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CS4620/5620: Lecture 35

Ray Tracing (Shading)
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Announcements

• 4621
– Class today

• Turn in HW3

• PPA3 is going to be out today

• PA3A is out
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Shading

• Compute light reflected toward camera
• Inputs:

– eye direction
– light direction 

(for each of many lights)
– surface normal
– surface parameters 

(color, shininess, …)
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Light

• Local light
– Position

• Directional light (e.g., sun)
– Direction, no position
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• Shading independent of view direction
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Lambertian shading

diffuse
coefficient

diffusely
reflected

light

illumination
from source

v
l n
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Ld = kd I max(0,n · l)
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Image so far

Scene.trace(Ray ray, tMin, tMax) {
    surface, t = hit(ray, tMin, tMax);
    if surface is not null {
        point = ray.evaluate(t);
        normal = surface.getNormal(point);
        return surface.shade(ray, point,
            normal, light);
    }
    else return backgroundColor;
}

…

Surface.shade(ray, point, normal, light) {
    v = –normalize(ray.direction);
    l = normalize(light.pos – point);
    // compute shading
}
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Shadows

• Surface is only illuminated if nothing blocks its view of the 
light.

• With ray tracing it’s easy to check
– just intersect a ray with the scene!
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Image so far

Surface.shade(ray, point, normal, light) {
    shadRay = (point, light.pos – point);
    if (shadRay not blocked) {
        v = –normalize(ray.direction);
        l = normalize(light.pos – point);
        // compute shading
    }
    return black;
}
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Shadow rounding errors

• Sounds like it should work, but hmm.... 

• What’s going on?

9

© 2012 Kavita Bala  •
(with previous instructors James/Marschner) 

Cornell CS4620/5620 Fall 2012 • Lecture 35

Shadow rounding errors

• Don’t fall victim to one of the classic blunders:

• What’s going on?
– hint: at what t does the shadow ray intersect the surface you’re 

shading?
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Shadow rounding errors

• Solution: shadow rays start a tiny distance from the surface

• Do this by moving the start point, or by limiting the t range
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Multiple lights

• Just loop over lights, add contributions
• Important to fill in black shadows
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Multiple lights

• Important to fill in black shadows
• Just loop over lights, add contributions
• Ambient shading

– black shadows are not really right
– one solution: dim light at camera
– alternative: add a constant “ambient” color to the shading…
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Image so far

shade(ray, point, normal, lights) {
    result = ambient;
    for light in lights {
        if (shadow ray not blocked) {
            result += shading contribution;
        }
    }
    return result;
}
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• Close to mirror ⇔ half vector near normal
– Measure “near” by dot product of unit vectors

Ls = ks I max(0, cos �)p

= ks I max(0,n · h)p

n
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Specular shading (Blinn-Phong)

specular
coefficient

specularly
reflected

light

n
v

hl
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h = bisector(v, l)

=
v + l
�v + l�

n
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Putting it together

• Usually include ambient, diffuse, Phong in one model

• The final result is the sum over many lights
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L = La + Ld + Ls

= ka Ia + kd I max(0,n · l) + ks I max(0,n · h)p

L = La +
N�

i=1

[(Ld)i + (Ls)i]

L = ka Ia +
N�

i=1

[kd Ii max(0,n · li) + ks Ii max(0,n · hi)p]

n

n
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Diffuse + Phong shading
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Mirror reflection

• Consider perfectly shiny surface
– there isn’t a highlight
– instead there’s a reflection of other objects

• Can render this using recursive ray tracing
– to find out mirror reflection color, ask what color is seen from 

surface point in reflection direction
– already computing reflection direction for Phong…

• “Glazed” material has mirror reflection and direct

– where Lm is evaluated by tracing a new ray
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r = v + 2((n · v)n� v)
= 2(n · v)n� v
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Mirror reflection

• Intensity depends on view direction
– reflects incident light from mirror direction
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Diffuse + mirror reflection (glazed)

(glazed material on floor)
20
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Simple materials

metal dielectric
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Adding microgeometry
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Classic reflection behavior

Lambertianrough specular

ideal specular (Fresnel)
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Specular reflection

• Smooth surfaces of pure materials have ideal specular 
reflection (said this before)
– Metals (conductors) and dielectrics (insulators) behave 

differently

• Reflectance (fraction of light reflected) depends on angle

metal dielectric
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Snell’s Law

• Tells us where the 
refracted ray goes
– a.k.a. transmission vector

• Computation
– ratio of sines is ratio

of in-plane components
– project to surface;

scale by eta ratio;
recompute normal-
direction component

– total internal reflection
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Computing the Transmission Vector, t
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Computing the Transmission Vector, t
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Ray tracing dielectrics

• Like a simple mirror surface, use recursive ray tracing
• But we need two rays

– One reflects off the surface (same as mirror ray)
– The other crosses the surface (computed using Snell’s law)

• Doesn’t always exist (total internal reflection)

• Splitting into two rays, recursively, creates a ray tree
– Very many rays are traced per viewing ray
– Ways to prune the tree

• Limit on ray depth
• Limit on ray attenuation
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