Rational Invariants of Meta-abelian Groups of Linear Automorphisms*

Mowaffaq Hajua
Yarmouk University, Irbid, Jordan

Communicated by R. G. Swan
Received April 6, 1981

Introduction

Let k be an algebraically closed field of characteristic zero, G a finite group and V a finite-dimensional $k G$-module. Then G acts as a group of k automorphisms on $k(V)$, the field of fractions of the symmetric k-algebra of V. Is the subfield $k(V)^{G}$ of $k(V)$ fixed by G rational (=purely transcendental) over k ?

The case when G is abelian was completely settled by Fischer [3,4] in 1916, and it is natural to consider next the "two-step abelian" (i.e., metaabelian) case. We thus assume that G has a normal abelian subgroup N for which $H=G / N$ is abelian. For a cyclic H (of order n, say), Haeuslein [5] showed that $k(V)^{G}$ is indeed rational if n is prime and if the nth cyclotomic field has class number 1 . This is the case precisely when n is a prime <23.

In Section 1 of this paper, we prove Haeuslein's result with the assumption that n is a prime relaxed. Thus $k(V)^{G}$ is rational if n is any of the 44 numbers listed in [8]. The difficulties arising from dropping the assumption that n is prime are discussed at the end of Section 1 . For other values of n, the problem remains open. We note, however, the role played by $\operatorname{dim}_{k}(V)$ and we prove that $k(V)^{G}$ is rational whenever $\operatorname{dim}_{k}(V)<23$, regardless of n.

The proof goes as follows. By [1, pp. 75-79], a meta-abelian group is an M-group. Actually, $k(V)$ has a base over k (i.e., a transcendence basis B for which $k(B)=k\left(V^{\circ}\right)$ on which G acts monomially and on which N acts diagonally (i.e., G acts on the subgroup of $k(V)^{*}$ generated by k^{*} and B, and $g(b) / b$ belongs to k^{*} for all b in B and all g in N). Using Fischer's method, one constructs a base of $L=k(V)^{N}$ on which H acts monomially. Thus our problem reduces to whether the abelian group H of monomial automorphisms has a rational fixed field. If the action of H could be linearized (i.e., if L has a base B over k for which H acts on the k-module generated by B), then Fischer's result would settle our problem. This can

[^0]actually be done if H is cyclic (say $H=(h)$) of a prime order <23 [6]. If $\operatorname{order}(h)$ is not prime, the problem gets much harder, and it is in fact still unknown whether that can be done. Nor is it known whether all monomial automorphisms of order <23 have rational fixed fields. We were able, however, to linearize h using the fairly special form its characteristic polynomial turns to have (namely, $\Pi\left(T^{s(i)}-1\right)$), and imposing some restrictions on the sizes of the $s(i)$'s. These restrictions follow from either the hypothesis that order $(h)<23$ or that $\operatorname{dim}_{k}(V)<23$.

In Section 2, we drop the assumption that (the abelian) H is cyclic and we establish the rationality of $k(V)^{G}$ for $\operatorname{dim}_{k}(V)<5$. In this case too, we do not know whether the action of H can be linearized.

The arithmetic version of this problem is often referred to as "Noether's Conjecture." It was first formulated by Noether in 1916 as a question of the rationality of $Q(V)^{C(r)}$ for the regular representation V of a cyclic group $C(r)$ of order r over the rational number field Q. The rationality was established by her [11] for $r=3$, by Seidelmann [12] for $r=4$, by Masuda [9] for $r<8$ and later [10] for $r=11$. In 1969, Swan [13] proved the surprising result that even in this simple case of a cyclic $C(r), Q(V)^{C(r)}$ need not be rational, giving as an example the value $r=47$. Further investigation of the problem was made by Endo and Miyata [2] and by Lenstra [7].

1. The Cyclic Case

Throughout this paper, k is an algebraically closed field of characteristic zero, G a finite group having a normal abelian subgroup N for which $H=G / N$ is abelian, V a finite-dimensional $k G$-module and $k(V)$ the field of fractions of the symmetric algebra of V over k. Let G act naturally as a group of k-automorphisms on $k(V)$. Our objective is to establish, under certain conditions, that $k(V)^{G}$ is rational (over k).

We adhere to the definitions made in the Introduction (noting especially the rather unstandard usage of the term "base"). If U is a group containing k^{*} as a subgroup such that U / k^{*} is \mathbb{Z}-free of finite rank and if f is an automorphism on U fixing k^{*}, then \bar{U} denotes $U / k^{*}, \bar{f}$ the action on \bar{U} induced by f, and $\chi(f, U)$ the characteristic polynomial of \bar{f}. The value of $\chi(f, U)$ at (an indeterminate) T is denoted by $\chi(f, U, T)$. The r th cyclotomic polynomial is denoted by ϕ_{r}.

Theorem 1 reduces our problem to one of the more classical type already encountered in the treatment of the Arithmetic Noether's Conjecture stated in the Introduction.

Theorem 1. Let $H=G / N$ be cyclic and let h be a generator of H. Then there exists a $Z H$-module E containing k^{*} as an H-fixed submodule such that (i) \bar{E} is \mathbb{Z}-free of a rank equal to $\operatorname{dim}_{k}(V)$.
(ii) $k(V)^{N}=k(E)$ (and hence $k(V)^{G}=k(E)^{H}$), where $k(E)$ is the canonically constructed field extension of k having as a base a set in E representing $a \mathbb{Z}$-basis of \bar{E}.
(iii) $\chi(h, E, T)$ is of the form $\prod_{i=1}^{r}\left(T^{s(i)}-1\right)$.

Proof: Let g be a pre-image of h in $G \rightarrow G / N=H$. Following Fischer's method of finding invariants of N, we form the N-eigen space decomposition ($) V_{i}$ of V having the minimal number of summands and we use the normality of N in G to prove that the action of each element of G on the set $\left\{V_{i}\right\}$ is a permutation. We then construct an N-eigen basis of V on which g acts as a permutation (up to multiplying by elements of k^{*}). This is done as follows. Let $\left(U_{1}, \ldots, U_{t}\right)$, where each U_{i} is some V_{j}, be a cycle in the decomposition into disjoint cycles of the permutational action of g on the set $\left\{V_{i}\right\}$. Since g^{t} acts on U_{1}, one can construct a g^{t}-eigen basis of U_{1}. Such a basis, combined with its images under powers of g, yields a basis of $\prod_{i=1}^{t} U_{i}$ on which the action of g is as desired. Doing the same on each cycle and combining the resulting bases, onc gets the desired basis of V. Thus we have constructed a base B of $k(V)$ and a permutation p on the set B such that $g(b) / p(b)$ and $g^{\prime}(b) / b$ belong to k^{*} for all b in B and all g^{\prime} in N. Letting A be the subgroup of $k(V)^{*}$ generated by k^{*} and B, and letting E be the subgroup of A fixed by N, one easily sees (and it is the classical argument of Fischer) that $k(V)^{N}$ is rational and equals $k(E)$. Clearly, h acts on E making it a $\not Z H$-module. Finally, the statement on $\chi(h, E)$ follows from observing the permutational action of \bar{g} (and hence of \bar{h}) on A and noting that $\chi(g, A)=$ $\chi(g, E), A / E$ being all torsion.

Theorem 2. Let H be cyclic and let $n=\operatorname{order}(H)$. If the class number of the nth cyclotomic field is 1 , then $k(V)^{G}$ is rational over k.

The idea of the proof is to subject the $\mathbb{Z} H$-module E obtained in Theorem 1 to a sequence of modifications within $k(E)^{*}$ that result in another $\mathbb{Z} H$-module F having all the properties of E and for which \bar{F} is a permutation module. This will be accomplished after few preparatory lemmas have been proved.

Let E be as in Theorem 1, let $H=(h)$ and let $L=k(E)$. For a $\mathbb{Z} H$ submodule F of L^{*} containing k^{*}, let \bar{F} denote F / k^{*} and let \bar{h} (resp. \bar{H}) denote the action induced by h (resp. H) on \bar{L}^{*}. We refer to both $\mathbb{Z} H$ - and $\mathbb{Z} \bar{H}$-modules simply as modules, the context making it clear which of the two rings is meant. A submodule F of L^{*} containing k^{*} and for which \bar{F} is \mathbb{Z} free of finite rank is called a monomial module. In all that follows, F and F_{i} 's stand for such modules. An element u of L^{*} (resp. of L^{*} / k^{*}) is said to be annihilated by a polynomail P if $P(h) u$ belongs to k^{*} (resp. if $P(\bar{h})=1$). We say that $F_{1} \sim F_{2}$ if $k\left(F_{1}\right)=k\left(F_{2}\right)$ and $\operatorname{rank}\left(\bar{F}_{1}\right)=\operatorname{rank}\left(\bar{F}_{2}\right)$. One should
note, however, that for each pair F_{1} and F_{2} of equivalent modules encountered below, $\chi\left(h, F_{1}\right)=\chi\left(h, F_{2}\right)$. The pushout of the diagram

which contains both F_{1} and F_{2} is denoted by $F_{1} * F_{2}$. Thus $k\left(F_{1} * F_{2}\right)$ is the composite field $k\left(F_{1}\right) k\left(F_{2}\right)$. Finally we define the subset $S(T)$ of $\mathbb{Z}[T] \times$ $\mathbb{Z}[T]$ to be the set of all pairs $(P(T), Q(T))$ such that for some positive integers p and $q, P(T)$ divides $\left(T^{p}-1\right), Q(T)$ divides ($T^{q}-1$) and the $\operatorname{gcd}\left(T^{p}-1, Q(T)\right)=1$.

Proposition 3. Let $(P(T), Q(T)$) be in $S(T)$. If an element u of F is annihilated by Q, then there exists an f in $k(F)^{*}$ such that $(P(h) f) / u$ belongs to k^{*}.

Proof (Due to the referee). Let p and q be as in the definition of $S(T)$, let $n=\operatorname{order}(H)$ and let $Q_{1}(T)=\left(T^{p q n}-1\right) /\left(T^{p}-1\right)$. Let H_{1} be the subgroup of H generated by $h_{i}=h^{p}$ and let s be the sum of its elements. Then $Q_{1}(h) u=(s(u))^{m}$, where $m=n q / \operatorname{order}\left(H_{1}\right)$. Since Q divides Q_{1}, then $(s(u))^{m}$ is in k^{*}. Since k is algebraically closed, then $s(u)$ is in k^{*}. Let a be the element of k^{*} for which $s(a u)=1$. Then by Hilbert's Theorem 90, there exists an f_{1} in $k(F)^{*}$ such that $a u=\left(h_{1}-1\right) f_{1}=\left(h^{p}-1\right) f_{1}$. It is now clear that $\left(\left(h^{p}-1\right) / P(h)\right) f_{i}$ has the properties required of f.

Lemma 4. Let $(P(T), Q(T))$ be in $S(T)$, and let F_{2} be a submodule of F_{1}. If F_{1} / F_{2} is the direct sum of cyclic modules annihilated by P, and if Q annihilates F_{2}, then $F_{1} \sim F_{2} * F$, where \bar{F} is isomorphic to F_{1} / F_{2}.

Proof. Let x_{1}, \ldots, x_{s} be elements of F_{1} representing generators of the cyclic summands of F_{1} / F_{2} (one x_{i} for each summand), and set $u_{i}=P_{i}(h) x_{i}$ where P_{i} is the annihilator of x_{i}. Then $Q(h) u_{i}$ is in k^{*} and Proposition 3 guarantees the existence of an f_{i} in $k\left(F_{2}\right)^{*}$ such that $\left(P_{i}(h) f_{i}\right) / u_{i}$ is in k^{*}. It is now easy to see that the module generated by $\left\{x_{i} f_{i}: i=1, \ldots, s\right\}$ has the properties required of F.

Corollary 5. Let E be as in Theorem 1, and let $n=\operatorname{order}(H)$. If the nth cyclotomic field has class number 1 , then $E \sim F_{1} * F_{2} * \cdots * F_{s}$, where each F_{i} is annihilated by a cyclotomic polynomial and where the sum of the \bar{F}_{i} 's is a direct sum.

Proof. Let $\left(P_{i}\right)_{i-1}^{m}$ be the subsequence of $\left(\phi_{i}\right)_{i=1}^{\infty}$ consisting of the (cyclotomic) factors of $\chi(h, E)$, and set $Q_{i}=\prod_{i=i}^{m} P_{j}$. Let E_{i} be the
submodule of E annihilated by Q_{i}. Clearly, E_{i} / E_{i+1} is annihilated by $Q_{i} / Q_{i+1}=P_{i}$. Since P_{i} is a factor of $T^{n}-1$ and since the class number of the nth cyclotomic field (and hence that of the d th cyclotomic field for every factor d of $n[8])$ is assumed to be 1 , then $\mathbb{Z}[T] / P_{i}(T)$ is a P.I.D. and hence E_{i} / E_{i+1} (being a ($\mathbb{Z}[T] / P_{i}(T)$)-module) is the direct sum of cyclic modules. Thus, Lemma 4 applies to each pair $\left(E_{i}, E_{i+1}\right)$. We apply Lemma $4 m$ times, letting the role of $\left(F_{1}, F_{2}\right)$ in that lemma be played by $\left(E_{1}, E_{2}\right),\left(E_{2}, E_{3}\right), \ldots$, $\left(E_{m}, E_{m \mid 1}\right)$ in this order and denoting by $F_{1}, F_{2}, \ldots ., F_{m}$ the modifications thus obtained.

Lemma 6. Let $(P(T), Q(T))$ be in $S(T)$. If $\bar{F}=\bar{F}_{1} \oplus \bar{F}_{2}$ and if \bar{F}_{1} and \bar{F}_{2} are cyclic modules annihilated by P and Q (resp.), then $F \sim F^{\prime}$ for some cyclic \bar{F}^{\prime}.

Proof. Let x and u be elements of F representing generators of \bar{F}_{1} and \bar{F}_{2} (resp.), and let P_{1} be the annihilator of F_{1}. Then by Proposition 3 there exists an f in $k\left(F_{2}\right)^{*}$ such that $\left(P_{1}(h) f\right) / u$ is in k^{*}. Now take F^{\prime} to be the cyclic module generated by $x f$.

Corollary 7. If \bar{F} is the direct sum of cyclic modules annihilated by distinct cyclotomic polynomials, then $F \sim F^{\prime}$ for some cyclic \bar{F}^{\prime}.

Proof. Ler $\bar{F}_{i}(i=1, \ldots, r)$ be the cyclic summands of \bar{F}, and let P_{i} be the cyclotomic polynomial annihilating F_{i}. Set $Q_{i}=\prod_{j=i+1}^{r} P_{j}$. Let $W_{r}=F_{r}$ and define $W_{r-i}(i=1,2, \ldots, r-1)$ to be the module equivalent to $W_{r-i+1} * F_{r-i}$ obtained by applying Lemma 6 to $\bar{W}_{r-i+1} \oplus \bar{F}_{r-i}$. Then W_{1} has the properties required of F^{\prime}.

Proof of Theorem 2. In virtue of Corollary 5, one can assume that the module \bar{E} obtained in Theorem 1 is the direct sum of modules annihilated by cyclotomic factors of $\chi(h, E)$. Each of these summands is in turn the direct sum of cyclic modules. (This is because the nth cyclotomic field has class number 1 , and therefore $\mathbb{Z}[T] / f(T)$ is a P.I.D. for every cyclotomic factor f of $T^{n}-1$.) We index these cyclic summands of \bar{E} by the set $D=\{(i, j)$: i divides $s(j) ; j=1, \ldots, r\}$ and we set $D(j)=\{(a, b) \in D: b=j\}$. Then $\bar{E}=\oplus_{t \in D} \bar{E}_{t}=\oplus_{j=1}^{r} \oplus_{t \in D(j)} \bar{E}_{t}$, where for $t=(a, b), \bar{E}_{t}$ is cyclic annihilated by ϕ_{a}. We now apply Corollary 7 to $\oplus_{i \in D(j)} \bar{E}_{t}$ (for each j) to obtain F_{j} with \bar{F}_{j} cyclic annihilated by $T^{s(j)}-1$. Thus $E \sim F_{1} * F_{2} * \cdots * F_{r}$ and it is obvious that $F_{1} * F_{2} * \cdots * F_{r}$ is a permutation module. Therefore, $k(E)^{H}$, $=k(V)^{G}$, is rational.

Theorem 8. Let H be cyclic. If $\operatorname{dim}_{k}(V)<23$, then $k(V)^{G}$ is rational over k.

Proof. Follows from the fact that $\operatorname{dim}_{k}(V)$ is the sum of the $s(i)$'s
(appearing in Theorem 1) and therefore the class number of the $s(i)$ th cyclotomic field is 1 for all i.

Note. With the added hypothesis that n is prime, Theorem 2 was proved by Haeuslein [5]. The main ingredients in that proof are two statements (A) and (B) that are known to be true only if n is prime:
(A) $\mathbb{Z}[T] /\left(T^{n}-1\right)$ is a semi-P.I.R. (For definition and reference, see [6, Theorem 0.4].)
(B) If $f(T)$ is a prime factor of $\left(T^{n}-1\right)$ and if E is a cyclic module over $\mathbb{Z} \mid t]=\mathbb{Z}[T] / f(T)$, then $k(E)=k(F)$ for some permutation (actually trivial) t-module $\bar{\Gamma}[6$, Theorem 1.1(iii) $]$.

When n is not prime, (A) is false and (B) is still an open statement. This twofold difficulty is removed by Corollaries 5 and 7 above.

We finally remark that knowledge of both $\operatorname{order}(H)$ and $\operatorname{dim}_{k}(V)$ may yield the rationality of $k(V)^{G}$ when Theorems 2 and 8 fail to. As an example, $k(V)^{G}$ is rational when $\operatorname{order}(H)=39>\operatorname{dim}_{k}(V)$.

2. The Klein Case

In this section, we drop the assumption that (the abelian) H is cyclic and we prove the rationality of $k(V)^{G}$ for $\operatorname{dim}_{k} V<5$.

We first prove the following simple lemma. The facts that $\mathbb{Z}[T] /\left(T^{2}-1\right)$ is a semi-P.I.R. and that a monomial automorphism of order 2 has a rational fixed field $[6]$ are freely used.

Lemma 9. Let E_{1}, E_{2} be the endomorphisms on \mathbb{Z}^{4} defined by

$$
\begin{aligned}
& E_{1}\left(\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)=\left(a_{2}, a_{1}, a_{3}, a_{4}\right) . \\
& E_{2}\left(\left(a_{1}, a_{2}, a_{3}, a_{4}\right)\right)=\left(a_{1}, a_{2}, a_{4}, a_{3}\right) .
\end{aligned}
$$

Let U be a rank 4 subgroup of \mathbb{Z}^{4} invariant under both E_{1} and E_{2}. Then U has a system $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ of generators such that both u_{1} and u_{2} are fixed by E_{1} and by E_{2} and such that either
(1) $E_{1}: u_{3} \rightarrow u_{4} \rightarrow u_{3}$,

$$
E_{2}:\left\{\begin{array}{l}
u_{3} \rightarrow-u_{4}+\alpha u_{1}+\beta u_{2} \\
\left\{u_{4} \rightarrow-u_{3}+\alpha u_{1}+\beta u_{2}\right.
\end{array}\right.
$$

or
(2) $E_{1}: u_{3} \rightarrow u_{3}: u_{4} \rightarrow-u_{4}+\alpha u_{1}+\beta u_{2}$, $E_{2}: u_{4} \rightarrow u_{4} ; u_{3} \rightarrow-u_{3}+\mu u_{1}+v u_{2}$.
where α, β, μ, v are integers which are significant only up to their values $\bmod 2$.

Proof. Let u_{1}, u_{2} be generators of the subgroup W of U consisting of the elements fixed by E_{1} and E_{2}, and let e_{1} be the endomorphism induced on U / W by E_{1}. It is easy to see that the minimal polynomial of e_{1} is $T^{2}-1$; and thus the group-ring $R=\mathbb{Z}\left[e_{1}\right]$, being $\cong \mathbb{Z}[T] /\left(T^{2}-1\right)$, is a semi-P.I.R. Hence, the torsion-free R-module U / W decomposes into the direct sum of cyclic R-modules. Since $\operatorname{rank}(U / W)=2$, and since $T^{2}-1$ is the smallest polynomiai that annihilates e_{1}, it follows immediately that there are only the following two possibilities:
(i) $U / W=R \bar{v}$, where $v \in U, \bar{v}=v+W$ and $\operatorname{Ann}_{R}(\bar{v})=e_{1}^{2}-1$.
(ii) $U / W=R \bar{v}_{1} \oplus R \bar{v}_{2}$, where $v_{j} \in U, \bar{v}_{j}=v_{j}+W$, and $\operatorname{Ann}_{R}\left(\bar{v}_{j}\right)=$ $e_{1}-(-\mathrm{I})^{\prime}$.

To obtain (1) from (i), set $u_{3}=v$ and observe that

$$
\left(E_{2} E_{1}+i d\right) v=\left(E_{1}+E_{2}\right) v \in W
$$

To obtain (2) from (ii), set $u_{3}=v_{1}$ and $u_{4}=v_{2}$.
The last statement follows from observing the effect the change of the basis $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ into $\left\{u_{1}, u_{2}, u_{3}^{\prime}, u_{4}^{\prime}\right\}$ has on the equations in (1) and (2), where $u_{3}^{\prime}-u_{3}$ and $u_{4}^{\prime}-u_{4}$ are in W.

We now return to our problem. We form the irredundant decomposition $\oplus_{i=1}^{m} V_{i}$ of V into N-eigen spaces and we use the normality of N in G to prove that each g in G acts as a permutation on the set $\left\{V_{1}, \ldots, V_{m}\right\}$. Assuming that N is its own centralizer, one sees that the elements of N are the only elements of G that act as the identity permutation. Thus $H=G / N$ is isomorphic to a subgroup of the symmetric group S_{m}. The only abelian noncyclic subgroups of $S_{m}\left(m \leqslant \operatorname{dim}_{k}(V)<5\right)$ are the Klein subgroups of S_{4}. Thus we assume that $\operatorname{dim}_{k}(V)=m=4$, that $\operatorname{dim}_{k}\left(V_{i}\right)=1$ and that H is a Klein group. Let g_{1} and g_{2} be elements of G representing generators of H, and let p_{1} and p_{2} be the elements of S_{4} corresponding to g_{1} and g_{2}. Let y_{i} be a basis of (the one-dimensional) V_{i}, let P be the subgroup of $k(V)^{*}$ generated by k^{*} and $\left\{y_{1}, \ldots, y_{4}\right\}$, and let A be the subgroup of P fixed by N. By Fischer's argument, A is a rank 4 subgroup of P with $k(A)=k(V)^{N}$. If p_{1} and p_{2} are the transposition (12) and (34), then by Lemma 9 one constructs a base $\{x, y, z, w\}$ of $k(V)^{N}$ (over k) on which the action of g_{1} and g_{2} is either of the actions described in (V) and (VI) of Table I. If p_{1} and p_{2} are $(12)\left(\begin{array}{ll}3 & 4\end{array}\right)$ and $(13)(24)$, then by a lemma parallel to Lemma 9 , one constructs a base $\{x, y, z, w\}$ on which the action of g_{1} and g_{2} is one of the actions described in (I), (II), (III) and (IV) of Table I. We let $K=k(x, y$, $\left.z, w^{\prime}\right)=k(V)^{N}, K_{1}=K^{g_{1}}$ and $K_{12}=K_{1}^{g_{2}}$. We now establish the rationality of
TABLE I

	$g_{1}(x)$	$g_{1}(y)$	$g_{1}(z)$	$g_{1}\left(w^{\prime}\right)$	$g_{2}(x)$	$g_{2}(y)$	$g_{2}(z)$	$g_{2}(w)$	Where $r_{t}^{2}=s_{i}^{2}=1$, where α, β, μ, v are integers significant only up to their values $\bmod 2$ and where
(1)	x^{-1}	y^{-1}	$s_{,} z x^{a} y^{\text {b }}$	$s_{4} w x^{\mu} y^{\prime \prime}$	y	x	w	z	$\begin{aligned} & \mu=\beta \\ & v=\alpha \\ & s_{3}=s_{4} \end{aligned}$
(II)	x^{-1}	y^{-1}	$s_{3} z x^{a} y^{3}$	$s_{4} w^{\prime \prime} x^{4} y^{\prime \prime}$	${ }^{\prime}$	x	$r_{3} 2$	w^{-1}	$\begin{aligned} & \alpha=\beta \\ & v=-\mu \end{aligned}$
(III)	x^{-1}	y^{-1}	$s_{3} z x^{\alpha} y^{\beta}$	$s_{4} w x^{\prime \prime} y^{\prime \prime}$	$r_{1} x$	$r_{2} y^{-1}$	w	z	$\begin{aligned} & s_{1} r_{1}^{a} r_{2}^{3}=s_{4} \\ & \mu=\alpha \\ & v=-\beta \end{aligned}$
(IV)	x^{-1}	y^{-1}	$s_{3} z x^{\alpha} y^{\beta}$	$s_{4} w x^{\prime \prime} y^{\prime \prime}$	r, x	$r_{2} y^{-1}$	$r z y^{3}$	$w^{-1} x^{-\mu}$	$\begin{aligned} & r_{1}^{\mu}=r_{2}^{\prime}=1 \\ & r_{2}^{\beta} r^{2}=r_{2}^{3} r_{1}^{a}=1 \end{aligned}$
(V)	$s_{1} x$	$s_{2} \cdot \underline{ }$	w	z	$r_{1} x$	r_{2}, y	$w^{-1} x^{n} y^{\beta}$	$d z^{\prime} \cdot x^{a} y^{\beta}$	$d=r_{1}^{a} r_{2}^{\beta}=s_{1}^{a} s_{\underline{1}}^{\text {s }}$
(VI)	$s_{1} x$	s_{2}.	$s_{3} z$	$w^{-1} x^{\alpha} y^{, 3}$	r, x	$r_{2} y$	$z^{-1} x^{\mu} y^{\prime \prime}$	$r_{4} w$	$\begin{aligned} & r_{1}^{a} r_{2}^{3}=r_{1}^{4} r_{2}^{\prime \prime}=1 \\ & s_{1}^{s} s_{2}^{\beta}=s_{1}^{4} s_{2}^{\prime}=1 \end{aligned}$

TABLE II

(C1)	(I), (III), (II,,$\mu=0)$
(C2)	(II, $\mu=1)$
(C3)	$(\mathrm{IV}, \mu=0)$
(C4)	$(\mathrm{IV}, \mu=1, v=0)$
(C5)	$\left(\right.$ IV, $\left.\mu=1, v=1, s_{4}=1\right)$
(C6)	(IV, $\left.\mu=1, v=1, s_{4}=-1\right)$
(C7)	(V)
(C8)	(VI, $\|\alpha v-\beta \mu\|=1)$
(C9)	(VI. $\alpha=\beta=0)$
(C10)	(VI, $\alpha=\mu=1, \beta=v=0)$

$k(V)^{G}$ by establishing the rationality of K_{12} for each of the actions of g_{1} and g_{2} of Table I.

Theorem 10. If G is meta-abelian and if $\operatorname{dim}_{k}(V)<5$, then $k(V)^{G}$ is rational over k.

Proof. We rearrange the six cases (I)-(VI) of Table I to form the ten cases (C1)-(C10) of Table II. Note that to obtain (VI) from (C8)-(C10), one might need to interchange the roles of g_{1} and g_{2}, x and y, or x and $x y$.

Set: $\xi=(1-x) /(1+x), \eta=(1-y) /(1+y), \delta=(x-y) /(x+y)$,

$$
\begin{aligned}
\zeta & =z+g_{1}(z) & & \text { if } z+g_{1}(z) \neq 0 \\
& -z & & \text { otherwise, } \\
\omega & =w+g_{1}(w) & & \text { if } w+g_{1}(w) \neq 0 \\
& -w & & \text { otherwise }
\end{aligned}
$$

(C1) Here, $K=k(\xi, \eta, \zeta, \omega)$, and g_{1} is homothetic, g_{2} monomial.
(C2) Herc, $\quad K_{1}=k(A, B, C, D), \quad$ wherc $\quad A=1-\delta^{2}, \quad B=$ $(1+\delta \xi) /\left(\mathrm{I}-\delta^{2}\right), C=\zeta \delta^{t}, t=0$ or 1 , and $D=\omega$. If $s_{4}=1$, then the action of g_{2} on A, B, C, D is monomial. If $s_{4}=-1$, then by examining the action of g_{2} on A, B, C, D, one easily sees that K_{12} is generated by the five elements $D+g_{2}(D), \quad B+g_{2}(B), \quad\left(D-g_{2}(D)\right) /\left(B-g_{2}(B)\right), \quad\left(B-g_{2}(B)\right)^{2}$, $C\left(B-g_{2}(B)\right)^{e}$; where $e=0$ or 1 , and that in the algebraic dependence among the first four, the fourth is linear.
(C3) If $\mu=v=\alpha=0$, then the proof of (C 1) goes through. Otherwise, interchanging the roles of g_{1} and g_{2} reduces this case to a previous one.
(C4) Set

$$
\begin{aligned}
\bar{\zeta} & =\zeta+g_{2}(\zeta) & & \text { if } \quad \zeta+g_{2}(\zeta) \neq 0 \\
& =\zeta & & \text { otherwise. }
\end{aligned}
$$

Then $K_{1}=k\left(s_{4}+\left(1+\xi^{2}\right) /\left(1-\xi^{2}\right), \eta / \xi, \bar{\zeta} \xi^{t}, \omega\right), t=0$ or 1 . If $r_{2}=1$, then g_{2} acts monomially. Otherwise, using $g_{1} g_{2}$ for g_{2} and interchanging x and y reduces this case to (C3).
(C5) Define $\bar{\zeta}$ as in (C4). Then K_{1} is generated by $\left(1-\xi^{2}\right)\left(1-\eta^{2}\right)$, $\eta / \xi, \omega\left(1-\xi^{2}\right) /(1-\xi \eta)$ and $\bar{\zeta} \xi^{t}, t=0$ or 1 ; and g_{2} is monomial.
(C6) Define $\bar{\zeta}$ as in (C4). K_{1} is generated by $A=\xi^{2}, B=\eta / \xi, C=\bar{\zeta} \xi^{t}$ (where $t=0,1$) and $D=\omega \xi\left(1-\eta^{2}\right) /(\xi-\eta) . K_{12}$ is then generated by the five elements: $A, B^{2}, D+g_{2}(D),\left(D-g_{2}(D)\right) / B, C B^{t}$; and the algebraic dependence among the first four is linear in the second.
(C7) If $d=1$, take α and β so that $\alpha \beta \leqslant 0$, and choose t_{1} and t_{2} in $\{0,1\}$ so that $\alpha t_{1}+\beta t_{2}=0$. Then K_{1} is generated by $z+w, z w, x(z-w)^{t_{1}}$, $y(z-w)^{t_{2}}$; and g_{2} acts monomially.

If $d=-1$, interchange x and y, or replace x by x / y if necessary, so that $s_{1}=1$. Since $d=s_{1}^{\alpha} s_{2}^{\beta}$, then $s_{2}=-1$ and $\beta=-1$. Then K_{1} is generated by x, $(z-w)^{2},(z+w)$ and $y(z-w) z w x^{-\alpha}$; and g_{2} acts monomially.
(C8) Here, both g_{1} and g_{2} are homothetic relative to the base: $z+g_{2}(z), z-g_{2}(z), w+g_{1}(w), w-g_{1}(w)$.
(C9) Relative to the base $\{x, y, z,(1-w) /(1+w)\}, g_{1}$ is homothetic, and g_{2} is monomial.
(C10) Let $t_{i}=1$ (resp. 0) if $s_{i}=-1$ (resp. 1) and let $w_{1}=w+g_{1}(w)$, $w_{2}=w-g_{1}(w), \quad A=x / w_{1}, \quad B=y\left(w_{2}\right)^{t_{2}} \quad$ and $\quad C=z\left(w_{2}\right)^{t_{3}} / w_{1} . \quad$ Since $\left(A^{-1} C g_{2}(C)+4 t_{3} A\right)\left(w_{1}^{\prime}\right)^{s_{3}}$ is in k^{*}, then $\left\{A, B, C+g_{2}(C), C-g_{2}(C)\right\}$ is a base of K_{1} on which g_{2} acts monomially.

Acknowledgments

Section 1 of this articie is a revised form of a Ph.D. thesis submitted in 1978 to the faculty of Purdue University at West Lafayette (Indiana). I would like to thank my supervisor, Professor T. T. Moh, for his constant encouragement and guidance. I am also very thankful to the referees for their invaluable suggestions.

References

1. L. Dornhoff, "Group Representation Theory, Part A," Dekker, New York, 1971.
2. S. Endo and T. Miyata, Invariants of finite abelian groups, J. Math. Soc. Japan 25 (1973), 7-26.
3. E. Fischer, Die Isomorphie der Invariantenkörper der endlichen Abel'schen Gruppen Linearer Transformationen, Nachr. Königl. Ges. Wiss. Gottingen (1915), 77-80.
4. E. Fischer, Zur Theorie der endlichen Abelschen Gruppen, Math. Ann. 77 (1916), 81-88.
5. G. Haeuslein, On the invariants of finite groups having an abelian normal subgroup of prime index, J. I.ondon Math. Soc. (2), 3 (1971), 355-360.
6. M. Hajsa, On the rationality of monomial automorphisms, J. Algebra 73 (1981), 30-36.
7. H. W. Lenstra, Jr., Rational functions invariant under a finite abelian group, Invent. Math. 25 (1974). 299-325.
8. J. M. Masley and H. L. Monigumery. Cyclotomic fields with unique factorization, J. Reine Agnew. Math. 286/287 (1976), 248-256.
9. K. Masuda, On a problem of Chevalley, Nagoya Math. J. 8 (1955), 59-63.
10. K. Masida, Application of the theory of the group of classes of projective modules to the existence problem of independent parameters of invariant, J. Math. Soc. Japan 20 (1968). 223-232.
11. E. Noether, Gleichungen mit vorgeschriebener Gruppe, Math. Ann. 78 (1918), 221-229.
12. F. Seidelmann, Die Gesamtheit der kubischen und biquadratischen Gleichungen mit Affekt bei beliebigem Rationalitätsbereich, Thesis, Erlangen (1916). Summary Math. Ann. 78 (1918). 230-233.
13. R. G. Swan. Invariant rational functions and a problem of Stecnrod, Invent. Math. 7 (1969), 148-158.

[^0]: * This work was supported by NSF Grant MCS-7903057 and hy a grant from Yarmouk University.

