

Regulations, Codes and Standards FOR FIRST RESPONDERS

Randy Dey, The CCS Global Group Adrien Zanoto, Air Liquide

Hydrogen Energy – New Challenges

PRODUCTION	TRANSPORT	STORAGE	Applications Old: more than 50 years	Hazards
 Steam Reformer Old / P <10 bar Electrolyzer Old / P <25 bar 	- Gas Old P <300 bar / Type I & II New P<700 bar / Type III & IV - Liquid Old P <10 bar / T°: -253°C Pipe Old / P <100 bar	- Gas Old P <300 bar New / P <1100 bar - Liquid Old P <10 bar / T°: -253°C - Cryo-compress Old P <300 bar / T°: -100°C - Solid New P <10 bar / Magnesium		 Cylinder burst ⇒ Overpressure Gas explosion ⇒ overpressure & Thermals effects Jet fire ⇒ thermals effects

New challenges to consider now:

 $H_2Energy = H_2 + High Pressure + Public Area$

Introduction – Standardization is coming

Cars	Buses	Forklifts
- P: 700 bar	- P: 350 bar	- P: 350 bar
- Volume V: 140 l	- Volume V: 640 to 960 l	- Volume V: 15 to 80 l
- On-board tanks: 2 type IV	- On-board tanks: 8 to 12 type III or IV	- On-board tank: 1 type II or III
- kg of H2: 5 – 7	- Kg of H2: 35 - 50	- Kg of H2: 0,5 to 2
- TPRD release : left rear	- TPRD release : up from the roof	- TPRD release : in the box

Content

- Regulations, Codes and Standards (RCS)
 - introduction
 - short RCS list of fuel cell and hydrogen (FCH) standards
- Hydrogen production, storage, transportation and distribution
- FCH applications some examples
 - hydrogen refueling stations (HRS)
 - stationary fuel cell power systems
 - fuel cell electric vehicles
- Prescriptive and performance-based approach to hydrogen safety
 - hydrogen properties(ISO/TR 15916:2015)
 - primary hazards (ISO/IEC Guide 51:2014)
 - fire safety engineering principles for buildings (BS 7974:2001)

Regulations, Codes & Standards

Introduction

Short List

What is RCS

- definitions from ISO/IEC Guide

- Regulation: Is a document providing <u>binding</u> legislative rules, that is adopted by an authority
- Technical regulation: Regulation that provides technical requirements, either directly or by referring to or incorporating the content of a standard
- Code: A set of guidelines set forth and enforced by a local government agency for the protection of public safety, health, etc.
- Standard: A document, established by <u>consensus</u> and approved by a recognized body, that provides for common and repeated use
- International standard: A standard that is adopted by an international standards' organization and made available to the public. Examples: ISO, IEC.

What is RCS

- general information

- The ISO and IEC work results in international agreements, which are published as international standards. These international standards are: voluntary, market driven and globally relevant.
- In Europe, the equivalent international bodies are CEN and CENELEC who work under agreements with ISO and IEC to avoid duplication of efforts.
- At this early stage of FCH technology, there are not too many published RCS available.
- Standards provide a set of technical requirements based on input of experts.

International and European RCS bodies

European Commitment to RCS

- In 2014, a Directive for the deployment of alternate fuels infrastructure was published:
 - 2014/94/EU Alternate Fuels Infrastructure directive (AFID)
- In 2009, The EXPRESS report Standardization for a competitive and innovative Europe: a vision for 2020» http://ec.europa.eu/enterprise/express recommended that:
 - CEN and CENELEC support international standards (ISO/IEC) wherever possible unless the need is uniquely European.
 - Where a European standard is needed, consideration be given from the outset to its potential future contribution to international standardization.
- CEN has a Vienna agreement with ISO
- CENELEC has a Dresden agreement with IEC
- Strategic Coordination in Europe of RCS for alternate fuels is being planned by:
 - CEN/CENELEC/SFEM/HEWG and FCH JU/Hydrogen Europe

United Nations

- World Forum for Harmonization of Vehicle Regulations (WP.29)
 - Working on revision of <u>GTR:2013</u> for hydrogen and fuel cell vehicles
 - Working on the revision of the UN ECE Regulations applicable to electric power train (UNECE R100) and Hydrogen and fuel cell vehicles (UNECE R134)
- ECOSOC Sub-Committee of Experts on the Transport of Dangerous Goods
 - Working on the development of UN Recommendations on the Transport of Dangerous Goods (Orange Book) (e.g. UN 3468: Hydrogen in a metal hydride storage system)
 - Working on the European Agreement concerning the International Carriage of Dangerous Goods by Road (ADR)

- The World trade Organization (WTO) has established a strategic partnership with ISO and IEC, the International Standards Development Organizations
 - ISO International Organization for Standardization 162 members
 - IEC International Electro-technical Commission 84 members
- The WTO recognizes the important contribution that international standards make towards the removal of Technical Barriers to Trade (TBT)

For Color docume

- ISO and IEC work results in international agreements, which are published as International Standards. These international standards are:
 - Based on the principle of consensus
 - Standards provide a set of requirements set up by experts.
 - Standards do not articulate a safety approach.
 - FCH technologies are at an early stage so few standards are available.

Regulations, Codes & Standards

Introduction

Short List

- UN ECE World Forum for Harmonization of Vehicle Regulations (WP.29)
 - GTR:2013 for hydrogen fuelled vehicles
- UN ECOSOC Sub-Committee of Experts on the Transport of Dangerous Goods
 - Orange Book and ADR:2015
- 79/2009/EC Regulation on Type Approval of hydrogen-powered motor vehicles.
- EU 406/2010 implementing the above regulation
 - 97/23/EC Directive on the approximation of the laws of the Member States concerning pressure equipment (PED)
 - 2010/35/EU Directive on transportable pressure equipment (TPED)

- BS 7974:2001 Application of fire safety engineering principles to the design of buildings. Code of practice
- EN 60079-10-1:2015 Explosive atmospheres Part 10-1: Classification of areas – Explosive gas atmospheres.
- ISO/TR 15916:2015 Basic considerations for the safety of hydrogen systems.
- ISO 26142:2010 Hydrogen detection apparatus Stationary applications

ISO 22734-1:2008 Hydrogen generators using water electrolysis process – Part 1: Industrial and commercial applications.

ISO 22734-2:2011 Hydrogen generators using water electrolysis process – Part 2: Residential applications

ISO 16110-1:2007 Hydrogen generators using fuel processing technologies – Part

1: Safety

ISO 16110-2:2010 Hydrogen generators using fuel processing technologies – Part

2: Test methods for performance

ISO/TS 20100:2008 Gaseous hydrogen - fuelling stations (Note: This standard has been withdrawn.)

ISO/TS 19880 -1:2016 Gaseous hydrogen - fuelling stations- Part 1: General Requirements

ISO/TS 15869:2009 Gaseous hydrogen and hydrogen blends – Land vehicle fuel tanks

- IEC 62282-3-100:2012 Fuel cell technologies Stationary fuel cell power systems - Safety
- IEC 62282-3-200:2015 Fuel cell technologies Stationary fuel cell power systems – Performance test methods
- IEC 62282-3-201:2013 Fuel cell technologies Stationary fuel cell power systems - Performance test methods for <u>small</u> systems
- IEC 62282-3-300:2012 Fuel cell technologies Stationary fuel cell power systems – Installation
- IEC 62282-4-101:2014 Fuel cell technologies Fuel cell power systems for propulsion other than road vehicles and auxiliary power units -Safety of electrically powered industrial trucks
- IEC 62282-5-1:2012 Fuel cell technologies Portable fuel cell power systems – Safety

Hydrogen production, storage, transportation and distribution

ISO 22734 - Hydrogen generators using water electrolysis process

(summary of requirements)

- 1. Electrical components IEC 60079-0
- 2. Electrical **installations** IEC 60079-14
- 3. Grounding & Bonding (cl 6.2.2) IEC 60204-1
- 4. ESD (emergency shut down) (cl 7.2.4)
- IEC 60204-1 & ISO 13850
- Shutoff valves(cl 5.4.9) ASOV (automatic)

5.

MSOV (manual)

- Shuts off electrical power supply and hydrogen supply
- Closes all the automatic shut off valves in the hydrogen system
- Shuts down the hydrogen system

3

ISO 22734 -Hydrogen generators using water electrolysis process

(summary of requirements

- 6. Classification of hazardous areas IEC 60079-10 Explosive atmospheres Part 10
- 7. PRV's Rupture disk or spring loaded VENTS (cl 5.4.7) ISO 41261-2 / 41261-1 or ISO 16528-1
- 8. H2 detectors (cl 6.1.9)
 IEC 60079-29-1&2 and ISO 26142 Hydrogen detection apparatus
- 9. Enclosure IEC 60529 Environment class IP22 / ISO 1182 Fire resistance
- 10. Oxygen Venting (cl 11.6)
- 11. Compressor IEC 60034-1
- 12. Purification ISO 14687

 H2 rate, P, T & Quality

ISO 22734 -Hydrogen generators using water electrolysis process (summary of requirements)

- 13. Ventilation openings (cl 5.3.6)
- 14. Fans & ventilators (cl 5.7)
- 15. Heat transfer system (cl 5.8)
- 16. Piping ISO 16258-1 or ISO 15649
- 17. Cylinders & tubes for stationary storage ISO/CD 19884

ISO 22734 -Hydrogen generators using water electrolysis process (summary of requirements)

Built-in Pressure Storage Cylinders (cl 5.4.1)

Hydrogen				
Aluminium	ISO 7866			
Steel	ISO 9809-1			
Composite	ISO 11119-1			
Fully wrapped	ISO 11119-2 & 3			
Vessels	ISO 16528-1 or equiv			

Oxygen				
Steel	ISO 9809-1&2 &3			
	ISO 4706			

cl 5.4.3.2 Separation of O₂ & H₂ cylinders

...non-combustible partition w 60 m firing rate ISO 834-1

Area classification

As per:

- → IEC 60079-10-1 Electrical apparatus for explosive gas atmospheres Part 10-1: Classification of hazardous areas
- \rightarrow Three (3) Zones (cl 4.3)
 - → based on the frequency of occurrence and duration of an explosive gas atmosphere

Zone	Context	Occurence		
		Frequency	Duration	
0	All	Frequently	ContinuousLong Period	
1	Normal operation	Occasionally	• Short period	
2	Normal operation	Not likely	• Short period	

Gaseous

Hydrogen Transportation and Distribution

UN regulation: ADR

EC Directive: 2010/35/EU Transportable Pressure **Equipment (TPED)**

ISO 17519 Gas cylinders Refillable permanently mounted composite tubes for transportation (450 -10 000 I)

FCH Applications

- Hydrogen refuelling stations
- Stationary FC power system
- FC Electric Vehicle

FCH Applications

- Hydrogen refuelling stations
- Stationary FC power system
- FC Electric Vehicle

Typical fueling stations

- 1. On-site production (Electrolysis Reforming)
- 2. Gaseous delivered Compressor-purifier / Gaseous buffer Storage / Dispenser
- 3. Liquid delivered / Liquid storage (ISO 21009-1) / Cryogenic pump (ISO 24990) / Evaporation unit / Gaseous buffer storage / Dispenser

Electrical grounding of delivery vehicles **prior** to hose connection (cl 5.1.2)

Tube trailer (cl 5.2.1)

- Not located near occupied building or any potential hazard
- Accessibility to tractors and firefighting services at all time
 - Minimum clearance 1 m on all sides

- 1. Location and protection of dispenser (cl 11.1)
- 2. Nozzle & receptacle at good ground connection before connection
- 3. Non combustible antistatic materials
- 4. ESD (cl 11.8.3)
- 5. Hose break-away device (cl 11.5)
- 6. End of fill control (cl 11.7.2)
- 7. Excess flow control (cl 11.8.2) in case of fuelling hose rupture
- 8. PRD to prevent over pressure in vehicle storage (cl 11.8.1)
- 9. Impact sensors at dispenser
- 10. PRD for all pressurized gaseous systems (cl 16.3) ISO 16528-1

Air Liquide

- 11. Gaseous vents & venting to safe location (cl 17)
 - Separate vent for high and low pressure
 - Including PRD'S vents
- 12. Fire detection system (UV sensors) for hydrogen-free fire and detection of other fire hazards (cl 20.2)
- 13. H2 gas detectors
- 14. Tanks and associated piping & flanges grounding & bounding (cl 16.5)

 IEC 60204-1
- 15. Lightning protection (cl 21.2) major structure bounded directly to ground IEC 62305

Nozzle main characteristics

- Safe flow connection
- Closed loop design
 - No leaks
- Incorporated Pressure Control
 - Pressure Relief Valve
 - Vent line connection (not all)
 - Tank filling limiting device
- Integrated Flow Control
- Dissipate static electricity by design

35 MPA

70 MPa

Indoor refuelling of Forklifts

FCH Applications

- Hydrogen refuelling stations
- Stationary FC power system
- FC Electric Vehicle

Fuel Cell Module – How a fuel cell works

- 1. Basic structure: A fuel cell is composed of an anode, a cathode and an electrolyte membrane.
- 2. Inputs: Hydrogen is passed through the anode while oxygen is through the cathode.
- 3. Principle: At the anode, the hydrogen molecules are split into electrons and protons.
- 4. Outputs:
 - These electrons are driven from anode to cathode through a circuit generating electric current and heat.
 - At the cathode the protons, electrons and oxygen combine to produce water molecules.

Electrolyte: polymer membrane (PEM)

FC power system

- 1. Purging (cl 4.2.8)
- 2. Flue gas venting (cl 4.5.3)
- 3. Fuel compartment (cl 4.6.1)
- 4. EMC (electromagnetic compatibility cl 4.8) IEC 61000-3-2/3/4/5/11; IEC 61000-6-1/2/3/4;
- 5. Automatic electric & electronic Control System (cl 4.9.2) residential, commercial and light industrial conform to IEC 60730-1
- 6. ESD (cl 4.9.2.3.1) ISO 13850
- 7. Valves (cl 4.11) min: 2 ASOV
- 8. Cabinet (cl 4.13)
- 9. If Metal hydride ISO 16111
- 10. Piping system ISO 15649

- •Keep [H₂] under 25% LFL
- Interlocked with ASOV'S
- •FC shut down

Main fuel cell components

4.5.3 Flue gas venting

Fuel Cell corresponds to the reverse electrolysis process.

The graphic shows the main constituents of a fuel cell, though,

It requires many auxiliary services, such as removing waste heat,

discharging water, etc

4.4.11 Allowable temperature IEC 62282 -3 -100 Ed.1.0

Part	Temperature rise * °C
External enclosures, except handles held in normal use	60
Surfaces of handle, knobs, grips and similar parts which are held for short periods only in normal use: • of metal	35
of porcelain	45
 of moulded material (plastic), rubber or wood 	50

Note 1: Maximum surface temperature rises above ambient of external surfaces that may be contacted by people during operation without PPE. Values ref. in table 3 of IEC 60335-1:2010

Based on ambient temperature of 25°C.

Fuel Cell can be seen on many applications

HyResponse

~2,000 installed >3,000 forklift trucks ~45 fuel cell buses +300 fuel cell cars telecom systems operating operating operating Source :Ballard

FCH Applications

- Hydrogen refuelling stations
- Stationary FC power system
- FC Electric Vehicle

FCEV - Systems

Source: ECE/TRANS/WP.29/2013/41

component location: top view

Honda Clarity ER Guide C

1. Fuel cell stack: main power source

- mixture of air and onboard hydrogen produces electricity
- by-products: heat & water

2. High voltage cable

- HV cable is orange as for hybrid vehicles,
- located inside or behind high voltage component
- protected by orange covers

The fuel cell stack is well protected in the lower center of the vehicle, shown here with the underbody covers removed.

- 3. Lithium-ion High voltage battery (288 V DC)
 - located under the back seat

- 4. Hydrogen Tank contains a solenoid valve with three safety valves to:
 - prevent backflow while refuelling
 - stop hydrogen flow when signalled by the controller
 - release pressure (TPRD) when temperature > 108°C
- 5. If TPRD opens, hydrogen flows out through relief line under the trunk, passenger side.
 - if tank is full: 5 minutes to empty

6. Hydrogen detectors

- several detectors used throughout vehicle
- if hazardous leak is detected the detector shuts down hydrogen flow from tank

FCEV – Land vehicle fuel tank ISO/DIS 15869:2009

4.0 Categories

H: hydrogen storage

M: hydrogen blend storage

Nominal working pressure
At 15°C, can be 25, 35 or 70 Mpa

Type of service

A: on board light duty four wheel passenger road vehicle

B: on board heavy duty road vehicles (e.g.: buses, trucks)

FCEV – Land vehicle fuel tank ISO/DIS 15869: 2009

- 1. Protection from fire effects (5.7)
 - Use of Non-reclosing TPRD (temperature activated pressure relief device)
 - Non-reclosing PPRD (pressure activated pressure relief device) only used in parallel with TPRD
 - TPRD opening must be independent from PPRD opening
 - Cannot be isolated from storage tank
 - Protection can be supplemented by thermal insulation
- 2. Some of these requirements are also covered in the GTR 2013.

Typical components:

- container/vessel
- check valve
- shut-off valve
- thermally activated pressure release device (TPRD)

FCEV – Land vehicle fuel tank ISO/DIS 15869: 2009

Hydrogen tank testing

Hydrostatic burst test

Tank bursting pressure ≥ 2 x Working Pressure

Ambient pressure cycling test

fuel tanks must resist at least to 11,250 fill cycles (= 15-years).

Penetration test

tank must not rupture when an armour piercing bullet or impactor with a diameter of 7.62 mm or greater fully penetrates its wall.

Leak-before-break

fuel tank shall fail by leakage or exceeding the number of filling cycles

Bonfire test, the fuel tank...

- must vent through the non-reclosing TPRD;
- shall not fail when exposed to a large and controlled fire of 20 minutes duration.

FCEV- Buses

- Location of FCEV components specific to each construction
 - storage on top
 - electrical system (FC, inverters, etc.) at the back
 - cooling (fuel cell & passenger) on top
 - battery pack: behind front wheels

Iceland New Energy

FCEV- Buses

- Location of FCEV components specific to each construction
 - Storage on top
 - Electrical system (FC, inverters, etc) at the back
 - Cooling (fuel cell & passenger) on top
 - Battery packs : behind front wheels

Association Française pour l'Hydrogène et les Piles à Combustible

Prescriptive and performance-based approach to Hydrogen safety

- Hydrogen properties
- Primary hazards
- Fire safety engineering for buildings

Prescriptive and performance-based approach to hydrogen safety

Hydrogen properties

- Primary hazards
- Fire safety engineering for buildings

ISO/TS 15916:2015

Basic considerations for the safety of hydrogen systems

Gaseous Hydrogen Properties

Gaseous Hydrogen Properties

Name	Formula	Density	HHV ¹ (MJ/kg)	HHV ¹ (MJ/m ³)	Auto- Ignition °C	MIE ² (mJ)
Hydrogen	H_2	0,069	141,8	11,8	585	0,017
Methanol	CH ₃ OH	-	22,7	-	385	0,174
Methane	CH ₄	0,56	55,5	35,6	537	0,274
Propane	C ₃ H ₈	1,53	50,4	92,6	450	0,24
Gasoline*	C ₈ H ₁₈	1	47,3	-	215	0,25
Acetylene	C_2H_2	0,9	50,2	53,4	300	0,017

- Smallest and lightest molecule
 - Lighter than air
 - High diffusivity and buoyancy = mixes easily with air and rises rapidly Low viscosity = tendency to leak Low density = gas stored at high pressure

¹ High Heating Value (m³ at Normal T & P)

² Minimum Ignition Energy Stoichiometric mix with air at NP, 25° C,

Liquid Hydrogen Properties

- Lighter than water
- Transparent with a light blue tinge
- Low boiling point at atmospheric pressure

Air will condense on uninsulated component!

	Boiling point			
	°C	K		
O ₂	-183,15	90,0		
N_2	-195,85	77,3		
H_2	-252,85	20,3		

- 1 m³ of H_{2-liquid} = 845 m³ of H_{2-gaseous}
- Extremely fast expansion

Fast pressure rise, when confined!

HyResponse

Prescriptive and performance-based approach to Hydrogen safety

- Hydrogen properties
- Primary hazards
- Fire safety engineering for buildings

Primary Hazard #1

1. Combustion

- Fire
- Explosion

Safety considerations...

- Prevent the formation of hydrogen-Oxidizer mixtures
- Leak detection
- Ventilation
- Flame detectors
- Eliminate ignition sources
- Bonding
- Grounding
- Avoid confinement
 - Within the system
 - Outside the system

Primary Hazard #2

2. Pressure

- Gaseous hydrogen: High pressure storage (40-340 Bar)
- Liquid hydrogen: Quick increase of volume (845) resulting from the liquid to gas phase change

Safety considerations

- Proper design and material selection
 - Vessels & components
 - Piping, joints & connections
- Adequate Pressure Relief Devices
 - Location
 - Sizing
- Proper insulation of liquid hydrogen storage containers and piping

Primary Hazards #3

3. Low temperature

- Liquid hydrogen temperature
 - Decrease in material ductility
 - Material shrinkage
 - Air will condense on uninsulated component, providing an oxygenenriched condensate that will increase the flammability and oxidation of materials

- Safety considerations
 - Proper material selection
 - Account for the shrinkage of materials in design
 - No use of organic material including bituminous road underneath uninsulated pipes and components

Primary Hazard #4

4. Embrittlement

 Loss of structural strength caused by permeation of hydrogen through containment material lattice

Hydrogen is the smallest element of all.

- 1. Dissociated hydrogen (H) migrates through material matrix
- 2. Recombination into H₂ induces internal pressure
- 3. Material loses tensile strength & ductility
- ...until it cracks open

Degradation of steel microstructure when T > 200°C lattice

- Safety considerations
 - Proper design and material selection

Primary Hazard #5

5. Exposure

- Cold burns
- High temperature burns

- UV-exposure burns
- Asphyxiation

- Due to direct skin contact with liquid or cold gaseous hydrogen
- Flame almost invisible in artificial or day light
- Low IR = low heat radiation emission →
 cannot sense flame proximity
- Large amount of UV emission = sunburn
- Enclosed space due to oxygen depletion

Wear appropriate protective clothing and protective equipment!

Prescriptive and performance-based approach to Hydrogen safety

- Hydrogen properties
- Primary hazards
- Fire safety engineering for buildings

BS 7974:2001 – Structure and publication

The code of practice for fire safety engineering principles applied to building designs covering safety of a building and its occupants.

PD 7974-0	PD 7974-1 (Sub-system 1)	PD 7974-2 (Sub-system 2)	PD 7974-3 (Sub-system 3)	PD 7974-4 (Sub-system 4)	PD 7974-5 (Sub-system 5)	PD 7974-6 (Sub-system 6)	PD 7974-7
Guide to design framework and fire safety engineering procedures	Initiation and development of fire within the enclosure of origin	Spread of smoke and toxic gases within and beyond the enclosure of origin	Structural response and fire spread beyond the enclosure of origin	Detection of fire and activation of fire protection systems	Fire service intervention	Evacuation	Probabalistic risk assessment
Design approach QDR Comparison with criteria Reporting and presentation	Design approach Acceptance criteria Analysis Data References	Design approach Acceptance criteria Analysis Data References	Design approach Acceptance criteria Analysis Data References	Design approach Acceptance criteria Analysis Data References			

Figure 1 Structure of the code of practice and the published documents

BS 7974 –0 Guide to design framework

Design framework is based on five systemic factors that affect fire safety.

Figure 1 — Main factors involved in a fire safety engineering study

BS 7974 –0 Guide to design framework 1/2

BS 7974 – 7 Risk assessment

Figure 2 — General approach to probabilistic fire risk assessment

Acronyms

- AFID Alternate Fuels Infrastructure Directive
- ADR European Agreement concerning the International Carriage of Dangerous Goods by Road
- CEN European Committee for Standardization
- CENELEC European Committee for Electrotechnical Standardization
- FCH Fuel Cell and Hydrogen
- FCH JU Fuel Cell and Hydrogen Joint Undertaking
- GTR Global Technical Regulation
- HRS Hydrogen Refuelling Station
- IEC International Electro-technical Commission

- ISO International Standards Organization
- PED Pressure Equipment Directive
- RCS Regulations, Codes and Standards
- TBT Technical Barriers to Trade
- TPED Transportable Pressure Equipment Directive
- TPRD Thermally Activated pressure Relief Devices
- UNECE United Nations Economic Commission for Europe
- WP.29 World Forum for Harmonization of Vehicle Regulations
- WTO World Trade Organization

Acknowledgement

This project is co-financed by European funds from the Fuel Cells and Hydrogen Joint Undertaking under:

FCH-JU-2012-1 Grant Agreement Number 325348

The project partners would like to thank the EC for establishing the fuel cells and hydrogen framework and for supporting this activity.