

| Test Report No.:     | FS 28710121                                                                                                              |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|
| Version-No.:         | 2                                                                                                                        |
| Date:                | 2011-03-15                                                                                                               |
| Subsystem:           | Pneumatic and Hydraulic Single and Double Acting Actuator                                                                |
| Model:               | RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC,<br>RCCO                                                            |
| Customer:            | <b>Rotork Sweden AB</b><br>P.O. Box 80<br>SE-79122 Falun                                                                 |
| Order No. / Date:    | Rotork Order dated 2010-06-07                                                                                            |
| Test Specifications: | IEC 61508: 2010 Part 1÷7<br>Functional Safety of Electrical/Electronic/Programmable Electronic<br>Safety Related Systems |
| Test Institute:      | <b>TÜV Rheinland Italia S.r.l.</b><br>Via Mattei, 10<br>20010 Pogliano Milanese (MI)                                     |
| Department:          | <b>TÜV Rheinland Italia S.r.l.</b><br>Test Laboratory for Pressure Equipment<br>Via Italia, 1<br>24030 Medolago (BG)     |
| Author:              | Carlo Tarantola                                                                                                          |
| (Signature)          | Cerle Vocentile                                                                                                          |

This document is only valid in its entirety and separation of any part is not allowed.



### INDEX

| 1  | PUF                      | RPOS       | SE AND SCOPE                                                                               | 3      |
|----|--------------------------|------------|--------------------------------------------------------------------------------------------|--------|
| 2  | DES                      | SCRI       | PTION OF SYSTEM                                                                            | 3      |
|    | 2.1<br>2.2<br>2.3<br>2.4 | Arc<br>Cla | PE OF CALCULATION/TYPES<br>HITECTURE<br>SSIFICATION<br>TRICTIONS                           | 4<br>4 |
| 3  | SAF                      | ΈТΥ        | -RELEVANT CHARACTERISTICS                                                                  | 4      |
| 4  | INS                      | PEC        | TION SPECIFICATIONS                                                                        | 5      |
|    | 4.1<br>4.2               | DAT        | NDARDS<br>'ABASES                                                                          | 5      |
| 5  | INS                      |            | TION DOCUMENTS                                                                             |        |
|    | 5.1<br>5.2               | Doc        | CUMENTATION PROVIDED BY THE CUSTOMER<br>CUMENTATION GENERATED BY TÜV RHEINLAND             | 5      |
| 6  | ABI                      | BRE        | VIATIONS                                                                                   | 6      |
| 7. | PFD                      | ES'        | ГIMATION                                                                                   | 7      |
|    | 7.1<br>7.2<br>7.3<br>7.4 | Ass<br>Des | CEDURE FOR PFD ESTIMATION<br>UMPTIONS<br>CRIPTION OF THE FAILURE CATEGORIES<br>DESTIMATION | 7<br>8 |
| 8  | OV                       | ERA        | LL RESULT                                                                                  | 11     |
| 9. | STA                      | TUS        | S OF THE DOCUMENT                                                                          | 13     |
|    | 9.1<br>9.2<br>9.3        | Rel        | BILITY<br>EASES<br>URE ENHANCEMENTS                                                        | 13     |
| A  | NNEX                     | A:         | PART LIST                                                                                  | 14     |
| Al | NNEX                     | B:         | GENERAL DRAWING                                                                            | 15     |
| A  | NNEX                     | C:         | PICTURES                                                                                   | 16     |
| A  | NNEX                     | D:         | TECHNICAL DATA                                                                             | 17     |
| A  | NNEX                     | E:         | PHOTOS OF THE TESTS                                                                        | 18     |



## PFD CALCULATION REPORT OF ROTORK PNEUMATIC AND HYDRAULIC SINGLE AND DOUBLE ACTING ACTUATORS SERIES RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO

### 1 PURPOSE AND SCOPE

This report summarizes the results of a PFD evaluation of the Rotork Sweden Pneumatic and Hydraulic Single and Double Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO.

A PFD evaluation was performed, according to IEC 61508-2, to evaluate the  $\lambda$  values and, consequently, the SFF and the PFD<sub>AVG</sub> values of the Rotork Sweden Pneumatic Actuator, Single Acting.

The PFD evaluation according to IEC 61508-2 is only one of the steps to be taken to achieve functional safety certification according to IEC 61508 of a device. Failure rates and Safe Failure Fraction are determined.

For full functional safety certification purposes all the requirements of IEC 61508 (Part  $1\div7$ ), including the Functional Safety Management System and the Safety LifeCycle Management (with reference to parts 6 and 7 of IEC 61508-1, with application to the product subject of the Certification) must be considered.

### 2 DESCRIPTION OF SYSTEM

### 2.1 Scope of calculation/types

This report is related to the following Rotork Sweden Actuator:

- Pneumatic and Hydraulic Scotch-Yoke Single and Double Acting Actuators Series RC (RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO)
- Legenda (after the first two letters):

O: Overstroke

- T: Extracorrosion
- C: Carbon Steel

I: dimension in inch (only for external connection)

RCE is the denomination for bare actuators used for our own complete hydraulic units (with motor, pump, tank and so on). Exactly as a RC hydraulic but with fastenings for the hydraulic unit.

The aforementioned differences have no effect on PFD calculations.

Some of the most important characteristics are the followings:

- Cylinder dimensions: from 55 to 200 mm diameter
- Single and double piston (double piston configuration as "worst case")
- Bearings



- o Polymer per Pneumatic
- o Brass per Hydraulic and for Pneumatic Low-High Temperature

For detailed information, see documents [D1], [D2] and Annexes.

#### 2.2 Architecture

The Sub-Systems have a 1001 architecture.

#### 2.3 Classification

The Subsystems can be classified as Type A device according to IEC 61508, having an hardware fault tolerance of 0.

Their application is a "Low Demand Mode" application.

### 2.4 Restrictions

#### The items of additional equipment are not part of the assessment.

In particular, shut-down valve is not part of the assessment.

### **3 SAFETY-RELEVANT CHARACTERISTICS**

Objective of the safety-related action is to bring a unit and/or whole plant into a safe state.

The Safety Function is realised in the following way:

When an unsafe condition is detected, the controller (outside the subsystem) drives the actuator to close (open) the shut-down valve (blow-down valve)



## **4** INSPECTION SPECIFICATIONS

### 4.1 Standards

| No.  | Reference | Title                                                                                           |
|------|-----------|-------------------------------------------------------------------------------------------------|
| [N1] |           | Functional Safety of<br>Electrical/Electronic/Programmable Electronic<br>Safety Related Systems |
| [N2] |           | Functional Safety – Safety Instrumented Systems for the process industry sector                 |

### 4.2 Databases

| No.  | Reference          | Title                                                                     |
|------|--------------------|---------------------------------------------------------------------------|
| [N3] | NPRD-95, RIAC 1995 | Non electronic Parts Reliability Data                                     |
| [N4] | FMD-97, RIAC 1997  | Failure Modes/Mechanism Distributions                                     |
| [N5] | NSWC-98/LE1        | Handbook of Reliability Prediction Procedures for<br>Mechanical Equipment |
| [N6] | Exida              | Electrical and Mechanical Component Equipment Reliability Handbook        |
| [N7] | OREDA              | Offshore Reliability Data                                                 |

### **5 INSPECTION DOCUMENTS**

### 5.1 Documentation provided by the customer

| No.  | Reference                    | Title                       |
|------|------------------------------|-----------------------------|
| [D1] | Rotork Sweden Technical Data | RC 200-DA/SR Technical Data |
| [D2] | Rotork Sweden Brochure       | RC 200 Brochure             |
| [D3] | Rotork Document KI-300537    | SIL 3 Test                  |

## 5.2 Documentation generated by TÜV Rheinland

| No. Reference |                                     | Title                                                  |  |  |
|---------------|-------------------------------------|--------------------------------------------------------|--|--|
| [R1]          | FMEA Rotork Sweden<br>Attuatore.xls | FMEDA Calculation Rotork Sweden Actuators – Excel File |  |  |



## 6 ABBREVIATIONS

| β                  | Beta common cause factor                                                                           |  |  |  |
|--------------------|----------------------------------------------------------------------------------------------------|--|--|--|
| λ <sub>ne</sub>    | Failure rate of no effect failures                                                                 |  |  |  |
| λ <sub>D</sub>     | Failure rate of dangerous failures                                                                 |  |  |  |
| λ <sub>ρυ</sub>    | Failure rate of undetected dangerous failures                                                      |  |  |  |
| λ <sub>DD</sub>    | Failure rate of detected dangerous failures                                                        |  |  |  |
| $\lambda_{s}$      | Failure rate of safe failures                                                                      |  |  |  |
| λ <sub>su</sub>    | Failure rate of undetected safe failures                                                           |  |  |  |
| λ <sub>sp</sub>    | Failure rate of detected safe failures                                                             |  |  |  |
| CL                 | Confidence Level                                                                                   |  |  |  |
| DC                 | Diagnostic Coverage factor                                                                         |  |  |  |
| FSMS               | Functional Safety Management System                                                                |  |  |  |
| FMEDA              | Failure Mode Effect and Diagnostic Analysis                                                        |  |  |  |
| FIT                | Failure In Time (1x10 <sup>-9</sup> failures per hour)                                             |  |  |  |
| HFT                | Hardware Fault Tolerance                                                                           |  |  |  |
| High demand mode   | Mode, where the frequency of demands for operation made on a safety-related                        |  |  |  |
|                    | system is greater than one per year                                                                |  |  |  |
| Low demand mode    | Mode, where the frequency of demands for operation made on a safety-related                        |  |  |  |
|                    | system is no greater than one per year                                                             |  |  |  |
| MTBF               | Mean Time Between Failure                                                                          |  |  |  |
| MRT                | Mean Repair Time                                                                                   |  |  |  |
| PFD                | Probability of Failure on Demand                                                                   |  |  |  |
| PFD <sub>AVG</sub> | Average Probability of Failure on Demand                                                           |  |  |  |
| PFH                | Probability of Failure per Hour                                                                    |  |  |  |
| RRF                | Risk Reduction Factor                                                                              |  |  |  |
| SAR                | Safety Analysis Report                                                                             |  |  |  |
| SRS                | Safety Requirements Specifications                                                                 |  |  |  |
| SFF                | Safe Failure Fraction summarizes the fraction of failures, which lead to a safe                    |  |  |  |
|                    | state and the fraction of failures which will be detected by diagnostic measures                   |  |  |  |
| SIF                | and lead to a defined safety action                                                                |  |  |  |
| SIL                | Safety Instrumented Function                                                                       |  |  |  |
| SIS                | Safety Integrity Level           Safety Instrumented System – Implementation of one or more Safety |  |  |  |
| 515                | Instrumented Functions. A SIS is composed of any combination of sensor(s),                         |  |  |  |
|                    | logic solver(s) and final element(s)                                                               |  |  |  |
| TI                 | Test Interval for Proof Test (Full-Stroke)                                                         |  |  |  |
| TID                | Test Interval for Diagnostic Test (Partial-Stroke)                                                 |  |  |  |
| Type A component   | "Non-Complex" component (using discrete elements)                                                  |  |  |  |
| Type B component   | "Complex" component (using micro controllers or programmable logic)                                |  |  |  |
| i jpo D component  |                                                                                                    |  |  |  |



## 7. **PFD ESTIMATION**

#### 7.1 **Procedure for PFD estimation**

The PFD estimation (evaluation of random failures) is performed through an hardware demonstration of the device, based on a Failure Modes, Effects and Diagnostic Analysis (FMEDA). The FMEDA was done based on the documentation provided (in particular drawings [D1], [D2]) by the Manufacturer and is documented in [R1].

A Failure Modes and Effects Analysis (FMEA) is a systematic way to identify and evaluate the effects of different components failure modes, to determine what could eliminate or reduce the chance of failure, and to document the system in consideration.

A FMEDA is an FMEA extension. It combines standard FMEA techniques with extension to identify online diagnostics techniques and the failure modes relevant to safety instrumented system design. It is a technique recommended to generate failure rates for each important category (safe detected, safe undetected, dangerous detected, dangerous undetected) in the safety models.

The PFD estimation was performed following the procedure described below:

- 1. FMEDA Analysis of the products.
- 2. Cyclic testing of the product.
- 3. Classification of failures (see the failure categories in subclause 7.3 of the present document).
- 4. Evaluation of  $\lambda$  values and, subsequently, of SFF and PFD.

### 7.2 Assumptions

The following assumptions have been made during the FMEDA evaluation and PFD estimation:

- Only a single component failure will fail the entire product.
- Propagation of failures is not relevant (unless an evident propagation process is present).
- Failure rates of components are taken from sources [N3]÷[N7].
- According to definitions 3.6.8, 3.6.13, 3.6.14 of IEC 61508-4, the safe, no part and no effect failures do not contribute to PFD<sub>AVG</sub> calculations.
- Partial Stroke Test is considered as method of diagnosis.
- After a Full Stroke Test, with related Maintenance and Repair, the product will be "as new" (a "Proof Test Coverage" of 95% is used for the evaluation of SFF).
- The rate of "systematic failures" is controlled and minimised by the management of the "Safety Life Cycle" of the product.
- The installation, commissioning, operational and maintenance instruction are correctly applied by the final customer.
- The stress levels considered are average for an industrial environment (petrochemical industry Ground Fixed).



### 7.3 Description of the failure categories

In order to judge the failure behaviour of the Subsystem, the following definitions for the failure of the subsystem were considered:

| Safe Failure      | <ul> <li>Failure of an element and/or subsystem and/or system that plays a part in implementing the safety function that:</li> <li>a. results in the spurious operation of the safety function to put the EUC (or part thereof) into a safe state or maintain a safe state; or</li> <li>b. increases the probability of the spurious operation of the safety function to put the EUC (or part thereof) into a safe state or safe state or maintain a safe state; or</li> <li>b. increases the probability of the spurious operation of the safety function to put the EUC (or part thereof) into a safe state or maintain a safe state</li> <li>Safe failures are divided into safe detected (SD) and safe undetected (SU) failures.</li> </ul> |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dangerous Failure | <ul> <li>Failure of an element and/or subsystem and/or system that plays a part in implementing the safety function that:</li> <li>a. prevents a safety function from operating when required (demand mode) or causes a safety function to fail (continuous mode) such that the EUC is put into a hazardous or potentially hazardous state; or</li> <li>b. decreases the probability that the safety function operates correctly when required</li> <li>Dangerous failures are divided into dangerous detected (DD) and dangerous undetected (DU) failures.</li> </ul>                                                                                                                                                                          |
| No Effect Failure | Failure of an element that plays a part in implementing the safety function but has no direct effect on the safety function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| No Part Failure   | Failure of a component that plays no part in implementing the safety function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

NOTES:

- 1. According to definitions 3.6.13 and 3.6.14 of IEC 61508-4, the no part and no effect failures are not used for SFF calculations.
- 2. According to definitions 3.6.8, 3.6.13, 3.6.14 of IEC 61508-4, the safe, no part and no effect failures do not contribute to  $PFD_{AVG}$  calculations.



### 7.4 **PFD** estimation

#### **FMEDA Analysis**

The FMEDA Analysis was performed according to the following procedure:

- a. complete definition of the product, including identification of internal and external interface functions, expected performance, system restraints and failure definition;
- b. drawings of functional block diagrams;
- c. association of each function to the components;
- d. identification of all potential items and interface failure modes, including their effects;
- e. evaluation of each potential failure mode in terms of local effect and end system effect and the worst potential associate consequence;
- f. identification of the failure detection methods and compensating provisions for each failure mode (if possible);
- g. association of a failure category to each failure mode.

The complete FMEDA is included in document [R1].

#### Cyclic testing of the product

The cyclic test has been carried using the procedure described in document [D3]. Photos of the tests are included in Annex E.

#### **Classification of failures**

Each single failure mode was classified, in document [R1], according to the description of the failure categories included in subclause 7.3 of the present document.

#### Evaluation of $\lambda$ values, of SFF, PFD and PFD<sub>AVG</sub>

#### Evaluation of $\lambda$ values

The evaluation of  $\lambda$  values is based on the FMEDA. The complete calculations for the evaluation of  $\lambda$  values are included in document [R1].



#### Evaluation of SFF

According to [N1], the SFF has to be calculated, in order to verify the suitability of a device for the usage in a SIS for a particular safety integrity level SIL. The formula for SFF is the following:

$$SFF = \frac{\lambda_s + \lambda_{DD}}{\lambda_s + \lambda_D}$$

(where  $\lambda_{DD}$  means detected by the partial stroke test ( $\lambda_{DD(PS)}$ ) and/or by the full stroke test ( $\lambda_{DD(FS)}$ ))

The FMEDA gives the following result:

SFF= >99% (for Spring Return Actuators) SFF= 95,00% (for Double Acting Actuators)

NOTE:

• SFF includes the effect of Full Stroke Test

#### Evaluation of PFD

According to document [N1], the following formula is used to estimate the PFD<sub>AVG</sub> value:

$$PFD_{AVG} = \lambda_{DU} \cdot \left(\frac{TI}{2} + MRT\right) + \lambda_{DD} \cdot \left(\frac{TI_{PS}}{2} + MRT\right)$$

Using the estimated  $\lambda$  values, the PFD<sub>AVG</sub> value for TI = 12 months, MRT=24 h, is:  $PFD_{AVG} = 1,38E-04$  (for Spring Return Actuators)  $PFD_{AVG} = 1,77E-04$  (for Double Acting Actuators)



## 8 OVERALL RESULT

| Actuator Type | λ <sub>D</sub> <b>[1/h]</b> | λ <sub>DD(PS)</sub> <b>[1/h]</b> | λ <sub>DD(FS)</sub> <b>[1/h]</b> | λ <sub>s</sub> [1/h] | λ <sub>NE</sub> [1/h] | SFF    |
|---------------|-----------------------------|----------------------------------|----------------------------------|----------------------|-----------------------|--------|
| Spring Return | 3,14E-08                    | 2,98E-08                         | 2,98E-08                         | 2,61E-07             | 3,22E-07              | >99%   |
| Double Acting | 4,03E-08                    | 3,82E-08                         | 3,82E-08                         | 0                    | 5,09E-07              | 95,00% |

The analysis gives the results summarized in the following tables.

Table 1: Failure rates and SFF values of Rotork Sweden Pneumatic and Hydraulic Single and Double Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO

|                                         |               | Test Interval Frequency (months) |          |          |          |          |  |
|-----------------------------------------|---------------|----------------------------------|----------|----------|----------|----------|--|
| _                                       | 6 12 24 36 48 |                                  |          |          |          |          |  |
|                                         | 1             | 1,51E-05                         | 1,86E-05 | 2,56E-05 | 3,27E-05 | 3,97E-05 |  |
| oke<br>()                               | 2             | 2,60E-05                         | 2,95E-05 | 3,65E-05 | 4,35E-05 | 5,05E-05 |  |
| Strc<br>enc<br>iths                     | 3             | 3,69E-05                         | 4,04E-05 | 4,74E-05 | 5,44E-05 | 6,14E-05 |  |
| tial<br>equ<br>mor                      | 6             |                                  | 7,30E-05 | 8,00E-05 | 8,70E-05 | 9,40E-05 |  |
| Partial Stroke<br>frequency<br>(months) | 9             |                                  |          |          | 1,20E-04 |          |  |
|                                         | 12            |                                  |          | 1,45E-04 | 1,52E-04 | 1,59E-04 |  |

Table 2: PFD<sub>AVG</sub> values Rotork Sweden Pneumatic and Hydraulic Single Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO according to IEC 61508 for different values of TI and TI<sub>PS</sub>

| Test Interval Frequency (months) |          |          |          |          |  |  |
|----------------------------------|----------|----------|----------|----------|--|--|
| 6                                | 36       | 48       |          |          |  |  |
| 6,95E-05                         | 1,38E-04 | 2,76E-04 | 4,13E-04 | 5,51E-04 |  |  |

Table 3: PFD<sub>AVG</sub> values of Rotork Sweden Pneumatic and Hydraulic Single Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO according to IEC 61508 for different values of TI (no Partial Stroke Test)



|                                         |    | Test Interval Frequency (months) |          |          |          |          |  |
|-----------------------------------------|----|----------------------------------|----------|----------|----------|----------|--|
|                                         |    | 6                                | 12       | 24       | 36       | 48       |  |
|                                         | 1  | 1,95E-05                         | 2,41E-05 | 3,33E-05 | 4,25E-05 | 5,17E-05 |  |
| ) yee                                   | 2  | 3,35E-05                         | 3,81E-05 | 4,72E-05 | 5,64E-05 | 6,56E-05 |  |
| Stro<br>ency<br>iths)                   | 3  | 4,74E-05                         | 5,20E-05 | 6,12E-05 | 7,04E-05 | 7,96E-05 |  |
| rtial S<br>reque<br>mont                | 6  |                                  | 9,38E-05 | 1,03E-04 | 1,12E-04 | 1,21E-04 |  |
| Partial Stroke<br>frequency<br>(months) | 9  |                                  |          |          | 1,54E-04 |          |  |
|                                         | 12 |                                  |          | 1,87E-04 | 1,96E-04 | 2,05E-04 |  |

Table 4: PFD<sub>AVG</sub> values Rotork Sweden Pneumatic and Hydraulic Double Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO according to IEC 61508 for different values of TI and TI<sub>PS</sub>

| Test Interval Frequency (months) |          |          |          |          |  |  |
|----------------------------------|----------|----------|----------|----------|--|--|
| 6                                | 12       | 24       | 36       | 48       |  |  |
| 8,92E-05                         | 1,77E-04 | 3,54E-04 | 5,31E-04 | 7,07E-04 |  |  |

Table 5: PFD<sub>AVG</sub> values of Rotork Sweden Pneumatic and Hydraulic Double Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO according to IEC 61508 for different values of TI (no Partial Stroke Test)

#### \_\_\_\_\_

Considering the values above summarised, the Rotork Sweden Pneumatic and Hydraulic Single and Double Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO can be used up to SIL 3 as a "single device".

A user of the Rotork Sweden Pneumatic and Hydraulic Single and Double Acting Actuators Series RC, RCE, RCO, RCI, RCIO, RCT, RCOT, RCIT, RCIOT, RCC, RCCO can utilize this failure rates in a probabilistic model of a Safety Instrumented Function (SIF) to determine suitability in part for Safety Instrumented System (SIS) usage in a particular Safety Integrity Level (SIL).

These results must be considered in combination with  $PFD_{AVG}$  values of other devices of a Safety Instrumented Function (SIF) in order to determine suitability for a specific Safety Integrity Level (SIL).



## 9. STATUS OF THE DOCUMENT

### 9.1 Liability

TÜV Rheinland prepares reports based on methods advocated in International standards. Failure rates are obtained from third-party certificates, manufacturer's declarations or from a collection of industrial databases.

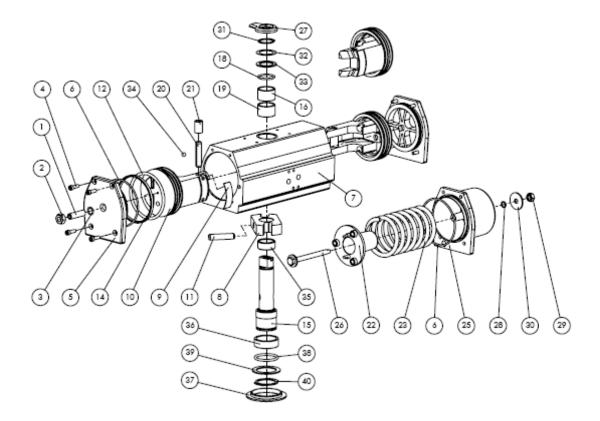
#### 9.2 Releases

| History: | R 2:                                                    | Revision of FMEDA                   | Date: 2011-03-15 |
|----------|---------------------------------------------------------|-------------------------------------|------------------|
|          |                                                         | Inclusion of result of cyclic tests |                  |
|          | R 1: Detailed evaluation of Safe and No Effect Failures |                                     | Date: 2010-09-14 |
|          | R 0:                                                    | Initial release                     | Date: 2010-07-31 |
|          |                                                         |                                     |                  |

| Release status: | Released to client |
|-----------------|--------------------|
| Authors:        | Carlo Tarantola    |

#### 9.3 Future enhancements

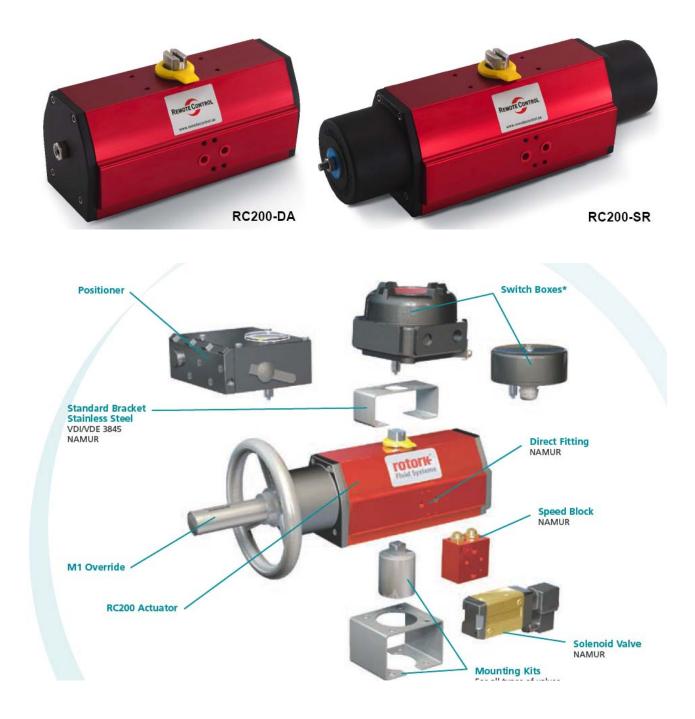
On request of the customer.





## **ANNEX A: PART LIST**

| Pos. | Article | Description                               | Quantity | Material                               | Drawing no.           |
|------|---------|-------------------------------------------|----------|----------------------------------------|-----------------------|
| -    | 113257  | RC210-SR087 ACTUATOR<br>F05F07-14         | 1        | -                                      | -                     |
| -    | 121169  | LABEL                                     | 1        | -                                      | -                     |
| 04   | 121111  | SCREW MC6S 5 x 10 A2                      | 8        | Stainless steel                        | -                     |
| 05   | 111130  | EP2 10 (End plate with centre hole)       | 1        | Aluminium                              | - see pos. 17         |
| 06   | 121019  | O-RING 49,6x2,4                           | 2        | Nitrile                                | -                     |
| 07   | 112175  | CYLINDER                                  | 1        | Aluminium                              | 000559 C              |
| 08   | 112033  | SY (Scotch Yoke)                          | 1        | Steel                                  | 000163 B              |
| 09   | 121053  | SUE2 (Support element)                    | 1        | POM                                    | 116674 E              |
| 10   | 122342  | PI2 1020 (Piston)                         | 1        | Aluminium                              | 119443 D              |
| 11   | 121022  | FRP 3,5x30 (Roll pin, double)             | 1        | Spring steel                           | -                     |
| 11   | 121023  | FRP 6x30 (Roll pin, double)               | 1        | Spring steel                           | -                     |
| 12   | 121060  | O-RING 47,22x3,53                         | 1        | Nitrile                                | -                     |
| 14   | 122056  | SUB2 1020 (Support band)                  | 1        | Polymer material                       | -                     |
| 15   | 122297  | DS2 1020-14 (Driving shaft)               | 1        | Stainless steel                        | 000512 E              |
| 16   | 121164  | BE2 1020-U (Bearing, upper)               | 1        | Polymer material                       | 004582 A              |
| 17   | 121157  | EP2 10 (End plate without centre hole)    | 1        | Aluminium                              | 119384 C,<br>000156 A |
| 18   | 121016  | O-RING 15,3x2,4                           | 1        | Nitrile                                | -                     |
| 19   | 121164  | BE2 1020-U (Bearing, upper)               | 1        | Polymer material                       | 004582 A              |
| 20   | 122058  | PP2 1020 (Piston pin)                     | 1        | Steel                                  | 46504                 |
| 21   | 121039  | PR2 1020 (Piston roller) 6x10x12          | 1        | Steel                                  | -                     |
| 22   | 121040  | SG2 1020 (Spring guide)                   | 1        | Aluminium                              | 000547 B              |
| 23   | 121116  | S2 1020-087PSI (Spring)                   | 1        | Alloyed spring steel                   | 105613 I              |
| 25   | 121155  | SH2 1020 (Spring housing)                 | 1        | Aluminium                              | 000582 D              |
| 26   | 122065  | PS2 1020 L=75 (Pretensioning<br>screw)    | 1        | Stainless steel                        | 127004 A              |
| 27   | 121095  | INDICATOR RC210-220                       | 1        | Polymer material                       | 46534                 |
| 28   | 121017  | O-RING 4,47x1,78                          | 1        | Nitrile                                | -                     |
| 29   | 401158  | LOCK NUT M6M M6 A4                        | 1        | Stainless steel                        | -                     |
| 30   | 121128  | MW2 1020-087PSI (Marking washer)          | 1        | Aluminium                              | 105043 E              |
| 31   | 121014  | SGA 16 (Retaining ring, upper) 05-<br>D20 | 1        | Spring steel                           | -                     |
| 32   | 121170  | MIW2 1020 A2 (Middle washer)              | 1        | Stainless steel                        | 124324                |
| 33   | 121226  | SUW2 1020-U (Support washer, upper)       | 1        | Polymer material, chemically resistant | 004140 B              |
| 34   | 121134  | SEA2 1020 A2 (Sealing) 6,00mm             | 1        | Stainless steel                        | -                     |
| 35   | 121165  | SUR2 1020-L (Support ring, lower)         | 1        | Polymer material                       | 123274 A              |
| 36   | 121163  | BE2 1020-L (Bearing, lower)               | 1        | Polymer material                       | 004580 A              |
| 37   | 122050  | GR2 1020 (Guide ring) F05                 | 1        | Polymer material                       | 119524 B              |
| 38   | 141185  | O-RING 24,2x3,0                           | 1        | Nitrile                                | -                     |
| 39   | 121227  | SUW2 1020-L (Support washer, lower)       | 1        | Polymer material, chemically resistant | 004141 A              |
| 40   | 121015  | SGA 24 (Retaining ring, lower)            | 1        | Spring steel                           | -                     |




## ANNEX B: GENERAL DRAWING





## **ANNEX C: PICTURES**





## ANNEX D: TECHNICAL DATA

# RC200 design

#### **Temperature range**

Standard: -20°C to +80°C / -5°F to +175 °F High temp: 0°C to +150°C /+30°F to +300°F Low temp: -40°C to +60°C / -40 °F to +140 °F Arctic: -47°C to +60°C / -52 °F to +140 °F

#### RC200 meet standards

Solenoid valve connection: NAMUR Fitting accessories: VDI/VDE 3845, NAMUR Fitting to valve: Hole pattern, centering ring ISO 5211, DIN 3337, NAMUR Stardrive shaft: ISO 5211 with 90° and DIN 79 with 45° and NAMUR **RC200 are CE-marked** 

### According to PED and ATEX.

Quick acting RC200 actuators For quick operating times.

#### Pressure ranges

RC200-DA: 2-10 bar / 30-145 psi RC200-SR: 2-10 bar / 30-145 psi

### Extra corrosion protection

RCT hard anodised actuators Epoxy finished Offshore or other finish to meet customer specifications. Stainless screws and drive shaft (standard for RC210-260)

#### **Operating medium**

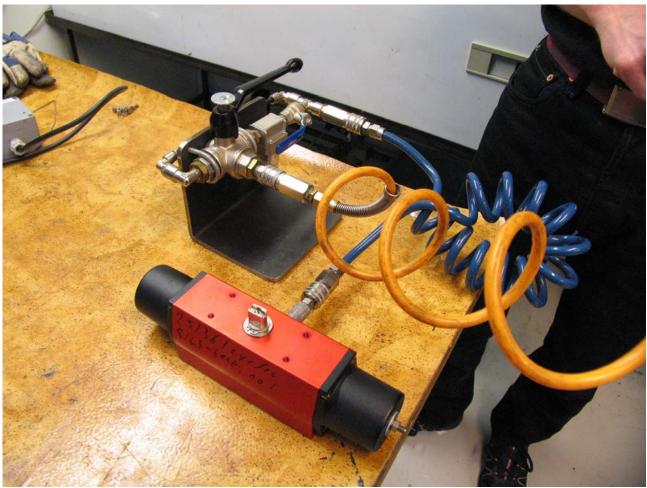
Air, inert gases (non-dangerous fluids, group 2 according to directive PED 97/23/EC)

RC200 actuators also available for Water or oil hydraulics: 2-10 bar / 30-145 psi



## ANNEX E: PHOTOS OF THE TESTS




Test set-up in the at low temperature



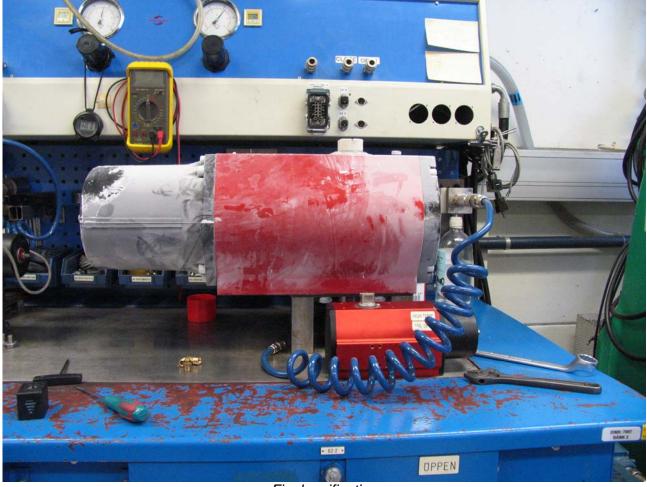


Test set-up in the at high temperature



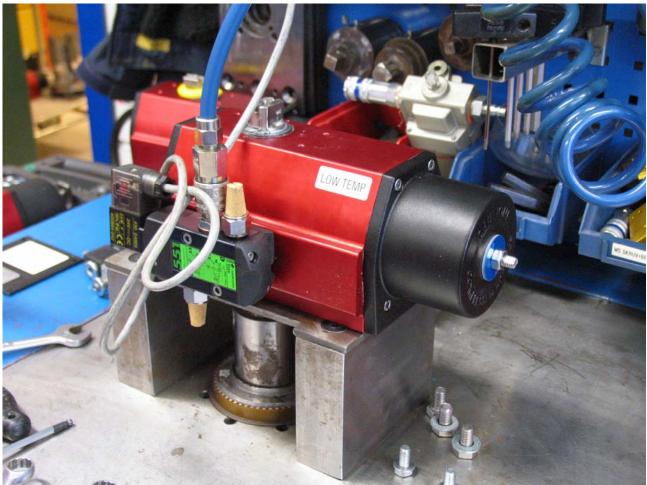


Final verification






Final verification




Test Laboratory for Pressure Equipment



Final verification





Final verification