CS4620/5620: Lecture 35

Ray Tracing (Shading)

Cornell CS4620/5620 Fall 2012 « Lecture 35

© 2012 Kavita Bala *

(with previous instructors James/Marschner)

Announcements

* 4621
— Class today

 Turn in HW3

* PPA3 is going to be out today

* PA3A is out

Cornell CS4620/5620 Fall 2012 « Lecture 35

© 2012 Kavita Bala *

(with previous instructors James/Marschner)

2

Shading

* Compute light reflected toward camera

* Inputs:

. . \\//
—eye direction S

—light direction \ v
(for each of many lights) 1 an /
—surface normal v

—surface parameters
(color, shininess, ...)

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala *+ 3

(with previous instructors James/Marschner)

Light

* Local light O

—Position

* Directional light (e.g., sun)

— Direction, no position

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala + 4

(with previous instructors James/Marschner)

Lambertian shading
* Shading independent of view direction

illumination
L from source

N

7\
v
\l n / Ld:kd_lfmax((),n'l)
0 v |

diffuse
coefficient

diffusely
reflected
light

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala = 5

(with previous instructors James/Marschner)

Image so far

Scene.trace(Ray ray, tMin, tMax) {
surface, t = hit(ray, tMin, tMax);
if surface is not null {
point = ray.evaluate(t);
normal = surface.getNormal(point);
return surface.shade(ray, point,
normal, light);

else return backgroundColor;

}

Surface.shade(ray, point, normal, light) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala = 6

(with previous instructors James/Marschner)

Shadows

* Surface is only illuminated if nothing blocks its view of the

light.

* With ray tracing it’s easy to check
—just intersect a ray with the scene!

Cornell CS4620/5620 Fall 2012 « Lecture 35

© 2012 Kavita Bala

(with previous instructors James/Marschner)

7

Image so far

Surface.shade(ray, point, normal, light) {
shadRay = (point, light.pos — point);
if (shadRay not blocked) {
v = —normalize(ray.direction);
1 = normalize(light.pos — point);
// compute shading
}

return black;

}

Cornell CS4620/5620 Fall 2012 « Lecture 35

© 2012 Kavita Bala

(with previous instructors James/Marschner)

8

Shadow rounding errors

* Sounds like it should work, but hmm.

* What'’s going on?

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala = 9

(with previous instructors James/Marschner)

Shadow rounding errors

* Don’t fall victim to one of the classic blunders:

* What'’s going on?
—hint: at what t does the shadow ray intersect the surface you're
shading?

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 10

(with previous instructors James/Marschner)

Shadow rounding errors

* Solution: shadow rays start a tiny distance from the surface

* Do this by moving the start point, or by limiting the t range

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 11

(with previous instructors James/Marschner)

Multiple lights

* Just loop over lights, add contributions
* Important to fill in black shadows

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 12

(with previous instructors James/Marschner)

Multiple lights

* Important to fill in black shadows
* Just loop over lights, add contributions

* Ambient shading

—black shadows are not really right
—one solution: dim light at camera

—alternative: add a constant “ambient” color to the shading...

0

ornell CS4620/5620 Fall 2012 « Lecture 35

© 2012 Kavita Bala

(with previous instructors James/Marschner)

13

Image so far

shade(ray, point, normal, lights) {
result = ambient;
for light in lights {
if (shadow ray not blocked) {
result += shading contribution;
}
}

return result;

}

Cornell CS4620/5620 Fall 2012 Lecture 35

© 2012 Kavita Bala

(with previous instructors James/Marschner)

14

Specular shading (Blinn-Phong)

* Close to mirror < half vector near normal
—Measure “near” by dot product of unit vectors

NI

RS h = bisector(v, 1)
\ v v+l
| nyh / v+

« v

Ls = ks I max(0,cosa)”
= ks I max(0,n-h)"
specularly

reflected
light

specular

coefficient
Cornell CS4620/5620 Fall 2012 * Lecture 35

© 2012 Kavita Bala * 15

(with previous instructors James/Marschner)

Putting it together

* Usually include ambient, diffuse, Phong in one model

L=L,+Li+ Ls
= ko Iy + kg I max(0,n - 1) + ks Tmax(0,n - h)"

* The final result is the sum over many lights

L=1L,+ Z [(La)i + (Ls)s)

N
L=k,I,+ Z (kg I; max(0,n - 1;) + ks I; max(0,n - h;)"|

=1

Cornell CS4620/5620 Fall 2012 « Lecture 35

© 2012 Kavita Bala * 16

(with previous instructors James/Marschner)

Diffuse + Phong shading

Cornell CS4620/5620 Fall 2012 Lecture 35 © 2012 Kavita Bala « 17

(with previous instructors James/Marschner)

Mirror reflection

* Consider perfectly shiny surface
—there isn’t a highlight
—instead there’s a reflection of other objects
* Can render this using recursive ray tracing

—to find out mirror reflection color, ask what color is seen from
surface point in reflection direction

—already computing reflection direction for Phong...
* “Glazed” material has mirror reflection and direct

L=L,+Ls+ Ly,
—where L, is evaluated by tracing a new ray

Cornell CS4620/5620 Fall 2012 Lecture 35 © 2012 Kavita Bala * 18

(with previous instructors James/Marschner)

Mirror reflection

* Intensity depends on view direction
—reflects incident light from mirror direction

! / r=v+2((n-v)n—v)

=2n-v)n—v

Cornell CS4620/5620 Fall 2012 Lecture 35 © 20_I2 Kavita Bala * 19

(with previous instructors James/Marschner)

Diffuse + mirror reflection (glazed)

(glazed material on floor)

Cornell CS4620/5620 Fall 2012 Lecture 35 © 20_I2 Kavita Bala * 20

(with previous instructors James/Marschner)

Simple materials

metal dielectric

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala « 21

(with previous instructors James/Marschner)

Adding microgeometry

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 22

(with previous instructors James/Marschner)

Classic reflection behavior

—

ideal specular (Fresnel)

rough specular Lambertian

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 23

(with previous instructors James/Marschner)

Specular reflection

* Smooth surfaces of pure materials have ideal specular
reflection (said this before)

—Metals (conductors) and dielectrics (insulators) behave
differently

* Reflectance (fraction of light reflected) depends on angle

AL

metal dielectric

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 24

(with previous instructors James/Marschner)

Snell’s Law £

* Tells us where the
refracted ray goes

—a.k.a. transmission vector

« Computation
—ratio of sines is ratio

(o
of in-plane components
— project to surface;
scale by eta ratio; m sin 61 = 1 sin 6,
recompute normal-
direction component Example values of :
. . air: 1.00;
—total internal reflection water: 1.33-1.34;
window glass: 1.51;
optical glass: 1.49-1.92;
diamond: 2.42.
Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 25

(with previous instructors James/Marschner)

Computing the Transmission Vector, t

nsin @ = ng sin ¢.

Computing the sine of an angle between two vectors is usually not as convenicil
as computing the cosine, which is a simple dot product for the unit vectors sucli
as we have here. Using the trigonometric identity sin? 6 + cos? 0 = 1, we can
derive a refraction relationship for cosines:

n? (1 — cos?§)

cos?p=1— 5
g

Note that if 7 and n; are reversed, then so are 6 and ¢ as shown on the right of
Figure 13.1.

Figure 13.1. Snell's Law describes how the angle ¢ depends on the angle 6 and the
refractive indices of the object and the surrounding medium.

Cornell CS4620/5620 Fall 2012 « Lecture 35 © 2012 Kavita Bala * 26

(with previous instructors James/Marschner)

Computing the Transmission Vector, t

t = sin ¢b — cos ¢n.
. d
Since we can describe d in the same basis, and d is known, we can solve for b:
. n 0
d = sinfb — cosén, 0
d +ncosf
b= ———.
sin @ r
This means that we can solve for t with known variables:

Figure 13.2. The vectors

_n (d +ncos 0)) n and b form a 2D orthonor-

t _
n¢ ncos¢ mal basis that is parallel to
the transmission vector t.
_ n(d—n(d-n)) w1 n?(1—(d-n)?)
o T TL% ’

Note that this equation works regardless of which of n and n; is larger. An im-
mediate question is, “What should you do if the number under the square root is
negative?” In this case, there is no refracted ray and all of the energy is reflected.
This is known as fotal internal reflection, and it is responsible for much of the
rich appearance of glass objects.

Cornell CS4620/5620 Fall 2012 « Lecture 35 " P% \ozusoir!s%ucléi\jair:i/r?:;line; 27

Ray tracing dielectrics

* Like a simple mirror surface, use recursive ray tracing

* But we need two rays
—One reflects off the surface (same as mirror ray)
—The other crosses the surface (computed using Snell’s law)
* Doesn’t always exist (total internal reflection)
* Splitting into two rays, recursively, creates a ray tree
—Very many rays are traced per viewing ray
—Ways to prune the tree
* Limit on ray depth
e Limit on ray attenuation

Cornell CS4620/5620 Fall 2012 « Lecture 35 " P% \ozusoir!s%ucléi\jair:i/r?:;line; 28

