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 Ariane 5 

On June 4 1996 the first flight  
of the European Space Agency's 
new Ariane 5 rocket failed shortly 
after launching. 

It was reportedly due to the lack of 
exception handling of a floating-point 
error in a conversion from a 64-bit 
integer to a 16-bit signed integer.  

Computer system failures  
caused by bugs 



3 

 Banking bugs 

Software bugs caused the bank accounts of 

823customers of a major U.S. bank to be 

credited with $924,844,208.32 each in May of 

1996. 

Computer system failures  
(cont.) 
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Some facts… 

 About US$250 billion spent per year 

in the US on application 

development. Of this, about US$140 

billion wasted due to the projects 

getting abandoned or reworked. 

 20% of costs are development costs. 

80% are testing costs.  
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Organization of this Lecture 

 Introduction to Software 

Engineering. 

Software testing. 

Products. 

Demo. 
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Introduction to Software 

Engineering 
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What is Software Engineering? 

 “The whole trouble comes from the fact 

that there is so much tinkering with 

software. It is not made in a clean 

fabrication process, which it should be. 

What we need, is software engineering” 

(F.L. Bauer, 1968)  
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What is Software Engineering? 

(cont.) 

Hybrid of: 

Scientific. 

Technical principles. 

Management principles. 
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Software process 

 A set of activities whose goal is the 

development or evolution of software. 

 Generic activities in all software processes are: 

 Specification - what the system should do and its 

development constraints. 

 Development - production of the software system. 

 Validation - checking that the software is what the 

customer wants. 

 Evolution - changing the software in response to 

changing demands. 
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Software process model 

 A simplified representation of a software 

process, presented from a specific 

perspective. 

 Generic process models  

Waterfall 

Spiral model 
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Software Processes 

waterfall model 
Requirements 

definition 

System and 

software design 

Implementation 

and unit testing 

Integration and 

system testing 

Operation and 

maintenance 



12 

Spiral model 
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Software Testing 
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Software Testing 

 

 Definition - operation of a system or 

application under controlled conditions and 

evaluating the results.  

 The controlled conditions should include: 

Normal conditions. 

Abnormal conditions.  
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Software Testing 

Organization viewpoint  

 Combined responsibility of one group or 

individual.  

Or 

 Project teams. 

 

 It depends on what best fits an organization's size 

and business structure…  
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Why does software have 

bugs?  

 Programming errors 

Programmers, like anyone else, can make 

mistakes.  

 Changing requirements 

Redesign, rescheduling of engineers. 

 Miscommunication or no 

communication 
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Why does software have bugs?  

(cont.) 

 Software complexity  

 5 faults/1000 LOC 

 1M LOC will have 5000 faults 

Windows XP has 45M LOC  45 * 5000 = 225,000 

 UNIX has 4M LOC  4 * 5000 = 20,000  

 Time pressures  

 Egos  

 People prefer to say things like:    
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people prefer to say things 

like: 

No Problem… 

that adds a lot of 

complexity and we could 

end up making a lot of 

mistakes. 

Instead Of 
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people prefer to say things 

like: 

piece of cake… 
we can't figure out that 

old spaghetti code. 
Instead Of 
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The testing process 

Unit 

testing 

Module 

testing 

Sub-

system 

testing 

System 

testing 

Acceptance 

testing 

Unit Testing 
 The most 'micro' scale of 

testing to test particular 

functions or code modules. 
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The testing process 

Unit 

testing 

Module 

testing 

Sub-

system 

testing 

System 

testing 

Acceptance 

testing 

Module Testing 
 Related collections of 

dependent components 

are tested. 
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The testing process 

Unit 

testing 

Module 

testing 

Sub-

system 

testing 

System 

testing 

Acceptance 

testing 

Sub System Testing 
 Modules are integrated 

into sub-systems and tested. 

The focus here should be on 

interface testing. 
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The testing process 

Unit 

testing 

Module 

testing 

Sub-

system 

testing 

System 

testing 

Acceptance 

testing 

System Testing 
 Testing of the system 

as a whole. Testing of 

emergent properties. 
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The testing process 

Unit 

testing 

Module 

testing 

Sub-

system 

testing 

System 

testing 

Acceptance 

testing 

Acceptance Testing 
 Formal testing conducted to 

enable a user, customer or other 

authorized entity to determine 

whether to accept a system or 

component. 
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The testing process 

Unit 

testing 

Module 

testing 

Sub-

system 

testing 

System 

testing 

Acceptance 

testing 

Regression Testing 
Re-testing after fixes or 

modifications of the 

software or its 

environment. 
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Effort to Repair Software 
(when defects are detected at different stages) 
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Testing types 

 White box testing. 

 Black-box Testing. 

Also called Functional Testing. 

An abstraction of a device or system in which 

only its externally visible behavior is 

considered and not its implementation or 

"inner workings". 



28 

Black-box advantages  

1. Unbiased test.  

2. Specific programming languages 

knowledge is not required.  

3. Will help to expose any ambiguities or 

inconsistencies in the specifications. 

4. Early design of tests.  
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Black-box disadvantages  

1. Tests redundancy.  

2. Difficult to design without clear 

specifications.   

3. Cannot be directed toward specific 

segments of code which may be very 

complex. 
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Products for 

Automated Testing 
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Mercury QuickTest 

Supported Environments - Web 

applications, Win32 / MFC applications. 

 .NET and JAVA Add-in. 

SAP & Siebel.  

Oracle. 

 Operating System - Windows 2000 and 

further. 
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Rational Functional 

Tester 
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Rational Functional Tester 

Features 

1. Support for testing of Java, Web, Visual 

Studio .NET WinForm-based 

applications and Siebel. 

2. Choice of language - Java or Visual 

Basic .NET - for test script customization. 

3. Native Java and Visual Basic .NET editor 

and debugger for advanced testers. 
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Rational Functional Tester 

Features (cont.) 

4. ScriptAssure technology to 
accommodate frequent UI modifications. 

5. Automated data-driven testing eliminate 
need for manual coding. 

6. Multiple verification points with regular 
expression pattern matching support. 

7. Advanced object map maintenance 
capabilities. 
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Rational Functional Tester 

Features (cont.) 

8. Ships with IBM Rational ClearCase LT 

for automated version control. 
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System requirements  

 Linux 
 Red hat version 9.0 (All functions except recording)  

 Red Hat Enterprise Linux WS version 3  

 SUSE Linux Enterprise Server 9  

 Windows 
Windows 2000 and further. 

 Hardware 
 500MHz Intel® Pentium® III  

Minimum: 256MB  

 500MB installation directory per product  
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Products Comparison 

product 
Range of 

supported 

application 

Recommended 

for technical 

users 

Recommended 

for non-

technical users 

Life cycle tool 

integration 

IBM 

Rational 

Functional 

Tester 

Mercury 

QuickTest 
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Automatic testing 

Rational XDE 

Tester 

Part2 
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White Box testing 

 Also: glass box, structural, clear box and open 

box testing.  

 Tests 

 the source code 

 the implementation logic. 
 

 Requires knowledge 

 to select the test data 

 to examine outputs.  
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White Box testing 
 

 Advantages:  

Wise input can help in testing the application 
effectively.  

Helps in optimizing the code. 

Helps in removing the extra lines of code.  
 

 Disadvantages:  

Requires a skilled tester.  

Cannot look into every bit of code to find out 
hidden errors. 
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Unit testing 
 

 Type of testing where a developer proves that a 

code module meets its requirements.  
 

Most ‘micro’ scale testing. 

Contrast with “system test”. 

 

 Typically done by the programmer. 

 

 Usually associated with structural test design. 
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Benefits 

 

 Facilitates change  

 

 Simplifies integration 

 

 Documentation 
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Limitations 

 

 Will not catch every error in the program 

 

 Can only show the presence of errors 

 

 Responsibility of the developer 
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Techniques & Applications  

 

 Often conducted in an automated environment.  

 The unit is executed outside of its natural 
environment. 

 

 Building block to Test Driven Development 
(TDD).  

 xUnit. 
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Automatic testing 
 

 Testing which is performed, to a greater or 

lesser extent, by a computer. 

 

 Motivation:  

 Increasing demands from testers.  

Regression tests. 
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Automatic testing 
 In the abstract, software testing involves: 

  devising a test case 

  running the program with the test case 

checking the performance of the software. 

 

 

 

 

 Partial test automation. 

Depending on 

program’s output 

complex 

straightforward 
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The principle 

 A program runs the application with proper input 
and checks its output against the expected. 
 

 Once the test suite is written, no human 
intervention is needed.  

 Test suites help:  

before a new version is released.  

software internally different for environments, 

but with the same external behavior.  
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What's a 'test plan'?  

 A document that describes all of a software 
testing effort. 
 

Useful way to think through the efforts needed 
to validate a product.  

Help people outside understand the 'why’ & 
'how’.  

 

 Thorough, but not too much!  
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Test plan template, IEEE 829 format 

 Test Plan Identifier 

 References 

 Test Items 

 Approach 

 Item Pass/Fail Criteria 

 Responsibilities 

 Schedule 

 Approvals … 
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What's a 'test case'?  

 A set of conditions under which a tester will 
determine if a requirement upon an application 
is partially or fully satisfied. 
 Known input 

 Expected output 
 

 At least one per requirement. 

 

 Help finding problems in the application design. 

 

 Usually collected into Test Suites. 



51 

No Action Expected result 

1 Open application The GUI is open. There are 10 

buttons with number from 0 to 

9. There are 5 operation buttons 

(+, -, *, /, =) and a clear button. 

There is also a text field with a 

zero number (0). 

2 Press clear The text field contains zero. 

3 Press number button 0 The text field shows the value 0. 

4 Repeat actions 2,3 for all numbers 

between 0 to 9 

The same as above. 

5 Press Clear The text field shows 0 

6 Press button number 4 The value 4 appears. 

7 Press the operator button + None 

8 Press button number 8 The value 8 appears. 

9 Press button = The value 12 should appear 

10  … all operations 



52 

GUI automation tools 

 

 Record/playback: The user records a set of 

actions on the GUI under test, and the tool is able 

to replay those actions later. 

 

 Programmatic: The user writes code describing 

the interaction with the GUI under test. 
 

  Also: ‘data-driven’ or ‘keyword-driven’.  
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Record/Playback 

 Advantages:  

Simplistic  
 

 Disadvantages:  

Fragile 

How do you properly determine delay factors 

between events being synthesized?  

Often have to re-record tests  
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Programmatic 

 Advantages:  

Can adjust to changes in GUI  

Can determine when to send the next event 

more correctly  

The tester has tons of flexibility available  
 

 Disadvantages:  

The test developer has to be a programmer  
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Automatic testing - yes or no? 

 Pros 

Eliminate repetition 

Reduce error 

Quicker results 

 

 Cons 

Effort needed for automation  

Number of releases expected for testing 

Maturity of the product 
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Rational 

Functional Tester 

installation 
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Rational 

Functional Tester 

Example for unskilled programmers ;) 


