Q.1) $2 x^{2}$ and $12 x^{2}$

Soln.:
The numerical coefficients of the given monomials are 2 and 12.
So, the greatest common factor of 2 and 12 is 2.
The common literal appearing in the given monomials is \mathbf{x}.

The smallest power of x in the two monomials is 2 .
The monomial of the common literals with the smallest powers is x^{2}.
Hence, the greatest common factor is $2 x^{2}$.
Q.2) $6 x^{3} y$ and $18 x^{2} y^{3}$

Soln.:
The numerical coefficients of the given monomials are 6 and 18.
The greatest common factor of 6 and 18 is 6 .
The common literals appearing in the two monomials are x and y.
The smallest power of \mathbf{x} in the two monomials is 2 .
The smallest power of y in the two monomials is 1 .
The monomial of the common literals with the smallest powers is $x^{2} y$. Hence, the greatest common factor is $6 x^{2} y$.
Q.3) $7 x, 21 x^{2}$ and $14 x y^{2}$

Soln.:
The numerical coefficients of the given monomials are 7,21 and 14.
The greatest common factor of 7,21 and 14 is 7.
The common literal appearing in the three monomials is \mathbf{x}.
The smallest power of \mathbf{x} in the three monomials is 1 .
The monomial of the common literals with the smallest powers is \mathbf{x}.
Hence, the greatest common factor is $7 x$.
Q.4) $42 x^{2} y z$ and $63 x^{3} y^{2} z^{3}$

Soln.:
The numerical coefficients of the given monomials are 42 and 63.
The greatest common factor of 42 and 63 is 21 .
The common literals appearing in the two monomials are x, y and z.
The smallest power of \mathbf{x} in the two monomials is 2 .
The smallest power of y in the two monomials is 1 .
The smallest power of \mathbf{z} in the two monomials is 1 .
The monomial of the common literals with the smallest powers is $\mathbf{x}^{2} \mathbf{y z}$.
Hence, the greatest common factor is $21 \mathrm{x}^{2} \mathrm{yz}$.
Q.5) $12 a x^{2}, 6 a^{2} x^{3}$ and $2 a^{3} x^{5}$

Soln.:
The numerical coefficients of the given monomials are 12,6 and 2.
The greatest common factor of 12,6 and 2 is 2.
The common literals appearing in the three monomials are a and \mathbf{x}.
The smallest power of a in the three monomials is 1.
The smallest power of \mathbf{x} in the three monomials is 2 .
The monomial of common literals with the smallest powers is $a x^{2}$.
Hence, the greatest common factor is $2 a x^{2}$.
Q.6) $9 x^{2}, 15 x^{2} y^{3}, 6 x y^{2}$ and $21 x^{2} y^{2}$

Soln.:
The numerical coefficients of the given monomials are $9,15,6$ and 21.

The greatest common factor of $9,15,6$ and 21 is 3 .
The common literal appearing in the three monomials is \mathbf{x}.
The smallest power of x in the four monomials is 1 .
The monomial of common literals with the smallest powers is \mathbf{x}.
Hence, the greatest common factor is $3 x$.
Q.7) $4 a^{2} b^{3},-12 a^{3} b, 18 a^{4} b^{3}$

Soln.:
The numerical coefficients of the given monomials are 4,-12 and 18 .
The greatest common factor of 4. -12 and 18 is 2 .
The common literals appearing in the three monomials are a and b.
The smallest power of a in the three monomials is 2.
The smallest power of b in the three monomials is 1
The monomial of the common literals with the smallest powers is $a^{2} b$.
Hence. the greatest common factor is $2 \mathrm{a}^{2} \mathrm{~b}$.
Q.8) $6 x^{2} y^{2}, 9 x y^{3}, 3 x^{3} y^{2}$

Soln.:
The numerical coefficients of the given monomials are 6,9 and 3.
The greatest common factor of 6,9 and 3 is 3 .
The common literals appearing in the three monomials are x and y.
The smallest power of \mathbf{x} in the three monomials is 1 .
The smallest power of y in the three monomials is 2 .
The monomial of common literals with the smallest powers is xy^{2}.
Hence, the greatest common factor is $3 x^{2}$.
Q.9) $a^{2} b^{3}, a^{3} b^{2}$

Soln.:
The numerical literals in the three monomials are a and b.
The smallest power of x in the three monomials is 2 .
The smallest power of y in the three monomials is 2 .
The monomial of common literals with the smallest powers is $\mathbf{a}^{2} \mathbf{b}^{2}$.
Hence, the greatest common factor is $\mathrm{a}^{2} \mathrm{~b}^{2}$.
Q.10) $36 a^{2} b^{2} c^{4}, 54 a^{5} c^{2}, 90 a^{4} b^{2} c^{2}$

Soln.:
The numerical coeff. of the given monomials are 36,54 , and 90 .
The greatest common factors of 36,54 , and 90 is 18 .
The common literals appearing in the three monomials are a and c.
The smallest power of a in the three monomials is 2.
The smallest power of \mathbf{c} in the three monomials is 2 .
The monomial of common literals with the smallest powers is $\mathbf{a}^{2} \mathbf{c}^{2}$.
Hence, the greatest common factor is $18 a^{2} c^{2}$.
Q.11) $x^{3},-y x^{2}$

Soln.:
The common literal appearing in the two monomials is X .
The smallest power of X in both the monomials is 2 .

Hence, the greatest common factor is x^{2}.
Q.12) $15 \mathrm{a}^{3},-45 \mathrm{a}^{2},-150 \mathrm{a}$

Soln.:
The numerical coeff. of the given monomials are $-15,-45$ and -150 .
The greatest common factor of $15,-45$ and -150 is 15 .
The common literal appearing in the three monomials is a.
The smallest power of a in the three monomials is 1.
Hence, the greatest common factor is 15 a .
Q.13) $2 x^{3} y^{2}, 10 x^{2} y^{3}, 14 x y$

Soln.:
The numerical coeff. of the given monomials are 2,10 and 14.
The greatest common factor of 2,10 and 14 is 2.
The common literals appearing in the three monomials are \mathbf{x} and y .
The smallest power of X in the three monomials is 1 .
The smallest power of y in the three monomials is 1 .
The monomials of common literals with the smallest power is $\mathbf{x y}$.
Hence, the greatest common factor is $2 x y$.
Q.14) $14 x^{3} y^{5}, 10 x^{5} y^{3}, 2 x^{2} y^{2}$

Soln.:
The numerical coeff. of the given monomials are 14, 10 and 2.
The greatest common factor of 14,10 and 2 is 2.
The common literals appearing in the three monomials are x and y.
The smallest power of X in the three monomials is 2 .
The smallest power of Y in the three monomials is $\mathbf{2}$.
The monomials of common literals with the smallest powers is $x^{2} y^{2}$.
Hence, the greatest common factor is $2 x^{2} y^{2}$.

Find the greatest common factor of the terms in each of the following expressions:
Q.15) $5 a^{4}+10 a^{3}-15 a^{2}$

Soln.:
The numerical coeff. of the given monomials are $5 a^{4}, 10 a^{3}$, and $15 a^{2}$.
The greatest common factor of $5 a^{4}, 10 a^{3}$, and $15 a^{2}$ is 5 .
The common literal appearing in the three monomials is a.
The smallest power of a in the three monomials is 2.
The monomials of common literals with the smallest powers is a^{2}.
Hence, the greatest common factor is $5 \mathrm{a}^{2}$.
Q.16) $2 x y z+3 x^{2} y+4 y^{2}$

Soln.:
The numerical coeff. of the given monomials are $2 x y z, 3 x^{2} y$ and $4 y^{2}$.
The greatest factor of $2 x y z, 3 x^{2} y$ and $4 y^{2}$ is 1 .
The common literal appearing in the three monomials is y.
The smallest power of y in the three monomials is 1 .
The monomials of common literals with the smallest power is y.
Hence, the greatest common factor is \mathbf{y}.
Q.17) $3 a^{2} b^{2}+4 b^{2} c^{2}+12 a^{2} b^{2} c^{2}$

Soln.:
The numerical coeff. of the given monomials are $3 a^{2} b^{2}, 4 b^{2} c^{2}$ and $12 a^{2} b^{2} c^{2}$.
The greatest common factor of $3 a^{2} b^{2}, 4 b^{2} c^{2}$ and $12 a^{2} b^{2} c^{2}$ is 1 .
The common literal appearing in the three monomials is b.
The smallest power of b in the three monomials is 2.
The monomials of common literals with the smallest powers is b^{2}.
Hence, the greatest common factor is b^{2}.

Exercise 7.2

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.2
Factorize the following:
Q.1) $3 x-9$

Soln.:
The greatest common factor of the terms $3 x$ and -9 of the expression $3 x-9$ is 3 .
Now,
$3 \mathrm{x}=3 \mathrm{x}$

Hence, the expression $3 x-9$ can be factorised as $3(x-3)$.
Q.2) $5 x-15 x^{2}$

Soln.:
The greatest common factor of the terms $5 x$ and $15 x^{2}$ of the expression $5 x-15 x^{2}$ is $5 x$.
Now,
$5 \mathrm{x}=5 \mathrm{x}$.(1)
and
$-15 \mathrm{x}^{2}=5 \mathrm{x}$. $(-3 \mathrm{x})$
Hence, the expression $5 x-15 x^{2}$ can be factorised as $5 \mathrm{x}(1-3 \mathrm{x})$
Q.3) $20 a^{12} b^{2}-15 a^{8} b^{4}$

Soln.:
The greatest common factor of the terms
$20 a^{12} b^{2}$ and $-15 a^{8} b^{4}$ of the expression $20 a^{12} b^{2}-15 a^{8} b^{4}$ is $5 a^{8} b^{2}$.
$20 a^{12} b^{2}=5 \times 4 \times a^{8} \times a^{4} \times b^{2}=5 a^{8} \times b^{2} \times 4 a^{4}$ and $-15 a^{8} \times b^{4}=5 x(-3) \times a^{8} \times b^{2} \times b^{2}=5 a^{8} b^{2} \times(-3) b^{2}$
Hence, the expression $20 a^{12} b^{2}-15 a^{8} b^{4}$ can be factorised as $5 a^{8} b^{2}\left(4 a^{4}-3 b^{2}\right)$
Q.4) $72 x^{6} y^{7}-96 x^{7} y^{6}$

Soln.:
The greatest common factor of the terms $72 x^{6} y^{7}$ and $-96 x^{7} y^{6}$ of the expression $72 x^{6} y^{7}-96 x^{7} y^{64}$ is $24 x^{6} y^{6}$
Now,
$72 x^{6} y^{7}=24 x^{6} y^{6} .3 y$
And, $-96 x^{7} y^{64}$ is $24 x^{6} y^{5} .-4 x$
Hence, the expression $72 x^{6} y^{7}-96 x^{7} y^{6}$ can be factorised as $24 x^{6} y^{6} .(3 y-4 x)$.
Q.5) $20 x^{3}-40 x^{2}+80 x$

Soln.:
The greatest common factor of the terms $20 x^{3},-40 x^{2}$ and $80 x$ of the expression $20 x^{3}-40 x^{2}+80 x$ is $20 x$.
Now, 20x ${ }^{3}=20 x$. x^{2}
$-40 x^{2}=20 x .-2 x$
And, $80 \mathrm{x}=20 \mathrm{x} .4$
Hence, the expression $20 x^{3}-40 x^{2}+80 x$ can be factorised as $20 x\left(x^{2}-2 x+4\right)$
Q.6) $2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$

Soln.:
The greatest common factor of the terms $2 x^{3} y^{2},-4 x^{2} y^{3}$ and $8 x y^{4}$ of the expression
$2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$ is $2 x y^{2}$.
Now,
$2 x^{3} y^{2}=2 x y^{2} \cdot x^{2}$
$-4 x^{2} y^{3}=2 x y^{2} .(-2 x y)$
$8 x y^{4}=2 x y^{2} .4 y^{2}$
Hence, the expression $2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$ can be factorised as $2 x y^{2}\left(x^{2}-2 x y+4 y^{2}\right)$
Q.7) $10 m^{3} n^{2}+15 m^{4} n-20 m^{2} n^{3}$

Soln.:

The greatest common factor of the terms $10^{3} n^{2}, 15 m^{4} n$ and $-20 m^{2} n^{3}$ of the expression
$10 m^{3} n^{2}+15 m^{4} n-20 m^{2} n^{3}$ is $5 m^{2} n$.
Now,
$10 m^{3} n^{2}=5 m^{2} n .2 m n$
$15 m^{4} n=5 m^{2} n .3 m^{2}$
$-20 m^{2} n^{3}=5 m^{2} n .-4 n^{2}$
Hence, $10 m^{3} n^{2}+15 m^{2} n-20 m^{2} n^{3}$ can be factorised as $5 m^{2} n\left(2 m n+3 m^{2}-4 n^{2}\right)$
Q.8) $2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$

Soln.:
The greatest common factor of the terms $2 a^{4} b^{4},-3 a^{3} b^{5}$ and $4 a^{2} b^{5}$ of the expression $2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$ is $a^{2} b^{5}$.

Now,
$2 a^{4} b^{4}=a^{2} b^{5} \cdot 2 a^{2}$
$-3 a^{3} b^{5}=a^{2} b^{4} \cdot(-3 a b)$
$4 a^{2} b^{5}=a^{2} b^{4} .4 b$
Hence, $2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$ can be factorised $a s a^{2} b^{4}\left(2 a^{2}-3 a b+4 b\right)$
Q.9) $28 a^{2}+14 a^{2} b^{2}-21 a^{4}$

Soln.:
The greatest common factor of the terms $28 a^{2}, 14 a^{2} b^{2}$ and $21 a^{4}$ of the expression
$28 a^{2}+14 a^{2} b^{2}-21 a^{4}$ is $7 a^{2}$.
Also, we can write $28 a^{2}=7 a^{2} .4,14 a^{2} b^{2}=7 a^{2} .2 b^{2}$ and $21 a^{4}=7 a^{2} .3 a^{2}$.
Therefore, $28 a^{2}+14 a^{2} b^{2}-21 a^{4}=7 a^{2} \cdot 4+7 a^{2} .2 b^{2}-7 a^{2} \cdot 3 a^{2}$
$=7 \mathrm{a}^{2}\left(4+2 \mathrm{~b}^{2}-3 \mathrm{a}^{2}\right)$
Q.10) $a^{4} b-3 a^{2} b^{2}-6 a b^{3}$

Soln.:
The greatest common factor of the terms $a^{4} b, 3 a^{2} b^{2}$ and $6 a b^{3}$ of the expression
$a^{4} b-3 a^{2} b^{2}-6 a b^{3}$ is $a b$.
Also, we can write $a^{4} b=a b . a^{3}, 3 a^{2} b^{2}=a b .3 a b$ and $6 a b^{3}=a b .6 b^{2}$.
Therefore, $a^{4} b-3 a^{2} b^{2}-6 a b^{3}=a b . a^{3}-a b .3 a b-a b .6 b^{2}$.
$=a b\left(a^{3}-3 a b-6 b^{2}\right)$
Q.11) $2 L^{2} m n-3 L m^{2} n+4 L m n^{2}$

Soln.:
The greatest common factor of the terms $2 L^{2} m n, 3 L m^{2} n$ and $4 L m n^{2}$ of the expression
$2 L^{2} m n-3 L m^{2} n+4 L m n^{2}$ is $L m n$.
Also, we can write $2 L^{2} m n=L m n .2 L, 3 L m^{2} n=L m n .3 m$ and $4 L_{m n^{2}}=L m n .4 n$
Therefore, $2 L^{2} m n-3 L m^{2} n+4 L m n^{2}=(L m n .2 L)-(L m n .3 m)+(L m n .4 n)$
$=\operatorname{Lmn}(2 \mathrm{~L}-3 \mathrm{~m}+4 \mathrm{n})$
Q.12) $x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}$

Soln.:
The greatest common factor of the terms $x^{4} y^{2}, x^{2} y^{4}$ and $x^{4} y^{4}$ of the expressinon
$x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}$ is $x^{2} y^{2}$
Also, we can write $x^{4} y^{2}=\left(x^{2} y^{2} \cdot x^{2}\right), x^{2} y^{4}=\left(x^{2} y^{2} \cdot y^{2}\right)$ and $x^{4} y^{4}=\left(x^{2} y^{2} \cdot x^{2} y^{2}\right)$
Therefore, $x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}=\left(x^{2} y^{2} \cdot x^{2}\right)-\left(x^{2} y^{2} \cdot y^{2}\right)-\left(x^{2} y^{2} \cdot x^{2} y^{2}\right)$
$=x^{2} y^{2}\left(x^{2}-y^{2}-x^{2} y^{2}\right)$
Q.13) $9 x^{2} y+3 a x y$

Soln.:
The greatest common factor of the terms $9 x^{2} y$ and 3axy of the expression $9 x^{2} y+3 a x y$ is $3 x y$.
Also, we can write $9 x^{2} y=3 x y .3 x$ and $3 a x y=3 x y$. a
Therefore, $9 \mathrm{x}^{2} \mathrm{y}+3 \mathrm{axy}=(3 \mathrm{xy} .3 \mathrm{x})+(3 \mathrm{xy} . \mathrm{a})$
$=3 x y(3 x+a)$
Q.14) $16 m-4 m^{2}$

Soln.:
The greatest common factor of the terms $16 m$ and $4 m^{2}$ of the expression $16 m-4 m^{2}$ is $4 m$.
Also, we can write $16 \mathrm{~m}=4 \mathrm{~m} .4$ and $4 \mathrm{~m}^{2}=4 \mathrm{~m} . \mathrm{m}$
Therefore, $16 \mathrm{~m}-4 \mathrm{~m}^{2}=(4 \mathrm{~m} .4)-(4 \mathrm{~m} . \mathrm{m})$
$=4 \mathrm{~m}(4-\mathrm{m})$
Q.15) $-4 a^{2}+4 a b-4 c a$

Soln.:
The greatest common factor of the terms $-4 a^{2}, 4 a b$ and $-4 c a$ of the expression
$-4 a^{2}+4 a b-4 c a$ is $-4 a$.
Also, we can write $-4 \mathrm{a}^{2}=(-4 \mathrm{a} \cdot \mathrm{a}), 4 \mathrm{ab}=-4 \mathrm{a} .(-\mathrm{b})$, and $4 \mathrm{ca}=(-4 \mathrm{a} \cdot \mathrm{c})$
Therefore, $-4 a^{2}+4 a b-4 c a=(-4 a \cdot a)+(-4 a \cdot(-b))-(4 a \cdot c)$
$=-4 a(a-b+c)$
Q.16) $x^{2} y z+x y^{2} z+x y z^{2}$

Soln.:
The greatest common factor of the terms $x^{2} y z, x y^{2} z$ and $x y z^{2}$ of the expression
$x^{2} y z+x y^{2} z+x y z^{2}$ is $x y z$.
Also, we can write $x^{2} y z=(x y z, x),\left(x y^{2} z=x y z . y\right), ~ x y z^{2}=(x y z, z)$
Therefore, $x^{2} y z+x y^{2} z+x y z^{2}=(x y z \cdot x)+(x y z \cdot y)+(x y z \cdot z)$
$=x y z(x+y+z)$
Q.17) $a x^{2} y+b x y^{2}+c x y z$

Soln.:
The greatest common factor of the terms $a^{2} y, b x y^{2}$ and $c x y z$ of the expression $a x^{2} y+b x y^{2}+c x y z$ is $x y$.
Also, we can write $a x^{2} y=(x y . a x), b x y^{2}=(x y . b y), c x y z=(x y . c z)$
Therefore, $a x^{2} y+b x y^{2}+c x y z=(x y . a x)+(x y . b y)+(x y . c z)$
$=x y(a x+b y+c z)$

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.3
Factorize each of the following algebraic expressions :
Q.1) $6 x(2 x-y)+7 y(2 x-y)$

Soln.:
$6 x(2 x-y)+7 y(2 x-y)$
$=(6 x+7 y)(2 x-y)$ (taking $(2 x-y)$ as common factor)
Q.2) $2 r(y-x)+s(x-y)$

Soln.:

$2 r(y-x)+s(x-y)$
$=2 r(y-x)-s(y-x)[$ since, $(x-y)=-(y-x)]$
$=(2 r-s)(y-x)$ [taking $(y-x)$ as the common factor]
Q.3) $7 \mathrm{a}(2 \mathrm{x}-3)+3 \mathrm{~b}(2 \mathrm{x}-3)$

Soln.:
$7 a(2 x-3)+3 b(2 x-3)$
$=(7 a+3 b)(2 x-3)$ [taking $(2 x-3)$ as the common factor]
Q.4) $9 a(6 a-5 b)-12 a^{2}(6 a-5 b)$

Soln.:
$9 a(6 a-5 b)-12 a^{2}(6 a-5 b)$
$=\left(9 a-12 q a^{2}\right)(6 a-5 b)$ [taking $(6 a-5 b)$ as the common factor]
$=3 a(3-4 a)(6 a-5 b)$ [taking 3a as the common factor of the quadratic eqn. $\left(9 a-12 a^{2}\right)$]
Q.5) $5(x-2 y)^{2}+3(x-2 y)$

Soln.:
$5(x-2 y)^{2}+3(x-2 y)$
$=[(x-2 y)+3](x-2 y)[$ taking $(x-2 y)$ as the common factor]
$=(5 x-10 y+3)(x-2 y)$
Q.6) $16(2 L-3 m)^{2}-12(3 m-2 L)$

Soln.:
16(2L-3m) ${ }^{2}-12(3 m-2 L)$
$=16(2 L-3 m)^{2}+12(2 L-3 m)[(3 m-2 L)=-(2 L-3 m)]$
$=[16(2 L-3 m)+12](2 L-3 m)$ [taking $(2 L-3 m)$ as the common factor]
$=4[4(2 L-3 m)+3](2 L-3 m)$ [taking 4 as the common factor $(16(2 L-3 m)+12)]$
$=4(8 \mathrm{~L}-12 \mathrm{~m}+3)(2 \mathrm{~L}-3 \mathrm{~m})$
Q.7) $3 a(x-2 y)-b(x-2 y)$

Soln.:
$3 a(x-2 y)-b(x-2 y)$
$=(3 a-b)(x-2 y)$ [taking $(x-2 y)$ as the common factor]
Q.8) $a^{2}(x+y)+b^{2}(x+y)+c^{2}(x+y)$

Soln.:
$a^{2}(x+y)+b^{2}(x+y)+c^{2}(x+y)$
$=\left(a^{2}+b^{2}+c^{2}\right)(x+y)$ [taking $(x+y)$ as the common the factor]
Q.9) $(x-y)^{2}+(x-y)$

Soln.:
$(x-y)^{2}+(x-y)$
$=(x-y)(x-y)+(x-y)[$ taking $(x-y)$ as the common factor]
$=(x-y+1)(x-y)$
Q.10) $6(a+2 b)-4(a+2 b)^{2}$

Soln.:

$6(a+2 b)-4(a+2 b)^{2}$
$=[6-4(a+2 b)](a+2 b)$ [taking $(a+2 b$ as the common factor) $]$
$=2[3-2(a+2 b)](a+2 b)[$ taking 2 as the common factor of $[6-4(a+2 b)]]$
$=2(3-2 a-4 b)(a+2 b)$
Q.11) $a(x-y)+2 b(y-x)+c(x-y)^{2}$

Soln.:
$a(x-y)+2 b(y-x)+c(x-y)^{2}$
$=a(x-y)-2 b(x-y)+c(x-y)^{2}[(y-x)=-(x-y)]$
$=[a-2 b+c(x-y)](x-y)$
$=(a-2 b+c x-c y)(x-y)$
Q.12) $-4(x-2 y)^{2}+8(x-2 y)$

Soln.:
$-4(x-2 y)^{2}+8(x-2 y)$
$=[-4(x-2 y)+8](x-2 y)$ [taking $(x-2 y)$ as the common factor]
$=4[-(x-2 y)+2](x-2 y)[$ taking 4 as the common factor of $[-4(x-2 y)+8]]$
$=4(2 y-x+2)(x-2 y)$
Q.13) $x^{3}(a-2 b)+x^{2}(a-2 b)$

Soln.:
$x^{3}(a-2 b)+x^{2}(a-2 b)$
$=\left(x^{3}+x^{2}\right)(a-2 b)$ [taking $(a-2 b)$ as the common factor]
$=x^{2}(x+1)(a-2 b)$ [taking x^{2} as the common factor of $\left(x^{3}+x^{2}\right)$]
Q.14) $(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$

Soln.:
$(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$
$=(2 x-3 y+3 x-2 y)(a+b)$ [taking $(a+b)$ as the common factor]
$=(5 x-5 y)(a+b)$
$=5(x-y)(a+b)$ [taking 5 as the common factor of $(5 x-5 y)$]
Q.15) $4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$

Soln.:
$4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$
$=2(x+y)[2(3 a-b)+3(2 b-3 a)]$ [taking $(2(x+y))$ as the common factor]
$=2(x+y)(6 a-2 b+6 b-9 a)$
$=2(x+y)(4 b-3 a)$

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.4
Factorize each of the following expressions :
Q.1) $\mathbf{q r}$ - pr + qs - ps

Soln.:
$q r-p r+q s-p s$
$=(q r-p r)+(q s-p s)$
$=r(q-p)+s(q-p)$
$=(r+s)(q-p)$ [taking $(q-p)$ as the common factor]
Q.2) $p^{2} q-p r^{2}-p q+r^{2}$

Soln.:
$p^{2} q-p r^{2}-p q+r^{2}$
$=\left(p^{2} q-p q\right)+\left(r^{2}-p r^{2}\right)$
$p q(p-1)+r^{2}(1-p)$
$p q(p-1)-r^{2}(p-1)[$ since, $(1-p)=-(p-1)]$
$=\left(p q-r^{2}\right)(p-1)$ [taking $(p-1)$ as the common factor]
Q.3) $1+x+x y+x^{2} y$

Soln.:
$1+x+x y+x^{2} y$
$=(1+x)+\left(x y+x^{2} y\right)$
$=(1+x)+x y(1+x)$
$=(1+x y)(1+x)$ [taking $(1+x)$ as the common factor]
Q.4) $a x+a y-b x-b y$

Soln.:
$a x+a y-b x-b y$
$=(a x+a y)-(b x+b y)$
$=a(x+y)-b(x+y)$
$=(a-b)(x+y)$ [taking $(x+y)$ as the common factor]
Q.5) $x a^{2}+x b^{2}-y a^{2}-y b^{2}$

Soln.:
$x a^{2}+x b^{2}-y a^{2}-y b^{2}$
$=\left(x a^{2}+x b^{2}\right)-\left(y a^{2}+y b^{2}\right)$
$=x\left(a^{2}+b^{2}\right)-y\left(a^{2}+b^{2}\right)$
$=(x-y)\left(a^{2}+b^{2}\right)$ [taking $\left(a^{2}+b^{2}\right)$ as the common factor]
Q.6) $x^{2}+x y+x z+y z$

Soln.:
$x^{2}+x y+x z+y z$
$=\left(x^{2}+x y\right)+(x z+y z)$
$=x(x+y)+z(x+y)$
$=(x+z)(x+y)$ [taking $(x+y)$ s the common factor]
$=(x+y)(x+z)$
Q.7) $2 a x+b x+2 a y+b y$

Soln.:
$2 a x+b x+2 a y+b y$
$=(2 a x+b x)+(2 a y+b y)$
$=x(2 a+b)+y(2 a+b)$
$=(x+y)(2 a+b)$ [taking $(2 a+b)$ as the common factor]
Q.8) ab-by -ay+ $\mathbf{y}^{\mathbf{2}}$

Soln.:
$a b-b y-a y+y^{2}$
$=(a b-a y)+\left(y^{2}-b y\right)$
$=a(b-y)+y(y-b)[$ since,$(y-b)=-(b-y)]$
$=a(b-y)-y(b-y)$ [taking $(b-y)$ as the common factor]
$=(a-y)(b-y)$
Q.9) axy + bcxy -az - bcz

Soln.:
$a x y+b c x y-a z-b c z$
$=(a x y+b c x y)-(a z-b c z)$
$=x y(a+b c)-z(a+b c)$
$=(x y-z)(a+b c)$ [taking $(a+b c)$ as the common factor]
Q.10) $L m^{2}-m n^{2}-L m+n^{2}$

Soln.:
$L m^{2}-m n^{2}-L m+n^{2}=\left(L m^{2}-L m\right)+\left(n^{2}-m n^{2}\right)$
$=\operatorname{Lm}(m-1)+n^{2}(1-m)$
$=\operatorname{Lm}(m-1)-n^{2}(m-1)[$ since, $(1-m)=-(m-1)]$
$=\left(L m-n^{2}\right)(m-1)$ [taking $(m-1)$ a sthe common factor]
Q.11) $x^{3}-y^{2}+x-x^{2} y^{2}$

Soln.:

$x^{3}-y^{2}+x-x^{2} y^{2}$
$=\left(x^{3}+x\right)-\left(x^{2} y^{2}+y^{2}\right)$
$=x\left(x^{2}+1\right)-y^{2}\left(x^{2}+1\right)$
$=\left(x-y^{2}\right)\left(x^{2}+1\right)$ [taking $\left(x^{2}+1\right)$ as the common factor]
Q.12) $6 x y+6-9 y-4 x$

Soln.:
$6 x y+6-9 y-4 x=(6 x y-4 x)+(6-9 y)$
$=2 x(3 y-2)+3(2-3 y)$
$=2 x(3 y-2)-3(3 y-2)[$ since, $(2-3 y)=-(3 y-2)]$
$=(2 x-3)(3 y-2)$ [taking $(3 y-2)$ as the common factor]
Q.13) $x^{2}-2 a x-2 a b+b x$

Soln.:

$x^{2}-2 a x-2 a b+b x$
$=\left(x^{2}-2 a x\right)+(b x-2 a b)$
$=x(x-2 a)+b(x-2 a)$
$=(x+b)(x-2 a)$ [taking $(x-2 a)$ as the common factor]
$=(x-2 a)(x+b)$
Q.14) $x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$

Soln.:
$x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$
$=\left(x^{3}-2 x^{2} y\right)+\left(3 x y^{2}-6 y^{3}\right)$
$=x^{2}(x-2 y)+3 y^{2}(x-2 y)$
$=\left(x^{2}+3 y^{2}\right)(x-2 y)$ [taking $(x-2 y)$ as the common factor]
Q.15) $a b x^{2}+(a y-b) x-y$

Soln.:

$$
\begin{aligned}
& a b x^{2}+(a y-b) x-y=a b x^{2}+a x y-b x-y \\
& =\left(a b x^{2}-b x\right)+(a x y-y) \\
& =b x(a x-1)+y(a x-1) \\
& =(b x+y)(a x-1)[\text { taking }(a x-1) \text { as the common factor] } \\
& Q .16)(a x+b y)^{2}+(b x-a y)^{2}
\end{aligned}
$$

Soln.:
$(a x+b y)^{2}+(b x-a y)^{2}=a^{2} x^{2}+2 a b x y+b^{2} y^{2}+b^{2} x^{2}-2 a b x y+a^{2} y^{2}$
$=a^{2} x^{2}+b^{2} y^{2}+b^{2} x^{2}+a^{2} y^{2}$
$=\left(a^{2} x^{2}+a^{2} y^{2}\right)+\left(b^{2} x^{2}+b^{2} y^{2}\right)$
$=a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(x^{2}+y^{2}\right)$
$=\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)$ [taking $\left(x^{2}+y^{2}\right)$ as the common factor]
Q.17) $16(a-b)^{3}-24(a-b)^{2}$

Soln.:
$16(a-b)^{3}-24(a-b)^{2}$
$=8(a-b)^{2}[2(a-b)-3]$ [taking $8(a-b)^{2}$ as the common factor]
$=8(a-b)^{2}(2 a-2 b-3)$
Q.18) $a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)$

Soln.:
$a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)=a b x^{2}+a b+a^{2} x+b^{2} x$
$=\left(a b x^{2}+a^{2} x\right)+\left(b^{2} x+a b\right)$
$=a x(b x+a)+b(b x+a)$
$=(a x+b)(b x+a)$ [taking $(b x+a)$ as the common factor] Q.19) $a^{2} x^{2}+\left(a x^{2}+1\right) x+1+a$

Soln.:

$a^{2} x^{2}+\left(a x^{2}+1\right) x+1+a=a^{2} x^{2}+a x^{3}+x+a$
$=\left(a x^{3}+a^{2} x^{2}\right)+(x+a)$
$=a x^{2}(x+a)+(x+a)$
$=\left(a x^{2}+1\right)(x+a)$ [taking $(x+a)$ as the common factor]
Q.20) $a(a-2 b-c)+2 b c$

Soln.:
$\mathrm{a}(\mathrm{a}-2 \mathrm{~b}-\mathrm{c})+2 \mathrm{bc}=\mathrm{a}^{2}-2 \mathrm{ab}-\mathrm{ac}+2 \mathrm{bc}$
$=\left(a^{2}-a c\right)+(2 b c-2 a b)$
$=a(a-c)+2 b(c-a)[$ since, $(c-a)=-(a-c)]$
$=a(a-c)-2 b(a-c)$
$=(a-2 b)(a-c)$ [taking $(a-c)$ as the common factor]
Q.21) $a(a+b-c)-b c$

Soln.:
$a(a+b-c)-b c=a^{2}+a b-a c-b c$
$=\left(a^{2}-a c\right)+(a b-b c)$
$=a(a-c)+b(a-c)$
$=(a+b)(a-c)[$ taking $(a-c)$ as the common factor]
Q.22) $x^{2}-11 x y-x+11 y$

Soln.:

$x^{2}-11 x y-x+11 y=\left(x^{2}-x\right)+(11 y-11 x y)$
$=x(x-1)+11 y(1-x)$
$=x(x-1)-11 y(x-1)[$ since, $(1-x)=-(x-1)]$
$=(x-11 y)(x-1)$ [taking out the common factor]
Q.23) $a b-a-b+1$

Soln.:

$$
\begin{aligned}
& a b-a-b+1=(a b-b)+(1-a) \\
& =b(a-1)+(1-a) \\
& =b(a-1)-(a-1)[\text { since, }(1-a)=-(a-1)] \\
& =(a-1)(b-1)[\text { taking out the common factor }(a-1)]
\end{aligned}
$$

Q.24) $x^{2}+y-x y-x$

Soln.:
$x^{2}+y-x y-x=\left(x^{2}-x y\right)+(y-x)$
$=x(x-y)+(y-x)$
$=x(x-y)-(x-y)[(y-x)=-(x-y)]$
$=(x-1)(x-y)$ [taking $(x-y)$ as the common factor]

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.5
Q.1) $16 x^{2}-25 y^{2}$

Soln.:
$16 x^{2}-25 y^{2}$
$=(4 \mathrm{x})^{2}-(5 y)^{2}$
$=(4 \mathrm{x}-5 \mathrm{y})(4 \mathrm{x}+5 \mathrm{y})$
Q.2) $27 \mathrm{x}^{2}-12 y^{2}$

Soln.:
$27 x^{2}-12 y^{2}$
$=3\left(9 x^{2}-4 y^{2}\right)$
$=3\left[(3 x)^{2}-(2 y)^{2}\right]$
$=3(3 x-2 y)(3 x+2 y)$
Q.3) $\mathbf{1 4 4 a}{ }^{2}-289 b^{2}$

Soln.:
$144 a^{2}-289 b^{2}$
$=(12 a)^{2}-(17 b)^{2}$
$=(12 a-17 b)(12 a+17 b)$
Q.4) $12 m^{2}-27$

Soln.:
12m ${ }^{2}-27$
$=3\left(4 m^{2}-9\right)$
$=3\left[(2 m)^{2}-3^{2}\right]$
$=3(2 m-3)(2 m+3)$
Q.5) $125 \mathrm{x}^{2}-\mathbf{4 5} \mathrm{y}^{\mathbf{2}}$

Soln.:
$125 \mathrm{x}^{2}-45 \mathrm{y}^{2}$
$=5\left(25 \mathrm{x}^{2}-9 \mathrm{y}^{2}\right)$
$=5\left[(5 \mathrm{x})^{2}-(3 \mathrm{y})^{2}\right]$
$=5(5 \mathrm{x}-3 \mathrm{y})(5 \mathrm{x}+3 \mathrm{y})$
Q.6) $144 a^{2}-169 b^{2}$

Soln.:
$144 a^{2}-169 b^{2}$
$=(12 a)^{2}-\left(13 b^{2}\right)$
$=(12 a-13 b)(12 a+13 b)$
Q.7) $(2 a-b)^{2}-16 c^{2}$

Soln.:
$(2 a-b)^{2}-16 c^{2}$
$=(2 a-b)^{2}-(4 c)^{2}$
$=[(2 a-b)-4 c][(2 a-b)+4 c]$
$=(2 a-b-4 c)(2 a-b+4 c)$
Q.8) $(x+2 y)^{2}-4(2 x-y)^{2}$

Soln.:
$(x+2 y)^{2}-4(2 x-y)^{2}=(x+2 y)^{2}-[2(2 x-y)]^{2}$
$=[(x+2 y)-2(2 x-y)][(x+2 y)+2(2 x-y)]$
$=(x+2 y-4 x+2 y)(x+2 y+4 x-2 y)$
$=5 \mathrm{x}(4 \mathrm{y}-3 \mathrm{x})$
q.9) $3 a^{5}-48 a^{3}$

Soln.:
$3 a^{5}-48 a^{3}$
$=3 a^{3}\left(a^{2}-16\right)$
$=3 a^{3}\left(a^{2}-4^{2}\right)$
$=3 a^{3}(a-4)(a+4)$
Q.10) $a^{4}-16 b^{4}$

Soln.:
$a^{4}-16 b^{4}$
$=a^{4}-2^{4} b^{4}$
$=\left(a^{2}\right)^{2}-\left(2^{2} b^{2}\right)^{2}$
$=\left(a^{2}-2^{2} b^{2}\right)\left(a^{2}+2^{2} b^{2}\right)$
$=\left[a^{2}-(2 b)^{2}\right]\left(a^{2}+4 b^{2}\right)$
$(a-2 b)(a+2 b)\left(a^{2}+4 b^{2}\right)$
Q.11) $x^{8}-1$

Soln.:
$x^{8}-1=\left(x^{4}\right)^{2}-1^{2}$
$=\left(x^{4}-1\right)\left(x^{4}+1\right)$
$=\left[\left(x^{2}\right)^{2}-1^{2}\right]\left(x^{4}+1\right)$
$=\left(x^{2}-1\right)\left(x^{2}+1\right)\left(x^{4}+1\right)$
$=\left(x^{2}-1^{2}\right)\left(x^{2}+1\right)\left(x^{4}+1\right)$
$=(x-1)(x+1)\left(x^{2}+1\right)\left(x^{4}+1\right)$
Q.12) $64-(a+1)^{2}$

Soln.:
$64-(a+1)^{2}$
$=(8)^{2}-(a+1)^{2}$
$=[8-(a+1)][8+(a+1)]$
$=(8-a-1)(8+a+1)$
$=(7-a)(9+a)$
Q.13) $36 L^{2}-(m+n)^{2}$

Soln.:
$36 L^{2}-(m+n)^{2}$
$=(6 \mathrm{~L})^{2}-(m+n)^{2}$
$=[6 L-(m+n)][6 L+(m+n)]$
$=(6 L-m-n)(6 L+m+n)$
Q.14) $25 x^{4} y^{4}-1$

Soln.:
$25 x^{4} y^{4}-1$
$=\left(5 x^{2} y^{2}\right)^{2}-1$
$=\left(5 x^{2} y^{2}-1\right)\left(5 x^{2} y^{2}+1\right)$
Q.15) $a^{4}-1 / b^{4}$

Soln.:
$a^{4}-1 / b^{4}$
$=\left(a^{2}\right)^{2}-1 /\left(b^{2}\right)^{2}$
$=a^{2}-1 / b^{2} a^{2}+1 / b^{2}$
$=a-1 / b a+1 / b a^{2}+1 / b^{2}$
Q.16) $x^{3}-144 x$

Soln.:

$x^{3}-144 x$
$=x\left(x^{2}-144\right)$
$=x\left(x^{2}-12^{2}\right)$
$=x(x-12)(x+12)$
Q.17) $(x-4 y)^{2}-625$

Soln.:
$(x-4 y)^{2}-625$
$=(x-4 y)^{2}-25^{2}$
$=[(x-4 y)-25][(x-4 y)+25]$
$=(x-4 y-25)(x-4 y+25)$
Q.18) $9(a-b)^{2}-100(x-y)^{2}$

Soln.:
$9(a-b)^{2}-100(x-y)^{2}$
$=[3(a-b)]^{2}-[10(x-y)]^{2}$
$=[3(a-b)-10(x-y)][3(a-b)+10(x-y)]$
$=(3 a-3 b-10 x+10 y)(3 a-3 b+10 x-10 y)$
Q.19) $(3+2 a)^{2}-25 a^{2}$

Soln.:
$(3+2 a)^{2}-25 a^{2}$
$=(3+2 \mathrm{a})^{2}-(5 \mathrm{a})^{2}$
$=[(3+2 a)-5 a][(3+2 a)+5 a]$
$=(3+2 a-5 a)(3+2 a+5 a)$
$=(3-3 a)(3+7 a)$
$=3(1-a)(3+7 a)$
Q.20) $(x+y)^{2}-(a-b)^{2}$

Soln.:
$(x+y)^{2}-(a-b)^{2}$
$=[(x+y)-(a-b)][(x+y)+(a-b)]$
$=(x+y-a+b)(x+y+a-b)$
Q.21) $\frac{1}{16} x^{2} y^{2}-\frac{4}{49} y^{2} z^{2}$

Soln.:

$\frac{1}{16} x^{2} y^{2}-\frac{4}{49} y^{2} z^{2}$
$=\mathrm{y}^{2}\left(\frac{1}{16} \mathrm{x}^{2}-\frac{4}{49} \mathrm{z}^{2}\right)$
$=y^{2}\left[\left(\frac{1}{4} x\right)^{2}-\left(\frac{2}{7} z\right)^{2}\right]$
$=\mathrm{y}^{2}\left(\frac{1}{4} x-\frac{2}{7} z\right)\left(\frac{1}{4} x+\frac{2}{7} z\right)$
$=\mathrm{y}^{2}\left(\frac{x}{4}-\frac{2}{7} z\right)\left(\frac{x}{4}+\frac{2}{7} z\right)$
Q.22) $75 a^{3} b^{2}-108 a b^{4}$

Soln.:

$75 a^{3} b^{2}-108 a b^{4}$
$=3 a b^{2}\left(25 a^{2}-36 b^{2}\right)$
$=3 a b^{2}\left[(5 a)^{2}-(6 b)^{2}\right]$
$=3 a b^{2}(5 a-6 b)(5 a+6 b)$
Q.23) $x^{5}-16 x^{3}$

Soln.:

$x^{5}-16 x^{3}$
$=x^{3}\left(x^{2}-16\right)$
$=x^{3}\left(x^{2}-4^{2}\right)$
$=x^{3}(x-4)(x+4)$
Q.24) $\frac{50}{(x)^{2}}-\frac{2 x^{2}}{81}$

Soln.:
$\frac{50}{(x)^{2}}-\frac{2 x^{2}}{81}$
$=2\left(\frac{25}{(x)^{2}}-\frac{x^{2}}{81}\right)$
$=2\left\{\left(\frac{5}{x}\right)^{2}-\left(\frac{x}{9}\right)^{2}\right\}$
$\left.=2\left(\frac{5}{x}-\frac{x}{9}\right)\left(\frac{5}{x}+\frac{x}{9}\right)\right)$
Q.25) $256 x^{5}-81 \mathrm{x}$

Soln.:
$256 x^{5}-81 x$
$=x\left(256 x^{4}-81\right)$
$=x\left[\left(16 x^{2}\right)^{2}-9^{2}\right]$
$=x\left(16 x^{2}+9\right)\left(16 x^{2}-9\right)$
$=x\left(16 x^{2}+9\right)\left[(4 x)^{2}-3^{2}\right]$
$=x\left(16 x^{2}+9\right)(4 x+3)(4 x-3)$
Q.26) $a^{4}-(2 b+c)^{4}$

Soln.:
$a^{4}-(2 b+c)^{4}$
$=\left(a^{2}\right)^{2}-\left[(2 b+c)^{2}\right]^{2}$
$=\left[a^{2}+(2 b+c)^{2}\right]\left[a^{2}-(2 b+c)^{2}\right]$
$=\left[a^{2}+(2 b+c)^{2}\right\}\{[a+(2 b+c)][a-(2 b+c)]\}$
$=\left[a^{2}+(2 b+c)^{2}\right](a+2 b+c)(a-2 b-c)$
Q.27) $(3 x+4 y)^{4}-x^{4}$

Soln.:
$(3 x+4 y)^{4}-x^{4}$
$=\left[(3 x+4 y)^{2}\right]^{2}-\left(x^{2}\right)^{2}$
$=\left[(3 x+4 y)^{2}+x^{2}\right]\left[(3 x+4 y)^{2}-x^{2}\right]$
$=\left[(3 x+4 y)^{2}+x^{2}\right][(3 x+4 y)+x][(3 x+4 y)-x]$
$=\left\{(3 x+4 y)^{2}+x^{2}\right\}(3 x+4 y+x)(3 x+4 y-x)$
$=\left\{(3 x+4 y)^{2}+x^{2}\right\}(4 x+4 y)(2 x+4 y)$
$=\left\{(3 x+4 y)^{2}+x^{2}\right\} 4(x+y) 2(x+2 y)$
$=8\left\{(3 x+4 y)^{2}+x^{2}\right\}(x+y)(x+2 y)$
Q.28) $p^{2} q^{2}-p^{4} q^{4}$

Soln.:
$p^{2} q^{2}-p^{4} q^{4}$
$=p^{2} q^{2}\left(1-p^{2} q^{2}\right)$
$=p^{2} q^{2}\left[1-(p q)^{2}\right]$
$=p^{2} q^{2}(1-p q)(1+p q)$
Q.29) $3 x^{3} y-243 x y^{3}$

Soln.:
$3 x^{3} y-243 x y^{3}$
$=3 x y\left(x^{2}-81 y^{2}\right)$
$=3 x y\left[x^{2}-(9 y)^{2}\right]$
$=3 x y(x-9 y)(x+9 y)$
Q.30) $a^{4} b^{4}-16 c^{4}$

Soln.:
$a^{4} b^{4}-16 c^{4}$
$=\left[\left(a^{2} b^{2}\right)^{2}-\left(4 c^{2}\right)^{2}\right]$
$=\left(a^{2} b^{2}+4 c^{2}\right)\left(a^{2} b^{2}-4 c^{2}\right)$
$=\left(a^{2} b^{2}+4 c^{2}\right)\left[(a b)^{2}-(2 c)^{2}\right]$
$=\left(a^{2} b^{2}+4 c^{2}\right)(a b+2 c)(a b-2 c)$
Q.31) $\mathrm{x}^{4}-625$

Soln.:

$\mathrm{x}^{4}-625$
$=\left(x^{2}\right)^{2}-25^{2}$
$=\left(x^{2}+25\right)\left(x^{2}-25\right)$
$=\left(x^{2}+25\right)\left(x^{2}-5^{2}\right)$
$=\left(x^{2}+25\right)(x+5)(x-5)$
Q.32) $x^{4}-1$

Soln.:
$x^{4}-1$
$=\left(x^{2}\right)^{2}-1$
$=\left(x^{2}+1\right)\left(x^{2}-1\right)$
$=\left(x^{2}+1\right)(x+1)(x-1)$

Q.33) 49(a-b) ${ }^{\mathbf{2}} \mathbf{- 2 5 (a + b) ^ { 2 }}$

Soln.:
49(a-b) ${ }^{2}-25(a+b)^{2}$
$=\left[7(a-b)^{2}\right]-[5(a+b)]^{2}$
$=[7(a-b)-5(a+b)][7(a-b)+5(a+b)]$
$=(7 a-7 b-5 a-5 b)(7 a-7 b+5 a+5 b)$
$=(2 a-12 b)(12 a-2 b)$
$=2(a-6 b) 2(6 a-b)$
$=4(a-6 b)(6 a-b)$
Q.34) $x-y-x^{2}+y^{2}$

Soln.:

$x-y-x^{2}+y^{2}$
$=(x-y)+\left(y^{2}-x^{2}\right)$
$=(x-y)+(y+x)(y-x)$
$=(x-y)-(y+x)(x-y) \quad[$ since, $(y-x)=-(x-y)]$
$=(x-y)[1-(y+x)]$
$=(x-y)(1-x-y)$
Q.35) $16(2 x-1)^{2}-25 y^{2}$

Soln.:
$16(2 x-1)^{2}-25 y^{2}$
$=[4(2 x-1)]^{2}-(5 y)^{2}$
$=[4(2 x-1)-5 y][4(2 x-1)+5 y]$
$=(8 x-4-5 y)(8 x-4+5 y)$
$=(8 x-5 y-4)(8 x+5 y-4)$
Q.36) $4(x y+1)^{2}-9(x-1)^{2}$

Soln.:
$4(x y+1)^{2}-9(x-1)^{2}$
$=[2(x y+1)]^{2}-[3(x-1)]^{2}$
$=[2(x y+1)-3(x-1)][2(x y+1)+3(x-1)]$
$=(2 x y+2-3 x+3)(2 x y+2+3 x-3)$
$=(2 x y-3 x+5)(2 x y+3 x-1)$
Q.37) $(2 x+1)^{2}-9 x^{4}$

Soln.:

$(2 x+1)^{2}-9 x^{4}$
$=(2 x+1)^{2}-\left(3 x^{2}\right)^{2}$
$=\left[(2 x+1)-3 x^{2}\right]\left[(2 x+1)+3 x^{2}\right]$
$=\left(-3 x^{2}+2 x+1\right)\left(3 x^{2}+2 x+1\right)$
$=\left(-3 x^{2}+3 x-x+1\right)\left(3 x^{2}+2 x+1\right)$
$=\{3 x(-x+1)+1(-x+1)\}\left(3 x^{2}+2 x+1\right)$
$=(-x+1)(3 x+1)\left(3 x^{2}+2 x+1\right)$
$=-(x-1)(3 x+1)\left(3 x^{2}+2 x+1\right)$
Q.38) $x^{4}-(2 y-3 z)^{2}$

Soln.:
$x^{4}-(2 y-3 z)^{2}$
$=\left(x^{2}\right)^{2}-(2 y-3 z)^{2}$
$=\left[x^{2}-(2 y-3 z)\left[x^{2}+(2 y-3 z)\right]\right.$
$=\left(x^{2}-2 y+3 z\right)\left(x^{2}+2 y-3 z\right)$
Q.39) $a^{2}-b^{2}+a-b$

Soln.:
$a^{2}-b^{2}+a-b=\left(a^{2}-b^{2}\right)+(a-b)$
$=(a+b)(a-b)+(a-b)$
$=(a-b)(a+b+1)$
Q.40) $16 \mathrm{a}^{4}-\mathrm{b}^{\mathbf{4}}$

Soln.:
$16 a^{4}-b^{4}$
$=\left(4 a^{2}\right)^{2}-\left(b^{2}\right)^{2}$
$=\left(4 a^{2}+b^{2}\right)\left(4 a^{2}-b^{2}\right)$
$=\left(4 a^{2}+b^{2}\right)\left[(2 a)^{2}-b^{2}\right]$
$=\left(4 a^{2}+b^{2}\right)(2 a+b)(2 a-b)$
Q.41) $a^{4}-16(b-c)^{4}$

Soln.:
$a^{4}-16(b-c)^{4}$
$=\left(a^{2}\right)^{2}-\left[4(b-c)^{2}\right]^{2}$
$=\left[a^{2}+4(b-c)^{2}\right]\left[a^{2}-4(b-c)^{2}\right]$
$=\left[a^{2}+4(b-c)^{2}\right]\left[a^{2}-[2(b-c)]^{2}\right]$
$=\left[a^{2}+4(b-c)^{2}\right][a+2(b-c)][a-2(b-c)]$
$=\left[a^{2}+4(b-c)^{2}\right](a+2 b-2 c)(a-2 b+2 c)$
Q.42) $2 a^{5}-32 a$

Soln.:
$2 a^{5}-32 a$
$=2 a\left(\mathrm{a}^{4}-16\right)$
$=2 \mathrm{a}\left[\left(\mathrm{a}^{2}\right)^{2}-4^{2}\right]$
$=2 a\left(a^{2}+4\right)\left(a^{2}-4\right)$
$=2 a\left(a^{2}+4\right)\left(a^{2}-2^{2}\right)$
$=2 a\left(a^{2}+4\right)(a+2)(a-2)$
$=2 a(a-2)(a+2)\left(a^{2}+4\right)$
Q.43) $a^{4} b^{4}-81 c^{4}$

Soln.:
$a^{4} b^{4}-81 c^{4}$
$=\left(a^{2} b^{2}\right)^{2}-\left(9 c^{2}\right)^{2}$
$=\left(a^{2} b^{2}+9 c^{2}\right)\left(a^{2} b^{2}-9 c^{2}\right)$
$=\left(a^{2} b^{2}+9 c^{2}\right)\left[(a b)^{2}-(3 c)^{2}\right]$
$=\left(a^{2} b^{2}+9 c^{2}\right)(a b+3 c)(a b-3 c)$
Q.44) $x y^{9}-y x^{9}$

Soln.:
$x y^{9}-y x^{9}$
$=x y\left(y^{8}-x^{8}\right)$
$=x y\left[\left(y^{4}\right)^{2}-\left(x^{4}\right)^{2}\right]$
$=x y\left(y^{4}+x^{4}\right)\left[\left(y^{2}\right)^{2}-\left(x^{2}\right)^{2}\right]$
$=x y\left(y^{4}+x^{4}\right)\left(y^{2}+x^{2}\right)\left(y^{2}-x^{2}\right)$
$=x y\left(y^{4}+x^{4}\right)\left(y^{2}+x^{2}\right)(y+x)(y-x)$
Q.45) $x^{3}-x$

Soln.:
$x^{3}-x=x\left(x^{2}-1\right)$
$=x(x-1)(x+1)$
Q.46) $18 a^{2} x^{2}-32$

Soln.:
$18 a^{2} x^{2}-32$
$=2\left(9 a^{2} x^{2}-16\right)$
$=2\left[(3 a x)^{2}-4^{2}\right]$
$=2(3 a x-4)(3 a x+4)$

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.6
Solve:
Q1. $4 x^{2}+12 x y+9 y^{2}$
Soln.
$=(2 x)^{2}+2 \times 2 \times x 3 y+(3 y)^{2}$
$=(2 x+3 y)^{2}$
$=(2 x+3 y)(2 x+3 y)$

Q2. $9 a^{2}-24 a b+16 b^{2}$
Soln.
$9 a^{2}-24 a b+16 b^{2}$
$=(3 \mathrm{a})^{2}-2 \times 3 \mathrm{a} \times 4 \mathrm{~b}+(4 \mathrm{~b})^{2}$
$=(3 a-4 b)^{2}$
$=(3 a-4 b)(3 a-4 b)$
Q3. $\mathrm{p}^{2} \mathrm{q} 2-6 q \mathrm{r}+9 \mathrm{r}^{2}=(\mathrm{pq})^{2}-2 \times \mathrm{pq} \times 3 \mathrm{r}+(3 \mathrm{r})^{2}$
Soln.
$p^{2} q 2-6 q r+9 r^{2}=(p q)^{2}-2 \times p q \times 3 r+(3 r)^{2}$
$=(p q-3 r)^{2}$
$=(p q-3 r)(p q-3 r)$
Q4. $36 a^{2}+36 a+9$
Soln.
$36 \mathrm{a}^{2}+36 \mathrm{a}+9$
$=9\left(4 a^{2}+4 a+1\right)=9\left\{(2 a)^{2}+2 \times 2 a \times 1+1^{2}\right\}$
$=9(2 a+1)^{2}$
$=9(2 a+1)(2 a+1)$
Q5. $a^{2}+2 a b+b^{2}-16$
Soln.
$a^{2}+2 a b+b^{2}-16$
$=a^{2}+2 \times a \times b+b^{2}-16$
$=(a+b)^{2}-4^{2}$
$=(a+b-4)(a+b+4)$
Q6. $9 z^{2}-x^{2}+4 x y-4 y^{2}$
Soln.
$9 z^{2}-x^{2}+4 x y-4 y^{2}$
$=9 z^{2}-\left(x^{2}-4 x y+4 y^{2}\right)$
$=9 z^{2}-\left[x^{2}-2 x \times x 2 y+(2 y)^{2}\right]$
$=(3 z)^{2}-(x-2 y)^{2}$
$=[3 z-(x-2 y)][3 z+(x-2 y)]$
$=(3 z-x+2 y)(3 x+x-2 y)$
$=(x-2 y+3 z)(-x+2 y+3 z)$
Q7. $9 a^{4}-24 a^{2} b^{2}+16 b^{4}-256$
Soln.
$9 a^{4}-24 a^{2} b^{2}+16 b^{4}-256$
$=\left(9 a^{4}-24 a^{2} b^{2}+16 b^{4}\right)-256$
$=\left[\left(3 a^{2}\right)^{2}-2 \times 3 a^{2} \times 4 b^{2}+\left(4 b^{2}\right)^{2}\right]-16^{2}$
$=\left(3 a^{2}-40^{2}\right)^{2}-16^{2}$
$=\left[\left(3 a^{2}-4 b^{2}\right)-16\right]\left[\left(3 a^{2}-4^{2}\right)+16\right]$
$=\left(3 a^{2}-4 b^{2}-16\right)\left(3 a^{2}-4 b^{2}+16\right)$
Q8. $16-a^{6}+4 a^{3} b^{3}-4 b^{6}$
Soln.
$16-a^{6}+4 a^{3} b^{3}-4 b^{6}$
$=16-\left(a^{6}-4 a^{3} b^{3}+4 b^{6}\right)$
$=4^{2}-\left[\left(a^{3}\right)^{2}-2 \times a^{3} \times 2 b^{3}+\left(2 b^{3}\right)^{2}\right]$
$=4^{2}-\left(a^{3}-2 b^{3}\right)^{2}$
$=\left[4-\left(a^{3}-2 b^{3}\right)\right]\left[4+\left(a^{3}-2 b^{3}\right)\right]$
$=\left(4-a^{3}-2 b^{3}\right)\left(4+a^{3}-2 b^{3}\right)$
$=\left(a^{3}-2 b^{3}+4\right)\left(-a^{3}-2 b^{3}+4\right)$
Q9. $a^{2}-2 a b+b^{2}-c^{2}$
Soln.
$a^{2}-2 a b+b^{2}-c^{2}$
$=\left(a^{2}-2 a b+b^{2}\right)-c^{2}$
$=\left(a^{2}-2 \times a \times b+b^{2}\right)-c^{2}$
$=(a-b)^{2}-c^{2}$
$=[(a-b)-c][(a-b)+c]$
$=(a-b-c)(a-b+c)$
Q10. $\mathrm{X}^{2}+2 \mathrm{X}+1-9 \mathrm{Y}^{2}$
Soln.
$\mathrm{X}^{2}+2 \mathrm{X}+1-9 \mathrm{Y}^{2}$
$=\left(X^{2}+2 X+1\right)-9 Y^{2}$
$=\left(X^{2}+2 \times X \times 1+1\right)-9 Y^{2}$
$=(X+1)^{2}-(3 Y)^{2}$
$=[(X+1)-3 Y][(X+1)-3 Y]$
$=(X+1-3 Y)(X+1+3 Y)$
$=(X+3 Y+1)(X-3 Y+1)$
Q11. $\mathrm{a}^{2}+4 \mathrm{ab}+3 \mathrm{~b}^{2}$
Soln.
$a^{2}+4 a b+3 b^{2}$
$=a^{2}+4 a b+4 b^{2}-b^{2}$
$=\left[a^{2}+2 \times a \times 2 b+(2 b)^{2}\right]-b^{2}$
$=(a+2 b)^{2}-b^{2}$
$=[(a+2 b)-b][(a+2 b)+b]$
$=(a+2 b-b)(a+2 b+b)$
$=(a+b)(a+3 b)$
Q12. $96-4 x-x^{2}$
Soln:
$96-4 x-x^{2}$
$=100-4-4 x-x^{2}$
$=100-\left(x^{2}+4 x+4\right)$
$=100-\left(x^{2}+2 \times x \times 2+2^{2}\right)$
$=10^{2}-(x+2)^{2}$
$=[10-(x+2)][10+(x+2)]$
$=(10-x-2)(10+x+2)$
$=(8-x)(12+x)$
$=(x+12)(-x+8)$
Q13. $a^{4}+3 a^{2}+4$
Soln.
$a^{4}+3 a^{2}+4$
$=a^{4}+4 a^{2}-a^{2}+4$
$=\left(a^{4}+4 a^{2}+4\right)-a^{2}$
$=\left[\left(a^{2}\right)^{2}+2 \times a^{2} \times 2+2^{2}\right]-a^{2}$
$=\left(a^{2}+2\right)^{2}-a^{2}$
$=\left[\left(a^{2}+2\right)-a\right]\left[\left(a^{2}+2\right)+a\right]$
$=\left(a^{2}-a+2\right)\left(a^{2}+a+2\right)$
Q14. $4 \mathrm{x}^{4}+1$
Soln.
$4 x^{4}+1$
$=4 x^{4}+4 x^{2}+1-4 x^{2}$
$=\left[\left(2 x^{2}\right)^{2}+2 \times 2 x^{2} \times 1+1\right]-4 x^{2}$
$=\left(2 x^{2}+1\right)^{2}-(2 x)^{2}$
$=\left[\left(2 x^{2}+1\right)-2 x\right]\left[\left(2 x^{2}+1\right)+2 x\right]$
$=\left(2 x^{2}-2 x+1\right)\left(2 x^{2}+2 x+1\right)$
Q15. $4 x^{4}+y^{4}$
Soln.
$4 x^{4}+y^{4}$
$=4 x^{4}+4 x^{2}+y^{4}-4 x^{2} y^{2}$
$=\left[\left(2 x^{2}\right)^{2}+2 x 2 x^{2} x y+\left(y^{2}\right)^{2}\right]-(2 x y)^{2}$
$=\left(2 x^{2}+y^{2}\right)^{2}-(2 x y)^{2}$
$=\left[\left(2 x^{2}+y^{2}\right)-2 x y\right]\left[\left(2 x^{2}+y^{2}\right)+2 x y\right]$
$=\left(2 x^{2}-2 x y+y^{2}\right)\left(2 x^{2}+2 x y+y^{2}\right)$
Q16. $(x+2)^{2}-6(x+2)+9$
Soln.
$(x+2)^{2}-6(x+2)+9$
$=(x+2)^{2}-2 x(x+2) \times 3+3^{2}$
$=[(x+2)-3]^{2}$
$=(x+2-3)^{2}$
$=(x-1)^{2}$
$=(x-1)(x-1)$
Q17. $25-p^{2}-q^{2}-2 p q$
Soln.
$25-\mathrm{p}^{2}-\mathrm{q}^{2}-2 \mathrm{pq}$
$=25-\left(p^{2}+2 p q+q^{2}\right)$
$=5^{2}-\left(p^{2}+2 \times p \times q+q^{2}\right)$
$=5^{2}-(p+q)^{2}$
$=[5-(p+q)][5+(p+q)]$
$=(5-p+q)(5+p+q)$
$=-(p+q-5)(p+q+5)$
Q18. $x^{2}+9 y^{2}-6 x y-25 a^{2}$
Soln.
$x^{2}+9 y^{2}-6 x y-25 a^{2}$
$=\left(x^{2}-6 x y+9 y^{2}\right)-25 a^{2}$
$=\left[\mathrm{x}^{2}-2 \mathrm{xxx} 3 \mathrm{y}+(3 \mathrm{y})^{2}\right]-25 \mathrm{a}^{2}$
$=(x-3 y)^{2}-(5 a)^{2}$
$=[(x-3 y)-5 a][(x-3 y)+5 a]$
$=(x-3 y-5 a)(x-3 y+5 a)$
Q19. $49-\mathrm{a}^{2}+8 \mathrm{ab}-16 \mathrm{~b}^{2}$
Soln.
$49-a^{2}+8 a b-16 b^{2}$
$=49-\left(a^{2}-8 a b+16 b^{2}\right)$
$=49-\left[a^{2}-2 \times a \times 4 b+\left(4 b^{2}\right)\right]$
$=7^{2}-\left(a-4 b^{2}\right)$
$=[7-(a-4 b)][7+(a-4 b)]$
$=(7-a+4 b)(7+a-4 b)$
$=-(a-4 b-7)(a-4 b+7)$
$=-(a-4 b+7)(a-4 b-7)$
Q20. $a^{2}-8 a b+16 b^{2}-25 c^{2}$
Soln.
$a^{2}-8 a b+16 b^{2}-25 c^{2}$
$=\left(a^{2}-8 a b+16 b^{2}\right)-25 c^{2}$
$=\left[a^{2}-2 \times a \times 4 b+(4 b)^{2}\right]-25 c^{2}$
$=(a-4 b)^{2}-(5 c)^{2}$
$=[(a-4 b)-5 c]\left[(a-4 b)^{2}+5 c\right]$
$=(a-4 b-5 c)(a-4 b+5 c)$
Q21. $x^{2}-y^{2}+6 y-9$
Soln.
$x^{2}-y^{2}+6 y-9$
$=x^{2}-\left(y^{2}+6 y-9\right)$
$=x^{2}-\left(y^{2}-2 \times y \times 3+3^{2}\right)$
$=x^{2}-(y-3)^{2}$
$=[x-(y-3)][x+(y-3)]$
$=(x-y+3)(x+y-3)$
Q22. $25 \mathrm{x}^{2}-10 \mathrm{x}+1-36 \mathrm{y}^{2}$
Soln.
$25 x^{2}-10 x+1-36 y^{2}$
$=\left(25 x^{2}-10 x+1\right)-36 y^{2}$
$=\left[(5 \mathrm{x})^{2}-2 \mathrm{x} 5 \mathrm{xx} 1+1\right]-36 \mathrm{y}^{2}$
$=(5 x-1)^{2}-(6 y)^{2}$
$=[(5 x-1)-6 y][(5 x-1)+6 y]$
$=(5 x-1-6 y)(5 x-1+6 y)$
$=(5 x-6 y-1)(5 x+6 y-1)$
Q23. $a^{2}-b^{2}+2 b c-c^{2}$
Soln.
$a^{2}-b^{2}+2 b c-c^{2}$
$=a^{2}-\left(b^{2}-2 b c+c^{2}\right)$
$=a^{2}-\left(b^{2}-2 \times b \times c+c^{2}\right)$
$=a^{2}-(b-c)^{2}$
$=[a-(b-c)][a+(b-c)]$
$=(a-b+c)(a+b-c)$
Q24. $a^{2}+2 a b+b^{2}-c^{2}$
Soln.
$a^{2}+2 a b+b^{2}-c^{2}$
$=\left(a^{2}+2 a b+b^{2}\right)-c^{2}$
$=\left(a^{2}+2 \times a \times b+b^{2}\right)-c^{2}$
$=(a+b)^{2}-c^{2}$
$=[(a+b)-c][(a+b)+c]$
$=(a+b-c)(a+b+c)$
Q25. $49-\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{xy}$
Soln.
$49-x^{2}-y^{2}+2 x y$
$=49-\left(x^{2}+2 x y-y^{2}\right)$
$=7^{2}-(x-y)^{2}$
$=[7-(x-y)][7+(x-y)]$
$=(7-x+y)(7+x-y)$
$=(x-y+7)(y-x+7)$
Q26. $a^{2}+4 b^{2}-4 a b-4 c^{2}$
Soln.
$a^{2}+4 b^{2}-4 a b-4 c^{2}$
$=\left(a^{2}+4 b^{2}-4 a b\right)-4 c^{2}$
$=\left[a^{2}-2 \times a \times 2 b+(2 b)^{2}\right]-4 c^{2}$
$=(a-2 b)^{2}-(2 c)^{2}$
$=[(a-2 b)-2 c][(a-2 b)+2 c]$
$=(a-2 b-2 c)(a-2 b+2 c)$
Q27. $x^{2}-y^{2}-4 x z+4 z^{2}$
Soln.
$x^{2}-y^{2}-4 x z+4 z^{2}$
$=\left(x^{2}-4 x z+4 z^{2}\right)-y^{2}$
$=(x-2 z)^{2}-y^{2}$
$=[(x-2 z)-y][(x-2 z)+y]$
$=(x-2 z-y)(x-2 z+y)$
$=(x+y-2 z)(x-y-2 z)$

Exercise 7.7

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.7
Q1. $x^{2}+12 x-45$
Soln:
To factories $\mathrm{x}^{2}+12 \mathrm{x}-45$, we will find two numbers p and q such that $\mathrm{p}+\mathrm{q}=12$ and $\mathrm{pq}=-45$.
Now,
$15+(-3)=12$
And
$15 \times(-3)=-45$
Splitting the middle term 12 x in the given quadratic as $-3 \mathrm{x}+15 \mathrm{x}$, we get:
$x^{2}+12 x-45$
$=\mathrm{x}^{2}-3 \mathrm{x}+15 \mathrm{x}-45$
$=\left(\mathrm{x}^{2}-3 \mathrm{x}\right)+(15 \mathrm{x}-45)$
$=x(x-3)+15(x-3)$
$=(x-3)(x+15)$
Q2. $40+3 x-x^{2}$
Soln:
We have:
$40+3 x-x^{2}$
$=-\left(x^{2}-3 x-40\right)$
To factories $\left(x^{2}-3 x-40\right)$, we fill find two number p and q such $p+q=-3$ and $p q=-40$
Now,
$5+(-8)=-3$
And
$5 \times(-8)=-40$
Splitting the middle term $-3 x$ in the given quadratic as $5 x-8 x$, we get:
$40+3 x-x^{2}=-\left(x^{2}-3 x-40\right)$
$=-\left(x^{2}+5 x-8 x-40\right)$
$=-\left[\left(x^{2}+5 x\right)-(8 x+40)\right]$
$=-[x(x+5)-8(x+5)]$
$=-(x-8)(x+5)$
$=(x+5)(-x+8)$

Q3. $a^{2}+3 a-88$
Soln:
To factories $a^{2}+3 a-88$, we will find two numbers p and q such that $p+q=3$ and $p q=-88$.
Now, $11+(-8)=3$
And $11 \times(-8)=-88$
Splitting the middle term $3 a$ in the given quadratic as 11a-8a, we get:
$a^{2}+3 a-88=a^{2}+11 a-8 a-88$
$=\left(a^{2}+11 a\right)-(8 a+88)$
$=a(a+11)-8(a+11)$
$=(a-8)(a+11)$
Q4. $a^{2}-14 a-51$
Soln:
To factories $\mathrm{a}^{2}-14 \mathrm{a}-51$, we will find two numbers p and q such that $p+q=-14$ and $p q=-51$
Now,
$3+(-17)=-14$
and
$3 \times(-17)=-51$
Splitting the middle term $-14 a$ in the given quadratic as $3 a-17 a$, we get:
$a^{2}-14 a-51=a^{2}+3 a-17 a-51$
$=\left(a^{2}+3 a\right)-(17 a+51)$
$=a(a+3)-17(a+3) 3$
$=(a-17)(a+3)$
Q5. $\mathrm{x}^{2}+14 \mathrm{x}+45$
Soln:
To factories $\mathrm{x}^{2}+14 \mathrm{x}+45$, we will find two numbers p and q such that $\mathrm{p}+\mathrm{q}=14$ and $\mathrm{pq}=\mathbf{4 5}$
Now,
$9+5=14$
And
$9 \times 5=45$
Splitting the middle term $14 x$ in the given quadratic as $9 x+5 x$, we get:
$x^{2}+14 x+45=x^{2}+9 x+5 x+45$
$=\left(x^{2}+9 x\right)+(5 x+45)$
$=x(x+9)+5(x+9)$
$=(x+5)(x+9)$
Q6. $x^{2}-22 x+120$
Soln:
To factories $\mathrm{x}^{2}-22 \mathrm{x}+120$, we will find two numbers p and q such that $\mathrm{p}+\mathrm{q}=-22$ and $\mathrm{pq}=120$
Now, $(-12)+(-10)=-22$
And
$(-12) \times(-10)=120$
Splitting the middle term $-22 x$ in the given quadratic as $-12 x-10 x$, we get:
$x^{2}-22 x+12=x^{2}-12 x-10 x+120$
$=\left(x^{2}-12 x\right)+(-10 x+120)$
$=x(x-12)-10(x-12)$
$=(x-10)(x-12)$
Q7. $x^{2}-11 x-42$
Soln:
To factories $\mathrm{x}^{2}-11 \mathrm{x}-42$, we will find two numbers p and q such that $\mathrm{p}+\mathrm{q}=-11$ and $\mathrm{pq}=-42$
Now,
$3+(-14)=-22$
And
$3 \times(-14)=42$
Splitting the middle term -11 x in the given quadratic as $-14 \mathrm{x}+3 \mathrm{x}$, we get:
$\mathrm{x}^{2}-11 \mathrm{x}-42=\mathrm{x}^{2}-14 \mathrm{x}+3 \mathrm{x}-42$
$=\left(x^{2}-14 x\right)+(3 x-42)$
$=x(x-14)+3(x-14)$
$=(x-14)(x+3)$
Q8. $a^{2}-2 a-3$
Soln:
To factories $a^{2}-2 a-3$, we will find two numbers p and q such that $p+q=2$ and $p q=-3$
Now,
$3+(-1)=2$
And
$3 \times(-1)=-3$
Splitting the middle terms 2 a in the given quadratic as $-\mathrm{a}+3 \mathrm{a}$, we get:
$a^{2}+2 a-3=a^{2}-a+3 a-3$
$=\left(a^{2}-a\right)+(3 a-3)$
$=a(a-1)+3(a-1)$

Q9. $a^{2}+14 a+48$
Soln:
To factories $a^{2}+14 a+48$, we will find two numbers p and q such that $p+q=14$ and $p q=48$
Now,
$8+6=14$
And
$8 \times 6=48$
Splitting the middle terms $14 a$ in the given quadratic as $8 a+6 a$, we get:
$a^{2}+14 a+48=a^{2}+8 a+6 a+48$
$=\left(a^{2}+8 a\right)+(6 a+48)$
$=a(a+8)+6(a+8)$
$=(a+6)(a+8)$
Q10. $x^{2}-4 x-21$
Soln:
To factories $x^{2}-4 x-21$, we will find two numbers p and q such that $p+q=-4$ and $p q=-21$
Now,
$3+(-7)=-4$
And
$3 \times(-7)=-21$
Splitting the middle terms $-4 x$ in the given quadratic as $-7 x+3 x$, we get:
$x^{2}-4 x-21=x^{2}-7 x+3 x-21$
$=\left(x^{2}-7 x\right)+(3 x-21)$
$=x(x-7)+3(x-7)$
$=(x-7)(x+3)$
Q11. $y^{2}+5 y-36$
Soln:
To factories $y^{2}+5 y-36$, we will find two numbers p and q such that $p+q=5$ and $p q=-36$
Now,
$9+(-4)=5$
And
$9 \times(-4)=-36$
Splitting the middle terms $5 y$ in the given quadratic as $-7 y+9 y$, we get:
$y^{2}+5 y-36=y^{2}-4 y+9 y-36$
$=\left(y^{2}-4 y\right)+(9 y-36)$
$=y(y-4)+9(y-4)$
$=(y-4)(y-4)$

Q12. $\left(a^{2}-54\right)^{2}-36$
Soln:
$\left(a^{2}-54\right)^{2}-36$
$=\left(a^{2}-5 a\right)^{2}-6^{2}$
$=\left[\left(a^{2}-5 a\right)-6\right]\left[\left(a^{2}-5 a\right)+6\right]$
$=\left(a^{2}-5 a-6\right)\left(a^{2}-5 a+6\right)$
In order to factories $a^{2}-5 a-6$, we will find two numbers p and q such that $p+q=-5$ and $p q=-6$

Now,
$(-6)+1=-5$
and
$(-6) \times 1=-6$
Splitting the middle term - 5 in the given quadratic as $\mathbf{- 6 a + a}$, we get :
$a^{2}-5 a-6=a^{2}-6 a+a-6$
$=\left(a^{2}-6 a\right)+(a-6)$
$=a(a-6)+(a-6)$
$=(a+1)(a-6)$
Now, In order to factories $a^{2}-5 a+6$, we will find two numbers p and q such that $p+q=-5$ and $p q=6$
Clearly,
$(-2)+(-3)=-5$
and
$(-2) \times(-3)=6$
Splitting the middle term -5 in the given quadratic as $-2 a-3 a$, we get :
$a^{2}-5 a+6=a^{2}-2 a-3 a+6$
$=\left(a^{2}-2 a\right)-(3 a-6)$
$=a(a-2)-3(a-2)$
$=(a-3)(a-2)$
$\therefore\left(a^{2}-5 a-6\right)\left(a^{2}-5 a+6\right)$
$=(a-6)(a+1)(a-3)(a-2)$
$=(a+1)(a-2)(a-3)(a-6)$
Q13. $(a+7)(a-10)+16$
Soln:
$(a+7)(a-10)+16$
$=a^{2}-10 a+7 a-70+16$
$=a^{2}-3 a-54$
To factories $a^{2}-3 a-54$, we will find two numbers p and q such that $p+q=-3$ and $p q=-54$
Now,
$6+(-9)=-3$
And $6 \times(-9)=-54$
Splitting the middle term -3a in the given quadratic as $-9 a+6 a$, we get:

$$
\begin{aligned}
& a^{2}-3 a-54=a^{2}-9 a+6 a-54 \\
& =\left(a^{2}-9 a\right)+(6 a-54) \\
& =a(a-9)+6(a-9) \\
& =(a+6)(a-9)
\end{aligned}
$$

RD Sharma Solutions Class 8 Factorization

Exercise 7.8

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.8
Resolve each of the following quadratic equation trinomials into factors:
Q-1. $2 x^{2}+5 x+3$
Solution. The given expression is $2 x^{2}+5 x+3$.
(Co-efficient of $x^{2}=2$, co-efficient of $x=5$ and the constant term $=3$)
We will split the co-efficient of x into two parts such that their sum is 5 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $2 \times 3=6$.

Now,
$2+3=5$
And
$2 \times 3=6$
Replacing the middle term $5 x$ by $2 x+3 x$, we have:
$2 x^{2}+5 x+3=2 x^{2}+2 x+3 x+3$
$=\left(2 x^{2}+2 x\right)+(3 x+3)$
$=2 x(x+1)+3(x+1)$
$=(2 x+3)(x+1)$
Q-2. $2 x^{2}-3 x-2$

Solution.

The given expression is $2 x^{2}-3 x-2$.
(Co-efficient of $x^{2}=2$, co-efficient of $x=-3$ and the constant term $=-2$)
We will split the co-efficient of x into two parts such that their sum is -3 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $2 \times(-2)=-4$

Now,
$(-4)+1=-3$
And
$(-4) \times 1=-4$
Replacing the middle term $3 x$ by $-4 x+x$, we have:
$2 x^{2}-3 x-2=2 x^{2}-4 x+x-2$
$=\left(2 x^{2}-4 x\right)+(x-2)$
$=2 x(x-2)+1(x-2)$
$=(x-2)(2 x+1)$
Q-3. $3 x^{2}+10 x+3$

Solution.

The given expression is $3 \mathrm{x}^{2}+10 \mathrm{x}+3$.
(Co-efficient of $x^{2}=3$, co-efficient of $x=10$ and the constant term $=3$)
We will split the co-efficient of x into two parts such that their sum is 10 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $3 \times 3=9$

Now,
$9+1=10$
And
$9 \times 1=9$
Replacing the middle term $10 x$ by $9 x+x$, we have:
$3 x^{2}+10 x+3=3 x^{2}+9 x+x+3$
$=\left(3 x^{2}+9 x\right)+(x+3)$
$=3 x(x+3)+1(x+3)$
$=(x+3)(3 x+1)$
Q-4. 7x-6-2 x^{2}

Solution.

The given expression is $7 x-6-2 x^{2}$.
(Co-efficient of $x^{2}=-2$, co-efficient of $x=7$ and the constant term $=-6$)
We will split the co-efficient of x into two parts such that their sum is 7 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-2) \times(-6)=12$

Now,
$4+3=7$
And

$4 \times 3=12$

Replacing the middle term $7 x$ by $4 x+3 x$, we have:
$7 x-6-2 x^{2}=-2 x^{2}+4 x+3 x-6$
$=\left(-2 x^{2}+4 x\right)+(3 x-6)$
$=2 x(2-x)-3(2-x)$
$=(2 x-3)(2-x)$
Q-5. $7 \mathrm{x}^{2}-19 \mathrm{x}-6$

Solution.

The given expression is $7 \mathrm{x}^{2}-19 \mathrm{x}-6$.
(Co-efficient of $x^{2}=7$, co-efficient of $x=-19$ and the constant term $=-6$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $7 \times(-6)=9$

Now,
$(-21)+2=-19$
And
$(-21) \times 2=-42$
Replacing the middle term $-19 x$ by $-21 x+2 x$, we have:
$7 x^{2}-19 x-6=7 x^{2}-21 x+2 x-6$
$=\left(7 x^{2}-21 x\right)+(2 x-6)$
$=7 x(x-3)+2(x-3)$
$=(x-3)(7 x+2)$

Q-6. $28-31 x-5 x^{2}$
Solution.
The given expression is $28-31 x-5 x^{2}$.
(Co-efficient of $x^{2}=-5$, co-efficient of $x=-31$ and the constant term $=28$)
We will split the co-efficient of x into two parts such that their sum is -31 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-5) \times(28)=-140$

Now,
$(-35)+4=-31$
And
$(-35) \times 4=-140$
Replacing the middle term $-31 x$ by $-35 x+4 x$, we have:
$28-31 x-5 x^{2}=-5 x^{2}-35 x+4 x+28$
$=\left(-5 x^{2}-35 x\right)+(4 x+28)$
$=-5 x(x+7)+4(x+7)$
$=(4-5 x)(x+7)$
Q-7. $3+23 y-8 y^{2}$

Solution.

The given expression is $3+23 y-8 y^{2}$.
(Co-efficient of $y^{2}=-8$, co-efficient of $y=23$ and the constant term $=3$)
We will split the co-efficient of x into two parts such that their sum is 23 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., (-8) $\times 3=-24$

Now,
$(-1)+24=23$
And
$(-1) \times 24=-24$
Replacing the middle term $23 y$ by $-\mathrm{y}+24 \mathrm{y}$, we have:
$3+23 y-8 y^{2}=-8 y^{2}-y+24 y+3$
$=\left(-8 y^{2}-y\right)+(24 y+3)$
$=-y(8 y+1)+3(8 y+1)$
$=(8 y+1)(y+3)$
Q-8. $11 x^{2}-54 x+63$

Solution.

The given expression is $11 \mathrm{x}^{2}-54 \mathrm{x}+63$.
(Co-efficient of $x^{2}=11$, co-efficient of $x=-54$ and the constant term $=63$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $11 \times 63=693$

Now,
$(-33)+(-21)=-54$
And
$(-33) \times(-21)=693$
Replacing the middle term $-54 x$ by $-33 x-21 x$, we have:
$11 x^{2}-54 x+63=11 x^{2}-33 x-21 x+63$
$=\left(11 x^{2}-33 x\right)+(-21 x+63)$
$=11 x(x-3)-21(x-3)$
$=(x-3)(11 x-21)$
Q-9. $7 x-6 x^{2}+20$
Solution.
The given expression is $7 x-6 x^{2}+20$.
(Co-efficient of $x^{2}=-6$, co-efficient of $x=7$ and the constant term $=20$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $(-6) \times 20=-120$

Now,
$(15)+(-8)=7$
And
$(15) \times(-8)=-120$
Replacing the middle term $7 x$ by $15 x-8 x$, we have:
$7 x-6 x^{2}+20=-6 x^{2}+15 x-8 x+20$
$=\left(-6 x^{2}+15 x\right)+(-8 x+20)$
$=3 x(-2 x+5)+4(-2 x+5)$
$=(-2 x+5)(3 x+4)$
Q-10. $3 x^{2}+22 x+35$

Solution.

The given expression is $3 x^{2}+22 x+35$.
(Co-efficient of $x^{2}=3$, co-efficient of $x=22$ and the constant term $=35$)
We will split the co-efficient of x into two parts such that their sum is -19 and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $3 \times 35=105$

Now,
$(15)+(7)=22$
And
$(15) \times(7)=105$
Replacing the middle term $22 x$ by $15 x+7 x$, we have:
$3 x^{2}+22 x+35=3 x^{2}+15 x+7 x+35$
$=\left(3 x^{2}+15 x\right)+(7 x+35)$
$=3 x(x+5)+7(x+5)$
$=(x+5)(3 x+7)$
Q-11. $12 x^{2}-17 x y+6 y^{2}$

Solution.

The given expression is $12 x^{2}-17 x y+6 y^{2}$.
(Co-efficient of $x^{2}=12$, co-efficient of $x=-17 y$ and the constant term $=6 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-17 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $12 \times 6 y^{2}=72 y^{2}$

Now,
$(-9 y)+(-8 y)=-17 y$
And
$(-9 y) \times(-8 y)=72 y^{2}$
Replacing the middle term $-17 x y$ by $-9 x y-8 x y$, we have:
$12 x^{2}-17 x y+6 y^{2}=12 x^{2}-9 x y-8 x y+6 y^{2}$
$=\left(12 x^{2}-9 x y\right)-\left(8 x y+6 y^{2}\right)$
$=3 x(4 x-3 y)-2 y(4 x-3 y)$
$=(4 x-3 y)(3 x-2 y)$
Q-12. $6 x^{2}-5 x y-6 y^{2}$
Solution. The given expression is $6 x^{2}-5 x y-6 y^{2}$.
(Co-efficient of $x^{2}=6$, co-efficient of $x=-5 y$ and the constant term $=-6 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-17 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $6 \times\left(-6 y^{2}\right)=-36 y^{2}$

Now,
$(-9 y)+(4 y)=-5 y$
And
$(-9 y) \times(4 y)=-36 y^{2}$
Replacing the middle term $-5 x y$ by $-9 x y+4 x y$, we have:
$6 x^{2}-5 x y-6 y^{2}=6 x^{2}-9 x y+4 x y-6 y^{2}$
$=\left(6 x^{2}-9 x y\right)+\left(4 x y-6 y^{2}\right)$
$=3 x(2 x-3 y)+2 y(2 x-3 y)$
$=(2 x-3 y)(3 x+2 y)$
Q-13. $6 x^{2}-13 x y+2 y^{2}$
Solution.
The given expression is $6 x^{2}-13 x y+2 y^{2}$.
(Co-efficient of $x^{2}=6$, co-efficient of $x=-13 y$ and the constant term $=2 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $-13 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $6 \times\left(2 y^{2}\right)=12 y^{2}$

Now,
$(-12 y)+(-y)=-13 y$
And
$(-12 y) \times(-y)=12 y^{2}$
Replacing the middle term $-13 x y$ by $-12 x y-x y$, we have:
$6 x^{2}-13 x y+2 y^{2}=6 x^{2}-12 x y-x y+2 y^{2}$
$=\left(6 x^{2}-12 x y\right)-\left(x y-2 y^{2}\right)$
$=6 x(x-2 y)-y(x-2 y)$
$=(x-2 y)(6 x-y)$
Q-14. $14 x^{2}+11 x y-15 y^{2}$

Solution.

The given expression is $14 x^{2}+11 x y-15 y^{2}$.
(Co-efficient of $x^{2}=14$, co-efficient of $x=11 y$ and the constant term $=-15 y^{2}$)
We will split the co-efficient of x into two parts such that their sum is $11 y$ and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $14 \times\left(-15 y^{2}\right)=-210 y^{2}$

Now,
$(21 y)+(-10 y)=11 y$
And
$(21 y) \times(-10 y)=-210 y^{2}$
Replacing the middle term $-11 x y$ by $-10 x y+21 x y$, we have:
$14 x^{2}+11 x y-15 y^{2}=14 x^{2}-10 x y+21 x y-15 y^{2}$
$=\left(14 x^{2}-10 x y\right)+\left(21 x y-15 y^{2}\right)$
$=2 x(7 x-5 y)+3 y(7 x-5 y)$
$=(7 x-5 y)(2 x+3 y)$
Q-15. $6 a^{2}+17 a b-3 b^{2}$

Solution.

The given expression is $6 a^{2}+17 a b-3 b^{2}$.
(Co-efficient of $\mathrm{a}^{2}=6$, co-efficient of $\mathrm{a}=17 \mathrm{~b}$ and the constant term $=-3 \mathrm{~b}^{2}$)
We will split the co-efficient of x into two parts such that their sum is 17 b and their product equals to the product of the co-efficient of a^{2} and the constant term, i.e., $6 \times\left(-3 b^{2}\right)=-18 b^{2}$

Now,
$(18 b)+(-b)=17 b$
And
(18b) $\times(-b)=-18 b^{2}$
Replacing the middle term $17 a b$ by $-a b+18 a b$, we have:
$6 a^{2}+17 a b-3 b^{2}=6 a^{2}-a b+18 a b-3 b^{2}$

$$
=\left(6 a^{2}-a b\right)+\left(18 a b-3 b^{2}\right)
$$

$=a(6 a-b)+3 b(6 a-b)$
$=(a+3 b)(6 a-b)$
$Q-16.36 a^{2}+12 a b c-15 b^{2} c^{2}$

Solution.

The given expression is $36 a^{2}+12 a b c-15 b^{2} c^{2}$.
(Co-efficient of $\mathrm{a}^{2}=36$, co-efficient of $\mathrm{a}=12 \mathrm{bc}$ and the constant term $=-15 b^{2} \mathrm{c}^{2}$)
We will split the co-efficient of x into two parts such that their sum is 17 b and their product equals to the product of the co-efficient of a^{2} and the constant term, i.e., $36 \times\left(-15 b^{2} c^{2}\right)=-540 b^{2} c^{2}$

Now,
$(-18 b c)+30 b c=12 b c$
And
$(-18 b c) \times(30 b c)=-540 b^{2} c^{2}$
Replacing the middle term 12abc by $-18 a b c+30 a b c$, we have:
$36 a^{2}+12 a b c-15 b^{2} c^{2}=36 a^{2}-18 a b c+30 a b c-15 b^{2} c^{2}$
$=\left(36 a^{2}-18 a b c\right)+\left(30 a b c-15 b^{2} c^{2}\right)$
$=18 a(2 a-b c)+15 b c(2 a-b c)$
$=3(6 a+5 b c)(2 a-b c)$

Q-17. $15 x^{2}-16 x y z-15 y^{2} z^{2}$

Solution.

The given expression is $15 x^{2}-16 x y z-15 y^{2} z^{2}$.
(Co-efficient of $x^{2}=15$, co-efficient of $x=-16 y z$ and the constant term $=-15 y^{2} z^{2}$)
We will split the co-efficient of x into two parts such that their sum is -16 yz and their product equals to the product of the co-efficient of x^{2} and the constant term, i.e., $15 \times\left(-15 y^{2} z^{2}\right)=-225 y^{2} z^{2}$

Now,
$(-25 y z)+9 y z=-16 y x$
And
$(-25 y z) \times(9 y z)=-225 y^{2} z^{2}$
Replacing the middle term $-16 x y z$ by $-25 x y z+9 x y z$, we have:
$15 x^{2}-16 x y z-15 y^{2} z^{2}=15 x^{2}-25 x y z+9 x y z-15 y^{2} z^{2}$
$=\left(15 x^{2}-25 x y z\right)+\left(9 x y z-15 y^{2} z^{2}\right)$
$=5 x(3 x-5 y z)+3 y z(3 x-5 y z)$
$=(3 x-5 y z)(5 x+3 y z)$
Q-18. $(x-2 y)^{2}-5(x-2 y)+6$

Solution.

The given expression is $\mathrm{a}^{2}-5 a+6$.
Assuming $\mathrm{a}=\mathrm{x}-2 \mathrm{y}$, we have:
$(x-2 y)^{2}-5(x-2 y)+6=a^{2}-5 a+6$
(Co-efficient of $\mathrm{a}^{2}=1$, co-efficient of $\mathrm{a}=-5$ and the constant term $=6$)
Now, we will split the co-efficient of a into two parts such that their sum is -5 and their product equals to the product of the co-efficient of a^{2} and the constant term, i.e., $1 \times 6=6$.

Clearly,
$(-2)+(-3)=-5$
And,
$(-2) \times(-3)=6$
Replacing the middle term $-5 a b y-2 a-3 a$, we have:
$a^{2}-5 a+6=a^{2}-2 a-3 a+6$
$=\left(a^{2}-2 a\right)-(3 a-6)$
$=a(a-2)-3(a-2)$
$=(a-2)(a-3)$
Replacing a by ($x-2 y$), we get:
$(a-3)(a-2)=(x-2 y-3)(x-2 y-2)$
Q-19. $(2 a-b)^{2}+2(2 a-b)-8$
Solution.
Assuming $x=2 a-b$, we have:
$(2 a-b)^{2}+2(2 a-b)-8=x^{2}+2 x-8$
The given expression becomes $x^{2}+2 x-8$
(Co-efficient of $x^{2}=1$ and that of $x=2$; constant term $=-8$)
Now, we will split the co-efficient of x into two parts such that their sum is 2 and their product equals the product of the co-efficient of x^{2} and the constant term, i.e., $1 \times(-8)=-8$

Clearly,
$(-2)+4=2$
And,
$(-2) \times 4=-8$

Replacing the middle term $2 x$ by $-2 x+4 x$, we get:
$x^{2}+2 x-8=x^{2}-2 x+4 x-8$
$=\left(x^{2}-2 x\right)+(4 x-8)$
$=x(x-2)+4(x-2)$
$=(x-2)(x+4)$
Replacing x by $2 a-b$, we get:
$(x+4)(x-2)=(2 a-b+4)(2 a-b-2)$

RD Sharma Solutions Class 8 Chapter 7 Exercise 7.9
Solve: Q1. $\mathrm{p}^{2}+6 \mathrm{p}+8$
Soln:
$\mathrm{p}^{2}+6 \mathrm{p}+8$
$=p^{2}+6 p+\left(\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}+8 \quad\left[\right.$ Adding and subtracting $\left(\frac{6}{2}\right)^{2}$, that is $\left.3^{2}\right]$
$=p^{2}+6 p+3^{2}-3^{2}+8$
$=\mathrm{p}^{2}+2 \times \mathrm{p} \times 3+\mathrm{3}^{2}-9+8$
$=\mathrm{p}^{2}+2 \times \mathrm{p} \times 3+3^{2}-1$
$=(p+3)^{2}-1^{2} \quad$ [Completing the square]
$=[(p+3)-1][(p+3)+1]$
$=(p+3-1)(p+3+1)$
$=(p+2)(p+4)$
Q2. $q^{2}-10 q+21$
Soln:
$q^{2}-10 q+21$
$=q^{2}-10 q+\left(\frac{10}{2}\right)^{2}-\left(\frac{10}{2}\right)^{2}+21 \quad\left[\right.$ Adding and subtracting $\left(\frac{10}{2}\right)^{2}$, that is $\left.5^{2}\right]$
$=q^{2}-2 \times q \times 5+5^{2}-5^{2}+21$
$=(q-5)^{2}-4 \quad$ [Completing the square]
$=[(q-5)-2][(q-5)+2]$
$=(q-5-2)(q-5+2)$
$=(q-7)(q-3)$
Q3. $\mathbf{4 y ^ { 2 } + 1 2 y + 5}$
Soln:
$4 y^{2}+12 y+5$
$4\left(y^{2}+3 y+\frac{5}{4}\right) \quad\left[\right.$ Making the co - efficient of $\left.y^{2}\right]$
$4\left[y^{2}+3 y+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+\frac{5}{4}\right] \quad\left[\right.$ Adding and subtracting $\left.\left(\frac{3}{2}\right)^{2}\right]$
$=4\left[\left(y+\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{5}{4}\right]$
$=4\left[\left(y+\frac{3}{2}\right)^{2}-1\right] \quad[$ Completing the square $]$
$=4\left[\left(y+\frac{3}{2}-1\right)\right]\left[\left(y+\frac{3}{2}+1\right)\right]$
$=4\left(y+\frac{3}{2}-1\right)\left(y+\frac{3}{2}-1\right)$
$=4\left(y+\frac{3}{2}\right)\left(y+\frac{3}{2}\right)$
$=(2 y+1)(2 y+5)$
Q4. $\mathrm{p}^{2}+6 \mathrm{p}-16$
Soln:
$p^{2}+6 p-16$
$p^{2}+6 p+\left(\frac{6}{2}\right)^{2}-\left(\frac{6}{2}\right)^{2}-16 \quad\left[\right.$ Adding and subtracting $\left(\frac{6}{2}\right)^{2}$, that is $\left.3^{2}\right]$
$=p^{2}+6 p+3^{2}-9-16$
$=(p+3)^{2}-25 \quad$ [Completing the square]
$=(p+3)^{2}-5^{2}$
$=[(p+3)-5][(p+3)+5]$
$=(p+3-5)(p+3+5)$
$=(p-2)(p+8)$

Q5. $\mathrm{x}^{2}+12 \mathrm{x}+20$

Soln:
$x^{2}+12 x+20$
$=x^{2}+12 x+\left(\frac{12}{2}\right)^{2}-\left(\frac{12}{2}\right)^{2}+20 \quad\left[\right.$ Adding and subtracting $\left(\frac{12}{2}\right)^{2}$, that is $\left.6^{2}\right]$
$=x^{2}+12 x+6^{2}-6^{2}+20$
$=(x+6)^{2}-16$
$=(x+6)^{2}-4^{2}$
$=[(x+6)-4][(x+6)+4]$
$=(x+6-4)(x+6+4)$
$=(x+2)(x+10)$
Q6. $a^{2}-14 a-51$
Soln:
$a^{2}-14 a-51$
$=a^{2}-14 a+\left(\frac{14}{2}\right)^{2}-\left(\frac{14}{2}\right)^{2}-51 \quad\left[\right.$ Adding and subtracting $\left(\frac{14}{2}\right)^{2}$, that is $\left.7^{2}\right]$
$=a^{2}-14 a+7^{2}-7^{2}-51$
$=(a-7)^{2}-100 \quad$ [Completing the square]
$=(a-7)^{2}-10^{2}$
$=[(a-7)-10][(a-7)+10]$
$=(a-7-10)(a-7+10)$
$=(a-17)(a+3)$
Q7. $a^{2}+2 a-3$

Soln:

$a^{2}+2 a-3$
$=a^{2}+2 a+\left(\frac{2}{2}\right)^{2}-\left(\frac{2}{2}\right)^{2}-3 \quad\left[\right.$ Adding and subtracting $\left(\frac{2}{2}\right)^{2}$, that is $\left.1^{2}\right]$
$=a^{2}+2 a+1-1-3$
$=(a+1)^{2}-4 \quad$ [Completing the square]
$=(a+1)^{2}-2^{2}$
$=[(a+1)-2][(a+1)+2]$
$=(a+1-2)(a+1+2)$
$=(a-1)(a+3)$
Q8. $4 x^{2}-12 x+5$
Soln:
$4 x^{2}-12 x+5$
$=4\left(x^{2}-3 x+\frac{5}{4}\right) \quad$ [Making the co-efficient of $\left.\mathrm{x}^{2}=1\right]$
$4\left[x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+\frac{5}{4}\right] \quad\left[\right.$ Adding and subtracting $\left.\left(\frac{3}{2}\right)^{2}\right]$
$=4\left[\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{5}{4}\right][$ Completing the square $]$
$=4\left[\left(x-\frac{3}{2}\right)^{2}-1\right]$
$=4\left[\left(x-\frac{3}{2}\right)-1\right]\left[\left(x-\frac{3}{2}\right)+1\right]$
$=4\left(x-\frac{3}{2}-1\right)\left(x-\frac{3}{2}+1\right)$
$=4\left(x-\frac{5}{2}\right)\left(x-\frac{1}{2}\right)$
$=(2 x-5)(2 x-1)$
Q9. $(y-3)(y-4)$
Soln:
$=y^{2}-7 y+12$
(Adding and subtracting $\left(\frac{7}{2}\right)^{2}$)
$=y^{2}-7 y+\left(\frac{7}{2}\right)^{2}-\left(\frac{7}{2}\right)^{2}+12$
Completing the square
$=\left(y-\left(\frac{7}{2}\right)\right)^{2}-\frac{49}{4}+\frac{48}{4}$
$=\left(y-\left(\frac{7}{2}\right)\right)^{2}-\left(\frac{1}{4}\right)$
$=\left(y-\left(\frac{7}{2}\right)^{2}-\left(\frac{1_{2}^{2}}{}{ }^{2}\right)\right.$
$=\left[\left(y-\left(\frac{7}{2}-\frac{1}{2}\right)\left[\left(y-\left(\frac{7}{2}+\frac{1}{2}\right)\right.\right.\right.\right.$
$=\left[\left(y-\left(\frac{7}{2}-\frac{1}{2}\right)\left(\left[\left(y-\left(\frac{7}{2}+\frac{1}{2}\right)\right.\right.\right.\right.\right.$
$=(y-4)(y-3)$
Q10. $(z-6)(z+2)$
Soln:
$=\mathrm{z}^{2}-4 \mathrm{z}-12$
(Adding and subtracting $\left(\frac{4}{2}\right)^{2}$)
$=z^{2}-4 z+\left(\frac{4}{2}\right)^{2}-\left(\frac{4}{2}\right)^{2}-12$
$=z^{2}-4 z+(2)^{2}-(2)^{2}-12$
$=(\mathrm{z}-2)^{2}-16$
Completing the squares
$=(z-2)^{2}-(4)^{2}$
$=[(z-2)-4][(z-2)+4]$
$=(z-6)(z+2)$

