Robust Optimization: What Works and What Does Not

Paradigm Asset Management, LLC.

for

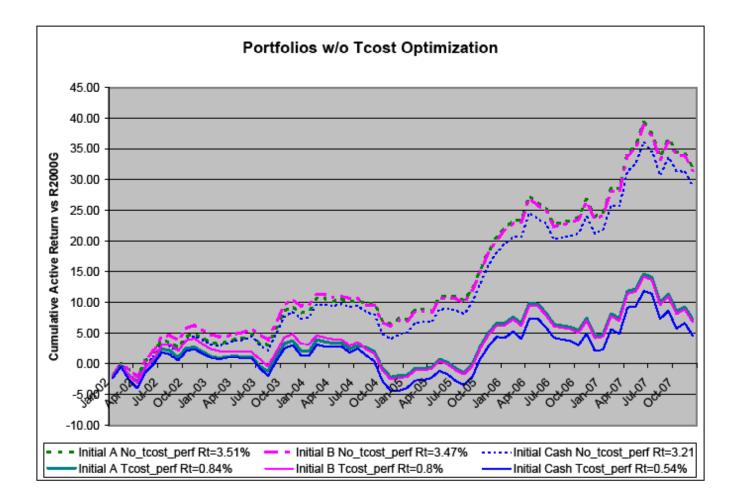
Northfield's Research Conference 2008

Overview

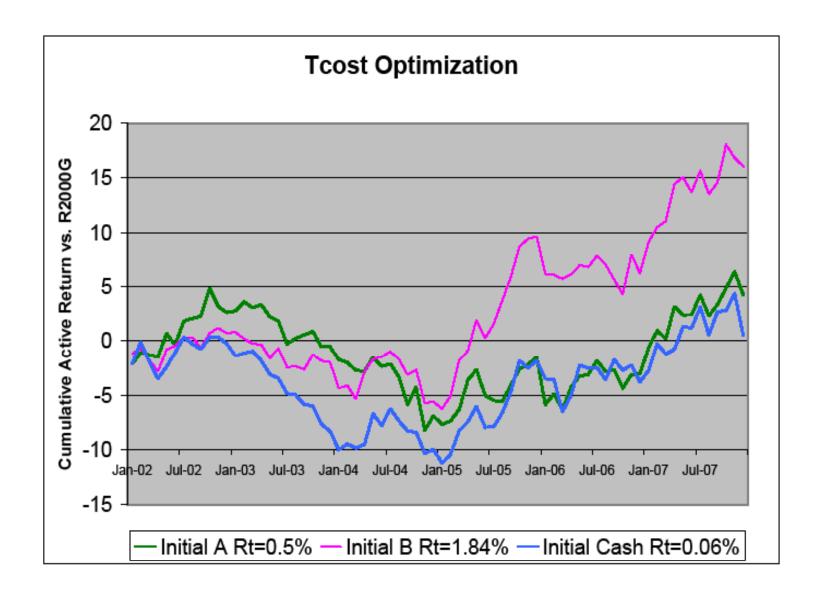
- Why Optimized Portfolios Are Not Robust?
 - Ex-Post Performance and Multi-period Backtests
- Robust Optimization with SOCP (Second Order Cone Programming)
 - Equivalence to the Quadratic Penalty
- . Two-Stage Optimization
 - Make a Portfolio Optimization Process (POP) Robust
- . "Less is More"
 - One-period Static Optimization might be Over-Analyzed
- Closing Remarks

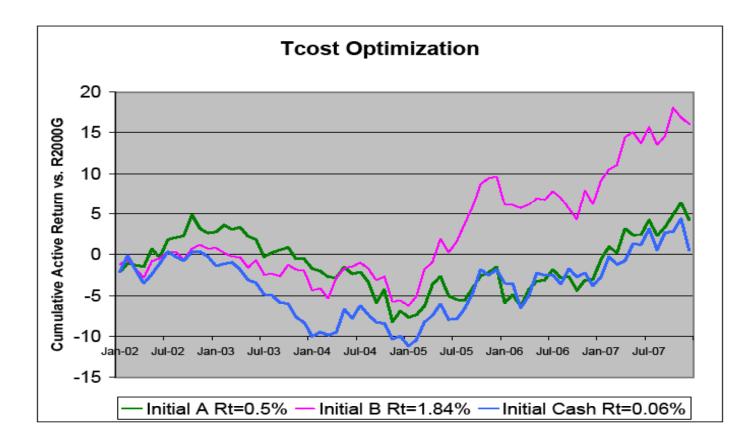
An Example

- Long-Only Active Portfolio Benchmarked to Russell 2000 Growth
- Max Alpha (Predicted)
- Tracking Error no more than 4.75%
- Security level active-weight bounds
- Beta neutral to the benchmark
- Tcost (25 bps impact + 3¢/share)
- No more than 200 securities in the portfolio



	Initial Portfolio		
Annualized Performance	А	В	С
Active Returns	3.67%	3.71%	3.41%
Active Returns (after Tcost)	0.80%	0.84%	0.54%
Active Risk	4.62%	4.59%	4.74%
Tcost Impact	-2.89%	-2.89%	-2.89%





	Initial Portfolio		
Annualized Performance	А	В	С
Active Returns	0.50%	1.84%	0.06%
Active Risk	4.75%	4.81%	4.51%
Tcost Impact	-0.20%	-0.21%	-0.26%

Does Robust Optimization help?

- S. Ceria and R. Stubbs. (2006). "Incorporating Estimation Errors into Portfolio Selection: Robust Portfolio Construction." Journal of Asset Management 7. pp. 109-127.
- J.H. Lee, D. Stefek and A. Zheleznyak (2006). Robust Portfolio Optimization: A Closer Look. *Barra Research Reports*.
- F. Fabozzi, P. Kolm, D. Pachamanova and S. Focardi. (2007).
 Robust Portfolio Optimization. *The Journal of Portfolio Management*.
- Michaud, R. O. (1989). The Markowitz Optimization Enigma: Is "Optimized" Optimal. *The Financial Analyst Journal V. 45. pp.31-*42.

What is Robust MVO?

.

A mean-variance optimization (MVO) problem:

 $\boldsymbol{\alpha}$ is the expected absolute or excess return of stocks from a universe

$$\begin{array}{rcl} \max & \alpha'w \\ & w'Vw & \leq & \sigma^2 \\ & e'w & = & 1 \\ & w & \geq & 0. \end{array}$$
(1)

Its active counterpart can be written as:

Here, α is the expected active return of stocks from a universe

$$\max_{\substack{(w-w^b)'V(w-w^b) \leq \tau^2 \\ e'w = 1 \\ w \geq 0.}} \alpha'w$$
(2)

A very important and well-known property for the active problem is:

$$\alpha' w^b = 0.$$

A benchmark portfolio's alpha is zero! (See Grinold and Kahn (1999)).

Due to the fact that the true α is not know, and we can only obtain an estimation of the "true" α . Assume

$$\alpha \sim N(\alpha^*, \Omega)$$

a normal distribution of known covariance.

For any small probability p, we can construct a (1-p) confidence region for some κ_p as

$$\mathcal{B} = \{ \alpha | (\alpha - \hat{\alpha})' \Omega^{-1} (\alpha - \hat{\alpha}) \leq (\kappa_p)^2 \},\$$

where $\hat{\alpha}$ is the estimated expected return of the stocks. The robust optimization tries to optimize the "worst case scenario" out of all possibilities, or over some most likely cases.

$$\max \min_{\substack{\{\alpha \in \mathcal{B}\}\\ w'Vw \leq \tau^2\\ e'w = 1\\ w \geq 0.}$$
(3)

What is Robust MVO?

Absolute Return-Risk Robust MVO Formulation

The robust optimization problem can be formulated as,

$$\max \begin{array}{c} \widehat{\alpha}w - \kappa_p \sqrt{w'\Omega w} \\ w'Vw \le \sigma^2 \\ e'w = 1 \\ w \ge 0. \end{array}$$
(4)

This is a second-order cone programming (SOCP)problem instead of a quadratic programming problem (QP) largely due to the appearance of the square root.

Because

.

$$\min_{\alpha} \{ \alpha' w \mid (\alpha - \hat{\alpha})' \Omega^{-1} (\alpha - \hat{\alpha}) \leq (\kappa_p)^2 \} \\
= \hat{\alpha} w + \kappa_p \min_{x} \{ x' u \mid x' x \leq 1 \} \\
= \hat{\alpha} w - \kappa_p \| u \| \\
= \hat{\alpha} w - \kappa_p \sqrt{w' \Omega w}.$$
(5)

$$\max \min_{\{\alpha \in \mathcal{B}\}} \quad \alpha' w = \max \quad \widehat{\alpha} w - \kappa_p \sqrt{w' \Omega w}.$$

Our Results

Demystification of the Robust Optimization

$$\max \begin{array}{l} \widehat{\alpha}w - \kappa_p \sqrt{w'\Omega w} \\ w'Vw \leq \sigma^2 \\ e'w = 1 \\ w \geq 0. \end{array}$$
(6)

There exists a λ such that the solution of the following problem has an identical solution to the above Robust MVO,

$$L(\lambda) = \max \begin{array}{l} \widehat{\alpha}w - \lambda w' \Omega w \\ w' V w \leq \sigma^2 \\ e' w = 1 \\ w \geq 0. \end{array}$$
(7)

This is a Quadratic Penalty Function problem.

Our Results

.

Why Our Claim is true?

$$\begin{array}{rcl} \max & \widehat{\alpha}'w & & \\ & w'Vw & \leq & \sigma^2 \\ & e'w & = & 1 \\ & w & \geq & 0. \end{array}$$

It is well-known that the regular MVO can be solved by

$$\begin{array}{rll} \max & \hat{\alpha}'w & - & \mu \; w'Vw \\ & e'w \; = \; 1 \\ & w \; \geq \; 0, \end{array}$$

for some μ . (μ is formally called the Lagrangian Multipler.)

$$\max \begin{array}{c} \widehat{\alpha}w - \kappa_p \sqrt{w'\Omega w} \\ w'Vw \leq \sigma^2 \\ e'w = 1 \\ w \geq 0. \end{array}$$

By the same logic, the above Robust Problem can be solved through

$$\begin{array}{ll} \max \quad \widehat{\alpha}w \\ \sqrt{w'\Omega w} \leq \theta \quad \text{or} \quad w'\Omega w \leq \theta^2 \\ w'Vw \leq \sigma^2 \\ e'w = 1 \\ w \geq 0. \end{array}$$

Our Results

.

The Implication of Our Claim

Since V is the risk model, α^* is the expected absolute returns,

$$\alpha \sim N(\alpha^*, V).$$

On account of Axioma's Robust model's assumption $\alpha \sim N(\alpha^*, \Omega)$, we shall conclude that

$$\Omega = \delta V.$$

If this is the case, the Efficient Frontier from the Robust Optimization would be identical to the one from Regular MVO.

$$L(\lambda) = \max \begin{array}{l} \hat{\alpha}w - \lambda \delta \ w' V w \\ w' V w \leq \sigma^2 \\ e' w = 1 \\ w \geq 0. \end{array}$$
(8)

A Big Question

Does Robust MVO Enhance Portfolio Alpha?

Just consider a simpler case where $\Omega = diag(\sigma_i^2)$.

$$\max \quad \widehat{\alpha}w - \lambda \ \{w'\Omega w\} \\ w'Vw \le \sigma^2 \\ e'w = 1 \\ w \ge 0.$$
(9)

$$\max \quad \begin{array}{l} \widehat{\alpha}w - \mu \ w'(V + (\lambda/\mu)\Omega)w \\ e'w = 1 \\ w \ge 0. \end{array}$$
(10)

The Robust Optimization suggests use a different risk model that increases the idiosyncratic risks for stocks of which the alphas might be harder to predict.

A Mistake in the Current Robust MVO Formulation

Active Returns/Risks Robust Reformulation

For active returns MVO, the corresponding robust problem is

$$\max \min_{\{\alpha \in \mathcal{B}\}} \alpha' w$$

$$(w - w^b)' V(w - w^b) \le \tau^2$$

$$e' w = 1$$

$$w \ge 0.$$
(11)

Ceria and Stubbs' (2005) from Axioma claimed that the above objective function is equivalent to

max
$$\widehat{lpha}(w-w^b)-\kappa_p\sqrt{(w-w^b)'\Omega(w-w^b)}$$

Actually, due to the fact that $\alpha' w^b = 0$, their objective is not entirely accurate. We show that a correct form of objectve function should be

A Mistake in the Current Robust MVO Formulation

max
$$\hat{\alpha}w - \kappa_p \sqrt{w'\Omega w - \frac{(w'\Omega w^b)^2}{w^{b'}\Omega w^b}},$$

or

$$\max \quad \widehat{\alpha}w - \lambda (w'\Omega w - \frac{(w'\Omega w^b)^2}{w^{b'}\Omega w^b})$$
$$(w - w^b)'V(w - w^b) \le \sigma^2$$
$$e'w = 1$$
$$w \ge 0.$$
(12)

What is the Remedy?

- Robust MVO does not differ much from regular MVO, it is equivalent to the quadratic penalty function method;
- Robust MVO requires to estimate another set of parameters;
- Robust Optimization is a one-period static solution.

Two-Stage Optimization --- A Solution

- Stage 1: Find a path-independent <u>"ideal" portfolio</u>
- Max Alpha
 - **1a. The Tracking Error upper bound;**

1b. Linear side-constraints; (Such as security-level bounds, factorbets);

1c. Upper bound on number of securities (optional).

• Stage 2: Find the *tradable portfolio*

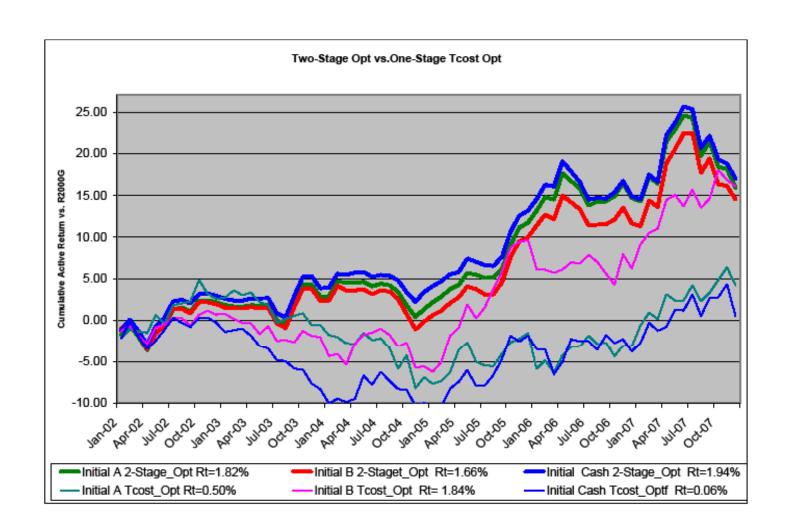
Max Utility Function

same constraints as Stage 1, 1c) shall be included.

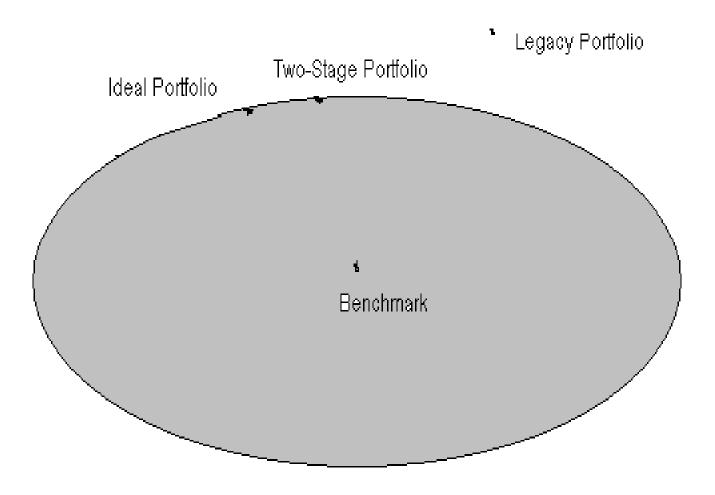
Utility Function = alpha – λ (tracking_err vs. *ideal portfolio*)²

- μ (Tcost against the *legacy portfolio*)

Two-Stage vs. One-Stage



Two-Stage Optimization



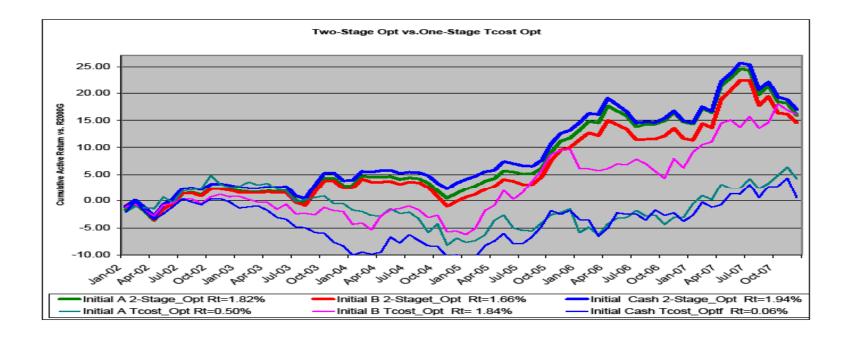
Two-Stage Optimization --- A Solution

tradable portfolio

=Function (alpha, risk model, bounds, legacy portfolio, λ , μ)

• How to decide λ and μ is an art.

Two-Stage Optimization



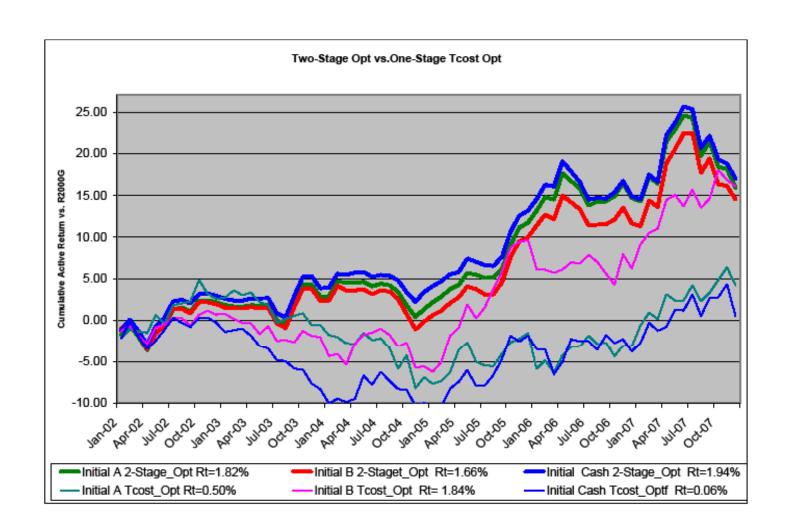
	Initial Portfolio		
	А	В	С
Active Returns	1.82%	1.66%	1.94%
Active Risk	4.20%	4.28%	4.20%
Tcost Impact	-1.43%	-1.44%	-1.42%

	Initial Portfolio		
	А	В	С
Active Returns	1.84%	0.50%	0.06%
Active Risk	4.75%	4.81%	4.51%
Tcost Impact	-0.20%	-0.21%	-0.26%

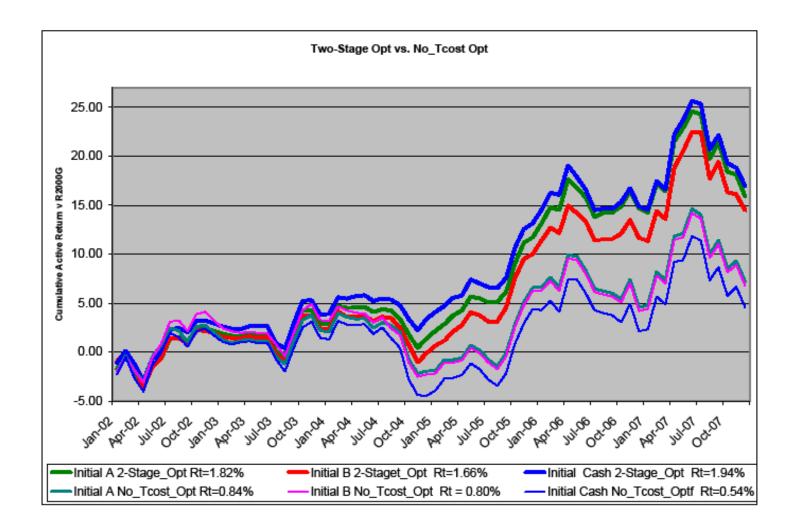
Two-Stage Optimization

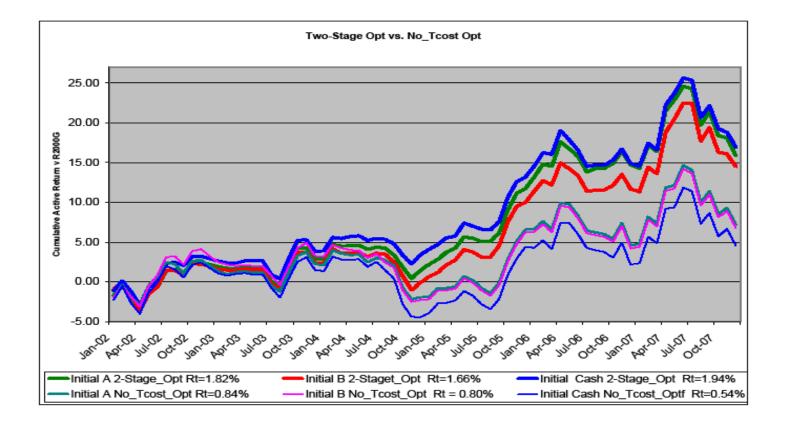
One-Stage Tcost Optimization

Two-Stage vs. One-Stage



Two-Stage vs. No-Tcost Optimization





	Initial Portfolio		
Annualized Performance	А	В	С
Active Returns (Two-Stage)	1.82%	1.66%	1.94%
Active Returns (No-Tcost Opt)	0.80%	0.84%	0.54%
Active Risk	4.57%	4.55%	4.69%
Tcost Impact (Two-Stage)	-1.43%	-1.44%	-1.42%
Tcost Impact (No-Tcost Opt)	-2.89%	-2.89%	-2.89%

Less is More

- It might *not* be a good idea to *over-analyze* the one-period static optimization problems
- How to make a Portfolio Optimization Process (POP) Robust?

form a maximization problem that is *concave* if possible;
 having a *unique* optimal solution is even better (When the risk model is
 a positive-definite matrix *and* risk budget is binding).

2) Constraints that limit number of securities in a portfolio may cause the optimization problem *non-concave*, risk-targeting is a *bad idea*.

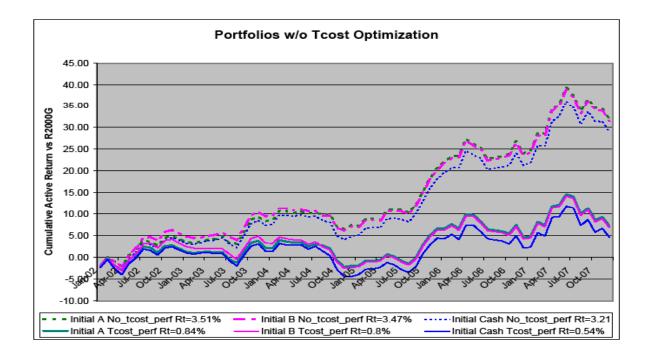
3) Find and understand a series of *path-independent* portfolios. The PMs don't need to trade on these portfolios, but they are better to *know* these portfolios.

4) Including transaction cost and market impact into the POP, or adding turnover constraints may create a series of *path-dependent* portfolios.

Less is More

- The Portfolio Optimization Process (POP) uses ex-ante data to achieve an ex-post goal, and it is a single-period proxy to a multi-period stochastic problems.
- The MVO pioneered by Markowitz was developed originally to trade-off between risks and returns
- Currently Optimizer is used as a portfolio construction tool, sometimes, the tool to create a *tradable portfolio*.

Recommendations



Run a Two-Stage Optimization (It requires an optimizer that can handles the 2nd Benchmark.)

If not, run an optimization ignoring Tcost/Turnover to ensure pathindependent.

G. Sofianos, S. Takriti and I. Tierens. (2007) Including Trading Costs in Portfolio Optimization. Equity Execution Strategies, Goldman Sachs.

Closing Remarks

- Robust MVO is equivalent to the Quadratic Penalty Function Approach
- "Less is More"
- Two-Stage Optimization Enhances Robustness

