Ravi Chugh

Reimagining the User Interfaces for Programming

The programming process has remained stubbornly similar for decades: the user types source code into a text box,
the system compiles and executes the code, and the user views the output and repeats. The output is not connected
in meaningful ways to the code that generated it, making it difficult to understand and change the computation. This
workflow limits the creativity and pace of expert programmers and shuts out less experienced users.

Can programming languages be equipped with interactive user interfaces?

Can the expressive power of programming be integrated into graphical user interfaces (GUIs)
for creating documents, spreadsheets, charts, graphic designs, digital music, and more?

PL + UI Techniques. Motivated by these questions, my research pursues programming language techniques for
synthesizing and transforming code, as well as user interface techniques to access the new language capabilities.

During the past several years, my students and I have de-
veloped Sketch-n-Sketch, a programming environment—thus
far configured to produce HTML pages and Scalable Vector
Graphics (SVG)—in which the user “sketches” a program using
the code editor in the left pane and “sketches” desired pro-
gram behavior through examples using the direct manipulation
output pane on the right.

To enable this kind of program authoring workflow, we
have explored four main directions of work discussed below.
Many of these techniques have been investigated in separate
versions of Sketch-n-Sketch, and some in different systems en-
tirely. Nevertheless, we describe the ideas collectively, as part
of a single system, because they share a unified vision and
approach—to enrich general-purpose programming languages with interactive mechanisms for building programs,
with domain-specific techniques and user interfaces where necessary for specific applications.

Sketch the Code + Sketch the Output

-

w2
x

1

Text-Edit Code )

Directly
Manipulate
Output

Directly
Manipulate
Code

Programming Language Techniques

(1) Bidirectional Evaluation [PLDI 2016, OOPSLA 2018]. The traditional edit-compile-run loop of programming is
particularly galling when successive program changes—and the resulting output changes—are narrow in scope.

In Sketch-n-Sketch, the user may “directly manipulate” the program output—textually or graphically, where
possible—to make small changes; the system then uses a technique called bidirectional evaluation [1, 10] to run the
previous program “in reverse” and synthesize necessary program repairs. In addition to a standard evaluation
relation e = v that evaluates expression e to value v, we define a backward evaluation relation e <= " ~~ ¢’ that, given a
modified value v/, transforms the original expression e to ¢’. Backward evaluation proceeds by comparing the original
output value v with the goal v/, and synthesizing repairs to e such that, ideally, the new program ¢’ evaluates to v'.
To provide more complex or domain-specific repairs, expert users can customize the backward evaluator using the
rich theory of lenses previously developed in the literature. Compared to prior work on bidirectional programming,
our techniques allow arbitrary programs in a general-purpose functional language to be run in reverse, making it
more likely for such techniques to be practical.

To further investigate bidirectional evaluation, we are extending our techniques to synthesize repairs correspond-
ing to non-local edits (e.g., “cut-copy-paste”), to support additional language features (e.g., imperative assignment,
objects, and exceptions), and to automatically derive backward evaluators from ordinary (forward) evaluators.

(2) Program Sketching with Examples [POPL 2019, ICFP 2020]. When programs do not parse or type-check—a
routine, sometimes-protracted occurrence during development—programming environments provide little guidance
as users work to fill in missing program fragments.

First, to provide continuous, “live” feedback about the behavior of a program under development, we propose
a partial evaluator for sketches—incomplete programs, with holes—by continuing to evaluate parts of the program

Ravi Chugh | Research Statement (June 2020) 1/5


http://ravichugh.github.io/sketch-n-sketch/

that do not depend on the missing pieces [13]. The results of partial evaluation can provide useful feedback as users
decide how to continue writing the program.

Second, Sketch-n-Sketch analyzes the results of partial evaluation—including any assert statements in the
sketch—to derive input-output example constraints that are used to synthesize expressions to fill the holes [9]. Our
techniques address several usability limitations of prior programming-by-example techniques: users need not provide
trace-complete (i.e., inductive) examples in order to synthesize recursive functions; users can simultaneously constrain
multiple, interdependent synthesis tasks via assert statements; and users can provide partial implementations as
part of the specification (static, solver-based techniques support sketching, but prior example-based techniques have
not). Based on our improvements, Sketch-n-Sketch synthesizes several data-structure manipulating benchmark tasks
with smaller specifications (the combined size of examples and sketch, if any) compared to previous state-of-the-art
example-based synthesizers.

Future Directions. To further improve the usability of our program repair and program synthesis techniques,
we plan to investigate ways to communicate the search results—including partial solutions—to the user, as well
additional ranking metrics—beyond the usual smaller-program heuristic—to help synthesize code fragments that
“fit” within the surrounding code and within the previous history of program edits. We will also investigate how
additional forms of specification—such as interaction with evaluation traces (in addition to just examples of the
eventual values they should produce)—may further help the system suggest desirable program changes.

Most systems that provide program synthesis, including Sketch-n-Sketch, require the user to pick a single
solution. The desired behaviors for code under development, however, are subject to change and may not crystallize
until subsequent phases of development. It would thus be preferable to delay the choice, allowing program
“variations” to persist during the authoring session and to inform subsequent edits by the user and the synthesis
engine. Doing so effectively will require techniques to evaluate and analyze program variants efficiently, and to
summarize and visualize their results in intuitive ways.

User Interface Techniques

(3) Output-Directed Programming [UIST 2016, UIST 2019]. For many tasks, programmers face a choice: Use a GUI
and sacrifice flexibility, or write code and sacrifice ergonomics? To obtain both flexibility and ease of use, we are
exploring a workflow called output-directed programming [5, 7] in which traditional GUI interactions—such as those
found in graphics editors and other direct manipulation interfaces—are interpreted as transformations of ordinary
code in a general-purpose programming language.

To create vector graphics in Sketch-n-Sketch, the user draws new elements directly in the canvas, and the system
generates high-level, readable code that, when executed, produces those elements. Through GUI actions, the user
declares new relationships among output values—e.g., to equate colors, to relate positions, or to group elements—
and Sketch-n-Sketch transforms the program to satisfy the declared relationships. These designs can be abstracted
into reusable functions, which extend the existing set of drawing tools (i.e., library functions). Unlike many prior
programming-by-demonstration techniques, we embrace a full-featured, general-purpose functional language—with
an emphasis to build composable functions—because of the potential to provide a spectrum of expressiveness
between a “low floor” for novices and a “high ceiling” for experts. To demonstrate the expressiveness of output-
directed programming for SVG, we have implemented a variety of parametric designs in Sketch-n-Sketch—the
generated code is readable, reusable, and can be inspected and modified with text-edits at any time.

Looking beyond domains with inherently visual representations, we will explore similar workflows for direct
manipulation domains which also involve textual and numerical values—such as documents and spreadsheets.

(4) Hybrid Text-and-GUI Code Editors [ICSE 2018, VL/HCC 2020]. For many code transformations, there is
a tradeoff between text-editing—which provides flexibility and concision—and structure editing or automated
refactoring—which avoid syntax and certain semantic errors.

To combine these benefits, Sketch-n-Sketch augments textual code with graphical widgets that allow the user to
structurally select subexpressions and other relevant features in the program; Sketch-n-Sketch then displays a menu
of potentially relevant program transformations based on the current selections [8]. In addition to direct manipulation
of textual code, we have also developed a technique for structurally manipulating textual representations of output
values: by tracing the execution of a toString function used to “visualize” a value, our technique automatically
derives a tiny structure editor on the output string—UI widgets for selecting, adding, removing, and modifying
elements of the original value are displayed atop appropriate substrings [6].

Ravi Chugh | Research Statement (June 2020) 2/5



Future Directions. The aforementioned techniques offer new GUI interactions for manipulating code and output.
For larger programs, evaluation involves many complex intermediate data structures that are not directly represented
in the eventual output. A challenge for future work is to devise visualization and interaction mechanisms for all
steps of an evaluation trace, in between the static source code and its final output.

The user interface features above have been co-designed with domain- and implementation-specific program
transformations. To make hybrid editing environments more extensible, we will investigate domain-specific lan-
guages that allow custom program transformations to be defined in easier and more composable ways.

We will furthermore investigate ways to support the smooth transition between multiple views (or “projections”)
of code and its evaluation. For example, we are defining a mechanism called live literals that allows users (or tool
builders) to define custom, type-specific GUIs for generating code [12]. We also imagine a notion of “code style
sheets” that allows different programming choices—from relatively simple choices such as code formatting, to more
complex choices between syntactically-distinct but semantically-equivalent expressions—to be applied according to
different user preferences, code comprehension goals, screen sizes, etc.

Each of these pursuits aims to make code editors more interactive, with the raw, unrestricted power of text-
editing serving as just one tool among many for writing and reading code.

A “Computational Canvas” for Every Application Domain

The tension between programming languages and direct manipulation GUIs crops up in every direction—web
development (for example, JavaScript vs. Dreamweaver), data analysis (R vs. Excel), data visualization (D3 vs.
Excel), word processing (IAIgX vs. Word), presentations (Slideshow vs. PowerPoint), 2D graphics (Processing vs.
Mustrator or Photoshop), 3D graphics (OpenGL vs. SketchUp), and countless more. In each setting, the story is the
same—programming and GUI interfaces provide distinct benefits for various users and usage scenarios; without the
ability to move between modalities, users are stuck with each interface’s shortcomings.

My central assumption is that each of these software application domains can and should be equipped with
a “computational canvas”—a live, bidirectional, and direct manipulation interface for programming—that elim-
inates the dichotomy above. The work described above—contributing to program synthesis, programming by
demonstration, bidirectional programming, live programming, structure editing, and automated refactoring—
constitute small steps towards this long-term vision. In our continued efforts, we will instantiate and develop any
novel techniques for a variety of application domains, discussed below.

Everyday Work. Office applications are ubiquitous: word processors, spreadsheets, presentation editors, calendars,
email clients, and so on are used by vast numbers of users for increasingly many professional and personal tasks.
Spreadsheets, in particular, are often referred to as the most widely-used programming language: a broad spectrum
of spreadsheet users are able to use formulas to programmatically manipulate their datasets. Following the lead
of spreadsheets, I plan to investigate how formulas—a lightweight but powerful way to integrate programming
within a GUI editor—can be integrated into other office applications. In addition to the “clean-slate” design and
implementation approach taken in Sketch-n-Sketch so far, I will consider how to integrate our techniques into existing
popular office applications—such as Google Docs or Microsoft Office—through plug-ins that allow (bidirectional)
formulas to be mixed into the existing GUISs.

Creative Work. Design tools—such as Adobe’s Illustrator, Photoshop, and InDesign—include scores of powerful
features that support the construction of complex and nuanced artifacts. However, these tools generally lack
proper tools for helping designers to abstract and reuse their work. Furthermore, designers and programmers
regularly collaborate, often iterating between prototyping and implementation tasks—the literature documents
designer-developer breakdowns that are due in no small part to the lack of shared and integrated tooling between
these two usually-distinct groups of users. Sketch-n-Sketch only begins to scratch the surface of how “design” and
“development” work may be streamlined; this will continue to be a goal for my research.

Data Visualization. There are several common user interfaces for creating visualizations: chart choosers such
as Microsoft Excel and Google Sheets, shelf builders such as Tableau, and textual specification or programming
languages such as Vega and D3. We are developing an integrated visualization editor called Ivy [11] that aims to
streamline these interface modalities. Our approach is to endow declarative visualization grammars (e.g., Vega and
Vega-Lite) with language abstraction mechanisms that, first, allow visualizations to be packaged into reusable units
and, second, allow these visualizations to be instantiated and explored using type- and semantics-aware reasoning
techniques. To demonstrate how Ivy smoothly combines several existing visualization interface modalities, we used

Ravi Chugh | Research Statement (June 2020) 3/5



Ivy to implement reusable Vega and Vega-Lite visualizations that emulate a variety of chart types found in existing
chart choosers and shelf builders.

Besides data exploration and presentation, data transformation is another fundamental aspect of a data analytics
pipeline. In practice, users interleave and iterate transformation, exploration, and presentation tasks, yet existing
systems are generally tailored for individual phases. We will seek to integrate these phases and the different user
interface modalities for each—building on the computational spreadsheet canvases described above, as well as the
exploration and presentation methodologies in Ivy—to realize a computational canvas that combines, and extends,
the benefits of traditionally distinct systems like spreadsheets and computational notebooks.

Web Development. Web application development involves many of the characteristics described above: designers
and developers collaborate, and the resulting artifacts involve visual and textual elements as well as databases.
Beyond these concerns, computational canvases for web applications will also need to support the creation of
dynamic behaviors.

Regarding the source programming language itself, our work thus far supports a core functional language, with
user-facing syntax that resembles Elm or Haskell. As we extend our program synthesis and program transformation
techniques to support widely-used features—such as mutable assignments and objects, as studied in my earlier work
on types and static analysis for dynamic languages [2, 3, 4]|—we may choose TypeScript as one particular user-facing
language. TypeScript and Elm are related to and interoperate with JavaScript, the de facto programming language
for the web and thus many of the application domains described above.

Research for Practice. In building these prototype systems, I hope to lay programming language and user interface
foundations that enable professional software engineers to develop industrial-strength interactive programming
systems. Therefore, in addition to disseminating ideas in academic settings, we will continue to develop and
release open-source software, present in venues—such as Strange Loop, EIm Conference, and the Future of Coding
podcast—that attract a mix of software engineers and researchers, and distribute tutorials and videos that are less
technical than our research papers and seminars. I will also incorporate these systems into a variety of classes that I
develop and teach.

Ultimately, the goals of my research—to bridge the gap between programming and GUIs—are to allow expe-
rienced programmers to funnel more creativity into tasks that truly require human insight, and to provide novice
users a tenable path for learning to harness computational power—boosting productivity in software technology as
well as other fields.

Ravi Chugh | Research Statement (June 2020) 4/5



Acknowledgements

Many thanks to Brian Hempel, Justin Lubin, Mikaél Mayer, Cyrus Omar, Nick Collins, and Andrew McNutt (in
chronological order of collaboration), without whom this work would not have been possible. Thanks also to the U.S.
National Science Foundation, the Swiss National Science Foundation, and the University of Chicago for generously
supporting this research. Several short passages above are adapted from the references.

References

[1] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Programmatic and Direct Manipulation,
Together at Last. In Conference on Programming Language Design and Implementation (PLDI), 2016.

[2] RaviChugh, David Herman, and Ranjit Jhala. Dependent Types for JavaScript. In Object-Oriented Programming
Languages, Systems, and Applications (OOPSLA), 2012.

[3] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged Information Flow for JavaScript. In
Programming Language Design and Implementation (PLDI), 2009.

[4] RaviChugh, Patrick M. Rondon, and Ranjit Jhala. Nested Refinements: A Logic for Duck Typing. In Principles
of Programming Languages (POPL), 2012.

[5] Brian Hempel and Ravi Chugh. Semi-Automated SVG Programming via Direct Manipulation. In Symposium
on User Interface Software and Technology (UIST), 2016.

[6] Brian Hempel and Ravi Chugh. Tiny Structure Editors for Low, Low Prices! (Generating GUIs from toString
Functions). In Proceedings of the IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), 2020.

[7] Brian Hempel, Justin Lubin, and Ravi Chugh. Output-Directed Programming for SVG. In Symposium on User
Interface Software and Technology (UIST), 2019.

[8] Brian Hempel, Justin Lubin, Grace Lu, and Ravi Chugh. Deuce: A Lightweight User Interface for Structured
Editing. In International Conference on Software Engineering (ICSE), 2018.

[9] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. Program Sketching with Live Bidirectional Evalua-
tion. Proceedings of the ACM on Programming Languages (PACMPL), Issue ICFP, 2020.

[10] Mikaél Mayer, Viktor Kuncak, and Ravi Chugh. Bidirectional Evaluation with Direct Manipulation. Proceed-
ings of the ACM on Programming Languages (PACMPL), Issue OOPSLA, 2018.

[11] Andrew McNutt, Gordon Kindlmann, and Ravi Chugh. Ivy: An Integrated Visualization Editor via Parame-
terized Declarative Templates, April 2020. In submission.

[12] Cyrus Omar, Nick Collins, David Moon, Ian Voysey, and Ravi Chugh. Filling Typed Holes with Live GUIs,
June 2020. In preparation.

[13] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. Live Functional Programming with Typed
Holes. Proceedings of the ACM on Programming Languages (PACMPL), Issue POPL, 2019.

Ravi Chugh | Research Statement (June 2020) 5/5



	Programming Language Techniques
	User Interface Techniques
	A ``Computational Canvas'' for Every Application Domain
	Acknowledgements
	References

