Announcements

Ray tracer is due in five days – you should have started by now or you're going to have a bad week...

Missing file posted on the web page

I'm sorry for canceling class on Tuesday...

Animation—Simulation

Passive Simulations Behavioral Animations (lightly) Dynamics Active Simulations Control Systems

COMPUTER GRAPHICS 15-462

Overview

Animation techniques
-Traditional animation
-Keyframing
-Motion Capture
-Simulation
-Behavioral

Dynamic Simulation

- Realistic motion
- High-level control
- Design of control routines
- Physics of passive systems
- Control for the animator?

Passive—no muscles or motors

Active—internal sources of energy

Dynamics

- Generate motion by specifying mass and force, apply physical laws (e.g., Newton's laws)
 - -particles
 - -soft objects
 - -rigid bodies
- Simulates physical phenomena
 - -gravity
 - -momentum (inertia)
 - -collisions
 - -friction
 - -fluid flow (drag, turbulence, ...)
 - -solidity, flexibility, elasticity
 - -fracture

Maya Dynamics

Particle Systems

Clouds Smoke Fire Waterfalls Fireworks

Reeves '83, the Wrath of Khan Batman Returns, using Reynold's flocking algorithms

Particle Systems

Creation—number, initial conditions position/velocity randomly surface of shape vertex of polygonal object size color transparency shape lifetime Deletion Update of position/velocity translation vortex Rendering style – motion blur, compositing

What control handles do we want/need?

Karl Sims, Particle Dreams

Behavioral Animation

- Define rules for the way an object behaves and interacts —models respond to their changing environment —programs implement the rules
- Classic example: "boids" (Craig Reynolds)
 - -object's motion is a simple function of nearby objects
 - » Stay near neighbors
 - » Don't run into them
 - » Move in this general direction
 - -emergent behavior: flocking
 - -really just a particle system
- Lion King wildebeest stampede

More generally have other forces

- Forces on the particle
 - -Gravity f = mg
 - -Viscous drag: f=-kv
- Forces between particles
 - -Spring: f=ke e is distance between two points
- Interaction forces
 - -Collisions with objects in the environment

$$V' = V - 2(V \bullet N)N$$

Spring-Mass Systems

Cloth in 2D Jello in 3D

Breen '95

Many types of cloth Very different properties Not a simple elastic surface Woven fabrics tend to be very stiff Anisotropic

Resolution of Mesh is critical Computation of collisions is expensive

Breen '95

Modeling for Clothing

Collisions for Clothing

Polygons

Primitive Level

Potentially VERY expensive Bounding Box Hierarchy Partition space or objects Avoid expensive primitive tests

Intermediate Level(s)

Top Level

Fracture

O'Brien, J. F., Hodgins, J. K., (1999) Graphical Modeling and Animation of Brittle Fracture. The proceedings of ACM SIGGRAPH 99, Los Angeles, California.

Fracture

Smoke

Visual Simulation of Smoke, Ronald Fedkiw Jos Stam Henrik Wann Jensen SIGGRAPH 2001, Computer Graphics Proceedings

Smoke

http://grail.cs.washington.edu/projects/control/

http://grail.cs.washington.edu/projects/control/

http://grail.cs.washington.edu/projects/control/

http://grail.cs.washington.edu/projects/control/

The Challenges of Passive Simulation Accurate enough for the situation What pieces of the physics are necessary for appearance? How to give the animator control?

Dynamics, more generally

- Point mass
- Spring/mass systems
- Linkages of rigid bodies
- Other physical phenomena
 - -Aerodynamics
 - -Fluids
 - -Fracture
 - -Explosions

Forward and Inverse Dynamics

Forward: given forces and torques what is the motion?

Inverse: given prescribed motion what are the forces and torques?

Forces/Torques

Gravity Wind Collisions/contact

System Description

Mass Center of mass Moment of inertia: formula for simple objects

 I_z I_y

$$I_{x} = I_{y} = \frac{1}{12}m(3r^{2} + L^{2})$$
$$I_{z} = \frac{mr^{2}}{2}$$

Calculate from polygonal model (closed) for more complicated shapes

Commercially Available Simulation Code

Link: mass, moment of inertia Joints: degrees of freedom distance from center of mass of links

Code for equations of motion Hooks for applying forces, torques Rigid body simulator also contained within Maya

Passive—no muscles or motors

Active—internal sources of energy

Control Systems—how do we do something with these mechanisms ?

Hierarchy of control: State machines Control actions Low-level servos

State Machines

Low-level Control

 $\tau = k_p (\theta_d - \theta) - k_v \theta$

Passive strategies where possible

Synergistic use of joints

Reduce disturbances

Physical intuition

Physical intuition

Zordan, V. B., Hodgins, J. K., Motion capture-driven simulations that hit and react, Symposium on Computer Animation, 2002.

Motion capture-driven simulations that hit and react

Victor B. Zordan Jessica K. Hodgins

Boxing comparison

(simulated vs. human motion)

ACM SIGGRAPH Symposium on Computer Animation 2002

Secondary Motion: Coupling Passive and Active Simulations

One-way coupled

Partially coupled

Computer Graphics 15-462

Fully coupled

The Challenges of Active Simulation

Control laws are hard to design Automatic design hasn't worked for complex systems (yet) Need a larger variety of behaviors Need to be able to handle new characters easily Higher-level behaviors Realtime performance

Several papers on control this year in SIGGRAPH after a multi-year drought

Perceptual Hacks

- How good a job do you have to do?
 Objects don't go through walls
- Viewers can be pretty oblivious of things like incorrect bounces
- And we can't predict exactly how something should break

This shift of emphasis from accuracy to fast-and-looksgood is what distinguishes physically based CG from "real" engineering.

Tuesday's lecture will be on perception

Evaluation

- Side-by-side comparisons
- Biomech or engineering data
- Turing test?

Announcements

Ray tracer is due in five days – you should have started by now or you're going to have a bad week...

Missing file posted on the web page

I'm sorry for canceling class on Tuesday...