
1

Rational

Functional Tester

Dan Yahav

Yael Grumbach

Eitan Kovacs

2

 Ariane 5

On June 4 1996 the first flight
of the European Space Agency's
new Ariane 5 rocket failed shortly
after launching.

It was reportedly due to the lack of
exception handling of a floating-point
error in a conversion from a 64-bit
integer to a 16-bit signed integer.

Computer system failures
caused by bugs

3

 Banking bugs

Software bugs caused the bank accounts of

823customers of a major U.S. bank to be

credited with $924,844,208.32 each in May of

1996.

Computer system failures
(cont.)

4

Some facts…

 About US$250 billion spent per year

in the US on application

development. Of this, about US$140

billion wasted due to the projects

getting abandoned or reworked.

 20% of costs are development costs.

80% are testing costs.

5

Organization of this Lecture

 Introduction to Software

Engineering.

Software testing.

Products.

Demo.

6

Introduction to Software

Engineering

7

What is Software Engineering?

 “The whole trouble comes from the fact

that there is so much tinkering with

software. It is not made in a clean

fabrication process, which it should be.

What we need, is software engineering”

(F.L. Bauer, 1968)

8

What is Software Engineering?

(cont.)

Hybrid of:

Scientific.

Technical principles.

Management principles.

9

Software process

 A set of activities whose goal is the

development or evolution of software.

 Generic activities in all software processes are:

 Specification - what the system should do and its

development constraints.

 Development - production of the software system.

 Validation - checking that the software is what the

customer wants.

 Evolution - changing the software in response to

changing demands.

10

Software process model

 A simplified representation of a software

process, presented from a specific

perspective.

 Generic process models

Waterfall

Spiral model

11

Software Processes

waterfall model
Requirements

definition

System and

software design

Implementation

and unit testing

Integration and

system testing

Operation and

maintenance

12

Spiral model

R i s k
a n a l y s i s

R i s k
a n a l y s i s

R i s k
a n a l y s i s

Risk
anal ysis P r o t o -

t y p e 1

P r o t o t y p e 2

P r o t o t y p e 3
O p e r a -
t i o n a l
p r o t o y p e

C o n c e p t o f
O p e r a t i o n

S i m u l a t i o n s , m o d e l s , b e n c h m a r k s

S / W
r e q u i r e m e n t s

R e q u i r e m e n t
v a l i d a t i o n

D e s i g n
V & V

P r o d u c t
d e s i g n D e t a i l e d

d e s i g n

C o d e

U n i t t e s t

I n t e g r a t i o n
t e s t A c c e p t a n c e

t e s t S e r v i c e D e v e l o p , v e r i f y
n e x t - l e v e l p r o d u c t

E v a l u a t e a l t e r n a t i v e s
i d e n t i f y , r e s o l v e r i s k s

D e t e r m i n e o b j e c t i v e s
a l t e r n a t i v e s a n d

c o n s t r a i n t s

P l a n n e x t p h a s e

I n t e g r a t i o n
a n d t e s t p l a n

D e v e l o p m e n t
p l a n

R e q u i r e m e n t s p l a n
L i f e - c y c l e p l a n

R E V I E W

13

Software Testing

14

Software Testing

 Definition - operation of a system or

application under controlled conditions and

evaluating the results.

 The controlled conditions should include:

Normal conditions.

Abnormal conditions.

15

Software Testing

Organization viewpoint

 Combined responsibility of one group or

individual.

Or

 Project teams.

 It depends on what best fits an organization's size

and business structure…

16

Why does software have

bugs?

 Programming errors

Programmers, like anyone else, can make

mistakes.

 Changing requirements

Redesign, rescheduling of engineers.

 Miscommunication or no

communication

17

Why does software have bugs?

(cont.)

 Software complexity

 5 faults/1000 LOC

 1M LOC will have 5000 faults

Windows XP has 45M LOC  45 * 5000 = 225,000

 UNIX has 4M LOC  4 * 5000 = 20,000

 Time pressures

 Egos

 People prefer to say things like:

18

people prefer to say things

like:

No Problem…

that adds a lot of

complexity and we could

end up making a lot of

mistakes.

Instead Of

19

people prefer to say things

like:

piece of cake…
we can't figure out that

old spaghetti code.
Instead Of

20

The testing process

Unit

testing

Module

testing

Sub-

system

testing

System

testing

Acceptance

testing

Unit Testing
 The most 'micro' scale of

testing to test particular

functions or code modules.

21

The testing process

Unit

testing

Module

testing

Sub-

system

testing

System

testing

Acceptance

testing

Module Testing
 Related collections of

dependent components

are tested.

22

The testing process

Unit

testing

Module

testing

Sub-

system

testing

System

testing

Acceptance

testing

Sub System Testing
 Modules are integrated

into sub-systems and tested.

The focus here should be on

interface testing.

23

The testing process

Unit

testing

Module

testing

Sub-

system

testing

System

testing

Acceptance

testing

System Testing
 Testing of the system

as a whole. Testing of

emergent properties.

24

The testing process

Unit

testing

Module

testing

Sub-

system

testing

System

testing

Acceptance

testing

Acceptance Testing
 Formal testing conducted to

enable a user, customer or other

authorized entity to determine

whether to accept a system or

component.

25

The testing process

Unit

testing

Module

testing

Sub-

system

testing

System

testing

Acceptance

testing

Regression Testing
Re-testing after fixes or

modifications of the

software or its

environment.

26

Effort to Repair Software
(when defects are detected at different stages)

0.15 0.5 1 2

5

20

0

2

4

6

8

10

12

14

16

18

20

Reqmts Design Coding Unit test Acc. Test Maintenance

R
e
la

ti
v
e
 e

ff
o
rt

 t
o
 r

e
p
a
ir

27

Testing types

 White box testing.

 Black-box Testing.

Also called Functional Testing.

An abstraction of a device or system in which

only its externally visible behavior is

considered and not its implementation or

"inner workings".

28

Black-box advantages

1. Unbiased test.

2. Specific programming languages

knowledge is not required.

3. Will help to expose any ambiguities or

inconsistencies in the specifications.

4. Early design of tests.

29

Black-box disadvantages

1. Tests redundancy.

2. Difficult to design without clear

specifications.

3. Cannot be directed toward specific

segments of code which may be very

complex.

30

Products for

Automated Testing

31

Mercury QuickTest

Supported Environments - Web

applications, Win32 / MFC applications.

 .NET and JAVA Add-in.

SAP & Siebel.

Oracle.

 Operating System - Windows 2000 and

further.

32

Rational Functional

Tester

33

Rational Functional Tester

Features

1. Support for testing of Java, Web, Visual

Studio .NET WinForm-based

applications and Siebel.

2. Choice of language - Java or Visual

Basic .NET - for test script customization.

3. Native Java and Visual Basic .NET editor

and debugger for advanced testers.

34

Rational Functional Tester

Features (cont.)

4. ScriptAssure technology to
accommodate frequent UI modifications.

5. Automated data-driven testing eliminate
need for manual coding.

6. Multiple verification points with regular
expression pattern matching support.

7. Advanced object map maintenance
capabilities.

35

Rational Functional Tester

Features (cont.)

8. Ships with IBM Rational ClearCase LT

for automated version control.

36

System requirements

 Linux
 Red hat version 9.0 (All functions except recording)

 Red Hat Enterprise Linux WS version 3

 SUSE Linux Enterprise Server 9

 Windows
Windows 2000 and further.

 Hardware
 500MHz Intel® Pentium® III

Minimum: 256MB

 500MB installation directory per product

37

Products Comparison

product
Range of

supported

application

Recommended

for technical

users

Recommended

for non-

technical users

Life cycle tool

integration

IBM

Rational

Functional

Tester

Mercury

QuickTest

38

Automatic testing

Rational XDE

Tester

Part2

39

White Box testing

 Also: glass box, structural, clear box and open

box testing.

 Tests

 the source code

 the implementation logic.

 Requires knowledge

 to select the test data

 to examine outputs.

40

White Box testing

 Advantages:

Wise input can help in testing the application
effectively.

Helps in optimizing the code.

Helps in removing the extra lines of code.

 Disadvantages:

Requires a skilled tester.

Cannot look into every bit of code to find out
hidden errors.

41

Unit testing

 Type of testing where a developer proves that a

code module meets its requirements.

Most ‘micro’ scale testing.

Contrast with “system test”.

 Typically done by the programmer.

 Usually associated with structural test design.

42

Benefits

 Facilitates change

 Simplifies integration

 Documentation

43

Limitations

 Will not catch every error in the program

 Can only show the presence of errors

 Responsibility of the developer

44

Techniques & Applications

 Often conducted in an automated environment.

 The unit is executed outside of its natural
environment.

 Building block to Test Driven Development
(TDD).

 xUnit.

45

Automatic testing

 Testing which is performed, to a greater or

lesser extent, by a computer.

 Motivation:

 Increasing demands from testers.

Regression tests.

46

Automatic testing
 In the abstract, software testing involves:

 devising a test case

 running the program with the test case

checking the performance of the software.

 Partial test automation.

Depending on

program’s output

complex

straightforward

47

The principle

 A program runs the application with proper input
and checks its output against the expected.

 Once the test suite is written, no human
intervention is needed.

 Test suites help:

before a new version is released.

software internally different for environments,

but with the same external behavior.

48

What's a 'test plan'?

 A document that describes all of a software
testing effort.

Useful way to think through the efforts needed
to validate a product.

Help people outside understand the 'why’ &
'how’.

 Thorough, but not too much!

49

Test plan template, IEEE 829 format

 Test Plan Identifier

 References

 Test Items

 Approach

 Item Pass/Fail Criteria

 Responsibilities

 Schedule

 Approvals …

50

What's a 'test case'?

 A set of conditions under which a tester will
determine if a requirement upon an application
is partially or fully satisfied.
 Known input

 Expected output

 At least one per requirement.

 Help finding problems in the application design.

 Usually collected into Test Suites.

51

No Action Expected result

1 Open application The GUI is open. There are 10

buttons with number from 0 to

9. There are 5 operation buttons

(+, -, *, /, =) and a clear button.

There is also a text field with a

zero number (0).

2 Press clear The text field contains zero.

3 Press number button 0 The text field shows the value 0.

4 Repeat actions 2,3 for all numbers

between 0 to 9

The same as above.

5 Press Clear The text field shows 0

6 Press button number 4 The value 4 appears.

7 Press the operator button + None

8 Press button number 8 The value 8 appears.

9 Press button = The value 12 should appear

10 … all operations

52

GUI automation tools

 Record/playback: The user records a set of

actions on the GUI under test, and the tool is able

to replay those actions later.

 Programmatic: The user writes code describing

the interaction with the GUI under test.

 Also: ‘data-driven’ or ‘keyword-driven’.

53

Record/Playback

 Advantages:

Simplistic

 Disadvantages:

Fragile

How do you properly determine delay factors

between events being synthesized?

Often have to re-record tests

54

Programmatic

 Advantages:

Can adjust to changes in GUI

Can determine when to send the next event

more correctly

The tester has tons of flexibility available

 Disadvantages:

The test developer has to be a programmer

55

Automatic testing - yes or no?

 Pros

Eliminate repetition

Reduce error

Quicker results

 Cons

Effort needed for automation

Number of releases expected for testing

Maturity of the product

56

Rational

Functional Tester

installation

57

Rational

Functional Tester

Example for unskilled programmers ;)

