Rational Invariants of Meta-abelian Groups of Linear Automorphisms*

Mowaffaq Hajja

Yarmouk University, Irbid, Jordan Communicated by R. G. Swan Received April 6, 1981

INTRODUCTION

Let k be an algebraically closed field of characteristic zero, G a finite group and V a finite-dimensional kG-module. Then G acts as a group of k-automorphisms on k(V), the field of fractions of the symmetric k-algebra of V. Is the subfield $k(V)^G$ of k(V) fixed by G rational (=purely transcendental) over k?

The case when G is abelian was completely settled by Fischer [3, 4] in 1916, and it is natural to consider next the "two-step abelian" (i.e., metaabelian) case. We thus assume that G has a normal abelian subgroup N for which H = G/N is abelian. For a cyclic H (of order n, say), Haeuslein [5] showed that $k(V)^G$ is indeed rational if n is prime and if the nth cyclotomic field has class number 1. This is the case precisely when n is a prime <23.

In Section 1 of this paper, we prove Haeuslein's result with the assumption that n is a prime relaxed. Thus $k(V)^G$ is rational if n is any of the 44 numbers listed in [8]. The difficulties arising from dropping the assumption that n is prime are discussed at the end of Section 1. For other values of n, the problem remains open. We note, however, the role played by $\dim_k(V)$ and we prove that $k(V)^G$ is rational whenever $\dim_k(V) < 23$, regardless of n.

The proof goes as follows. By [1, pp. 75–79], a meta-abelian group is an M-group. Actually, k(V) has a base over k (i.e., a transcendence basis B for which k(B) = k(V)) on which G acts monomially and on which N acts diagonally (i.e., G acts on the subgroup of $k(V)^*$ generated by k^* and B, and g(b)/b belongs to k^* for all b in B and all g in N). Using Fischer's method, one constructs a base of $L = k(V)^N$ on which H acts monomially. Thus our problem reduces to whether the abelian group H of monomial automorphisms has a rational fixed field. If the action of H could be linearized (i.e., if L has a base B over k for which H acts on the k-module generated by B), then Fischer's result would settle our problem. This can

 \ast This work was supported by NSF Grant MCS-7903057 and by a grant from Yarmouk University.

MOWAFFAQ HAJJA

actually be done if H is cyclic (say H = (h)) of a prime order <23 [6]. If order(h) is not prime, the problem gets much harder, and it is in fact still unknown whether that can be done. Nor is it known whether all monomial automorphisms of order <23 have rational fixed fields. We were able, however, to linearize h using the fairly special form its characteristic polynomial turns to have (namely, $\prod (T^{s(i)} - 1)$), and imposing some restrictions on the sizes of the s(i)'s. These restrictions follow from either the hypothesis that order(h) < 23 or that dim_k(V) < 23.

In Section 2, we drop the assumption that (the abelian) H is cyclic and we establish the rationality of $k(V)^G$ for $\dim_k(V) < 5$. In this case too, we do not know whether the action of H can be linearized.

The arithmetic version of this problem is often referred to as "Noether's Conjecture." It was first formulated by Noether in 1916 as a question of the rationality of $Q(V)^{C(r)}$ for the regular representation V of a cyclic group C(r) of order r over the rational number field Q. The rationality was established by her [11] for r = 3, by Seidelmann [12] for r = 4, by Masuda [9] for r < 8 and later [10] for r = 11. In 1969, Swan [13] proved the surprising result that even in this simple case of a cyclic C(r), $Q(V)^{C(r)}$ need not be rational, giving as an example the value r = 47. Further investigation of the problem was made by Endo and Miyata [2] and by Lenstra [7].

1. THE CYCLIC CASE

Throughout this paper, k is an algebraically closed field of characteristic zero, G a finite group having a normal abelian subgroup N for which H = G/N is abelian, V a finite-dimensional kG-module and k(V) the field of fractions of the symmetric algebra of V over k. Let G act naturally as a group of k-automorphisms on k(V). Our objective is to establish, under certain conditions, that $k(V)^G$ is rational (over k).

We adhere to the definitions made in the Introduction (noting especially the rather unstandard usage of the term "base"). If U is a group containing k^* as a subgroup such that U/k^* is \mathbb{Z} -free of finite rank and if f is an automorphism on U fixing k^* , then \overline{U} denotes U/k^* , \overline{f} the action on \overline{U} induced by f, and $\chi(f, U)$ the characteristic polynomial of \overline{f} . The value of $\chi(f, U)$ at (an indeterminate) T is denoted by $\chi(f, U, T)$. The rth cyclotomic polynomial is denoted by ϕ_r .

Theorem 1 reduces our problem to one of the more classical type already encountered in the treatment of the Arithmetic Noether's Conjecture stated in the Introduction.

THEOREM 1. Let H = G/N be cyclic and let h be a generator of H. Then there exists a $\mathbb{Z}H$ -module E containing k^* as an H-fixed submodule such that (i) \overline{E} is \mathbb{Z} -free of a rank equal to $\dim_k(V)$. (ii) $k(V)^N = k(E)$ (and hence $k(V)^G = k(E)^H$), where k(E) is the canonically constructed field extension of k having as a base a set in E representing a \mathbb{Z} -basis of \overline{E} .

(iii) $\chi(h, E, T)$ is of the form $\prod_{i=1}^{r} (T^{s(i)} - 1)$.

Proof. Let g be a pre-image of h in $G \rightarrow G/N = H$. Following Fischer's method of finding invariants of N, we form the N-eigen space decomposition \oplus V_i of V having the minimal number of summands and we use the normality of N in G to prove that the action of each element of G on the set $\{V_i\}$ is a permutation. We then construct an N-eigen basis of V on which g acts as a permutation (up to multiplying by elements of k^*). This is done as follows. Let $(U_1, ..., U_t)$, where each U_i is some V_i , be a cycle in the decomposition into disjoint cycles of the permutational action of g on the set $\{V_i\}$. Since g^t acts on U_1 , one can construct a g^t -eigen basis of U_1 . Such a basis, combined with its images under powers of g, yields a basis of $\prod_{i=1}^{t} U_i$ on which the action of g is as desired. Doing the same on each cycle and combining the resulting bases, one gets the desired basis of V. Thus we have constructed a base B of k(V) and a permutation p on the set B such that g(b)/p(b) and g'(b)/b belong to k^* for all b in B and all g' in N. Letting A be the subgroup of $k(V)^*$ generated by k^* and B, and letting E be the subgroup of A fixed by N, one easily sees (and it is the classical argument of Fischer) that $k(V)^N$ is rational and equals k(E). Clearly, h acts on E making it a $\mathbb{Z}H$ -module. Finally, the statement on $\chi(h, E)$ follows from observing the permutational action of \tilde{g} (and hence of \tilde{h}) on A and noting that $\chi(g, A) =$ $\chi(g, E), A/E$ being all torsion.

THEOREM 2. Let H be cyclic and let n = order(H). If the class number of the nth cyclotomic field is 1, then $k(V)^G$ is rational over k.

The idea of the proof is to subject the $\mathbb{Z}H$ -module E obtained in Theorem 1 to a sequence of modifications within $k(E)^*$ that result in another $\mathbb{Z}H$ -module F having all the properties of E and for which \overline{F} is a permutation module. This will be accomplished after few preparatory lemmas have been proved.

Let *E* be as in Theorem 1, let H = (h) and let L = k(E). For a $\mathbb{Z}H$ submodule *F* of L^* containing k^* , let \overline{F} denote F/k^* and let \overline{h} (resp. \overline{H}) denote the action induced by *h* (resp. *H*) on \overline{L}^* . We refer to both $\mathbb{Z}H$ - and $\mathbb{Z}\overline{H}$ -modules simply as modules, the context making it clear which of the two rings is meant. A submodule *F* of L^* containing k^* and for which \overline{F} is \mathbb{Z} free of finite rank is called a monomial module. In all that follows, *F* and F_i 's stand for such modules. An element *u* of L^* (resp. of L^*/k^*) is said to be annihilated by a polynomial *P* if P(h)u belongs to k^* (resp. if $P(\overline{h}) = 1$). We say that $F_1 \sim F_2$ if $k(F_1) = k(F_2)$ and rank $(\overline{F_1}) = \operatorname{rank}(\overline{F_2})$. One should

MOWAFFAQ HAJJA

note, however, that for each pair F_1 and F_2 of equivalent modules encountered below, $\chi(h, F_1) = \chi(h, F_2)$. The pushout of the diagram

which contains both F_1 and F_2 is denoted by $F_1 * F_2$. Thus $k(F_1 * F_2)$ is the composite field $k(F_1) k(F_2)$. Finally we define the subset S(T) of $\mathbb{Z}[T] \times \mathbb{Z}[T]$ to be the set of all pairs (P(T), Q(T)) such that for some positive integers p and q, P(T) divides $(T^p - 1)$, Q(T) divides $(T^q - 1)$ and the $gcd(T^p - 1, Q(T)) = 1$.

PROPOSITION 3. Let (P(T), Q(T)) be in S(T). If an element u of F is annihilated by Q, then there exists an f in $k(F)^*$ such that (P(h)f)/u belongs to k^* .

Proof (Due to the referee). Let p and q be as in the definition of S(T), let $n = \operatorname{order}(H)$ and let $Q_1(T) = (T^{pqn} - 1)/(T^p - 1)$. Let H_1 be the subgroup of H generated by $h_1 = h^p$ and let s be the sum of its elements. Then $Q_1(h)u = (s(u))^m$, where $m = nq/\operatorname{order}(H_1)$. Since Q divides Q_1 , then $(s(u))^m$ is in k^* . Since k is algebraically closed, then s(u) is in k^* . Let a be the element of k^* for which s(au) = 1. Then by Hilbert's Theorem 90, there exists an f_1 in $k(F)^*$ such that $au = (h_1 - 1)f_1 = (h^p - 1)f_1$. It is now clear that $((h^p - 1)/P(h))f_1$ has the properties required of f.

LEMMA 4. Let (P(T), Q(T)) be in S(T), and let F_2 be a submodule of F_1 . If F_1/F_2 is the direct sum of cyclic modules annihilated by P, and if Q annihilates F_2 , then $F_1 \sim F_2 * F$, where \overline{F} is isomorphic to F_1/F_2 .

Proof. Let $x_1,...,x_s$ be elements of F_1 representing generators of the cyclic summands of F_1/F_2 (one x_i for each summand), and set $u_i = P_i(h)x_i$ where P_i is the annihilator of x_i . Then $Q(h)u_i$ is in k^* and Proposition 3 guarantees the existence of an f_i in $k(F_2)^*$ such that $(P_i(h)f_i)/u_i$ is in k^* . It is now easy to see that the module generated by $\{x_i f_i : i = 1,...,s\}$ has the properties required of F.

COROLLARY 5. Let E be as in Theorem 1, and let n = order(H). If the nth cyclotomic field has class number 1, then $E \sim F_1 * F_2 * \cdots * F_s$, where each F_i is annihilated by a cyclotomic polynomial and where the sum of the $\overline{F_i}$'s is a direct sum.

Proof. Let $(P_i)_{i=1}^m$ be the subsequence of $(\phi_i)_{i=1}^\infty$ consisting of the (cyclotomic) factors of $\chi(h, E)$, and set $Q_i = \prod_{j=1}^m P_j$. Let E_i be the

submodule of E annihilated by Q_i . Clearly, E_i/E_{i+1} is annihilated by $Q_i/Q_{i+1} = P_i$. Since P_i is a factor of $T^n - 1$ and since the class number of the *n*th cyclotomic field (and hence that of the *d*th cyclotomic field for every factor *d* of *n* [8]) is assumed to be 1, then $\mathbb{Z}[T]/P_i(T)$ is a P.I.D. and hence E_i/E_{i+1} (being a $(\mathbb{Z}[T]/P_i(T))$ -module) is the direct sum of cyclic modules. Thus, Lemma 4 applies to each pair (E_i, E_{i+1}) . We apply Lemma 4 *m* times, letting the role of (F_1, F_2) in that lemma be played by (E_1, E_2) , (E_2, E_3) ,..., (E_m, E_{m+1}) in this order and denoting by F_1, F_2 ,..., F_m the modifications thus obtained.

LEMMA 6. Let (P(T), Q(T)) be in S(T). If $\overline{F} = \overline{F}_1 \oplus \overline{F}_2$ and if \overline{F}_1 and \overline{F}_2 are cyclic modules annihilated by P and Q (resp.), then $F \sim F'$ for some cyclic $\overline{F'}$.

Proof. Let x and u be elements of F representing generators of \overline{F}_1 and \overline{F}_2 (resp.), and let P_1 be the annihilator of F_1 . Then by Proposition 3 there exists an f in $k(F_2)^*$ such that $(P_1(h)f)/u$ is in k^* . Now take F' to be the cyclic module generated by xf.

COROLLARY 7. If \overline{F} is the direct sum of cyclic modules annihilated by distinct cyclotomic polynomials, then $F \sim F'$ for some cyclic $\overline{F'}$.

Proof. Let \overline{F}_i (i = 1, ..., r) be the cyclic summands of \overline{F} , and let P_i be the cyclotomic polynomial annihilating F_i . Set $Q_i = \prod_{j=i+1}^r P_j$. Let $W_r = F_r$ and define W_{r-i} (i = 1, 2, ..., r-1) to be the module equivalent to $W_{r-i+1} * F_{r-i}$ obtained by applying Lemma 6 to $\overline{W}_{r-i+1} \oplus \overline{F}_{r-i}$. Then W_1 has the properties required of F'.

Proof of Theorem 2. In virtue of Corollary 5, one can assume that the module \overline{E} obtained in Theorem 1 is the direct sum of modules annihilated by cyclotomic factors of $\chi(h, E)$. Each of these summands is in turn the direct sum of cyclic modules. (This is because the *n*th cyclotomic field has class number 1, and therefore $\mathbb{Z}[T]/f(T)$ is a P.I.D. for every cyclotomic factor f of $T^n - 1$.) We index these cyclic summands of \overline{E} by the set $D = \{(i, j): i \text{ divides } s(j); j = 1,...,r\}$ and we set $D(j) = \{(a, b) \in D: b = j\}$. Then $\overline{E} = \bigoplus_{t \in D} \overline{E}_t = \bigoplus_{j=1}^r \bigoplus_{t \in D(j)} \overline{E}_t$, where for $t = (a, b), \overline{E}_t$ is cyclic annihilated by ϕ_a . We now apply Corollary 7 to $\bigoplus_{t \in D(j)} \overline{E}_t$ (for each j) to obtain F_j with \overline{F}_j cyclic annihilated by $T^{s(j)} - 1$. Thus $E \sim F_1 * F_2 * \cdots * F_r$ and it is obvious that $F_1 * F_2 * \cdots * F_r$ is a permutation module. Therefore, $k(E)^H$, $=k(V)^G$, is rational.

THEOREM 8. Let H be cyclic. If $\dim_k(V) < 23$, then $k(V)^G$ is rational over k.

Proof. Follows from the fact that $\dim_{k}(V)$ is the sum of the s(i)'s

(appearing in Theorem 1) and therefore the class number of the s(i)th cyclotomic field is 1 for all *i*.

Note. With the added hypothesis that n is prime, Theorem 2 was proved by Haeuslein [5]. The main ingredients in that proof are two statements (A) and (B) that are known to be true only if n is prime:

(A) $\mathbb{Z}[T]/(T^n - 1)$ is a semi-P.I.R. (For definition and reference, see [6, Theorem 0.4].)

(B) If f(T) is a prime factor of $(T^n - 1)$ and if E is a cyclic module over $\mathbb{Z}[t] = \mathbb{Z}[T]/f(T)$, then k(E) = k(F) for some permutation (actually trivial) *t*-module \overline{F} [6, Theorem 1.1(iii)].

When n is not prime, (A) is false and (B) is still an open statement. This twofold difficulty is removed by Corollaries 5 and 7 above.

We finally remark that knowledge of both $\operatorname{order}(H)$ and $\dim_k(V)$ may yield the rationality of $k(V)^G$ when Theorems 2 and 8 fail to. As an example, $k(V)^G$ is rational when $\operatorname{order}(H) = 39 > \dim_k(V)$.

2. THE KLEIN CASE

In this section, we drop the assumption that (the abelian) H is cyclic and we prove the rationality of $k(V)^G$ for dim_k V < 5.

We first prove the following simple lemma. The facts that $\mathbb{Z}[T]/(T^2 - 1)$ is a semi-P.I.R. and that a monomial automorphism of order 2 has a rational fixed field [6] are freely used.

LEMMA 9. Let E_1, E_2 be the endomorphisms on \mathbb{Z}^4 defined by

$$E_1((a_1, a_2, a_3, a_4)) = (a_2, a_1, a_3, a_4).$$

$$E_2((a_1, a_2, a_3, a_4)) = (a_1, a_2, a_4, a_3).$$

Let U be a rank 4 subgroup of \mathbb{Z}^4 invariant under both E_1 and E_2 . Then U has a system $\{u_1, u_2, u_3, u_4\}$ of generators such that both u_1 and u_2 are fixed by E_1 and by E_2 and such that either

,

(1)
$$E_1: u_3 \rightarrow u_4 \rightarrow u_3,$$

 $E_2: \begin{cases} u_3 \rightarrow -u_4 + \alpha u_1 + \beta u_2 \\ u_4 \rightarrow -u_3 + \alpha u_1 + \beta u_2 \end{cases}$

or

(2)
$$E_1: u_3 \rightarrow u_3: u_4 \rightarrow -u_4 + \alpha u_1 + \beta u_2,$$

 $E_2: u_4 \rightarrow u_4: u_3 \rightarrow -u_3 + \mu u_1 + \nu u_2,$

where α , β , μ , v are integers which are significant only up to their values mod 2.

Proof. Let u_1, u_2 be generators of the subgroup W of U consisting of the elements fixed by E_1 and E_2 , and let e_1 be the endomorphism induced on U/W by E_1 . It is easy to see that the minimal polynomial of e_1 is $T^2 - 1$; and thus the group-ring $R = \mathbb{Z}[e_1]$, being $\cong \mathbb{Z}[T]/(T^2 - 1)$, is a semi-P.I.R. Hence, the torsion-free R-module U/W decomposes into the direct sum of cyclic R-modules. Since rank(U/W) = 2, and since $T^2 - 1$ is the smallest polynomial that annihilates e_1 , it follows immediately that there are only the following two possibilities:

(i) $U/W = R\bar{v}$, where $v \in U$, $\bar{v} = v + W$ and $\operatorname{Ann}_{R}(\bar{v}) = e_{1}^{2} - 1$.

(ii) $U/W = R\bar{v}_1 \oplus R\bar{v}_2$, where $v_j \in U$, $\bar{v}_j = v_j + W$, and $\operatorname{Ann}_R(\bar{v}_j) = e_1 - (-1)^j$.

To obtain (1) from (i), set $u_3 = v$ and observe that

$$(E_2E_1 + id)v = (E_1 + E_2)v \in W.$$

To obtain (2) from (ii), set $u_3 = v_1$ and $u_4 = v_2$.

The last statement follows from observing the effect the change of the basis $\{u_1, u_2, u_3, u_4\}$ into $\{u_1, u_2, u'_3, u'_4\}$ has on the equations in (1) and (2), where $u'_3 - u_3$ and $u'_4 - u_4$ are in W.

We now return to our problem. We form the irredundant decomposition $\bigoplus_{i=1}^{m} V_i$ of V into N-eigen spaces and we use the normality of N in G to prove that each g in G acts as a permutation on the set $\{V_1, ..., V_m\}$. Assuming that N is its own centralizer, one sees that the elements of N are the only elements of G that act as the identity permutation. Thus H = G/N is isomorphic to a subgroup of the symmetric group S_m . The only abelian noncyclic subgroups of S_m ($m \leq \dim_k(V) < 5$) are the Klein subgroups of S_4 . Thus we assume that $\dim_k(V) = m = 4$, that $\dim_k(V_i) = 1$ and that H is a Klein group. Let g_1 and g_2 be elements of G representing generators of H, and let p_1 and p_2 be the elements of S_4 corresponding to g_1 and g_2 . Let y_i be a basis of (the one-dimensional) V_i , let P be the subgroup of $k(V)^*$ generated by k^* and $\{y_1, \dots, y_4\}$, and let A be the subgroup of P fixed by N. By Fischer's argument, A is a rank 4 subgroup of P with $k(A) = k(V)^N$. If p_1 and p_2 are the transposition (1 2) and (3 4), then by Lemma 9 one constructs a base $\{x, y, z, w\}$ of $k(V)^N$ (over k) on which the action of g_1 and g_2 is either of the actions described in (V) and (VI) of Table I. If p_1 and p_2 are $(1 \ 2)(3 \ 4)$ and $(1 \ 3)(2 \ 4)$, then by a lemma parallel to Lemma 9, one constructs a base $\{x, y, z, w\}$ on which the action of g_1 and g_2 is one of the actions described in (I), (II), (III) and (IV) of Table I. We let K = k(x, y, y) $(z, w) = k(V)^N$, $K_1 = K^{g_1}$ and $K_{12} = K_1^{g_2}$. We now establish the rationality of

	g ₁ (x)	g,())	g1(z)	g1(w)	$g_2(x)$	$g_2(y)$	$g_2(z)$	$g_2(w)$	Where $r_i^2 = s_i^2 = 1$, where α, β, μ, ν are integers significant only up to their values mod 2 and where
(1)	- x	- A,	S ₁ ZX ^a y ^B	S4 WX ⁴⁴ y"	ú	×	æ	N	$\mu = \beta$ $\nu = \alpha$ $s_1 = s_4$
(11)		ا – ۱.	s ³ zx ^a y ^b	S4 WX" V	ŗ	x	r, z r	M	$\alpha = \beta$ $\nu = -\mu$
(111)	x	- - -	s,zxa _p s	S _d WX ^u y ^u	x'ı	r ₂ y ^{- 1}	3	М	$S_3 r^3 r^3 r^3 = S_4$ $\mu = \alpha$ $v = -\beta$
(IV)	<i>X</i>	ا - ۲.	^g , ¹ , ₀ , ₇ , ₈	S4 WX " P"	<i>r</i> ' <i>x</i>	$r_2 y^{-1}$	rzy ^a	W ² ^{- 1} X ^{- 4}	$r_{2}^{\mu} = r_{2}^{\mu} = 1$ $r_{2}^{\mu}r_{2}^{\mu} = r_{2}^{\mu}r_{1}^{\mu} = 1$
<u>(</u>)	<i>x</i> ¹ <i>s</i>	s _z P	£	14	r'x	4.1	mrx_u^h	$dz x^{\alpha} y^{\beta}$	$d = r_1^{\alpha} r_2^{\beta} = s_1^{\alpha} s_2^{\beta}$
(1)	x's	52.1	S ³ Z	W - 1XapB	x''	r2)	2 ^{- 1} X ⁴ y ⁶	r4 W	$r_1^{\alpha}r_2^{\beta} = r_1^{\mu}r_2^{\nu} = 1$ $s_1^{\alpha}s_3^{\beta} = s_4^{\mu}s_2^{\nu} = 1$

TABLE I

302

MOWAFFAQ HAJJA

(C1)	(I), (III), (II, $\mu = 0$)
(C2)	$(II, \mu = 1)$
(C3)	$(IV, \mu = 0)$
(C4)	$(IV, \mu = 1, \nu = 0)$
(C5)	$(IV, \mu = 1, \nu = 1, s_4 = 1)$
(C6)	$(IV, \mu = 1, \nu = 1, s_4 = -1)$
(C7)	(V)
(C8)	$(VI, \alpha v - \beta \mu = 1)$
(C9)	$(VI, \alpha = \beta = 0)$
(C10)	$(VI, \alpha = \mu = 1, \beta = \nu = 0)$

TABLE II

 $k(V)^G$ by establishing the rationality of K_{12} for each of the actions of g_1 and g_2 of Table I.

THEOREM 10. If G is meta-abelian and if $\dim_k(V) < 5$, then $k(V)^G$ is rational over k.

Proof. We rearrange the six cases (I)–(VI) of Table I to form the ten cases (C1)–(C10) of Table II. Note that to obtain (VI) from (C8)–(C10), one might need to interchange the roles of g_1 and g_2 , x and y, or x and xy.

Set: $\xi = (1 - x)/(1 + x)$, $\eta = (1 - y)/(1 + y)$, $\delta = (x - y)/(x + y)$, $\zeta = z + g_1(z)$ if $z + g_1(z) \neq 0$ = z otherwise, $\omega = w + g_1(w)$ if $w + g_1(w) \neq 0$ = w otherwise

(C1) Here, $K = k(\xi, \eta, \zeta, \omega)$, and g_1 is homothetic, g_2 monomial.

(C2) Here, $K_1 = k(A, B, C, D)$, where $A = 1 - \delta^2$, $B = (1 + \delta\xi)/(1 - \delta^2)$, $C = \zeta\delta^t$, t = 0 or 1, and $D = \omega$. If $s_4 = 1$, then the action of g_2 on A, B, C, D is monomial. If $s_4 = -1$, then by examining the action of g_2 on A, B, C, D, one easily sees that K_{12} is generated by the five elements $D + g_2(D)$, $B + g_2(B)$, $(D - g_2(D))/(B - g_2(B))$, $(B - g_2(B))^2$, $C(B - g_2(B))^e$, where e = 0 or 1, and that in the algebraic dependence among the first four, the fourth is linear.

(C3) If $\mu = \nu = \alpha = 0$, then the proof of (C1) goes through. Otherwise, interchanging the roles of g_1 and g_2 reduces this case to a previous one.

(C4) Set

 $\bar{\zeta} = \zeta + g_2(\zeta)$ if $\zeta + g_2(\zeta) \neq 0$ = ζ otherwise. Then $K_1 = k(s_4 + (1 + \xi^2)/(1 - \xi^2), \eta/\xi, \bar{\xi}\xi^t, \omega), t = 0$ or 1. If $r_2 = 1$, then g_2 acts monomially. Otherwise, using g_1g_2 for g_2 and interchanging x and y reduces this case to (C3).

(C5) Define $\bar{\zeta}$ as in (C4). Then K_1 is generated by $(1 - \xi^2)(1 - \eta^2)$, η/ξ , $\omega(1 - \xi^2)/(1 - \xi\eta)$ and $\bar{\zeta}\xi'$, t = 0 or 1; and g_2 is monomial.

(C6) Define $\bar{\zeta}$ as in (C4). K_1 is generated by $A = \xi^2$, $B = \eta/\xi$, $C = \bar{\zeta}\xi^i$ (where t = 0, 1) and $D = \omega\xi(1 - \eta^2)/(\xi - \eta)$. K_{12} is then generated by the five elements: A, B^2 , $D + g_2(D)$, $(D - g_2(D))/B$, CB^i ; and the algebraic dependence among the first four is linear in the second.

(C7) If d = 1, take α and β so that $\alpha\beta \leq 0$, and choose t_1 and t_2 in $\{0, 1\}$ so that $\alpha t_1 + \beta t_2 = 0$. Then K_1 is generated by z + w, zw, $x(z - w)^{t_1}$, $y(z - w)^{t_2}$; and g_2 acts monomially.

If d = -1, interchange x and y, or replace x by x/y if necessary, so that $s_1 = 1$. Since $d = s_1^{\alpha} s_2^{\beta}$, then $s_2 = -1$ and $\beta = -1$. Then K_1 is generated by x, $(z - w)^2$, (z + w) and $y(z - w)zwx^{-\alpha}$; and g_2 acts monomially.

(C8) Here, both g_1 and g_2 are homothetic relative to the base: $z + g_2(z), z - g_2(z), w + g_1(w), w - g_1(w).$

(C9) Relative to the base $\{x, y, z, (1-w)/(1+w)\}$, g_1 is homothetic, and g_2 is monomial.

(C10) Let $t_i = 1$ (resp. 0) if $s_i = -1$ (resp. 1) and let $w_1 = w + g_1(w)$, $w_2 = w - g_1(w)$, $A = x/w_1$, $B = y(w_2)^{t_2}$ and $C = z(w_2)^{t_3}/w_1$. Since $(A^{-1}Cg_2(C) + 4t_3A)(w_1)^{s_3}$ is in k^* , then $\{A, B, C + g_2(C), C - g_2(C)\}$ is a base of K_1 on which g_2 acts monomially.

ACKNOWLEDGMENTS

Section 1 of this article is a revised form of a Ph.D. thesis submitted in 1978 to the faculty of Purdue University at West Lafayette (Indiana). I would like to thank my supervisor, Professor T. T. Moh, for his constant encouragement and guidance. I am also very thankful to the referees for their invaluable suggestions.

References

- 1. L. DORNHOFF, "Group Representation Theory, Part A," Dekker, New York, 1971.
- 2. S. ENDO AND T. MIYATA, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7-26.
- 3. E. FISCHER, Die Isomorphie der Invariantenkörper der endlichen Abel'schen Gruppen Linearer Transformationen, Nachr. Königl. Ges. Wiss. Gottingen (1915), 77-80.
- 4. E. FISCHER, Zur Theorie der endlichen Abelschen Gruppen, Math. Ann. 77 (1916), 81-88.
- 5. G. HAEUSLEIN, On the invariants of finite groups having an abelian normal subgroup of prime index, J. London Math. Soc. (2), 3 (1971), 355-360.
- 6. M. HAJJA, On the rationality of monomial automorphisms, J. Algebra 73 (1981), 30-36.

- H. W. LENSTRA, JR., Rational functions invariant under a finite abelian group, *Invent. Math.* 25 (1974), 299-325.
- 8. J. M. MASLEY AND H. L. MONTGOMERY, Cyclotomic fields with unique factorization, J. Reine Agnew. Math. 286/287 (1976), 248-256.
- 9. K. MASUDA, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 59-63.
- K. MASUDA, Application of the theory of the group of classes of projective modules to the existence problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968), 223-232.
- 11. E. NOETHER, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221-229.
- 12. F. SEIDELMANN, Die Gesamtheit der kubischen und biquadratischen Gleichungen mit Affekt bei beliebigem Rationalitätsbereich, Thesis, Erlangen (1916). Summary Math. Ann. 78 (1918), 230-233.
- 13. R. G. SWAN, Invariant rational functions and a problem of Steenrod, *Invent. Math.* 7 (1969), 148-158.