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Precast concrete columns are often
east and shipped in lengths extend-

ing over two, three, or more stories. In
consequence, they are frequently long
and slender, at least until jointing is
complete, so that handling stresses may
give rise to problems.

Similarly, precast loadbearing wall
panels for light industrial or warehouse
structures are generally required to be
very tall, again leading to high slender-
ness ratios. The roof loads, distributed
along the wall, are usually quite light, so
that stress conditions are often domi-
nated by the bending moments arising
from wind loads and load eccentricity.

For the above reasons, precast col-
umns and loadbearing walls are fre-
quently prestressed.

Codes of practice usually provide em-

pirical formulas for the effects of slen-
derness, but limit the range of slender-
ness for which they may be used. For
example, ACI 318-83' requires that if
the slenderness ratio L/r exceeds 100,
design shall be based on analysis which
"shall take into account influence of
axial loads and variable moment of in-
ertia on member stiffness and fixed-end
moments, effect of deflections on mo-
ments and forces, and the effects of du-
ration of loads." No direct guidance,
however, is given on how to make such
an analysis.

Precast prestressed concrete columns
and wall panels frequently fall within
the range of slenderness that excludes
use of the empirical formulas. Further-
more, it has been found that the empiri-
cal formulas are not as precise for the

82



very low percentages of steel that are
generally present in precast members,
even when the slenderness ratios are
small.

This paper will address these prob-
lems by reviewing the analysis for sec-
ondary effects in columns and walls.
Methods involving varying degrees of
approximation will be briefly discussed.
The effect of prestressing will be re-
viewed, and it will be suggested that ra-
tional analysis of components should
generally be the preferred approach for
precast prestressed elements.

The theory of such a rational analysis
will be developed. The construction of a
computer program typical of those used
by researchers for this purpose will be
briefly described. A listing and docu-
mentation of the program can be ob-
tained at cost of reproduction from the
Prestressed Concrete Institute.

The computer program may be used
to determine the design moments for a
given set of loads and end conditions, or
to develop design curves of acceptable
loading for given member cross sections
and will predict material or instability
failure. The cross section may have any
polygonal shape and may have any
number of mild steel bars and/or pre-
stressing tendons. The concrete and
steel components may have any stress-
strain laws, specified in functional form
or in the form of points on an experi-
mentally determined curve.

Any form of lateral loading can be
handled, specified by the primary
bending moment arising therefrom. The
axial load may he applied with different
eccentricities at the two ends. Initial
curvature may be included.

Note that the boundary conditions
must be known or an effective length
must be estimated. A load-deflection
analysis is used to account for lateral
displacement of the joints if such dis-
placement is permitted.

It is recommended that precast con-
crete manufacturers use computer pro-
grams such as this to develop design

Synposis
Secondary effects of axial loads on

frame members are discussed. Meth-
ods of analysis for these forces are
reviewed. Characteristics of pre-
stressed concrete members which
affect the method of analysis are de-
scribed, and it is noted that "rational
analysis" is often required. Construc-
tion of a computer program to perform
such an analysis of component mem-
bers is discussed, and a program is
described in detail in an appendix.
Several examples are included.

curves for standardized products such as
columns, double tees, piles, and other
customized units. The author's program
has been written in very elementary
FORTRAN and therefore should be
easily adaptable to specific needs.

SECONDARY EFFECTS
IN FRAMES

This section contains a brief discus-
sion of the problems associated with
axial loads in frame elements and of the
methods of dealing with them.

The presence of axial compression in
a frame member has two effects:

1. The stiffness of the member is re-
duced.

2. Secondary bending moments, not
accounted for in the primary analy-
sis, are generated when the line of
action of the axial force is no longer
coincident with the centerline of
the member.

It is possible to make analyses which
take all these factors into account, but
difficulties are involved,2 3 particularly
in the design stage of reinforced or pre-
stressed concrete frames. However, the
first effect, namely, the reduction in
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stiffness, is negligible if the axial load is
a reasonably srnall proportion of the
Euler load for the member.'•°

This condition is generally satisfied in
practical building frames, so that the
effect of stiffness Ioss on the distribution
of internal forces may effectively he ig-
nored. A method of accounting for loss
of stiffness, given in Refs. 5 and 6, is
referred to below.

The secondary bending moments
arise from changes in the geometry of
the structure which are not taken into
account in the primary analysis. These
effects may again be separated into two
parts:

1. Relative motion of the joints with
respect to one another, in the
transverse direction to the axial
loads. Erection tolerances may
contribute to this effect.

2. Departure of the member center-
line from the straight line between
the joints, due to bending of the
member along its length. Thermal
bowing, manufacturing tolerances,
and camber may be significant in
this respect.

The response of a structure to loads,
accounting for these effects, may be
evaluated by a variety of procedures:

Method 1
An equivalent pin-ended member is

assumed for each column. The "effec-
tive length" of this equivalent member
depends upon the end conditions.?
When sidesway is not prevented, the
first of the effects noted in the previous
paragraph is accounted for if the deflec-
tions are measured from the thrust line,
and the column is given an imaginary
extension, until it recrosses the thrust
line at an imaginary point of inflection.

The response of this equivalent pin-
ended member is then obtained by mod-
ifying the primary bending moment
causing sway by a magnification factor.
The moments not associated with sway
are also magnified to account for the

second effect, using the braced effective
length.

Method 2
An approximate analysis is made to

determine the horizontal displacements
of the joints, and the so-called P-
( load-deflection) moments arising
therefrom are directly calculated. The
magnification factor is then used to ac-
count for the additional secondary mo-
ments due to deflection of the column
centerline, using the effective length for
a braced column.

Method 3
The procedures of Methods 1 or 2 are

used, but the response of the equivalent
column is determined by some rational
procedure instead of by means of the
semi-empirical magnification factor.

Method 4
The entire analysis accounting for all

the nonlinear secondary effects is carried
out by a rational procedure, as discussed
in Refs. 2 and 8. As mentioned above,
this process is far too complex for practi-
cal use in the design stage of concrete
buildings.

COMMENTS ON
ANALYTICAL PROCEDURES

In this section, further comments are
made on the individual steps involved
in the above procedures, namely, the
determination of effective Iength, the
calculation of P-A moments, and the
use of magnification factors.

Effective Length
The bifurcation buckling load for an

individual column with pure axial load
is determined by the Euler load for a
hinged column of effective length kL,
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Fig. 1. Effective lengths of columns in a frame (after Ref. 9).

the distance between the points of in-
flection at the instant of buckling. In
framed members (see Fig. 1) the effec-
tive length depends upon the relative
stiffnesses of the columns and the re-
straining beams.

When moments or lateral loads are
present, as is usually the case, instead of
bifurcation buckling, magnified mo-
ments (i.e., added secondary moments)

occur, leading eventually to material
failure or to instability. The magnifica-
tion, however, also depends upon the
effective length and therefore on the re-
straint conditions at the ends of the col-
umn.

The determination of effective length
is discussed in Refs. 3, 7, and 9. In prac-
tice, the Jackson-Moreland alignment
charts9 • 10 are generally used for this pur-
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Fig. 2, Iterative load-deflection (P- A) analysis.

86



pose; k is often taken as unity when
sway is not permitted.

The derivation of these charts is dis-
cussed by Galambos, Kavanagh, 7 and
Chu and Chow." MacGregor and
Hage,'u however, assert that the charts
are "based on highly idealized and quite
impractical cases," and they show that
they lead to unrealistic results — often
highly conservative but occasionally
unconservative.

The difficulties in using the effective
length approach are associated with the
evaluation of the restraining effects of
the beams on the column, particularly in
unsymmetrical structures, when side-
sway takes place. It is for this reason that
the P-A method4"2 is advocated for the
separate evaluation of the moments
arising from side sway.

Evaluation of P- Moments
The application of various procedures

for computing the effects of sidesway
are excellently set forth in Refs. 5 and
12, and will be briefly discussed here.

An iterative procedure 4 '5• '2 will be il-
lustrated by means of the simple portal
frame shown in Fig. 2a. In Fig. 2b a first
order analysis is made of the gravity
loads. Sidesway is prevented by means
of a holding force found to be 14.03. Fig.
2c shows the removal of that holding
force together with the application of
the lateral load of Fig. 2a.

The sum of Solutions 2b and 2c,
shown in Fig. 2d, would complete the
usual first order analysis. But now, the
deflection (A = 0.2105) is computed and
it is deduced that the columns are acted
upon by a moment !PA (i.e., 400 x
0.2105) which is not, as yet, balanced.
Therefore, in order to maintain equilib-
rium, there must be a remaining holding
force of:

V A/h = 400 x 0.2105110 = 8.42

The effect of removing this force is
shown in Fig. 2e; however, there is then
a further deflection of 0.0521 and

therefore, by the same reasoning, a
holding force of 400 x 0.0521110 = 2.08.
The effect of removing this force is
shown in Fig. 2f, and it is seen that there
is a further deflection of 0.0129 and a
holding force of 0.52.

This leads to Fig. 2g, with deflection
0.0032 and holding force 0.13, This is
considered negligible, and the solution
is assumed to be the sum of Figs, 2d, e, f,
and g. If the process does not rapidly
converge, it indicates that the structure
is probably too flexible with respect to
sway.

Note that the solutions for Figs. 2e, f,
and g are simply prorated from that of
Fig. 2c. The whole procedure is usually
an elastic analysis performed with re-
spect to the factored loads; however,
since it is an elastic analysis, it can often
he obtained by factoring up the compo-
nents of a service load analysis (similar
to Figs. 2b and 2c) performed to check
service load drifts. Note that if there are
changes in the stiffnesses due to crack-
ing as the factored loads are approached,
this should be accounted for.'E

The process illustrated in Fig. 2 is
easily extended to the general case of
multiple stories and multiple bays. It
has accounted for the secondary mo-
ments arising from horizontal motion of
joints, but moments arising from dis-
placement of the member centerline
between joints have yet to be accounted
for by means of the magnification factor
(based on the braced effective length),
or by further rational analysis. Note that,
even when side sway is restrained, this
process leads to the values of the forces
in the wall or bracing providing the re-
straint.

If the increments of deflection in the
preceding method are written out in
symbolic form, it will be found that they
form a geometric series whose sum is
given by:'R

A,=   HIK =	 ^ 1 	(1^
1—	 1— ^'

Kh	 Hh
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Fig. 3. Secondary analysis using series summation for deflection A.

or	 where
Al = primary deflection (Fig, 2c)

Q s _	 0.2105	
= 0.2797	 A2 = final total deflection

	

1 _ (400) (0.2105)	 H = sway force

	

(34.03) (10)	 K — lateral stiffness of frame
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Fig. 4. Imaginary bracing providing secondary forces.13

Note that if the numerator is equal to
or less than zero, the series does not
converge and the structure is unstable.
In this way, the total deflection is ob-
tained without iteration, and the total
holding force from Figs. 2e, f, g follows
immediately. One more elastic analysis
under this force gives the final result
(see Fig. 3).

This procedure is strictly valid only
for single story frames, but it can be
used for multistory structures in which
there are points of inflection in the col-
umns (relatively stiff beams) and in
which the magnification is of the order
of 1.5 or less .5

Finally, an ingenious method suitable
for computer analysis of large frames,
presented by Nixon, Beaulieu, and
Adams, 13 will be described.

Suppose, as before, that the final lat-
eral deflection of the structure in a given
story is A., giving rise to total column
moments IPA. As shown above, an ad-
ditional horizontal force ZPAslh in the
direction of A Q would cause these mo-
ments.

Now suppose that an imaginary brac-
ing member is added as shown in Fig. 4
with stiffness such as to cause the force
-  'PA2 1h when there is relative lateral

displacement a$ . (Negative because the
member must exert a force in the same
direction as its deformation.) The stiff-
ness of the bracing member with respect
to extension along its axis is AE/L, so
that the stiffness with respect to hori-
zontal displacement is (AE/L) costa.
Thus:

AE
L cosaa D2 

= - li 2	
(2)

or

APL 1
A = - Eh costa

where L is the length of the bracing
member.

That is, if imaginary bracing members
are inserted in each story, with negative
areas as given by this equation, they will
lead to correct moments in the columns
and beams. The shears and axial forces
will be somewhat in error due to the
forces in the bracing, but these effects
will be quite small3 ° (the negative areas
required are, in fact, very small), and
they can be minimized by making the
bracing angle a as flat as possible. One
bracing member per story can stretch
across all the bays of the frame. This
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Fig. 5. Second order analysis using bracing with negative area.

procedure, shown in Fig. 5, can he used
in a standard frame analysis program
without modification.

The loss of stiffness in the column

members can be accounted for in each of
the foregoing P- analyses by including
a "flexibility factor" in the term P. This
factor, developed in Ref. 5, is given by:

y = 1 + 0.22 4('PA - qI ) + ( ALA+3) (q,u+3)	 {3)
[( +2) (tPB +2) - 112
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The t/j factor varies between 1 and
about 1.2, and values are given in Fig. 6.
Inclusion of this factor gives a good es-
timate of the lateral deflections, al-
though the redistribution of the mo-
ments is not properly accounted for,

Magnification Factor
It is shown by Galambos (pp. 246-7 of

Ref. 3) that the moments in a column
bent in single curvature are magnified,
due to displacements with respect to the
thrust line, by the factor:

1
S = 1 – PIPS 	

(4)

Eq. (4) is essentially the same formula
used in the ACI Building Code.' When
the effective length for the sway case as
illustrated in Fig. 1 is used, this magni-
fication factor includes the P -A effects
discussed above, since the displacement
from the thrust line includes the A de-
flection. However, it will be observed
that the additional moments of Figs. 2d,
e, f, and g all arise from the conditions of
Fig. 2c, and are quite independent of
Fig. 2b (except insofar as the holding
force of 14.03 is concerned).

Thus, the magnification factor associ-
ated with the sway-permitted effective
length applies only to the moments
arising from sway forces (Fig. 2c). This
is made clear in Ref. 1, where the mag-
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nified factor moment in a column is:

Mc = Sn Man + S. t. 	 (5)

in which
MZD = value of larger factored end mo-

ment on compression mem-
bers due to loads which result
in no appreciable sidesway,
calculated by conventional
elastic analysis

Meg = value of larger factored end mo-
ment on compression member
due to loads which result in ap-
preciable sidesway calculated
by conventional elastic frame
analysis

Note that 8h and 8,, discussed below,
are based on the effective length
for the braced and unbraced cases,
respectively.

It is recognized that the two compo-
nents of M, in Eq. (5) do not necessarily
occur at the same point in the column,
and are therefore not directly additive.
Nevertheless, the true maximum cannot
be greater than their sum, so, for the
sake of simplicity, this conservative
form is accepted.

The same problem arises more
acutely when braced columns are sub-
ject to double curvature. In that case, the
maximum secondary moment certainly
occurs at a point remote from the
maximum primary moment at the end of
the column. The magnification factor
should then include a factor C,,, _- 1. The
theoretical value of C. for elastic col-
umns is given in Ref. 3, p. 246, together
with various approximations, including
that used in Ref. 1:

Cm = 0.6+0.4M2u0.4	 (6)

Finally, noting that, due to diaphragm
action of the floors, the displacements of
all columns are essentially equal at floor
levels, so that the sway magnification
factors are the same for all columns of
one story:

Sb =	 Cm	 . 1	 (7a)
1 – PIbP^

(7b)
1- Y.P110

Y-P.

where the summations are over all the
columns of the story.

AEI
P^ _ (kL̂y	 ($)

In calculating P, , the value of k is ob-
tained from the Jackson and Moreland
charts for the braced and unbraced
cases. Approximate formulas are given'
for the rigidity El which represent be-
havior as the ultimate load is ap-
proached.

An interesting result from Ref. 14
shows that the critical load for any floor
of a frame is:

Hh	 (9)

Y

where
0 is the deflection from a first-order

analysis.
y depends upon the deflected shape

of the columns, Its numerical value
lies between 1 and 1.22. [See Eq.
(3) and Fig. 6.1

If one takes y = 1, then:

S $ =	 1	 (10)
_ 

1	 Hi

The deflection A should be obtained
from a primary analysis of the sway ef-
fects, presumably using the rigidity El
specified for use in P.

MacGregor and Hage' 2 present step-
by-step procedures for the use of these
methods in the design process. For ex-
ample, one may begin with S, from Eq.
(10) based on the permissible drift index
MIh and end with column size selection
to ensure that the permissible index is
not exceeded.
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APPLICATION TO
PRESTRESSED CONCRETE

It has been shown" that, since they
generally have a very low steel ratio,
prestressed concrete members have
different moment-curvature relation-
ships from normal reinforced concrete
members, As a result of this, they are
governed by instability rather than by
material failure for almost the entire
range of slenderness values. Further-
more, they are often used at higher
slenderness ratios, which compounds
the problem.

The P-A analyses discussed previ-
ously are not directly applicable when
instability governs. It is assumed in
those analyses, in removing the holding
forces (Figs. 2d, e, f, g), that a linear

analysis at the tangent stiffness of the
structure is possible. The total moment,
including the P -A contribution and the
braced column magnification factor, is
compared with short column capacity.

If the columns become unstable be-
fore reaching material failure the analy-
sis becomes more complicated (see Fig.
7). MacGregor and Hage 12 caution
against this possibility, giving criteria by
which its likelihood may he assessed;
but they note that it is seldom encoun-
tered in reinforced concrete building
frames. When it is, the analysis of Fig. 2
must be modified to account for the loss
of stiffness along the lines indicated in
Refs. 16 and 17, or the y factor of Eq.(3)
can be included in the magnification
factors to correct the deflections.

The susceptibility to unstable behav-
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for in members with very low steel ra-
tios also leads to problems in evaluating
the moment magnification due to de-
flection of the member centerline be-
tween joints.

Attempts have been made to extend
the range of applicability of the ACI
magnification procedure' to members
with low steel ratios and high slen-
derness ratios. Using the theoretically
accurate loads generated by the com-
puter program detailed below, an effec-
tive rigidity El was back-calculated for
use in the computation of P:

El = E,I,1X(1 + 63,)	 (11)

with
X =i63.2
13d = ratio of maximum factored dead

load moment to maximum fac-
tored total load moment (always
positive)

= 2.5 + Pl 	 where 6 r^ 70

35 	 for sections with

Llr – 
0.09 compression flange

B=
27	 for sections with no

– 0.05 compression flange

Design charts charts for ,, are shown in Figs.
S and 9.
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The artificial nature of these factors
must be emphasized. In the first place,
sections with highly nonlinear mo-
ment-curvature relationships are being
represented by a formula derived from
linear material behavior (see Ref. 15,
Fig. 14). Further difficulties arise from
the application of the strength reduction
factor 0, and with the long-term load
factor f3,.

Together, these two factors account
for variations in Young's modulus (due
to creep and accidental variations), and
for accidental variations in the moment
of inertia and strength of the cross sec-
tion. With regard to slenderness effects,

all the section properties are reflected in
the moment-curvature relationship.

It is presumed that the effects of 4 and
/3d should be to modify the moment/cur-
vature relationship as shown in Fig. 10.
For reinforced concrete columns with
steel ratios of at least 1 percent and axial
loads not too far below the "balanced"
value, the moment-curvature relation-
ship tends to be of Type A in Fig. 10.
The influence of the ¢ and [ factors is
then accurately represented by applying
them as in Eqs. (7) and (11). For the
members with low steel ratios and axial
loads presently under discussion, the
moment-curvature relationships are of
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Type B in Fig. 10, and the influence of
the 0 and fad factors is not properly ac-
counted for when they are inserted as
shown in Eqs. (7) and (11).

In order to retain the traditional form
of these equations, therefore, it is neces-
sary to modify the quantities 71 and B still
further to the forms given in Eq. (11)
above. These are to be applied with the
ACI Code value of the ¢ factor and with
i3 from 0 to 0.5. To predict the actual
capacity of a cross section with 0 = 1
and /3d = 0, the expression given in Ref.
15, p. 68, should be used.

CURVm (1 +dal

Since it is intended to cover a wide
range of cross sections and design pa-
rameters, Eq. (11) is often very conser-
vative. However, prestressed elements,
particularly when precast, usually in-
volve a good deal of repetition, since
that is often the economic justification
for their use.

This fact, coupled with the growing
availability and declining cost of com-
puters, suggests that a rational analysis
would be appropriate for the develop-
ment of the magnified moments. Man-
ufacturers of standardized items could
easily supply load capacity charts that
include slenderness effects, and spe-
cialized items can be quite econom-
ically analyzed if reliable programs are

Fig. 10. Application of strength reduction factor and load duration factor to moment-
curvature relationships. Heavily reinforced sections (A) and lightly reinforced sections (B).
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piles and building members is that they
are often statically determinate, or have
reasonably well-defined boundary con-
ditions, at least during the application of
the dead loads (when they are often
most vulnerable). Thus, one can fre-
quently apply the effective length
method, whether or not sidesway is pre-
vented.

In summary, the application of the P-A
methods to prestressed concrete should
he made with caution, in that stiffness
reduction may have to be considered. In
applying magnification factors, whether
to account for both P-A moments and
deformation of the member between
joints, or only for the latter, the usual
procedures have been found to he less
reliable than they are for normal rein-
forced concrete members. However, the
repetition associated with precast mem-
bers and their simpler boundary condi-
tions favor the application of effective
length methods with computer analysis
of magnification effects.

The remainder of this paper will be

concerned with the rational analysis of
secondary moments in prestressed
members with known effective lengths
or boundary conditions.

OUTLINE OF RATIONAL
ANALYSIS PROCEDURE

In this section, the essential steps in
the rational analysis of a beam column
with known boundary conditions (Ref.
3, p. 254) are defined.

The external moment at any point in a
beam column (Fig. 11) is given by the
primary moment (.M,) arising from the
end moments and lateral loads, plus the
secondary moment given by the axial
load times the centerline displacement:

M(r) = M 0(x) + Pu

The internal moment of resistance
depends upon the axial load and the
curvature, namely, the P-M-0 relation-
ship. This is a complex function of the
material properties, including the in-

Q I Q2

P	 M^ M2	 P

Pv Secondary Moment

Primary Moment M.
due to M and Q

Fig. 11. Primary and secondary moments in a loaded beam column.
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Fig. 12. Column deflection curves — Equal end eccentricities, single curvature.

elastic range up to failure, and the
member cross section. The curvature, in
turn, is a function of the centerline dis-
placement and its derivatives, and, for
small displacements, may be approxi-
mated by u". Thus:

MW(x) =f
= f(P, v", material, section) for

small displacements v

For equilibrium, therefore:

Mea" (x) — Mw (x)

or

Mo (x) + Pv = f (P, v", material,
section)	 (12)

The solution of this differential equa-
tion is usually required in one of the
following forms:

• The maximum moment in the
member, given the applied lateral
and axial loads.

• The maximum axial load the mem-
ber can sustain, given the applied
lateral loads.

• The maximum eccentrically ap-

plied axial load the member can
sustain.

In any case, the first step is the evalu-
ation of the PM-4 relationship for the
given cross section and the appropriate
material properties (having regard for
duration of loading, for example), giving
the function f (P, v", material, section).

It is recommended here that the solu-
tion of the differential equation then
proceed by means of the numerical pro-
cedure set forth in Ref. 3, p. 279, or Ref.
18, p. 171. Starting with the prescribed
boundary conditions at one end (usually
displacement and moment), the re-
maining condition (usually slope) is as-
sumed, and the solution curve is evalu-
ated at successive nodes along the
member by assuming a circular curva-
ture within each short segment. The
starting slope is adjusted and the proce-
dure repeated until the prescribed
boundary conditions at the far end are
satisfied.

When the maximum sustainable axial
load is the sought-for quantity, it may be
reached when material failure occurs in
the extreme fibers of the cross section;
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or it may he reached because at some
value of the load the bending moment at
a point within the length of the member
begins to increase without bound. In
practice, this means that:

• If there is no possibility of load
shedding, the member would sud-
denly how and material failure
would occur, although the last cal-
culable value of the moment could
he well below the failure value.

• If there is a possibility of load
shedding, the axial load on the af.
fected member would begin to de-
crease, although deflections and
interior moments would continue
to increase.

For this reason, the search for the
maximum sustainable eccentrically ap-
plied load, in the basic case of equal end
eccentricities and single curvature, is
best conducted by the generation of sets
of column deflection curves (Ref. 3, p.
273) as shown in Fig. 12. Starting at the
midheight of the column, with slope
equal to zero and moment equal to that
causing material failure (or with the
equivalent eccentricity from the thrust
line), the column deflection curve is
generated by integration of the differ-
ential equation as indicated above (Line
A, Fig. 12). The starting moment (or ec-
centricity) at the midheight of the col-
umn is then reduced in small steps, and
new column deflection curves (Lines B,
C, D, E, Fig. 12) are generated.

These curves serve for columns of any
length, as shown in the figure; the curve
giving the greatest eccentricity at the
end of the column is the governing one:
either it corresponds to material failure
at midheight (Column L,, Fig. 12) or it
corresponds to instability (Column L2,
Fig. 12).

If the load were to be increased at
constant end eccentricity corresponding
to A, B, C, D, or E in Fig. 12, the mid-
height cross section would follow load
paths such as those shown in Fig. 13.
For the column of length L 2 , there is
simply no equilibrium configuration

with loadP and eccentricity greater than
C. At eccentricity C, the practical col-
umn bows sharply to failure at load P
(unless the load is reduced as the col-
umn deflects under it, to give the de-
scending branch of the load curve).

At higher eccentricity, this unstable
behavior is exhibited before the load P
can be reached. For the column of
length L I , on the other hand, the eccen-
tricity can be increased to A, whereupon
the column cross section fails at Ioad P.

All the column deflection curves of
Fig. 12 are at one value of the axial load,
and they generate one point an a load-
moment interaction curve for each
length of column. Repeating the process
for different levels of axial load com-
pletes the toad-moment curves, and al-
lows the identification of maximum end
eccentricities (or moments) for any
given axial load, for the chosen column
lengths.

ESTABLISHING THE
P-M-4 RELATIONSHIP

Turn now to a more detailed exam-
ination of these steps, beginning with
the calculation of the moment-curvature
relationship. Strictly speaking, this de-
pends upon the exact loading history; if
this were known, it would be possible to
alter the computational procedure to
suit it. However, it is simplest to make
the computations as though the axial
loads were applied and held constant
while the moments or lateral loads are
increased to their total or failure values.

This is believed to cause no serious
error. For example, as shown in Fig. 14,
the points on a beam column loaded
monotonically at constant eccentricity
would follow Load Paths OA, OB, OC,
OD; in the calculations, they are as-
sumed to follow Paths PA, PB, PC, PD,
but the final results should be unaf-
fected by this. Had the actual load path
not been monotonic (either of the
dashed paths), the outcome would have
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Fig. 14. Load paths in load-moment space.

been influenced, it is believed, in a
minor way.

The following additional assumptions
are made:

1. Sections originally plane and nor-
mal to the neutral surface remain
so. There is no twisting or bending
out of the plane of loading.

2. The material laws are known and
are not path dependent. The fibers
in the beam column will obey the
stress-strain laws indicated by the
chosen uniaxial relationship.

Given particular values of the curva-
ture 0 and the ordinate of the unstrained
fiber yo , the strain at any point is then
defined'" by:

E = 4(w — i0	 (13)

Or, alternatively, if the curvature and

top fiber strain are given:

f=E1 – (Jl 00	 (14)

The stress distribution follows from
the material law, and the load and mo-
ment are given by:"

P = A -dA = fYb &t body	 (15)
J 

M 
fA o-

ydA = J b hY rdy 
(16)

Since the stress-strain law is generally
not known in functional form, the inte-
grations must be carried out numer-
ically. This is easily done by dividing
the cross section into narrow horizontal
strips, determining the strain and hence
the stress at the centroid of each, and
evaluating and summing the contribu-
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tions of each strip to the load and mo-
ment,

Thus, for selected values of the cur-
vature and the ordinates of the un-
strained fiber related sets of P-M-4 val-
ues can be generated. In this way, con-
tours of equal curvature can he devel-
oped to cover the entire load-moment
space on an interaction diagram for the
cross section, as shown in Fig. 15.

Finally, for a selected load path such
as PA on Fig. 15 (which corresponds to
the moment increasing monotonically
from zero at constant load P) the mo-
ment-curvature relationship can be ob-
tained by the intersections of the load
path with the curvature contours (Fig.
16).

The next step is to solve the differ-
ential equation of column equilibrium.

SOLUTION OF THE
DIFFERENTIAL EQUATION

Once the moment-curvature relation-
ship for the given load has been estab-
lished, the differential equation of
equilibrium [Eq. (12)] is defined, albeit
numerically.

If the displacement v(x) and the slope
v (x) are expanded in Taylor series, one
obtains,' 9 after truncation:

v(xa + AX) = t3rxo) + a(x0)Ax
+ 1/24(x„)Ax 2	(17)

a^(x0 + 1]x) = r^(xo) + k(x0)Ox (18)

where
a = v', the slope
dA = v", assumed to be the curvature
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Note that the truncation of Eqs. (17)
and (18) is equivalent to assuming con-
stant or circular curvature between xa
and xo + Ax0 ; therefore, it is actually
more accurate to use 0 at xo + Ax/2 in-
stead of at x, on the right hand sides of
Eqs. (17) and (18).

Now if all the quantities of interest are
known or assumed at x0 , Eq. (12) can be
used to determine 0 at the center of the
next segment: first evaluate the moment
at that point:

M= Ma +PIv + aAX	 (19)

where
Mo is at x0 + Ax/2

v and a are at xo

The curvature 0 is then obtained from
the P-M- relationship for the given
load, and Eqs. (17) and (18) are used to
evaluate all the necessary quantities at

the next station x„ + Ax.
Consider the case of a beam column

with a given lateral load. Suppose that
the maximum possible eccentricity at a
given load is to he determined in order to
find a point on the load/end moment
interaction curve in the presence of the
stated lateral load. The eccentricity at x
= L is K times that at x = 0. (Other prob-
lems, such as the magnified moment for
a given lateral load, axial load, and ec-
centricity are simpler specializations of
this case.)

The object is to find the starting ec-
centricity (at x = 0) such that the mem-
her is just on the point of failure, either
by instability or by material failure. This
is done by first seeking an eccentricity
so large that the member does fail; it is
then reduced in steps of 10 percent until
the member does not fail. This estab-
lishes the range of values within which
the answer lies. This range is then ex-
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plored in steps of! percent of the initial
eccentricity until, again, the first value
which does not cause failure is found.
This is accepted as the answer.

The process is illustrated by the flow
chart of Fig. 17, where the node num-
bers correspond to statement numbers
in the program. In each step of this pro-
cedure, it was necessary to construct the
column deflection curve for the given
eccentricities, or to determine that the
member failed. This will he discussed
in the next paragraph. In the program
referred to, it is performed in a subrou-
tine labelled TEN.

Now turn to the problem of con-
structing the deflection curve for a col-
umn with given lateral and axial loads,
where the starting and ending eccentric-
ities are fixed. The aim is to vary the
starting slope until the correct condi-
tions are reached at the far end. This
may not be possible because the bend-
ing moment corresponding to failure is
reached at some intermediate point, or
because, as the starting slope is in-
creased, the eccentricity (or deflection
from the thrust line) at the far end ap-
proaches the target value and then re-
cedes without reaching it.

This indicates instability failure: no
equilibrium position exists having the
required eccentricities. The situation is
similar to that for the column of length
L2 illustrated in Figs. 12 and 13.

This problem can he handled by the
procedure outlined in the flow chart of
Fig. 18, which is seen to be fairly com-
plicated. The easiest way to explain it
might be to follow through some spe-
cific cases, which will be explained in
detail below, in conjunction with the
flow chart. Before entering into the de-
tails, a very brief explanation of each
case will be given.

The examples are illustrated in Fig.
19, which shows the deflected shapes of
the member. For each case, the axial
load, lateral load, and the eccentricity at
the left hand end are held constant at the
given values, and the slope at the left

hand end is varied until the target ec-
centricity is reached (if possible) at the
right hand end.

In Case I (Fig. 19a), the target eccen-
tricity cannot he reached because mate-
rial failure occurs within the span.

In Case II (Fig. 19b), the eccentricity
at the right hand end reaches a maxi-
mum short of the target, and then begins
to reduce with increasing starting slope
(although interior deflections continue
to increase). This indicates instability
failure.

In Case III (Fig. 19c), two configura-
tions are found giving the correct target
eccentricity. The one with the smaller
starting slope (and smaller midspan de-
flection) is the stable one. The other one
represents the case where the member
has snapped through and is on the de-
scending load branch. Fig. 20 illustrates
this case.

In Case IV (Fig. 19d) the starting
slope is increased in large steps for
Trials 1, 2, and 3. Since Trial 3 over-
shoots the target, the program returns to
Trial 2 and increases the slope in small
steps until the target is again reached
with Trial 5, which is accepted. Case V
is similar to Case II, but the solution is
reached by a different path through the
flow chart.

These cases will now be described in
detail, with an indication of the path
followed by the program logic. The
reader not interested in the program
logic may move to the end of this sec-
tion.

Case I (see Fig. 19a)
On the first attempt, with a trial start-

ing slope, material failure is reached at
some point in the column. The attempt
is immediately abandoned, and the
starting slope is reduced in small steps
until the far end is reached without ma-
terial failure. The end eccentricity is
then below the target value. This may
indicate that the target value cannot be
reached because of material failure, or
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the design may be on a descending
branch of the load path; therefore, still
smaller values of the starting slope must
be tried.

The program is directed along Path
ABCO on Fig. 18, to make a second trial
with reduced starting slope. On the sec-
ond trial, the end eccentricity decreases,
Path ABCEHKL is followed, and the re-
sult is recorded as material failure; the
design is on a stable branch of the load
path, since increased starting slope
leads to increased end eccentricity, but
material failure intervenes before the
target end eccentricity can he reached.

Case II (see Fig. 19b)
Again, after reducing the slope to

avoid material failure, the end eccen-
tricity is below the target value. The
program is directed along ABCO as in
Case 1, but on the second trial with re-
duced starting slope, the end eccentric-
ity increases (but does not reach the tar-
get), indicating that the design is on an
unstable load path; the program is di-
rected along ABCEHIMO for a third
trial at a further reduced starting slope.
This time the end eccentricity also re-
duces, indicating that the design has
moved back along the stable path,
reaching the peak before the target, and
instability failure (Path ABCEHKP) oc-
curs.

Case Ill (see Fig. 19c)
The first two trials are exactly as in

Case II (Paths ABCO and ABCEHIMO).
On the third trial, the end eccentricity
again increases and exceeds the target
value. The unstable path has to be fol-
lowed up to the peak, and then down the
stable branch until the target is reached.
The program is, therefore, directed
along Path ABCDGIMO for another trial
at a still further reduced starting slope.
When the end eccentricity begins to de-
crease, the process is redirected along
ABCDCJNO, until it falls below the

target value again, when ABCF is foI-
lowed, and the result is accepted.

Case IV (see Fig. 19d)
On the first trial, material failure is not

encountered, but the far end eccentric-
ity is below the target value (Path
ASQO). The starting slope is increased
by a large amount and a second trial is
made; the far end eccentricity increases,
but is still below the target (ASVO). The
starting slope is gradually increased
until the target is exceeded (ASUO),
when one large decrease in the starting
slope is made, whereafter it is increased
again in small steps. Subsequent trials
follow Path ASTO until the target is
again exceeded, when Path ASTYX is
followed and the result is accepted as
correct.

Case V (see Fig. 19e)
The first two trials are as for Case IV

(Paths ASQO and ASVO) but eventually,
before the target is reached the end ec-
centricity begins to decrease. Path
ASWZ is followed to indicate instability
failure.

Case VI
The first trial is as for Case IV (Path

ASQO), but on the second trial with a
larger starting slope, the end eccentric-
ity decreases. This indicates that the de-
sign is on an unstable load path, and
Path ASBCO is followed and the process
of Case II or Case III is repeated to work
back up this unstable load path to the
peak and beyond, if necessary.

Other cases can be traced through Fig.
18 in a similar way.

In the special but most common case
of columns loaded with equal end ec-
centricities, causing single curvature
but no lateral load, an entirely different
procedure is carried out as described in
the previous section on the solution of
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the differential equations, as shown in
Fig. 12. This set of curves allows one to
determine the magnification factor for a
given eccentricity, or the maximum pos-
sible eccentricity (whether governed by
instability or material failure) for all
lengths ofthe column for the given load.

APPLICATION OF
STRENGTH REDUCTION AND
LOAD DURATION FACTORS

In the ACI Code column design, the
strength reduction factor is applied at
two points in the calculation. It appears
first in the moment magnification pro-

cedure, where it accounts for the influ-
ence of analytical and construction inac-
curacies on the Euler load and hence on
the moment magnification itself. This is
accomplished in the ACI Code method
by, in effect, reducing the rigidity EI of
the cross section, which is the slope of
the moment-curvature relationship.

When the moment-curvature relation-
ship has a "yield plateau," the moment
capacity should presumably also be re-
duced as shown in Fig. 10. It would be
subject to variations from the same
causes as the rigidity, and its value is
now relevant to the moment magnifica-
tion. The program is written to perform
the modifications to the moment-cur-
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vature relationship indicated in Fig. 10,
The value of may be entered, or the
ACI Code values (with the transition
belowP = 0.1  99    may be requested.

The strength reduction factor appears
a second time when the magnified mo-
ment is compared with the nominal ca-
pacity of the member without magnifi-
cation; the latter is reduced by the ca-
pacity reduction factor. This operation is
performed by the program; the value of
0 is entered independently of that used
in the magnification procedure. A dif-
ferent value may he used if desired, or
again, the ACI Code values may be se-
Iected.

The load duration factor fad is also ap-
plied in the ACI Code magnification
procedure in such a way as to reduce the
rigidity of the cross section by the in-
verse of (1 + /3d ). This is again achieved
in the program by stretching the curva-
ture axis of the moment-curvature re-
lationship as shown in Fig. 10.

REVIEW OF ASSUMPTIONS
The assumptions made in the forego-

ing analysis have been stated as they
were made, but they will be collected
together here for reference:

1. If sway is permitted, the P-A mo-
ments due to sway have been estimated
and the effective length factor is being
set at 1 for the effects of column center-
line deflection; or the sway-permitted
effective length factor, greater than 1,
has been estimated to account for both
P- moment and centerline deflection.

2. If sway is not permitted, the
sway-prevented effective length factor
has been estimated or conservatively set
at unity.

3. There is no torsional buckling of
the section.

4. There is no local buckling of parts
of the section, such as the flanges.

5. Deflections are small enough forv"
to represent curvature, so that Ely " = M.

6. Sections originally plane and nor-

mal to the neutral surface remain so.
7. The stress-strain laws of the mate-

rials are known and are the same in
bending as they are in uniaxial stress.

8. The stress-strain laws reflect the
duration of loading or other time effects;
or the load duration factor /3, correctly
models the creep.

9. There is perfect bond between
steel and concrete.

10. Material failure of the cross sec-
tion is due to the concrete reaching
some limiting strain.

11. The result is not significantly de-
pendent upon the precise load path in
the load-moment space.

Note that Assumption 9 implies that
the prestressing tendons and other re-
inforcement are fully developed at the
points of high moment. The reduced ca-
pacity of the section in the development
region of pretensioned members should
he considered separately.

CONCLUSION
The stability analysis of frame struc-

tures has been discussed. Generally, the
recommended procedure involves a
second order elastic analysis (with stiff-
ness modified to account for cracking) to
determine the P-A effects due to joint
translations, followed by magnification
of moments based on braced effective
lengths to account for centerline deflec-
tions.

Prestressed concrete members are
more subject to instability rather than to
material failure than are conventionally
reinforced concrete members; loss of
stiffness in column members may
therefore be of greater significance in
the secondary analysis for P-A effects;
and the semi-empirical moment magni-
fication procedures need modification,
and are in any case less reliable.

However, the large scale production
and standardization associated with pre-
cast prestressed members suggests the
use of computer programs for the me-



merit magnification solution; in fact, ra-
tional analysis is required by codes of
practice for the high slenderness ratios
often encountered in these members.
The preparation of a typical program to
perform this task has been discussed,
and is described in detail in Appendix
B.

The program may be used for the ra-
tional analysis of slenderness effects in
prestressed and/or reinforced concrete
columns, wall panels, or piles. It is use-
ful for developing the load-moment re-
lationships necessary in the design pro-
cess, with or without slenderness; the
solution of particular cases or the prepa-
ration of design charts for standardized
items may be quite easily and inexpen-
sively carried out.

The difficulty of establishing the ef-
fective length for the sway case or, al-
ternatively, of carrying out the second-

order analysis for P-ti effects, remains.
Further work is necessary to study the
loss of stiffness in prestressed concrete
members in the presence of axial load in
the inelastic range, and to develop reli-
able P-A analyses when individual
members are subject to stability rather
than to material failures.
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APPENDIX A - NOTATION
A = cross section area yb = ordinate of bottom fiber
h = width of cross section at ordinate yi = ordinate of top fiber

Y a = slope of column deflection curve
C. = modifier to magnification factor a = angle between imaginary brac-

for unequal end eccentricities ing and horizontal
E = Young's modulus /3 – ratio of maximum factored dead
E, = E of concrete load moment to maximum Eac-
h = story height tored total load moment (always
H = lateral force positive); the load duration fac-
1, = moment of inertia of concrete tor

cross section y = flexibility factor[see Eq. (3)]
k = effective length factor S = magnification factor
K = lateral stiffness of frame 8y = magnification factor (braced
L = unbraced length case)
M = moment 8, = magnification factor (sway case)
M. = primary moment 8 = first trial value of starting eccen-

= larger factored end moment tricity
(braced case) A = deflection of joint normal to axis

b12a = larger factored end moment of beam column
(sway case) Dl = A calculated by first order analy-

fi, = magnified column moment sis
MI. = external moment ^ = A including secondary effects
M,,,, = internal moment e = strain
P = axial load E, = strain in top fibers
Pa = maximum pure axial load 7) = factor used in calculation of P,
P, = critical load [Eq. (11)]
P5 = Euler load B = factor used in calculation of P,
P. = ultimate load [Eq. (11)]
r = radius of gyration K = ratio of eccentricity at bottom to
V = transverse deflection of member eccentricity at top

centerline A = factor used in calculation of P,
x = distance along member center- [Eq. (11)1

line o• = stress
y = ordinate of point in cross section th = curvature
yo = ordinate of unstrained fiber (h = strength reduction factor
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APPENDIX B - A COMPUTER PROGRAM FOR
RATIONAL ANALYSIS OF BEAM COLUMNS

What follows is a detailed description
of a computer program to perform the
analysis described in the paper. It was
written by an unsophisticated pro-
grammer with the intention of making it
easy to understand and to modify rather
than to make it efficient from a compu-
tational viewpoint; running costs are
generally not a large factor. Because it
was intended to be used for research
purposes, the program as presented here
is capable of handling a variety of cases
and all the computed curves are gener-
ated from an extremely dense array of
points.

For practical purposes, the scope
could be more limited and the arrays
could be reduced in size, It is hoped that
the processes of familiarization, adapta-
tion, and modification have been made
as easy as possible. The assumptions
and theories used are as set forth in the
paper.

Equations referred to by number in
this Appendix are those in the paper. A
listing of the FORTRAN source program
is available at cost of reproduction from
PCI Headquarters.

Capabilities
The problem to be solved is illus-

trated in Fig. BI. The cross section may
have any polygonal shape (or any curved
shape which can be adequately approx-
imated by a polygon) with any arrange-
ment of prestressing tendons and/or
nonprestressed reinforcing bars.

The axial load P can be applied at any
eccentricity e at one end, and at any ec-
centricity Ke at the other. Note that K

may he positive, negative, or zero. Ini-
tial crookedness in the shape of a sine
curve is provided for: the amplitude
must be supplied by the user. Camber
due to prestress is automatically ac-
counted for. The primary bending mo-

ment due to lateral loads may have any
shape; it is entered by means of its tenth
point values.

For given values of F, e, K, and pri-
mary moment, the maximum value of
the magnified moment within the span
can be computed; or, while the other pa-
rameters are held constant, the eccen-
tricity e can be increased until failure.

Failure may be due to material failure
at some interior section where the mag-
nified moment reaches the short column
capacity, as for the load P, applied at ec-
centricity e,, or due to instability, as for
the load Pz applied at eccentricity e2
(Fig. BI). The output will indicate
which has occurred.

By entering several loads and gener-
ating several points such as A,, A E , one
can develop the line through them,
which is an interaction curve of load P
versus end moment Pe for a given slen-
derness ratio.

The program can also be used merely
to compute the short column interaction
curve for complex cross sections, or the
moment-curvature relationships at
given loads. In this mode it generates
design information such as that given by
Salmons and McLaughlin, 20 for any
shape of member with any arrangement
of reinforcement and prestressing ten-
dons. Length effects can be included by
running the whole program.

General Procedure
The behavior of the section as the

strain is uniformly increased to failure is
first established. This is the load-mo-
ment relationship at zero curvature; it
may lie along the zero moment load axis,
but only for symmetrically reinforced
sections (Fig. B2). In fact, it is the mo-
ment necessary to remove the camber
due to prestress in the presence of the
given axial load.
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Fig. B1. Definition of the problem to be solved.

Then the load-moment curve for the
short column corresponding to the max-
imum concrete strain is calculated, to-
gether with the associated curvatures
(Fig. B2). These values are used to de-
termine the range of curvatures and
moments which will be encountered
with the particular section under inves-
tigation.

A set of intermediate curvatures is
then selected and contours of equal cur-
vature are calculated, covering the en-
tire feasible area of the load-moment
diagram. For each of the desired loads,
values of moment and curvature are ob-
tained from the intersection of the load
coordinate with these contours, estab-
lishing the moment-curvature relation-
ship for that load (Figs. 15, 16 of the
main part of the paper).

This moment-curvature relationship
is then used to obtain the column de-
flection curve for the given load and

boundary conditions by a numerical
procedure.

Each of these steps is performed in a
separate subroutine named MONE,
MTWO, MTHREE, etc., which are
called by a short control program. Vari-
ous arithmetic procedures which are re-
peatedly used by these main subrou-
tines are executed in another set of sub-
routines named ONE, TWO, etc. The
results are printed out by a set of rou-
tines named WRITE1, WRITE2, etc.,
any of which can be suppressed if only
specified data are required. The input
data, from Subroutine INPUT, are
shared by the main subroutines in com-
mon statements, but the computed vaI-
ues are generally transferred in the
calling statements for the subroutines.
All input data referring to the material
laws are grouped in a separate common
statement.

Detailed descriptions will now be
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of load-moment space, for the section of Fig. B3.

given of each of these routines, illus-
trated by means of the actual output
from the section of Fig, B3.

MAIN Program
The principal variable names are

listed in comment statements. The sub-
routines to carry out the steps described
above are called in turn, each followed
by the appropriate output routine. Pro-
vision is made for stopping after gener-
ation of the short column data, or after
the moment-curvature relationships.
Any of the output segments may also he
suppressed.

INPUT

Details may be found in the program

documentation; this section will provide
a general description of the options
open to the user.

The coordinates of the concrete cross
section are entered with respect to a set
of axes set up so that the neutral axis will
he parallel to the x-axis. The origin
should be set outside the section, so that
the entire section lies in the first (posi-
tive) quadrant. Any polygonal shape
may he entered, with up to 20 sides.
Thus a circular section can be approxi-
mated by a twenty-sided polygon, if re-
quired.

Data for material laws will be dis-
cussed below. Arrays are dimensioned
for up to 20 nonprestressed bars which
may have different areas and coordi-
nates. (Since plane sections are assumed
to remain plane and the neutral axis is to
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Fig. B3. Illustrative example: double tee used as loadbearing wall unit.

be parallel to the x-axis, the x-coordinate
of bars is actually immaterial, and bars
with a common y-coordinate might well
be lumped together.) At present, these
bars must all have the same material
law.

Up to 20 prestressing tendons can be
included, with different areas, cen-
troids, and prestress forces. The pre-
stress can be entered in the form of a
stress, a force, or a strain, corresponding
to zero strain in the surrounding con-
crete, i.e., the value of stress, strain, or
force must be that existing after all
losses except elastic shortening. Again,
x-coordinates are immaterial and ten-
dons with equal q-coordinates can be
lumped; and, again, all tendons must
have the same material law.

Up to 20 axial loads may be investi-
gated; they may be entered as absolute
values or as ratios of the maximum axial
load. Up to 20 column lengths can be
studied. If there is lateral loading, the

primary bending moment must be en-
tered for each length by giving the val-
ues at the tenth points and the two ends.
The amplitude of the initial crookedness
(assumed to be a sine curve) must be
entered for each length, if desired.

MONE
This is a subroutine to determine the

area and centroid of the concrete sec-
tion, and the maximum load. The load-
moment relationship for zero curvature
is also computed; this will be a straight
line coinciding with the load axis on the
Ioad-moment diagram for symmetric
sections. But, if the reinforcement is not
symmetrically placed with respect to the
plastic centroid,* it may be a curving
line. The data generated by this subrou-

"The centmid of forces when a uniform strain corre-
sponding to the peak concrete stress is applied to
the entire cross section.
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tine are not necessary for the final result,
but they are used in the program for se-
lecting other parameters.

The area and centroid of the concrete
are calculated in Subroutine FIVE, and
the prestressing is converted to strain if
it was given in some other form. The
strain in the concrete is then uniformly
increased in 30 steps from zero to fail-
ure, while compatibility is maintained
with the steel elements. The load and
moment corresponding to each step are
calculated, defining 30 points on the
load-moment-zero curvature relation-
ship (see Fig. B2).

MTWO

This is a subroutine to determine the
load-moment-curvature interaction
curve for the nominal load capacity of
the short column.

The depth of the section is calculated
and divided into 30 parts. The neutral
axis is then placed at each of these posi-
tions in turn, with the extreme fiber
strain of the concrete set to equal the
value defined as failure. The total force
and moment resulting from stresses on
the concrete section are calculated in
Subroutine THREE, using Eqs. (15) and
(16).

The compatible strains in the steel
elements are computed, and the corre-
sponding stresses, from Subroutine SIX,
used to obtain the forces which are in-
cluded in the total force and moment.
The curvature is calculated by dividing
the failure strain in the concrete by the
neutral axis depth [Eq. (13)]. See Fig.
B2.

MTHREE
This is a subroutine to calculate con-

tours of equal curvature covering the
load-moment diagram.

The curvature cam at zero load is ex-
tracted from the data generated by
MTWO; this is the maximum curvature.
The value of curvature 0' at the bal-

anced load and moment is also deter-
mined. If 0„, > 2 0', the interval be-
tween 0' and 4 m is divided into 10 parts
and the interval between 0 and 0' is di-
vided into 20 parts. If ¢„, -- 2 ', the
interval from 0 to 0,,, is divided into 30
parts. These divisions define the cur-
vature values for which contours will be
developed; the procedure is found to
give a reasonable coverage of the load-
moment diagram (see Fig. B2). For
practical purposes, the number of con-
tours could be greatly reduced.

A contour of equal curvature is then
generated for each of these curvatures.
The extreme fiber strain is set equal to
the failure value for the concrete, and
the neutral axis depth is set to give the
desired curvature (curvature = extreme
fiber strain/neutral axis depth). Subse-
quently, the neutral axis depth is de-
creased in steps of 'loo of the member
depth, while the curvature is kept con-
stant. For each neutral axis depth the
force and moment arising from the con-
crete stresses are calculated by Subrou-
tine THREE.

The compatible strains and hence the
stresses in the steel elements are then
computed, and their contributions are
added to the load and moment values.
Thus, up to 30 pairs of values of load and
moment are computed to define each of
30 contours of equal curvature. See Fig.
15 of the paper. The number of pairs of
values could also he reduced for practi-
cal purposes.

MFOUR
This is a subroutine to develop mo-

ment-curvature relationships for the
given loads. For each of the curvature
contours obtained in MTHREE, a value
of moment is interpolated (by means of
Subroutine SEVEN) at each of the given
loads. On the zero curvature relation-
ship, the value of moment at zero cur-
vature for the given load is interpolated,
and the maximum moment and the cor-
responding curvature are obtained by
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Fig. B4. Interpolation for curvature as a function of moment.

interpolation on the short column re-
lationships. Thus up to 32 pairs of values
of moment and curvature are obtained
for each load, defining the moment-cur-
vature relationship for that load.

Generally, the moment increases
monotonically with curvature up to fail-
ure, or up to some maximum, whereafter
there is a steadily descending branch to
material failure (see Fig. B4). When in-
terpolation is made to find the curvature
for a given moment, the interpolation
routines automatically reject the de-
scending branch of the curve; interpo-

lation is made only on the ascending
branch and the maximum moment rep-
resents failure.

Occasionally, for example with I-
shaped sections where tension is al-
lowed in the concrete and there is very
little reinforcement, there may be a local
maximum moment before the overall
maximum is reached. This also is shown
on Fig. B4. In that case, to avoid prob-
lems with the interpolation routine, the
curve is smoothed by removal of the
first, local maximum, as shown in Fig.
B4. This is slightly conservative, but is
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believed to deviate very Iittle from the
true final result.

If there is to be reverse curvature (i.e.,
if the end eccentricities are such as to
produce double curvature) the mo-
ment-curvature relationship must be
extended into the negative range. If the
cross section is symmetric about an x-
axis, the extended portion of the curve is
merely the mirror image of the portion
already calculated. Subroutine NINE is
used to carry out this operation.

If the cross section is not symmetric
about an x-axis, Subroutine EIGHT is
used to reverse all the coordinates (i.e.,
to turn the section upside down, as it
were) and the complete process, in-
volving Routines MTWO, MTHREE,
and MFOUR, is repeated. Subroutine
EIGHT is again used to merge the posi-
tive and negative moment-curvature
relationships.

MFIVE

This routine deals with the special
case where there is no lateral load but
equal end eccentricities, and the maxi-
mum eccentricity is required at given
load levels.

The procedure consists of starting at
midheight of the column, with the max-
imum possible moment at that point.
This maximum moment is obtained from
the high point on the moment-curvature
relationship for the given load. At the
midheight point, the starting slope is
zero, and the deflection (measured from
the thrust line) is given by the starting
moment divided by the load.

The column deflection curve is now
constructed using Eqs. (17), (18), and
(19). This process is continued, as de-
scribed in the paper, until a complete
quarter wave of the column deflection
curve has been generated, or until the
half lengths of all the columns to be in-
vestigated have been exceeded. The
end deflections of all the columns are
noted. (See Fig. 12 in the paper.)

Returning to midheight, the starting

moment and therefore deflection are re-
duced by a small amount chosen by the
user (the default value is 0.05 times the
maximum moment) and another column
deflection curve is generated. The pro-
cess is repeated until the end deflection
is decreasing for all lengths; the maxi-
mum end deflection is the required
value; the end eccentricity to cause fail-
ure. If it was obtained from the first col-
umn deflection curve, which started
with the maximum moment at mid-
height, it represents material failure; if it
was obtained from a subsequent curve
with lower midheight moment, it repre-
sents instability failure.

MSIX

This routine develops the column de-
flection curves for the more general case
in which the end eccentricities are not
equal and there is applied lateral load.
In contrast to MFIVE, each length case
must he handled separately, since the
column deflection curves are con-
structed from the end rather than from
the midheight, as described in the paper
under "solution of the differential
equation."

The segment length is first adjusted if
necessary so that there will he an exact
number of segments. Then the starting
slope and deflection (or eccentricity) are
selected. The problem is to determine
the order of magnitude of slope and de-
flection appropriate to the column under
study, since these may vary widely from
case to case.

The approximate initial slope of the
moment-curvature relationship is de-
termined by dividing the fifth positive
value of the moment by the corre-
sponding curvature. This gives the ini-
tial EI value. Now, the slope at the end
of a simply supported beam carrying a
uniform load is ML2I(3EI), where M is
the maximum moment.

Therefore, the order of magnitude of
the slope in a given column is expected
to be:
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MCL2

5EI

where
M, = maximum moment capacity of

cross section
EI = initial value of El as determined

above
The first starting value of the slope is

set equal to a.
The initial eccentricity is set equal to:

& = M,–M"
P

where Mp is the maximum value of the
primary moment.

Increments of the starting eccentricity
are first set to 8/10, and then to 8/100 for
fine adjustments. If the program is being
used to find the magnification factor for
a given eccentricity, of course, the initial
value is set to that quantity and no in-
crementation is required.

The procedure to be followed from
this point requires the establishment of
a starting eccentricity which will lead to
failure. Thus, with the initial value set to
S as defined above, a column deflection
curve is calculated by the Subroutine
TEN.

If the column does not fail, subse-
quent trials are made with 26, 46, etc.,
until failure is achieved. The starting
value is then reduced in steps of 8110
until failure does not occur. At that stage
the last step is retraced, with the initial
eccentricity now being reduced in steps
of E/100, until failure again does not
occur; this last trial is taken to give the
configuration of the column which is
"just safe."

The starting slope is set to a, as de-
fined above, when TEN is called for the
first time. After that, it is left equal to the
value returned from TEN, except when
the last step in eccentricity is about to be
retraced, when it is reduced by 20 per-
cent.

Fig. 17 of the paper shows the partial
flow chart for MSIX.

ONE
In the numerical integration of

stresses over the concrete area, the latter
is divided into narrow strips parallel to
the neutral axis, and this subroutine is
used to define the extent of such a strip.
(A constant stress will then be assumed
over each strip.)

Given the coordinates of the apices of
a polygon, and the y-coordinates defin-
ing the upper and lower boundaries of
the intersecting strip, the subroutine
will determine the coordinates of the
sub-polygon which lies within the strip.
(If the whole of the original area lies
within the strip, the original corner co-
ordinates will he returned.)

The end points of each side of the
given polygon are examined in turn; it is
established whether the side being ex-
amined lies wholly outside or wholly in-
side the intersecting strip, or whether it
is entering or leaving that space. Sub-
routine TWO is then used to evaluate
the coordinates of the point where a line
actually crosses one of the strip bound-
aries. The comers of the new sub-poly-
gon consist of these points together with
the original ones which lay within the
strip.

TWO
This short subroutine determines the

coordinates of the point at which a given
line crosses a line of constant y.

THREE
This subroutine is used to integrate

the concrete stresses to give the total
force and moment. The coordinates of
the corners of the concrete area and the
y-coordinate of the neutral axis are
given. The strain distribution is implic-
itly given, either in the form of the ex-
treme fiber strain or as the curvature
(equal to the extreme fiber strain di-
vided by the neutral axis depth). The
areas above and below the neutral axis
are each divided into 20 strips of equal
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depth, parallel to the neutral axis. (If the
material law for the concrete is from 1 to
4, it is assumed that tension is not al-
lowed and the area below the neutral
axis is not considered.)

Each of the 40 strips is considered in
turn; the coordinates of the comers are
found using ONE, and the area and
centroid of each strip are found using
FIVE, The material law is then used in
SIX to determine the stress at the cen-
troid and the force in the strip (assuming
it is uniformly stressed) and its moment
about Y = 0 are calculated.

FOUR

This is a short subroutine to deter-
mine the biggest and smallest of a list of
numbers. It is used, for example, in
finding the overall depth of a cross sec-
tion.

FIVE

This is a subroutine to find the area
and centroid of a polygon with n apices
defined by coordinates x and y. They are
given by:

Area = 1 1 y j (xc+^ – x_1)
1=1

MomentMoment of area (about y = 0)

lk fY3 (x1 +, – Z) (J 1 + yt+t Ya + y )

The apices are taken in cyclic order in
either direction.

SIX

This redirects the program to the ap-
propriate subroutine for the assumed
material law, which is defined by the
parameter MATLAW. The routines
MATT, MAT2, etc., then determine the
stress corresponding to the given strain
or vice versa. (The sought-for quantity is
set to zero in the calling program.)

MAT! interpolates in a curve defined

by pairs of points entered with the
input. It is assumed that there is no ten-
sile stress. The routine is intended to
represent concrete.

MAT2 represents the stress-strain law
of concrete in the functional form:

_ 2 1 E/Ea j f
Ĉ	 I + (/)2

wherewhere
f,' = cylinder strength
E = strain
Eo = strain at peak stress
Again, it is assumed that there is no

tensile stress.
MATS contains stored pairs of stress-

strain values representing points on an
experimental curve taken from the liter-
ature. El It is entered with the peak stress
and the corresponding strain for the case
being considered, and the stored values
of stress and strain are scaled up or
down to pass through this point. The
current stress or strain is found by inter-
polation. This curve seems more appro-
priate for very high concrete strengths
(about 7 ksi).

MAT4 gives the stress-strain law in
the functional form proposed in Ref. 21,

MATS is similar to MATT. It is in-
tended for steel, and tension may he
permitted.

MATE is a bilinear stress-strain curve
for the elastic/perfectly plastic case. It is
intended for mild steel, and the Young's
modulus and yield stress must be en-
tered with the data.

MATT is similar to MAT5. It is in-
tended for prestressing steel.

MATS contains stored pairs of stress-
strain values for a typical seven-wire
strand with f,. = 270 ksi. If it is entered
with a value off,,, other than 270, all the
stress values are scaled up or down ap-
propriately.

MAT9 uses the bilinear stress-strain
law defined in the British Code of Prac-
tice CP110 for steel reinforcement. It
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must be entered with the yield stress in
M Pa.

MATI.O is similar to MATT, with ten-
sion allowed. It is intended for use with
concrete where MAT5 and MATT are
used for mild and prestressed steel.

MATH is similar to MATS, using a
curve taken from Ref. 22. It appears to
be more appropriate for the usual con-
crete strengths, up to 5 or 6 ksi.

Other stress-strain laws can easily be
entered as MATH, MAT12, etc.

SEVEN
This subroutine contains a linear in-

terpolation procedure which is used re-
peatedly throughout the computations
for finding values of stress in terms of
strain, curvature in terms of moment,
etc. Cubic interpolation has been used
for research purposes, but the difference
in the end result appears to be neglible.

Several points defining the relation-
ship between x and y are given. The
routine first investigates the relation-
ship to determine the range over which
it is single valued in y, i.e., the number
of points for which x is increasing; the
remaining points are discarded (see Fig.
B4).

The position of the point i for which y
is desired is determined. y is calculated
by linear interpolation. If z lies outside
the range of x, the value of is linearly
extrapolated from the last two points and
a message is printed to that effect. If $
has a value that cannot be reached by x,
such as C on Fig. B4, the value of y cor-
responding to the nearest valid x value,
such as that at B, is given, and an appro-
priate message is printed. This may in-
dicate a serious error, or it may only be
that the round off error has led to the
value of i (NN) being slightly overes-
timated.

EIGHT
This subroutine is used when double

curvature is present in unsymmetrical

sections. The previously generated pos-
itive branch of the moment-curvature
relationship is stored in a temporary lo-
cation and the section is then inverted.
All the relevant coordinates are trans-
formed to read from a new origin on the
opposite side of the neutral axis. The
program then returns to calculate a new
moment-curvature relation, which will
be the negative branch.

NINE
This subroutine merges the positive

and negative branches of the moment-
curvature relationships when double
curvature is present. In the unsymmet-
ric case, both branches have been cal-
culated, and it is a matter of retrieving
the positive branch from temporary stor-
age and of merging the two. In the sym-
metric case, the negative branch is con-
structed as the mirror image of the posi-
tive branch.

TEN

The column deflection curve for the
general case is computed here, when
this subroutine is called by MSIX. The
starting eccentricity (Deflection
DEFL(I) measured from the thrust line)
and the target eccentricity at the other
end, as well as the starting slope for the
first trial, are given by MSIX. The object
is to vary the starting slope until the
target eccentricity at the other end is
reached.

This may not be possible because the
bending moment corresponding to faiI-
ure is reached at some intermediate
point, or because, as the starting slope is
varied, the eccentricity at the far end
approaches and then recedes from the
target value without reaching it. This
signifies instability failure.

Starting with the values obtained from
MSIX, the column deflection curve is
computed node by node as described
for MFIVE, except that the bending
moment now contains a contribution
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from the primary moment, obtained by
interpolation.

The starting slope is increased in
steps of a/10 (after an initial reduction, if
required, because of material failure
within the span) until the end deflection
exceeds the target value. The sub-
routine then retreats to the previous
starting slope and increases it in steps of
a/100 until the end deflection again ex-
ceeds the starting value. This is taken to
he the correct value.

If the end deflection approaches the
target and then recedes without reach-
ing it, while the starting slope is con-
tinuously increased, this signifies insta-
bility failure, If the end deflection im-
mediately begins to decrease as the
starting slope is increased, this means
the member is in an unstable configura-
tion, representing post-buckling be-
havior; the starting slope is then con-
tinuously reduced by x1100 until the
end deflection begins to reduce also. If,
at this stage, the end deflection is less
than the target, instability failure is

present. If the end deflection is greater
than the target, the starting slope is
gradually reduced until the target is
reached from above, indicating a stable
equilibrium configuration.

If, during the construction of a column
deflection curve, the moment at an
interior node reaches the maximum
value, corresponding to material failure,
there is an immediate return to the start,
with the starting slope reduced by
x1100. This is repeated until the end is
reached without attaining the failure
moment. If the end deflection is then
below the target value, it means the
target cannot be reached, and material
failure is present unless this was the first
trial. In that case, the member may be
in a post-buckling configuration, and
this must be tested by reducing the
starting slope still further by a/100, to
investigate the trend in the end deflec-
tion as described above.

The flow chart of Fig. 18 and Fig. 19
of the paper, and the accompanying dis-
cussion, illustrate these points.

NOTE: A detailed listing and documentation of the
computer program are available at cost of
reproduction from PCI Headquarters.
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APPENDIX C - NUMERICAL EXAMPLES

In this section five numerical exam-
ples are given to show the application of
the computer program.

EXAMPLE 1

Ref. 23 gives the results of several
tests in which prestressed concrete piles
were put under axial load and then
loaded laterally to failure. The test
shown in Fig. C1 was used as an exam-
ple. The program is used to analytically
check the stability of one of the piles
tested and compare the results with the
experimental values.

Input
All units are in kips and inches.
1972 Santa Fe Pomeroy 16 in, Pile Test (Title)

131111010 Program control
0.0 Controls on length intervals

to be used in calculation, etc.
— default values called for

4 No. of comers to concrete section
0.0
16.0 x-coordinates of corners
16.0
0.0
0.0
0.0 y-coordinates of corners
16.0

16

Experimental	 result'
15 Failing	 lateral	 load = 15K

at	 deflection	 =	 7.6'

0 14 Comp uted 	 result:

_j Failing lateral	 load =I3.95K
of	 deflection	 = 2.24'

a
Cr
W 13I-
4

z

N 2 Z 16'50. Pi I 	 ^' ll- 7/16 ,A 270 K strands
W3.5 Spiral (f, =6200psi
at time	 o1	 test)
ps =0.002	 P=15Kat failure

II 600K K
43,-2.,	

_I

IO
0	 I	 2	 3

MIDSPAN DEFLECTION (ins)

Fig. C1. Example 1. 1972 Santa Fe Pomeroy 16 in. pile test from Ref. 23.
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16.0 Output
2 Concrete stress-strain law
8.2 Cylinder strength of concrete The deflected shape of the member
0.002 Strain at peak stress plus the bending moments are printed
0.003 Strain at failure out.
0 No. of reinforcing bars
6 No. of prestressing tendons
0.115 Results
0.230 Areas of strands - One The results are shown on Fig. Cl.0.230 strand plus five pairs Failure was reached at a lateral load of 0.230 with equal y-coordinates

13.95 kips due to instability. The de-0.230
o ,3o flection in the preceding step (13.90
2.5 kips) was 2.24 in. The experimental re-
3.373 sults gave failure at 15 kips and 7.8 in.
5.715 y-coordinates of strands However, this would indicate a midspan
8,783 moment of:
11.602
13.277 M - (600)(7.8)/12 + (15)(43.17)14
2 Control indicating prestress is = 552 kip-ft

to be given as stress at zero This moment seems well beyond the
concrete strain, i.e., after all capacity of the cross section, so it islosses except elastic shortening,

probable that failure occurred at a lower146.6
146.6 deflection, the actual value of which 
146.6 would have been difficult to measure as
146.6 Prestress the member became unstable.
146.6
146.6 Use of Formulas8 Stress-strain law for prestressing
270.0 Ultimate stress of prestressing To compute the actual strength of this

strand member, without 0 or f3,, factors, the ex-
1 No. of axial loads pressions ofRef, 15, p. 68 would have to
600.0 Axial load be used, They are found to give X = 1.5,
5 Nn. of 

LengthLength
8 = 7.59, and maximum lateral load 40 .0

0.0 kips. The unmodified ACI Code formula
259.0 would give P,, = 415 kips < 600 kips.
518.0 Primary bending moment at tenth
777.0 points for lateral load of 10 kips.
1036.0 These will be increased in steps EXAMPLE 2
1295.0 to failure.
1036.0 The load-moment relationships for six
777.0 lengths and ten load values were corn-
518.0 puted for the double tee section of Fig.
259.0 B3, with equal end eccentricities and no
0.0 lateral load. The input was similar to
0.0 Amplitude of initial crookedness that of Example 1, with different num-
0.0 Eccentricity at starting end hers in the program control card for the0.0 Ratio of eccentricity at far end to equal end eccentricity, failure loadthat at starting end
1.0 Strength reduction factor in case.

slenderness effects The ACI Code strength reduction
1.0 Strength reduction factor on final factor was used both in calculating slen-

results derness effects and in reducing the short
0.0 Loading duration factor,8, column capacity. The ratio )9d was set at
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400

350

300
e

250

P
Double Tee of Fiq,B3
Load Duration factor Rid-0-2

- Enter with factored	 load and
tp	 IN	 cV factored primary moment = Pe

200 Na ^D	 fiN^ n Conservative for wind loadmomentCoservati	 m

tod

150

O

50

0

0	 5	 10	 15	 20	 25	 30	 35

(DM n (kipsft)

Fig. C2. Example 2, Design curve for double tee of Fig. B3. ACI strength reduction
factors and load duration factor (3d = 0.2. Strands are assumed fully developed
at points of high moment.

0.2. Fig, C2 shows the results in a form
that might be provided by a precast
manufacturer. The figure is a design
chart for this member, similar to those
given in Ref. 20, but including length
effects.

The chart is entered with the factored
loads and the factored primary moment:
the interaction lines for the stated
lengths define the safe values. If the
primary moment arose from a parabolic
wind load moment diagram instead of a
constant Fe moment diagram, the results
would be somewhat conservative.

EXAMPLE 3

Make the stability calculations for the
column of Fig. C3; try the section shown
in that figure.

Total factored load = 100 kips
Eccentricity at starting end (bottom) =
20 kip ft x 12 = 2.4 in.

100 kips
Eccentricity at far end (top) = 0
Lateral load = 0
Strength reduction factor: ACI Code
value
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D.L. = 65 kips (Factored)
LL. = 35 kips (Factored

ii

L.L.M0M =13 kips ft (Factored)
D.L.MOM.= 7kipsft (Factored?

4 j:• —_	 -
^n270 ksi	 ^,

strands

13"

Column braced against sway 0.5 0 30 20 10 0

fc = 6000 psi	 DEFLECTION BENDING MOMENT
(ins)	 (kips ft )

Fig. C3. Example 3. Braced prestressed concrete column.

Sustained load factor 13 d = 7/20 = 0.35
Effective length factor = 1

The data are entered as for Example 1,
and the column is found able to sustain
the load with a maximum moment of
21.4 kip-ft.

The deflected shape and moment dia-
gram are shown in Fig. C3. The column
is apparently able to carry the factored
loads with a substantial margin, but re-
peating the calculations with increasing
load indicates that instability occurs as
shown in Fig. C4,

Use of Formulas

A formula that covers the full range of
section properties, slenderness values,
and load durations must necessarily be
conservative in most cases, if it is to he

simple yet safe. A penalty must be paid
for the use of simplified calculations.
(Hence, the need for more accurate ra-
tional analyses as advocated herein.)

In this case, Eq. (11) indicates a
larger, 15 in. square section. (With
higher load duration factor Fa d the ap-
proximate procedure becomes still more
conservative.) Then:

P,, = 1087 kips
P = 100 kips
PIP,= 0.092
L/r=96
r^=2.5+ 1.6/(P/P.) = 19.9
B = 271(Llr) – 0.05 = 0.231
A = 4.60
El = E, I, A(I + $d ) = 3000000 kip-in!
P, = 159 kips
0 = 0.75
C,,, = 0.6
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500

400

300

n

0-
-8-

200

• •

0
0	 20	 40	 60	 80	 100

0 M n (kips ft }

Flg. C4. Column of Example 3: proximity of instability failure belies appearance of
excessive safety at magnified factored moment.

8 = C m /1 – PLOP, = 3.72
M = 20(3.72) = 74.4 kip-in.
This moment is satisfactory for the 15

in. square section, but it is clear that this
calculation greatly exaggerates the mag-
nification of the moment. However, this
discrepancy is intentional, reflecting the

impending failure in instability as
shown on Fig. C4.

The problem arises from the fact that a
linear model is used to describe nonlin-
ear behavior as discussed below Eq.
(11), and as considered in detail in Ref.
15, in reference to Fig. 14 of that paper.
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EXAMPLE 4

Make the stability calculations for the
portal frame of Fig. C5, using the section
of Fig. C3, with modified strand layout
as indicated in Fig. C5.

Dead load on roof = 539 lbsllin. ft

Live load on roof = 320 lbs/lin. ft

Loads on walls:

P1) = 25(0.539) = 13.48 kips/panel
PL = 25(0.320) = 8 kips/panel

The two walls cantilever from the
base, with the roof forming a pinned
strut between them, carrying the com-
pression necessary to equalize the de
flections. Length changes in the roof
unit could be included but will be as-
sumed to be zero here, for clarity.

• Primary Analysis at Service Loads:

Let compression in roof member =
F lbs

Deflection at roof level = -L
4 ± FL

8EI 3EI
(Use E = 4000 ksi, I = 2872 in.')
Equate deflections at tops of walls:

160L' FL 3 128L 4 FL3
8EI	 3EI	 8EI	 3E1

F = 1441bs

_ 160L 4 _ 144L3

8EI	 3EI

= 0.90 in.

• Secondary Analysis at Service
Loads:

HoldingforceH = IPA`
L

HL3

_ EP_,L 2

6EI

= 0.05 in.

No further iterations are necessary:
3 = 0.95 in.

• Design Loads:

Case 1. U = 1.4D + 1.7L
P = 32.5 kips
No wind loads

Case 2, U = 0.75 (1.4D + 1.7L +
1,7W)

P = 24.4 kips
W = 204 plf (pressure)

163.2 plf (suction)
Case 3. U = 0.9D + 1.3W

P = 12.13 kips
W = 208 plf (pressure)

166.4 plf (suction)
Clearly, Case 2 governs.
Suppose that, under Case 2 loads, the

moment of inertia of the section will be
reduced by cracking to one-half of the
initial value: say 1440 in .4 (This is the
difficult part of this analysis; it should
be done iteratively, with the assumed
value being confirmed by calculation
after the secondary moments are found.)

• Primary Analysis at Design Loads:
Equate deflections at tops of walls
(Use E = 4000 ksi, I = 1440

204L4 FL 3 = 163.2L 4 + FL3
8EI	 3EI	 8EI	 3EI

F = 183.6 lbs

_ 204L4 _ 183.6L-'
'	 8EI 	 3EI

= 2.28 in.

• Secondary Analysis at Design Loads:

Holding force H = IPA,
L

HL3

31EI

_ PAIL2
6EI

= 0.27 in.

A = Y.PA :L2
6E1

= 0.03 in.

Accept: A = 2.58 in.
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50, 

8 DT 16  

N

2" Normal WT.

Topping
Bearing plates
centered on centroid
of section

UNBRACED CANTILEVER WALLS

Wind load 7 20 psf ( pressure )
16 psi ( suction)

Live load on roof = 40 psf
BDT12 wolls with 4-l/2 '4 strands

d - 2 	 = 10'
Otherwise as FIG. B2 . I = 2872

Fig. C5. Example 4. Portal frame with unbraced double tee cantilever wall units.

Moment at base of wall =
(0.204)(24)212 – (0.184)(24) +
(24 .4)(2.58)/12
= 59.6 kip-ft

Moment capacity of section 4M at
d?P„ = 24.4 kips, assuming strands are
fully developed at the point of maximum
moment, is calculated to be 63.3 kip-ft.

• Moment Magnification

It would ordinarily be necessary to
account for additional moments due to
departure of the column from the line
joining the ends. This would he done by
applying the moment magnification
factor to the braced effective length, or
by rational analysis, with the primary
plus P- moments. However, in the case
of a cantilever column, the maximum
moment is obviously at the base and this
is not necessary.

Alternative Solution to Example 4
Using Program

The problem can be solved entirely
by means of the computer program.

The load P is assumed to act vertically
through the centroid of the concrete
section at the top. At the bottom, it is set
to some trial eccentricity. The data are
then entered as for Example 1, with the
primary moment due to the wind load
and the calculated compression in the
roof member.

The bottom is used as the starting end,
and the slope there is examined. Exam-
ination of the curvature contours from
the first run of the program shows that
the member is cambered, with curvature
at zero moment equal to 0.000032. It
follows easily that the camber is 0.33 in.
and the slope at the base of the unit
would depart by 0.0046 from the verti-
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BENOING MOMENT (kips—ins)

Fig. C6. Design data generated for Example 5. 1fi in. square column with
no length effects.

cal, if the unit were erected with the top
of the section vertically above the bot-
tom. The base eccentricity is varied in
subsequent runs until this slope is
achieved.

When the process is repeated for the
leeward side, it is found that the tip de-
flections are not equal. This necessitates
a change in the compression force as-

sumed to act in the roof unit, to 50 lbs
tension. The required balance is then
obtained, with tip deflections equal to
2.20 in., and the maximum base mo-
ments equal to 64.4 kip-ft (windward)
and 50.3 kip-ft (leeward).

It should he recalled that the manual
P-A calculation above depended upon
the value adopted for the moment of in-
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ertia of the cracked section, which
should have been calculated and cor-
rected after the first trial_ Thus, the ap-
parent agreement is in part fortuitous,
and in part due to the fact that the axial
load is relatively small.

Note that this problem could usually
be solved quite simply by using the ef-
fective length concept: by doubling the
column length to include the mirror
image below the foundation, with the
axial load concentrically applied. The
P-A effects would emerge naturally from
such a calculation.

The difficulty in this case arose from
the unsymmetric section with the con-
sequent camber in the unloaded state.
This means the mirror image column of
effective length 2L, would have had a
slope discontinuity at midheight. Al-
though manual calculations can ignore
the camber, there does not appear to be
any way of avoiding it in the more exact
calculations.

Use of Formulas

Again, with use of the unbraced ef-
fective length of 2L, moment magnifi-
cation formulas should lead to the P-A
moment. However, the L/r ratio for this
member is 576/3.16 = 182, which is out-
side the range of applicability of any
such formula. Thus, in this case, rational
analysis of some form is mandatory.

EXAMPLE 5

A square prestressed concrete column
is to he designed using the following
data:

P,, = 550 kips	 f, = 270 ksi
M,, = 875 kip-in.	 J, = 154.9 ksi
f, = 6 ksi	 =0.7
The minimum cover to the center of

prestressing steel is 2 in.
This is Example 1 from Ref. 20, p. 138.

As in that reference, a 16 in. square trial
section was selected. The solution was
obtained by running the program only as
far as the ultimate strength interaction
curve, since no length effects are in-
volved.

Fig. C6 was obtained after a few min-
utes spent coding and running the pro-
gram. As will be seen, it was concluded
that the column was safe with four 3-in.
diameter strands, giving a steel area of
0.34 in. ! At the given eccentricity, a load
of 677 kips could be safely carried, with
a moment of 1083 kip-in. These are ex-
actly the results obtained in Ref. 20.

Note that the functional form used for
the concrete stress-strain curve in Ref.
20 was not included in the program;
nine points on the curve were calculated
and entered, giving this result.

Slenderness effects could have been
included by running the whole program.
The design curves of Fig. C6 would
then include length effects, as do those
of Example 2 (Fig. C2).

Metric (Si) Conversion Factors

i It = 0.305 rn
1in.=25.4mm
1 in. 2 = 645.2 mm2
1 in .4 = 416231 mm"
1 lb = 4.448 N

1 kip = 4.446 kN
1 ksi = 6.895 MPa
1 kip-in. = 113 N-m
1 kip-ft = 1356 N-m
1 psf = 0.0479 kPa
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