents per 
kilowatt-hour in 1982 to 3.2 cents per kilowatt- 
hour in 1984, what is the rate of change of price 
with respect to time? When will the price be 5  
cents per kilowatt-hour? What will the price be 
in 1991? 

6. It will take a certain woman seven bags of ce- 
ment to build a 6-meter-long sidewalk of uniform 
width and thickness. Her husband offers to con- 
tribute enough of his own labor to extend the 
sidewalk to 7 meters. How much more cement 
do they need? 

7. A rock is thrown straight down the face of a 
vertical cliff with an initial velocity of 3 meters 
per second. Two seconds later, the rock is falling 
at a velocity of 22.6 meters per second. Assuming 
that the velocity v changes proportionally with 
time t ,  find the equation relating v to t. How fast 
is the rock falling after 15 seconds? 

8. In November 1980, Mr. B used 302 kilowatt- 
hours of electricity and paid $18.10 to do so. In 
December 1980, he paid $21.30 for 366 kilowatt- 
hours. Assuming that the cost of electricity 
changes linearly with the amount used, how 
much would Mr. B pay if he used no electricity 
at all? Suppose that Mr. I3 can reduce his bill to 
zero by selling solar-generated electricity back to 

the company. How much must he sell? Interpret 
your answers on a graph. 

Find the average rate of change of the functions in 
Exercises 9-12 on the specified interval. 

9. f( t)  = 400 - 20t - 16t2; t between to = 1 and 
t i  = t .  

10. g ( t )  = 18t2 + 2t + 3; t between to = 2 and t i  = 

3.5. 
11. f(x) = (x + i )2 ;  x, = 2, Ax = 0.5. 
12. g(s) = (3s + 2)(s - 1) - 3s2; so = 0, As = 6. 

13. The volume of a cone is f (area of base) x height. 
If the base has radius always equal to the height, 
find the rate of change of the volume with re- 
spect to this radius. 

14. Find the rate of change of the area of an equilat- 
eral triangle with respect to the length of one of 
its sides. 

15. During takeoff, a 747 has 25,000 - 80t + 2t2 + 
0.2t3 gallons of fuel in its tanks t seconds after 
starting its takeoff, 0 < t < 10. How many gal- 
lons per second are being burned 2 seconds into 
the takeoff? 

16. A space shuttle's external tank contains lo5 - 
1O4t - 103t3 liters of fuel t minutes after blastoff. 
How many liters per minute are being burned 
two minutes after blastoff? 

17. If the height N in feet of a certain species of tree 
depends on its base diameter d in feet through 
the formula N = 56d - 3d2, find the rate of 
change of H with respect to d at d = 0.5. 

18. Suppose that tension T of a muscle is related 
to the time t of exertion by T = 5 + 3t - t 2 ,  
0 < t <;. Find the rate of change of T with 
respect to t at t = 1. 
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19. A flu epidemic has infected P = 30t2 + lOOt peo- 
ple by t days after its outbreak. How fast is the 
epidemic spreading (in people per day) after 5 
days? 

20. Find the rate of change of the area of a circle 
with respect to its diameter when the diameter is 
10. Compare with Example 4. 

21. A sphere of radius r has volume V = 4nr3. What 
is the rate of change of the volume of the sphere 
with respect to its radius? Give a geometric inter- 
pretation of the answer. 

22. A balloon being blown up has a volume V = 

3t3 + 8t2 + 161 cubic centimeters after t minutes. 
What is the rate of change of volume (in cubic 
centimeters per minute) at t = 0.5? 

23. Let x(t) = t3 + ct be the position of a particle at 
time t. For which values of c does the particle 
reverse direction, and at what times does the 
reversal take place for each such value of c? 
Does the value of c affect the particle's accelera- 
tion? 

24. An evasive moth has position j 3  - t + 2 at time 
t. A hungry bat has positiony(t) = - $ t2 + t + 2 
at time t. Now many chances does the bat have 
to catch the moth? How fast are they going and 
what are their accelerations at these times? 

25. If the position of a moving object at time t is 
(t5 + l)(t + 2), find its velocity and acceleration 
when t = 0.1. 

26. Let h(t) = 2t3 be the position of an object mov- 
ing along a straight line at time t. What are the 
velocity and acceleration at t = 3? 

Compute the second derivatives in Exercises 27-32. 

tions of time t (in seconds): 
41. y = 3t + 2; to = 1 
42. y = 5 t -  1 ;  t o=O 
43. y =  8 t 2 +  I; t , = O  
44. y =  18t2-2t  + 5 ;  t o = 2  
45. y = 10 - 2t - 0.O1f4; to = 0 
46. y = 2 0 -  8t -0.02t6; t o =  1 '  

47. The height of a pebble dropped off a building at 
time t = 0 is h(t) = 44.1 - 4.9t2 meters at time t. 
The pebble strikes the ground at t = 3.00 sec- 
onds. 
(a) What is its velocity and acceleration when it 

strikes the ground? 
(b) What is its velocity when it is halfway down 

the building? 
48. The amount of rainy in inches at time x in hours 

from the start of the September 3, 1975 Owens 
Valley thunderstorm was given by y = 2x - x2, 
O s x s l .  
(a) Find how many inches of rain per hour were 

falling halfway through the storm. 
(b) Find how many inches of rain per hour were 

falling after half an inch of rain has fallen. 
49. A shoe repair shop can produce 20x - x2 - 3 

dollars of revenue ever3 how wCen R 5~4rk*rs 
are eapbo2rh. FLR& .the mur$~nai pro&~%t~i%g 

when 5 workers are employes. 

50. The owners of a restaurant find that they can 
serve 300w - 2w2 - 14 dinners when w worker- 
weeks of labor are employed. If an average din- 
ner is worth $7.50, what is the marginal produc- 
tivity (in dollars) of a worker when 10 workers 
are employed? 

51. A factory employing w workers produces 
1OOw + w2/ 100 - (1 /5000)w4 dollars worth of 
tools per day. Find the marginal productivity o i  
labor when w = 20. 

52. A farm can grow IOOOOx - 35x3 dollars worth of 
tomatoes if x tons of fertilizer are used. Find the 
marginal productivity of the fertilizer when 
x = 10. Interpret the sign of your answer. 

Find the second derivative of the functions in Exercises 
33-40. 

33. f ( x )  = x2 - 5 
34. f ( x )  = x - 2 
35. y = x5 + 7x4 - 2x + 3 
36. y = [(x - I) + x2][x3 - 11 

In Exercises 41-46, find the velocities and accelerations 
at the indicated times of the particles whose positions y 
(in meters) on a line are given by the following func- 

53. In a boot factory, the cost in dollars of making x 
boots is (4x  + 0.02x2) / (1  + 0.002x3). If 
boots are priced at 25 - 0 . 0 2 ~  dollars, what is 
the marginal profit, assuming that x boots are 
sold? 

54. Tn a pizza parlor, the cost in dollars of making x 
p izzas  is ( 5 x  + 0 . 0 1 x 2 ) / ( 1  + 0 . 0 0 1 x 3 ) .  
The price per pizza sold is set by the rule: 
price = 7 - 0 . 0 5 ~  if x pizzas are made. If all x 
pizzas are sold, what is the marginal profit? 

In each of Exercises 55-58, what name would you give 
to the rate of change of y with respect to x? In what 
units could this rate be expressed? 

55. x = amount of fuel used; y = distance driven in 
an automobile. 

56. x = distance driven in an automobile; y = 

amount of fuel used. 
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57. x = amount of fuel purchased; y = amount of 
money paid for fuel. 

58. x = distance driven in an automobile; y = 

amount of money paid for fuel. 

59. The cost c of fuel for driving, measured in cents 
per kilometer, can be written as the product 
c = rp, where r is the fuel consumption rate in 
liters per kilometer and p is the price of fuel in 
cents per liter. If r andp  depend on time (the car 
deteriorates, price fluctuates), so does c. The 
rates of change are connected by the product 
rule 

Interpret in words each of the terms on the 
right-hand side of this equation, and explain why 
dc/dt should be their sum. 

60. If f(x) represents the cost of living at time x, 
then f'(x) > 0 means that there is inflation. 
(a) What does f "(2) > 0 mean? 
(b) A government spokesman says, "The rate at 

which inflation is getting worse is decreas- 
ing." Interpret this statement in terms of 
f'(x), fl'(x), and f"'(x). 

61. Let y = 4x2 - 2x + 7. Compute the average rate 
of change of y with respect to x over the interval 
from x, = 0 to x ,  = Ax for the following values 
of Ax: 0.1,0.001,0.000001. Compare with the 
derivative at x, = 0. 

62. Repeat Exercise 61 with Ax = -0.1, -0.001, 
and - 0.00000 1. 

63. Find the average rate of change of the following 
functions on the given interval. Compare with 
the derivative at the midpoint. 
(a) f(x) = (X - +)(x + 1) between x = - + and 

x = 0. 
(b) g(t) = 3(t + 5)(t - 3) on [2,6]. 
(c) h( r )=  10r2-3r+6on[-0.1,0.4].  
(d) r(t) = (2 - t)(t + 4); t in [3,7]. 

64. (a) Let y = ax2 + bx + c, where a ,  b, and c are 
constant. Show that the average rate of 
change of y with respect to x on any interval 
[xI ,x2]  equals the instantaneous rate of 
change at the midpoint; i.e., at (x, + x2)/2. 

(b) Let f(x) = ax2 + bx + c, where a, b, and c 
are constant. Prove that, for any x,, 

f(x)  =f(xo) + f '(m>(x - xo> 

where m = (x + x,)/2. 
65. The length I and width w of a rectangle are 

functions of time given by 1 = (3 + t2 + t3) centi- 
meters and w = (5 - t + 2t2) centimeters at time 
t (in seconds). What is the rate of change of area 
with respect to time at time t? 

66. If the height and radius of a right circular cylin- 

der are functions of time given by h = (1 + t2 + 
t3 + t4) centimeters and r = (1  + 2t - t2 + t5) 
centimeters at time t (in seconds), what is the 
rate of change with respect to time of the lateral 
surface area, i.e., the total surface area minus the 
top and bottom? 

67. Let f(t) = 2t2 - 5t + 2 be the position of object 
A and let h ( t )  = -3t2 + t + 3 be the position of 
object B. 
(a) When is A moving faster than B? 
(b) How fast is B going when A stops? 
(c) When does B change direction? 

68. Repeat Example 7 with the same data but with 
the following two conventions changed. First, the 
origin is now chosen at a point 20 meters above 
the bridge. Second, we designate down as "+" 
and up as "-" rather than vice versa. 

69. For which functions f(x) = ax2 + bx + c is the 
second derivative equal to the zero function? 

70. How do the graphs of functions ax2 + bx + c 
whose second derivative is positive compare with 
those for which the second derivative is negative 
and those for which the second derivative is 
zero? 

71. A particle is said to be accelerating (or decelerat- 
ing) if the sign of its acceleration is the same as 
(or opposite to) the sign of its velocity. (a) Let 
f(t) = - t 3  be the position of a particle on a 
straight line at time t. When is the particle accel- 
erating and when is it decelerating? (b) If the 
position of a particle on a line is given as a 
quadratic function of time and the particle is 
accelerating at time to, does the particle ever 
decelerate? 

72. One summer day in Los Angeles, the pollution 
index at 7:00 AM was 20 parts per milion, in- 
creasing linearly 15 parts per million each hour 
until 5:00 PM. Let y be the amount of pollutants 
in the air x hours after 7:00 AM. 

(a) Find a linear equation relating y and x. 
(b) The slope is the increase in pollution for 

each hour increase in time. Find it. 
(c) Find the pollution level at 5:00 PM. 

73. Straight-line depreciation means that the differ- 
ence between current value and original value is 
directly proportional to the time t. Suppose a 
home office is presently furnished for $4000 and 
salvaged for $500 after ten years. Assume 
straight line depreciation. 
(a) Find a linear equation for the value V of the 

office furniture after t years, for tax pur- 
poses. 

(b) The slope of the line indicates the decrease 
in value each year of the office furniture, to 
be usedfin preparing a tax return. Find it. 
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*74. Suppose that the acceleration of an object is 
constant and equal to 9.8 meters/second2 and 
that its velocity at time x = O is 2 meters/second. 
(a) Express the velocity as a function of x. 
(b) What is the velocity when x = 3? 
(c) Express the position y of the object as a 

function of x, if y = 4 when x = 0. 
(d) How far does the object travel between 

x = 2 and x = 5? 

it75. Let 

f x )  x < O .  
x ,  x > o .  

(a) Sketch a graph of f(x). 
(b) Find f'(x). Sketch its graph. 
(c) Find f "(x) for x f 0. Sketch its graph. What 

happens when x = O? 
(d) Suppose that f(x) is the position of an object 

at time x. What might have happened at 
x = O? 

2.2 The Chain Rule 
The derivative of f(g(x)) is a product of derivatives. 

None of the rules which we have derived so far tell us how to differentiate 
JE = (x3 - 5)'12. The chain rule will. Before deriving this rule, though, 
we shall look at what happens when we differentiate a function raised to an 
integer power. 

If g(x) is any function, we can use the product rule to differentiate 
[ g(x)12: 

If we write u = g(x), this can be expressed in Leibniz notation as 

In the same way, we may differentiate u3: 

Similarly, (d/dx)(u4) = 4u3(du/dx) (check it yourself); and, for a general 
positive integer n, we have (dldx) un = nun-' (duldx). (This may be formally 
proved by induction-see Exercise 52.) 

To differentiate the nth power [g(x)r  of a function g(x), where n is a 
positive integer, take out the exponent as a factor, reduce the exponent 
by 1, and multiply by the derivative of g(x): 

( gn)'(x) = nII g(x) In-'g'(x)* 

If u = x, then duldx = I ,  and the power of a function rule reduces to the 
ordinary power rule. 

Copyright 1985 Springer-Verlag. All rights reserved.



2.2 The Chain Rule 111 

A common mistake made by students in applying the power of a function rule 
is to forget the extra factor of gf(x)-that is, du/dx. 

Example 1 Find the derivative of [g(x)13, where g ( x )  = x4 + 2x2, first by using the power 
of a function rule and then by expanding the cube and differentiating directly. 
Compare the answers. 

Solullon By the power of a function rule, with u = x4 + 2x2 and n = 3, 

If we expand the cube first, we get ( x 4  + 2 ~ ~ ) ~  = xI2 + 6xI0 + 12x8 + 
8x6, SO 

= 12x" + 60x9 + 96x7 + 48x5. 
To compare the two answers, we expand the first one: 

which checks. A 

Example 2 Find d (s4 + 2s3 + 3)8 
ds 

Solution We apply the power of a function rule, with u = s4 + 2s3 + 3 (and the variable 
x replaced by s): 

= 8(s4 + 2s' + 3)7(4s3 + 6s'). 

(You could also do this problem by expanding the eighth power and then 
differentiating; obviously, this practice is not recommended.) A 

Example 3 If y = ( x 2  + 1 ) 2 7 ( ~ 4  + 3x + find the rate of change of y with respect to x .  

Solution First of all, by the power of a function rule, 

and 

d 8 7 - ( x 4  + 3x + 1 )  = 8(x4 + 3x + I )  (4x3 + 3) 
dx 

Thus, by the product rule, the rate of change of y with respect to x is 

+ ( x i  + I ) ~ ~ .  8(x4 + 3x + 1)~(4x '  + 3). 

To simplify this, we can factor out the highest powers of x2 + 1 and x4 + 
3x + 1 to get 

( x i  + 1 ) 2 6 ( ~ 4  + 3x + 1 ) ~ [ 2 7  2 x ( x 4  + 3x + I )  -+ ( x 2  + 1) . 8(4x3 + 3 ) ] .  

We can consolidate the expression in square brackets to a single polynomial of 

Copyright 1985 Springer-Verlag. All rights reserved.



112 Chapter 2 Rates of Change and the Chain Rule  

degree 5, getting 2(x2 + 1)26(~4 + 3x + 1)'(43x5 + 16x3 + 93x2 + 27x + 12) 
as our rate of change. [Note: Consult your instructor regarding the amount of 
simplification required.] A 

The power of a function rule is a special case of an important differentiation 
rule called the chain rule. To understand this more general rule, we begin by 
noting that the process of forming the power [g(x) r  can be broken into two 
successive operations: first find u = g(x), and then find f(u), where y = f(u) 
= un. The chain rule will help us to differentiate any function formed from 
two functions in this way. 

If f and g are functions defined for all real numbers, we define their 
composition to be the function which assigns to x the number f(g(x)). The 
composition is often denoted by f 0 g. Thus (f 0 g)(x) = f(g(x)). To evaluate 
y = (f 0 g)(x), we introduce an intermediate variable u and write u = g(x) and 
y = f(u). To evaluate y, we substitute g(x) for u in f(u). (If f(x) and g(x) are 
not defined for all x, then (f 0 g)(x) is defined only when x is in the domain 
of g and g(x) is in the domain off.) 

Example 4 (a) If f(u) = u3 + 2 and g(x) = (x2  + I ) ~ ,  what is h = f 0 g? 
(b) ~ e t  f(x) =G and g(x) = x3 - 5. Find f 0 g and g 0 f. 

(c) Write I/- /[2 + (1 + x')~] as a composition of simpler functions. 

Solution (a) We calculate h(x) = f(g(x)) by writing u = g(x) and substituting in f(u). 
We get u = (x2 + 1)' and so 

The functions f 0 g and g 0 f a r e  certainly different. 
(c) Let g(x) = 1 + x2 and f(u) = &/(2 + u3). Then the given function can be 

written as f 0 g. A 

@ Gaflculator Discussion 
On electronic calculators, several functions, such as l / x ,  x2, 6, and sinx, are 
evaluated by the push of a single key. To evaluate the composite function f 0 g 
on x, you first enter x, then push the key for g to get g(x), then push the key 
for f to get f(g(x)). For instance, let f(x) = x2, g(x) = sinx. To calculate 
(f 0 g)(x) = f(g(x)) =  sin^)^ for x = 32 (degrees), we enter 32, then press the 
sin key, then the x2 key. The result is 32 + 0.52991926 + 0.2808 1442. Notice 
that ( g  0 f)(x) = sin(x2) is quite different: entering 32 and pressing the x2  key 
followed by the sin key, we get 3 2 3  10243  -0.82903756. A 

Do not confuse the composition of functions with the product. We have 

(fs)(x> = f ( x >  g(x>7 

while 

( f  o g>(x>=  f (  g(x)). 
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In the case of the product we evaluate f(x) and g(x) separately and then 
multiply the results; in the case of the composition, we evaluate g(x) first and 
then apply f to the result. While the order off and g does not matter for the 
product, it does for composition. 

The composition f 0 g is obtained by writing u = g(x) and evaluating 
f(u). To break up a given function h(x) as a composition, find an 
intermediate expression u = g(x) such that h(x) can be written in terms 

The derivative of a composite function turns out to be the product of the 
derivatives of the separate functions. The exact statement is given in the 
following box. 

To differentiate a composition f(g(x)), differentiate g at x, differentiate f 
at g(x), and multiply the results: 

(f O g)'(x> = f'( g(x)) . g'(x). 

In Leibniz notation, 

A complete proof of the chain rule can be given by using the theory of limits 
(see Review Exercise 99, Chapter 11). The basic argument, however, is simple 
and goes as follows. If x is changed by a small amount Ax and the 
corresponding change in u = g(x) is Au, we know that 

Corresponding to the small change Au is a change Ay iny  = f(u), and 

d~ . AY f'(u) = - = lim - . 
du AU+O Au 

To calculate the rate of change dy/dx, we write 

In going to the second line, we replace Ax 4 0  by Au -+0 because the 
differentiable function g is continuous, i.e., Ax -+ 0 implies Au -+ 0, as we saw 
in Section 1.3. 

There is a flaw in this proof: the Au determined by Ax could well be zero, 
and division by zero is not allowed. This difficulty is fortunately not an 
essential one, and the more technical proof given in Chapter 11 avoids it. 

Notice that the chain rule written in Leibniz notation is closely related to 
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our argument and is easy to remember. Although du does not really have an 
independent meaning, one may "cancel" it informally from the product 
(dy /du)  ( d u l d x )  to obtain dy/dx .  

A physical model illustrating the chain rule is given at the end of this 
section. 

Example 5 Verify the chain rule for f ( u )  = u2 and g ( x )  = x 3  + 1. 

Solution Let h ( x )  = f ( g ( x ) )  = [ g ( ~ ) ] 2  = ( x 3  + 1)2  = x6 + 2x3 + 1. Thus h l ( x )  = 6 x 5  + 
6x2.  On the other hand, since f ' (u)  = 2u and gt (x )  = 3x2,  

I3ence the chain rule is verified in this case. A 

Let us check that the power of a function rule follows from the chain rule: If 
y = [ g ( x ) r ,  we may write u = g(x ) ,  y  = f (u )  = u ". Since dy/du = nu "- ', the 
chain rule gives 

This calculation applies to negative or zero powers as well as positive ones. 
Thus the power of a  function rule holds for all integer powers. 

Example 6 Let f ( x )  = 1/[ (3x2  - 2x  + 1)Io0] .  Find f '(x). 

Solullon We write f ( x )  as (3x2  - 2x  + 1)-loo. Thus 

The chain rule also solves the problem which began the section. 

Example 7 Differentiate Jx3  - 5 . 

Solution In Example 4(b) we saw that JE = li'E; if u = x 3  - 5.  Thus, if y = J/n 
= 6 ,  then dyldu  = 1 / 2 6  (Example 4, Sect. 1.3), and du/dx  = 3x2,  so 

Example 8 If h ( x )  = f (x2) ,  find a formula for h'(x).  Check your formula in the case 
f (u )  = u3. 

Solution Let u = g ( x )  = x2,  so h ( x )  = f(u).  Then h t ( x )  = f '(u) . gr(x)  = f '(x2) - 2x. 
Thus h'(x) = f ' ( x2)  . 2 x .  

If f (u )  = u3, then f ' (u)  = 3u2 and f ' (x2)  = 3x4. Thus, h'(x)  = 3x4 2 x  
= 6x5.  In fact, h ( x )  = ( x ~ ) ~  = x6 in this case, so differentiating h directly gives 
the same result. A 

Example 9 Use the chain rule to differentiate f ( x )  = ( ( x 2  + 1)20 + I ) ~ .  (Do not expand!) 

Solullon Let u = ( x 2  + 1)20 + 1 and y = u4, s o y  = f (x ) .  By the chain rule, 

20 

To calculate du /dx  we use the chain rule again (or the power of a function 
rule): 
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Thus 

The following examples require us to translate words into equations before 
using the chain rule. 

Example 10 The population of Thin City is increasing at the rate of 10,000 people per day 
on March 30, 1984. The area of the city grows to keep the ratio of 1 square 
mile per 1000 people. How fast is the area increasing per day on this date? 

Solution Let A = area, p = population, t = time (days). The rate of increase of area 
with respect to time is dA /dt = (dA /dp)(dp/dt) = & . 10000 = 10 square 
miles per day. A 

Example 11 A dog 2 feet high trots proudly away from a 10-foot-high light post, 
When he is 8 feet from the post's base, ko iS maQxfig a* 

3 Gee% per SCCDD&- \iaw .Fa%.% t% 4 2 ~ ~  &Lp 05 kki shdclc~ r n o ~ " y ?  

Solution Refer to Fig. 2.2.1. By similar triangles, y / (y  - x) = 10/2; solving, y = 5x/4. 
Then dy /dl = (dy /dx)(dx/ dt) = ($)3 = 3 3 feet per second. A 

Figure 2.2.1. Dog trotting 
proudly away from lamp 
post. 

Figwe 2-2.2. The geometric 
interpretation of the 
shifting rule. 

Another special case of the chain rule may help you to understand it. 
Consider h(x) = f(x + c), c a constant. If we let u = g(x) = x + c, we get 
g'(x) = 1, so 

h'(x) = f'(g(x)) . gf(x) = f'(x + c) . 1 = f'(x + c). 

Note that the graph of h is the same as that off except that it is shifted c 
units lo the left (see Fig. 2.2.2). It is reasonable, then, that the tangent line to 
the graph of h is obtained by shifting the tangent line to the graph off. Thus, 
in this case, the chain rule is telling us something geometrically obvious. One 
might call this formula the shifting rule. In Lcibniz notation it reads 
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Supplement to SectEon 2.2 
A Physical Model lor the Chain Rule 

When you change altitude rapidly, as in a moving car or plane, a pressure 
difference develops between the inside and outside of your eardrums, and 
your ears "pop." Three variables relevant to this phenomenon are the time t ,  
the altitude u,  and the air pressure p. Ear popping occurs when the rate of 
change dp/dt  is too large. 

The rate dp/d t  is hard to measure directly. On the other hand, du/d t  can 
be determined if we know the altitude as a function of t. For instance, if we 
are rolling down a hill at 100 kilometers per hour, we could have du/d t  = - 3 
meters per second. The rate of change d p l d u  is known to meteorologists; near 
sea level, it is about -0.12 gsc per meter. (The unit "gsc" of pressure is 
"grams per square centimeter"; the rate of change is negative because pressure 
decreases as altitude increases.) 

Now the chain rule enables us to calculate how fast the pressure is 
changing with time: 

9 = 2 . = (-0.12)(- 3) gsc per second = 0.36 gsc per second. 
dt du dt 

This rate of pressure increase is fast enough so that the ears' internal pressure 
control system cannot keep up with it, and they "pop." 

Exercises for Section 2.2 
Find the derivatives of the functions in Exercises 1-10. 

I .  ( x  + 3)4 
2. ( ~ 2  + 3 ~  + 1)5 
3. ( x 3  + 1 0 ~ ) ~ ~  
4. (s4 + 4s3 + 3s2 + 2s + 
5. ( x 2  + 8 x p . x  
6. ( x 2  + 2 ) 3 ( ~ 9  + 8) 
7 .  ( ~ 2  + 2 ) ( ~ 9  + 8)3 
8. ( ~ 3  + 2 ) 9 ( ~ *  + 2 ~  + i)1° 
9. ( y  + U3(y  + 2I2(y + 3) 

10. ( ( x2  - 112 + 3)'O 

11. Let g ( x )  = x  + 1 and f ( u )  = u2. Find f  0 g  and 

g  
12. Let h ( x )  = x~~ + 3xI2 + 1 .  Write h ( x )  as a com- 

posite function f ( g ( x ) )  with g ( x )  = x  1 2 .  

Find f  0 g  and g  0 f i n  each of Exercises 13-16. 
13. g ( x )  = ~ 3 ;  f ( ~ )  = ( X  - 2)3. 
14. g ( x )  = x " ;  f ( x )  = x m .  

1 15. g ( x )  = - 1 ; f ( x )  = - o x .  
1 - x  
3x  - 2  16. g ( x )  = - 2x - 7  
4 x  + 1 ; f ( x )  = - 9 x + 3 '  

Write the functions in Exercises 17-20 as compositions 
of simpler functions. 

17. h ( x )  = J4x3 + 5x  + 3  . 

18. h ( r )  =JI+J;. 

20. h ( x )  = ( ( x2  + 1 )  + ( x 2  + I ) ~  + 112. 

Verify the chain rule for f (u)  and g ( x )  given in Exer- 
cises 2  1-24. 

21. f ( u )  = u2, g ( x )  = x2  - 1 
22. f (u)  = u3, g ( x )  = x  + 1 
23. f ( u )  = u2, g ( x )  = 6 
24. f (u)  = 6, g ( x )  = x 2  

Use the chain rule rule to differentiate the functions in 
Exercises 25-34. 

25. ( x 2  - 6 x  + 1)3 26. ( X  - 2 ~ ~ ) ~  
9  + 2 ~ 5  27. - 28. 1 
3  + 5x5 ( x 3  + 5Xl4 

29. ( ( x 2  + 2)' + 1)2 30. 3  
[ ( x  + 2)' + 414 

( x 2  + 3)5 
31. 32. 2 [(2x + + 51 

[ l  + ( x 2 +  3)18 2x + I 

35. If h ( x )  = x3S(2x2), find a formula for hl(x) .  
36. If h ( x )  = f ( g ( x2 ) ) ,  find a formula for h'(x). 
37. Given three functions, f, g, and h:  

(a) Wow would you define the composition 
f o g o h ?  

(b) Use the chain rule twice to obtain a formula 
for the derivative off 0 g  0 h. 

38. If h ( x )  = f ( g ( x 3  + 2)) + g( f (x2) ) ,  find a formula 
for hf (x) .  

39. Fat City occupies a circular area 10 miles in 
diameter and contains 500,000 inhabitants. If the 
population is growing now at the rate of 20,000 
inhabitants per year, how fast should the diame- 
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ter be increasing now in order to maintain the 
circular shape and the same population den- 
sity (= number of people per square mile). If 
the population continues to grow at the rate of 
20,000 per year, how fast should the diameter be 
increasing in 5 years? Give an intuitive explana- 
tion of the relation between the two answers. 

40. The radius at time t of a sphere S is given by 
r = t2  - 2t + 1. How fast is the volume V of S 
changing at time t = f ,  1,2? 

41. The kinetic energy K of a particle of mass m 
moving with speed u is K = f mu2. A particle 
with mass 10 grams has, at a certain moment, 
velocity 30 centimeters per second and accelera- 
tion 5 centimeters per second per second. At 
what rate is the kinetic energy changing? 

42. (a) At a certain moment, an airplane is at an 
altitude of 1500 meters and is climbing at 
the rate of 5 meters per second. At this 
altitude, pressure decreases with altitude at 
the rate of 0.095 gsc per meter. What is the 
rate of change of pressure with respect to 
time? 

(b) Suppose that the airplane in (a) is descend- 
ing rather than climbing at the rate of 5 
meters per second. What is the rate of 
change of pressure with respect to time? 

43. At a certain moment, your car is consuming 
gasoline at the rate of 15 miles per gallon. If 
gasoline costs 75 cents per gallon, what is the 
cost per mile? Set the problem up in terms of 
functions and apply the chain rule. 

44. The price of eggs, in cents per dozen, is given by 
the formula p = 55/(s - where s is the sup- 
ply of eggs, in units of 10,000 dozen, available to 
the wholesaler. Suppose that the supply on July 
1, 1986 is s = 2.1 and is falling at a rate of 0.03 
per month. How fast is the price rising? 

45. If an object has position (t2 + 4)' at time t, what 
is its velocity when t = - I ?  

46. If an object has position (t2 + l)/(t2 - 1) at time 
t, what is its velocity when t = 2? 

Find the second derivatives of the functions in Exer- 
cises 47-50. 

47. (X + 1113 
48. (x3 - I)' 
49. ( ~ 4  + lox2 + 119' 
50. (x2 + 113(x3 + 1)' 

+51. (a) Find a "stretching rule" for the derivative of 
~ ( c x ) ,  c a constant. 

(b) Draw the graphs of y = 1 + x2  and of y = 
1 + ( 4 ~ ) ~  and interpret the stretching rule 
geometrically. 

+52. Prove that (d/dx)(un) = n u n ' d u / d x  for all nat- 
ural numbers n as follows: 
(a) Note that this is established for n = 1,2,3 at 

the beginning of this section. 
(b) Assume that the result is true for n - 1, and 

write un = u(un-').  Now differentiate using 
the product rule to establish the result for n. 

(c) Use induction to conclude the result for 
all n. (See Exercise 65, p. 69.) 

*53. Find a general formula for (d2/dx2)(un), where 
u = f(x) is any function of x. 

s54. (a) Let i be the "identity function" i(x) = x. 
Show that i 0 f = f and f 0 i = f for any function 
f. (b) Verify the chain rule for f = f 0 i. 

*55. Let f and g be functions such that f 0 g = i, 
where i is the function in Problem 54. Find a 
formula for f'(x) in terms of the derivative of g. 

*56. Use the result of Exercise 55 to find the deriva- 
tive of f(x) = 3& by letting g(x) = x3. 

*57. Find a formula for the second derivative off 0 g 
in terms of the first and second derivatives o f f  
and g. 

*58. Show that the power of a function rule for nega- 
tive powers follows from that rule for positive 
powers and the reciprocal rule. 

*59. For reasons which will become clear in Chapter 
6, the quotient f'(x)/ f(x) is called the logarithmic 
derivative of f(x). 
(a) Show that the logarithmic derivative of the 

product of two functions is the sum of the 
logarithmic derivatives of the functions. 

(b) Show that the logarithmic derivative of the 
quotient of two functions is the difference of 
their logarithmic derivatives. 

(c) Show that the logarithmic derivative of the 
nth power of a function is n times the loga- 
rithmic derivative of the function. 

(d) Develop a formula for the logarithmic deriv- 
ative of 

in terms of the logarithmic derivatives of f l  

through S, . 
(e) Using your formula in part (d), find the 

ordinary (not logarithmic) derivative of 

If you have enough stamina, compute f'(x) 
without using the formula in part (d). 

*60. Differentiate ( 1  + (1 + (1 + x~)')~)'. 
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2.3 Fractional Powers and 
Implicit Differentiation 
The power rule still holds when the exponent is a  fraction. 

In this section we extend the power rule to include fractional exponents by 
using a method called implicit differentiation, which can be applied to many 
other problems as well. 

Let us begin by trying to find dy /dx  when y  = x ' j n  = " 6 ,  where n  is a 
positive integer.' At the moment, we shall simply assume that this derivative 
exists and try to calculate its value. This assumption will be justified in Section 
5.3, in connection with inverse functions. 

We may rewrite the relation y = x ' l n  as y n  = x ,  so we must have 

d  d  - ( y " )  = - ( x ) .  
dx dx 

Recalling that y is a function of x ,  we may evaluate the left-hand side of (1) 
by the chain rule (or the power of a function rule) to get 

The right-hand side of (1) is simply 

- -  dx - 1 .  
dx 

Substituting (2)  and (3) into ( I )  gives 

which we may solve for dy /dx  to obtain 

Thus 

Note that this rule reads the same as the ordinary power rule: "Bring down 
the exponent as a multiplier and then decrease the exponent by one." The 
special case ( d / d x ) ( x ' l 2 )  = 4 x - ' l 2  has already been considered in Example 
4, Section 1.3. 

Example 1 Differentiate f ( x )  = 3 5& 

d  d  Solution -35&= dx 3-x1/5= dx 3X(1/5)-1 5 = 3 x - 4 / 5 =  5  3 
5x4/5 . 

Next, we consider a general rational power f ( x )  = x r ,  where r = p / q  is a ratio 
of integers. Thinking of X P / ~  as (x1/4)p,  we set g ( x )  = x l / q ,  so that f ( x )  
= [g (x ) JP .  Then, by the (integer) power of a function rule, 

'Note that x ' / "  is defined for all x if n is odd but only for nonnegative x if n is even. A brief 
review of fractional exponents may be found in Section R.3. 
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so by formula ( 4 )  with 1 / n  replaced by 1 / q ,  we have 

- - - P x c ~ - I ) / ~ x ( I - 4 ) / ~  = P x ( p - 4 ) / 4  = P x ( p / 4 ) - 1 .  

4  4  4  
We conclude that differentiation of rational powers follows the same rule 

as integer powers. 

(The formula is valid for all x  for which the right-hand side makes 

Example 2 Differentiate f ( x )  = 3 x 2  + ( x 2  + x ' / ~ ) / & .  

d  Solution ~ ' ( x )  = - (3x2  + x3 j2  + x - ' : ~ )  
dx 

We can combine the rational power rule with the chain rule to prove a 
rational power of a function rule. Let y = [ f ( x ) y  and let u = f ( x )  so that 
y = u r .  Then 

To differentiate a power [ f(x)]' ( r  a rational number), take out the 
exponent as a factor, reduce the exponent by 1, and multiply by f ' (x ) :  

Example 3 Differentiate g ( x )  = (9x3  + 1 0 ) ~ / ~ .  

Solution Here f ( x )  = 9 x 3  + 10, r = 3 ,  and f ' (x )  = 27x2. Thus 

2 / 3  
g r ( x )  = 3 ( 9 x 3  + 1 0 ) ~ ' ~ .  27x2 = 45x2(9x3 + 10) . A 

The rules for rational powers can be combined with the quotient rule of 
differentiation, as in the next example. 

Copyright 1985 Springer-Verlag. All rights reserved.



120 Chapter 2 Rates of Change and the Chain Rule 

,y 1/2 + x3/2 
Example 4 Differentiate 

x3/2  + 1 

Solution We use the quotient and rational power rules: 

The method which we used to differentiate y = x ' / " ,  namely differentiating 
the relation y n  = x and then solving for dy/dx,  is called implicit differentiation. 
This method can be applied to more complicated relationships such as 
x2  + y 2  = 1 or x4 + xy + y5 = 2 which define y as a function of x implicitly 
rather than explicitly. In general, such a relationship will not define? uniquely 
as a function of x; it may define two or more functions. For example, the 
circle x2 + y2 = 1 is not the graph of a function, but the upper and lower 
semicircles are graphs of functions (see Fig. 2.3.1). 

Figure 2.3.1. Parts of the 
circle x2 + Y 2  = 1 are the 
graphs of functions. 

Example 5 If y = f(x) and x2 + y2 = 1, express dy/dx in terms of x and y .  

Solution Thinking of y as a function of x,  we differentiate both sides of the relation 
x2 + y2 = 1 with respect to x.  The derivative of the left-hand side is 

while the right-hand side has derivative zero. Thus 

The result of Example 5 can be checked, since in this case we can solve for y 
directly: 

Notice that the given relation then defines two functions: fl(x) = J1 - x2  and 

Copyright 1985 Springer-Verlag. All rights reserved.



2.3 Fractional Powers and Implicit Differentiation 121 

f2(x)  = - J-. Taking the plus case, with u = 1 - x2 and y = &, the 
chain rule gives 

dY - dY du 1 - -___--  - --(-2x1 
dx d u d x  2& 

so it checks. The minus case gives the same answer. 
From the form of the derivative given by implicit differentiation, dy/dx 

= - x / y ,  we see that the tangent line to a circle at (x,  y )  is perpendicular to 
the line through (x ,  y)  and the origin, since their slopes are negative recipro- 
cals of one another. (See Fig. 2.3.2.) Implicit differentiation often leads 
directly to such striking results, and for this reason it is sometimes preferable 
to use this method even when y could be expressed in terms of x. 

Figure 2.3.2. If x2 + y2 = I ,  
the formula dyldx = 

- x / y  means that the 
tangent line to a circle at  a 
point on the circle is 
perpendicular to the line 
from that point to the 
center of the circle. I 

There is a device which may help you to remember that the chain rule 
must be used. In Example 5, if we keep the notation f ( x )  for y ,  then the 
relation x2 + y 2  = 1 becomes x2 + [f(x)I2 = 1 ,  and differentiating with respect 
to x gives 2x + 2f(x)f'(x) = 0. Now we solve for f ' (x)  to get f ' (x)  = - x / f ( x )  
or, in Leibniz notation, dy/dx = - x / y ,  just as before. Once you have done a 
few examples in this long-winded way, you should be able to go back toy and 
dy/dx without the f. 

The following is an example in which we cannot solve for y in terms of x. 

Example 6 Find the equation of the tangent line to the curve 2x6 + y 4  = 9xy at the point 
(L2).  

Solution We note first that (1,2) lies on the curve, since 2 ( 1 ) ~  + 24 = 9(1)(2). Now 
suppose that y = f ( x )  and differentiate both sides of the defining relation. The 
left-hand side gives 

while the right-hand side gives 

Equating both sides and solving for dy/dx, we have 
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When x = 1 and y  = 2, 

Thus, the slope of the tangent line is &; by the point-slope formula, the 
equation of the tangent line is y - 2 = &(x - I), or ,y = A X  + 40. 23 23 

To calculate d y / d x  if x and y are related by an equation: 

1. Differentiate both sides of the equation with respect to x,  thinking of 
y  as a function of x and using the chain rule. 

2. Solve the resulting equation for d y l d x .  

Exercises far Section 2.3 
Differentiate the functions in Exercises 1-24. 

1. 2. x3/5 
3. g x ' / 4  - x - 2 / 3  4. 8 ~ 4  - 3~ - 5 / 4  

5.  3 ~ ~ / ~  - (5x) ' l2  6. x2  - 3 x i i 2  
7. x2(x'13 + x4 l3 )  8. ( x  + 2 l 3 I 2 m  

9. ( x 5  + I ) ~ / ~  10. ( x i / '  + x ~ / ' ) ' / ~  

Find the indicated derivatives in Exercises 25-28. 

where r is rational 
dx 

27. f'(7), where f ( x )  = 7 3\1;; 

Find the derivatives of each of the functions in Exer- 
cises 29-34. 1 

29. f ( x )  = x3/ "  - x i / '  30. k ( s )  = 

31. h ( y )  = - 32. g ( t )  = t ( t 2 I 3  + t7 )  
Y - 2  

35.  If x 2  + y 2  = 3, compute dy /dx  when x = O 
a n d y  =o. 

36. If x3 + y 3  = xy, compute dx/dy in terms of x 
and y .  

37. Suppose that x4 + y 2  + y - 3 = 0. 
(a) Compute dy/dx by implicit differentiation. 
(b) What is dy/dx when x = I ,  y = I ?  
(c) Solve for y in terms of x (by the quadratic 

formula) and compute dy/dx directly. Com- 
pare with your answer in part (a). 

38. Suppose that xy + 6 = 7. 
(a) Find dy/dx.  
(b)  Find dx/dy.  
(c) What is the relatlon between dy/dx and 

dx / dy ? 
39. Suppose that x 2 / ( x  + y 2 )  = y2 /2 .  

(a) Find dy/dx when x = 2, y = 0. 
(b)  Find dy/dx when x = 2, y = - Q. 

40. Let (u2  + 6)(u2 + 1)  = IOuu. Find du/du and 
dv/du when u = 2 and u = 1. 

41. Find the equation of the tangent line to the curve 
x 4 + y 4 = 2 w h e n x = y =  1. 

42. Find the equation of the tangent line to the curve 
2 x 2 + 2 x y + y 2 = 8  w h e n x = 2 a n d y = 0 .  

43. Find ( d 2 / d ~ 2 ) ( x i / 2  - x2 i3) .  
44. Find ( d Z / d X 2 ) ( X / J G 7 ) .  
45. Find the equation of the tangent lice to the 

graph of y = d- at the point (0 /2 ,  1 /2) .  
46. Find the equation of the line tangent to y 

- - ( X ' / 2  + X ' / 3 ) ' / 3  at x =: 1, 
47. Let x4 + y 4  = 1. Find dy/dx as a function of x 

in two ways: by implicit differentiation and by 
solving for y in terms of x. 
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48. Differentiate the function (x3 + 2)/ Jx)+l in at 
least two different ways. Be sure that the answers 
you get are equivalent. (Doing the same problem 
in several ways is a good method for checking 
your calculations, useful on examinations as well 
as in scientific work.) 

Find linear approximations for the expressions in Exer- 
cises 49-52. 

49. 4~ 50. (4.0213/" 
51. ( -  26.98)'13 52. 2JIZZ 
53. The mass M of the first x meters of a concrete 

beam is M = 24(2 + ~ ' 1 ~ ) ~  k i log rams .  
Find the density dM/dx. 

54. The average pulse rate for persons 30 inches to 
74 inches tall can be approximated by y = 
589/& beats per minute for a person x inches 
tall. 
(a) Find dy/dx, and show that it is always 

negative. 
(b) The value of Idy/dxl at x = 65 is the de- 

crease in beats per minute expected for a 
1-inch increase in height. Explain. 

(c) Do children have higher pulse rates than 
adults according to this model? 

55. Let y = 2 4 6  be the learning curve for learning y 
items in x hours, 0 < x < 5. Apply the linear 
approximation to estimate the number of new 
items learned in the 12-minute period given by 
l < x g 1.2. 

56. The daily demand function for a certain man- 
ufactured good is p(x) = 75 + 4\12x - (x2/2), 
where x is the production level. 
(a) Find dp/dx. Interpret. 
(b) Find the production level x for which dp/dx - .  

= 0. Interpret. 
57. The fundamental period for vibration P and the 

tension T in a certain string are related by 
P = J31/-T seconds. Find the rate of change of 
period with respect to tension when T = 9 lbs. 

58. Lions in a small district in an African game 
preserve defend an exclusive region of area A 
which depends on their body weight W by the 
formula A = w ' . ~ ' .  
(a) Find dA /dW. 
(b) By what percentage should the defended 

area increase after a 200-lb lion undergoes a 
20-lb weight gain? (Use the linear approxi- 
mation.) 

59. The object distance x and image distance y sat- 
isfy the thin lens equation l / x  + l / y  = 1/f, 
where f is the focal length. 
(a) solve for y as a function of x when f = 50 

millimeters. 
(b) Find dy/dx. 
(c) Find all (x, y )  such that (d/dx)(x + y)  = 0. 

*60. Using implicit differentiation, find the equation 
of the tangent line at the point (x,, yo) on the 
circle (x - a)* + (y  - b12 = r2. Interpret your re- 
sult geometrically. (a ,  b, and r are constants.) 

2.4 Related Rates 
and ParametrSc Curves 
If two quantities satisb an equation, their rates of change can be related by 
implicit differentiation. 

Suppose that we have two quantities, x and y ,  each of which is a function of 
time t .  We know that the rates of change of x and y are given by dx /d t  and 
dy/dt .  If x and y satisfy an equation, such as x 2  + y2 = 1 or x 2  + y6 + 2y = 5 ,  
then the rates dx /d t  and dy/dt  can be related by differentiating the equation 
with respect to t and using the chain rule. 

Example d Suppose that x and y are functions of t and that x4  + xy + y4 = 1. Relate 
dx /d t  and dy/dt .  

Solution Differentiate the relation between x and y with respect to t ,  thinking of x and y 
as functions of t :  
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We can simplify this to 

which is the desired relation. A 

If you have trouble remembering to use the chain rule, you can use a device 
like that following Example 5 in Section 2.3. Namely, write f ( t )  for x  and g ( t )  
for y, then differentiate the relation (such as [f(t)14 + f ( t )g ( t )  + tg(t)l4 = 1)  
with respect to t. This will give a relation between f '( t) ,  gl(t) ,  f ( t ) ,  and g(t).  
Once you have done a few examples in this long-winded way, you should be 
ready to go back to the d/dt's. 

Y + I To relate the rates dx /d t  and dy/d t  if x  and y satisfy a given equation: I 
1. Differentiate both sides of the equation with respect to t ,  thinking of 

x  and y  as functions of t. 
2. Solve the resulting equation for dy/dt  in terms of dx/d t  (or vice versa 

I There is a useful geometric interpretation of related rates. (This topic is treated 

~i~ 2.4.1. ~f andy are in more detail in Section 10.4.) If x  and y are each functions of t ,  say x  = f ( t )  
functions of t ,  the point and y  = g(t) ,  we can plot the points ( x ,  y) for various values of t. As t  varies, 
(x, y) follows a curve as t the point ( x ,  y )  will move along a curve. When a curve is described this way, 
varies. it is called aparametric curve (see Fig. 2.4.1). 

Example 2 If x  = t4 and y = t2 ,  what curve does ( x ,  y )  follow for - w < t < oo? 
S~lul lsn We notice that y 2  = x ,  so the point ( x ,  y )  lies on a parabola. As t ranges from 

- w to w, y goes from + oo to zero and back to + w, so ( x ,  Y )  stays on the 
Y half of the parabola with y  > 0 and traverses it twice (see Fig. 2.4.2). A 

It may be possible to describe a parametric curve in other ways. For instance, 
it may be described by a relation between x  and y.  Specifically, suppose that 
the parametric curve x  = f ( t ) ,  y  = g( t )  can be described by an equation 
y = h ( x )  (the case x  = k ( y )  will be similar). Then we can differentiate by the 
chain rule. Using Leibniz notation: 

Figure 2.4.2. As t ranges d~ = d~ dx - dy , - dy / d l  
from - oo to + oo, the SO - 

dt dx dt dx dx /d t  ' 
point (t4, t2 )  traverses the 
parabola twice in the This shows that the slope of the tangent line to a parametric curve is given by 
directions shown. (dy /d t ) / ( dx /d t ) -  

As t  varies, two equations x = f ( t )  and y  = g( t )  describe a curve in the 
plane called a parametric curve. The slope of its tangent line is given by 
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Example 3 Find the equation of the line tangent to the parametric curve given by the 
equations x = (1 + t3)4 + t2,  y = t5  + t 2  + 2 at t = 1. 

Solution Here the relation between x  and y  is not clear, but we do not need to know it. 
(We tacitly assume that the path followed by ( x ,  y )  can be described by a 
function y  = h(x) . )  We have 

3 3 
= 4(1 + t 3 )  . 3t2 + 2r = I2(1 + t3 )  t2  + 2t and 3 = 5t4 + 21, 

dt dt 

so the slope of the tangent line is 

At t = 1, we get 

Since x  = 17 and y = 4 at t  = 1, the equation of the tangent line is given by 
the point-slope formula: 

y  - 4 = & ( x  - 17), 

Example 4 Show that the parametric equations x  = at + b and y  = ct + d describe a 
straight line if a and c are not both zero. What is its slope? 

Solution Multiplying x = U P  + b by c, multiplying y  = ct + d by a,  and subtracting, we 
get 

cx - ay = bc - ad, 

so y  = ( c / a ) x  + ( l / a ) (ad  - bc), which is the equation of a line with slope 
c / a .  (If a = 0, x  is constant and the line is vertical; if c were also zero the line 
would degenerate to a point.) Note that the slope can also be obtained as 
(dy /d t ) / ( dx /d t ) ,  since dy/dt  = c  and dx /d t  = a. a 

Example 5 Suppose that x and y  are functions of time and that ( x ,  y )  moves on the circle 
x2 + Y 2  = 1 .  If x is increasing at 1 centimeter per second, what is the rate of 
change of y  when x  = l / f i  and y  = 1/a? 

Solullow Differentiating x2  + y2 = 1 gives 2x (dx /d t )  + 2y(dy/dt)  = 0; so dy/d t  = 

(- x /y ) (dx /d t ) .  If x = y  = I / @ ,  dy/dt  = - dx /d t  = - 1 centimeter per sec- 
ond. A 

In word problems involving related rates, the hardest job may be to translate 
the verbal problem into mathematical terms. You need to identify the vari- 
ables which are changing with time and to find relations between them. If 
some geometry is involved, drawing a figure is essential and will often help 
you to spot the important relations. Similar triangles and Pythagoras' theorem 
are frequently useful in these problems. 

Example 6 A light L is being raised up a pole (see Fig. 2.4.3). The light shines on the 
object Q, casting a shadow on the ground. At a certain moment the light is 40 
meters off the ground, rising at 5 meters per minute. How fast is the shadow 
shrinking at that instant? 
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Solution Let the height of the light bey  at time t  and the length of the shadow be x .  By 
similar triangles, x /10  = ( x  + 20) /y ;  i.e., xy = 10(x + 20). Differentiating 
with respect to t ,  x (dy /d t )  + (dx /d t ) y  = 10(dx/dt). At the moment in ques- 
tion y = 4 0 ,  and so x . 4 0 =  lO(x+20)  or x = ? .  Also, dy/dt  = 5  and so 
9 - 5 + 40(dx/dt)  = lO(dx/dt). Solving for (dx /d t ) ,  we get dx/d t  = - 9. 
Thus the shadow is shrinking at 9 meters per minute. A 

Example 7 A spherical balloon is being blown up by a child. At a certain instant during 
inflation, air enters the balloon to make the volume increase at a rate of 50 
cubic centimeters a second. At the same instant the balloon has a radius of 10 
centimeters. Mow fast is the radius changing with time? 

Solution Let the radius of the balloon be denoted by r  and the volume by V .  Thus 
v = $ nr3 and so 

2 dr d!? = 477r - . 
dt dt 

At the instant in question, dV/d t  = 50 and r  = 10. Thus 

and so 

dr=A!L=-- - 0.04 centimeters per second. 
dt 40071 8n 

Example 8 A thunderstorm is dropping rain at the rate of 2 inches per hour into a conical 
tank of diameter 15 feet and height 30 feet. At what rate is the water level 
rising when the water is 20 feet deep? 

@ Solution Figure 2.4.4 shows top and side views of the partially filled tank, both of 
which will be useful for our solution. 

We denote by h the height of the water in the tank, so that dh/dt  is the 
rate to be found. To proceed, we need to use the fact that the rate of rainfall is 

1-l 5,- 2 inches per hour. What this means is that the water level in a cylindrical tank 
would rise uniformly at the rate of 2 inches per hour, so that the volume of the 
water pouring every hour into a circle of diameter 15 feet is TI  . (7.5)2 . cubic 
feet = 9 TI  cubic feet. It is useful, then, to introduce the variable V represent- 
ing the volume of water in the tank; we have dV/d t  = 75n /8  cubic feet per 
hour. 

Now V and h are related by the formula for the volume of a cone: 
V = 4 nr2h, where r  is the radius of the "base" of the cone, in this case, the 
radius of the water surface. From Fig. 2.4.4, we see, using similar triangles, 
that r / h  = 7.5/30 = 1 / 4 ,  so r  = + h, and hence V = & nh3. Differentiating 
and using the chain rule gives dV/d t  = &nh2dh/dt .  Inserting the specific 
data h = 20 and dV/d t  = TI  gives the equation n = & n .  400dh/dt = 

Figure 2.4.4. A conical 
tank partially filled with 25~1dh /d t ,  which we may solve for dh/dt  to get dh/dt = $. This is in feet per 

water. hour, so the water level is rising at the rate of 44 inches per hour. A 
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Exercises For Section 2.4 
In Exercises 1-8, assume that x and y are functions of 
t .  Relate dx/dt and dy/dt using the given relation. 

1. ~ 2 - ~ 2 = 3  2. x + y = 4  
3. x - Y 2 - Y 3 = 4  4. 8x2 + gy2 = 5 
5. x + Y 2 = Y  6. m = x  
7 . 6 - f i = 5  8. ( x 2  + Y2 + y3)3'2 = 5 

9. Sketch the curve defined by the parametric equa- 
t i o n s ~ =  t2, y =  1 - t, -oo < t < oo. 

10. Sketch the curve described by x = 3t  + 2, y 

11. What curve do the parametric equations x = t2 
and y = t6 describe? 

12. If x = (1 + t)2 and y = (1 + t14, what curve does 
(x, y )  follow for - co < t < co? 

13. Find the equation of the tangent line to the 
parametric curve x = t2, y = t3 at  t = 5. 

14. Find the equation of the line tangent to the 
parametric curve x = t2  + I, y = l / ( t4  + 1) at  
t = 2. 

15. Find the equation of the tangent line to the 
parametric curve 

at  t = 3. 
16. (a) Find the slope of the parametric curve y 

= t4 + 2t, x = 8t at  t = 1. 
(b) What relationship between x and y is satis- 

fied by the points on this curve? 
(c) Verify that dy/dx = (dy/dt)/(dx/dt) for 

this curve. 
17. Suppose that xy = 4. Express dy/dt in terms of 

dx/dt when x = 8 and y = f . 
18. I f  x 2  + y2 = x5/y and dy/dt = 3 when x = 

y =\/Z, what is dx/dt a t  that point? 
19. Suppose that x 2  + y2 = t and that x = 3, y = 4, 

and dx/dt = 7 when t = 25. What is dy/dt a t  
that moment? 

20. Let x and y depend on t in such a way that 
( x + ~ ) ~ +  t 2 = 2 t  and such t h a t x = O a n d y =  1 
when t = I .  If dx/dt = 4 at  that moment, what is 
dy/dt? 

21. The radius and height of a circular cylinder are 
changing with time in such a way that the vol- 
ume remains constant a t  1 liter (= 1000 cubic 
centimeters). If, a t  a certain time, the radius is 4 
centimeters and is increasing at  the rate of f 
centimeter per second, what is the rate of change 
of the height? 

22. A hurricane is dropping 10 inches of rain per 
hour into a swimming pool which measures 40 
feet long by 20 feet wide. 
(a) What is the rate at  which the volume of . , 

water in the pool is increasing? 
(b) If the pool is 4 feet deep at  the shallow end 

and 8 feet deep at  the deep end, how fast is 
the water level rising after 2 hours? (Suppose 
the pool was empty to begin with.) How fast 
after 6 hours? 

23. Water is being pumped from a 20-meter square 
pond into a round pond with radius 10 meters. 
At a certain moment, the water level in the 
square pond is dropping by 2 inches per minute. 
How fast is the water rising in the round pond? 

24. A ladder 25 feet long is leaning against a vertical 
wall. The bottom is being shoved along the 
ground, towards the wall a t  1 t feet per second. 
How fast is the top rising when it is 15 feet off 
the ground? 

25. A point in the plane moves in such a way that it 
is always twice as far from (0,O) as it is from 
(0,l).  
(a) Show that the point moves on a circle. 
(b) At the moment when the point crosses the 

segment between (0,O) and (0, l ) ,  what is 
dy / dt? 

(c) Where is the point when dy/dt = dx/dt? 
(You may assume that dx/dt and dy/dt are 
not simultaneously zero.) 

26. Two quantities p and q depending on t are 
subject to the relation I /p  + I / q  = 1. 
(a) Find a relation between dp/dt and dq/dt. 
(b) At a certain moment, p = $ and dp/dt = 2. 

What are q and dq/dt? 
27. Suppose the quantities x ,  y ,  and z are related by 

the equation x2  + Y2 + z2 = 14. If dx/dt = 2 and 
dy/dt = 3 when x = 2, y = 1, and z = 3, what is 
dz / dt? 

28. The pressure P, volume V, and temperature T of 
a gas are related by the law P V / T  = constant. 
Find a relation between the time derivatives of 
P, V, and T. 

29. The area of a rectangle is kept fixed a t  25 square 
meters while the length of the sides varies. Find 
the rate of change of the length of one side with 
respect to the other when the rectangle is a 
square. 

30. The surface area of a cube is growing at  the rate 
of 4 square centimeters per second. How fast is 
the length of a side growing when the cube has 
sides 2 centimeters long? 

+31. (a) Give a rule for determining when the tan- 
gent line to a parametric curve x = f(t), 
y = g(t)  is horizontal and when it is verti- 
cal. 

(b) When is the tangent line to the curve x = t2, 
y = t3 - t horizontal? When is it vertical? 

+32. (a) At which points is the tangent line to a 
parametric curve parallel to the line y = x?  

(b) When is the tangent line to the curve in part 
(b) of Exercise 3 1 parallel to the line y = x?  

(c) Sketch the curve of Exercise 3 1. 
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*33. Read Example 8. Show that for any conical tank, ing to the area of the water surface. (In fact, this 
the ratio of dhldt  to the rate of rainfall is equal result is true for a tank of any shape; see Review 
to the ratio between the area of the tank's open- Exercise 32, Chapter 9.) 

An antiderivative off is a function whose derivative is f. 

Many applications of calculus require one to find a function whose derivative 
is given. In this section, we show how to solve simple problems of this type. 

Example 1 Find a function whose derivative is 2 x  + 3. 

Solution We recall that the derivative of x 2  is 2 x  and that the derivative of 3 x  is 3, so 
the unknown function could be x 2  + 3 x .  We may check our answer by 
differentiating: ( d / d x ) ( x 2  + 3 x )  = 2 x  + 3. A 

The function x 2  + 3 x  is not the only possible solution to Example 1; so are 
x 2  + 3 x  + 1 ,  x 2  + 3 x  + 2, etc. In  fact, since the derivative of a constant 
function is zero, x 2  + 3 x  + C solves the problem for any number C. 

A function F for which F' = f is called an antiderivative off. Unlike the 
derivative, the antiderivative of a function is never unique. Indeed, if F is an  
antiderivative off, so is F + C for an arbitrary constant C. In Section 3.6 we 
will show that all the antiderivatives are of this form. For now, we take this 
fact for granted. We can make the solution of an antidifferentiation problem 
unique by imposing an extra condition on the unknown function (see Fig. 
2.5.1). The following example is a typical application of antidifferentiation. 

Figure 2.5.1. All these 
functions have the same 
derivative. Specifying 
F(xo)  =yo  picks out one of 
them. 

Example 2 The velocity of a particle moving along a line is 3t + 5 at time t .  At time 1 ,  the 
particle is at  position 4. Where is it at time lo? 

Solution Let F ( t )  denote the position of the particle at time t .  We will determine the 
function F. Since velocity is the rate of change of position with respect to time, 
we must have F'(t)  = 3t  + 5; that is, F is an antiderivative of f(t) = 3t  + 5. A 
function whose derivative is 3t is 4 t2 ,  since ( d / d t ) $  t 2  = 42t = 3t .  Similarly, a 
function whose derivative is 5 is 5t. Therefore, we take 

F ( t )  = i t 2  + 5t + C,  

where C is a constant to be determined. To find the value of C, we use the 
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information that the particle is at position 4 at time I ;  that is, F(1)  = 4 .  
Substituting 1 for t and 4 for F ( t )  in the equation F ( t )  = 3 t2  + 5t + C gives 

or C = - 3, and so F ( t )  = 3 t 2  + 5t - 4. Finally, we substitute 10 for t ,  
obtaining the position at time 10: F(10) = 2 - 100 + 5 . 10 - 4 = 197;. A 

At this point in our study of calculus, we must solve antidifferentiation 
problems by guessing the answer and then checking and refining our guesses if 
necessary. More systematic methods will be given shortly. 

Example 3 Find the general antiderivative for the function f ( x )  = x4 + 6 .  

Solution We may begin by looking for an antiderivative for x4.  If we guess x5,  the 
derivative is 5x4,  which is five times too big, so we make a new guess, + x5 ,  
which works. An antiderivative for 6 is 6 x .  Adding our two results gives 
i x5  + 6 x ;  differentiating 4 x5  + 6 x  gives x4 + 6 ,  so 4 x5 + 6 x  is an antideriv- 
ative for x4 + 6 .  We may add an arbitrary constant to get the general 
antiderivative 4 x5  + 6 x  + C .  A 

Example 4 The acceleration of a falling body near the earth's surface is 9.8 meters per 
second per second. If the body has a downward velocity v ,  at t = 0 ,  what is its 
velocity at time t? If the position is x ,  at time 0 ,  what is the position at time t? 
(See Fig. 2.5.2.) 

Solution We measure the position x in the downward direction. Let v be the velocity. 
Then d v / d t  = 9.8; since an antiderivative of 9.8 is 9.8t ,  we have v = 9.8t + C .  
At t = 0 ,  v = v,, so v ,  = (9.8)0 + C = C, and so v = 9.81 + v,. Now d x / d t  

Velocity = vo = v = 9.8t + v, .  Since an antiderivative of 9.8t is (9 .8 /2 ) t2  = 4.9t2 and an 
antiderivative of v ,  is v,t, we have x = 4.9t2 + uot + D .  At t = 0 ,  x = x,, so 

I 
I x ,  = 4.9(0)2 + v ,  . O + D = D, and so x = 4.9t2 + v,t + x,. A 

The most commonly used notation for the antiderivative is due to Eeibniz. 
The symbol 

f f ( x ) d x  
Figu~e 2.5.2. The body is J 

moving downward at 1 = 0 denotes the class of all antiderivatives off; thus, if F is a particular antideriv- 
with velocity vo. ative, we may write 

I f  ( x )  dx = F ( x )  + C,  

where C is an arbitrary constant. For instance, the result of Example 3 may be 
written 

1 I ( x 4 t 6 ) d x =  - x 5 + 6 x  + C .  
5 

The elongated S, called an integral sign, was introduced by Leibniz 
because antidifferentiation (also called integration) turns out to be a form of 
continuous Jummation. In Chapter 4 ,  we will study this aspect of integration 
in detail. There and also in the supplement to this section, we explain the 
presence of the "dx" in the notation. For now, we simply think of dx as 
indicating that the independent variable is x .  Its presence should also serve as 
a reminder that integrating is inverse to differentiating, where the dx occurs in 
the denominator of d y / d x .  

The function f ( x )  in J f ( x )  dx is called the integrand, and J f ( x )  dx is called 
the inde8nite integral of f (x ) .  One traditionally refers to f ( x ) d x  as being 
"under" the integral sign, even though this is typographically inaccurate. 
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An antiderivative for f  is a function F  such that F'(x)  = f ( x ) .  We write 

F ( x )  = J f ( x )  dx .  

The function J f ( x ) d x  is also called the indefinite integral off, and f  is 
called the integrand. 

If F ( x )  is an antiderivative of f (x ) ,  the general antiderivative has 
the form F ( x )  + C for an arbitrary constant C. 

Some of the differentiation rules lead directly to systematic rules for anti- 
differentiation. The rules in the following box can be proved by differentiation 
of their right-hand sides (see Example 5 below). 

Example 5 Prove the power rule + C  ( n #  -1)  
n + l  

Solution By definition, F ( x )  = J x n d x  is a function such that F f ( x )  = f ( x )  = x n .  I-low- 
ever, F ( x )  = [ x n +  ' / ( n  + l)] + C  is such a function since its derivative is 
F t ( x )  = ( n  + 1 )  . x  " +  ' - ' / ( n  + 1 )  = x  " ,  by the power rule for derivatives. A 

The exclusion n  # - 1 in the power rule arises because the formula 
x n + ' / ( n  + 1) makes no sense for n  = - 1 ;  the denominator is zero. (It turns 
out that l / x  = x - '  does have an antiderivative, but it is a logarithm function 
rather than a power of x .  We will study logarithms in Chapter 6.) 

Example 6 Find J 1 1 + 3x + 2  - 
x  ' 

8 $ + 3 x + 2 - -  
6 
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We write C only once because the sum of four constants is a constant. A 

Exampk 7 Find dx 
(3x  + I) ' .  

Solutlon We are looking for an antiderivative of 1 / ( 3 x  + 1)'. The power of a function 
rule suggests that we guess 1/(3x + I ) ~ .  Differentiating, we have 

Comparing with 1/ (3x  + I)', we see that we are off by a factor of - 12, so 

Using the same method as in Example 7, we find that 

where a  and b are constants, a  # 0, and n is a rational number, n # - 1. 

Example 8 Find I/+ dx. 

Solution By the formula for J(ax + b)"dx with a  = 3 ,  b  = 2, and n = +, we get 

Example 9 Find I xl-8 dx.  
x  - 2  

Solution Here we simplify first. Dividing x3 - 8  by x  - 2  gives ( x 3  - 8 ) / ( x  - 2)  
= x2  + 2x + 4. Thus 

Example 10 Let x  = position, v  = velocity, a  = acceleration, 1 = time. Express the relations 
between these variables by using the indefinite integral notation. 

Solution By the definitions of velocity and acceleration, we have v  = d x / d t  and 
a  = d v / d t .  It follows that 

o = l a d t  and x =  vd t .  A I 
Example 11 Water is flowing into a tub at 3t + 1 / ( t  + 1)2 gallons per minute after t 

minutes. How much water is in the tub after 2 minutes if it started out empty? 
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Solution Let f(t) be the amount of water (in gallons) in the tub at time t .  We are given 

This equation means that j is the antiderivative of 3t + 1 / ( t  + I ) ~ ;  thus, 

Since the rub started out empty, f(0) = 0; so 0 = - I + C, and thus C = 1. 
Therefore f(t) = 3t2/2 - l / ( t  + 1) + 1. Setting t = 2 gives j(2) = 3 .4 /2  - 
$ + 1 = 6 3  gallons after 2 minutes. A 

Supplement lo Section 2.5 
The Notation f(x) dx I 
The Leibniz notation Jf(x)dx for the antiderivative of a function f(x) may 
seem strange at this point, but it is really rather natural and remarkably 
functional. To motivate it, let us study the velocity-distance relationship 
again. As in Section 1.1, we imagine a bus moving on a straight road with 
position y = F ( x )  in meters from a designated starting point at time x in 
seconds (see Fig. 1.1.1). There we showed that v = dyldx is the velocity of the 
bus. As in Section 1.3, we may motivate this notation by writing the velocity 
as the limit 

A y - distance travelled -- 
Ax elapsed time as Ax + 0. 

Conversely, to reconstruct y from a given velocity function v = f(x), we 
notice that in a short time interval from x to x + Ax, the bus has gone 
approximately A y = f (x) Ax meters (distance travelled = velocity x time 
elapsed). The total distance travelled is thus the jum of f ( x )  Ax over all the 
little Ax's making up the total time of the trip. This abbreviates to jf(x) dx. 

On the other hand, the distance travelled is y = F(x), assuming F(0) = 0, 
and we know that dy/dx = v = f(x), i.e., F is an antiderivative of f. Thus 
ff(x) dx is a reasonable notation for this antiderivative. The arbitrariness in 
the starting position F(0) corresponds to the arbitrary constant that can be 
added to the antiderivative. 

Exercises for Section 2.5 
Find antiderivatives for each of the functions in Exer- 1 1 .  v =  t 2 + f i ;  F ( l ) =  1 ;  findF(+). 
cises 1-8. 12. v  = t 3 l 2  - t 2 ;  F(2)  = 1; find E(1). 

1 .  x + 2  2. x6 + 9 Find the general antiderivatives for the functions f  
3. s ( s  + l)(s + 2) 4. 4x8 + 3 x 2  given in Exercises 13-20. 

1 5. - 2 6.  x 5  + - 13. f ( x )  = 3 x  14. f ( x )  = 3 x 4  + 4x3 
t3  x4  x + l  

1 15. f ( x ) =  -- 16. f ( t )  = ( I  + I ) ~  
7 .  x ~ / ~  - 6 8. x4  - - + x 3 / 2  x  

5 17. f ( x )  = 18. f ( x )  =,(G + 112 
In Exercises 9-12, v is the velocity of a particle on the 19. f ( t )  = ( t  + 1)3/2 20. f ( s )  = ( s  + 
line, and F( t )  is the position at time r .  In Exercises 21-24, the velocity v, of a falling body (in 

9. v = 8r + 2; F(0) - 0 ;  find F(1). meters per second) near the earth's surface is given at 
10. u = -2t  + 3;  F(1) = 2; find F(3). time t = 0. Find the velocity at time t and the position 
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a t  time t  with the given initial positions xo.  (The x axis 
is oriented downwards as in Fig. 2.5.2.) 

21. v, = I ;  x, = 2 22. 0, = 3; xo = - 1 
23. v, = - 2 ;  X, = 0 24. oO= -2 ;  x,= - 6  
25. Is it true that I f ( x )g ( x )dx  is equal to 

tJ f (x)  dxl g ( x )  + f ( x ) [ Jg ( x )  dxl? 
26. Prove the constant multiple rule for antidif- 

ferentiation. 
27. Prove the sum rule for antiderivatives. 
28. Prove that Jf(x) f ' (x)dx = f [ f (x) I2  + C for any 

function f .  
Find the indefinite integrals in Exercises 29-40. 

29. f ( x 2  + 3x + 2)dx 30. j 4 n r 2 d r  

Find the indicated antiderivatives in Exercises 41-52. 
41. ( x 3 + 3 x ) d x  I 42. ( t 3 + t - 2 ) d t  J 

53. A ball is thrown downward with a velocity of 10 
meters per second. How long does it take the ball 
to fall 150 meters? 

54. A particle moves along a line with velocity 
u ( t )  = f t2  + I .  If it is a t  x = 0 when t = 0, find 
its position as a function of t .  

55. The population of Booneville increases at  a rate 
of r ( t )  = (3.62)(1 + 0.8 t 2 )  people per year, where 
t  is the time in years from 1970. The population 
in 1976 was 726. What was it in 1984? 

56. A car accelerates from rest to 55 miles per hour 
in 12 seconds. Assuming that the accerleration is 
constant, how far does the car travel during 
those 12 seconds? 

57. A rock is thrown vertically ~ p w a r d  with velocity 
19.6 meters per second. After how long does it 
return to the thrower? (The acceleration due to 
gravity is 9.8 meters per second per second; see 
Example 4 and Fig. 2.5.3.) 

58. Suppose that the marginal cost of producing 
grumbies at  production level p is 100/ (p  + 20)*. 
If the cost of production is 100 when p = 0 (setup 
costs), what is the cost when p = 80? 

(b) Find ' x '  dx.  
( x 3  - 1)  

60. (a) Find ( d / d x ) J m .  

(b) Find + I dz. 
J7T-z 

61. (a) Differentiate ( x 4  + 1)". 
(b) Find / [ ( x 4  + l ) I9x3 + 3x2 / ' ]dx  

I 62. (a) Differentiate - 
3 + x9 I2  ' 

x7/2 
(b) Find J dx . 

(3 + x9/2l2 
63. Find a function F ( x )  such that x 'F ' (x)  + x 3  + 

2x  = 3. 
64. Find a function f ( x )  whose graph passes through 

( 1 ,  I) and such that the slope of its tangent line at  
( x ,  f ( x ) )  is 3x + 1. 

65. Find the antiderivative F ( x )  of the function j ( x )  
= x 3  + 3x2  + 2 which satisfies F(0)  = 1. 

66. Find the antiderivative G ( y )  of g ( y )  = (y + 412 
which satisfies G(1) = 0. 

*67. (a) What integration formula can you derive 
from the general power of a function rule? (See 
Exercises 60 and 61.) (b) Find j ( x3  + 4) -3x2dx .  

+68. (a)  What integration formula can you derive 
from the chain rule? 

(b) Find { [ d m  + ( x 2  + 20x)](2x + 20) dx. 

Figure 2.5.3. The path of a 
rock thrown upwards from 
the earth. 
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Review Exerckses for Chapter 2 
Differentiate each of the functions in Exercises 1-10. Find the first and second derivatives of the functions in 

1 .  ( 6 x  + 113 Exercises 29-40. 
2.  ( x 2  + 9 x  + 1 0 ) ~  2 9 . f ( x ) =  X - a  ( a ,  b ,  c constants). 
3.  ( x 3  + x2  - 1)1° x 2 + 2 b x  + c 
4 .  ( ~ 2  + 1 ) - 1 3  30. S ( Z )  = - + 

(a ,  b, c, d constants). 
5. 6 / x  cz + d 

9 x 9  - x8  + 14x7 + x6 + 5 x 4  + x 2  + 2  31. x ( t )  = 
6 .  

" 2 

[ (x '  + 6)2  - ( 2 x 4  + I ) ~ ]  
10. 

( x 5  + 8) 

Exercises 1 1-20, let 

Differentiate the given functions in Exercises 1 1 - 16. 

Find the equation of the tangent line to the graph of the 
given function in Exercises 17-20, where'A, B, C,  and 
D are given above. 

17. [ A ( x ) ] ' / ~  at x  = 1 18. [B(x)I2  at x  = 0  

1 9 . [ c ( x ) 1 2 a t x = - 2  2 0 . J D ( x ) a t x = - l  

Differentiate the functions in Exercises 21-28. 
21. f ( x )  = x5I3 
22. h ( . ~ )  = ( I  + 

x3/2 
23.  g ( x )  = --- 

JG-7 

( A ,  B,  C constants). 

35. f ( x )  = ( x  - I ) ~ ~ ( x )  (here g ( x )  is some differen- 
tiable function). 

36. V ( r )  = $ v r 2  + 2vrh(r),  where h ( r )  = 2r - 1 .  
37. h ( ~ )  = ( X  - 2 ) 4 ( ~ ~  + 2)  

41.  The volume of a falling spherical raindrop 
grows at a rate which is proportional to the 
surface area of the drop. Show that the radius of 
the drop increases at a constant rate. 

42. The temperature of the atmosphere decreases 
with altitude at the rate of 2°C per kilometer at 
the top of a certain cliff. A hang glider pilot finds 
that the outside temperature is rising at the rate 
of degrees Centigrade per second. How fast 
is the glider falling? 

43. For temperatures in the range [ - 5 0 ,  1501 (de- 
grees Celsius), the pressure in a certain closed 
container of gas changes linearly with the tem- 
perature. Suppose that a 40" increase in tempera- 
ture causes the pressure to increase by 30 milli- 
bars (a millibar is one thousandth of the average 
atmospheric pressure at sea level). (a) What is 
the rate of change of pressure with respect to 
temperature? (b) What change of temperature 
would cause the pressure to drop by 9  millibars? 

44. Find the rate of change of the length of an edge 
of a cube with respect to its surface area. 

45. The organism amoebus rectilineus always main- 
tains the shape of a right triangle whose area is 

square millimeters. Find the rate of change 
of the perimeter at a moment when the organism 
is isosceles and one of the legs is growing at 
millimeters per second. 
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46. The price of calculus books riscss rate of 756 
per year. The price of books varies with weight at 
a rate of $2.00 per pound. How fast is the weight 
of books rising? (Ignore the effect of inflation). 

47. Two ships, A and B, leave San Francisco to- 
gether and sail due west. A sails at 20 miles per 
hour and B at 25 miles per hour. Ten miles out 
to sea, A turns due north and B continues due 
west. How fast are they moving away from each 
other 4 hours after departing San Francisco? 

48. At an altitude of 2000 meters, a parachutist 
jumps from an airplane and falls 4.9t2 meters in r 
seconds. Suppose that the air pressure p de- 
creases with altitude at the constant rate of 0.095 
gsc per meter. The parachutist's ears pop when 
dp/dt  reaches 2 gsc per second. At what time 
does this happen? 

In Exercises 49-52, let A represent the area of the 
shaded region in Fig. 2.R. 1 .  

49. Find dA/dx  and d 2 ~ / d x 2 .  
50. Find dA/dr  and d 2 ~  /dr2 .  
51. Find dA/dy  and d 2 ~ / d y 2 .  
52. Find dA/dx  and d 2 ~ / d x 2 .  

49 Find dA/dx and d2A/dx2  SO Find dA/dr and d 2 ~ / d r 2  

T 

1 
(Rectangle with ;i of 

disk removed) 

5 1 Find dAldy and d 2  ~ / d ~ ~  52 Find dA/dx and d 2 ~ l d x 2  

Figure 2.R.1. Find the 
indicated rates of change of 
the areas. 

In Exercises 53-56 let P represent the perimeter of the 
shaded region in Figure 2.R. 1. 

53. For Exercise 49, find d A / d P  and d P / d x .  
54. For Exercise 50, find dA/dP  and dP/dr .  
55. For Exercise 51, find dA/dP  and dP/dy .  
56. For Exercise 52, find dA/dP  and d P / d x .  

57. The total cost C in dollars for producing x cases 
of solvent is given by C ( x )  = 20 + 5x - (0.01)x2. 

The number 20 in the formula represents the 
fixed cost for placing the order, regardless of 
size. The other terms represent the variable costs. 
(a) Find the marginal cost. 
(b) Find the cost for the 85th case of solvent, 

i.e., the marginal cost for a purchase of 84 
cases. 

(c) Explain in the language of marginal cost the 
statement "the more you buy, the cheaper it 
gets." 

(d) Find a large value of x, beyond which it is 
unreasonable for the given formula for C ( x )  
to be applicable. 

58. In Exercise 57, suppose that the solvent is priced 
at 8 - [(8x + 100)/(x + 300)] dollars per case at 
production level x.  Calculate the marginal reve- 
nue and the marginal profit. 

Find the equation of the line tangent to the graph of the 
function at the indicated point in Exercises 59-62. 

59. f ( x )  = ( x 3  - 6 x 1 ~ ;  (0,O) 

62. f ( x )  = 
X~ - bx4 + 2~~ - 

; ( 1 ,  - 2 )  
x 2 +  1 

63. If x2 + y2 + xy3 = 1 ,  find dy/dx  when x = 0,  
y =  1 .  

64. If x and y  are functions of 1, x4 + xy + y4 = 2, 
and dy/d t  = 1 at x = 1, y  = 1, find dx /d t  at 
x =  l , y =  1 .  

65. Let a curve be described by the parametric equa- 
tions 

Find the equation of the tangent line at t  = 2. 
66. The speed of an object traveling on a parametric 

curve is given by u = \l(dx/dt)' + (dy /d t )2  . 
(a) Find the speed at t  = 1 for the motion x 

= t3  - 3t2 + I ,  y  = t S  - t7. 
(b) Repeat f a x =  t 2 - 3 , y = + t 3 -  t  a t t =  1 .  

67. Find the linear approximations for: (a) 3,07n; 
(b) v 7 m K .  

68. Find the linear approximations for (a) 5m 
and (b) 6m. 

69. (a) Find the linear approximation to the function 
( X ~ O  - 1 ) / ( ~ 2 9  + 1) at xo = 1. 
(b) Calculate [(l.021)40 - 1 ] / [ ( 1 . 0 2 1 ) ~ ~  + 11 ap- 
proximately. 

70. Find an approximate value for \I-. 
71. Find a formula for ( d2 /dx2 ) [  ~ ( x ) ~ ( x ) ] .  
72. If f is a given differentiable function and g ( x )  

= f(&), what is gJ(x)? 
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73. Differentiate both sides of the equation 

where m and n are positive integers and show 
that you get the same result on each side. 

74. Find a formula for (d/d~)[f(x)~g(x)"] ,  where f 
and g are differentiable functions and rn and n 
are positive integers. 

Find the antiderivatives in Exercises 75-94. 
75. (10dx 

Differentiate each of the functions in Exercises 95- 102 
and write the corresponding antidifferentiation formula. 

103. The [emniscate 3(x2 + y2)2 = 25(x2 - y2) is a pla- 
nar curve which intersects itself at the origin. 
(a) Show by use of symmetry that the entire 

lemniscate can be graphed by (1) reflecting 
the first quadrant portion through the x 
axis, and then (2) reflecting the right half- 
plane portion through the origin to the left 
half-plane. 

(b) Find by means of implicit differentiation the 
value of dy/dx at (2, 1). 

(c) Determine the equation of the tangent line 
to the lemniscate through (2, 1).  

104. The drag on an automobile is the force opposing 
its motion down the highway, due largely to air 
resistance. The drag in pounds D can be approxi- 
mated for velocities u near 50 miles per hour by 
D = kv2. Using k = 0.24, find the rate of in- 
crease of drag with respect to time at 55 miles 
per hour when the automobile is undergoing an 
acceleration of 3 miles per hour each second. 

105. The air resistance of an aircraft fuel tank is given 
approximately by D = 980 + 7(u - 700) lbs for 
the velocity range of 700 ,< v < 800 miles per 
hour. Find the rate of increase in air resistance 
with respect to time as the aircraft accelerates 
past the speed of sound (740 miles per hour) at a 
constant rate of 12 miles per hour each second. 

106. A physiology experiment measures the heart rate 
R(x) in beats per minute of an athlet$i%rnbing a 
vertical rope of length x feet. The experiment 
produces two graphs: one is the heart rate R 
versus the length x;  the other is the length x 
versus the time t in seconds it took to climb the 
rope (from a fresh start, as fast as possible). 
(a) Give a formula for the change in heart rate 

in going from a 12-second climb to a 13- 
second climb using the linear approxima- 
tion. 

(b) Explain how to use the tangent lines to the 
two graphs and the chain rule to compute 
the change in part (a). 

a107. (a) Find a formula for the second and third 
derivatives of xn.  

(b) Find a formula for the rth derivative of x n  if 
n > r. 

(c) Find a formula for the derivative of the 
product f(x)g(x)h(x) of three functions. 
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*log. (a) Prove that if f/g is a rational function (i.e., and G are both antiderivatives for a func- 
a quotient of polynomials) with derivative tion h, then F and G differ by a constant. 
zero, then f/g is a constant. *109. Prove that if the kth derivative of a rational 

(b) Conclude that if the rational functions F function r ( x )  is zero for some k, then r ( x )  is a 
polynomial. 
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