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PREFACE

In Lord Rayleigh’s investigation of vibrating strings with mild longitudinal
density variation, a perturbation procedure was developed based upon the
known analytical solution for a string of constant density. This technique
was subsequently refined by Schrödinger and applied to problems in quantum
mechanics and it has since become a mainstay of mathematical physics.

Mathematically, we have a discretized Laplacian-type operator embodied
in a real symmetric matrix which is subjected to a small symmetric perturba-
tion due to some physical inhomogeneity. The Rayleigh-Schrödinger procedure
produces approximations to the eigenvalues and eigenvectors of the perturbed
matrix by a sequence of successively higher order corrections to the eigenvalues
and eigenvectors of the unperturbed matrix.

The difficulty with standard treatments of this procedure is that the eigen-
vector corrections are expressed in a form requiring the complete collection
of eigenvectors of the unperturbed matrix. For large matrices this is clearly
an undesirable state of affairs. Consideration of the thorny issue of multiple
eigenvalues only serves to exacerbate this difficulty.

This malady can be remedied by expressing the Rayleigh-Schrödinger pro-
cedure in terms of the Moore-Penrose pseudoinverse. This permits these cor-
rections to be computed knowing only the eigenvectors of the unperturbed ma-
trix corresponding to the eigenvalues of interest. In point of fact, the pseudoin-
verse need not be explicitly calculated since only pseudoinverse-vector products
are required. In turn, these may be efficiently calculated by a combination of
matrix factorization, elmination/back substitution and orthogonal projection.
However, the formalism of the pseudoinverse provides a concise formulation
of the procedure and permits ready analysis of theoretical properties of the
algorithm.

The present book provides a complete and self-contained treatment of the
Rayleigh-Schrödinger perturbation theory based upon such a pseudoinverse
formulation. The theory is built up gradually and many numerical examples
are included. The intent of this spiral approach is to provide the reader with
ready access to this important technique without being deluged by a torrent
of formulae. Some redundancy has been intentionally incorporated into the
presentation so as to make the chapters individually accessible.

Chapter 1 provides historical background relative to this technique and also
includes several examples of how such perturbed eigenvalue problems arise in
Applied Mathematics. Chapter 2 presents a self-contained summary of the
most important facts about pseudoinverses needed in subsequent chapters.
Chapter 3 treats the symmetric eigenvalue problem, first for linear perturba-
tions and then for general analytic perturbations. The theory is then extended
in Chapter 4 to the symmetric definite generalized eigenvalue problem.
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Finally, Chapter 5 presents a detailed application of the previously de-
veloped theory to the technologically important problem of the analysis of
inhomogeneous acoustic waveguides. Specifically, the walls of a duct (such
as a muffler) are heated thereby producing a temperature gradient within the
waveguide. The consequent perturbations to the propagating acoustic pressure
waves are then calculated by applying the Rayleigh-Schrödinger pseudoinverse
technique to the resulting generalized eigenvalue problem. Of particular inter-
est is that this approach allows one to study the so-called degenerate modes of
the waveguide. Enough background material is provided so as to be accessible
to a wide scientific audience.

The target audience for this book includes practicing Engineers, Scien-
tists and Applied Mathematicians. Particular emphasis has been placed upon
including enough background material to also make the book accessible to
graduate students in these same fields. The goal of the book has been not
only to provide its readership with an understanding of the theory but also
to give an appreciation for the context of this method within the corpus of
Techniques of Applied Mathematics as well as to include sufficient examples
and applications for them to apply the method in their own work. For those
readers interested in the theoretical underpinnings of this technique, a gen-
eralized version of Rellich’s Spectral Perturbation Theorem is presented and
proved in the Appendix.

Many thanks are due Bruce E. Deitz, Interlibrary Loan Coordinator at
Kettering University, for his tireless efforts to track down many obscure, in-
complete and frankly incorrect references. Also, I would like to warmly thank
Dr. Ghasi R. Verma, Professor Emeritus of Mathematics at University of
Rhode Island, specifically for introducing me to Perturbation Methods at a
tender age and generally for giving me an appreciation for the Art of Applied
Mathematics. Finally, I would be remiss if I did not express my sincere grati-
tude to my loving wife Barbara A. (Rowe) McCartin who has good-naturedly
tolerated all of the endless hours spent on my mathematical research. As if
that were not enough, she has faithfully illustrated all of my publications for
the past fifteen years.

Brian J. McCartin
Fellow of the Electromagnetics Academy

Editorial Board, Applied Mathematical Sciences
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Chapter 1

Introduction

1.1 Lord Rayleigh’s Life and Times

G. G. Stokes [54, Chapter 7], Lord Kelvin [52], J. C. Maxwell [55] and Lord
Rayleigh [107] may rightfully be said to form the Mount Rushmore of 19th Cen-
tury British Mathematical Physicists. The connecting thread amongst these
“Masters of Theory” [112] was their common training in the Cambridge school
of mathematical physics. This school in turn was a natural outgrowth of the
long tradition of mathematical excellence at Cambridge University [2]. Lord
Rayleigh was closely connected to his three distinguished colleagues. Stokes
was one of his teachers and he maintained life-long correspondences with both
Kelvin and Maxwell.

Lord Rayleigh [8], [53], [107] lived the bulk of his professional life during
the Pax Britannica of the Victorian Era (1837-1901). Despite the misnomer
(England was in fact at war during every year of this period), Rayleigh’s life
was virtually untouched by hardship. Unlike most other Peers of the Realm,
he chose the life of a gentleman-scientist (except for a brief stint as head of the
Cavendish Laboratory) simply because of his love for mathematical physics.
In this sense, he is perhaps the greatest amateur scientist of all time.

John William Strutt (1842-1919) was born and died on the family estate
at Terling in Chelmsford, Essex and, being the oldest son, eventually became
the third Baron Rayleigh of Terling Place. He was a sickly child who gave
no early indication of his native mathematical talents. The first unambiguous
indication of such talents was given when he enrolled at Trinity College at age
20 where he studied physics with Stokes and “mixed” mathematics under the
great Mathematical Tripos coach E. J. Routh.

In 1865, he followed in Stokes’ 1841 footsteps and became both Senior
Wrangler and Smith’s Prizeman. To appreciate the magnitude of this accom-
plishment, consider that Kelvin placed as Second Wrangler and tied for Smith’s
Prizeman in 1845 while Maxwell did the same in 1854 (both losing to and tying

1



2 Introduction

Routh himself!). In 1866 he was made a Fellow of Trinity College.

In 1868, Rayleigh broke with tradition and, in place of the conventional
post-graduation grand tour of the Continent, he instead traveled to the United
States soon after the American Civil War and toured the newly reconstructed
South. Already, his growing stature is reflected in the fact that he met with
President Andrew Johnson at the White House on this trip.

His standing in the aristocracy was further enhanced when, in 1871, he
married Eleanor Balfour whose uncle and brother both became Prime Minister.
Six months later he contracted rheumatic fever and nearly perished. Afraid
of the possible consequences of the harsh British winter on his frail health, he
and his wife cruised the length of the Nile River on a house boat late in 1872.
This journey is of great significance to the present narrative because it was
at this time that he wrote, without access to library resources, a substantial
portion of Volume I of his great treatise The Theory of Sound about which we
will have more to say below.

Shortly after their return to England, his father died and they became Lord
and Lady Rayleigh. This change in status required him to administer the fam-
ily estate and consequently prompted them to move to Terling Place where a
laboratory was constructed for his experimental investigations. Except for the
period 1879-1884, this became his base of scientific operations. This hiatus
was brought about by a confluence of events: An agricultural downturn sig-
nificantly reduced their income from the estate and Maxwell’s death left open
the Cavendish Professorship at Cambridge. As a result, Rayleigh accepted this
chair for five years and is credited during this period with greatly enhancing
the experimental component of the physics instruction at Cambridge. During
this period, he and his students determined a revised set of electrical standards.

When he returned to Terling, he brought with him a renewed zeal for
experimental work. His crowning achievement in this arena was his isolation
of argon from the atmosphere in 1895. Prior to this work, it was believed
that air was composed of oxygen and nitrogen alone. This work eventually
led to the discovery of other rare gases in the atmosphere. In 1904, he shared
the Nobel Prize in Physics with Sir William Ramsay for this discovery. It is
noteworthy that this experimental investigation, which spanned a period of
more than three years years, began with a minute discrepancy between the
results of two different methods of measuring atmospheric nitrogen and was
successfully completed with what, by modern standards, would be considered
primitive experimental equipment.

Of particular interest for the present study are Rayleigh’s extensive the-
oretical and experimental researches into acoustics. He became interested in
acoustics early on in his student days while reading Helmholtz’ On Sensations
of Tone. This study resulted in his 1870 paper on Helmholtz resonators which
appeared in the Philosophical Transactions of the Royal Society. This was his
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fifth publication out of 446 which he published in his lifetime. It is the first of
his papers on acoustics which were to eventually number 128 (the last of which
he published in the final year of his life at the age of 76). These acoustical
researches reached their apex with the publication of his monumental treatise
The Theory of Sound: Volume I (1877/1894) and Volume II (1878/1896) which
will be considered in more detail in the next section.

His return to Terling did not sever him from the scientific life of Britain.
From 1887 to 1905, he was Professor of Natural Philosophy at the Royal Insti-
tution where he delivered an annual course of public lectures complete with ex-
perimental demonstrations. Beginning in 1896, he spent the next fifteen years
as Scientific Adviser to Trinity House where he was involved in the construc-
tion and maintenance of lighthouses and buoys. From 1905-1908, he served
as President of the Royal Society and from 1909 to his death in 1919 he was
Chancellor of Cambridge University.

In addition to his Nobel Prize (1904), he received many awards and dis-
tinctions in recognition for his prodigious scientific achievements: FRS (1873),
Royal Medal (1882), Copley Medal (1899), Order of Merit (1902), Rumford
Medal (1914). Also, in his honor, Cambridge University instituted the Rayleigh
Prize in 1911 and the Institute of Physics began awarding the Rayleigh Medal
in 2008.

His name is immortalized in many scientific concepts: e.g., Rayleigh Scat-
tering, Rayleigh Quotient, Rayleigh-Ritz Variational Procedure, Rayleigh’s
Principle, Rayleigh-Taylor instability, Rayleigh waves. In fact, many mathe-
matical results which he originated are attributed to others. For example, the
generalization of Plancharel’s Theorem from Fourier series to Fourier trans-
forms is due to Rayleigh [83, p. 78]. In retrospect, his scientific accomplish-
ments reflect a most remarkable synthesis of theory and experiment, perhaps
without peer in the annals of science.

1.2 Rayleigh’s Perturbation Theory

Perturbation theory in its modern form originated in 1749 with Euler’s
memoir on the irregularities in the orbits of Jupiter and Saturn [69, p. 172].
This analysis was further refined by Laplace in the mid-1780s [38, p. 321] and
reached its culmination in the 1860s with the lunar theory of Delaunay [115,
p. 1058]. In the early 1870s, Rayleigh extended this work to a generalized
procedure applicable to any oscillatory system with n degrees of freedom [88,
pp. 172-175, p. 185]. A more detailed explication of his perturbation procedure
appeared in Volume I of his The Theory of Sound of 1877.

How many mathematical treatises are still heavily cited more than a cen-
tury after they are written? A few. For example, Gauss’ Disquisitiones Arith-
meticae is one such classic. How many mathematical treatises are able to
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communicate across centuries in a readable fashion that provides insight and
inspires thought? Very few, indeed. Lord Rayleigh’s The Theory of Sound
is a paramount example. From its birth in the late 19th Century, it contin-
ues to illuminate the way for scholars of the early 21st Century intent upon
mastering acoustics. To put this masterpiece in perspective, the following pi-
oneering analysis comprises a mere 5 pages out of more than 500 pages in this
monumental treatise!

Free undamped vibrations of a system with n degrees of freedom are the
subject of Chapter IV of this scientific classic. Section 90 presents a general
perturbation procedure while Section 91 concerns the application of this pro-
cedure to a vibrating string with mild longitudinal density variation. In this
application, Rayleigh harkens back to Lagrange and models the continuous
string as a discrete system with a large number of degrees of freedom unlike
D’Alembert who studied the vibrating string with a continuum model based
upon the wave equation. In the ensuing summary of this pathbreaking work,
his analysis will be recast into more modern notation utilizing matrices, inner
products, asymptotic notation and distributions.

1.2.1 The Unperturbed System

Rayleigh begins by expressing the potential and kinetic energies, respec-
tively, of the unperturbed oscillating system in terms of generalized coordinates
comprised of the normal modes of vibration [36]:

V (0) =
1

2
〈φ(0), A0φ

(0)〉; T (0) =
1

2
〈φ̇(0), B0φ̇

(0)〉, (1.1)

where φ(0) = [φ
(0)
1 , φ

(0)
2 , . . . , φ

(0)
n ]T with A0 = diag(a1, a2, . . . , an) and positive

B0 = diag(b1, b2, . . . , bn). 〈·, ·〉 denotes the standard Euclidean inner product.
Defining the Lagrangian

L(0) = T (0) − V (0) =
1

2

[
〈φ̇(0), B0φ̇

(0)〉 − 〈φ(0), A0φ
(0)〉

]
, (1.2)

Lagrange’s equations of motion are

d

dt
L

(0)

φ̇
(0)
i

− L(0)

φ
(0)
i

= 0 (i = 1, . . . , n). (1.3)

Since

d

dt
L

(0)

φ̇
(0)
i

= biφ̈
(0)
i ; L

(0)

φ
(0)
i

= −aiφ
(0)
i , (1.4)

the equations of motion become

biφ̈
(0)
i + aiφ

(0)
i = 0 (i = 1, . . . , n), (1.5)
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or, in matrix form,

B0φ̈
(0) + A0φ

(0) = 0. (1.6)

The unperturbed normal modes are thereby seen to be

φ
(0)
i (t) = ci · sin (ω

(0)
i t+ ψi); [ω

(0)
i ]2 :=

ai

bi
. (1.7)

Observe that λ
(0)
i := [ω

(0)
i ]2 is a generalized eigenvalue of

A0x
(0)
i = λ

(0)
i B0x

(0)
i , (1.8)

with corresponding generalized eigenvector x
(0)
i = ei where ei is the ith column

of the identity matrix. We assume that these generalized eigenvalues are all
distinct, i.e. they are simple, and have been ordered: λ

(0)
1 < λ

(0)
2 < · · · < λ

(0)
n .

1.2.2 The Perturbed System

Suppose now that the potential and kinetic energies of our mechanical
system with n degrees of freedom undergo small perturbations:

A(ε) = A0 + εA1; B(ε) = B0 + εB1, (1.9)

where ε is a small parameter, A is symmetric and B is symmetric positive
definite. The determination of the perturbed natural angular frequencies
ωi(ε) =

√
λi(ε) and normal modes φi(t; ε) requires the simultaneous diago-

naliztion of A(ε) and B(ε) [23, pp. 42-44] which is equivalent to solving the
generalized eigenvalue problem [78, pp. 396-399]:

A(ε)xi(ε) = λi(ε)B(ε)xi(ε) (i = 1, . . . , n). (1.10)

The generalized eigenvectors xi(ε) are the coordinate vectors of the perturbed
normal modes φi(t; ε) relative to the basis of unperturbed normal modes φ(0).

Thus, the potential and kinetic energies, respectively, of the perturbed os-
cillating system in terms of generalized coordinates comprised of the perturbed
normal modes of vibration may be expressed as [36]:

V =
1

2
〈φ, Aφ〉; T =

1

2
〈φ̇, Bφ̇〉, (1.11)

where φ = [φ1, φ2, . . . , φn]T . The Lagrangian is then given by

L = T − V =
1

2

[
〈φ̇, Bφ̇〉 − 〈φ, Aφ〉

]
, (1.12)
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and Lagrange’s equations of motion become

d

dt
Lφ̇i
− Lφi

= 0 (i = 1, . . . , n). (1.13)

Since

d

dt
Lφ̇i

=

n∑
j=1

bi,j φ̈j; Lφi
= −

n∑
j=1

ai,jφj, (1.14)

the equations of motion are

n∑
j=1

bi,j φ̈j +

n∑
j=1

ai,jφi = 0 (i = 1, . . . , n), (1.15)

or, in matrix form,

Bφ̈+ Aφ = 0. (1.16)

Since we are assuming that both the unperturbed and perturbed general-
ized eigenvalues are simple, both the generalized eigenvalues and eigenvectors
may be expressed as power series in ε [23, p. 45]:

λi(ε) =
∞∑

k=0

εkλ
(k)
i ; xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . , n). (1.17)

Substitution of the perturbation expansions, Equation (1.17), into the gen-
eralized eigenvalue problem, Equation (1.10), yields

(A0 − λ(0)
i B0)x

(0)
i + ε

[
(A0 − λ(0)

i B0)x
(1)
i + (A1 − λ(0)

i B1 − λ(1)
i B0)x

(0)
i

]
+ ε2

[
(A0 − λ(0)

i B0)x
(2)
i + (A1 − λ(0)

i B1 − λ(1)
i B0)x

(1)
i − (λ

(1)
i B1 + λ

(2)
i B0)x

(0)
i

]
= �0. (1.18)

Taking the inner product of Equation (1.18) with ej (j �= i) and setting
the coefficient of ε to zero produces

[x
(1)
i ]j =

λ
(0)
i bj,i − aj,i

bj(λ
(0)
j − λ

(0)
i )

, (1.19)

where [A1]i,j = ai,j and [B1]i,j = bi,j. Without loss of generality, we may set

[x
(1)
i ]i = 0, (1.20)



Rayleigh’s Perturbation Theory 7

since

xi(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε[x
(1)
i ]1
...

1 + ε[x
(1)
i ]i

...

ε[x
(1)
i ]n

⎤
⎥⎥⎥⎥⎥⎥⎦ +O(ε2) = (1 + ε[x

(1)
i ]i)

⎡
⎢⎢⎢⎢⎢⎢⎣

ε[x
(1)
i ]1
...
1
...

ε[x
(1)
i ]n

⎤
⎥⎥⎥⎥⎥⎥⎦ +O(ε2), (1.21)

and generalized eigenvectors are only defined up to a scalar multiple.
Taking the inner product of Equation (1.18) with ei and setting the coeffi-

cient of ε to zero produces

λ
(1)
i =

ai,i − λ(0)
i bi,i

bi
, (1.22)

while setting the coefficient of ε2 to zero produces

λ
(2)
i = − bi,i(ai,i − λ(0)

i bi,i)

b2i
−
∑

j

′ (aj,i − λ(0)
i bj,i)

2

bibj(λ
(0)
j − λ

(0)
i )

, (1.23)

where we have invoked Equation (1.19).
∑

j
′ denotes summation over all values

of j from 1 to n except for j = i.
Rayleigh thereby approximates the perturbed normal modes to first-order

in ε and the perturbed natural frequencies to second-order in ε. An equivalent
perturbation analysis may be performed using the governing differential equa-
tion rather than energy considerations [23, pp. 343-350]. This development is
due to Schrödinger [101, 102] and is detailed in Section 1.4.

1.2.3 Example: The Nonuniform Vibrating String

Rayleigh next applies the perturbation approximations of Section 1.2.2 to
the vibrations of a stretched spring with mild longitudinal density variation.
The string itself is modeled as a discrete vibrating system with infinitely many
degrees of freedom.

Specifically, consider a vibrating string with fixed endpoints (Figure 1.1)
of length � and density ρ(x) = ρ0 + ε · ρ1(x). Then, the potential and kinetic
energies are given, respectively, by (τ = tension, y = transverse displacement)
[11, pp. 22-23]:

V =
τ

2

∫ �

0

(
∂y

∂x

)2

dx; T =
1

2

∫ �

0

ρ(x)

(
∂y

∂t

)2

dx. (1.24)

Thus, the potential energy is unaltered by the nonuniform density so that
ai,j = 0.
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Figure 1.1: Vibrating String: Top = Fundamental, Bottom = First Overtone

The transverse displacement corresponding to the ith perturbed mode is

yi(x, t; ε) = sin (ωi(ε)t+ ψi) ·
n∑

j=1

[xi(ε)]j sin

(
jπx

�

)
. (1.25)

Inserting ρ and yi into the energy expressions, Equation (1.24), leads directly
to:

ai =
i2π2τ

2�
; bi =

1

2
�ρ0, bi,j =

∫ �

0

ρ1(x) sin

(
iπx

�

)
sin

(
jπx

�

)
dx. (1.26)

Thus,

λ
(0)
i =

ai

bi
=
τπ2i2

ρ0�2
⇒ λ

(0)
i

λ
(0)
j − λ

(0)
i

=
i2

j2 − i2 . (1.27)

Therefore, substitution of Equations (1.26-1.27) into Equations (1.19-1.20) and
Equations (1.22-1.23) yields

[x
(1)
i ]i = 0; [x

(1)
i ]j =

i2

j2 − i2 ·
2

�ρ0

∫ �

0

ρ1(x) sin

(
iπx

�

)
sin

(
jπx

�

)
dx (j �= i),

(1.28)
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and

λi(ε) = λ
(0)
i · {1− ε ·

2

�ρ0

∫ �

0

ρ1(x) sin2

(
iπx

�

)
dx

+ε2 · [
(

2

�ρ0

∫ �

0

ρ1(x) sin2

(
iπx

�

)
dx

)2

−
∑

j

′ i2

j2 − i2 ·
(

2

�ρ0

∫ �

0

ρ1(x) sin

(
iπx

�

)
sin

(
jπx

�

)
dx

)2

] +O(ε3)}. (1.29)

Rayleigh then employs the above analysis to calculate the displacement of
the nodal point of the second mode, i = 2, (pictured in Figure 1.1: Bottom)
which would be located at the midpoint of the string, x = �

2
, if the density

were uniform. He proceeds as follows.
For x = �

2
+ Δx, Equation (1.25) with i = 2 may be expanded in a Taylor

series about x = �
2

[31, p. 146]:

y2(
�

2
+ Δx, t; ε) = {[ε[x(1)

2 ]1 sin (
π

2
) + sin (

2π

2
) + ε[x

(1)
2 ]3 sin (

3π

2
) + · · · ] +O(ε2)

+Δx · π
�
[ε[x

(1)
2 ]1 cos (

π

2
) + cos (

2π

2
) + ε[x

(1)
2 ]3 cos (

3π

2
) + · · · ] +O(Δx · ε2)

+O((Δx)2)} · sin (ω2(ε)t+ ψ2),

(1.30)

or, upon simplification,

y2(
�

2
+ Δx, t; ε) = {ε[[x(1)

2 ]1 − [x
(1)
2 ]3 + · · · ] +O(ε2)

+Δx · 2π
�

[−1 + ε[x
(1)
2 ]4 − · · · ] +O(Δx · ε2)

+O((Δx)2)} · sin (ω2(ε)t+ ψ2).

(1.31)

For a nodal point, y2 = 0, so that

Δx = ε · �
2π
{[x(1)

2 ]1 − [x
(1)
2 ]3 + · · · }+O(ε2 + Δx · ε2 + (Δx)2), (1.32)

where, by Equation (1.28),

[x
(1)
2 ]j =

4

j2 − 4
· 2

�ρ0

∫ �

0

ρ1(x) sin

(
2πx

�

)
sin

(
jπx

�

)
dx (j �= 2). (1.33)

Next, suppose that the inhomogeneity in density is due to a small load,
ε · ρ0λ, located at x = �

4
. I.e, ρ1(x) = ρ0λδ(x − �

4
) where δ(x − x̂) is the
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δ-function centered at x̂ [34, p. 2]. Then, Equation (1.32) becomes:

Δx ≈ ε · 2λ

π
√

2

{
2

12 − 4
− 2

32 − 4
− 2

52 − 4
+

2

72 − 4
+

2

92 − 4
− · · ·

}

= −ε · 2λ

π
√

2

{
1 +

1

3
− 1

5
− 1

7
+

1

9
+

1

11
· · ·

}
. (1.34)

Invocation of the geometric series permits the recognition of the bracketed
series in Equation (1.34) as none other than the definite integral:∫ 1

0

1 + x2

1 + x4
dx. (1.35)

This definite integral may be evaluated with the aid of [109, Art. 255, p. 227]:∫ ∞

0

xs−1

1 + xr
dx =

π

r sin ( s
r
· π)

. (1.36)

Setting r = 4 and s = 1, 3 in Equation (1.36) produces∫ ∞

0

1 + x2

1 + x4
dx = 2 · π

4 sin (π
4
)
. (1.37)

However,∫ ∞

0

1 + x2

1 + x4
dx =

∫ 1

0

1 + x2

1 + x4
+

∫ ∞

1

1 + x2

1 + x4
= 2 ·

∫ 1

0

1 + x2

1 + x4
dx. (1.38)

Thus, ∫ 1

0

1 + x2

1 + x4
dx =

1

2
·
∫ ∞

0

1 + x2

1 + x4
dx =

π

4 sin (π
4
)

=
π
√

2

4
. (1.39)

Hence, by Equation (1.34),

Δx ≈ −ε · 2λ

π
√

2
· π
√

2

4
= −ε · λ

2
. (1.40)

Finally, Rayleigh applies his perturbation procedure to the determination
of the shifts of natural frequencies due to an inhomogeneity in density resulting
from a small load, ε · ρ0λ, located at the midpoint of the string. I.e., ρ1(x) =
ρ0λδ(x− �

2
).

In this case, Equation (1.26) becomes

bi =
1

2
�ρ0; bi,i = ρ0λ sin2 (

iπ

2
), bi,j = ρ0λ sin (

iπ

2
) sin (

jπ

2
) (j �= i). (1.41)
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Thus, if i is even then bi,i = bj,i = 0 and Equation (1.29) becomes

λi(ε) = λ
(0)
i +O(ε3), (1.42)

while, if i is odd then Equation (1.29) becomes

λi(ε) = λ
(0)
i ·

{
1− ε · 2λ

�
+ ε2 ·

(
2λ

�

)2
[
1−

∑
j

′ i2

j2 − i2

]
+O(ε3)

}
, (1.43)

where the summation extends over odd j other than i.

Specifically, if i = 1 (Figure 1.1: Top) then Equation (1.43) reduces to

λi(ε) = λ
(0)
i ·

{
1− ε · 2λ

�
+ ε2 ·

(
2λ

�

)2
[
1−

∑
j=3,5,...

1

j2 − 1

]
+O(ε3)

}
. (1.44)

The sum of the series appearing in Equation (1.44) is [45, Series (367), p. 68]:

∑
j=3,5,...

1

j2 − 1
=

1

4
, (1.45)

so that

λi(ε) = λ
(0)
i ·

{
1− ε · 2λ

�
+ ε2 · 3λ

2

�2
+O(ε3)

}
. (1.46)

Thus, the perturbed fundamental frequency is given by:

ω1(ε) =
√
λ1(ε) = ω

(0)
1 ·

[
1− ε · λ

�
+ ε2 ·

(
λ

�

)2

+O

((
ε · λ

�

)3
)]

, (1.47)

where

ω
(0)
1 =

π

�
·
√

τ

ρ0
; f

(0)
1 =

1

2π
· ω(0)

1 =
1

2�
·
√

τ

ρ0
. (1.48)

Although Lord Rayleigh played no direct role in the development of quan-
tum mechanics, we will see in the ensuing sections that Erwin Schrödinger
adapted and extended his perturbation procedure to the atomic realm. Fur-
thermore, the well-known WKB approximation of quantum mechanics is a
variation of Rayleigh’s perturbation analysis by Wentzel [100, p. 178].
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1.3 Erwin Schrödinger’s Life and Times

Unlike Lord Rayleigh and despite their historical proximity, the backdrop
for Erwin Schrödinger’s life was one of the most tumultuous periods in human
history [73]. Whereas Rayleigh lived a life virtually untouched by war or politi-
cal upheaval, Schrödinger fought in World War I, was geographically displaced
during World War II and never knew a life of tranquillity. Scientifically, while
Rayleigh was equally at home in both the theoretical and experimental realms,
all of Schrödinger’s significant contributions were confined to theoretical inves-
tigations. If Lord Rayleigh was given to philosophical reflection then he left
no record of it while Schrödinger put his psychobiological musings into words
in Mind and Matter [103].

In their personal lives, Rayleigh and Schrödinger could not have been more
unlike. Lord Rayleigh lived a retiring lifestyle cast in the rigid mold of Victo-
rian respectability. In contrast, Schrödinger lived unconventionally with both
he and his wife taking lovers outside of their marriage. She had a long term af-
fair with the noted mathematician Hermann Weyl while he moved his mistress
(the wife of a friend no less) into their home and sired a child by her. (Although,
truth be told, such sexual peccadillos were not unheard of even in Victorian
society: witness the lifestyle of Mary Anne Evans, a.k.a. author George Eliot
[44]). By all accounts [73, p. 3], Schrödinger’s creative impulse was insep-
arable from his considerable libido. (In this, he is reminiscent of Mozart’s
great librettist Lorenzo Da Ponte [28].) In his Autobiographical Sketches [103],
he expressly avoids discussion of his “relationships with women” in order to
preclude kindling gossip.

Erwin Schrödinger (1887-1961) was born in Vienna into a financially secure
family. His father owned an oilcloth factory and was himself an accomplished
botanist. Growing up, he was extremely close to and greatly influenced by
his father. He was tutored at home until entering the Gymnasium in Vienna
at age 11 where he excelled not only in mathematics and physics but also in
classical studies and languages.

At age 19, he entered the University of Vienna where he studied math-
ematics under Wilhelm Wirtinger, experimental physics under Franz Exner
and theoretical physics under Friedrich Hasenöhrl. Four years later, in 1910,
he received his doctorate (roughly equivalent to an American Master’s degree)
under Hasenöhrl with a dissertation titled “On the conduction of electricity
on the surface of instruments in moist air”.

Immediately upon graduation, he underwent mandatory military training
as an officer in the fortress artillery at Krakow. When he returned to Vienna
the following year, he became Exner’s laboratory assistant and he held this
position until the beginning of World War I. During this period, he completed
his Habilitation (roughly equivalent to an American Ph.D.) on “Studies on the
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Kinetics of Dielectrics, the Melting Point, Pyro- and Piezo-Electricity” and
became a Privat Dozent at the beginning of 1914.

Just as he had his foot on the first rung of the academic ladder, World
War I broke out later that year and Schrödinger received his mobilization
orders. He spent the period 1915-1916 fighting on the Italian front where he
was awarded a citation for bravery in action. Remarkably, he was able to
continue his scientific work during this period even managing to publish a pair
of papers. In 1917, he was transferred back to Vienna for the remainder of the
War in order to teach meteorology at a school for anti-aircraft officers and also
to teach a laboratory course in physics at the University.

At the conclusion of the War to End All Wars, he resumed his research on
optics at the University but not in a “tenure-track” capacity. His personal life
underwent a sea change during this time. His father died in 1919 after falling
on financially hard times and in 1920 he married Annemarie Bartel. He and
his young bride then undertook a year of wandering while he held successive
faculty positions at Jena, Stuttgart and Breslau.

In 1921, he was appointed to the faculty at Zurich where he was to stay
until 1927. In addition to his work on color theory and statistical thermo-
dynamics during this period, in 1925 he penned his My View of the World
(published posthumously) where he detailed his belief in the ancient Indian
Hindu philosophy of life (Vedanta). Seemingly without warning, his scientific
creativity reached its apex.

Leaving his wife in Zurich, he spent Christmas of 1925 at the winter resort
of Arosa with a “mystery lover” and spawned his greatest brainchild, wave
mechanics. In the words of Hermann Weyl [73, p. 191]: Schrödinger “did his
great work during a late erotic outburst in his life”. This creative masterpiece
was elaborated upon and published during 1926-1927 and will be studied in
greater detail in the next section.

Immediately hailed for its pathbreaking nature, this work led to his ap-
pointment to succeed Max Planck in the chair of theoretical physics at the
University of Berlin. However, due to the declining political situation in Ger-
many, he packed up his wife and Hilde March (his pregnant mistress and wife of
his friend and colleague Arthur March) and moved to Oxford in 1933. While in
residence there, he shared the 1933 Nobel Prize in Physics with Dirac (Heisen-
berg was awarded the 1932 Prize) and Hilde gave birth to their daughter, Ruth.
(Arthur, Hilde and Ruth March returned to Innsbruck in 1935.)

Homesick for Austria, he spent the years 1936-1938 in Graz. (Hilde and
Ruth came to live with them in 1937.) However, the further eroding of the
political climate led him to accept the invitation of Irish President Eamon de
Valera to establish the Dublin Institute for Advanced Studies modeled after
that in Princeton. Here he remained for the next 17 years. (Despite living with
both Annemarie and Hilde, he fathered two more children with two different
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women during this period!)

Not wishing to return to Austria while still under Soviet occupation, it was
not until 1956, at age 69, that Schrödinger finally accepted his own chair at
the University of Vienna. Thus, he closed out his illustrious career where it
had begun. He was the first recipient of a prize bearing his name from the
Austrian Academy of Sciences and was also awarded the Austrian Medal for
Arts and Science in 1957. That same year, he was accepted into the German
Order Pour le mérite.

In addition to being granted honorary doctorates from a number of elite
universities, he was named a member of many scientific societies, most notably
the Pontifical Academy of Sciences, the Royal Society of London, the Prussian
(later German) Academy of Sciences and the Austrian Academy of Sciences.

Despite Schrödinger’s fascination with the submicroscopic world of quan-
tum mechanics, he was also intimately concerned with “big picture” issues.
This is never more evident than in his fascinating book What is Life? [103]
(the prequel to Mind and Matter).

1.4 Schrödinger’s Perturbation Theory

Just as 1905 was Einstein’s annus mirabilis [80], 1926 was to prove to be the
apex of Schrödinger’s scientific creativity [73]. In six papers published during
that year, he created wave mechanics from whole cloth. These Meisterwerke
were embroidered by three more papers on this topic which appeared the fol-
lowing year. This creative outburst fundamentally altered our viewpoint of
the submicroscopic world.

The nexus of the 1926 “Schrödinger six-pack” was the four-part series
Quantisierung als Eigenwertproblem which appeared in the Annalen der Physik.
Following [73] (which contains a synopsis of each of the papers on wave me-
chanics), we will refer to the individual parts as: Q1 (January), Q2 (February),
Q3 (May), Q4 (June). Fortunately, all of Schrödinger’s writings on wave me-
chanics are available in full as English translations [102].

A basic problem of the emerging quantum mechanics was to “explain” the
observed discrete (as opposed to continuous) energy levels present at the sub-
microscopic level rather than to introduce them as an ad hoc assumption. Fol-
lowing de Broglie and Einstein, Schrödinger took as his inspiration the discrete
natural modes of the vibrating string. Since these arose from an eigenvalue
problem for the wave equation, he began to search for a wave equation for
subatomic particles.

This he succeeded in doing in Q1 where he showed that his wave equation,
which he derived using the Hamilton-Jacobi equation of classical mechanics,
gave the correct quantization of the energy levels of the hydrogen atom. A
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second independent derivation based upon the Hamiltonian analogy between
mechanics and optics appeared in Q2.

Sandwiched between Q2 and Q3, Schrödinger published two additional
papers on wave mechanics. The first demonstrated how particle-like behavior
could arise from his wave equation (wave-particle duality) thereby establishing
a link between microscopic and macroscopic mechanics. The second showed
that his wave mechanics was mathematically equivalent to the competing ma-
trix mechanics of Heisenberg [19].

In Q3 [101, 102], which will be examined in further detail below, Schrödinger
developed his extension of Rayleigh’s perturbation theory and applied it to ex-
plain the Stark effect on the Balmer lines. Lastly, Q4 undertook the task of
extending the wave mechanics of stationary systems developed in Q1-3 to sys-
tems changing in time. This extended theory was applicable to scattering,
absorption and emission of radiation by atoms and molecules and forms the
basis for all of chemical kinetics.

A survey of the resulting stationary perturbation theory is available in [26],
while the generalization to nonstationary perturbation theory is considered
in [56, Section 11.25]. Whereas Rayleigh’s perturbation theory as described
above employed an energy formulation, it is possible to utilize an alternative
formulation directly in terms of the governing differential equation [32]. In fact,
his example of the perturbed vibrating string may be so treated [77, Section
3.1.6]. This is precisely the approach taken by Schrödinger.

Just as Rayleigh’s assumption of a large but finite number of degrees of free-
dom leads to the discrete Equation (1.16), the replacement of the differential
operators in Schrödinger’s formulation by finite-dimensional approximations
(finite differences, finite elements etc.) also leads to the matrix generalized
eigenvalue problem

Ax = λBx. (1.49)

For this reason, after this introductory chapter, the Rayleigh-Schrödinger
procedure will be formulated in terms of matrix perturbation theory. An in-
teresting treatment of the limiting case of infinite-dimensional matrix pertur-
bation theory appears in [5, Section 7.5] while [41, Section 1.6] considers the
effect of a nonlinear perturbation to the linear problem Equation (1.49).

1.4.1 Ordinary Differential Equations

Schrödinger first considers the effects of a perturbation upon the spectrum
of the self-adjoint Sturm-Liouville boundary value problem:

d

dx

(
p(x)

dy(0)

dx

)
− q(x)y(0)(x) + λ(0)ρ(x)y(0)(x) = 0, (1.50)
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subject to the end-conditions:

y(0)(a) cos (α)− p(a)dy
(0)

dx
(a) sin (α) = 0, (1.51)

y(0)(b) cos (β)− p(b)dy
(0)

dx
(b) sin (β) = 0; (1.52)

where p(x) > 0, p′(x), q(x), ρ(x) > 0 are assumed continuous on [a, b].

In this case, the eigenvalues, λ
(0)
i , are real and distinct, i. e. the problem

is nondegenerate, and the eigenfunctions corresponding to distinct eigenvalues
are ρ-orthogonal [21, pp. 211-214]:

〈y(0)
i (x), ρ(x)y

(0)
j (x)〉 =

∫ b

a

ρ(x)y
(0)
i (x)y

(0)
j (x) dx = 0 (i �= j). (1.53)

The case of periodic boundary conditions is excluded in order to avoid eigen-
values of multiplicity two while the restriction to a finite interval precludes the
possibility of a continuous portion to the spectrum.

Introducing the linear operators:

A0[y
(0)(x)] := − d

dx

(
p(x)

dy(0)

dx

)
+ q(x)y(0)(x); B0[y

(0)(x)] := ρ(x)y(0)(x),

(1.54)

Equation (1.50) may be recast as:

A0[y
(0)
i (x)] = λ

(0)
i B0[y

(0)
i (x)], (1.55)

where {λ(0)
i }∞i=1 is the discrete spectrum and the corresponding eigenfunctions

are {y(0)
i (x)}∞i=1 which are assumed to have been normalized so that:

〈y(0)
i (x), B0[y

(0)
j (x)]〉 =

∫ b

a

ρ(x)y
(0)
i (x)y

(0)
j (x) dx = δi,j . (1.56)

Furthermore, introduction of the linear operator:

A1[y(x)] := r(x)y(x), (1.57)

with r(x) assumed continuous on [a, b], permits consideration of the perturbed
boundary value problem:

A[yi(x, ε)] = λi(ε)B0[yi(x, ε)]; A[·] := A0[·] + εA1[·] (1.58)
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under identical boundary conditions, where ε is a small parameter. Then,
perturbation expansions:

λi(ε) =
∞∑

k=0

εkλ
(k)
i ; yi(x, ε) =

∞∑
k=0

εky
(k)
i (x) (1.59)

are sought for its corresponding eigenvalues and eigenfunctions, respectively.
Before proceeding any further, observe that if we approximate the above

linear differential operators by, say, finite differences then the problem reduces
to one of finite dimension with A0 and A1 replaced by symmetric matrices and
B0 by a symmetric positive-definite matrix. The same is true of the partial
differential operators of the next section. This is precisely the subject of Section
4.1 of the present book with the choice B1 = 0.

Inserting the perturbation expansions Equation (1.59) into the eigenvalue
problem Equation (1.58) and equating the coefficients of ε yields [17, pp. 192-
196]:

(A0 − λ(0)
i B0)[y

(1)
i (x)] = −(A1 − λ(1)

i B0)[y
(0)
i (x)]. (1.60)

In order that Equation (1.60) may have a solution, it is necessary that its

right-hand side be orthogonal to the null space of (A0 − λ(0)
i B0) [33, Theorem

1.5, pp. 44-46], i.e. to y
(0)
i (x). Thus,

λ
(1)
i = 〈y(0)

i (x), A1[y
(0)
i (x)]〉 =

∫ b

a

r(x)[y
(0)
i (x)]2 dx. (1.61)

It remains to find y
(1)
i (x) from Equation (1.60) which may be accomplished

as follows. By Equation (1.56), for j �= i, Equation (1.60) implies that

〈y(0)
j (x), (A0 − λ(0)

i B0)[y
(1)
i (x)]〉 = −〈y(0)

j (x), (A1 − λ(1)
i B0)[y

(0)
i (x)]〉

= −〈y(0)
j (x), A1[y

(0)
i (x)]〉. (1.62)

The left-hand side of Equation (1.62) may now be rewritten as

〈y(0)
j (x), A0[y

(1)
i (x)]〉 − λ(0)

i 〈y
(0)
j (x), B0[y

(1)
i (x)]〉 =

〈A0[y
(0)
j (x)], y

(1)
i (x)〉 − λ(0)

i 〈y
(0)
j (x), B0[y

(1)
i (x)]〉 =

λ
(0)
j 〈B0[y

(0)
j (x)], y

(1)
i (x)〉 − λ(0)

i 〈y
(0)
j (x), B0[y

(1)
i (x)]〉 =

(λ
(0)
j − λ

(0)
i )〈y(0)

j (x), B0[y
(1)
i (x)]〉. (1.63)

Thus, Equation (1.62) becomes

(λ
(0)
i − λ

(0)
j )〈y(0)

j (x), B0[y
(1)
i (x)]〉 = 〈y(0)

j (x), A1[y
(0)
i (x)]〉 (1.64)
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and, since λ
(0)
i �= λ

(0)
j by nondegeneracy,

〈y(0)
j (x), B0[y

(1)
i (x)]〉 =

〈y(0)
j (x), A1[y

(0)
i (x)]〉

λ
(0)
i − λ

(0)
j

. (1.65)

Expanding in the eigenfunctions of the unperturbed problem yields:

y
(1)
i (x) =

∑
j

〈y(0)
j (x), B0[y

(1)
i (x)]〉y(0)

j (x), (1.66)

and, invoking the “intermediate normalization”:

〈y(0)
i (x), B0[y

(1)
i (x)]〉 = 0, (1.67)

finally produces, via Equation (1.65), the eigenfunction expansion:

y
(1)
i (x) =

∑
j �=i

〈y(0)
j (x), A1[y

(0)
i (x)]〉

λ
(0)
i − λ

(0)
j

y
(0)
j (x)

=
∑
j �=i

∫ b

a
r(x)y

(0)
i (x)y

(0)
j (x) dx

λ
(0)
i − λ

(0)
j

y
(0)
j (x). (1.68)

In summary, Equations (1.59), (1.61) and (1.68) jointly imply the first-order
approximations to the eigenvalues:

λi ≈ λ
(0)
i + ε ·

∫ b

a

r(x)[y
(0)
i (x)]2 dx, (1.69)

and the corresponding eigenfunctions:

yi(x) ≈ y
(0)
i (x) + ε ·

∑
j �=i

∫ b

a
r(x)y

(0)
i (x)y

(0)
j (x) dx

λ
(0)
i − λ

(0)
j

y
(0)
j (x). (1.70)

Schrödinger closes this portion of Q3 with the observation that this tech-
nique may be continued to yield higher-order corrections. However, it is impor-
tant to note that Equation (1.70) requires knowledge of all of the unperturbed
eigenfunctions and not just that corresponding to the eigenvalue being cor-
rected. A procedure based upon the pseudoinverse is developed in Chapters 3
and 4 of the present book which obviates this need.

1.4.2 Partial Differential Equations

Schrödinger next extends the perturbation procedure to linear self-adjoint
partial differential equations:

L[u(0)(x)] + λ(0)ρ(x)u(0)(x) = 0 (1.71)
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where x := (x1, . . . , xn) ∈ D, L[·] is self-adjoint and ρ(x) > 0 is continuous on
the domain D.

The principal mathematical obstacle that must be overcome in this exten-
sion is rooted in the fact that, even for homogeneous Dirichlet, Neumann or
Robin boundary conditions, there can appear eigenvalues, λ(0), of multiplicity
m > 1 (i.e., degenerate eigenvalues). These typically arise from symmetry
inherent in the boundary value problem (see Chapter 5 for an example).

Introducing the linear operators:

A0[u
(0)(x)] := −L[u(0)(x)]; B0[u

(0)(x)] := ρ(x)u(0)(x), (1.72)

Equation (1.71) may be recast as:

A0[u
(0)
i (x)] = λ

(0)
i B0[u

(0)
i (x)], (1.73)

where the eigenfunctions have been B0-orthonormalized so that:

λ
(0)
i �= λ

(0)
j ⇒ 〈u

(0)
i (x), B0[u

(0)
j (x)]〉 =

∫
D
ρ(x)u

(0)
i (x)u

(0)
j (x) dx = δi,j. (1.74)

Also, suppose now that λ
(0)
i is an eigenvalue of exact multiplicity m > 1 with

corresponding B0-orthonormalized eigenfunctions:

u
(0)
i,1 (x), u

(0)
i,2 (x), . . . , u

(0)
i,m(x). (1.75)

Furthermore, introduction of the linear operator:

A1[u(x)] := r(x)u(x), (1.76)

with r(x) assumed continuous on D, permits consideration of the perturbed
boundary value problem:

A[ui(x, ε)] = λi(ε)B0[ui(x, ε)]; A[·] := A0[·] + εA1[·] (1.77)

under identical boundary conditions, where ε is a small parameter. Then,
perturbation expansions:

λi,μ(ε) =
∞∑

k=0

εkλ
(k)
i,μ ; ui,μ(x, ε) =

∞∑
k=0

εkû
(k)
i,μ(x) (μ = 1, . . . , m), (1.78)

with λ
(0)
i,μ = λ

(0)
i (μ = 1, . . . , m), are sought for its corresponding eigenvalues

and eigenfunctions, respectively.
The new difficulty that confronts us is that we cannot necessarily select

û
(0)
i,μ(x) = u

(0)
i,μ(x) (μ = 1, . . . , m), since they must be chosen so that:

(A0 − λ(0)
i B0)[û

(1)
i,μ(x)] = −(A1 − λ(1)

i,μB0)[û
(0)
i,μ(x)] (1.79)
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(obtained by substituting the perturbation expansions Equation (1.78) into the
eigenvalue problem Equation (1.77) and equating coefficients of ε) is solvable.

I.e., û
(0)
i,μ(x) must be selected so that the right-hand side of Equation (1.79)

is orthogonal to the entire nullspace of (A0 − λ
(0)
i B0) [33, Theorem 1.5, pp.

44-46], i.e. to {u(0)
i,ν (x)}mν=1.

Thus, we are required to determine appropriate linear combinations

û
(0)
i,μ(x) = a

(μ)
1 u

(0)
i,1 (x) + a

(μ)
2 u

(0)
i,2 (x) + · · ·+ a(μ)

m u
(0)
i,m(x) (μ = 1, . . . , m) (1.80)

so that, for each fixed μ,

〈u(0)
i,ν (x), (A1 − λ(1)

i,μB0)û
(0)
i,μ(x)〉 = 0 (ν = 1, . . . , m). (1.81)

Since we desire that {û(0)
i,μ(x)}mμ=1 likewise be B0-orthonormal, we further re-

quire that

a
(μ)
1 a

(ν)
1 + a

(μ)
2 a

(ν)
2 + · · ·+ a(μ)

m a(ν)
m = δμ,ν (μ, ν = 1, . . . , m). (1.82)

Inserting Equation (1.80) into Equation (1.81) and invoking the

B0-orthonormality of {u(0)
i,ν (x)}mν=1, we arrive at, in matrix form,⎡

⎢⎣ 〈u
(0)
i,1 (x), A1u

(0)
i,1 (x)〉 · · · 〈u(0)

i,1 (x), A1u
(0)
i,m(x)〉

...
. . .

...

〈u(0)
i,m(x), A1u

(0)
i,1 (x)〉 · · · 〈u(0)

i,m(x), A1u
(0)
i,m(x)〉

⎤
⎥⎦
⎡
⎢⎣ a

(μ)
1
...

a
(μ)
m

⎤
⎥⎦ = λ

(1)
i,μ

⎡
⎢⎣ a

(μ)
1
...

a
(μ)
m

⎤
⎥⎦ .

(1.83)

Thus, each λ
(1)
i,μ is an eigenvalue with corresponding eigenvector [a

(μ)
1 , . . . , a

(μ)
m ]T

of the matrix M defined by:

Mμ,ν := 〈u(0)
i,μ(x), A1u

(0)
i,ν (x)〉 =

∫
D
r(x)u

(0)
i,μ(x)u

(0)
i,ν (x) dx (μ, ν = 1, . . . , m).

(1.84)

Assuming that Equation (1.83) has distinct eigenvalues, the degeneracy of

λ
(0)
i is completely resolved at first-order and the analogue of Equation (1.69)

with y
(0)
i (x) replaced by û

(0)
i,μ(x), as defined by Equation (1.80), provides the

first-order corrections to the eigenvalues λ
(1)
i,μ (μ = 1, . . . , m). However, the pro-

cedure for computing the first-order corrections to the eigenfunctions û
(1)
i,μ(x) is

complicated by the need to include the terms associated with û
(0)
i,ν (x) (ν �= μ)

in the eigenfunction expansion analogous to Equation (1.70) [17, pp. 200-202].
The coefficients of these additional terms must be chosen so that:

(A0 − λ(0)
i B0)[û

(2)
i,μ(x)] = −(A1 − λ(1)

i,μB0)[û
(1)
i,μ(x)] + λ

(2)
i,μB0[û

(0)
i,μ(x)] (1.85)
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(obtained by substituting the perturbation expansions Equation (1.78) into the
eigenvalue problem Equation (1.77) and equating coefficients of ε2) is solvable.
These difficulties are only exacerbated if Equation (1.83) itself has multiple
eigenvalues and detailed consideration of such additional complications is de-
ferred until Chapters 3 and 4 of the present book.

1.4.3 Example: The Stark Effect of the Hydrogen Atom
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Figure 1.2: First-Order Stark Effect in Hydrogen

Quantum mechanics was born of necessity when it was realized that clas-
sical physical theory could not adequately explain the emission of radiation
by the Rutherford model of the hydrogen atom [82, p. 27]. Indeed, classical
mechanics and electromagnetic theory predicted that the emitted light should
contain a wide range of frequencies rather than the observed sharply defined
spectral lines (the Balmer lines).

Alternatively, the wave mechanics first proposed by Schrödinger in Q1 [102]
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assumed a governing wave equation (in Gaussian units)

∇2ψ
(0)
l +

8π2m

h2
(E

(0)
l +

e2

r
)ψ

(0)
l = 0 (l = 1, 2, . . . , ), (1.86)

where m is the reduced mass of a hydrogen atom, e is the charge of an electron,
h is Planck’s constant, r = x2 + y2 + z2, l are the principal quantum numbers
and E

(0)
l are the permitted energy levels (eigenvalues). The “meaning” of the

corresponding wave functions (eigenfunctions), ψ
(0)
l , need not concern us.

The energy levels are given (in Gaussian units) by the Balmer formulas

E
(0)
l = −2π2me4

h2l2
(l = 1, 2, . . . ), (1.87)

each with multiplicity l2, while analytical expressions (involving Legendre func-

tions and Laguerre polynomials) for the corresponding wave functions, ψ
(0)
l ,

are available. The Balmer lines arise from transitions between energy levels
with l = 2 and those with higher values of l. For example, the red H line is
the result of the transition from l = 2, which is four-fold degenerate, to l = 3,
which is nine-fold degenerate [73, p. 214].

The Stark effect refers to the experimentally observed shifting and splitting
of the spectral lines due to an externally applied electric field. (The corre-
sponding response of the spectral lines to an applied magnetic field is referred
to as the Zeeman effect.) Schrödinger applied his degenerate perturbation the-
ory as described above to derive the first-order Stark effect corrections to the
unperturbed energy levels.

The inclusion of the potential energy corresponding to a static electric field
with strength ε oriented in the positive z-direction yields the perturbed wave
equation

∇2ψ
(0)
l +

8π2m

h2
(E

(0)
l +

e2

r
− ε · ez)ψ(0)

l = 0 (l = 1, 2, . . . ). (1.88)

Under this small perturbation, each of the unperturbed energy levels, E
(0)
l (of

multiplicty l2), bifurcates into the 2l−1 first-order perturbed energy levels (in
Gaussian units)

El,k∗ = −2π2me4

h2l2
− ε · 3h

2lk∗

8π2me
(k∗ = 0,±1, . . . ,±(l − 1)), (1.89)

each with multiplicity l − |k∗|.
The first-order Stark effect is on prominent display in Figure 1.2 for the first

four unperturbed energy levels (in SI units). Fortunately, the first-order cor-
rections to the energy levels given by Equation (1.89) coincide with those given
by the so-called Epstein formula for the Stark effect. This coincidence was an
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important certification of Schrödinger’s perturbation procedure since the very
existence of the requisite perturbation series was not rigorously established by
Rellich until 1936 (see Appendix A).

Since its appearance in 1926, the Rayleigh-Schrödinger perturbation pro-
cedure as described in Q3 has been extended and applied to a variety of other
problems in quantum mechanics as well as to physics in general. Indeed, its
general utility in science and engineering is the raison d’être for the present
book.

In retrospect, Schrödinger’s treatment of nondegenerate problems was not
essentially different from that of Rayleigh (a debt which is readily acknowl-
edged in the second paragraph of Q3). Hence, his major contribution in this
area was the insight into how to handle the degeneracies which naturally arise
in the presence of symmetry. As such, this is one of those all too rare instances
in the mathematical sciences where the names attached to an important prin-
ciple are entirely appropriate.

1.5 Further Applications of Matrix Perturba-

tion Theory

Thus far in this chapter, we have encountered two substantial applications
of matrix perturbation theory (the nonuniform vibrating string and the Stark
effect on the Balmer lines). Chapter 5 is devoted to a third such application
of the Rayleigh-Schrödinger perturbation theory as developed in Chapters 3
an 4 (inhomogeneous acoustic waveguides). We conclude this introductory
chapter by surveying two other important applications of matrix perturbation
theory in engineering. Clearly, the intent is not to be exhaustive but merely to
intimate the diverse nature of such applications. Many others are considered
in [99, Chapter X].
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1.5.1 Microwave Cavity Resonators

Figure 1.3: Cavity Resonator

The Rayleigh-Schrödinger perturbation procedure is of great utility through-
out electrical engineering. As an example [25], consider a circular cavity res-
onator of radius a and length h as displayed in Figure 1.3. This is a metal
enclosure that is used to store microwave (or, for that matter, acoustic) energy.

In the transverse cross-section of the cavity, the electromagnetic field modes
coincide with those of the corresponding circular waveguide of radius a while
the longitudinal component (i.e., the z-component), u, of the magnetic field
for a TE-mode satisfies the two-point boundary value problem [46]:

d2u

dz2
+ (k2

0 − k2
c )u = 0 (0 < z < h); u(0) = 0 = u(h), (1.90)

where k0 is the desired resonant wave number and kc is the cut-off wave num-
ber of a particular TE circular waveguide mode (and consequently a known
function of a).

If we discretize Equation (1.90) by subdividing 0 ≤ z ≤ h into n equally
spaced panels, as indicated in Figure 1.3, and approximate the differential op-
erator using central differences [22] then we immediately arrive at the standard
matrix eigenvalue problem:

Au = λu; A := tridiag(−1/d2,W/d2,−1/d2), (1.91)

where d = h/n, W = k2
cd

2 + 2 and λ = k2
0.
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Following Cui and Liang [25], the Rayleigh-Schrödinger procedure may now
be employed to study the variation of λ and u when the system is subjected to
perturbations in a and h thereby producing the alteration A(ε) = A0 + ε · A1:

λ(ε) ≈ λ(0) + ε · λ(1); u(ε) ≈ u(0) + ε · u(1). (1.92)

For n = 150, they report that, when the variation of the geometric parameters
is less than 10%, the error in the calculated first-order corrections is less than
1% while yielding an eight-fold increase in computational efficiency as opposed
to directly solving the perturbed matrix eigenproblem Equation (1.91).

It should be pointed out that the above problem could be analytically
solved in its entirety without recourse to a perturbation procedure. However,
it was chosen precisely to illustrate the procedure in its simplest context. Such
perturbation procedures may be readily adapted to more complicated prob-
lems, such as those involving small inhomogeneities within the cavity, where
analytical treatment is not viable [111, p. 326-330].

1.5.2 Structural Dynamic Analysis

Figure 1.4: Cantilever Beam

The Rayleigh-Schrödinger perturbation procedure is of great utility through-
out mechanical engineering. As an example [20], consider a cantilever beam
which has been discretized into ten finite elements as displayed in Figure 1.4.
The analysis of the vibration of the beam is thereby reduced to the study of
the motion of a system of coupled oscillators located at the nodes.

If xi(t) denotes the vertical displacement of node i, while the beam is un-
dergoing a free, undamped vibration, then the system of differential equations
governing this basic problem of structural dynamics may be expressed as [108]:

Mẍ(t) +Kx(t) = 0; x(t) := [x2(t), . . . , x11(t)]
T , (1.93)

where M is the symmetric, positive-definite mass matrix and K is the sym-
metric stiffness matrix.
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Due to the linearity of this system of equations, this mechanical structure
may be completely analyzed by seeking simple-harmonic motions which are
in-phase with one another:

x(t) = eıωt · φ, (1.94)

thereby transforming Equation (1.93) into the matrix generalized eigenvalue
problem:

Kφ = λMφ; λ := −ω2, (1.95)

with natural angular frequencies ω and corresponding modal shapes φ.
Following Chen and Wada [20], the Rayleigh-Schrödinger procedure may

now be employed to study the variation of λ and φ when the system is subjected
to perturbations in the mass (M(ε) = M0 + ε · M1) and stiffness (K(ε) =
K0 + ε ·K1) matrices:

λ(ε) ≈ λ(0) + ε · λ(1); φ(ε) ≈ φ(0) + ε · φ(1). (1.96)

They report that, when the variation of the structural parameters is such as
to produce a change in ω of approximately 11% (on average), the error in the
calculated first-order corrections is approximately 1.3%. They also consider
the inclusion of damping but, as this leads to a quadratic eigenvalue problem,
we refrain from considering this extension.



Chapter 2

The Moore-Penrose
Pseudoinverse

2.1 History

The (unique) solution to the nonsingular system of linear equations

An×nxn×1 = bn×1; det (A) �= 0 (2.1)

is given by

x = A−1b. (2.2)

The (Moore-Penrose) pseudoinverse, A†, permits extension of the above to
singular square and even rectangular coefficient matrices A [12].

This particular generalized inverse was first proposed by Moore in abstract
form in 1920 [71] with details appearing only posthumously in 1935 [72]. It
was rediscovered first by Bjerhammar in 1951 [9] and again independently by
Penrose in 1955 [84, 85] who developed it in the form now commonly accepted.
In what follows, we will simply refer to it as the pseudoinverse.

The pseudoinverse, A†, may be defined implicitly by:

Theorem 2.1.1 (Penrose Conditions). Given A ∈ R
m×n, there exists a

unique A† ∈ R
n×m satisfying the four conditions:

1. AA†A = A

2. A†AA† = A†

3. (AA†)T = AA†

4. (A†A)T = A†A

Both the existence and uniqueness portions of Theorem 2.1.1 will be proved
in Section 2.6 where an explicit expression for A† will be developed.

27



28 The Moore-Penrose Pseudoinverse

2.2 Matrix Theory Fundamentals

The reader is assumed to be familiar with the basic notions of linear algebra
and matrix theory as presented in [3, 7, 43, 49, 50, 68, 78]. A particular favorite
of the present author is [79] and the parenthetical numbers in the following
(partial) list of prerequisite concepts refer to its page numbers.

• triangular matrix (2); transpose (13); symmetry (15); inverse (21)

• determinant (159); linear combination (179); (real) vector space (182)

• subspace (184); span (188); linear independence/dependence (190)

• basis (196); dimension (198); row/column space (211); rank (211)

• inner product (222); norm (223); orthogonality (224)

• orthogonal projection (226); Gram-Schmidt orthonormalization (229)

• null space (252); orthogonal complement (257); orthogonal matrix (305)

The following notation will be adhered to in the remainder of this chapter.

NOTATION DEFINITION

R
n space of real column vectors with n rows

R
m×n space of real matrices with m rows and n columns

[A|B] partitioned matrix
< ·, · > Euclidean inner product
|| · || Euclidean norm

dim(S) dimension of S
R(A)/R(AT )/N (A) column/row/null space of A

P u
S (orthogonal) projection of vector u onto subspace S
PA projection matrix onto column space of A
S⊥ orthogonal complement of subspace S
σ(A) spectrum of matrix A
ek kth column of identity matrix I

Table 2.1: Notational Glossary

In the ensuing sections, we will have need to avail ourselves of the following
elementary results.

Theorem 2.2.1 (Linear Systems). Consider the linear system of equations
Am×nxn×1 = bm×1.
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1. They are consistent iff b ∈ R(A).

2. They are consistent ∀ b ∈ R
m iff R(A) = R

m (so m ≤ n).

3. There exists at most one solution ∀ b ∈ R
m iff the column vectors of A

are linearly independent, i.e. iff rank (A) = n (≤ m).

Proof: This is a tautology based upon the definitions of the above terms. �

Corollary 2.2.1 (Nonsingular Matrices).

m = n⇒ A is nonsingular iff the column vectors of A form a basis for R
m.

Theorem 2.2.2 (Solutions of Nonhomogeneous Systems). If xp is a par-
ticular solution of Ax = b then any such solution is of the form x = xp + xh

where xh is a solution to the corresponding homogeneous system Ax = 0.

Proof: A (x− xp)︸ ︷︷ ︸
xh

= Ax− Axp = b− b = 0. xp + xh = xp + x− xp = x. �

2.3 Projection Matrices

Theorem 2.3.1 (Cross Product Matrix). Define the cross product matrix
ATA. Then, N (ATA) = N (A).

Proof:

• x ∈ N (A)⇒ Ax = 0⇒ ATAx = 0⇒ x ∈ N (ATA).

• x ∈ N (ATA)⇒ ATAx = 0⇒ xTATAx = 0⇒ ||Ax||2 = 0⇒ Ax = 0⇒
x ∈ N (A).

Thus, N (ATA) = N (A). �

Theorem 2.3.2 (ATA Theorem). If A ∈ R
m×n has linearly independent

columns (i.e. k := rank (A) = n (≤ m)) then ATA is square, symmetric and
invertible.

Proof:

•
n×m︷︸︸︷
AT

m×n︷︸︸︷
A ∈ R

n×n.

• (ATA)T = AT (AT )T = ATA. (Note: ATA �= AAT .)

• rank (A) = n ⇒ N (A) = {0} ⇒ N (ATA) = {0}. Thus, the columns of
ATA are linearly independent and, sinceATA is square, ATA is invertible.
�
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Corollary 2.3.1 (Normal Equations). Suppose that Ax = b, where A ∈
R

m×n, and that the columns of A are linearly independent (⇒ rank (A) = n ≤
m). Then,

invertible︷︸︸︷
ATA x = AT b (normal equations)⇒

x = (ATA)−1AT b (“least squares” solution).

Theorem 2.3.3 (Projection onto a Subspace Spanned by Orthonormal Vectors).
Suppose that V is a subspace of R

m spanned by the orthonormal basis S :=
{v1, . . . , vn} (so that n ≤ m) and v ∈ R

m. Define Qm×n := [v1|v2| · · · |vn]. The
orthogonal projection of the vector v onto the subspace V is given by:

P v
V =

P m×m︷ ︸︸ ︷
QQT v.

Proof:

P v
V = 〈v1, v〉v1 + · · ·+ 〈vn, v〉vn

= [v1| · · · |vn]

⎡
⎢⎣ 〈v1, v〉

...
〈vn, v〉

⎤
⎥⎦

= [v1| · · · |vn]

⎡
⎢⎣ vT

1
...
vT

n

⎤
⎥⎦ v

= QQTv = Pv.

Note that QTQ = In×n. �

Example 2.3.1 (Projection onto Orthonormal Vectors).

Q := [v1|v2] =

⎡
⎣ 1/

√
2 1/

√
3

−1/
√

2 1/
√

3

0 1/
√

3

⎤
⎦⇒ P := QQT =

⎡
⎣ 5/6 −1/6 2/6
−1/6 5/6 2/6

2/6 2/6 2/6

⎤
⎦

v =

⎡
⎣ 1

2
3

⎤
⎦⇒ Pv =

⎡
⎣ 3/2

5/2
2

⎤
⎦ = − 1√

2
v1 + 2

√
3v2

Theorem 2.3.4 (Properties of P = QQT). Pm×m := QQT where QTQ =
In×n satisfies:
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1. P T = P

2. P 2 = P (i.e. P is idempotent)

3. P (I − P ) = (I − P )P = 0

4. (I − P )Q = 0

5. PQ = Q

Proof:

1. P T = (QQT )T = (QT )TQT = QQT = P

2. P 2 = QQTQQT = QIQT = QQT = P

3. P − P 2 = P − P = 0

4. Q− PQ = Q−QQTQ = Q− IQ = Q−Q = 0

5. PQ = QQTQ = QI = Q

�

Definition 2.3.1 (Projection Matrix). P ∈ R
m×m is a projection matrix

if (b− Pb)TPc = 0 ∀ b, c ∈ R
m.

Remark 2.3.1 (Rationale). b − Pb is the error in mapping b onto R(P ),
while any element of R(P ) may be represented as Pc. So, if b − Pb ⊥ Pc
∀ c ∈ R

m then Pb = P b
R(P ).

Theorem 2.3.5 (Projection Matrix Theorem). P ∈ R
m×m is a projec-

tion matrix iff

1. P = P T

2. P 2 = P

Proof:

• (⇒) P ∈ R
m×m is a projection matrix ⇒ bTPc = bTP TPc ∀ b, c ∈ R

m.
Let b = ei & c = ej , then Pi,j = (P TP )i,j, so that P = P TP . Thus,
P T = P TP = P ⇒ P = P TP = P 2.

• (⇐) P = P T & P 2 = P ⇒ (b−Pb)TPc = bT (I−P )TPc = bT (I−P T )Pc
= bT (P − P TP )c = bT (P − P 2)c = bT (P − P )c = 0.

�



32 The Moore-Penrose Pseudoinverse

Corollary 2.3.2. By combining Theorem 2.3.4 with Theorem 2.3.5,
P ∈ R

m×m = QQT where QTQ = In×n is a projection matrix.

Theorem 2.3.6 (Projection onto a Subspace Spanned by Independent Vectors).
Suppose that the columns of Am×n are linearly independent (i.e. rank (A) =
n (≤ m)). Then, Pm×m := A(ATA)−1AT is the projection matrix onto the
column space of A, R(A).

Proof: Pb = A
[
(ATA)−1AT b

]
∈ R(A). It is a projection matrix since:

1. P T =
[
A(ATA)−1AT

]T
= A(ATA)−1AT = P,

2. P 2 = A (ATA)−1ATA︸ ︷︷ ︸
I

(ATA)−1AT = A(ATA)−1AT = P.

�

Remark 2.3.2 (Column-Orthonormal Matrices). If the columns of Am×n

are orthonormal then A = Q where QTQ = In×n and P = Q(QTQ)−1QT =
QI−1QT = QQT . I.e., Theorem 2.3.6 reduces to Theorem 2.3.3 in this case.

Example 2.3.2 (Projection onto Independent Vectors).

A := [v1|v2] =

⎡
⎣ 1 1
−1 1

1 1

⎤
⎦⇒ P := A(ATA)−1AT =

⎡
⎣ 1/2 0 1/2

0 1 0
1/2 0 1/2

⎤
⎦

v =

⎡
⎣ 2

3
4

⎤
⎦⇒ Pv =

⎡
⎣ 3

3
3

⎤
⎦ = 0v1 + 3v2

Remark 2.3.3 (Open Question). If the columns of A are linearly depen-
dent then how does one write down a projection matrix onto the column space
of A, R(A)? Observe that the formula P = A(ATA)−1AT is useless in this re-
gard as ATA is not invertible! (Since the columns of A are linearly dependent,
Theorem 2.3.1 demands that N (ATA) = N (A) �= {0}.)

2.4 QR Factorization

Before the Open Question can be answered, the QR factorization must be
reviewed [29, 68, 79, 104, 105, 110].
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Definition 2.4.1 (Gram-Schmidt Orthonormalization: Independent Vectors).
Consider the collection of linearly independent vectors {v1, . . . , vn} ⊂ R

m (m ≥
n). The Gram-Schmidt procedure [79, pp. 229-232] may be applied to produce
an orthonormal set of vectors {w1, . . . , wn} ⊂ R

m with the same span as the
original collection. This procedure (based upon subtracting off components via
orthogonal projection) is embodied in the sequence of formulae:

w1 = v1; q1 = w1/ ||w1||︸ ︷︷ ︸
r1,1

w2 = v2 −
r1,2︷ ︸︸ ︷
〈v2, q1〉 q1; q2 = w2/ ||w2||︸ ︷︷ ︸

r2,2

w3 = v3 −
r1,3︷ ︸︸ ︷
〈v3, q1〉 q1 −

r2,3︷ ︸︸ ︷
〈v3, q2〉 q2; q3 = w3/ ||w3||︸ ︷︷ ︸

r3,3

...

wn = vn −
r1,n︷ ︸︸ ︷
〈vn, q1〉 q1 − · · · −

rn−1,n︷ ︸︸ ︷
〈vn, qn−1〉 qn−1; qn = wn/ ||wn||︸ ︷︷ ︸

rn,n

Definition 2.4.2 (QR Factorization: Independent Columns). The above
Gram-Schmidt formulae may be rearranged to read:

v1 = r1,1 q1

v2 = r1,2 q1 + r2,2 q2

v3 = r1,3 q1 + r2,3 q2 + r3,3 q3

...

vn = r1,n q1 + · · ·+ rn,n qn

These equations may then be expressed in matrix form as

Am×n = Qm×nRn×n

where

A := [v1| · · · |vn]; Q := [q1| · · · |qn]; Ri,j = ri,j (i ≤ j).
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Remark 2.4.1 (Remarks on Full Column Rank QR Factorization). With
A = QR defined as above:

• R is upper triangular with positive diagonal elements.

• Q is column-orthonormal, i.e. QTQ = I.

• rank (A) = rank (Q) = rank (R) = n.

Example 2.4.1 (QR: Independent Columns).

A := [v1|v2|v3] =

⎡
⎢⎢⎣

1 −1 4
1 4 −2
1 4 2
1 −1 0

⎤
⎥⎥⎦⇒

w1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦⇒ ||w1|| =

r1,1︷︸︸︷
2 ⇒ q1 =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦

w2 =

⎡
⎢⎢⎣
−1

4
4
−1

⎤
⎥⎥⎦−

r1,2︷︸︸︷
3

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
−5/2

5/2
5/2
−5/2

⎤
⎥⎥⎦⇒ ||w2|| =

r2,2︷︸︸︷
5 ⇒ q2 =

⎡
⎢⎢⎣
−1/2

1/2
1/2
−1/2

⎤
⎥⎥⎦

w3 =

⎡
⎢⎢⎣

4
−2

2
0

⎤
⎥⎥⎦−

r1,3︷︸︸︷
2

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦−

r2,3︷︸︸︷
(−2)

⎡
⎢⎢⎣
−1/2

1/2
1/2
−1/2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

2
−2

2
−2

⎤
⎥⎥⎦⇒

||w3|| =
r3,3︷︸︸︷
4 ⇒ q3 =

⎡
⎢⎢⎣

1/2
−1/2

1/2
−1/2

⎤
⎥⎥⎦

⇒ QR =

⎡
⎢⎢⎣

1/2 −1/2 1/2
1/2 1/2 −1/2
1/2 1/2 1/2
1/2 −1/2 −1/2

⎤
⎥⎥⎦
⎡
⎣ 2 3 2

0 5 −2
0 0 4

⎤
⎦
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Definition 2.4.3 (QR Factorization: Dependent Columns). If Am×n has
rank (A) = k < n then the (suitably modified) Gram-Schmidt procedure will
produce A = Q0R0 with some zero columns in Q0 with matching zero rows in
R0. Deleting these zero columns and rows produces

Am×n = Qm×kRk×n

where

• R is upper triangular with positive leading elements in each row.

• Q is column-orthonormal, i.e. QTQ = Ik×k.

• rank (A) = rank (Q) = rank (R) = k.

Example 2.4.2 (QR: Dependent Columns).

A := [v1|v2|v3|v4] =

⎡
⎢⎢⎣

1 2 0 −1
1 −1 3 2
1 −1 3 2
−1 1 −3 1

⎤
⎥⎥⎦⇒

w1 =

⎡
⎢⎢⎣

1
1
1
−1

⎤
⎥⎥⎦⇒ ||w1|| =

r1,1︷︸︸︷
2 ⇒ q1 =

⎡
⎢⎢⎣

1/2
1/2
1/2
−1/2

⎤
⎥⎥⎦

w2 =

⎡
⎢⎢⎣

2
−1
−1

1

⎤
⎥⎥⎦−

r1,2︷ ︸︸ ︷
(−1/2)

⎡
⎢⎢⎣

1/2
1/2
1/2
−1/2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

9/4
−3/4
−3/4

3/4

⎤
⎥⎥⎦⇒

||w2|| =

r2,2︷ ︸︸ ︷
(3
√

3/2)⇒ q2 =

⎡
⎢⎢⎣

3/2
√

3

−1/2
√

3

−1/2
√

3

1/2
√

3

⎤
⎥⎥⎦

w3 =

⎡
⎢⎢⎣

0
3
3
−3

⎤
⎥⎥⎦−

r1,3︷︸︸︷
9/2

⎡
⎢⎢⎣

1/2
1/2
1/2
−1/2

⎤
⎥⎥⎦−

r2,3︷ ︸︸ ︷
(−3
√

3/2)

⎡
⎢⎢⎣

3/2
√

3

−1/2
√

3

−1/2
√

3

1/2
√

3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦⇒
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||w3|| =
r3,3︷︸︸︷
0 ⇒ q3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦

w4 =

⎡
⎢⎢⎣
−1

2
2
1

⎤
⎥⎥⎦−

r1,4︷︸︸︷
1

⎡
⎢⎢⎣

1/2
1/2
1/2
−1/2

⎤
⎥⎥⎦−

r2,4︷ ︸︸ ︷
(−
√

3)

⎡
⎢⎢⎣

3/2
√

3

−1/2
√

3

−1/2
√

3

1/2
√

3

⎤
⎥⎥⎦−

r3,4︷︸︸︷
0

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
1
1
2

⎤
⎥⎥⎦⇒

||w4|| =

r4,4︷︸︸︷√
6 ⇒ q4 =

⎡
⎢⎢⎣

0

1/
√

6

1/
√

6

2/
√

6

⎤
⎥⎥⎦

⇒ Q0R0 =

⎡
⎢⎢⎣

1/2 3/2
√

3 0 0

1/2 −1/2
√

3 0 1/
√

6

1/2 −1/2
√

3 0 1/
√

6

−1/2 1/2
√

3 0 2/
√

6

⎤
⎥⎥⎦
⎡
⎢⎢⎣

2 −1/2 9/2 1

0 3
√

3/2 −3
√

3/2 −
√

3
0 0 0 0

0 0 0
√

6

⎤
⎥⎥⎦

⇒ QR =

⎡
⎢⎢⎣

1/2 3/2
√

3 0

1/2 −1/2
√

3 1/
√

6

1/2 −1/2
√

3 1/
√

6

−1/2 1/2
√

3 2/
√

6

⎤
⎥⎥⎦
⎡
⎣ 2 −1/2 9/2 1

0 3
√

3/2 −3
√

3/2 −
√

3

0 0 0
√

6

⎤
⎦

Remark 2.4.2 (QR Factorization: Summary). If Am×n has rank (A) =
k then

Am×n = Qm×kRk×n

where rank (A) = rank (Q) = rank (R) = k.

We are now in a position to answer our Open Question (Remark 2.3.3).

Theorem 2.4.1 (Projection onto a Subspace Spanned by Dependent Vectors).
With A, Q and R as described above,

A = QR⇒ PA = QQT ,

where PA is the projection matrix onto the column space of A, R(A).
Proof:
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• A = QR⇒ R(A) ⊆ R(Q) since Ax = Q(Rx).

• Since rank (A) = rank (Q), their column spaces have the same dimension.
Thus, R(A) = R(Q).

• Hence, the columns of Q form an orthonormal basis for R(A) so that
PA = QQT .

�

Example 2.4.3 (Projection onto Dependent Vectors).

A =

⎡
⎢⎢⎣

1 2 0 −1
1 −1 3 2
1 −1 3 2
−1 1 −3 1

⎤
⎥⎥⎦⇒

QR =

⎡
⎢⎢⎣

1/2 3/2
√

3 0

1/2 −1/2
√

3 1/
√

6

1/2 −1/2
√

3 1/
√

6

−1/2 1/2
√

3 2/
√

6

⎤
⎥⎥⎦
⎡
⎣ 2 −1/2 9/2 1

0 3
√

3/2 −3
√

3/2 −
√

3

0 0 0
√

6

⎤
⎦⇒

PA = QQT =

⎡
⎢⎢⎣

1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

⎤
⎥⎥⎦

Remark 2.4.3 (MATLAB qr). [39, pp. 113-114]; [70, pp. 147-149]

If rank (Am×n) = k then the MATLAB command:

[q, r] = qr(A)

produces the output:

qm×m = [Qm×k | Qm×(m−k)
e ]; rm×n =

⎡
⎣ Rk×n

0(m−k)×n

⎤
⎦ .

The columns of Q form an orthonormal basis for R(A) while those of the
matrix of extra columns, Qe, form an orthonormal basis for R(A)⊥ . Thus,

Q = q(:, 1 : k); R = r(1 : k, :).
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2.5 Least Squares Approximation

The QR factorization will now be employed to develop least squares ap-
proximations to linear systems of equations [10, 51, 79].

Definition 2.5.1 (Problem LS). Given A ∈ R
m×n, with k = rank (A) ≤

min (m,n), and b ∈ R
m, find x ∈ R

n minimizing the Euclidean length of the
residual ||r||2 := ||b−Ax||2.

We will abbreviate Problem LS as:

Ax ∼= b. (2.3)

Definition 2.5.2 (Problem LSmin). Given

Ax ∼= b :

• If there is a unique solution, then find it.

• If there are infinitely many solutions, then find the one of minimum 2-
norm.

• If there is no solution, then find an x that minimizes the 2-norm of the
residual r := b− Ax. If this x is not uniquely defined, then find the one
with minimal 2-norm.

Definition 2.5.3 (LS Terminology). Let Am×nxn×1 ∼= bm×1, rank (A) =
k.

• exactly determined: m = n

• overdetermined: m > n

• underdetermined: m < n

• full rank: k = min (m,n)

• rank-deficient: k < min (m,n)

Theorem 2.5.1 (LS Projection). Any LS solution, i.e. any vector x min-
imizing ||r|| := ||b−Ax||, must satisfy

Ax = P b
R(A).

Proof: Since Ax ∈ R(A), ||b−Ax|| will be minimized iff Ax = P b
R(A). �

Corollary 2.5.1. Let A = QR be the QR factorization of A. Then, any LS
solution must satisfy

Rx = QT b.
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Proof: By Theorem 2.5.1, Ax = P b
R(A) = PAb. But, A = QR⇒ PA = QQT by

Theorem 2.4.1. Thus, QRx = QQT b⇒ (QTQ)Rx = (QTQ)QT b⇒ Rx = QT b.
�

Remark 2.5.1 (LS: Overdetermined Full Rank).

• Theorem 2.5.1 permits an alternative interpretation of Corollary 2.3.1.
If k := rank (A) = n < m then there is a unique “solution” to A ∼= b
(either true or in the LS sense) and it may be found by projection as
follows:

PA = A(ATA)−1AT (by Theorem 2.3.6)⇒

Ax = A(ATA)−1AT b (by Theorem 2.5.1)⇒

ATAx = (ATA)(ATA)−1AT b⇒

ATAx = AT b (normal equations).

• By Theorem 2.3.2, x = (ATA)−1AT b (unique “solution”).

• AT (b−Ax) = 0⇒ r ⊥ R(A), i.e. r ∈ R(A)⊥.

Example 2.5.1 (LS: Overdetermined Full Rank).

A =

[
2
4

]
; b =

[
3
1

]
⇒

ATA = 20; AT b = 10⇒

x = (ATA)−1AT b =
1

20
· 10 =

1

2

Definition 2.5.4 (Orthogonal Complement). Let Y be a subspace of R
n,

then

Y ⊥ := {x ∈ R
n | 〈x, y〉 = 0 ∀ y ∈ Y }

is the orthogonal complement of Y .

Theorem 2.5.2 (Orthogonal Complement). Y ⊥ is a subspace of R
n.

Proof:
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• 0 ∈ Y ⊥.

• x ∈ Y ⊥, y ∈ Y, α ∈ R⇒ 〈αx, y〉 = α〈x, y〉 = 0⇒ αx ∈ Y ⊥.

• x1, x2 ∈ Y ⊥, y ∈ Y ⇒ 〈x1 + x2, y〉 = 〈x1, y〉 + 〈x2, y〉 = 0 + 0 = 0 ⇒
x1 + x2 ∈ Y ⊥.

�

Theorem 2.5.3 (Fundamental Subspace Theorem). A ∈ R
m×n ⇒

1. The null space of A is the orthogonal complement of the row space of A,
i.e. N (A) = [R(AT )]⊥.

2. The null space of AT is the orthogonal complement of the column space
of A, i.e. N (AT ) = [R(A)]⊥.

Proof:

1. • N (A) ⊆ [R(AT )]⊥: N (A) ⊥ R(AT ) since Ax = 0 & y = AT z ⇒

yTx = (AT z)Tx = zTAx = zT 0 = 0.

• [R(AT )]⊥ ⊆ N (A): If x ∈ [R(AT )]⊥ then x is ⊥ to the rows of A

⇒ Ax = 0⇒ x ∈ N (A).

Thus, N (A) = [R(AT )]⊥.

2. Simply replace A by AT in 1.

�

Theorem 2.5.4 (LS: Underdetermined Full Rank). Let k = m < n, then

1. b ∈ R(A).

2. Am×nxn×1 = bm×1 has ∞-many true solutions.

3. ∃ unique minimum norm true solution given by

s = AT (AAT )−1b.

Proof:

1. k = m⇒ R(A) = R
m ⇒ b ∈ R(A).
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2. By Theorem 2.2.1, there are ∞-many true solutions. By Theorem 2.2.2,
any such solution is of the form x = xp + xh (general solution) where
Axp = b (particular solution) and Axh = 0 (complementary solution),
with xp fixed and xh an arbitrary element of N (A).

3. Clearly, any minimum norm solution, s, must satisfy s ⊥ N (A). By
the Fundamental Subspace Theorem, Theorem 2.5.3, s ∈ R(AT ) so that
s = AT t. Thus,

As = b⇒ AAT t = b⇒ t = (AAT )−1b⇒

∃ unique minimum norm true solution given by

s = AT (AAT )−1b.

�

Remark 2.5.2 (LS: Underdetermined Full Rank).

• Since k = m, the rows of A are linearly independent so that the columns
of AT are linearly independent. By Theorem 2.3.2, AAT = (AT )TAT is
invertible so that the above formula for s is well-defined.

• We may calculate s as follows:

s = AT (AAT )−1b⇒ AATy = b �−→ [AAT |b] ∼ [I|y]; x = ATy.

Example 2.5.2 (LS: Underdetermined Full Rank).

x1 + x2 = 2⇒ A = [1 1]; b = [2]

AATy = b⇒ 2y = 2⇒ y = 1

⇒ x = ATy =

[
1
1

]

is the (unique) solution of minimum 2-norm.

Theorem 2.5.5 (Least Squares Theorem). Let Am×n = Qm×kRk×n (all
of rank k), with Q column-orthonormal (i.e. QTQ = Ik×k) and R upper trian-
gular (with positive leading elements in each row), then the unique minimum
norm least squares solution to Ax ∼= b is given by x = RT (RRT )−1QT b.

Proof: By Corollary 2.5.1, any LS solution x must satisfy Rx = QT b.
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• If k = n then R is invertible and

x = R−1QT b = RT (RRT )−1QT b

is the unique LS solution.

• If k < n then this system is underdetermined and of full rank so that,
by Theorem 2.5.4,

x = RT (RRT )−1QT b

is the unique minimum norm LS solution.

�

Remark 2.5.3 (Using the Least Squares Theorem).

• If k := rank (A) = n then it is easier to proceed as follows:

x = R−1QT b⇒ Rx = QT b �−→ [R|QT b] ∼ [I|x = R−1QT b].

• If k := rank (A) < n then proceed as follows:

x = RT (RRT )−1QT b⇒ RRTy = QT b �−→ [RRT |QT b] ∼ [I|y]; x = RTy.

2.6 The Pseudoinverse

The Least Squares Theorem naturally leads to the concept of the (Moore-
Penrose) pseudoinverse [1, 6, 12, 13, 14, 18, 76, 86, 106].

Definition 2.6.1 ((Moore-Penrose) Pseudoinverse). Let Am×n = Qm×kRk×n

(all of rank k), with Q column-orthonormal (i.e. QTQ = Ik×k) and R upper tri-
angular (with positive leading elements in each row), then the (Moore-Penrose)
pseudoinverse of A is A† := RT (RRT )−1QT .

Lemma 2.6.1 (Existence of Pseudoinverse). There exists a matrix A† ∈
R

n×m satisfying the four Penrose conditions (Theorem 2.1.1).

Proof: We show that A† as defined above satisfies the four Penrose conditions
(Theorem 2.1.1).

1. AA†A = [QR][RT (RRT )−1QT ][QR] =
Q[(RRT )(RRT )−1][QTQ]R = QR = A

2. A†AA† = [RT (RRT )−1QT ][QR][RT (RRT )−1QT ] =
RT (RRT )−1[QTQ][(RRT )(RRT )−1]QT = RT (RRT )−1QT = A†
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3. (AA†)T = (A†)TAT = [RT (RRT )−1QT ]T [QR]T =
Q[(RRT )−1RRT ]QT = QQT = Q(R︸︷︷︸

A

RT )(RRT )−1QT︸ ︷︷ ︸
A†

= AA†

4. (A†A)T = AT (A†)T = [QR]T [RT (RRT )−1QT ]T =
RT [QTQ](RRT )−1R = RT (RRT )−1[QT︸ ︷︷ ︸

A†

Q]R︸︷︷︸
A

= A†A

�

Lemma 2.6.2 (Uniqueness of Pseudoinverse). The pseudoinverse A† ∈
R

n×m as defined above is the only n × m matrix satisfying the four Penrose
conditions (Theorem 2.1.1).

Proof: We show that there can be only one matrix satisfying the four Penrose
conditions (Theorem 2.1.1). Suppose that Xn×m and Y n×m both satisfy the
Penrose conditions. Then:

• X = XAX = (XA)TX = ATXTX = (AY A)TXTX =
(ATY T )(ATXT )X = Y A(XAX) = Y AX.

• Y = Y AY = Y (AY )T = Y Y TAT = Y Y T (AXA)T =
Y (Y TAT )(XTAT ) = (Y AY )AX = Y AX.

Thus, X = Y . �

Proof of Theorem 2.1.1 (Penrose Conditions): Lemma 2.6.1 establishes
existence and Lemma 2.6.2 establishes uniqueness of the (Moore-Penrose)
pseudoinverse A† ∈ R

n×m. �

Remark 2.6.1 (Special Cases of Pseudoinverse).

1. Overdetermined Full Rank:

k = n < m (⇒ ∃R−1)⇒ A† = (ATA)−1AT :

(ATA)−1AT = (RTQTQR)−1RTQT = (RTR)−1RTQT =

R−1QT = RT (RRT )−1QT = A†.

2. Underdetermined Full Rank:

k = m < n (⇒ ∃ (RRT )−1, Q−1 = QT )⇒ A† = AT (AAT )−1 :

AT (AAT )−1 = RTQT [Q(RRT )QT ]−1 = RT (QTQ)(RRT )−1QT =

RT (RRT )−1QT = A†.
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Remark 2.6.2 (Properties of Pseudoinverse). The pseudoinverse A† shares
the following properties with the matrix inverse A−1 [106, p.104]:

• (A†)† = A

• (AT )† = (A†)T

• rank (A) = rank (A†)
(
= rank (AA†) = rank (A†A)

)
• (AAT )† = (AT )†A†; (ATA)† = A†(AT )†

• (AAT )†AAT = AA†; (ATA)†ATA = A†A

Remark 2.6.3 (Non-Properties of Pseudoinverse). The pseudoinverse A†

fails to share the following properties with the matrix inverse A−1 [106, p.105]:

• (AB)† �= B†A†

• AA† �= A†A

• (Ak)† �= (A†)k

• λ �= 0 ∈ σ(A) �⇒ λ−1 ∈ σ(A†)

Lemma 2.6.3 (Pseudoinverse: Projection Matrices).

1. PA = AA† is the projection matrix onto R(A).

2. PAT = A†A is the projection matrix onto R(AT ).

3. I − PAT is the projection matrix onto N (A).

Proof:

1. AA† = Q[(RRT )(RRT )−1]QT = QQT = PA.

2. PAT = AT (AT )† = AT (A†)T = (A†A)T = A†A.

3. By Theorem 2.3.5, P := I − PAT = I −A†A is a projection matrix since

• P T = (I − A†A)T = I − (A†A)T = I − A†A = P .

• P 2 = (I −A†A)2 = I − 2A†A+ A†(AA†A) = (I −A†A) = P .

But, P = I − PAT = I −A†A is the projection matrix onto N (A) since:

• AP = A(I − A†A) = A − AA†A = A − A = 0 so that P projects
into N (A).

• Ax = 0 ⇒ Px = (I − A†A)x = x − A†Ax = x so that P projects
onto N (A).
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�

Lemma 2.6.4.

(A†)T = (A†)TA†A

Proof: A† = RT (RRT )−1QT ⇒

• (A†)T = Q(RRT )−1R.

• (A†)TA†A = Q(RRT )−1[(RRT )(RRT )−1](QTQ)R = Q(RRT )−1R.

�

Theorem 2.6.1 (Penrose). All solutions to Problem LS are of the form

x = A†b+ (I − PAT )z

where z is arbitrary. Of all such solutions, A†b has the smallest 2-norm, i.e.
it is the unique solution to Problem LSmin.

Proof:

• By Theorem 2.5.1, any LS solution must satisfy Ax = PAb. Since (by
Part 1 of Lemma 2.6.3) PAb = (AA†)b = A(A†b), we have the particular
solution xp := A†b.

• Let the general LS solution be expressed as x = xp + xh = A†b+ xh.

Axh = A(x− A†b) = Ax−AA†b = Ax− PAb = 0.

Thus, xh ∈ N (A).

• By Part 3 of Lemma 2.6.3, xh = (I − PAT )z where z is arbitrary.

• Consequently,

x = A†b+ (I − PAT )z,

where z is arbitrary.

• By Lemma 2.6.4, A†b ⊥ (I − PAT )z:

(A†b)T (I −A†A)z = bT (A†)T (I − A†A)z = bT [(A†)T − (A†)TA†A]z = 0.

• Therefore, by the Pythagorean Theorem,

||x||2 = ||A†b||2 + ||(I − PAT )z||2

which attains a minimum iff (I − PAT )z = 0, i.e. iff x = A†b.

�
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2.7 Linear Least Squares Examples

We may summarize the above results as follows [51, 79]:

Theorem 2.7.1 (Least Squares and the Pseudoinverse). The unique minimum-
norm least squares solution to Am×nxn×1 ∼= bm×1 where Am×n = Qm×kRk×n

(all of rank k), with Q column-orthonormal (i.e. QTQ = Ik×k) and R upper
triangular (with positive leading elements in each row), is given by x = A†b
where A† = RT (RRT )−1QT . In the special case k = n (i.e. full column rank),
this simplifies to A† = R−1QT .

Corollary 2.7.1 (Residual Calculation).

Ax ∼= b, r := b−Ax⇒ ||r||2 = ||b||2 − ||QT b||2

Proof:

x = A†b+ (I − PAT )z ⇒ r = b− Ax = b− AA†b−
0︷ ︸︸ ︷

A(I − PAT )z = (I − AA†)b

by Part 3 of Lemma 2.6.3. But, by Part 1 of Lemma 2.6.3 and Theorem 2.4.1,
AA† = QQT . Thus,

r = (I −QQT )b⇒ ||r||2 = ||(I −QQT )b||2 = bT (I −QQT )2b =

bT (I −QQT )b = (bT b)− (bTQ)(QT b) = (bT b)− (QT b)T (QT b) = ||b||2 − ||QT b||2.

�

Remark 2.7.1 (Residual Calculation).

||r||2 = ||b||2 − ||QT b||2

permits the calculation of ||r|| without the need to pre-calculate r or, for that
matter, x!

Example 2.7.1 (Residual Calculation: Overdetermined Full Rank).

A =

⎡
⎣ 2 1

1 1
2 1

⎤
⎦ ; b =

⎡
⎣ 12

6
18

⎤
⎦ /∈ R(A)⇒ QR =

⎡
⎣ 2/3 −

√
2/6

1/3 2
√

2/3

2/3 −
√

2/6

⎤
⎦[

3 5/3

0
√

2/3

]

⇒ ||r||2 = ||b||2 − ||QT b||2 = 504− 486 = 18



Linear Least Squares Examples 47

Check:

Rx = QT b⇒
[

3 5/3

0
√

2/3

] [
x1

x2

]
=

[
22

−
√

2

]
⇒ x =

[
9
−3

]

⇒ r = b− Ax =

⎡
⎣ −3

0
3

⎤
⎦⇒ ||r||2 = 18

√

Remark 2.7.2 (LS Possibilities).

• k < n⇒ [RRT |QT b] ∼ [I|y = (RRT )−1(QT b)] �−→ x = RTy.

• k = n⇒ [R|QT b] ∼ [I|x = R−1QT b].

• k = m⇒ “true” solution (i.e. ||r|| = 0).

• k = n⇒ unique “solution” (i.e. either true or LS).

• k < n⇒ ∞-many “solutions” (i.e. either true or LS).

The six possibilities for Problem LS are summarized in Table 2.2. We next
provide an example of each of these six cases.

PROBLEM LS A) FULL RANK B) RANK-DEFICIENT
(k = min (m,n)) (k < min (m,n))

1) EXACTLY DETERMINED Ax = b Ax ∼= b
(m = n) k = m = n k < m = n

2) OVERDETERMINED Ax ∼= b Ax ∼= b
(m > n) k = n < m k < n < m

3) UNDERDETERMINED Ax = b Ax ∼= b
(m < n) k = m < n k < m < n

Table 2.2: Least Squares “Six-Pack” (A ∈ R
m×n, k = rank (A) ≤ min (m,n))

2.7.1 Example 1A: Exactly Determined, Full Rank

In this case, k = m = n, there is a unique, true solution (i.e. ||r|| = 0) and
A† = A−1.
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Example 2.7.2 (Case 1A).

A︷ ︸︸ ︷⎡
⎣ 0 3 2

3 5 5
4 0 5

⎤
⎦ =

Q︷ ︸︸ ︷⎡
⎣ 0 3/5 4/5

3/5 16/25 −12/25
4/5 −12/25 9/25

⎤
⎦

R︷ ︸︸ ︷⎡
⎣ 5 3 7

0 5 2
0 0 1

⎤
⎦; b =

⎡
⎣ 1

1
1

⎤
⎦

Rx = QT b⇒

⎡
⎣ 5 3 7

0 5 2
0 0 1

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣ 35/25

19/25
17/25

⎤
⎦⇒ x =

⎡
⎣ −3/5
−3/25
17/25

⎤
⎦

||r||2 = ||b||2 − ||QT b||2 = 3− 3 = 0

2.7.2 Example 1B: Exactly Determined, Rank-Deficient

In this case, k < m = n,

• b ∈ R(A) ⇒ ∞-many true solutions (∃ unique minimum norm true
solution),

• b /∈ R(A) ⇒ ∞-many LS solutions (∃ unique minimum norm LS solu-
tion).

Example 2.7.3 (Case 1B).

A︷ ︸︸ ︷⎡
⎣ 0 3 3

3 5 8
4 0 4

⎤
⎦ =

Q︷ ︸︸ ︷⎡
⎣ 0 3/5

3/5 16/25
4/5 −12/25

⎤
⎦

R︷ ︸︸ ︷[
5 3 8
0 5 5

]
; b =

⎡
⎣ 1

1
1

⎤
⎦

RRTy = QT b⇒
[

98 55
55 50

] [
y1

y2

]
=

[
7/5

19/25

]
⇒

[
y1

y2

]
=

1

46875
·
[

705
−63

]

x = RT y =
1

46875
·

⎡
⎣ 5 0

3 5
8 5

⎤
⎦[

705
−63

]
=

1

46875
·

⎡
⎣ 3525

1800
5325

⎤
⎦ ≈

⎡
⎣ .0752
.0384
.1136

⎤
⎦

||r||2 = ||b||2 − ||QT b||2 ≈ 3− 2.5376 = .4624⇒ ||r|| ≈ .68
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2.7.3 Example 2A: Overdetermined, Full Rank

In this case, k = n < m, there is a unique “solution”:

• b ∈ R(A)⇒ ∃ unique true solution,

• b /∈ R(A)⇒ ∃ unique LS solution,

and A† = (ATA)−1AT .

Example 2.7.4 (Case 2A).

A︷ ︸︸ ︷⎡
⎣ 3 0

4 5
0 4

⎤
⎦ =

Q︷ ︸︸ ︷⎡
⎣ 3/5 −12/25

4/5 9/25
0 4/5

⎤
⎦

R︷ ︸︸ ︷[
5 4
0 5

]
; b =

⎡
⎣ 6

12
4

⎤
⎦

Rx = QT b⇒
[

5 4
0 5

] [
x1

x2

]
=

[
66/5

116/25

]
⇒ x =

[
1186/625
116/125

]
≈
[

1.8976
.928

]

||r||2 = ||b||2 − ||QT b||2 ≈ 196− 195.7696 = .2304⇒ ||r|| ≈ .48

2.7.4 Example 2B: Overdetermined, Rank-Deficient

In this case, k < n < m,

• b ∈ R(A) ⇒ ∞-many true solutions (∃ unique minimum norm true
solution),

• b /∈ R(A) ⇒ ∞-many LS solutions (∃ unique minimum norm LS solu-
tion).

Example 2.7.5 (Case 2B).

A︷ ︸︸ ︷⎡
⎣ 3 6

4 8
0 0

⎤
⎦ =

Q︷ ︸︸ ︷⎡
⎣ 3/5

4/5
0

⎤
⎦ R︷ ︸︸ ︷[

5 10
]
; b =

⎡
⎣ 6

12
4

⎤
⎦

RRTy = QT b⇒ 125 · y = 66/5⇒ y = 66/625

x = RTy =
66

625
·
[

5
10

]
=

66

125
·
[

1
2

]
≈
[
.528
1.056

]

||r||2 = ||b||2 − ||QT b||2 ≈ 196− 174.24 = 21.76⇒ ||r|| ≈ 4.6648
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2.7.5 Example 3A: Underdetermined, Full Rank

In this case, k = m < n, (k = m⇒R(A) = R
m ⇒ b ∈ R(A)):

• b ∈ R(A) ⇒ ∞-many true solutions (∃ unique minimum norm true
solution),

and A† = AT (AAT )−1.

Example 2.7.6 (Case 3A).

A︷ ︸︸ ︷[
3 4 0
0 5 4

]
=

Q︷ ︸︸ ︷[
1 0
0 1

] R︷ ︸︸ ︷[
3 4 0
0 5 4

]
; b =

[
70
81

]

RRTy = QT b⇒
[

25 20
20 41

] [
y1

y2

]
=

[
70
81

]
⇒

[
y1

y2

]
=

[
2
1

]

x = RTy =

⎡
⎣ 3 0

4 5
0 4

⎤
⎦[

2
1

]
=

⎡
⎣ 6

13
4

⎤
⎦

||r||2 = ||b||2 − ||QT b||2 = ||b||2 − ||b||2 = 0

2.7.6 Example 3B: Underdetermined, Rank-Deficient

In this case, k < m < n,

• b ∈ R(A) ⇒ ∞-many true solutions (∃ unique minimum norm true
solution),

• b /∈ R(A) ⇒ ∞-many LS solutions (∃ unique minimum norm LS solu-
tion).

Example 2.7.7 (Case 3B).

A︷ ︸︸ ︷[
1 1 1
1 1 1

]
=

Q︷ ︸︸ ︷[
1/
√

2

1/
√

2

] R︷ ︸︸ ︷[ √
2
√

2
√

2
]
; b =

[
1
2

]

RRTy = QT b⇒ 6 · y =
3√
2
⇒ y =

1

2
√

2

x = RTy =
1

2
√

2
·

⎡
⎣
√

2√
2√
2

⎤
⎦ =

⎡
⎣ 1/2

1/2
1/2

⎤
⎦

||r||2 = ||b||2 − ||QT b||2 = 5− 9/2 = 1/2⇒ ||r|| = 1/
√

2 ≈ 0.7071



Chapter 3

The Symmetric Eigenvalue
Problem

In this chapter, a comprehensive treatment of Rayleigh-Schrödinger per-
turbation theory [87, 101] for the symmetric matrix eigenvalue problem is fur-
nished with emphasis on the degenerate problem. Section 3.1 concerns linear
perturbations [62]. The treatment is simply based upon the Moore-Penrose
pseudoinverse thus distinguishing it from alternative approaches in the liter-
ature. In addition to providing a concise matrix-theoretic formulation of this
procedure, it also provides for the explicit determination of that stage of the
algorithm where each higher order eigenvector correction becomes fully deter-
mined. The theory is built up gradually with each successive stage appended
with an illustrative example.

Section 3.2 concerns analytic perturbations [63]. Again, the treatment
is simply based upon the Moore-Penrose pseudoinverse thus constituting the
natural generalization of the procedure for linear perturbation of the symmetric
eigenvalue problem presented in Section 3.1. Along the way, we generalize the
Dalgarno-Stewart identities [27] from linear to analytic matrix perturbations.
The general procedure is illustrated by an extensive example.

3.1 Linear Perturbation

In Lord Rayleigh’s investigation of vibrating strings with mild longitudinal
density variation [87], a perturbation procedure was developed based upon the
known analytical solution for a string of constant density. This technique was
subsequently refined by Schrödinger [101] and applied to problems in quantum
mechanics where it has become a mainstay of mathematical physics.

Mathematically, we have a discretized Laplacian-type operator embodied
in a real symmetric matrix, A0, which is subjected to a small symmetric lin-
ear perturbation, A = A0 + εA1, due to some physical inhomogeneity. The

51
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Rayleigh-Schrödinger procedure produces approximations to the eigenvalues
and eigenvectors of A by a sequence of successively higher order corrections to
the eigenvalues and eigenvectors of A0.

The difficulty with standard treatments of this procedure [17] is that the
eigenvector corrections are expressed in a form requiring the complete collec-
tion of eigenvectors of A0. For large matrices this is clearly an undesirable
state of affairs. Consideration of the thorny issue of multiple eigenvalues of A0

[42] only serves to exacerbate this difficulty.

This malady can be remedied by expressing the Rayleigh-Schrödinger pro-
cedure in terms of the Moore-Penrose pseudoinverse [106]. This permits these
corrections to be computed knowing only the eigenvectors of A0 corresponding
to the eigenvalues of interest. In point of fact, the pseudoinverse need not be
explicitly calculated since only pseudoinverse-vector products are required. In
turn, these may be efficiently calculated by a combination of QR-factorization
and Gaussian elimination. However, the formalism of the pseudoinverse pro-
vides a concise formulation of the procedure and permits ready analysis of
theoretical properties of the algorithm.

Since the present section is only concerned with real symmetric matri-
ces, the existence of a complete set of orthonormal eigenvectors is assured
[43, 81, 114]. The much more difficult case of defective matrices has been con-
sidered elsewhere [48]. Moreover, we only consider the computational aspects
of this procedure. Existence of the relevant perturbation expansions has been
rigorously established in [35, 47, 98].

3.1.1 Nondegenerate Case

Consider the eigenvalue problem

Axi = λixi (i = 1, . . . , n), (3.1)

where A is a real, symmetric, n × n matrix with distinct eigenvalues, λi (i =
1, . . . , n), and, consequently, orthogonal eigenvectors, xi (i = 1, . . . , n). Fur-
thermore (with ε �= 0 a sufficiently small real perturbation parameter),

A(ε) = A0 + εA1, (3.2)

where A0 is likewise real and symmetric but may possess multiple eigenvalues
(called degeneracies in the physics literature). Any attempt to drop the as-
sumption on the eigenstructure of A leads to a Rayleigh-Schrödinger iteration
that never terminates [35, p. 92]. In this section, we consider the nondegener-

ate case where the unperturbed eigenvalues, λ
(0)
i (i = 1, . . . , n), are all distinct.

Consideration of the degenerate case is deferred to the next section.
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Under these assumptions, it is shown in [35, 47, 98] that the eigenvalues
and eigenvectors of A possess the respective perturbation expansions

λi(ε) =

∞∑
k=0

εkλ
(k)
i ; xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . , n). (3.3)

for sufficiently small ε (see Appendix A). Clearly, the zeroth-order terms,

{λ(0)
i ; x

(0)
i } (i = 1, . . . , n), are the eigenpairs of the unperturbed matrix, A0.

I.e.,

(A0 − λ(0)
i I)x

(0)
i = 0 (i = 1, . . . , n). (3.4)

The unperturbed mutually orthogonal eigenvectors, x
(0)
i (i = 1, . . . , n), are

assumed to have been normalized to unity so that λ
(0)
i = 〈x(0)

i , A0x
(0)
i 〉.

Substitution of Equations (3.2) and (3.3) into Equation (3.1) yields the
recurrence relation

(A0 − λ(0)
i I)x

(k)
i = −(A1 − λ(1)

i I)x
(k−1)
i +

k−2∑
j=0

λ
(k−j)
i x

(j)
i (k = 1, . . . ,∞; i = 1, . . . , n).

(3.5)

For fixed i, solvability of Equation (3.5) requires that its right hand side be

orthogonal to x
(0)
i for all k. Thus, the value of x

(j)
i determines λ

(j+1)
i . Specifi-

cally,

λ
(j+1)
i = 〈x(0)

i , A1x
(j)
i 〉, (3.6)

where we have employed the so-called intermediate normalization that x
(k)
i

shall be chosen to be orthogonal to x
(0)
i for k = 1, . . . ,∞. This is equivalent to

〈x(0)
i , xi(ε)〉 = 1 and this normalization will be used throughout the remainder

of this work.
A beautiful result due to Dalgarno and Stewart [27], sometimes incorrectly

attributed to Wigner in the physics literature [113, p. 5], says that much more

is true: The value of the eigenvector correction x
(j)
i , in fact, determines the

eigenvalue corrections through λ
(2j+1)
i . Within the present framework, this may

be established by the following constructive procedure which heavily exploits
the symmetry of A0 and A1.

We commence by observing that

λ
(k)
i = 〈x(0)

i , (A1 − λ(1)
i I)x

(k−1)
i 〉 = 〈x(k−1)

i , (A1 − λ(1)
i I)x

(0)
i 〉

= −〈x(k−1)
i , (A0 − λ(0)

i I)x
(1)
i 〉 = −〈x(1)

i , (A0 − λ(0)
i I)x

(k−1)
i 〉

= 〈x(1)
i , (A1 − λ(1)

i I)x
(k−2)
i 〉 −

k−1∑
l=2

λ
(l)
i 〈x

(1)
i , x

(k−1−l)
i 〉. (3.7)
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Continuing in this fashion, we eventually arrive at, for odd k = 2j + 1 (j =
0, 1, . . . ),

λ
(2j+1)
i = 〈x(j)

i , A1x
(j)
i 〉 −

j∑
μ=0

j∑
ν=1

λ
(2j+1−μ−ν)
i 〈x(ν)

i , x
(μ)
i 〉. (3.8)

while, for even k = 2j (j = 1, 2, . . . ),

λ
(2j)
i = 〈x(j−1)

i , A1x
(j)
i 〉 −

j∑
μ=0

j−1∑
ν=1

λ
(2j−μ−ν)
i 〈x(ν)

i , x
(μ)
i 〉. (3.9)

This important pair of equations will henceforth be referred to as the Dalgarno-
Stewart identities.

The eigenfunction corrections are determined recursively from Equation
(3.5) as

x
(k)
i = (A0 − λ(0)

i I)†[−(A1 − λ(1)
i I)x

(k−1)
i +

k−2∑
j=0

λ
(k−j)
i x

(j)
i ] (k = 1, . . . ,∞; i = 1, . . . , n),

(3.10)

where (A0 − λ(0)
i I)† denotes the Moore-Penrose pseudoinverse [106] of (A0 −

λ
(0)
i I) and intermediate normalization has been employed.

Example 3.1.1. Define

A0 =

⎡
⎣ 1 0 0

0 1 0
0 0 2

⎤
⎦ , A1 =

⎡
⎣ 1 1 1

1 1 0
1 0 0

⎤
⎦ .

Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = 1− 1

2
ε2 − 1

8
ε3 +

1

4
ε4 +

25

128
ε5 + · · · ,

λ2(ε) = 1 + 2ε− 1

2
ε2 − 7

8
ε3 − 5

4
ε4 − 153

128
ε5 + · · · ,

λ3(ε) = 2 + ε2 + ε3 + ε4 + ε5 + · · · .

Applying the nondegenerate Rayleigh-Schrödinger procedure developed above
to

λ
(0)
3 = 2; x

(0)
3 =

⎡
⎣ 0

0
1

⎤
⎦ ,
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we arrive at (using Equation (3.8) with j = 0)

λ
(1)
3 = 〈x(0)

3 , A1x
(0)
3 〉 = 0.

Solving

(A0 − λ(0)
3 I)x

(1)
3 = −(A1 − λ(1)

3 I)x
(0)
3

produces

x
(1)
3 =

⎡
⎣ 1

0
0

⎤
⎦ .

In turn, the Dalgarno-Stewart identities yield

λ
(2)
3 = 〈x(0)

3 , A1x
(1)
3 〉 = 1,

and

λ
(3)
3 = 〈x(1)

3 , (A1 − λ(1)
3 I)x

(1)
3 〉 = 1.

Solving

(A0 − λ(0)
3 I)x

(2)
3 = −(A1 − λ(1)

3 I)x
(1)
3 + λ

(2)
3 x

(0)
3

produces

x
(2)
3 =

⎡
⎣ 1

1
0

⎤
⎦ .

Again, the Dalgarno-Stewart identities yield

λ
(4)
3 = 〈x(1)

3 , (A1 − λ(1)
3 I)x

(2)
3 〉 − λ

(2)
3 〈x

(1)
3 , x

(1)
3 〉 = 1,

and

λ
(5)
3 = 〈x(2)

3 , (A1 − λ(1)
3 I)x

(2)
3 〉 − 2λ

(2)
3 〈x

(2)
3 , x

(1)
3 〉 − λ

(3)
3 〈x

(1)
3 , x

(1)
3 〉 = 1.

3.1.2 Degenerate Case

When A0 possesses multiple eigenvalues (the so-called degenerate case),
the above straightforward analysis for the nondegenerate case encounters se-
rious complications. This is a consequence of the fact that, in this new case,
Rellich’s Theorem [98, pp. 42-45] guarantees the existence of the perturbation
expansions, Equation (3.3), only for certain special unperturbed eigenvectors.
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These special unperturbed eigenvectors cannot be specified a priori but must
instead emerge from the perturbation procedure itself (see Appendix A).

Furthermore, the higher order corrections to these special unperturbed
eigenvectors are more stringently constrained than previously since they must
be chosen so that Equation (3.5) is always solvable. I.e., they must be chosen
so that the right hand side of Equation (3.5) is always orthogonal to the entire
eigenspace associated with the multiple eigenvalue in question.

Thus, without any loss of generality, suppose that λ
(0)
1 = λ

(0)
2 = · · · =

λ
(0)
m = λ(0) is just such an eigenvalue of multiplicity m with corresponding

known orthonormal eigenvectors x
(0)
1 , x

(0)
2 , . . . , x

(0)
m . Then, we are required to

determine appropriate linear combinations

y
(0)
i = a

(i)
1 x

(0)
1 + a

(i)
2 x

(0)
2 + · · ·+ a(i)

m x
(0)
m (i = 1, . . . , m) (3.11)

so that the expansions, Equation (3.3), are valid with x
(k)
i replaced by y

(k)
i .

In point of fact, the remainder of this section will assume that xi

has been replaced by yi in Equations (3.3)-(3.10). Moreover, the higher

order eigenvector corrections, y
(k)
i , must be suitably determined. Since we

desire that {y(0)
i }mi=1 likewise be orthonormal, we require that

a
(μ)
1 a

(ν)
1 + a

(μ)
2 a

(ν)
2 + · · ·+ a(μ)

m a(ν)
m = δμ,ν . (3.12)

Recall that we have assumed throughout that the perturbed matrix, A(ε),
itself has distinct eigenvalues, so that eventually all such degeneracies will be
fully resolved. What significantly complicates matters is that it is not known
beforehand at what stages portions of the degeneracy will be resolved.

In order to bring order to a potentially calamitous situation, we will begin
by first considering the case where the degeneracy is fully resolved at first
order. Only then do we move on to study the case where the degeneracy is
completely and simultaneously resolved at second order. This will pave the
way for the treatment of Nth order degeneracy resolution. Finally, we will
have laid sufficient groundwork to permit treatment of the most general case
of mixed degeneracy where resolution occurs across several different orders.
Each stage in this process will be concluded with an illustrative example. This
seems preferable to presenting an impenetrable collection of opaque formulae.

First Order Degeneracy

We first dispense with the case of first order degeneracy wherein λ
(1)
i (i =

1. . . . , m) are all distinct. In this event, we determine {λ(1)
i ; y

(0)
i }mi=1 by insisting

that Equation (3.5) be solvable for k = 1 and i = 1, . . . , m. In order for this
to obtain, it is both necessary and sufficient that, for each fixed i,

〈x(0)
μ , (A1 − λ(1)

i I)y
(0)
i 〉 = 0 (μ = 1, . . . , m). (3.13)
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Inserting Equation (3.11) and invoking the orthonormality of {x(0)
μ }mμ=1, we

arrive at, in matrix form,⎡
⎢⎣ 〈x

(0)
1 , A1x

(0)
1 〉 · · · 〈x

(0)
1 , A1x

(0)
m 〉

...
. . .

...

〈x(0)
m , A1x

(0)
1 〉 · · · 〈x

(0)
m , A1x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(1)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ . (3.14)

Thus, each λ
(1)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (1)x

(0)
ν 〉 (μ, ν = 1, . . . , m) where

M (1) := A1.
By assumption, the symmetric matrix M has m distinct real eigenvalues

and hence orthonormal eigenvectors described by Equation (3.12). These, in
turn, may be used in concert with Equation (3.11) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by Equation (3.6) the

identities

λ
(1)
i = 〈y(0)

i , A1y
(0)
i 〉 (i = 1, . . . , m). (3.15)

Furthermore, the combination of Equations (3.12) and (3.14) yield

〈y(0)
i , A1y

(0)
j 〉 = 0 (i �= j). (3.16)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ 2), may be obtained from the

Dalgarno-Stewart identities.
Whenever Equation (3.5) is solvable, we will express its solution as

y
(k)
i = ŷ

(k)
i + β

(i)
1,ky

(0)
1 + β

(i)
2,ky

(0)
2 + · · ·+ β

(i)
m,ky

(0)
m (i = 1, . . . , m) (3.17)

where ŷ
(k)
i := (A0 − λ(0)I)†[−(A1 − λ(1)

i I)y
(k−1)
i +

∑k−2
j=0 λ

(k−j)
i y

(j)
i ] has no com-

ponents in the {y(0)
j }mj=1 directions. In light of intermediate normalization,

we have β
(i)
i,k = 0 (i = 1, . . . , m). Furthermore, β

(i)
j,k (i �= j) are to be deter-

mined from the condition that Equation (3.5) be solvable for k ← k + 1 and
i = 1, . . . , m.

Since, by design, Equation (3.5) is solvable for k = 1, we may proceed
recursively. After considerable algebraic manipulation, the end result is

β
(i)
j,k =

〈y(0)
j , A1ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+1)
i β

(i)
j,l

λ
(1)
i − λ

(1)
j

(i �= j). (3.18)

The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (3.5) for k ← k + 1.
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Example 3.1.2.

We resume with Example 3.1.1 and the first order degeneracy between λ
(0)
1

and λ
(0)
2 . With the choice

x
(0)
1 =

⎡
⎣ 1

0
0

⎤
⎦ ; x

(0)
2 =

⎡
⎣ 0

1
0

⎤
⎦ ,

we have

M =

[
1 1
1 1

]
,

with eigenpairs

λ
(1)
1 = 0,

[
a

(1)
1

a
(1)
2

]
=

[
1/
√

2

−1/
√

2

]
; λ

(1)
2 = 2,

[
a

(2)
1

a
(2)
2

]
=

[
1/
√

2

1/
√

2

]
.

Availing ourselves of Equation (3.11), the special unperturbed eigenvectors are
now fully determined as

y
(0)
1 =

⎡
⎣ 1/

√
2

−1/
√

2
0

⎤
⎦ ; y

(0)
2 =

⎡
⎣ 1/

√
2

1/
√

2
0

⎤
⎦ .

Solving Equation (3.5) for k = 1,

(A0 − λ(0)I)y
(1)
i = −(A1 − λ(1)

i I)y
(0)
i (i = 1, 2),

produces

y
(1)
1 =

⎡
⎣ a

a
−1√

2

⎤
⎦ ; y

(1)
2 =

⎡
⎣ b
−b
−1√

2

⎤
⎦ ,

where we have invoked intermediate normalization. Observe that, unlike the
nondegenerate case, y

(1)
i (i = 1, 2) are not yet fully determined.

We next enforce solvability of Equation (3.5) for k = 2,

〈y(0)
j ,−(A1 − λ(1)

i I)y
(1)
i + λ

(2)
i y

(0)
i 〉 = 0 (i �= j),

thereby producing

y
(1)
1 =

⎡
⎢⎣

1
4
√

2
1

4
√

2−1√
2

⎤
⎥⎦ ; y

(1)
2 =

⎡
⎢⎣

−1
4
√

2
1

4
√

2−1√
2

⎤
⎥⎦ .
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With y
(1)
i (i = 1, 2) now fully determined, the Dalgarno-Stewart identities

yield

λ
(2)
1 = 〈y(0)

1 , A1y
(1)
1 〉 = −1

2
; λ

(3)
1 = 〈y(1)

1 , (A1 − λ(1)
1 I)y

(1)
1 〉 = −1

8
,

and

λ
(2)
2 = 〈y(0)

2 , A1y
(1)
2 〉 = −1

2
; λ

(3)
2 = 〈y(1)

2 , (A1 − λ(1)
2 I)y

(1)
2 〉 = −7

8
.

Solving Equation (3.5) for k = 2,

(A0 − λ(0)I)y
(2)
i = −(A1 − λ(1)

i I)y
(1)
i + λ

(2)
i y

(0)
i (i = 1, 2),

produces

y
(2)
1 =

⎡
⎣ c

c
−1
4
√

2

⎤
⎦ ; y

(2)
2 =

⎡
⎣ d
−d
−7
4
√

2

⎤
⎦ ,

where we have again invoked intermediate normalization. Once again, observe
that, unlike the nondegenerate case, y

(2)
i (i = 1, 2) are not yet fully determined.

We now enforce solvability of Equation (3.5) for k = 3,

〈y(0)
j ,−(A1 − λ(1)

i I)y
(2)
i + λ

(2)
i y

(1)
i + λ

(3)
i y

(0)
i 〉 = 0 (i �= j),

thereby fully determining

y
(2)
1 =

⎡
⎣ 0

0
−1
4
√

2

⎤
⎦ ; y

(2)
2 =

⎡
⎢⎣

−1
2
√

2
1

2
√

2−7
4
√

2

⎤
⎥⎦ .

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 = 〈y(1)

1 , (A1 − λ(1)
1 I)y

(2)
1 〉 − λ

(2)
1 〈y

(1)
1 , y

(1)
1 〉 =

1

4
,

λ
(5)
1 = 〈y(2)

1 , (A1 − λ(1)
1 I)y

(2)
1 〉 − 2λ

(2)
1 〈y

(2)
1 , y

(1)
1 〉 − λ

(3)
1 〈y

(1)
1 , y

(1)
1 〉 =

25

128
,

and

λ
(4)
2 = 〈y(1)

2 , (A1 − λ(1)
2 I)y

(2)
2 〉 − λ

(2)
2 〈y

(1)
2 , y

(1)
2 〉 = −5

4
,

λ
(5)
2 = 〈y(2)

2 , (A1 − λ(1)
2 I)y

(2)
2 〉 − 2λ

(2)
2 〈y

(2)
2 , y

(1)
2 〉 − λ

(3)
2 〈y

(1)
2 , y

(1)
2 〉 = −153

128
.



60 Symmetric Eigenvalue Problem

Second Order Degeneracy

We next consider the case of second order degeneracy which is characterized
by the conditions λ

(0)
1 = λ

(0)
2 = · · · = λ

(0)
m = λ(0) and λ

(1)
1 = λ

(1)
2 = · · · = λ

(1)
m =

λ(1) while λ
(2)
i (i = 1, . . . , m) are all distinct. Thus, even though λ(1) is obtained

as the only eigenvalue of Equation (3.14), {y(0)
i }mi=1 are still indeterminate after

enforcing solvability of Equation (3.5) for k = 1.

Hence, we will determine {λ(2)
i ; y

(0)
i }mi=1 by insisting that Equation (3.5)

be solvable for k = 2 and i = 1, . . . , m. This requirement is equivalent to the
condition that, for each fixed i,

〈x(0)
μ ,−(A1 − λ(1)I)y

(1)
i + λ

(2)
i y

(0)
i 〉 = 0 (μ = 1, . . . , m). (3.19)

Inserting Equation (3.11) as well as Equation (3.17) with k = 1 and invok-

ing the orthonormality of {x(0)
μ }mμ=1, we arrive at, in matrix form,⎡

⎢⎣ 〈x
(0)
1 ,M (2)x

(0)
1 〉 · · · 〈x

(0)
1 ,M (2)x

(0)
m 〉

...
. . .

...

〈x(0)
m ,M (2)x

(0)
1 〉 · · · 〈x

(0)
m ,M (2)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(2)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ , (3.20)

where M (2) := −(A1 − λ(1)I)(A0 − λ(0)I)†(A1 − λ(1)I). Thus, each λ
(2)
i is

an eigenvalue with corresponding eigenvector [a
(i)
1 , . . . , a

(i)
m ]T of the matrix M

defined by Mμ,ν = 〈x(0)
μ ,M (2)x

(0)
ν 〉 (μ, ν = 1, . . . , m).

By assumption, the symmetric matrix M has m distinct real eigenvalues
and hence orthonormal eigenvectors described by Equation (3.12). These, in
turn, may be used in concert with Equation (3.11) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by the combination of

Equations (3.12) and (3.20) the identities

〈y(0)
i ,M (2)y

(0)
j 〉 = λ

(2)
i · δi,j . (3.21)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ 3), may be obtained from the

Dalgarno-Stewart identities.
Analogous to the case of first order degeneracy, β

(i)
j,k (i �= j) of Equation

(3.17) are to be determined from the condition that Equation (3.5) be solv-
able for k ← k + 2 and i = 1, . . . , m. Since, by design, Equation (3.5) is
solvable for k = 1, 2, we may proceed recursively. After considerable algebraic
manipulation, the end result is

β
(i)
j,k =

〈y(0)
j ,M (2)ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+2)
i β

(i)
j,l

λ
(2)
i − λ

(2)
j

(i �= j). (3.22)
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The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (3.5) for k ← k + 2.

Example 3.1.3. Define

A0 =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 3

⎤
⎥⎥⎥⎥⎦ , A1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 1 0
0 1 0 0 1
0 0 1 0 0
1 0 0 0 0
0 1 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = 1 + ε ,

λ2(ε) = 1 + ε− 1

2
ε2 − 1

4
ε3 +

1

8
ε5 + · · · ,

λ3(ε) = 1 + ε− ε2 − ε3 + 2ε5 + · · · ,

λ4(ε) = 2 + ε2 + ε3 − 2ε5 + · · · ,

λ5(ε) = 3 +
1

2
ε2 +

1

4
ε3 − 1

8
ε5 + · · · .

We focus on the second order degeneracy amongst λ
(0)
1 = λ

(0)
2 = λ

(0)
3 =

λ(0) = 1. With the choice

x
(0)
1 =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ ; x

(0)
2 =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦ ; x

(0)
3 =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ ,

we have from Equation (3.14), which enforces solvability of Equation (3.5) for
k = 1,

M =

⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦ ,

with triple eigenvalue λ(1) = 1.
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Moving on to Equation (3.20), which enforces solvability of Equation (3.5)
for k = 2, we have

M =

⎡
⎣ −1 0 0

0 −1/2 0
0 0 0

⎤
⎦ ,

with eigenpairs: λ
(2)
1 = 0, λ

(2)
2 = −1

2
, λ

(2)
3 = −1;⎡

⎢⎣ a
(1)
1

a
(1)
2

a
(1)
3

⎤
⎥⎦ =

⎡
⎣ 0

0
1

⎤
⎦ ;

⎡
⎢⎣ a

(2)
1

a
(2)
2

a
(2)
3

⎤
⎥⎦ =

⎡
⎣ 0

1
0

⎤
⎦ ;

⎡
⎢⎣ a

(3)
1

a
(3)
2

a
(3)
3

⎤
⎥⎦ =

⎡
⎣ 1

0
0

⎤
⎦ .

Availing ourselves of Equation (3.11), the special unperturbed eigenvectors are
now fully determined as

y
(0)
1 =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦ ; y

(0)
2 =

⎡
⎢⎢⎢⎢⎣

0
1
0
0
0

⎤
⎥⎥⎥⎥⎦ ; y

(0)
3 =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ .

Solving Equation (3.5) for k = 1,

(A0 − λ(0)I)y
(1)
i = −(A1 − λ(1)I)y

(0)
i (i = 1, 2, 3),

produces

y
(1)
1 =

⎡
⎢⎢⎢⎢⎣
α1

β1

0
0
0

⎤
⎥⎥⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎢⎢⎣

α2

0
γ2

0
−1/2

⎤
⎥⎥⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎢⎢⎣

0
β3

γ3

−1
0

⎤
⎥⎥⎥⎥⎦ ,

where we have invoked intermediate normalization. Observe that y
(1)
i (i =

1, 2, 3) are not yet fully determined.
Solving Equation (3.5) for k = 2,

(A0 − λ(0)I)y
(2)
i = −(A1 − λ(1)I)y

(1)
i + λ

(2)
i y

(0)
i (i = 1, 2, 3),

produces

y
(2)
1 =

⎡
⎢⎢⎢⎢⎣

a1

b1
0
−α1

−β1/2

⎤
⎥⎥⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎢⎢⎣

a2

0
c2
−α2

−1/4

⎤
⎥⎥⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎢⎢⎣

0
b3
c3
−1
−β3/2

⎤
⎥⎥⎥⎥⎦ ,
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where we have invoked intermediate normalization. Likewise, y
(2)
i (i = 1, 2, 3)

are not yet fully determined.
We next enforce solvability of Equation (3.5) for k = 3,

〈y(0)
j ,−(A1 − λ(1)I)y

(2)
i + λ

(2)
i y

(1)
i + λ

(3)
i y

(0)
i 〉 = 0 (i �= j),

thereby producing

y
(1)
1 =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
−1/2

⎤
⎥⎥⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎢⎢⎣

0
0
0
−1
0

⎤
⎥⎥⎥⎥⎦ ,

and

y
(2)
1 =

⎡
⎢⎢⎢⎢⎣
a1

b1
0
0
0

⎤
⎥⎥⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎢⎢⎣

a2

0
c2
0
−1/4

⎤
⎥⎥⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎢⎢⎣

0
b3
c3
−1
0

⎤
⎥⎥⎥⎥⎦ .

With y
(1)
i (i = 1, 2, 3) now fully determined, the Dalgarno-Stewart identities

yield

λ
(3)
1 = 〈y(1)

1 , (A1 − λ(1)I)y
(1)
1 〉 = 0,

λ
(3)
2 = 〈y(1)

2 , (A1 − λ(1)I)y
(1)
2 〉 = −1

4
,

and

λ
(3)
3 = 〈y(1)

3 , (A1 − λ(1)I)y
(1)
3 〉 = −1.

Solving Equation (3.5) for k = 3,

(A0 − λ(0)I)y
(3)
i = −(A1 − λ(1)I)y

(2)
i + λ

(2)
i y

(1)
i + λ

(3)
i y

(0)
i (i = 1, 2, 3),

produces

y
(3)
1 =

⎡
⎢⎢⎢⎢⎣

u1

v1

0
−a1

−b1/2

⎤
⎥⎥⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎢⎢⎣

u2

0
w2

−a2

0

⎤
⎥⎥⎥⎥⎦ ; y

(3)
3 =

⎡
⎢⎢⎢⎢⎣

0
v3

w3

0
−b3/2

⎤
⎥⎥⎥⎥⎦ ,



64 Symmetric Eigenvalue Problem

where we have invoked intermediate normalization. As before, y
(3)
i (i = 1, 2, 3)

are not yet fully determined.
We now enforce solvability of Equation (3.5) for k = 4,

〈y(0)
j ,−(A1 − λ(1)I)y

(3)
i + λ

(2)
i y

(2)
i + λ

(3)
i y

(1)
i + λ

(4)
i y

(0)
i 〉 = 0 (i �= j),

thereby fully determining

y
(2)
1 =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
0

⎤
⎥⎥⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎢⎢⎣

0
0
0
0
−1/4

⎤
⎥⎥⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎢⎢⎣

0
0
0
−1
0

⎤
⎥⎥⎥⎥⎦ .

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 = 〈y(1)

1 , (A1 − λ(1)I)y
(2)
1 〉 − λ

(2)
1 〈y

(1)
1 , y

(1)
1 〉 = 0,

λ
(5)
1 = 〈y(2)

1 , (A1 − λ(1)I)y
(2)
1 〉 − 2λ

(2)
1 〈y

(2)
1 , y

(1)
1 〉 − λ

(3)
1 〈y

(1)
1 , y

(1)
1 〉 = 0,

and

λ
(4)
2 = 〈y(1)

2 , (A1 − λ(1)I)y
(2)
2 〉 − λ

(2)
2 〈y

(1)
2 , y

(1)
2 〉 = 0,

λ
(5)
2 = 〈y(2)

2 , (A1 − λ(1)I)y
(2)
2 〉 − 2λ

(2)
2 〈y

(2)
2 , y

(1)
2 〉 − λ

(3)
2 〈y

(1)
2 , y

(1)
2 〉 =

1

8
,

and

λ
(4)
3 = 〈y(1)

3 , (A1 − λ(1)I)y
(2)
3 〉 − λ

(2)
3 〈y

(1)
3 , y

(1)
3 〉 = 0,

λ
(5)
3 = 〈y(2)

3 , (A1 − λ(1)I)y
(2)
3 〉 − 2λ

(2)
3 〈y

(2)
3 , y

(1)
3 〉 − λ

(3)
3 〈y

(1)
3 , y

(1)
3 〉 = 2.

Nth Order Degeneracy

We now consider the case of Nth order degeneracy which is characterized
by the conditions λ

(j)
1 = λ

(j)
2 = · · · = λ

(j)
m = λ(j) (j = 0, . . . , N − 1) while

λ
(N)
i (i = 1, . . . , m) are all distinct. Thus, even though λ(j) (j = 0, . . . , N − 1)

are determinate, {y(0)
i }mi=1 are still indeterminate after enforcing solvability of

Equation (3.5) for k = N − 1.

Hence, we will determine {λ(N)
i ; y

(0)
i }mi=1 by insisting that Equation (3.5)

be solvable for k = N and i = 1, . . . , m. This requirement is equivalent to the
condition that, for each fixed i,

〈x(0)
μ ,−(A1 − λ(1)I)y

(N−1)
i + λ(2)y

(N−2)
i + · · ·+ λ

(N)
i y

(0)
i 〉 = 0 (μ = 1, . . . , m).

(3.23)



Linear Perturbation 65

Inserting Equation (3.11) as well as Equation (3.17) with k = 1, . . . , N − 1

and invoking the orthonormality of {x(0)
μ }mμ=1, we arrive at, in matrix form,⎡

⎢⎣ 〈x
(0)
1 ,M (N)x

(0)
1 〉 · · · 〈x

(0)
1 ,M (N)x

(0)
m 〉

...
. . .

...

〈x(0)
m ,M (N)x

(0)
1 〉 · · · 〈x

(0)
m ,M (N)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(N)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ , (3.24)

where M (N) is specified by the recurrence relation:

M (1) = A1, (3.25)

M (2) = (λ(1)I −M (1))(A0 − λ(0)I)†(A1 − λ(1)I), (3.26)

M (3) = (λ(2)I −M (2))(A0 − λ(0)I)†(A1 − λ(1)I) + λ(2)(A1 − λ(1)I)(A0 − λ(0)I)†,
(3.27)

M (N) = (λ(N−1)I −M (N−1))(A0 − λ(0)I)†(A1 − λ(1)I)

−
∑N−3

l=2 λ(l)(λ(N−l)I −M (N−l))(A0 − λ(0)I)†

−λ(N−2)[(A1 − λ(1)I)(A0 − λ(0)I)†(A1 − λ(1)I) + λ(2)I](A0 − λ(0)I)†

+λ(N−1)(A1 − λ(1)I)(A0 − λ(0)I)† (N = 4, 5, . . . ). (3.28)

Thus, each λ
(N)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (N)x

(0)
ν 〉 (μ, ν = 1, . . . , m). It is im-

portant to note that, while this recurrence relation guarantees that {λ(N)
i ; y

(0)
i }mi=1

are well defined by enforcing solvability of Equation (3.5) for k = N , M (N)

need not be explicitly computed.
By assumption, the symmetric matrix M has m distinct real eigenvalues

and hence orthonormal eigenvectors described by Equation (3.12). These, in
turn, may be used in concert with Equation (3.11) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by the combination of

Equations (3.12) and (3.24) the identities

〈y(0)
i ,M (N)y

(0)
j 〉 = λ

(N)
i · δi,j. (3.29)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ N +1), may be obtained from

the Dalgarno-Stewart identities.
Analogous to the cases of first and second order degeneracies, β

(i)
j,k (i �= j) of

Equation (3.17) are to be determined from the condition that Equation (3.5)
be solvable for k ← k +N and i = 1, . . . , m. Since, by design, Equation (3.5)
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is solvable for k = 1, . . . , N , we may proceed recursively. After considerable
algebraic manipulation, the end result is

β
(i)
j,k =

〈y(0)
j ,M (N)ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+N)
i β

(i)
j,l

λ
(N)
i − λ(N)

j

(i �= j). (3.30)

The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (3.5) for k ← k +N .

Example 3.1.4. Define

A0 =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

1 0 1 1
0 1 1 −1
1 1 1 0
1 −1 0 0

⎤
⎥⎥⎦ .

Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = 1 + ε− 2ε2 + 4ε4 + 0 · ε5 + · · · ,

λ2(ε) = 1 + ε− 2ε2 − 2ε3 + 2ε4 + 10ε5 + · · · ,

λ3(ε) = 2 + 2ε2 + 2ε3 − 2ε4 − 10ε5 + · · · ,

λ4(ε) = 2 + ε+ 2ε2 − 4ε4 + 0 · ε5 + · · · .

We focus on the third order degeneracy amongst λ
(0)
1 = λ

(0)
2 = λ(0) = 1.

With the choice

x
(0)
1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ; x

(0)
2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

we have from Equation (3.14), which enforces solvability of Equation (3.5) for
k = 1,

M =

[
1 0
0 1

]
,

with double eigenvalue λ(1) = 1. Equation (3.20), which enforces solvability of
Equation (3.5) for k = 2, yields

M =

[
−2 0
0 −2

]
,
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with double eigenvalue λ(2) = −2.
Moving on to Equation (3.24) with N = 3, which enforces solvability of

Equation (3.5) for k = 3, we have

M =

[
−1 1
1 −1

]
,

with eigenpairs

λ
(3)
1 = 0,

[
a

(1)
1

a
(1)
2

]
=

[
1/
√

2

1/
√

2

]
; λ

(3)
2 = −2,

[
a

(2)
1

a
(2)
2

]
=

[
1/
√

2

−1/
√

2

]
.

Availing ourselves of Equation (3.11), the special unperturbed eigenvectors are
now fully determined as

y
(0)
1 =

⎡
⎢⎢⎣

1/
√

2

1/
√

2
0
0

⎤
⎥⎥⎦ ; y

(0)
2 =

⎡
⎢⎢⎣

1/
√

2

−1/
√

2
0
0

⎤
⎥⎥⎦ .

Solving Equation (3.5) for k = 1,

(A0 − λ(0)I)y
(1)
i = −(A1 − λ(1)I)y

(0)
i (i = 1, 2),

produces

y
(1)
1 =

⎡
⎢⎢⎣

a
−a
−
√

2
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

b
b
0

−
√

2

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization. Observe that y
(1)
i (i = 1, 2)

are not yet fully determined.
Solving Equation (3.5) for k = 2,

(A0 − λ(0)I)y
(2)
i = −(A1 − λ(1)I)y

(1)
i + λ(2)y

(0)
i (i = 1, 2),

produces

y
(2)
1 =

⎡
⎢⎢⎣

c
−c
0
−2a

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

d
d
−2b

−
√

2

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization. Likewise, y
(2)
i (i = 1, 2)

are not yet fully determined.
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Solving Equation (3.5) for k = 3,

(A0 − λ(0)I)y
(3)
i = −(A1 − λ(1)I)y

(2)
i + λ(2)y

(1)
i + λ

(3)
i y

(0)
i (i = 1, 2),

produces

y
(3)
1 =

⎡
⎢⎢⎣

e
−e
2
√

2
−2c− 2a

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

f
f
−2d√

2

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization. Likewise, y
(3)
i (i = 1, 2)

are not yet fully determined.
We next enforce solvability of Equation (3.5) for k = 4,

〈y(0)
j ,−(A1 − λ(1)I)y

(3)
i + λ(2)y

(2)
i + λ

(3)
i y

(1)
i + λ

(4)
i y

(0)
i 〉 = 0 (i �= j),

thereby producing

y
(1)
1 =

⎡
⎢⎢⎣

0
0

−
√

2
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

0
0
0

−
√

2

⎤
⎥⎥⎦ ,

and

y
(2)
1 =

⎡
⎢⎢⎣

c
−c
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

d
d
0

−
√

2

⎤
⎥⎥⎦ ,

and

y
(3)
1 =

⎡
⎢⎢⎣

e
−e
2
√

2
−2c

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

f
f
−2d√

2

⎤
⎥⎥⎦ .

Observe that y
(1)
i (i = 1, 2) are now fully determined while y

(2)
i (i = 1, 2) and

y
(3)
i (i = 1, 2) are not yet completely specified.

Solving Equation (3.5) for k = 4,

(A0 − λ(0)I)y
(4)
i = −(A1 − λ(1)I)y

(3)
i + λ(2)y

(2)
i + λ

(3)
i y

(1)
i + λ

(4)
i y

(0)
i (i = 1, 2),
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produces

y
(4)
1 =

⎡
⎢⎢⎣

g
h
0

−2e− 2c

⎤
⎥⎥⎦ ; y

(4)
2 =

⎡
⎢⎢⎣

u
v
−2f

5
√

2

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization. As before, y
(4)
i (i = 1, 2)

are not yet fully determined.
We now enforce solvability of Equation (3.5) for k = 5,

〈y(0)
j ,−(A1 − λ(1)I)y

(4)
i + λ(2)y

(3)
i + λ

(3)
i y

(2)
i + λ

(4)
i y

(1)
i + λ

(5)
i y

(0)
i 〉 = 0 (i �= j),

thereby fully determining

y
(2)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
0
0

−
√

2

⎤
⎥⎥⎦ ,

and further specifying

y
(3)
1 =

⎡
⎢⎢⎣

e
−e
2
√

2
0

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

f
f
0√
2

⎤
⎥⎥⎦ ,

and

y
(4)
1 =

⎡
⎢⎢⎣

g
h
0
−2e

⎤
⎥⎥⎦ ; y

(4)
2 =

⎡
⎢⎢⎣

u
v
−2f

5
√

2

⎤
⎥⎥⎦ .

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 = 〈y(1)

1 , (A1 − λ(1)I)y
(2)
1 〉 − λ

(2)
1 〈y

(1)
1 , y

(1)
1 〉 = 4,

λ
(5)
1 = 〈y(2)

1 , (A1 − λ(1)I)y
(2)
1 〉 − 2λ

(2)
1 〈y

(2)
1 , y

(1)
1 〉 − λ

(3)
1 〈y

(1)
1 , y

(1)
1 〉 = 0,

and

λ
(4)
2 = 〈y(1)

2 , (A1 − λ(1)I)y
(2)
2 〉 − λ

(2)
2 〈y

(1)
2 , y

(1)
2 〉 = 2,

λ
(5)
2 = 〈y(2)

2 , (A1 − λ(1)I)y
(2)
2 〉 − 2λ

(2)
2 〈y

(2)
2 , y

(1)
2 〉 − λ

(3)
2 〈y

(1)
2 , y

(1)
2 〉 = 10.
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Mixed Degeneracy

Finally, we arrive at the most general case of mixed degeneracy wherein
a degeneracy (multiple eigenvalue) is partially resolved at more than a single
order. The analysis expounded upon in the previous sections comprises the
core of the procedure for the complete resolution of mixed degeneracy. The
following modifications suffice.

In the Rayleigh-Schrödinger procedure, whenever an eigenvalue branches
by reduction in multiplicty at any order, one simply replaces the xμ of Equation
(3.24) by any convenient orthonormal basis zμ for the reduced eigenspace. Of
course, this new basis is composed of some a priori unknown linear combination
of the original basis. Equation (3.30) will still be valid where N is the order
of correction where the degeneracy between λi and λj is resolved. Thus, in

general, if λi is degenerate to Nth order then y
(k)
i will be fully determined by

enforcing the solvability of Equation (3.5) with k ← k +N .
We now present a final example which illustrates this general procedure.

This example features a triple eigenvalue which branches into a single first
order degenerate eigenvalue together with a pair of second order degenerate
eigenvalues. Hence, we observe features of both Example 3.1.2 and Example
3.1.3 appearing in tandem.

Example 3.1.5. Define

A0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

1 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ .

Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = ε ,

λ2(ε) = ε− ε2 − ε3 + 2ε5 + · · · ,

λ3(ε) = 0 ,

λ4(ε) = 1 + ε2 + ε3 − 2ε5 + · · · .

We focus on the mixed degeneracy amongst λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = λ(0) = 0.

With the choice

x
(0)
1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ; x

(0)
2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ; x

(0)
3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,
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we have from Equation (3.14), which enforces solvability of Equation (3.5) for
k = 1,

M =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ ,

with eigenvalues λ
(1)
1 = λ

(1)
2 = λ(1) = 1, λ

(1)
3 = 0.

Thus, y
(0)
1 and y

(0)
2 are indeterminate while⎡
⎢⎣ a

(3)
1

a
(3)
2

a
(3)
3

⎤
⎥⎦ =

⎡
⎣ 0

0
1

⎤
⎦⇒ y

(0)
3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ .

Introducing the new basis

z
(0)
1 =

⎡
⎢⎢⎣

1/
√

2

1/
√

2
0
0

⎤
⎥⎥⎦ ; z

(0)
2 =

⎡
⎢⎢⎣

1/
√

2

−1/
√

2
0
0

⎤
⎥⎥⎦ ,

we now seek y
(0)
1 and y

(0)
2 in the form

y
(0)
1 = b

(1)
1 z

(0)
1 + b

(1)
2 z

(0)
2 ; y

(0)
2 = b

(2)
1 z

(0)
1 + b

(2)
2 z

(0)
2 ,

with orthonormal {[b(1)
1 , b

(1)
2 ]T , [b

(2)
1 , b

(2)
2 ]T}.

Solving Equation (3.5) for k = 1,

(A0 − λ(0)I)y
(1)
i = −(A1 − λ(1)

i I)y
(0)
i (i = 1, 2, 3),

produces

y
(1)
1 =

⎡
⎢⎢⎣

α1

β1

γ1

−(b
(1)
1 + b

(1)
2 )/
√

2

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

α2

β2

γ2

−(b
(2)
1 + b

(2)
2 )/
√

2

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣
α3

β3

γ3

0

⎤
⎥⎥⎦ .

Now, enforcing solvability of Equation (3.5) for k = 2,

−(A1 − λ(1)
i I)y

(1)
i + λ

(2)
i y

(0)
i ⊥ {z

(0)
1 , z

(0)
2 , y

(0)
3 } (i = 1, 2, 3),

we arrive at

M =

[
−1/2 −1/2
−1/2 −1/2

]
,



72 Symmetric Eigenvalue Problem

with eigenpairs

λ
(2)
1 = 0,

[
b
(1)
1

b
(1)
2

]
=

[
1/
√

2

−1/
√

2

]
; λ

(2)
2 = −1,

[
b
(2)
1

b
(2)
2

]
=

[
1/
√

2

1/
√

2

]
⇒

y
(0)
1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ; y

(0)
2 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

and

y
(1)
1 =

⎡
⎢⎢⎣
α1

β1

0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣
α2

β2

0
−1

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

as well as λ
(2)
3 = 0, where we have invoked intermediate normalization. Observe

that y
(1)
1 and y

(1)
2 have not yet been fully determined while y

(1)
3 has indeed been

completely specified.

Solving Equation (3.5) for k = 2,

(A0 − λ(0)I)y
(2)
i = −(A1 − λ(1)

i I)y
(1)
i + λ

(2)
i y

(0)
i (i = 1, 2, 3),

produces

y
(2)
1 =

⎡
⎢⎢⎣

a1

0
c1
−α1

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
b2
c2
−1

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣
a3

b3
0
0

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We next enforce solvability of Equation (3.5) for k = 3,

〈y(0)
j ,−(A1 − λ(1)

i I)y
(2)
i + λ

(2)
i y

(1)
i + λ

(3)
i y

(0)
i 〉 = 0 (i �= j),

thereby producing

y
(1)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

0
0
0
−1

⎤
⎥⎥⎦ ,
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and

y
(2)
1 =

⎡
⎢⎢⎣
a1

0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
b2
0
−1

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

With y
(1)
i (i = 1, 2, 3) now fully determined, the Dalgarno-Stewart identities

yield

λ
(3)
1 = 〈y(1)

1 , (A1 − λ(1)I)y
(1)
1 〉 = 0,

λ
(3)
2 = 〈y(1)

2 , (A1 − λ(1)I)y
(1)
2 〉 = −1,

and

λ
(3)
3 = 〈y(1)

3 , (A1 − λ(1)
3 I)y

(1)
3 〉 = 0.

Solving Equation (3.5) for k = 3,

(A0 − λ(0)I)y
(3)
i = −(A1 − λ(1)I)y

(2)
i + λ

(2)
i y

(1)
i + λ

(3)
i y

(0)
i (i = 1, 2),

produces

y
(3)
1 =

⎡
⎢⎢⎣

u1

0
w1

−a1

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

0
v2

w2

0

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We now enforce solvability of Equation (3.5) for k = 4,

〈y(0)
j ,−(A1 − λ(1)I)y

(3)
i + λ

(2)
i y

(2)
i + λ

(3)
i y

(1)
i + λ

(4)
i y

(0)
i 〉 = 0 (i �= j),

thereby fully determining

y
(2)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
0
0
−1

⎤
⎥⎥⎦ .

Subsequent application of the Dalgarno-Stewart identities yields

λ
(4)
1 = 〈y(1)

1 , (A1 − λ(1)I)y
(2)
1 〉 − λ

(2)
1 〈y

(1)
1 , y

(1)
1 〉 = 0,
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λ
(5)
1 = 〈y(2)

1 , (A1 − λ(1)I)y
(2)
1 〉 − 2λ

(2)
1 〈y

(2)
1 , y

(1)
1 〉 − λ

(3)
1 〈y

(1)
1 , y

(1)
1 〉 = 0,

and

λ
(4)
2 = 〈y(1)

2 , (A1 − λ(1)I)y
(2)
2 〉 − λ

(2)
2 〈y

(1)
2 , y

(1)
2 〉 = 0,

λ
(5)
2 = 〈y(2)

2 , (A1 − λ(1)I)y
(2)
2 〉 − 2λ

(2)
2 〈y

(2)
2 , y

(1)
2 〉 − λ

(3)
2 〈y

(1)
2 , y

(1)
2 〉 = 2,

and

λ
(4)
3 = 〈y(1)

3 , (A1 − λ(1)
3 I)y

(2)
3 〉 − λ

(2)
3 〈y

(1)
3 , y

(1)
3 〉 = 0,

λ
(5)
3 = 〈y(2)

3 , (A1 − λ(1)
3 I)y

(2)
3 〉 − 2λ

(2)
3 〈y

(2)
3 , y

(1)
3 〉 − λ

(3)
3 〈y

(1)
3 , y

(1)
3 〉 = 0.

3.2 Analytic Perturbation

A comprehensive treatment of linear Rayleigh-Schrödinger [87, 101] per-
turbation theory for the symmetric matrix eigenvalue problem based upon the
Moore-Penrose pseudoinverse was provided in the previous section. It is the
express intent of the present section to extend this technique to analytic per-
turbations of the symmetric eigenvalue problem. The origin of such problems
in the analysis of electromechanical systems is discussed in [99].

Mathematically, we have a discretized differential operator embodied in a
real symmetric matrix, A0, which is subjected to a small symmetric perturba-
tion due to physical inhomogeneities which is analytic in the small parameter
ε, A(ε) = A0 + εA1 + ε2A2 + · · · . The Rayleigh-Schrödinger procedure pro-
duces approximations to the eigenvalues and eigenvectors of A by a sequence
of successively higher order corrections to the eigenvalues and eigenvectors of
A0.

The difficulty with standard treatments of this procedure [17] is that the
eigenvector corrections are expressed in a form requiring the complete collec-
tion of eigenvectors of A0. For large matrices this is clearly an undesirable
state of affairs. Consideration of the thorny issue of multiple eigenvalues of A0

[42] only serves to exacerbate this difficulty.
This malady can be remedied by expressing the Rayleigh-Schrödinger pro-

cedure in terms of the Moore-Penrose pseudoinverse [106]. This permits these
corrections to be computed knowing only the eigenvectors of A0 corresponding
to the eigenvalues of interest. In point of fact, the pseudoinverse need not be
explicitly calculated since only pseudoinverse-vector products are required. In
turn, these may be efficiently calculated by a combination of QR-factorization
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and Gaussian elimination. However, the formalism of the pseudoinverse pro-
vides a concise formulation of the procedure and permits ready analysis of
theoretical properties of the algorithm.

Since the present section is only concerned with the real symmetric case, the
existence of a complete set of orthonormal eigenvectors is assured [43, 81, 114].
The much more difficult case of linear perturbation of defective matrices has
been considered elsewhere [48]. Moreover, we only consider the computational
aspects of this procedure. Existence of the relevant perturbation expansions
has been rigorously established in [35, 47, 98].

3.2.1 Nondegenerate Case

Consider the eigenvalue problem

Axi = λixi (i = 1, . . . , n), (3.31)

where A is real, symmetric, n × n matrix with distinct eigenvalues, λi (i =
1, . . . , n). Under these assumptions the eigenvalues are real and the corre-
sponding eigenvectors, xi (i = 1, . . . , n), are guaranteed to be orthogonal
[81, 99, 106].

Next (with ε �= 0 a sufficiently small real perturbation parameter), let

A(ε) =

∞∑
k=0

εkAk, (3.32)

where Ak (k = 1, . . . ,∞) are likewise real and symmetric but A0 may now
possess multiple eigenvalues (called degeneracies in the physics literature). The
root cause of such degeneracy is typically the presence of some underlying
symmetry. Any attempt to weaken the assumption on the eigenstructure of A
leads to a Rayleigh-Schrödinger iteration that never terminates [35, p. 92]. In
the remainder of this section, we consider the nondegenerate case where the
unperturbed eigenvalues, λ

(0)
i (i = 1, . . . , n), are all distinct. Consideration of

the degenerate case is deferred to the next section.
Under the above assumptions, it is shown in [35, 47, 98] that the eigenvalues

and eigenvectors of A possess the respective perturbation expansions,

λi(ε) =
∞∑

k=0

εkλ
(k)
i ; xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . , n), (3.33)

for sufficiently small ε (see Appendix A). Clearly, the zeroth-order terms,

{λ(0)
i ; x

(0)
i } (i = 1, . . . , n), are the eigenpairs of the unperturbed matrix A0.

I.e.,

(A0 − λ(0)
i I)x

(0)
i = 0 (i = 1, . . . , n). (3.34)



76 Symmetric Eigenvalue Problem

The unperturbed mutually orthogonal eigenvectors, x
(0)
i (i = 1, . . . , n), are

assumed to have been normalized to unity so that λ
(0)
i = 〈x(0)

i , A0x
(0)
i 〉.

Substitution of Equations (3.32) and (3.33) into Equation (3.31) yields the
recurrence relation

(A0 − λ(0)
i I)x

(k)
i = −

k−1∑
j=0

(Ak−j − λ(k−j)
i I)x

(j)
i , (3.35)

for (k = 1, . . . ,∞; i = 1, . . . , n). For fixed i, solvability of Equation (3.35)

requires that its right hand side be orthogonal to x
(0)
i for all k. Thus, the value

of x
(j)
i determines λ

(j+1)
i . Specifically,

λ
(j+1)
i =

j∑
l=0

〈x(0)
i , Aj−l+1x

(l)
i 〉, (3.36)

where we have employed the so-called intermediate normalization that x
(k)
i

shall be chosen to be orthogonal to x
(0)
i for k = 1, . . . ,∞. This is equivalent to

〈x(0)
i , xi(ε)〉 = 1 and this normalization will be used throughout the remainder

of this work.
For linear matrix perturbations, A = A0 + εA1, a beautiful result due

to Dalgarno and Stewart [27] (sometimes incorrectly attributed to Wigner in
the physics literature [113, p. 5]) says that much more is true: The value of

the eigenvector correction x
(j)
i , in fact, determines the eigenvalue corrections

through λ
(2j+1)
i . For analytic matrix perturbations, Equation (3.32), this may

be generalized via the following constructive procedure which heavily exploits
the symmetry of Ak (k = 1, . . . ,∞).

We commence by observing that

λ
(k)
i = 〈x(0)

i , (A1 − λ(1)
i I)x

(k−1)
i 〉+

∑k−2
l=0 〈x

(0)
i , Ak−lx

(l)
i 〉

= 〈x(k−1)
i , (A1 − λ(1)

i I)x
(0)
i 〉+

∑k−2
l=0 〈x

(0)
i , Ak−lx

(l)
i 〉

= −〈x(k−1)
i , (A0 − λ(0)

i I)x
(1)
i 〉+

∑k−2
l=0 〈x

(0)
i , Ak−lx

(l)
i 〉

= −〈x(1)
i , (A0 − λ(0)

i I)x
(k−1)
i 〉+

∑k−2
l=0 〈x

(0)
i , Ak−lx

(l)
i 〉

= 〈x(1)
i , (A1 − λ(1)

i I)x
(k−2)
i 〉+ 〈x(0)

i , A2x
(k−2)
i 〉

+
∑k−3

l=0 [〈x(1)
i , (Ak−l−1 − λ(k−l−1)

i I)x
(l)
i 〉+ 〈x

(0)
i , Ak−lx

(l)
i 〉]. (3.37)

Continuing in this fashion, we eventually arrive at, for odd k = 2j + 1 (j =
0, 1, . . . ),

λ
(2j+1)
i =

j∑
μ=0

[〈x(0)
i , A2j−μ+1x

(μ)
i 〉+

j∑
ν=1

〈x(ν)
i , (A2j−μ−ν+1 − λ(2j−μ−ν+1)

i I)x
(μ)
i 〉].

(3.38)
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while, for even k = 2j (j = 1, 2, . . . ),

λ
(2j)
i =

j∑
μ=0

[〈x(0)
i , A2j−μx

(μ)
i 〉+

j−1∑
ν=1

〈x(ν)
i , (A2j−μ−ν − λ(2j−μ−ν)

i I)x
(μ)
i 〉], (3.39)

This important pair of equations will henceforth be referred to as the gener-
alized Dalgarno-Stewart identities.

The eigenvector corrections are determined recursively from Equation (3.35)
as

x
(k)
i = (A0 − λ(0)

i I)†[−
k−1∑
j=0

(Ak−j − λ(k−j)
i I)x

(j)
i ], (3.40)

for (k = 1, . . . ,∞; i = 1, . . . , n), where (A0−λ(0)
i I)† denotes the Moore-Penrose

pseudoinverse [106] of (A0 − λ(0)
i I) and intermediate normalization has been

employed.

3.2.2 Degenerate Case

When the matrix A0 possesses multiple eigenvalues (the so-called degen-
erate case), the above straightforward analysis for the nondegenerate case en-
counters serious complications. This is a consequence of the fact that, in this
new case, Rellich’s Theorem [98, pp. 42-45] guarantees the existence of the
perturbation expansions, Equation (3.33), only for certain special unperturbed
eigenvectors. These special unperturbed eigenvectors cannot be specified a
priori but must instead emerge from the perturbation procedure itself (see
Appendix A).

Furthermore, the higher order corrections to these special unperturbed
eigenvectors are more stringently constrained than previously since they must
be chosen so that Equation (3.35) is always solvable. I.e., they must be chosen
so that the right hand side of Equation (3.35) is always orthogonal to the entire
eigenspace associated with the multiple eigenvalue in question.

Thus, without any loss of generality, suppose that λ
(0)
1 = λ

(0)
2 = · · · =

λ
(0)
m = λ(0) is just such an eigenvalue of multiplicity m with corresponding

known orthonormal eigenvectors x
(0)
1 , x

(0)
2 , . . . , x

(0)
m . Then, we are required to

determine appropriate linear combinations

y
(0)
i = a

(i)
1 x

(0)
1 + a

(i)
2 x

(0)
2 + · · ·+ a(i)

m x
(0)
m (i = 1, . . . , m) (3.41)

so that the expansions, Equation (3.33), are valid with x
(k)
i replaced by y

(k)
i .

In point of fact, the remainder of this section will assume that xi has
been replaced by yi in Equations (3.33)-(3.40). Moreover, the higher
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order eigenvector corrections, y
(k)
i , must be suitably determined. Since we

desire that {y(0)
i }mi=1 likewise be orthonormal, we require that

a
(μ)
1 a

(ν)
1 + a

(μ)
2 a

(ν)
2 + · · ·+ a(μ)

m a(ν)
m = δμ,ν . (3.42)

Recall that we have assumed throughout that the perturbed matrix, A(ε),
itself has distinct eigenvalues, so that eventually all such degeneracies will be
fully resolved. What significantly complicates matters is that it is not known
beforehand at what stages portions of the degeneracy will be resolved.

In order to bring order to a potentially calamitous situation, we will begin
by first considering the case where the degeneracy is fully resolved at first
order. Only then do we move on to study the case where the degeneracy is
completely and simultaneously resolved at Nth order. Finally, we will have laid
sufficient groundwork to permit treatment of the most general case of mixed
degeneracy where resolution occurs across several different orders. This seems
preferable to presenting an impenetrable collection of opaque formulae.

First Order Degeneracy

We first dispense with the case of first order degeneracy wherein λ
(1)
i (i =

1. . . . , m) are all distinct. In this event, we determine {λ(1)
i ; y

(0)
i }mi=1 by insisting

that Equation (3.35) be solvable for k = 1 and i = 1, . . . , m. In order for this
to obtain, it is both necessary and sufficient that, for each fixed i,

〈x(0)
μ , (A1 − λ(1)

i I)y
(0)
i 〉 = 0 (μ = 1, . . . , m). (3.43)

Inserting Equation (3.41) and invoking the orthonormality of {x(0)
μ }mμ=1, we

arrive at, in matrix form,⎡
⎢⎣ 〈x

(0)
1 , A1x

(0)
1 〉 · · · 〈x

(0)
1 , A1x

(0)
m 〉

...
. . .

...

〈x(0)
m , A1x

(0)
1 〉 · · · 〈x

(0)
m , A1x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(1)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ . (3.44)

Thus, each λ
(1)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (1)x

(0)
ν 〉 (μ, ν = 1, . . . , m) where

M (1) := A1.
By assumption, the symmetric matrix M has m distinct real eigenvalues

and hence orthonormal eigenvectors described by Equation (3.42). These, in
turn, may be used in concert with Equation (3.41) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by Equation (3.36) the

identities

λ
(1)
i = 〈y(0)

i ,M (1)y
(0)
i 〉 (i = 1, . . . , m). (3.45)
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Furthermore, the combination of Equations (3.42) and (3.44) yield

〈y(0)
i ,M (1)y

(0)
j 〉 = 0 (i �= j). (3.46)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ 2), may be obtained from the

generalized Dalgarno-Stewart identities.
Whenever Equation (3.35) is solvable, we will express its solution as

y
(k)
i = ŷ

(k)
i + β

(i)
1,ky

(0)
1 + β

(i)
2,ky

(0)
2 + · · ·+ β

(i)
m,ky

(0)
m (i = 1, . . . , m) (3.47)

where ŷ
(k)
i := (A0 − λ(0)I)†[−

∑k−1
j=0(Ak−j − λ

(k−j)
i I)x

(j)
i ] has no components

in the {y(0)
j }mj=1 directions. In light of intermediate normalization, we have

β
(i)
i,k = 0 (i = 1, . . . , m). Furthermore, β

(i)
j,k (i �= j) are to be determined from

the condition that Equation (3.35) be solvable for k ← k+1 and i = 1, . . . , m.
Since, by design, Equation (3.35) is solvable for k = 1, we may proceed

recursively. After considerable algebraic manipulation, the end result is

β
(i)
j,k =

〈y(0)
j ,M (1)ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+1)
i β

(i)
j,l +

∑k−1
l=0 〈y

(0)
j , Ak−l+1y

(l)
i 〉

λ
(1)
i − λ

(1)
j

(i �= j).

(3.48)

The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (3.35) for k ← k + 1.

Nth Order Degeneracy

We now consider the case of Nth order degeneracy which is characterized
by the conditions λ

(j)
1 = λ

(j)
2 = · · · = λ

(j)
m = λ(j) (j = 0, . . . , N − 1) while

λ
(N)
i (i = 1, . . . , m) are all distinct. Thus, even though λ(j) (j = 0, . . . , N − 1)

are determinate, {y(0)
i }mi=1 are still indeterminate after enforcing solvability of

Equation (3.35) for k = N − 1.

Hence, we will determine {λ(N)
i ; y

(0)
i }mi=1 by insisting that Equation (3.35)

be solvable for k = N and i = 1, . . . , m. This requirement is equivalent to the
condition that, for each fixed i,

〈x(0)
μ ,−(A1 − λ(1)I)y

(N−1)
i − · · · − (AN − λ(N)I)y

(0)
i 〉 = 0 (μ = 1, . . . , m).

(3.49)

Inserting Equation (3.41) as well as Equation (3.47) with k = 1, . . . , N − 1

and invoking the orthonormality of {x(0)
μ }mμ=1, we arrive at, in matrix form,⎡

⎢⎣ 〈x
(0)
1 ,M (N)x

(0)
1 〉 · · · 〈x

(0)
1 ,M (N)x

(0)
m 〉

...
. . .

...

〈x(0)
m ,M (N)x

(0)
1 〉 · · · 〈x

(0)
m ,M (N)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(N)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ , (3.50)
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where M (N) is specified by the recurrence relation:

M (1) = A1, (3.51)

M (N) = (λ(N−1)I −M (N−1))(A0 − λ(0)I)†(A1 − λ(1)I)

−
N−1∑
l=2

(λ(N−l)I −M (N−l))(A0 − λ(0)I)†(Al − λ(l)I) + AN

(N = 2, 3, . . . ). (3.52)

Thus, each λ
(N)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (N)x

(0)
ν 〉 (μ, ν = 1, . . . , m). It is im-

portant to note that, while this recurrence relation guarantees that {λ(N)
i ; y

(0)
i }mi=1

are well defined by enforcing solvability of Equation (3.35) for k = N , M (N)

need not be explicitly computed.
By assumption, the symmetric matrix M has m distinct real eigenvalues

and hence orthonormal eigenvectors described by Equation (3.42). These, in
turn, may be used in concert with Equation (3.41) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by the combination of

Equations (3.42) and (3.50) the identities

〈y(0)
i ,M (N)y

(0)
j 〉 = λ

(N)
i · δi,j. (3.53)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ N +1), may be obtained from

the generalized Dalgarno-Stewart identities.
Analogous to the cases of first order degeneracy, β

(i)
j,k (i �= j) of Equation

(3.47) are to be determined from the condition that Equation (3.35) be solvable
for k ← k +N and i = 1, . . . , m. Since, by design, Equation (3.35) is solvable
for k = 1, . . . , N , we may proceed recursively. After considerable algebraic
manipulation, the end result is

β
(i)
j,k =

〈y(0)
j ,M (N)ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+N)
i β

(i)
j,l +

∑k+N−2
l=0 〈y(0)

j , Ak−l+Ny
(l)
i 〉

λ
(N)
i − λ(N)

j

(i �= j).

(3.54)

The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (3.35) for k ← k +N .

Mixed Degeneracy

Finally, we arrive at the most general case of mixed degeneracy wherein
a degeneracy (multiple eigenvalue) is partially resolved at more than a single
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order. The analysis expounded upon in the previous sections comprises the
core of the procedure for the complete resolution of mixed degeneracy. The
following modifications suffice.

In the Rayleigh-Schrödinger procedure, whenever an eigenvalue branches
by reduction in multiplicty at any order, one simply replaces the xμ of Equation
(3.50) by any convenient orthonormal basis zμ for the reduced eigenspace. Of
course, this new basis is composed of some a priori unknown linear combination
of the original basis. Equation (3.54) will still be valid where N is the order
of correction where the degeneracy between λi and λj is resolved. Thus, in

general, if λi is degenerate to Nth order then y
(k)
i will be fully determined by

enforcing the solvability of Equation (3.35) with k ← k +N .
We now present an example which illustrates the general procedure. This

example features a simple (i.e. nondegenerate) eigenvalue together with a
triple eigenvalue which branches into a single first order degenerate eigenvalue
together with a pair of second order degenerate eigenvalues.

Example 3.2.1. Define

A(ε) =

⎡
⎢⎢⎣

sin (ε) 0 0 sin (ε)
0 sin (ε) 0 0
0 0 0 0

sin (ε) 0 0 1

⎤
⎥⎥⎦ ⇒

A0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

1 0 0 1
0 1 0 0
0 0 0 0
1 0 0 0

⎤
⎥⎥⎦ ,

A3 =

⎡
⎢⎢⎣
−1/6 0 0 −1/6

0 −1/6 0 0
0 0 0 0
−1/6 0 0 0

⎤
⎥⎥⎦ , A5 =

⎡
⎢⎢⎣

1/120 0 0 1/120
0 1/120 0 0
0 0 0 0

1/120 0 0 0

⎤
⎥⎥⎦ ,

with A2 = A4 = 0.
Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = ε− 1

6
ε3 +

1

120
ε5 − · · · , λ2(ε) = ε− ε2 − 7

6
ε3 +

1

3
ε4 +

301

120
ε5 + · · · ,

λ3(ε) = 0 , λ4(ε) = 1 + ε2 + ε3 − 1

3
ε4 − 5

2
ε5 + · · · .
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Applying the nondegenerate Rayleigh-Schrödinger procedure developed above
to

λ
(0)
4 = 1; x

(0)
4 =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ ,

we arrive at (using Equation (3.38) with j = 0)

λ
(1)
4 = 〈x(0)

4 , A1x
(0)
4 〉 = 0.

Solving

(A0 − λ(0)
4 I)x

(1)
4 = −(A1 − λ(1)

4 I)x
(0)
4

produces

x
(1)
4 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

where we have enforced the intermediate normalization 〈x(1)
4 , x

(0)
4 〉 = 0. In

turn, the generalized Dalgarno-Stewart identities yield

λ
(2)
4 = 〈x(0)

4 , A2x
(0)
4 〉+ 〈x

(0)
4 , A1x

(1)
4 〉 = 1,

and

λ
(3)
4 = 〈x(0)

4 , A3x
(0)
4 〉+ 2〈x(0)

4 , A2x
(1)
4 〉+ 〈x

(1)
4 , (A1 − λ(1)

4 I)x
(1)
4 〉 = 1.

Solving

(A0 − λ(0)
4 I)x

(2)
4 = −(A1 − λ(1)

4 I)x
(1)
4 − (A2 − λ(2)

4 I)x
(0)
4

produces

x
(2)
4 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

where we have enforced the intermediate normalization 〈x(2)
4 , x

(0)
4 〉 = 0. Again,

the generalized Dalgarno-Stewart identities yield

λ
(4)
4 = 〈x(0)

4 , A4x
(0)
4 〉+ 2〈x(0)

4 , A3x
(1)
4 〉+ 〈x

(1)
4 , (A2 − λ(2)

4 I)x
(1)
4 〉
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+〈x(1)
4 , (A1 − λ(1)

4 I)x
(2)
4 〉 = −1

3
,

and

λ
(5)
4 = 〈x(0)

4 , A5x
(0)
4 〉+ 2〈x(0)

4 , A4x
(1)
4 〉+ 2〈x(0)

4 , A3x
(2)
4 〉

+〈x(1)
4 , (A3 − λ(3)

4 I)x
(1)
4 〉+ 2〈x(2)

4 , (A2 − λ(2)
4 I)x

(1)
4 〉+ 〈x

(2)
4 , (A1 − λ(1)

4 I)x
(2)
4 〉 = −5

2
.

We now turn to the mixed degeneracy amongst λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = λ(0) =

0. With the choice

x
(0)
1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ; x

(0)
2 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ; x

(0)
3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,

we have from Equation (3.44), which enforces solvability of Equation (3.35)
for k = 1,

M =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ ,

with eigenvalues λ
(1)
1 = λ

(1)
2 = λ(1) = 1, λ

(1)
3 = 0.

Thus, y
(0)
1 and y

(0)
2 are indeterminate while⎡
⎢⎣ a

(3)
1

a
(3)
2

a
(3)
3

⎤
⎥⎦ =

⎡
⎣ 0

0
1

⎤
⎦⇒ y

(0)
3 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ .

Introducing the new basis

z
(0)
1 =

⎡
⎢⎢⎣

1/
√

2

1/
√

2
0
0

⎤
⎥⎥⎦ ; z

(0)
2 =

⎡
⎢⎢⎣

1/
√

2

−1/
√

2
0
0

⎤
⎥⎥⎦ ,

we now seek y
(0)
1 and y

(0)
2 in the form

y
(0)
1 = b

(1)
1 z

(0)
1 + b

(1)
2 z

(0)
2 ; y

(0)
2 = b

(2)
1 z

(0)
1 + b

(2)
2 z

(0)
2 ,

with orthonormal {[b(1)
1 , b

(1)
2 ]T , [b

(2)
1 , b

(2)
2 ]T}.
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Solving Equation (3.35) for k = 1,

(A0 − λ(0)I)y
(1)
i = −(A1 − λ(1)

i I)y
(0)
i (i = 1, 2, 3),

produces

y
(1)
1 =

⎡
⎢⎢⎣

α1

β1

γ1

−(b
(1)
1 + b

(1)
2 )/
√

2

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

α2

β2

γ2

−(b
(2)
1 + b

(2)
2 )/
√

2

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣
α3

β3

γ3

0

⎤
⎥⎥⎦ .

Now, enforcing solvability of Equation (3.35) for k = 2,

−(A1 − λ(1)
i I)y

(1)
i − (A2 − λ(2)

i I)y
(0)
i ⊥ {z

(0)
1 , z

(0)
2 , y

(0)
3 } (i = 1, 2, 3),

we arrive at

M =

[
−1/2 −1/2
−1/2 −1/2

]
,

with eigenpairs

λ
(2)
1 = 0,

[
b
(1)
1

b
(1)
2

]
=

[
1/
√

2

−1/
√

2

]
; λ

(2)
2 = −1,

[
b
(2)
1

b
(2)
2

]
=

[
1/
√

2

1/
√

2

]
⇒

y
(0)
1 =

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ; y

(0)
2 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ ,

and

y
(1)
1 =

⎡
⎢⎢⎣
α1

0
0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

0
β2

0
−1

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

as well as λ
(2)
3 = 0, where we have invoked intermediate normalization. Observe

that y
(1)
1 and y

(1)
2 have not yet been fully determined while y

(1)
3 has indeed been

completely specified.
Solving Equation (3.35) for k = 2,

(A0 − λ(0)I)y
(2)
i = −(A1 − λ(1)

i I)y
(1)
i − (A2 − λ(2)

i I)y
(0)
i (i = 1, 2, 3),
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produces

y
(2)
1 =

⎡
⎢⎢⎣

a1

0
c1
−α1

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
b2
c2
−1

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣
a3

b3
0
0

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We next enforce solvability of Equation (3.35) for k = 3,

〈y(0)
j ,−(A1 − λ(1)

i I)y
(2)
i − (A2 − λ(2)

i I)y
(1)
i − (A3 − λ(3)

i I)y
(0)
i 〉 = 0 (i �= j),

thereby producing

y
(1)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

0
0
0
−1

⎤
⎥⎥⎦ ,

and

y
(2)
1 =

⎡
⎢⎢⎣
a1

0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
b2
0
−1

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

With y
(1)
i (i = 1, 2, 3) now fully determined, the generalized Dalgarno-

Stewart identities yield

λ
(3)
1 = −1

6
, λ

(3)
2 = −7

6
, λ

(3)
3 = 0.

Solving Equation (3.35) for k = 3,

(A0 − λ(0)I)y
(3)
i = −(A1 − λ(1)I)y

(2)
i − (A2 − λ(2)

i I)y
(1)
i − (A3 − λ(3)

i I)y
(0)
i (i = 1, 2),

produces

y
(3)
1 =

⎡
⎢⎢⎣

u1

0
w1

−a1

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

0
v2

w2

1/6

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We now enforce solvability of Equation (3.35) for k = 4 (i �= j),

〈y(0)
j ,−(A1 − λ(1)I)y

(3)
i − (A2 − λ(2)

i I)y
(2)
i − (A3 − λ(3)

i I)y
(1)
i − (A4 − λ(4)

i I)y
(0)
i 〉 = 0,



86 Symmetric Eigenvalue Problem

thereby fully determining

y
(2)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
0
0
−1

⎤
⎥⎥⎦ .

Subsequent application of the generalized Dalgarno-Stewart identities yields

λ
(4)
1 = 0, λ

(5)
1 =

1

120
, λ

(4)
2 =

1

3
, λ

(5)
2 =

301

120
, λ

(4)
3 = 0, λ

(5)
3 = 0.



Chapter 4

The Symmetric Definite
Generalized Eigenvalue Problem

In this chapter, a comprehensive treatment of Rayleigh-Schrödinger per-
turbation theory for the symmetric definite generalized eigenvalue problem
[87, 101] is furnished with emphasis on the degenerate problem. Section 4.1
concerns linear perturbations [64]. The treatment is simply based upon the
Moore-Penrose pseudoinverse thus constituting the natural generalization of
the procedure for the standard symmetric eigenvalue problem presented in Sec-
tion 3.1. In addition to providing a concise matrix-theoretic formulation of this
procedure, it also provides for the explicit determination of that stage of the
algorithm where each higher order eigenvector correction becomes fully deter-
mined. Along the way, we generalize the Dalgarno-Stewart identities [27] from
the standard to the generalized eigenvalue problem. The general procedure is
illustrated by an extensive example.

Section 4.2 concerns analytic perturbations [65]. Again, the treatment
is simply based upon the Moore-Penrose pseudoinverse thus constituting the
natural generalization of the procedure for linear perturbation of the symmet-
ric generalized eigenvalue problem presented in Section 4.1. Along the way,
we generalize the Dalgarno-Stewart identities [27] from linear perturbation of
the standard symmetric eigenvalue problem to analytic perturbation of the
symmetric definite generalized eigenvalue problem. An extensive example il-
lustrates the general procedure.

4.1 Linear Perturbation

A comprehensive treatment of Rayleigh-Schrödinger [87, 101] perturbation
theory for the symmetric matrix eigenvalue problem based upon the Moore-
Penrose pseudoinverse was provided in the previous chapter. It is the express
intent of the present section to extend this technique to linear perturbation

87
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of the symmetric definite generalized eigenvalue problem. The origin of such
problems in the analysis of electromechanical systems is discussed in [99].

Mathematically, we have a discretized differential operator embodied in a
real symmetric matrix pair, (A0, B0) with B0 positive definite, which is sub-
jected to a small symmetric linear perturbation, (A,B) = (A0 + εA1, B0 + εB1)
with B also positive definite, due to physical inhomogeneities. The Rayleigh-
Schrödinger procedure produces approximations to the eigenvalues and eigen-
vectors of (A,B) by a sequence of successively higher order corrections to the
eigenvalues and eigenvectors of (A0, B0). Observe that B1 = 0 permits reduc-
tion to the standard eigenvalue problem (B−1A0 + εB−1A1, I). However, this
destroys the very symmetry which is the linchpin of the Rayleigh-Schrödinger
procedure.

The difficulty with standard treatments of this procedure [17] is that the
eigenvector corrections are expressed in a form requiring the complete collec-
tion of eigenvectors of (A0, B0). For large matrices this is clearly an undesirable
state of affairs. Consideration of the thorny issue of multiple eigenvalues of
(A0, B0) [42] only serves to exacerbate this difficulty.

This malady can be remedied by expressing the Rayleigh-Schrödinger pro-
cedure in terms of the Moore-Penrose pseudoinverse [106]. This permits these
corrections to be computed knowing only the eigenvectors of (A0, B0) corre-
sponding to the eigenvalues of interest. In point of fact, the pseudoinverse
need not be explicitly calculated since only pseudoinverse-vector products are
required. In turn, these may be efficiently calculated by a combination of
QR-factorization and Gaussian elimination. However, the formalism of the
pseudoinverse provides a concise formulation of the procedure and permits
ready analysis of theoretical properties of the algorithm.

Since the present section is only concerned with the real symmetric definite
case, the existence of a complete set of B-orthonormal eigenvectors is assured
[43, 81, 114]. The much more difficult case of defective matrices has been
considered in [48] for the standard eigenvalue problem. Moreover, we only
consider the computational aspects of this procedure. Existence of the relevant
perturbation expansions follows from the rigorous theory developed in [35, 47,
98] (see Appendix A).

4.1.1 Nondegenerate Case

Consider the generalized eigenvalue problem

Axi = λiBxi (i = 1, . . . , n), (4.1)

where A and B are real, symmetric, n× n matrices and B is further assumed
to be positive definite. We also assume that this matrix pair has distinct
eigenvalues, λi (i = 1, . . . , n). Under these assumptions the eigenvalues are
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real and the corresponding eigenvectors, xi (i = 1, . . . , n), are guaranteed to
be B-orthogonal [81, 99, 106].

Next (with ε �= 0 a sufficiently small real perturbation parameter), let

A(ε) = A0 + εA1; B(ε) = B0 + εB1, (4.2)

where, likewise, A0 is real and symmetric and B0 is real, symmetric and posi-
tive definite, except that now the matrix pair, (A0, B0), may possess multiple
eigenvalues (called degeneracies in the physics literature). The root cause of
such degeneracy is typically the presence of some underlying symmetry. Any
attempt to weaken the assumption on the eigenstructure of (A,B) leads to
a Rayleigh-Schrödinger iteration that never terminates [35, p. 92]. In the
remainder of this section, we consider the nondegenerate case where the un-
perturbed eigenvalues, λ

(0)
i (i = 1, . . . , n), are all distinct. Consideration of

the degenerate case is deferred to the next section.
Under the above assumptions, it is shown in Appendix A that the eigenval-

ues and eigenvectors of (A,B) possess the respective perturbation expansions,

λi(ε) =

∞∑
k=0

εkλ
(k)
i ; xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . , n), (4.3)

for sufficiently small ε (see Appendix A). Using the Cholesky factorization,
B = LLT , this theory may be straightforwardly extended to accomodate arbi-
trary symmetric positive definite B [99]. Importantly, it is not necessary to ac-
tually calculate the Cholesky factorization ofB in the computational procedure
developed below. Clearly, the zeroth-order terms, {λ(0)

i ; x
(0)
i } (i = 1, . . . , n),

are the eigenpairs of the unperturbed matrix pair, (A0, B0). I.e.,

(A0 − λ(0)
i B0)x

(0)
i = 0 (i = 1, . . . , n). (4.4)

The unperturbed mutually B0-orthogonal eigenvectors, x
(0)
i (i = 1, . . . , n), are

assumed to have been B0-normalized to unity so that λ
(0)
i = 〈x(0)

i , A0x
(0)
i 〉.

Substitution of Equations (4.2) and (4.3) into Equation (4.1) yields the
recurrence relation

(A0 − λ(0)
i B0)x

(k)
i = −(A1 − λ(1)

i B0 − λ(0)
i B1)x

(k−1)
i +

k−2∑
j=0

(λ
(k−j)
i B0 + λ

(k−j−1)
i B1)x

(j)
i ,

(4.5)

for (k = 1, . . . ,∞; i = 1, . . . , n). For fixed i, solvability of Equation (4.5)

requires that its right hand side be orthogonal to x
(0)
i for all k. Thus, the value

of x
(j)
i determines λ

(j+1)
i . Specifically,

λ
(j+1)
i = 〈x(0)

i , A1x
(j)
i 〉 −

j∑
l=0

λ
(j−l)
i 〈x(0)

i , B1x
(l)
i 〉, (4.6)
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where we have employed the so-called intermediate normalization that
x

(k)
i shall be chosen to be B0-orthogonal to x

(0)
i for k = 1, . . . ,∞. This is

equivalent to 〈x(0)
i , B0xi(ε)〉 = 1 and this normalization will be used throughout

the remainder of this work.

For the standard eigenvalue problem, B = I, a beautiful result due to
Dalgarno and Stewart [27] (sometimes incorrectly attributed to Wigner in the
physics literature [113, p. 5]) says that much more is true: The value of

the eigenvector correction x
(j)
i , in fact, determines the eigenvalue corrections

through λ
(2j+1)
i . For the generalized eigenvalue problem, Equation (4.1), this

may be generalized by the following constructive procedure which heavily ex-
ploits the symmetry of A0, A1, B0, and B1.

We commence by observing that

λ
(k)
i = 〈x(0)

i , (A1 − λ(1)
i B0 − λ(0)

i B1)x
(k−1)
i 〉 −

∑k−1
l=1 λ

(l)
i 〈x

(0)
i , B1x

(k−l−1)
i 〉

= 〈x(k−1)
i , (A1 − λ(1)

i B0 − λ(0)
i B1)x

(0)
i 〉 −

∑k−1
l=1 λ

(l)
i 〈x

(0)
i , B1x

(k−l−1)
i 〉

= −〈x(k−1)
i , (A0 − λ(0)

i B0)x
(1)
i 〉 −

∑k−1
l=1 λ

(l)
i 〈x

(0)
i , B1x

(k−l−1)
i 〉

= −〈x(1)
i , (A0 − λ(0)

i B0)x
(k−1)
i 〉 −

∑k−1
l=1 λ

(l)
i 〈x

(0)
i , B1x

(k−l−1)
i 〉

= 〈x(1)
i , (A1 − λ(1)

i B0 − λ(0)
i B1)x

(k−2)
i 〉 − λ(1)

i 〈x
(0)
i , B1x

(k−2)
i 〉

−
∑k−1

l=2 [〈x(1)
i , (λ

(l)
i B0 + λ

(l−1)
i B1)x

(k−l−1)
i 〉+ λ

(l)
i 〈x

(0)
i , B1x

(k−l−1)
i 〉].(4.7)

Continuing in this fashion, we eventually arrive at, for odd k = 2j + 1 (j =
0, 1, . . . ),

λ
(2j+1)
i = 〈x(j)

i , A1x
(j)
i 〉 −

j∑
μ=0

[λ
(2j−μ)
i 〈x(0)

i , B1x
(μ)
i 〉

+

j∑
ν=1

(λ
(2j+1−μ−ν)
i 〈x(ν)

i , B0x
(μ)
i 〉+ λ

(2j−μ−ν)
i 〈x(ν)

i , B1x
(μ)
i 〉)], (4.8)

while, for even k = 2j + 1 (j = 1, 2, . . . ),

λ
(2j)
i = 〈x(j−1)

i , A1x
(j)
i 〉 −

j∑
μ=0

[λ
(2j−1−μ)
i 〈x(0)

i , B1x
(μ)
i 〉

+

j−1∑
ν=1

(λ
(2j−μ−ν)
i 〈x(ν)

i , B0x
(μ)
i 〉+ λ

(2j−1−μ−ν)
i 〈x(ν)

i , B1x
(μ)
i 〉)]. (4.9)

This important pair of equations will henceforth be referred to as the gener-
alized Dalgarno-Stewart identities.
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The eigenvector corrections are determined recursively from Equation (4.5)
as

x
(k)
i = (A0 − λ(0)

i B0)
†[−(A1 − λ(1)

i B0 − λ(0)
i B1)x

(k−1)
i +

k−2∑
j=0

(λ
(k−j)
i B0 + λ

(k−j−1)
i B1)x

(j)
i ],

(4.10)

for (k = 1, . . . ,∞; i = 1, . . . , n), where (A0 − λ
(0)
i B0)

† denotes the Moore-

Penrose pseudoinverse [106] of (A0 − λ(0)
i B0) and intermediate normalization

has been employed.

4.1.2 Degenerate Case

When the matrix pair (A0, B0) possesses multiple eigenvalues (the so-called
degenerate case), the above straightforward analysis for the nondegenerate case
encounters serious complications. This is a consequence of the fact that, in this
new case, the Generalized Rellich’s Theorem [98, pp. 42-45] (see Appendix
A) guarantees the existence of the perturbation expansions, Equation (4.3),
only for certain special unperturbed eigenvectors. These special unperturbed
eigenvectors cannot be specified a priori but must instead emerge from the
perturbation procedure itself (see Appendix A).

Furthermore, the higher order corrections to these special unperturbed
eigenvectors are more stringently constrained than previously since they must
be chosen so that Equation (4.5) is always solvable. I.e., they must be chosen
so that the right hand side of Equation (5) is always orthogonal to the entire
eigenspace associated with the multiple eigenvalue in question.

Thus, without any loss of generality, suppose that λ
(0)
1 = λ

(0)
2 = · · · =

λ
(0)
m = λ(0) is just such an eigenvalue of multiplicity m with corresponding

known B0-orthonormal eigenvectors x
(0)
1 , x

(0)
2 , . . . , x

(0)
m . Then, we are required

to determine appropriate linear combinations

y
(0)
i = a

(i)
1 x

(0)
1 + a

(i)
2 x

(0)
2 + · · ·+ a(i)

m x
(0)
m (i = 1, . . . , m) (4.11)

so that the expansions, Equation (4.3), are valid with x
(k)
i replaced by y

(k)
i .

In point of fact, the remainder of this section will assume that xi

has been replaced by yi in Equations (4.3)-(4.10). Moreover, the higher

order eigenvector corrections, y
(k)
i , must be suitably determined. Since we

desire that {y(0)
i }mi=1 likewise be B0-orthonormal, we require that

a
(μ)
1 a

(ν)
1 + a

(μ)
2 a

(ν)
2 + · · ·+ a(μ)

m a(ν)
m = δμ,ν . (4.12)

Recall that we have assumed throughout that the perturbed matrix pair,
(A(ε), B(ε)), itself has distinct eigenvalues, so that eventually all such degen-
eracies will be fully resolved. What significantly complicates matters is that
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it is not known beforehand at what stages portions of the degeneracy will be
resolved.

In order to bring order to a potentially calamitous situation, we will begin
by first considering the case where the degeneracy is fully resolved at first
order. Only then do we move on to study the case where the degeneracy is
completely and simultaneously resolved at Nth order. Finally, we will have laid
sufficient groundwork to permit treatment of the most general case of mixed
degeneracy where resolution occurs across several different orders. This seems
preferable to presenting an impenetrable collection of opaque formulae.

First Order Degeneracy

We first dispense with the case of first order degeneracy wherein λ
(1)
i (i =

1. . . . , m) are all distinct. In this event, we determine {λ(1)
i ; y

(0)
i }mi=1 by insisting

that Equation (4.5) be solvable for k = 1 and i = 1, . . . , m. In order for this
to obtain, it is both necessary and sufficient that, for each fixed i,

〈x(0)
μ , (A1 − λ(1)

i B0 − λ(0)B1)y
(0)
i 〉 = 0 (μ = 1, . . . , m). (4.13)

Inserting Equation (4.11) and invoking the B0-orthonormality of {x(0)
μ }mμ=1,

we arrive at, in matrix form,⎡
⎢⎣ 〈x

(0)
1 , (A1 − λ(0)B1)x

(0)
1 〉 · · · 〈x

(0)
1 , (A1 − λ(0)B1)x

(0)
m 〉

...
. . .

...

〈x(0)
m , (A1 − λ(0)B1)x

(0)
1 〉 · · · 〈x

(0)
m , (A1 − λ(0)B1)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(1)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ .

(4.14)

Thus, each λ
(1)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (1)x

(0)
ν 〉 (μ, ν = 1, . . . , m) where

M (1) := A1 − λ(0)B1.
By assumption, the symmetric matrix M has m distinct real eigenvalues

and hence orthonormal eigenvectors described by Equation (4.12). These, in
turn, may be used in concert with Equation (4.11) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by Equation (4.6) the

identities

λ
(1)
i = 〈y(0)

i ,M (1)y
(0)
i 〉 (i = 1, . . . , m). (4.15)

Furthermore, the combination of Equations (4.12) and (4.14) yield

〈y(0)
i ,M (1)y

(0)
j 〉 = 0 (i �= j). (4.16)
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The remaining eigenvalue corrections, λ
(k)
i (k ≥ 2), may be obtained from the

generalized Dalgarno-Stewart identities.
Whenever Equation (4.5) is solvable, we will express its solution as

y
(k)
i = ŷ

(k)
i + β

(i)
1,ky

(0)
1 + β

(i)
2,ky

(0)
2 + · · ·+ β

(i)
m,ky

(0)
m (i = 1, . . . , m) (4.17)

where ŷ
(k)
i := (A0− λ(0)B0)

†[−(A1−λ(1)
i B0− λ(0)B1)y

(k−1)
i +

∑k−2
j=0(λ

(k−j)
i B0 +

λ
(k−j−1)
i B1)y

(j)
i ] has no components in the {y(0)

j }mj=1 directions. In light of

intermediate normalization, we have β
(i)
i,k = 0 (i = 1, . . . , m). Furthermore,

β
(i)
j,k (i �= j) are to be determined from the condition that Equation (4.5) be

solvable for k ← k + 1 and i = 1, . . . , m.
Since, by design, Equation (4.5) is solvable for k = 1, we may proceed

recursively. After considerable algebraic manipulation, the end result is

β
(i)
j,k =

〈y(0)
j ,M (1)ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+1)
i β

(i)
j,l −

∑k−1
l=0 λ

(k−l)
i 〈y(0)

j , B1y
(l)
i 〉

λ
(1)
i − λ

(1)
j

(i �= j).

(4.18)

The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (4.5) for k ← k + 1.

Nth Order Degeneracy

We now consider the case of Nth order degeneracy which is characterized
by the conditions λ

(j)
1 = λ

(j)
2 = · · · = λ

(j)
m = λ(j) (j = 0, . . . , N − 1) while

λ
(N)
i (i = 1, . . . , m) are all distinct. Thus, even though λ(j) (j = 0, . . . , N − 1)

are determinate, {y(0)
i }mi=1 are still indeterminate after enforcing solvability of

Equation (4.5) for k = N − 1.

Hence, we will determine {λ(N)
i ; y

(0)
i }mi=1 by insisting that Equation (4.5)

be solvable for k = N and i = 1, . . . , m. This requirement is equivalent to the
condition that, for each fixed i,

〈x(0)
μ ,−(A1 − λ(1)B0 − λ(0)B1)y

(N−1)
i + (λ(2)B0 + λ(1)B1)y

(N−2)
i + · · ·

+(λ
(N)
i B0 + λ(N−1)B1)y

(0)
i 〉 = 0 (μ = 1, . . . , m). (4.19)

Inserting Equation (4.11) as well as Equation (4.17) with k = 1, . . . , N − 1

and invoking the B0-orthonormality of {x(0)
μ }mμ=1, we arrive at, in matrix form,⎡

⎢⎣ 〈x
(0)
1 ,M (N)x

(0)
1 〉 · · · 〈x

(0)
1 ,M (N)x

(0)
m 〉

...
. . .

...

〈x(0)
m ,M (N)x

(0)
1 〉 · · · 〈x

(0)
m ,M (N)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(N)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ , (4.20)
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where M (N) is specified by the recurrence relation:

M (1) = A1 − λ(0)B1, (4.21)

M (N) = (λ(N−1)B0 −M (N−1))(A0 − λ(0)B0)
†(A1 − λ(1)B0 − λ(0)B1)

−
N−1∑
l=2

(λ(N−l)B0 −M (N−l))(A0 − λ(0)B0)
†(λ(l)B0 + λ(l−1)B1)− λ(N−1)B1

(N = 2, 3, . . . ).(4.22)

Thus, each λ
(N)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (N)x

(0)
ν 〉 (μ, ν = 1, . . . , m). It is im-

portant to note that, while this recurrence relation guarantees that {λ(N)
i ; y

(0)
i }mi=1

are well defined by enforcing solvability of Equation (4.5) for k = N , M (N)

need not be explicitly computed.

By assumption, the symmetric matrix M has m distinct real eigenvalues
and hence orthonormal eigenvectors described by Equation (4.12). These, in
turn, may be used in concert with Equation (4.11) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by the combination of

Equations (4.12) and (4.20) the identities

〈y(0)
i ,M (N)y

(0)
j 〉 = λ

(N)
i · δi,j. (4.23)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ N +1), may be obtained from

the generalized Dalgarno-Stewart identities.

Analogous to the case of first order degeneracy, β
(i)
j,k (i �= j) of Equation

(4.17) are to be determined from the condition that Equation (4.5) be solvable
for k ← k + N and i = 1, . . . , m. Since, by design, Equation (4.5) is solvable
for k = 1, . . . , N , we may proceed recursively. After considerable algebraic
manipulation, the end result is

β
(i)
j,k =

〈y(0)
j ,M (N)ŷ

(k)
i 〉 −

∑k−1
l=1 λ

(k−l+N)
i β

(i)
j,l −

∑k+N−2
l=0 λ

(k−l+N−1)
i 〈y(0)

j , B1y
(l)
i 〉

λ
(N)
i − λ(N)

j

(i �= j).

(4.24)

The existence of this formula guarantees that each y
(k)
i is uniquely determined

by enforcing solvability of Equation (4.5) for k ← k +N .
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Mixed Degeneracy

Finally, we arrive at the most general case of mixed degeneracy wherein
a degeneracy (multiple eigenvalue) is partially resolved at more than a single
order. The analysis expounded upon in the previous sections comprises the
core of the procedure for the complete resolution of mixed degeneracy. The
following modifications suffice.

In the Rayleigh-Schrödinger procedure, whenever an eigenvalue branches
by reduction in multiplicty at any order, one simply replaces the xμ of Equation
(4.20) by any convenient B0-orthonormal basis zμ for the reduced eigenspace.
Of course, this new basis is composed of some a priori unknown linear combi-
nation of the original basis. Equation (4.24) will still be valid where N is the
order of correction where the degeneracy between λi and λj is resolved. Thus,

in general, if λi is degenerate to Nth order then y
(k)
i will be fully determined

by enforcing the solvability of Equation (4.5) with k ← k +N .
We now present an example which illustrates the general procedure. This

example features a simple (i.e. nondegenerate) eigenvalue together with a
triple eigenvalue which branches into a single first order degenerate eigenvalue
together with a pair of second order degenerate eigenvalues.

Example 4.1.1. Define

A0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤
⎥⎥⎦ , A1 =

⎡
⎢⎢⎣

5 3 0 3
3 5 0 1
0 0 0 0
3 1 0 0

⎤
⎥⎥⎦ ;

B0 =

⎡
⎢⎢⎣

5 3 0 0
3 5 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ , B1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ .

Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = ε , λ2(ε) = ε− ε2 − ε3 + 2ε5 + · · · ,

λ3(ε) = 0 , λ4(ε) = 1 + ε2 + ε3 − 2ε5 + · · · .

Applying the nondegenerate Rayleigh-Schrödinger procedure developed above
to

λ
(0)
4 = 1; x

(0)
4 =

⎡
⎢⎢⎣

0
0
0

1/
√

2

⎤
⎥⎥⎦ ,
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we arrive at (using Equation (4.8) with j = 0)

λ
(1)
4 = 〈x(0)

4 , (A1 − λ(0)
4 B1)x

(0)
4 〉 = 0.

Solving

(A0 − λ(0)
4 B0)x

(1)
4 = −(A1 − λ(1)

4 B0 − λ(0)
4 B1)x

(0)
4

produces

x
(1)
4 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ,

where we have enforced the intermediate normalization 〈x(1)
4 , B0x

(0)
4 〉 = 0. In

turn, the generalized Dalgarno-Stewart identities yield

λ
(2)
4 = 〈x(0)

4 , (A1 − λ(0)
4 B1)x

(1)
4 〉 − λ

(1)
4 〈x

(0)
4 , B1x

(0)
4 〉 = 1,

and

λ
(3)
4 = 〈x(1)

4 , (A1 − λ(1)
4 B0 − λ(0)

4 B1)x
(1)
4 〉 − 2λ

(1)
4 〈x

(0)
4 , B1x

(1)
4 〉 − λ

(2)
4 〈x

(0)
4 , B1x

(0)
4 〉 = 1.

Solving

(A0 − λ(0)
4 B0)x

(2)
4 = −(A1 − λ(1)

4 B0 − λ(0)
4 B1)x

(1)
4 + (λ

(2)
4 B0 + λ

(1)
4 B1)x

(0)
4

produces

x
(2)
4 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ,

where we have enforced the intermediate normalization 〈x(2)
4 , B0x

(0)
4 〉 = 0.

Again, the generalized Dalgarno-Stewart identities yield

λ
(4)
4 = 〈x(1)

4 , (A1 − λ(1)
4 B0 − λ(0)

4 B1)x
(2)
4 〉 − λ

(2)
4 〈x

(1)
4 , B0x

(1)
4 〉

−λ(1)
4 [〈x(1)

4 , B1x
(1)
4 〉+ 〈x

(0)
4 , B1x

(2)
4 〉]− 2λ

(2)
4 〈x

(1)
4 , B1x

(0)
4 〉 − λ

(3)
4 〈x

(0)
4 , B1x

(0)
4 〉 = 0,

and

λ
(5)
4 = 〈x(2)

4 , (A1 − λ(1)
4 B0 − λ(0)

4 B1)x
(2)
4 〉 − 2λ

(2)
4 〈x

(2)
4 , B0x

(1)
4 〉 − λ

(3)
4 〈x

(1)
4 , B0x

(1)
4 〉
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−2λ
(1)
4 〈x

(2)
4 , B1x

(1)
4 〉 − λ

(2)
4 [〈x(2)

4 , B1x
(0)
4 〉〈x

(1)
4 , B1x

(1)
4 〉+ 〈x

(0)
4 , B1x

(2)
4 〉]

−2λ
(3)
4 〈x

(1)
4 , B1x

(0)
4 〉 − λ

(4)
4 〈x

(0)
4 , B1x

(0)
4 〉 = −2.

We now turn to the mixed degeneracy amongst λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = λ(0) =

0. With the choice

x
(0)
1 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ; x

(0)
2 =

⎡
⎢⎢⎣
−1/4

√
2

3/4
√

2
0
0

⎤
⎥⎥⎦ ; x

(0)
3 =

⎡
⎢⎢⎣

0
0

1/
√

2
0

⎤
⎥⎥⎦ ,

we have from Equation (4.14), which enforces solvability of Equation (4.5) for
k = 1,

M =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ ,

with eigenvalues λ
(1)
1 = λ

(1)
2 = λ(1) = 1, λ

(1)
3 = 0.

Thus, y
(0)
1 and y

(0)
2 are indeterminate while

⎡
⎢⎣ a

(3)
1

a
(3)
2

a
(3)
3

⎤
⎥⎦ =

⎡
⎣ 0

0
1

⎤
⎦⇒ y

(0)
3 =

⎡
⎢⎢⎣

0
0

1/
√

2
0

⎤
⎥⎥⎦ .

Introducing the new basis

z
(0)
1 =

⎡
⎢⎢⎣
√

5/4

−3/4
√

5
0
0

⎤
⎥⎥⎦ ; z

(0)
2 =

⎡
⎢⎢⎣

0

1/
√

5
0
0

⎤
⎥⎥⎦ ,

we now seek y
(0)
1 and y

(0)
2 in the form

y
(0)
1 = b

(1)
1 z

(0)
1 + b

(1)
2 z

(0)
2 ; y

(0)
2 = b

(2)
1 z

(0)
1 + b

(2)
2 z

(0)
2 ,

with orthonormal {[b(1)
1 , b

(1)
2 ]T , [b

(2)
1 , b

(2)
2 ]T}.

Solving Equation (4.5) for k = 1,

(A0 − λ(0)B0)y
(1)
i = −(A1 − λ(1)

i B0 − λ(0)B1)y
(0)
i (i = 1, 2, 3),
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produces

y
(1)
1 =

⎡
⎢⎢⎣

α1

β1

γ1

−(3b
(1)
1 + b

(1)
2 )/2

√
5

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

α2

β2

γ2

−(3b
(2)
1 + b

(2)
2 )/2

√
5

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣
α3

β3

γ3

0

⎤
⎥⎥⎦ .

Now, enforcing solvability of Equation (4.5) for k = 2,

−(A1 − λ(1)
i B0 − λ(0)B1)y

(1)
i + (λ

(2)
i B0 + λ

(1)
i B1)y

(0)
i ⊥ {z

(0)
1 , z

(0)
2 , y

(0)
3 } (i = 1, 2, 3),

we arrive at

M =

[
−9/10 −3/10
−3/10 −1/10

]
,

with eigenpairs

λ
(2)
1 = 0,

[
b
(1)
1

b
(1)
2

]
=

[
1/
√

10

−3/
√

10

]
;

λ
(2)
2 = −1,

[
b
(2)
1

b
(2)
2

]
=

[
3/
√

10

1/
√

10

]
⇒

y
(0)
1 =

⎡
⎢⎢⎣

1/4
√

2

−3/4
√

2
0
0

⎤
⎥⎥⎦ ; y

(0)
2 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ,

and

y
(1)
1 =

⎡
⎢⎢⎣
−3β1

β1

0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

α2

−3α2

0

−1/
√

2

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

as well as λ
(2)
3 = 0, where we have invoked intermediate normalization. Observe

that y
(1)
1 and y

(1)
2 have not yet been fully determined while y

(1)
3 has indeed been

completely specified.
Solving Equation (4.5) for k = 2,

(A0 − λ(0)B0)y
(2)
i = −(A1 − λ(1)

i B0 − λ(0)B1)y
(1)
i + (λ

(2)
i B0 + λ

(1)
i B1)y

(0)
i (i = 1, 2, 3),
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produces

y
(2)
1 =

⎡
⎢⎢⎣
−3b1
b1
c1
4β1

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

a2

−3a2

c2
−1/
√

2

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣
a3

b3
0
0

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We next enforce solvability of Equation (4.5) for k = 3 (i �= j),

〈y(0)
j ,−(A1 − λ(1)

i B0 − λ(0)B1)y
(2)
i + (λ

(2)
i B0 + λ

(1)
i B1)y

(1)
i + (λ

(3)
i B0 + λ

(2)
i B1)y

(0)
i 〉 = 0,

thereby producing

y
(1)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

0
0
0

−1/
√

2

⎤
⎥⎥⎦ ,

and

y
(2)
1 =

⎡
⎢⎢⎣
−3b1
b1
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

a2

−3a2

0

−1/
√

2

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

With y
(1)
i (i = 1, 2, 3) now fully determined, the generalized Dalgarno-

Stewart identities yield

λ
(3)
1 = 0, λ

(3)
2 = −1, λ

(3)
3 = 0.

Solving Equation (4.5) for k = 3,

(A0 − λ(0)B0)y
(3)
i = −(A1 − λ(1)B0 − λ(0)B1)y

(2)
i + (λ

(2)
i B0 + λ(1)B1)y

(1)
i

+(λ
(3)
i B0 + λ

(2)
i B1)y

(0)
i (i = 1, 2),

produces

y
(3)
1 =

⎡
⎢⎢⎣
−3v1

v1

w1

4b1

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

u2

−3u2

w2

0

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
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We now enforce solvability of Equation (4.5) for k = 4,

〈y(0)
j ,−(A1 − λ(1)B0 − λ(0)B1)y

(3)
i + (λ

(2)
i B0 + λ(1))B1)y

(2)
i

+(λ
(3)
i B0 + λ

(2)
i B1)y

(1)
i + (λ

(4)
i B0 + λ

(3)
i B1)y

(0)
i 〉 = 0 (i �= j),

thereby fully determining

y
(2)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
0
0

−1/
√

2

⎤
⎥⎥⎦ .

Subsequent application of the generalized Dalgarno-Stewart identities yields

λ
(4)
1 = 0, λ

(5)
1 = 0, λ

(4)
2 = 0, λ

(5)
2 = 2, λ

(4)
3 = 0, λ

(5)
3 = 0.

4.2 Analytic Perturbation

A comprehensive treatment of linear Rayleigh-Schrödinger [87, 101] per-
turbation theory for the symmetric matrix eigenvalue problem based upon the
Moore-Penrose pseudoinverse was provided in Section 3.1. The generaliza-
tions to analytic perturbation of the standard symmetric eigenvalue problem
(Section 3.2) and to linear perturbation of the symmetric definite generalized
eigenvalue problem (Section 4.1) have subsequently been treated. It is the
express intent of the present section to provide the ultimate extension of this
technique to analytic perturbation of the symmetric definite generalized eigen-
value problem. The origin of such problems in the analysis of electromechanical
systems is discussed in [99].

Mathematically, we have a discretized differential operator embodied in a
real symmetric matrix pair, (A0, B0) with B0 positive definite, which is sub-
jected to a small symmetric perturbation that is analytic in the small param-
eter ε, (A(ε), B(ε)) = (A0 + εA1 + ε2A2 + · · · , B0 + εB1 + ε2B2 + · · · ) with
B(ε) also positive definite, due to physical inhomogeneities. The Rayleigh-
Schrödinger procedure produces approximations to the eigenvalues and eigen-
vectors of (A,B) by a sequence of successively higher order corrections to the
eigenvalues and eigenvectors of (A0, B0). Observe that B(ε) = B0 permits
reduction to the standard eigenvalue problem (B−1A0 + εB−1A1, I). How-
ever, this destroys the very symmetry which is the linchpin of the Rayleigh-
Schrödinger procedure.

The difficulty with standard treatments of this procedure [17] is that the
eigenvector corrections are expressed in a form requiring the complete collec-
tion of eigenvectors of (A0, B0). For large matrices this is clearly an undesirable
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state of affairs. Consideration of the thorny issue of multiple eigenvalues of
(A0, B0) [42] only serves to exacerbate this difficulty.

This malady can be remedied by expressing the Rayleigh-Schrödinger pro-
cedure in terms of the Moore-Penrose pseudoinverse [106]. This permits these
corrections to be computed knowing only the eigenvectors of (A0, B0) corre-
sponding to the eigenvalues of interest. In point of fact, the pseudoinverse
need not be explicitly calculated since only pseudoinverse-vector products are
required. In turn, these may be efficiently calculated by a combination of
QR-factorization and Gaussian elimination. However, the formalism of the
pseudoinverse provides a concise formulation of the procedure and permits
ready analysis of theoretical properties of the algorithm.

Since the present section is only concerned with the real symmetric definite
case, the existence of a complete set of B-orthonormal eigenvectors is assured
[43, 81, 114]. The much more difficult case of defective matrices has been
considered in [48] for the standard eigenvalue problem. Moreover, we only
consider the computational aspects of this procedure. Existence of the relevant
perturbation expansions follows from the rigorous theory developed in [4, 35,
47, 98] (see Appendix A).

4.2.1 Nondegenerate Case

Consider the generalized eigenvalue problem

Axi = λiBxi (i = 1, . . . , n), (4.25)

where A and B are real, symmetric, n× n matrices and B is further assumed
to be positive definite. We also assume that this matrix pair has distinct
eigenvalues, λi (i = 1, . . . , n). Under these assumptions the eigenvalues are
real and the corresponding eigenvectors, xi (i = 1, . . . , n), are guaranteed to
be B-orthogonal [81, 99, 106].

Next (with ε �= 0 a sufficiently small real perturbation parameter), let

A(ε) =

∞∑
k=0

εkAk; B(ε) =

∞∑
k=0

εkBk, (4.26)

where, likewise, A0 is real and symmetric and B0 is real, symmetric and posi-
tive definite, except that now the matrix pair, (A0, B0), may possess multiple
eigenvalues (called degeneracies in the physics literature). The root cause of
such degeneracy is typically the presence of some underlying symmetry. Any
attempt to weaken the assumption on the eigenstructure of (A,B) leads to
a Rayleigh-Schrödinger iteration that never terminates [35, p. 92]. In the
remainder of this section, we consider the nondegenerate case where the un-
perturbed eigenvalues, λ

(0)
i (i = 1, . . . , n), are all distinct. Consideration of

the degenerate case is deferred to the next section.
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Under the above assumptions, it is shown in Appendix A that the eigenval-
ues and eigenvectors of (A,B) possess the respective perturbation expansions,

λi(ε) =
∞∑

k=0

εkλ
(k)
i ; xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . , n), (4.27)

for sufficiently small ε (see Appendix A). Using the Cholesky factorization,
B = LLT , this theory may be straightforwardly extended to accomodate arbi-
trary symmetric positive definite B [99]. Importantly, it is not necessary to ac-
tually calculate the Cholesky factorization ofB in the computational procedure
developed below. Clearly, the zeroth-order terms, {λ(0)

i ; x
(0)
i } (i = 1, . . . , n),

are the eigenpairs of the unperturbed matrix pair, (A0, B0). I.e.,

(A0 − λ(0)
i B0)x

(0)
i = 0 (i = 1, . . . , n). (4.28)

The unperturbed mutually B0-orthogonal eigenvectors, x
(0)
i (i = 1, . . . , n), are

assumed to have been B0-normalized to unity so that λ
(0)
i = 〈x(0)

i , A0x
(0)
i 〉.

Substitution of Equations (4.26) and (4.27) into Equation (4.25) yields the
recurrence relation

(A0 − λ(0)
i B0)x

(k)
i = −

k−1∑
j=0

(Ak−j −
k−j∑
l=0

λ
(k−j−l)
i Bl)x

(j)
i , (4.29)

for (k = 1, . . . ,∞; i = 1, . . . , n). For fixed i, solvability of Equation (4.29)

requires that its right hand side be orthogonal to x
(0)
i for all k. Thus, the value

of x
(m)
i determines λ

(m+1)
i . Specifically,

λ
(m+1)
i =

m∑
j=0

〈x(0)
i , (Am−j+1 −

m−j+1∑
l=1

λ
(m−j−l+1)
i Bl)x

(j)
i 〉, (4.30)

where we have employed the so-called intermediate normalization that
x

(k)
i shall be chosen to be B0-orthogonal to x

(0)
i for k = 1, . . . ,∞. This is

equivalent to 〈x(0)
i , B0xi(ε)〉 = 1 and this normalization will be used throughout

the remainder of this work.
For linear perturbation, A = A0 + εA1, of the standard eigenvalue problem,

B = I, a beautiful result due to Dalgarno and Stewart [27] (sometimes incor-
rectly attributed to Wigner in the physics literature [113, p. 5]) says that much

more is true: The value of the eigenvector correction x
(m)
i , in fact, determines

the eigenvalue corrections through λ
(2m+1)
i . For analytic perturbation of the

generalized eigenvalue problem, Equation (4.26), this may be generalized by
the following constructive procedure which heavily exploits the symmetry of
Ak and Bk (k = 0, . . . ,∞).
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We commence by observing that

λ
(k)
i = 〈x(0)

i , (A1 − λ(1)
i B0 − λ(0)

i B1)x
(k−1)
i 〉

+

k−2∑
l=0

〈x(0)
i , (Ak−l −

k−l∑
m=1

λ
(k−l−m)
i Bm)x

(l)
i 〉

= 〈x(k−1)
i , (A1 − λ(1)

i B0 − λ(0)
i B1)x

(0)
i 〉

+

k−2∑
l=0

〈x(0)
i , (Ak−l −

k−l∑
m=1

λ
(k−l−m)
i Bm)x

(l)
i 〉

= −〈x(k−1)
i , (A0 − λ(0)

i B0)x
(1)
i 〉

+
k−2∑
l=0

〈x(0)
i , (Ak−l −

k−l∑
m=1

λ
(k−l−m)
i Bm)x

(l)
i 〉

= −〈x(1)
i , (A0 − λ(0)

i B0)x
(k−1)
i 〉

+
k−2∑
l=0

〈x(0)
i , (Ak−l −

k−l∑
m=1

λ
(k−l−m)
i Bm)x

(l)
i 〉,

so that

λ
(k)
i = 〈x(1)

i , (A1 − λ(1)
i B0 − λ(0)

i B1)x
(k−2)
i 〉

+ 〈x(0)
i , (A2 − λ(1)

i B1 − λ(0)
i B2)x

(k−2)
i 〉

+

k−3∑
l=0

[〈x(1)
i , (Ak−l−1 −

k−l−1∑
m=0

λ
(k−l−m−1)
i Bm)x

(l)
i 〉

+〈x(0)
i , (Ak−l −

k−l∑
m=1

λ
(k−l−m)
i Bm)x

(l)
i 〉]. (4.31)

Continuing in this fashion, we eventually arrive at, for odd k = 2j + 1 (j =
0, 1, . . . ),

λ
(2j+1)
i =

j∑
μ=0

[〈x(0)
i , (A2j−μ+1 −

2j−μ+1∑
ρ=1

λ
(2j−μ−ρ+1)
i Bρ)x

(μ)
i 〉

+

j∑
ν=1

〈x(ν)
i , (A2j−μ−ν+1 −

2j−μ−ν+1∑
σ=0

λ
(2j−μ−ν−σ+1)
i Bσ)x

(μ)
i 〉]. (4.32)

while, for even k = 2j (j = 1, 2, . . . ),

λ
(2j)
i =

j∑
μ=0

[〈x(0)
i , (A2j−μ −

2j−μ∑
ρ=1

λ
(2j−μ−ρ)
i Bρ)x

(μ)
i 〉

+

j−1∑
ν=1

〈x(ν)
i , (A2j−μ−ν −

2j−μ−ν∑
σ=0

λ
(2j−μ−ν−σ)
i Bσ)x

(μ)
i 〉], (4.33)
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This important pair of equations will henceforth be referred to as the gener-
alized Dalgarno-Stewart identities.

The eigenvector corrections are determined recursively from Equation (4.29)
as

x
(k)
i = (A0 − λ(0)

i B0)
†[−

k−1∑
j=0

(Ak−j −
k−j∑
l=0

λ
(k−j−l)
i Bl)x

(j)
i ], (4.34)

for (k = 1, . . . ,∞; i = 1, . . . , n), where (A0 − λ
(0)
i B0)

† denotes the Moore-

Penrose pseudoinverse [106] of (A0 − λ(0)
i B0) and intermediate normalization

has been employed.

4.2.2 Degenerate Case

When the matrix pair (A0, B0) possesses multiple eigenvalues (the so-called
degenerate case), the above straightforward analysis for the nondegenerate case
encounters serious complications. This is a consequence of the fact that, in
this new case, the Generalized Rellich’s Theorem [98, pp. 42-45] (see Appendix
A) guarantees the existence of the perturbation expansions, Equation (4.27),
only for certain special unperturbed eigenvectors. These special unperturbed
eigenvectors cannot be specified a priori but must instead emerge from the
perturbation procedure itself (see Appendix A).

Furthermore, the higher order corrections to these special unperturbed
eigenvectors are more stringently constrained than previously since they must
be chosen so that Equation (4.29) is always solvable. I.e., they must be chosen
so that the right hand side of Equation (4.29) is always orthogonal to the entire
eigenspace associated with the multiple eigenvalue in question.

Thus, without any loss of generality, suppose that λ
(0)
1 = λ

(0)
2 = · · · =

λ
(0)
m = λ(0) is just such an eigenvalue of multiplicity m with corresponding

known B0-orthonormal eigenvectors x
(0)
1 , x

(0)
2 , . . . , x

(0)
m . Then, we are required

to determine appropriate linear combinations

y
(0)
i = a

(i)
1 x

(0)
1 + a

(i)
2 x

(0)
2 + · · ·+ a(i)

m x
(0)
m (i = 1, . . . , m) (4.35)

so that the expansions, Equation (4.27), are valid with x
(k)
i replaced by y

(k)
i .

In point of fact, the remainder of this section will assume that xi has
been replaced by yi in Equations (4.27)-(4.34). Moreover, the higher

order eigenvector corrections, y
(k)
i , must be suitably determined. Since we

desire that {y(0)
i }mi=1 likewise be B0-orthonormal, we require that

a
(μ)
1 a

(ν)
1 + a

(μ)
2 a

(ν)
2 + · · ·+ a(μ)

m a(ν)
m = δμ,ν . (4.36)
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Recall that we have assumed throughout that the perturbed matrix pair,
(A(ε), B(ε)), itself has distinct eigenvalues, so that eventually all such degen-
eracies will be fully resolved. What significantly complicates matters is that
it is not known beforehand at what stages portions of the degeneracy will be
resolved.

In order to bring order to a potentially calamitous situation, we will begin
by first considering the case where the degeneracy is fully resolved at first
order. Only then do we move on to study the case where the degeneracy is
completely and simultaneously resolved at Nth order. Finally, we will have laid
sufficient groundwork to permit treatment of the most general case of mixed
degeneracy where resolution occurs across several different orders. This seems
preferable to presenting an impenetrable collection of opaque formulae.

First Order Degeneracy

We first dispense with the case of first order degeneracy wherein λ
(1)
i (i =

1. . . . , m) are all distinct. In this event, we determine {λ(1)
i ; y

(0)
i }mi=1 by insisting

that Equation (4.29) be solvable for k = 1 and i = 1, . . . , m. In order for this
to obtain, it is both necessary and sufficient that, for each fixed i,

〈x(0)
μ , (A1 − λ(1)

i B0 − λ(0)B1)y
(0)
i 〉 = 0 (μ = 1, . . . , m). (4.37)

Inserting Equation (4.35) and invoking the B0-orthonormality of {x(0)
μ }mμ=1,

we arrive at, in matrix form,⎡
⎢⎣ 〈x

(0)
1 , (A1 − λ(0)B1)x

(0)
1 〉 · · · 〈x

(0)
1 , (A1 − λ(0)B1)x

(0)
m 〉

...
. . .

...

〈x(0)
m , (A1 − λ(0)B1)x

(0)
1 〉 · · · 〈x

(0)
m , (A1 − λ(0)B1)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(1)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ .

(4.38)

Thus, each λ
(1)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (1)x

(0)
ν 〉 (μ, ν = 1, . . . , m) where

M (1) := A1 − λ(0)B1.

By assumption, the symmetric matrix M has m distinct real eigenvalues
and hence orthonormal eigenvectors described by Equation (4.36). These, in
turn, may be used in concert with Equation (4.35) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by Equation (4.30) the

identities

λ
(1)
i = 〈y(0)

i ,M (1)y
(0)
i 〉 (i = 1, . . . , m). (4.39)
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Furthermore, the combination of Equations (4.36) and (4.38) yield

〈y(0)
i ,M (1)y

(0)
j 〉 = 0 (i �= j). (4.40)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ 2), may be obtained from the

generalized Dalgarno-Stewart identities.

Whenever Equation (4.29) is solvable, we will express its solution as

y
(k)
i = ŷ

(k)
i + β

(i)
1,ky

(0)
1 + β

(i)
2,ky

(0)
2 + · · ·+ β

(i)
m,ky

(0)
m (i = 1, . . . , m) (4.41)

where ŷ
(k)
i := (A0−λ(0)B0)

†[−
∑k−1

j=0(Ak−j−
∑k−j

l=0 λ
(k−j−l)
i Bl)y

(j)
i ] has no com-

ponents in the {y(0)
j }mj=1 directions. In light of intermediate normalization,

we have β
(i)
i,k = 0 (i = 1, . . . , m). Furthermore, β

(i)
j,k (i �= j) are to be deter-

mined from the condition that Equation (4.29) be solvable for k ← k + 1 and
i = 1, . . . , m.

Since, by design, Equation (4.29) is solvable for k = 1, we may proceed
recursively. After considerable algebraic manipulation, the end result is

β
(i)
j,k = [〈y(0)

j ,M (1)ŷ
(k)
i 〉 −

k−1∑
l=1

λ
(k−l+1)
i β

(i)
j,l

+
k−1∑
l=0

〈y(0)
j , (Ak−l+1 −

k−l+1∑
r=1

λ
(k−l−r+1)
i Br)y

(l)
i 〉]/[λ

(1)
i − λ

(1)
j ], (4.42)

for (i �= j). The existence of this formula guarantees that each y
(k)
i is uniquely

determined by enforcing solvability of Equation (4.29) for k ← k + 1.

Nth Order Degeneracy

We now consider the case of Nth order degeneracy which is characterized
by the conditions λ

(j)
1 = λ

(j)
2 = · · · = λ

(j)
m = λ(j) (j = 0, . . . , N − 1) while

λ
(N)
i (i = 1, . . . , m) are all distinct. Thus, even though λ(j) (j = 0, . . . , N − 1)

are determinate, {y(0)
i }mi=1 are still indeterminate after enforcing solvability of

Equation (4.29) for k = N − 1.

Hence, we will determine {λ(N)
i ; y

(0)
i }mi=1 by insisting that Equation (4.29)

be solvable for k = N and i = 1, . . . , m. This requirement is equivalent to the
condition that, for each fixed i,

〈x(0)
μ ,−

N−1∑
j=0

(AN−j −
N−j∑
l=0

λ
(N−j−l)
i Bl)y

(j)
i 〉 = 0 (μ = 1, . . . , m). (4.43)
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Inserting Equation (4.35) as well as Equation (4.41) with k = 1, . . . , N − 1

and invoking the B0-orthonormality of {x(0)
μ }mμ=1, we arrive at, in matrix form,

⎡
⎢⎣ 〈x

(0)
1 ,M (N)x

(0)
1 〉 · · · 〈x

(0)
1 ,M (N)x

(0)
m 〉

...
. . .

...

〈x(0)
m ,M (N)x

(0)
1 〉 · · · 〈x

(0)
m ,M (N)x

(0)
m 〉

⎤
⎥⎦
⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ = λ

(N)
i

⎡
⎢⎣ a

(i)
1
...

a
(i)
m

⎤
⎥⎦ , (4.44)

where M (N) is specified by the recurrence relation:

M (1) = A1 − λ(0)B1, (4.45)

M (N) = (λ(N−1)B0 −M (N−1))(A0 − λ(0)B0)
†(A1 − λ(1)B0 − λ(0)B1)

+
N−1∑
l=2

(λ(N−l)B0 −M (N−l))(A0 − λ(0)B0)
†(Al −

l∑
r=0

λ(l−r)Br) (4.46)

+(AN −
N∑

s=1

λ(N−s)Bs) (N = 2, 3, . . . ). (4.47)

Thus, each λ
(N)
i is an eigenvalue with corresponding eigenvector [a

(i)
1 , . . . , a

(i)
m ]T

of the matrix M defined by Mμ,ν = 〈x(0)
μ ,M (N)x

(0)
ν 〉 (μ, ν = 1, . . . , m). It is im-

portant to note that, while this recurrence relation guarantees that {λ(N)
i ; y

(0)
i }mi=1

are well defined by enforcing solvability of Equation (4.29) for k = N , M (N)

need not be explicitly computed.

By assumption, the symmetric matrix M has m distinct real eigenvalues
and hence orthonormal eigenvectors described by Equation (4.36). These, in
turn, may be used in concert with Equation (4.35) to yield the desired special
unperturbed eigenvectors alluded to above.

Now that {y(0)
i }mi=1 are fully determined, we have by the combination of

Equations (4.36) and (4.40) the identities

〈y(0)
i ,M (N)y

(0)
j 〉 = λ

(N)
i · δi,j. (4.48)

The remaining eigenvalue corrections, λ
(k)
i (k ≥ N +1), may be obtained from

the generalized Dalgarno-Stewart identities.

Analogous to the case of first order degeneracy, β
(i)
j,k (i �= j) of Equation

(4.41) are to be determined from the condition that Equation (4.29) be solvable
for k ← k +N and i = 1, . . . , m. Since, by design, Equation (4.29) is solvable
for k = 1, . . . , N , we may proceed recursively. After considerable algebraic
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manipulation, the end result is

β
(i)
j,k = [〈y(0)

j ,M (N)ŷ
(k)
i 〉 −

k−1∑
l=1

λ
(k−l+N)
i β

(i)
j,l

+
k+N−2∑

l=0

〈y(0)
j , (Ak−l+N −

k−l+N∑
r=1

λ
(k−l−r+N)
i Br)y

(l)
i 〉]/[λ

(1)
i − λ

(1)
j ], (4.49)

for (i �= j). The existence of this formula guarantees that each y
(k)
i is uniquely

determined by enforcing solvability of Equation (4.29) for k ← k +N .

Mixed Degeneracy

Finally, we arrive at the most general case of mixed degeneracy wherein
a degeneracy (multiple eigenvalue) is partially resolved at more than a single
order. The analysis expounded upon in the previous sections comprises the
core of the procedure for the complete resolution of mixed degeneracy. The
following modifications suffice.

In the Rayleigh-Schrödinger procedure, whenever an eigenvalue branches
by reduction in multiplicty at any order, one simply replaces the xμ of Equation
(4.44) by any convenient B0-orthonormal basis zμ for the reduced eigenspace.
Of course, this new basis is composed of some a priori unknown linear combi-
nation of the original basis. Equation (4.49) will still be valid where N is the
order of correction where the degeneracy between λi and λj is resolved. Thus,

in general, if λi is degenerate to Nth order then y
(k)
i will be fully determined

by enforcing the solvability of Equation (4.29) with k ← k +N .
We now present an example which illustrates the general procedure. This

example features a simple (i.e. nondegenerate) eigenvalue together with a
triple eigenvalue which branches into a single first order degenerate eigenvalue
together with a pair of second order degenerate eigenvalues.

Example 4.2.1. Define

A(ε) =

⎡
⎢⎢⎣

5 sin (ε) 3 sin (ε) 0 3 sin (ε)
3 sin (ε) 5 sin (ε) 0 sin (ε)

0 0 0 0
3 sin (ε) sin (ε) 0 2

⎤
⎥⎥⎦ , B(ε) =

⎡
⎢⎢⎣

5 3 0 0
3 5 0 0
0 0 2 + 2 sin (ε) 0
0 0 0 2

⎤
⎥⎥⎦

⇒ A0 =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤
⎥⎥⎦ , B0 =

⎡
⎢⎢⎣

5 3 0 0
3 5 0 0
0 0 2 0
0 0 0 2

⎤
⎥⎥⎦ ,
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A2k−1 =
(−1)k−1

(2k − 1)!

⎡
⎢⎢⎣

5 3 0 3
3 5 0 1
0 0 0 0
3 1 0 0

⎤
⎥⎥⎦ , B2k−1 =

(−1)k−1

(2k − 1)!

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

⎤
⎥⎥⎦ ,

with A2k = B2k = 0 (k = 1, 2, . . . ).
Using MATLAB’s Symbolic Toolbox, we find that

λ1(ε) = ε− 1

6
ε3 +

1

120
ε5 − · · · , λ2(ε) = ε− ε2 − 7

6
ε3 +

1

3
ε4 +

301

120
ε5 + · · · ,

λ3(ε) = 0 , λ4(ε) = 1 + ε2 + ε3 − 1

3
ε4 − 5

2
ε5 + · · · .

Applying the nondegenerate Rayleigh-Schrödinger procedure developed above
to

λ
(0)
4 = 1; x

(0)
4 =

⎡
⎢⎢⎣

0
0
0

1/
√

2

⎤
⎥⎥⎦ ,

we arrive at (using Equation (4.32) with j = 0)

λ
(1)
4 = 〈x(0)

4 , (A1 − λ(0)
4 B1)x

(0)
4 〉 = 0.

Solving

(A0 − λ(0)
4 B0)x

(1)
4 = −(A1 − λ(1)

4 B0 − λ(0)
4 B1)x

(0)
4

produces

x
(1)
4 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ,

where we have enforced the intermediate normalization 〈x(1)
4 , B0x

(0)
4 〉 = 0. In

turn, the generalized Dalgarno-Stewart identities yield

λ
(2)
4 = 〈x(0)

4 , (A1 − λ(0)
4 B1)x

(1)
4 〉+ 〈x

(0)
4 , (A2 − λ(1)

4 B1 − λ(0)
4 B2)x

(0)
4 〉 = 1,

and

λ
(3)
4 = 〈x(1)

4 , (A1 − λ(1)
4 B0 − λ(0)

4 B1)x
(1)
4 〉+ 2〈x(0)

4 , (A2 − λ(1)
4 B1 − λ(0)

4 B2)x
(1)
4 〉
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+〈x(0)
4 , (A3 − λ(2)

4 B1 − λ(1)
4 B2 − λ(0)

4 B3)x
(0)
4 〉 = 1.

Solving

(A0 − λ(0)
4 B0)x

(2)
4 = −(A1 − λ(1)

4 B0 − λ(0)
4 B1)x

(1)
4 − (A2 − λ(2)

4 B0 − λ(1)
4 B1 − λ(0)

4 B2)x
(0)
4

produces

x
(2)
4 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ,

where we have enforced the intermediate normalization 〈x(2)
4 , B0x

(0)
4 〉 = 0.

Again, the generalized Dalgarno-Stewart identities yield

λ
(4)
4 = 〈x(1)

4 , (A1 − λ(1)
4 B0 − λ(0)

4 B1)x
(2)
4 〉+ 〈x

(0)
4 , (A2 − λ(1)

4 B1 − λ(0)
4 B2)x

(2)
4 〉

+〈x(1)
4 , (A2 − λ(2)

4 B0 − λ(1)
4 B1 − λ(0)

4 B2)x
(1)
4 〉

+2〈x(1)
4 , (A3 − λ(3)

4 B0 − λ(2)
4 B1 − λ(1)

4 B2 − λ(0)
4 B3)x

(1)
4 〉

+〈x(0)
4 , (A4 − λ(3)

4 B1 − λ(2)
4 B2 − λ(1)

4 B3 − λ(0)
4 B4)x

(0)
4 〉 = −1

3
,

and

λ
(5)
4 = 〈x(2)

4 , (A1 − λ(1)
4 B0 − λ(0)

4 B1)x
(2)
4 〉+ 2〈x(2)

4 , (A2 − λ(2)
4 B0 − λ(1)

4 B1 − λ(0)
4 B2)x

(1)
4 〉

+〈x(1)
4 , (A3 − λ(3)

4 B0 − λ(2)
4 B1 − λ(1)

4 B2 − λ(0)
4 B3)x

(1)
4 〉

+2〈x(2)
4 , (A3 − λ(2)

4 B1 − λ(1)
4 B2 − λ(0)

4 B3)x
(0)
4 〉

+2〈x(1)
4 , (A4 − λ(4)

4 B0 − λ(3)
4 B1 − λ(2)

4 B2 − λ(1)
4 B3 − λ(0)

4 B4)x
(0)
4 〉

+〈x(0)
4 , (A5 − λ(4)

4 B1 − λ(3)
4 B2 − λ(2)

4 B3 − λ(1)
4 B4 − λ(0)

4 B5)x
(0)
4 〉 = −5

2
,

We now turn to the mixed degeneracy amongst λ
(0)
1 = λ

(0)
2 = λ

(0)
3 = λ(0) =

0. With the choice

x
(0)
1 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ; x

(0)
2 =

⎡
⎢⎢⎣
−1/4

√
2

3/4
√

2
0
0

⎤
⎥⎥⎦ ; x

(0)
3 =

⎡
⎢⎢⎣

0
0

1/
√

2
0

⎤
⎥⎥⎦ ,
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we have from Equation (4.38), which enforces solvability of Equation (4.29)
for k = 1,

M =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ ,

with eigenvalues λ
(1)
1 = λ

(1)
2 = λ(1) = 1, λ

(1)
3 = 0.

Thus, y
(0)
1 and y

(0)
2 are indeterminate while⎡
⎢⎣ a

(3)
1

a
(3)
2

a
(3)
3

⎤
⎥⎦ =

⎡
⎣ 0

0
1

⎤
⎦⇒ y

(0)
3 =

⎡
⎢⎢⎣

0
0

1/
√

2
0

⎤
⎥⎥⎦ .

Introducing the new basis

z
(0)
1 =

⎡
⎢⎢⎣
√

5/4

−3/4
√

5
0
0

⎤
⎥⎥⎦ ; z

(0)
2 =

⎡
⎢⎢⎣

0

1/
√

5
0
0

⎤
⎥⎥⎦ ,

we now seek y
(0)
1 and y

(0)
2 in the form

y
(0)
1 = b

(1)
1 z

(0)
1 + b

(1)
2 z

(0)
2 ; y

(0)
2 = b

(2)
1 z

(0)
1 + b

(2)
2 z

(0)
2 ,

with orthonormal {[b(1)
1 , b

(1)
2 ]T , [b

(2)
1 , b

(2)
2 ]T}.

Solving Equation (4.29) for k = 1,

(A0 − λ(0)B0)y
(1)
i = −(A1 − λ(1)

i B0 − λ(0)B1)y
(0)
i (i = 1, 2, 3),

produces

y
(1)
1 =

⎡
⎢⎢⎣

α1

β1

γ1

−(3b
(1)
1 + b

(1)
2 )/2

√
5

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

α2

β2

γ2

−(3b
(2)
1 + b

(2)
2 )/2

√
5

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣
α3

β3

γ3

0

⎤
⎥⎥⎦ .

Now, enforcing solvability of Equation (4.29) for k = 2 (i = 1, 2, 3),

−(A1 − λ(1)
i B0 − λ(0)B1)y

(1)
i − (A2 − λ(2)

i B0 − λ(1)
i B1 − λ(0)B2)y

(0)
i ⊥ {z

(0)
1 , z

(0)
2 , y

(0)
3 },

we arrive at

M =

[
−9/10 −3/10
−3/10 −1/10

]
,
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with eigenpairs

λ
(2)
1 = 0,

[
b
(1)
1

b
(1)
2

]
=

[
1/
√

10

−3/
√

10

]
; λ

(2)
2 = −1,

[
b
(2)
1

b
(2)
2

]
=

[
3/
√

10

1/
√

10

]

⇒ y
(0)
1 =

⎡
⎢⎢⎣

1/4
√

2

−3/4
√

2
0
0

⎤
⎥⎥⎦ ; y

(0)
2 =

⎡
⎢⎢⎣

3/4
√

2

−1/4
√

2
0
0

⎤
⎥⎥⎦ ;

y
(1)
1 =

⎡
⎢⎢⎣
−3β1

β1

0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

α2

−3α2

0

−1/
√

2

⎤
⎥⎥⎦ ; y

(1)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ,

as well as λ
(2)
3 = 0, where we have invoked intermediate normalization. Observe

that y
(1)
1 and y

(1)
2 have not yet been fully determined while y

(1)
3 has indeed been

completely specified.
Solving Equation (4.29) for k = 2 (i = 1, 2, 3),

(A0 − λ(0)B0)y
(2)
i = −(A1 − λ(1)

i B0 − λ(0)B1)y
(1)
i − (A2 − λ(2)

i B0 − λ(1)
i B1 − λ(0)B2)y

(0)
i ,

produces

y
(2)
1 =

⎡
⎢⎢⎣
−3b1
b1
c1
4β1

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

a2

−3a2

c2
−1/
√

2

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣
a3

b3
0
0

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We next enforce solvability of Equation (4.29) for k = 3,

〈y(0)
j ,−(A1 − λ(1)

i B0 − λ(0)B1)y
(2)
i − (A2 − λ(2)

i B0 − λ(1)
i B1 − λ(0)B2)y

(1)
i

−(A3 − λ(3)
i B0 − λ(2)

i B1 − λ(1)
i B2 − λ(0)B3)y

(0)
i 〉 = 0 (i �= j),

thereby producing

y
(1)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(1)
2 =

⎡
⎢⎢⎣

0
0
0

−1/
√

2

⎤
⎥⎥⎦ ;
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y
(2)
1 =

⎡
⎢⎢⎣
−3b1
b1
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

a2

−3a2

0

−1/
√

2

⎤
⎥⎥⎦ ; y

(2)
3 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ .

With y
(1)
i (i = 1, 2, 3) now fully determined, the generalized Dalgarno-

Stewart identities yield

λ
(3)
1 = −1

6
, λ

(3)
2 = −7

6
, λ

(3)
3 = 0.

Solving Equation (4.29) for k = 3,

(A0 − λ(0)B0)y
(3)
i = −(A1 − λ(1)B0 − λ(0)B1)y

(2)
i − (A2 − λ(2)

i B0 − λ(1)B1 − λ(0)B2)y
(1)
i

−(A3 − λ(3)
i B0 − λ(2)

i B1 − λ(1)B2 − λ(0)B3)y
(0)
i (i = 1, 2),

produces

y
(3)
1 =

⎡
⎢⎢⎣
−3v1

v1

w1

4b1

⎤
⎥⎥⎦ ; y

(3)
2 =

⎡
⎢⎢⎣

u2

−3u2

w2

1/6
√

2

⎤
⎥⎥⎦ ,

where we have invoked intermediate normalization.
We now enforce solvability of Equation (4.29) for k = 4,

〈y(0)
j ,−(A1 − λ(1)B0 − λ(0)B1)y

(3)
i − (A2 − λ(2)

i B0 − λ(1)B1 − λ(0)B2)y
(2)
i

−(A3 − λ(3)
i B0 − λ(2)

i B1 − λ(1)B2 − λ(0)B3)y
(1)
i

−(A4 − λ(4)
i B0 − λ(3)

i B1 − λ(2)
i B2 − λ(1)B3 − λ(0)B4)y

(0)
i 〉 = 0 (i �= j),

thereby fully determining

y
(2)
1 =

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ ; y

(2)
2 =

⎡
⎢⎢⎣

0
0
0

−1/
√

2

⎤
⎥⎥⎦ .

Subsequent application of the generalized Dalgarno-Stewart identities yields

λ
(4)
1 = 0, λ

(5)
1 =

1

120
, λ

(4)
2 =

1

3
, λ

(5)
2 =

301

120
, λ

(4)
3 = 0, λ

(5)
3 = 0.



Chapter 5

Application to Inhomogeneous
Acoustic Waveguides

It is only fitting that this monograph should conclude by returning to the
roots of the Rayleigh-Schrödinger perturbation procedure: Acoustics! Specif-
ically, this chapter concerns itself with how the cut-off frequencies and modal
shapes of cylindrical acoustic waveguides are altered by the presence of temper-
ature gradients induced by an applied temperature distribution along the duct
walls. A physical model is first formulated which incorporates an inhomoge-
neous sound speed as well as a density gradient. The associated mathematical
model is then a generalized eigenproblem. This is then discretized via the Con-
trol Region Approximation (a finite difference scheme) yielding a generalized
matrix eigenproblem. Under the assumption that the boundary temperature
distribution is nearly constant, we apply the procedure of Rayleigh [87] and
Schrödinger [101] to express the propagation constants and modal functions as
perturbation series whose successive terms can be generated recursively. An
addendum is included which outlines the modifications necessary for the cor-
rect treatment of degenerate modes [17]. The case of a rectangular duct with
temperature variation in its cross-section is considered in detail. All numerical
computations were performed using MATLAB c©.

5.1 Physical Problem

The modal propagation characteristics of cylindrical acoustic waveguides
(see Figure 5.1) at constant temperature have been investigated analytically
for canonical duct cross-sections such as rectangular and circular [46] and nu-
merically for general simply-connected cross-sections [57]. However, if there is
a temperature variation across the duct then these analyses are inadequate.
This is due to the inhomogeneous sound speed and density gradient induced
by such a temperature distribution.

114
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Figure 5.1: Acoustic Waveguide Cross-Section

Such temperature variations occur in the exhaust systems of vehicles [75]
where the bottom portion of the waveguide is in direct contact with the ambient
atmosphere while the upper portion is either near or in contact with the body
of the vehicle which is at a different temperature. As will be shown, such an
induced temperature perturbation across the waveguide can significantly alter
the modal characteristics of the exhaust system with a consequent reduction
in its overall effectiveness at suppressing selected acoustic frequencies.

In ocean acoustics [15], both depth and range dependent sound speeds are
typically considered. Density gradients are usually ignored since the spatial
scale of such variations is much larger than the wavelength of the acoustic
disturbance. The same situation obtains in atmospheric propagation [16]. Un-
like such ocean and atmospheric waveguides, the ducts and mufflers [75] under
consideration in this chapter are fully enclosed and hence density gradients
must be accounted for.

We commence with the formulation of a physical model which includes
both an inhomogeneous sound speed and a density gradient across the duct.
We will confine our attention to small perturbations of an isothermal ambi-
ent state. The corresponding mathematical model will involve a generalized
Helmholtz operator whose eigenvalues (related to the cut-off frequencies) and
eigenfunctions (modal shapes) are to be determined. This continuous problem
is discretized via the Control Region Approximation [59, 66] (a finite difference
procedure) resulting in a generalized matrix eigenvalue problem.
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A perturbation procedure previously applied to uniform waveguides [58],
invented by Rayleigh [87] in acoustics and developed by Schrödinger [101] in
quantum mechanics, is invoked to produce perturbation expansions for the
aforementioned eigenvalues and eigenvectors. In turn, this permits the devel-
opment of analytical expressions for cut-off frequencies and modal shapes.
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Figure 5.2: Temperature Perturbation Profile

This procedure is illustrated for the case of a rectangular duct with an
applied parabolic temperature profile along its lower wall (see Figure 5.2). All
numerical computations were performed using MATLAB c©.

5.2 Mathematical Formulation

With reference to Figure 5.1, we consider the acoustic field within an in-
finitely long, hard-walled, cylindrical tube of general cross-section, Ω. The
analysis of the propagation characteristics of such an acoustical waveguide
typically proceeds by assuming a constant temperature throughout the undis-
turbed fluid.
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However, in the present study, we permit a small steady-state temperature
perturbation about the average cross-sectional temperature (see Figure 5.2)

T̂ (x, y; ε) = T̂0[1 + εf(x, y)] (5.1)

where
∫ ∫

Ω
f(x, y) dA = 0 and ε is small.

This temperature perturbation is due to an applied steady-state tempera-
ture distribution along the walls of the duct

ΔT̂ = 0 in Ω; T̂ = Tapplied on ∂Ω (5.2)

where, here as well as in the ensuing analysis, all differential operators are
transverse to the longitudinal axis of the waveguide. Consequently, ∇(fn) =
nfn−1(∇f) and Δ(fn) = n(n− 1)fn−2(∇f · ∇f).

This small temperature variation across the duct will produce inhomo-
geneities in the background fluid density

ρ̂(x, y; ε) =
1

R
· p̂(ε)

T̂ (x, y; ε)
=

1

RT̂0

· p̂(ε)

[1 + εf(x, y)]
(5.3)

and sound speed

c2 = RT̂ (x, y; ε) = c20[1 + εf(x, y)]. (5.4)

The self-consistent governing equation for the hard-walled acoustic pres-
sure, p, with (angular) frequency ω and propagation constant β is [30]

∇ · ( ρ̂0

ρ̂
∇p) +

ρ̂0

ρ̂
(
ω2

c2
− β2)p− ρ̂0

ρ̂
∇ · (1

ρ̂
∇ρ̂)p = 0 in Ω;

∂p

∂n
= 0 on ∂Ω (5.5)

assuming that the fluid is at rest (the cut-off frequencies are unaltered by uni-
form flow down the tube [74]). In the above, hatted quantities refer to undis-
turbed background fluid quantities while p(x, y, ε) is the acoustic disturbance
superimposed upon this background [30]. In what follows, it is important to
preserve the self-adjointness of this boundary value problem.

5.3 Perturbation Procedure

Expansion of the pressure in a perturbation series in the small parameter ε

p̂(ε) =
∞∑

n=0

εnp̂n (5.6)
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induces a corresponding perturbation expansion for the density

ρ̂ = ρ̂0[1 + ε(A1 − f) + ε2(A2 − A1f + f 2) + ε3(A3 − A2f + A1f
2 − f 3) + · · · ]

(5.7)

where ρ̂0 := p̂0/(RT̂0) and An := p̂n/p̂0.
By invoking conservation of mass, M :=

∫ ∫
Ω
ρ̂(x, y; ε) dA must be inde-

pendent of ε which together with
∫ ∫

Ω
f dA = 0 implies that A1 = 0, A2 =

−(
∫ ∫

Ω
f 2 dA)/AΩ, A3 = (

∫ ∫
Ω
f 3 dA)/AΩ. Thus,

ρ̂ = ρ̂0[1− εf + ε2(A2 + f 2) + ε3(A3 −A2f − f 3) + · · · ], (5.8)

1

ρ̂
=

1

ρ̂0

[1 + εf − ε2A2 − ε3(A2f + A3) + · · · ], (5.9)

∇ρ̂ = ρ̂0[−ε+ ε2(2f) + ε3(−A2 − 3f 2) + · · · ]∇f, (5.10)

1

c2
=

1

c20
[1− εf + ε2f 2 − ε3f 3 + · · · ]. (5.11)

Inserting these expansions into Equation (5.5) results in

Δp+ ε[∇ · (f∇p)− k2
0fp]− ε2[α2Δp + (∇f · ∇f)p]

+ε3[α3Δp+ α2fk
2
0p− α2∇ · (f∇p) + (f∇f · ∇f)p] + · · ·

= λp[1 + εf − ε2α2 + ε3(−α2f + α3) + · · · ] in Ω;
∂p

∂n
= 0 on ∂Ω. (5.12)

where the wave number is k2
0 := ω2/c20 and λ := β2−k2

0, α2 := A2, α3 := −A3.
It is interesting to note that the 3rd term of Equation (5.5) makes no O(ε)
contribution and thus is of “higher order” than the 1st and 2nd terms.

5.4 Control Region Approximation

The Control Region Approximation [57, 59] is a generalized finite difference
procedure that accomodates arbitrary geometries [67]. It involves discretiza-
tion of conservation form expressions on Dirichlet/Delaunay tessellations (see
below). This permits a straightforward application of relevant boundary con-
ditions.

The first stage in the Control Region Approximation is the tessellation
of the solution domain by Dirichlet regions associated with a pre-defined yet
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Figure 5.3: Dirichlet/Delaunay Tessellations

(virtually) arbitrary distribution of grid points. Denoting a generic grid point
by Pi, we define its Dirichlet region as

Di := {P : ||P − Pi|| < ||P − Pj||, ∀j �= i}. (5.13)

This is seen to be the convex polygon formed by the intersection of the
half-spaces defined by the perpendicular bisectors of the straight line segments
connecting Pi to Pj , ∀j �= i. It is the natural control region to associate with
Pi since it contains those and only those points which are closer to Pi than to
any other grid point Pj .

If we construct the Dirichlet region surrounding each of the grid points, we
obtain the Dirichlet tessellation of the plane which is shown dashed in Figure
5.3. There we have also connected by solid lines neighboring grid points which
share an edge of their respective Dirichlet regions. This construction tessellates
the convex hull of the grid points by so-called Delaunay triangles. The union
of these triangles is referred to as the Delaunay tessellation. The grid point
distribution is tailored so that the Delaunay triangle edges conform to ∂Ω. It
is essential to note that these two tessellations are dual to one another in the
sense that corresponding edges of each are orthogonal.

With reference to Figure 5.4, we will exploit this duality in order to approx-
imate the Dirichlet problem, Equation (5.2), for the temperature distribution
at the point P0. We first reformulate the problem by integrating over the
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Figure 5.4: Control Region Approximation

control region, D, and applying the divergence theorem, resulting in:

∮
∂D

∂T̂

∂ν
dσ = 0, (5.14)

where (ν, σ) are normal and tangential coordinates, respectively, around the

periphery of D. The normal temperature flux, ∂T̂
∂ν

, may now be approximated
by straightforward central differences [22] thereby yielding the Control Region
Approximation:

∑
m

τm (T̂m − T̂0) = 0, (5.15)

where the index m ranges over the sides of D and τm := τ−m + τ+
m. Equation

(5.15) for each interior grid point may be assembled in a (sparse) matrix equa-
tion which can then be solved for T̂ (x, y) (with specified boundary values) and
ipso facto for f(x, y) from Equation (5.1).

It remains to discretize the homogeneous Neumann boundary value prob-
lem, Equation (5.12), for the acoustic pressure wave by the Control Region



Control Region Approximation 121

Approximation. For this purpose we first rewrite it in the integral form:∮
∂D

∂p

∂ν
dσ + ε[

∮
∂D

f
∂p

∂ν
dσ − k2

0

∫ ∫
D

fp dA]

−ε2[α2

∮
∂D

∂p

∂ν
dσ +

∫ ∫
D

(∇f · ∇f)p dA]

+ε3[α3

∮
∂D

∂p

∂ν
dσ + α2k

2
0

∫ ∫
D

fp dA

−α2

∮
∂D

f
∂p

∂ν
dσ +

∫ ∫
D

(f∇f · ∇f)p dA] + · · ·

= λ[

∫ ∫
D

p dA+ ε

∫ ∫
D

fp dA− ε2α2

∫ ∫
D

p dA

+ε3(−α2

∫ ∫
D

fp dA+ α3

∫ ∫
D

p dA) + · · · ]. (5.16)

We then approximate each of the integral operators appearing in Equation
(5.16) as follows: ∮

∂D

∂p

∂ν
dσ ≈ (Ap)0 :=

∑
m

τm (pm − p0), (5.17)

∫ ∫
D

p dA ≈ (Bp)0 := A0 p0, (5.18)

∮
∂D

f
∂p

∂ν
dσ ≈ (Cp)0 :=

∑
m

τm
f0 + fm

2
(pm − p0), (5.19)

∫ ∫
D

fp dA ≈ (D0p)0 := f0A0 p0, (5.20)

−
∫ ∫

D

(∇f · ∇f)p dA = −1

2

∫ ∫
D

Δf 2 dA = −1

2

∮
∂D

∂f 2

∂ν
dσ

≈ (D1p)0 := −p0

2
·
∑
m

τm (f 2
m − f 2

0 ), (5.21)

∫ ∫
D

(f∇f · ∇f)p dA ≈ (D2p)0 :=
f0p0

2
·
∑
m

τm (f 2
m − f 2

0 ), (5.22)

where A0 is the area of D (restricted to Ω, if necessary).
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Also,

α2 = −
∫ ∫

Ω

f 2 dA/AΩ ≈ −
∑

k

f 2
kAk/

∑
k

Ak, (5.23)

α3 = −
∫ ∫

Ω

f 3 dA/AΩ ≈ −
∑

k

f 3
kAk/

∑
k

Ak, (5.24)

where the summations are over the entire Dirichlet grid.
The hard boundary condition, ∂p

∂ν
= 0, is enforced by simply modifying any

τm in Equations (5.17) and (5.19) corresponding to boundary edges. Because
Δf = 0, the approximations of Equations (5.21) and (5.22) may be modified

at the boundary using 1
2

∂f2

∂ν
= f ∂f

∂ν
with ∂f

∂ν
then approximated as in Equations

(5.14-5-15).

5.5 Generalized Eigenvalue Problem

Substitution of Equations (5.17-5.22) into Equation (5.16) yields the matrix
generalized eigenvalue problem [114] Â(ε)p = λB̂(ε)p with analytic perturba-
tion which was extensively studied in Section 4.2:

[A+ ε(C − β2D0)− ε2(α2A−D1) + ε3(α3A+ α2β
2D0 − α2C +D2) + · · · ]p

= λ[B − ε2α2B + ε3α3B + · · · ]p,
(5.25)

where A is symmetric and nonpositive semidefinite, C is symmetric, B is pos-
itive and diagonal, while D0, D1 and D2 are diagonal.

We next apply the perturbation procedure of Rayleigh [87] and Schrödinger
[101], as described in [17] and developed in detail in Section 4.2, to construct
expansions

λ(ε) =
∞∑

n=0

εnλn; p(ε) =
∞∑

n=0

εnpn, (5.26)

the convergence of which are studied in Appendix A.
Here, we assume that λ0 is a simple eigenvalue with corresponding eigen-

vector p0 for the unperturbed problem

Ap0 = λ0Bp0 (5.27)
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which can be determined by the procedure of [57]. An eigenvalue of multiplicity
m would entail an expansion in ε1/m in the event of eigenvector deficiency
[114]. As will be evident in what follows, our approximation scheme is greatly
enhanced by the symmetry of (Â(ε), B̂(ε)) which is inherited from that of A,
B, C, D0, D1 and D2 [47].

Inserting the expansions, Equation (5.26), into the eigenproblem, Equation
(5.25), collecting terms, and equating coefficients of like powers of ε results in

(A− λ0B)p0 = 0, (5.28)

(A− λ0B)p1 = λ1Bp0 − Cp0 + β2D0p0, (5.29)

(A− λ0B)p2 = λ2Bp0 + λ1Bp1 − Cp1 −D1p0 + β2D0p1, (5.30)

(A− λ0B)p3 = λ3Bp0 + λ2Bp1 + λ1Bp2 − Cp2 + (α2A−D1 − α2λ0B)p1

+(α2C −D2 − α2λ1B)p0 + β2(D0p2 − α2D0p0),

(5.31)

and so forth. Alternatively, we could have inserted the expansions, Equation
(5.26), into the continuous Equation (5.5) and then discretized via the Control
Region Approximation with the same end result, Equations (5.28-5.31).

Equation (5.28) together with the normalization 〈p0, Bp0〉 = 1 yields λ0 =
〈p0, Ap0〉. Note that (A− λ0B) is singular (in fact, its nullity is 1 by assump-
tion) and that the symmetry of A implies that the right hand side of Equation
(5.29) must be orthogonal to p0 producing

λ1 = λ̂1 − β2λ̃1; λ̂1 = 〈p0, Cp0〉, λ̃1 = 〈p0, D0p0〉. (5.32)

Thus, the symmetry of A has produced λ1 without calculating p1. Since C is
indefinite, λ1 may be either positive or negative. As a result, this perturbation
procedure provides neither lower nor upper bounds on the eigenvalues.

Next, employ the pseudoinverse to solve Equation (5.29) for p1

p̂1 = −(A− λ0B)†(C − β2D0 − λ1B)p0; p1 = −〈p̂1, Bp0〉p0 + p̂1, (5.33)

thus ensuring that 〈p1, Bp0〉 = 0 for later convenience. However, the com-
putation of the pseudoinverse may be avoided by instead performing the QR
factorization of (A−λ0B) and then employing it to produce the minimum-norm
least-squares solution, p̂1, to this exactly determined rank-deficient system [78].
(Case 1B of Chapter 2 with deficiency in rank equal to eigenvalue multiplicity.)
Again, define p1 := p̂1 − 〈p̂1, Bp0〉p0 producing 〈p1, Bp0〉 = 0 which simplifies
subsequent computations.
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The knowledge of p1, together with the symmetry of A, permits the com-
putation of both λ2 and λ3:

λ2 = λ̂2 − β2λ̃2; λ3 = λ̂3 − β2λ̃3, (5.34)

λ̂2 = 〈p0, Cp1 +D1p0〉, λ̃2 = 〈p0, D0p1〉, (5.35)

λ̂3 = 〈p1, (C − λ1B)p1〉+ 〈p0, 2D1p1 +D2p0〉, λ̃3 = 〈p1, D0p1〉. (5.36)

In evaluating the required inner products, we benefit greatly from the sparsity
of A and C and the diagonality of B, D0, D1, and D2. Note that the compu-
tation of only a single pseudoinverse / QR factorization suffices to produce all
of the modal corrections, pn.

We can continue indefinitely in this fashion, with each succeeding term
in the expansion for p producing the next two terms in the expansion for
λ, as guaranteed by the generalized Dalgarno-Stewart identities, Equations
(4.32-4.33). If we had reduced this to a standard eigenvalue problem through
multiplication of Equation (5.25) by [B− · · · ]−1, we would have destroyed the
symmetry of the operators and sacrificed this substantial economy of compu-
tation. Observe that for a nondegenerate eigenvalue, p0 does not depend upon
β so that λ̂1 is frequency-independent.

When a mode is degenerate, the Rayleigh-Schrödinger procedure must be
modified accordingly [17]. We illustrate this modification for the case of a
double eigenvalue with degeneracy resolved at first-order. This occurs, for
example, for the (0, 1) and (2, 0) modes of the rectangular waveguide of [60, 61].
For such a degenerate mode, p0 now depends upon β so that λ̂1 is frequency-
dependent.

In this case, we seek Rayleigh-Schrödinger expansions in the form

λ(i)(ε) = λ0 +
∞∑

n=1

εnλ(i)
n ; p(i)(ε) =

∞∑
n=0

εnp(i)
n (i = 1, 2). (5.37)

Let {q(1)
0 , q

(2)
0 } be a B-orthonormal basis for the solution space of Equation

(5.28) above. What is required is the determination of an appropriate linear
combination of these generalized eigenvectors so that Equation (5.29) above
will then be solvable.

Specifically, we seek a B-orthonormal pair of generalized eigenvectors

p
(i)
0 = a

(i)
1 q

(1)
0 + a

(i)
2 q

(2)
0 (i = 1, 2). (5.38)

This requires that [a
(i)
1 , a

(i)
2 ]T be orthonormal eigenvectors, with corresponding

eigenvalues λ
(i)
1 , of the 2× 2-matrix M with components

Mi,j = 〈q(i)
0 , (C − β2D0)q

(j)
0 〉. (5.39)



Numerical Example 125

Consequently, λ
(i)
1 (i = 1, 2) are then given by Equation (5.32) above with

p0 replaced by p
(i)
0 . For convenience, all subsequent p

(i)
n (n = 1, 2, . . . ) are

chosen to be B-orthogonal to p
(i)
0 (i = 1, 2).

Likewise, p
(i)
1 (i = 1, 2) must be chosen so that Equation (5.30) above is

then solvable. This is achieved by first solving Equation (5.29) above as

p̂
(i)
1 = −(A− λ0B)†(C − β2D0 − λ(i)

1 B)p
(i)
0 (i = 1, 2), (5.40)

and then defining

p
(i)
1 = k

(i)
1 p

(1)
0 + k

(i)
2 p

(2)
0 + p̂

(i)
1 (i = 1, 2); k

(i)
i = −〈p̂(i)

1 , Bp
(i)
0 〉 = 0, (5.41)

k
(i)
j = [〈p̂(i)

1 , (C − β2D0)p
(j)
0 〉+ 〈p

(j)
0 , D1p

(i)
0 〉]/[λ

(i)
1 − λ

(j)
1 ] (j �= i). (5.42)

Equations (5.34-5.36) are then used to determine λ
(i)
2 , λ

(i)
3 (i = 1, 2) with

λ1, p0, p1 replaced by λ
(i)
1 , p

(i)
0 , p

(i)
1 , respectively.

For higher order degeneracy and/or degeneracy that is not fully resolved at
first-order, similar but more complicated modifications (developed in Section
4.2) are necessary [17].

5.6 Numerical Example: Warmed / Cooled

Rectangular Waveguide

With reference to Figure 5.5, we next apply the above numerical procedure
to an analysis of the modal characteristics of the warmed/cooled rectangular
duct with cross-section Ω = [0, a] × [0, b]. The exact eigenpair corresponding
to the (p, q)-mode with constant temperature is [40]:(

ω2
c

c20

)
p,q

=
(pπ
a

)2

+
(qπ
b

)2

; pp,q(x, y) = P · cos
(pπ
a
· x
)

cos
(qπ
b
· y
)
.

(5.43)

For this geometry and mesh, the Dirichlet regions are rectangles and the
Control Region Approximation reduces to the familiar central difference ap-
proximation [22]. Also, exact expressions are available for the eigenvalues and
eigenvectors of the discrete operator in the constant temperature case [40].
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a 

b 

Figure 5.5: Rectangular Waveguide Cross-Section

Specifically, we now apply the above perturbation procedure to an analysis
of the modal characteristics of a 10 × 5 rectangular duct with the lower wall
subjected to the parabolic temperature profile

Tb = 1 + 16(
x

10
)(1− x

10
) (5.44)

while the other three walls are set to Tb = 1. (The hat has been dropped,
hopefully without confusion.) We then solve ΔT = 0 subject to this boundary
condition, calculate Tavg =

∫ ∫
Ω
T (x, y) dA/AΩ, and define

f(x, y) =
T (x, y)

Tavg
− 1 (5.45)

which is displayed in Figure 5.2. A heated lower wall corresponds to positive
warming (ε > 0 in Equation (5.1)) while a cooled lower wall corresponds to
negative warming (ε < 0 in Equation (5.1)).

With these values of a and b, Equation (5.43) reveals the degeneracy be-
tween the (0, 1)-mode and the (2, 0)-mode in the constant temperature case.

In general, Equations (5.38-5.39) imply that at cut-off, β = 0, p
(i)
0 (i = 1, 2)

do not coincide with these two modes (q
(i)
0 (i = 1, 2)) in the variable tempera-

ture case. However, these two modes of the rectangular waveguide are in fact
C-orthogonal. This may be seen as follows.
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By Equation (5.19),

〈q(1)
0 , Cq

(2)
0 〉 =

∫ ∫
Ω

q
(1)
0 ∇ · (f∇q

(2)
0 ) dA =

∮
∂Ω

q
(1)
0 f

∂q
(2)
0

∂n
dl −

∫ ∫
Ω

f(∇q(1)
0 · ∇q

(2)
0 ) dA = 0,

since
∂q

(2)
0

∂n
= 0 along ∂Ω and ∇q(1)

0 · ∇q
(2)
0 = 0 by virtue of the fact that one

mode is independent of x while the other mode is independent of y.
Thus, at cut-off, the matrix M of Equation (5.39) is diagonal and its eigen-

vectors are {[1 0]T , [0 1]T} so that, by Equation (5.38), p
(i)
0 (i = 1, 2) do,

in fact, coincide with these modes of the constant temperature rectangular
waveguide.

Substitution of Equation (5.45) into Equations (5.23-5.24) yields α2 =
−.210821 and α3 = −.088264. In these and subsequent computations (per-
formed using MATLAB c©), a coarse 17×9 mesh and a fine 33×17 mesh were
employed. These results were then enhanced using Richardson extrapolation
[22] applied to the second-order accurate Control Region Approximation [67].

The cut-off frequencies are computed by setting to zero the expression for
the dispersion relation, β2 = k2

0 + λ, thereby producing

ω2
c

c20
= −[λ0 + ελ̂1 + ε2λ̂2 + ε3λ̂3 +O(ε4)]. (5.46)

Table 5.1 displays the computed eigenvalue corrections at cut-off for the five
lowest order modes. Figure 5.6 displays the cut-off frequencies for these same
modes as ε varies. Figures 5.7-5.11 show, respectively, the unperturbed (ε = 0)
(0, 0)-, (1, 0)-, (0, 1)-, (2, 0)- and (1, 1)-modes, together with these same modes
at cut-off with a heated (ε = +1) / cooled (ε = −1) lower wall.

Collectively, these figures tell an intriguing tale. Firstly, the (0, 0)-mode is
no longer a plane wave in the presence of temperature variation. In addition,
all variable-temperature modes possess a cut-off frequency so that, unlike the
case of constant temperature, the duct cannot support any propagating modes
at the lowest frequencies. Moreover, the presence of a temperature gradient
alters all of the cut-off frequencies. In sharp contrast to the constant temper-
ature case, the variable-temperature modal shapes are frequency-dependent.
Lastly, the presence of a temperature gradient removes the modal degeneracy
between the (2, 0)- and (0, 1)-modes that is prominent for constant tempera-
ture, although their curves cross for ε ≈ .5 thereby restoring this degeneracy.
However, for ε this large, it might be prudent to compute p

(i)
2 (i = 1, 2) from

Equation (5.30) which would in turn produce λ̂
(i)
4 , λ̂

(i)
5 (i = 1, 2), and their

inclusion in Equation (5.46) could once again remove this degeneracy [66].
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Table 5.1: Computed Modal Eigenvalue Corrections (β = 0)

Mode λ0 λ̂1 λ̂2 λ̂3

(0, 0) 0 0 −.132332 .036847

(1, 0) −.098696 −.016542 −.114024 .030156

(0, 1) −.394778 .012651 −.110968 .070631

(2, 0) −.394778 −.015036 −.061933 .090678

(1, 1) −.493474 .055220 −.114566 .002713
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Figure 5.6: Cut-Off Frequencies versus Temperature Perturbation
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Figure 5.7: (0, 0)-Mode: ε = 0; ε = +1; ε = −1
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Figure 5.8: (1, 0)-Mode: ε = 0; ε = +1; ε = −1
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Figure 5.9: (0, 1)-Mode: ε = 0; ε = +1; ε = −1
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Figure 5.10: (2, 0)-Mode: ε = 0; ε = +1; ε = −1
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Figure 5.11: (1, 1)-Mode: ε = 0; ε = +1; ε = −1



Chapter 6

Recapitulation

The practicing Applied Mathematician is frequently confronted with new
problems that are “close” to old familiar problems for which either analytical
or numerical solutions (or perhaps a hybrid of the two) have previously been
derived. Many times it is possible to gain rudimentary information about the
new problem by simply treating it as a small perturbation of the old one rather
than attempting its full-blown analysis ab initio.

The preceding chapters have provided a thorough treatment of just such a
perturbation method for approximating matrix (generalized) eigenvalue prob-
lems: the Rayleigh-Schrödinger perturbation procedure. The mathematical
level of the presentation has been selected so as to make this important tech-
nique accessible to non-specialists in Applied Mathematics, Engineering and
the Sciences. A spiral approach has been adopted in the development of the
material that should foster understanding and make individual chapters rea-
sonably independent.

An introductory chapter presented the origins of the procedure in the writ-
ings of Rayleigh and Schrödinger. While a more modern and consistent nota-
tion was adopted, the energy approach of Rayleigh and the differential equation
approach of Schrödinger have been preserved. Yet, we have demonstrated that
both approaches ultimately lead to (generalized) matrix eigenvalue problems
and this is the form of the perturbation procedure that is further developed
and applied in subsequent chapters. The description of the work of these Ti-
tans of Science was preceded by a summary of their respective life and times
and was followed by a detailed description of the physical problems that led
them to this method. This chapter concluded with representative applications
of the matrix perturbation theory in electrical and mechanical engineering.

134
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In preparation for the full development of the Rayleigh-Schrödinger per-
turbation procedure in later chapters, the next chapter was devoted to the
Moore-Penrose pseudoinverse. After briefly tracing the history of this key con-
cept, a list of basic concepts from linear algebra and matrix theory, together
with a consistent notation, was presented and references to the literature were
provided for those readers lacking in these prerequisites. These basic concepts
became the cornerstone of an extensive development of projection matrices
which in turn led to a self-contained treatment of QR factorization.

All of these tools of intermediate matrix theory were then brought to bear
on the important practical problem of least squares approximation to linear
systems of equations. It is here that the concept of the pseudoinverse natu-
rally arose and this chapter included a substantial development of its theory
and application to linear least squares. A comprehensive suite of numerical
examples were included in order to make this chapter a stand-alone resource
on this significant topic.

In succeeding chapters, a comprehensive, unified account of linear and
analytic Rayleigh-Schrödinger perturbation theory for the symmetric matrix
eigenvalue problem as well as the symmetric definite generalized eigenvalue
problem has been provided. The cornerstone of this development was the
Moore-Penrose pseudoinverse. Not only does such an approach permit a direct
analysis of the properties of this procedure but it also obviates the need of alter-
native approaches for the computation of all of the (generalized) eigenvectors
of the unperturbed matrix (pair). Instead, we require only the unperturbed
(generalized) eigenvectors corresponding to those (generalized) eigenvalues of
interest. An important feature of the presentation was the generalization of
the Dalgarno-Stewart identities from linear to analytic matrix perturbations
and then to an arbitrary perturbation of the generalized eigenvalue problem.
These results are new and made available here for the first time in book form.

The focal point of this investigation has been the degenerate case. In light
of the inherent complexity of this topic, we have built up the theory gradually
with the expectation that the reader would thence not be swept away in a
torrent of formulae. At each stage, we have attempted to make the subject
more accessible by a judicious choice of illustrative example. (Observe that
all of the examples were worked through without explicit computation of the
pseudoinverse!) Hopefully, these efforts have met with a modicum of success.

In the final chapter, we have presented a perturbation procedure for the
modal characteristics of cylindrical acoustic waveguides in the presence of tem-
perature gradients induced by an applied temperature distribution along the
walls of the duct. Rather than simply making the sound speed spatially vary-
ing, as is done in atmospheric propagation and underwater acoustics, we have
been careful to utilize a self-consistent physical model since we have dealt here
with a fluid fully confined to a narrow region.
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Great pains have been taken to preserve the self-adjointness inherent in the
governing wave equation. This in turn leads to a symmetric definite generalized
eigenvalue problem. As a consequence of this special care, we have been able to
produce a third-order expression for the cut-off frequencies while only requiring
a first-order correction to the propagating modes.

A detailed numerical example intended to intimate the broad possibilities
offered by the resulting analytical expressions for cut-off frequencies and modal
shapes has been presented. These include shifting of cut-off frequencies and
shaping of modes. In point of fact, one could now pose the inverse problem:
What boundary temperature distribution would produce prescribed cut-off
frequencies?

The theoretical foundation of the Rayleigh-Schrödinger perturbation pro-
cedure for the symmetric matrix eigenvalue problem is Rellich’s Spectral Per-
turbation Theorem. This important result establishes the existence of the
perturbation expansions which are at the very heart of the method. The
Appendix presents the generalization of Rellich’s Theorem to the symmetric
definite generalized eigenvalue problem. Both the explicit statement and the
accompanying proof of the Generalized Spectral Perturbation Theorem are
original and appear here in print for the first time.



Appendix A

Generalization of Rellich’s

Spectral Perturbation Theorem

Figure A.1: Franz Rellich
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F. Rellich

⇑

R. Courant

⇑

D. Hilbert

⇑

F. Lindemann

⇑

F. Klein

⇑

J. Plücker

⇑

C. L. Gerling

⇑

K. F. Gauss

Table A.1: Franz Rellich’s “Family Tree”

As should be abundantly clear from the above table of dissertation advisors,
Franz Rellich’s mathematical pedigree was unquestionably elite. This out-
standing Austrian-Italian mathematician was born in 1906 in Tramin (Tremeno)
and, at the tender age of 18 years, he traveled to the Mathematisches Institut
of the Georg-August-Universität in Göttingen for the completion of his for-
mal mathematical studies. At this time, David Hilbert [89], although in the
twilight of his distinguished career, was still an inspiration to his younger col-
leagues while his protégé Richard Courant [90] had ascended to the leadership
of this pre-eminent international center of mathematical learning.
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Rellich completed his dissertation under Courant in 1929 on the subject of
Generalization of Riemann’s Integration Method for Differential Equations of
nth Order in Two Variables. Although Rellich remained in Germany through-
out World War II, he was dismissed from his teaching post at Göttingen by
the Nazis only to return as the Director of its reconstituted Mathematisches
Institut in 1946. Tragically, Rellich died in 1955 from a brain tumor.

This truly great mathematician left behind many “Rellich’s Theorems” for
posterity (e.g., [24, pp. 324-325]), but the one which particularly concerns us
here had its genesis in a series of five pioneering papers which appeared in the
Mathematische Annalen from 1936 to 1942 under the title Störungstheorie der
Spectralzerlegung [91, 92, 93, 94, 95]. At the conclusion of World War II, he
resumed publishing this pathbreaking work [96, 97].

When Courant transplanted the Mathematical Institute from Göttingen to
New York, he brought with him the tradition of assigning to graduate students
(and in some cases to junior faculty) the task of creating written records of
the lectures by Herren Professors. Thus, Rellich’s magnificent Lectures on
Perturbation Theory of Eigenvalue Problems, delivered in the Fall of 1953 at
the (Courant) Institute of Mathematical Sciences of New York University, were
thereby transcribed and thus are still available today in English [98] for the
enlightenment of future generations of aspiring mathematicians.

Rellich’s Spectral Perturbation Theorem [98, pp. 42-43, Theorem 1] con-
cerns the variation of the eigenvalues/eigenvectors of the symmetric eigenvalue
problem under an analytic perturbation as studied in Chapter 3:

Axi = λixi (i = 1, . . . , n); A(ε) =
∞∑

k=0

εkAk. (A.1)

This theorem established the existence of corresponding power series expan-
sions for the eigenvalues/eigenvectors:

λi(ε) =
∞∑

k=0

εkλ
(k)
i ; xi(ε) =

∞∑
k=0

εkx
(k)
i (i = 1, . . . , n), (A.2)

convergent for sufficiently small |ε|.
In the present appendix, this theorem is extended to analytic perturbation

of the symmetric definite generalized eigenvalue problem as studied in Chapter
4:

Axi = λiBxi (i = 1, . . . , n); A(ε) =
∞∑

k=0

εkAk, B(ε) =
∞∑

k=0

εkBk. (A.3)

At first sight, it seems that one could simply rewrite Equation (A3) as

B−1Axi = λixi (i = 1, . . . , n) (A.4)
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and then apply the Spectral Perturbation Theorem.
However, Rellich’s proof of the Spectral Perturbation Theorem depends

critically upon the symmetry of the coefficient matrix. But,

(B−1A)T = AB−1 �= B−1A, (A.5)

unless it is possible to find a set of n linearly independent eigenvectors common
to both A and B [78, p. 342, Ex. 10.42].

Hence, the extension of Rellich’s Spectral Perturbation Theorem to the
symmetric generalized eigenvalue problem requires a more elaborate proof.
Fortunately, the gist of Rellich’s ideas may be so extended in a relatively
straightforward fashion. The details are as follows. (To the extent feasible, Rel-
lich’s notation will be utilized, although some minor modification has proven
irresistible.)

Theorem A.1 (Generalized Eigenvalue Perturbation Theorem). The gen-

eralized eigenvalues of the symmetric (definite) generalized eigenvalue problem,

Equation (A3), where the power series for A(ε) and B(ε) are convergent for

sufficiently small |ε|, can be considered as power series in ε convergent for

sufficiently small |ε|.
Proof: The generalized eigenvalues are precisely the roots of the characteristic
polynomial

κ(A,B) := det (A− λB) = cnλ
n + cn−1λ

n−1 + · · · c1λ + c0,

where ci (i = 1, . . . , n) are power series in ε converging for sufficiently small
|ε|. In general, the roots of such a polynomial need not be regular analytic
functions of ε for sufficiently small |ε|. However, there always exists the Puiseux
expansion [37, pp. 237-240, §99]: if λ0 = λ(0) is a root for ε = 0 then the root
λ(ε) may be written as a convergent (for sufficiently small |ε|) power series in
ε1/m where m is the multiplicity of λ0 = λ(0). Since A is symmetric and B
is symmetric positive definite, the roots of κ(A,B) are all real [81, p. 345,
Theorem 15.3.3].

This implies that in Puiseux’s expansion of λ(ε),

λ(ε) = λ0 + d1ε
1/m + d2ε

2/m + · · · ,
only integral powers of ε may appear. To see this, let dμ denote the first
nonzero coefficient (i.e., d1 = · · · = dμ−1 = 0, dμ �= 0). Then,

dμ = lim
ε→0+

λ(ε)− λ0

εμ/m
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is real because λ(ε) is real for real ε. Moreover,

(−1)μ/m · dμ = lim
ε→0−

λ(ε)− λ0

(−ε)μ/m

is also real. Hence, (−1)μ/m is a real number so that μ must be a multiple of
m. This argument may be continued to show that only integral powers of ε in
the Puiseux expansion can have nonzero coefficients. �

Lemma A.1 (Singular Homogeneous System Perturbation Lemma).

Let Γ(ε) := [γi,j(ε)] be power series convergent in a neighborhood of ε = 0 and

let det (Γ(ε)) = 0. Then, there exist power series a(ε) := [a1(ε), . . . , an(ε)]T

convergent in a neighborhood of ε = 0, such that Γ(ε)a(ε) = 0 and, for real ε,

||a(ε)||B = 1.

Proof: This result is proved using determinants in [98, pp. 40-42] with
||a(ε)|| = 1 which may readily be renormalized to ||a(ε)||B = 1. �

Theorem A.2 (Generalized Eigenvector Perturbation Theorem). Corresponding

to the generalized eigenvalue

λ(ε) = a0 + εa1 + · · · ,

there exists a generalized eigenvector

u(ε) = [u1(ε), · · · , un(ε)]T

each of whose components uk(ε) (k = 1, . . . , n) is a power series in ε convergent

for sufficiently small |ε| and which is normalized so that ||u(ε)||B = 1 for real

ε and |ε| sufficiently small.

Proof: Simply apply the previous Lemma with Γ(ε) := A(ε)− λ(ε)B(ε). �
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Theorem A.3 (Generalized Spectral Perturbation Theorem). Let A(ε)

be symmetric and B(ε) be symmetric positive definite with both matrices ex-

pressible as power series in ε which are convergent for sufficiently small |ε|.

Suppose that λ0 := λ(0) is a generalized eigenvalue of (A0, B0) := (A(0), B(0))

of exact multiplicity m ≥ 1 and suppose that the interval (λ0 − δ−, λ0 + δ+),

with positive numbers δ− and δ+, contains no generalized eigenvalue of (A0, B0)

other than λ0. Then, there exist power series,

λ1(ε), . . . , λm(ε); φ(1)(ε), . . . , φ(m)(ε),

all convergent in a neighborhood of ε = 0, which satisfy the following condi-

tions:

(1) The vector φ(ν)(ε) := [f
(ν)
1 (ε), . . . , f

(ν)
n (ε)]T is a generalized eigenvector of

(A(ε), B(ε)) corresponding to the generalized eigenvalue λν(ε). I.e.,

A(ε)φ(ν)(ε) = λν(ε)B(ε)φ(ν)(ε) (ν = 1, . . . , m).

Furthermore, λν(0) = λ0 (ν = 1, . . . , m) and for real ε these generalized eigen-

vectors are B(ε)-orthonormal. I.e.,

〈φ(ν)(ε), φ(μ)(ε)〉B(ε) = 〈φ(ν)(ε), B(ε)φ(μ)(ε)〉 = δν,μ (ν, μ = 1, . . . , m).

(2) For each pair of positive numbers (δ′− < δ−, δ′+ < δ+), there exists a positive

number ρ such that the portion of the generalized spectrum of (A(ε), B(ε)) lying

in the interval (λ0−δ′−, λ0+δ′+) consists precisely of the points λ1(ε), . . . , λm(ε)

provided that |ε| < ρ.
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Proof:
(1) The first part of the theorem has already been proved in the case of m = 1.
Proceeding inductively, assume that (1) is true in the case of multiplicity m−1
and then proceed to prove it for multiplicity m.

Theorems A.1 and A.2 ensure the existence, for real ε, of the generalized
eigenpair {λ1(ε), φ

(1)(ε)} such that

A(ε)φ(1)(ε) = λ1(ε)B(ε)φ(1)(ε); ||φ(1)(ε)||B = 1,

whose power series converge for sufficiently small |ε|.
Define the linear operator M(ε) by

M(ε)u := 〈u, B(ε)φ(1)(ε)〉B(ε)φ(1)(ε),

whose (symmetric) matrix representation is

M(ε) = B(ε)φ(1)(ε)φ(1)(ε)TB(ε).

Next, define the symmetric matrix

C(ε) := A(ε)−M(ε),

with power series in ε convergent for sufficiently small |ε|. Set ψ1 = φ(1)(0) and
let ψ1, ψ2, . . . , ψm be a B-orthonormal set of generalized eigenvectors belonging
to the generalized eigenvalue λ0 of (A0, B0).

Thus, we have

C0ψj = λ0B0ψj (j = 2, . . . , m),

where C0 := C(0). Hence, λ0 is a generalized eigenvalue of (C0, B0) of mul-
tiplicity at least m − 1. On the other hand, its multiplicity cannot exceed
m − 1. Otherwise, there would exist an element ψ with ||ψ||B = 1 such that
C0ψ = λ0B0ψ and 〈ψ, ψj〉B = 0 (j = 2, . . . , m). Since C0ψ1 = (λ0 − 1)ψ1, it
follows that 〈ψ, ψ1〉B = 0 because ψ and ψ1 are consequently generalized eigen-
vectors corresponding to distinct generalized eigenvalues of (C0, B0). There-
fore, ψ, ψ1, ψ2, . . . , ψm are m+ 1 linearly independent generalized eigenvectors
of (A0, B0) corresponding to the generalized eigenvalue λ0. But, this is impos-
sible because the multiplicity of λ0 as a generalized eigenvalue of (A0, B0) is
exactly m so that the multiplicity of λ0 as a generalized eigenvalue of (C0, B0)
is exactly m− 1.

As a result, by the induction hypothesis, there exist power series

λν(ε); φ
(ν)(ε) (ν = 2, . . . , m),

convergent in a neighborhood of ε = 0 which satisfy the relations

C(ε)φ(ν)(ε) = λν(ε)B(ε)φ(ν)(ε) (ν = 2, . . . , m),
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where, for real ε,

〈φ(ν)(ε), φ(μ)(ε)〉B(ε) = δν,μ (ν, μ = 2, . . . , m).

Moreover, we find that

A(ε)φ(1)(ε) = λ1(ε)B(ε)φ(1)(ε); C(ε)φ(1)(ε) = (λ1(ε)− 1)B(ε)φ(1)(ε).

For sufficiently small |ε|, we certainly have λν(ε) �= λ1(ε) − 1 (ν = 2, . . . , m),
so that 〈φ(1)(ε), φ(ν)(ε)〉B(ε) = 0 (ν = 2, . . . , m).

Hence, we finally obtain

A(ε)φ(ν)(ε) = C(ε)φ(ν)(ε) +M(ε)φ(ν)(ε) = λν(ε)B(ε)φ(ν)(ε) (ν = 2, . . . , m).

Thus, the first part of the theorem is proved.
(2) In exactly the same way, we can treat each generalized eigenvalue of
(A0, B0) thereby obtaining n convergent power series which can be labeled
λ1(ε), . . . , λn(ε) and which for fixed ε comprise the entire generalized spec-
trum of (A(ε), B(ε)). The second part of the theorem is then an immediate
consequence.
�

Remark A.1. In Theorem A.1, the phrase “can be considered” has been cho-

sen to indicate that a suitable arrangement of the eigenvalues λ1(ε), . . . , λn(ε)

must be made for the conclusion to be valid.

Consider, for example,

Example A.1.

A(ε) =

⎡
⎢⎢⎣ ε 0

0 −ε

⎤
⎥⎥⎦ ; B(ε) = I,

which possesses eigenvalues λ1(ε) = ε and λ2(ε) = −ε, evidently convergent
power series. But, if they were to be arranged in order of magnitude then
λ1(ε) = −|ε| and λ2(ε) = |ε| which are not regular analytic functions of ε near
ε = 0.
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Remark A.2. It is important to observe what Theorem A.3 does not claim.

It is not true that if λ0 is an unperturbed generalized eigenvalue of multiplicity

m and if {ψ1, . . . , ψm} is a B-orthonormal set of generalized eigenvectors of the

unperturbed problem (A0, B0) corresponding to λ0 then there exist generalized

eigenvectors φ(ν)(ε) (ν = 1, . . . , m) which are convergent power series in ε and

such that the vector equation

φ(ν)(ε) = ψν + ε · ψ1
ν + ε2 · ψ2

ν + · · ·

obtains. All that has been proved is that the φ(ν)(ε) exist and that φ(ν)(0) (ν =

1, . . . , m) are a B-orthonormal set of generalized eigenvectors of the unper-

turbed problem. In general, φ(ν)(0) cannot be prescribed in advance; the per-

turbation method itself must select them.

Consider, for example,

Example A.2.

A(ε) =

⎡
⎢⎢⎣ 1 + ε 0

0 1− ε

⎤
⎥⎥⎦ ;B(ε) = I.

For ε = 0, every nonzero vector is an eigenvector. In particular, we may
select ψ1 = [1/

√
2, 1/
√

2]T and ψ2 = [−1/
√

2, 1/
√

2]T . For ε �= 0, the normal-
ized eigenvectors are uniquely determined up to a factor of unit magnitude as
φ(1)(ε) = [1, 0]T and φ(2)(ε) = [0, 1]T , which are quite unrelated to ψ1 and ψ2.

Remark A.3. If, as has been assumed throughout this book, (A(ε), B(ε)) has

distinct generalized eigenvalues in a deleted neighborhood of ε = 0 then the
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Rayleigh-Schrödinger perturbation procedure as developed in the previous chap-

ters will yield power series expansions for the generalized eigenvalues and

eigenvectors as guaranteed by the Generalized Rellich Spectral Perturbation

Theorem. However, if (A(ε), B(ε)) has a repeated eigenvalue in a neighborhood

of ε = 0, i.e. if the degeneracy is unresolved at any level of approximation,

then the Rayleigh-Schrödinger perturbation procedure fails to terminate.

Consider, for example,

Example A.3.

A(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 ε2 ε(1− ε)

0 ε(1− ε) (1− ε)2

⎤
⎥⎥⎥⎥⎥⎥⎦ ; B(ε) = I,

which possesses eigenvalues

λ1(ε) = λ2(ε) = 0; λ3(ε) = 1− 2ε + 2ε2,

with corresponding eigenvectors

x1(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α1(ε)

β1(ε) · (ε− 1)

β1(ε) · ε

⎤
⎥⎥⎥⎥⎥⎥⎦ ; x2(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

α2(ε)

β2(ε) · (ε− 1)

β2(ε) · ε

⎤
⎥⎥⎥⎥⎥⎥⎦ ; x3(ε) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

γ(ε) · ε

γ(ε) · (1− ε)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where the orthogonality of {x1(ε), x2(ε)} necessitates the restriction

α1(ε)α2(ε) + β1(ε)β2(ε)(2ε
2 − 2ε+ 1) = 0.
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The Rayleigh-Schrödinger perturbation procedure successively yields λ
(k)
1 =

0 = λ
(k)
2 (k = 1, 2, . . . ,∞) but, never terminating, it fails to determine {y(0)

1 , y
(0)
2 }.

In fact, any orthonormal pair of unperturbed eigenvectors corresponding to
λ = 0 will suffice to generate corresponding eigenvector perturbation expan-
sions. However, since they correspond to the same eigenvalue, orthogonality
of {y1(ε), y2(ε)} needs to be explicitly enforced.

Thus, in a practical sense, the Rayleigh-Schrödinger perturbation proce-
dure fails in this case since it is unknown a priori that λ

(k)
1 = λ

(k)
2 (k =

1, 2, . . . ,∞) so that the stage where eigenvector corrections are computed is
never reached.
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Calculations”, Bulletin Géodésique, Vol. 52, pp. 118-220, 1951.
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Hasenöhrl, F. 12
heated wall 126
Heisenberg, Werner 15
Helmholtz, H. von 2
higher-order corrections 18, 123
Hilbert, D. 138
hydrogen atom 14, 21



158 Index

infinite-dimensional matrix
perturbation theory 15

infinite series 11
inhomogeneous sound speed 114-115,

117
integral form 121
integral operators 121
intermediate normalization 18, 53,

57, 76, 79, 90, 93, 102, 106
inverse problem 136
isothermal ambient state 115

Johnson, Andrew (President) 2

Kelvin, Lord 1
kinetic energy 4-5, 7
Klein, F. 138

Lagrange, J. L. 4
Lagrange’s equations of motion 4, 6
Lagrangian 4-5
Laguerre polynomials 22
Laplace, P. S. 3
Laplacian-type operator 51
Legendre functions 22
Lindemann, F. 138
linear operators 16, 19
linear systems 28-29, 135
longitudinal waveguide axis 117
LS (least squares) approximation 38-

42, 45-50, 135
exactly determined 38, 47-
48, 123
full rank 38-40, 47-50
overdetermined 38, 49
rank-deficient 38, 48-50, 123
underdetermined 38-40, 50

LS possibilities 47
LS Projection Theorem 38
LS residual calculation 46-47
LS “Six-Pack” 47-50

LS Theorem 41
LS & Pseudoinverse Theorem 46

magnetic field 22, 24
March, Arthur 13
March, Hilde 13
March, Ruth 13
mass matrix 25
mathematical physics 1, 51
Mathematical Tripos 1
Mathematische Annalen 139
Mathematisches Institut Göttingen

138-139
MATLAB 54, 61, 66, 70, 81, 95,

108, 114, 116, 127
matrix mechanics 15
matrix perturbation theory 15, 23
matrix theory fundamentals 28, 135
Maxwell, J. C. 1
mechanical engineering 25, 134
microwave cavity resonator 24
Mind and Matter 12
modal characteristics 115, 125
modal shapes 26, 114-116, 129-133,

136
Moore, E. H. 27
mufflers vi, 115
multiplicity 19, 22, 56, 77, 91, 104,

124, 140, 142-144
My View of the World 13

natural frequencies 5, 7, 10, 26
Neumann boundary conditions 19
Neumann problem 120
Nobel Prize for Physics 2-3, 13
nodal point 9
nondegenerate case 52-55, 75-77, 88-

91, 101-104
nondegenerate eigenvalues 16, 18, 124
nonlinear matrix perturbation

theory 15
nonstationary perturbation theory 15



Index 159

normal and tangential coordinates
120

normal equations 30, 39
normal modes 4-5, 7
notational glossary 28
nullity 123
null space 17, 20, 28, 40

ocean (underwater) acoustics 115,
135

On Sensations of Tone 2
ordinary differential equations 15
orthogonal complement 39
orthogonality 16-17
orthogonal projection 30

onto dependent vectors 36
onto independent vectors 32
onto orthonormal vectors 30

orthonormality 19-20
Oxford University 13

partial differential equations 18
Pax Britannica 1
Penrose conditions 27, 42-44
Penrose, R. 27
Penrose Theorem 45
periodic boundary conditions 16
perturbation 5, 10, 16, 19, 22, 25-

26, 52, 74, 89, 100, 122, 139
perturbation series expansion 6, 17,

19, 52-53, 75-76, 89, 101, 114,
117, 122, 124, 139

physical inhomogeneity 51, 74, 88,
100

physical symmetry 19, 75, 89, 101
Plancharel’s Theorem 3
Planck, Max 13
Planck’s constant 22
plane wave 127
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