RD Sharma Solutions For Class 8 Chapter 7 Factorization

Find the greatest common factor (GCF/HCF) of the following polynomials: (1-14)

1. $2 x^{2}$ and $12 x^{2}$

Solution:

We know that the numerical coefficients of given numerical are 2 and 12
The greatest common factor of 2 and 12 is 2
The common literals appearing in given monomial is x
The smallest power of x in two monomials is 2
The monomial of common literals with smallest power is x^{2}
\therefore The greatest common factor $=2 \mathrm{x}^{2}$
2. $6 x^{3} y$ and $18 x^{2} y^{3}$

Solution:

We know that the numerical coefficients of given numerical are 6 and18
The greatest common factor of 6 and 18 is 6
Common literals appearing in given numerical are x and y
Smallest power of x in three monomial is 2
Smallest power of y in three monomial is 1
Monomial of common literals with smallest power is $x^{2} y$
\therefore The greatest common factor $=6 x^{2} y$
3. $7 x, 21 x^{2}$ and $14 x y^{2}$

Solution:

We know that the numerical coefficients of given numerical are 7,21 and 14
Greatest common factor of 7,21 and 14 is 7
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 1
Smallest power of y in three monomials is 0
Monomials of common literals with smallest power is x
\therefore The greatest common factor $=7 \mathrm{x}$

4. $42 x^{2} y z$ and $63 x^{3} y^{2} z^{3}$

Solution:

We know that the numerical coefficients of given numerical are 42 and 63.

Greatest common factor of 42,63 is 21 .
Common literals appearing in given numerical are x, y and z
Smallest power of x in two monomials is 2
Smallest power of y in two monomials is 1
Smallest power of z in two monomials is 1
Monomials of common literals with smallest power is $x^{2} y z$
\therefore The greatest common factor $=21 x^{2} y z$
5. 12ax $x^{2}, 6 a^{2} x^{3}$ and $2 a^{3} x^{5}$

Solution:

We know that the numerical coefficients of given numerical are 12, 6 and 2
Greatest common factor of 12,6 and 2 is 2.
Common literals appearing in given numerical are a and x
Smallest power of x in three monomials is 2
Smallest power of a in three monomials is 1
Monomials of common literals with smallest power is ax^{2}
\therefore The greatest common factor $=2 \mathrm{ax}^{2}$
6. $9 x^{2}, 15 x^{2} y^{3}, 6 x y^{2}$ and $21 x^{2} y^{2}$

Solution:

We know that the numerical coefficients of given numerical are $9,15,16$ and 21
Greatest common factor of $9,15,16$ and 21 is 3 .
Common literals appearing in given numerical are x and y
Smallest power of x in four monomials is 1
Smallest power of y in four monomials is 0
Monomials of common literals with smallest power is x
\therefore The greatest common factor $=3 \mathrm{x}$
7. $4 a^{2} b^{3},-12 a^{3} b, 18 a^{4} b^{3}$

Solution:

We know that the numerical coefficients of given numerical are 4, -12 and 18 .
Greatest common factor of $4,-12$ and 18 is 2 .
Common literals appearing in given numerical are a and b
Smallest power of a in three monomials is 2
Smallest power of b in three monomials is 1
Monomials of common literals with smallest power is $a^{2} b$
\therefore The greatest common factor $=2 \mathrm{a}^{2} \mathrm{~b}$
8. $6 x^{2} y^{2}, 9 x y^{3}, 3 x^{3} y^{2}$

Solution:

We know that the numerical coefficients of given numerical are 6, 9 and 3
Greatest common factor of 6,9 and 3 is 3 .
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 1
Smallest power of y in three monomials is 2
Monomials of common literals with smallest power is Xy^{2}
\therefore The greatest common factor $=3 \mathrm{xy}^{2}$
9. $a^{2} b^{3}, a^{3} b^{2}$

Solution:

We know that the numerical coefficients of given numerical are 0
Common literals appearing in given numerical are a and b
Smallest power of a in two monomials $=2$
Smallest power of b in two monomials $=2$
Monomials of common literals with smallest power is $a^{2} b^{2}$
\therefore The greatest common factor $=\mathrm{a}^{2} \mathrm{~b}^{2}$
10. $36 a^{2} b^{2} c^{4}, 54 a^{5} c^{2}, 90 a^{4} b^{2} c^{2}$

Solution:

We know that the numerical coefficients of given numerical are 36,54 and 90
Greatest common factor of 36,54 and 90 is 18 .
Common literals appearing in given numerical are a, b and c
Smallest power of a in three monomials is 2
Smallest power of b in three monomials is 0
Smallest power of c in three monomials is 2
Monomials of common literals with smallest power is $\mathrm{a}^{2} \mathrm{c}^{2}$
\therefore The greatest common factor $=18 \mathrm{a}^{2} \mathrm{c}^{2}$
11. $x^{3},-y x^{2}$

Solution:

We know that the numerical coefficients of given numerical are 0
Common literals appearing in given numerical are x and y
Smallest power of x in two monomials is 2

Smallest power of y in two monomials is 0
Monomials of common literals with smallest power is x^{2}
\therefore The greatest common factor $=\mathrm{x}^{2}$
12. $15 a^{3},-45 a^{2},-150 a$

Solution:

We know that the numerical coefficients of given numerical are 15, -45 and 150
Greatest common factor of $15,-45$ and 150 is 15.
Common literals appearing in given numerical is a
Smallest power of a in three monomials is 1
Monomials of common literals with smallest power is a
\therefore The greatest common factor $=15 \mathrm{a}$
13. $2 x^{3} y^{2}, 10 x^{2} y^{3}, 14 x y$

Solution:

We know that the numerical coefficients of given numerical are 2, 10 and 14.
Greatest common factor of 2,10 and 14 is 2.
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 1
Smallest power of y in three monomials is 1
Monomials of common literals with smallest power is $x y$
\therefore The greatest common factor $=2 x y$
14. $14 x^{3} y^{5}, 10 x^{5} y^{3}, 2 x^{2} y^{2}$

Solution:

We know that the numerical coefficients of given numerical are 14, 10 and 2.
Greatest common factor of 14,10 and 2 is 2.
Common literals appearing in given numerical are x and y
Smallest power of x in three monomials is 2
Smallest power of y in three monomials is 2
Monomials of common literals with smallest power is $x^{2} y^{2}$
\therefore The greatest common factor $=2 x^{2} y^{2}$
Find the greatest common factor of the terms in each of the following expressions:
15. $5 a^{4}+10 a^{3}-15 a^{2}$

Solution:

The greatest common factor of the three terms is $5 \mathrm{a}^{2}$
16. $2 x y z+3 x^{2} y+4 y^{2}$

Solution:

The greatest common factor of the three terms is y
17. $3 a^{2} b^{2}+4 b^{2} c^{2}+12 a^{2} b^{2} c^{2}$

Solution:

The greatest common factor of the three terms is b^{2}.

EXERCISE 7.2 PAGE NO: 7.5

Factorize the following:

1. $3 x-9$

Solution:
The greatest common factor in the given two terms is 3
$3 x-9$
$3(x-3)$
2. $5 x-15 x^{2}$

Solution:

The greatest common factor in the given two terms is $5 x$
$5 x-15 x^{2}$
$5 x(1-3 x)$
3. $20 a^{12} b^{2}-15 a^{8} b^{4}$

Solution:

Greatest common factor in the given two terms is $5 \mathrm{a}^{8} \mathrm{~b}^{2}$
$20 a^{12} b^{2}-15 a^{8} b^{4}$
$5 a^{8} b^{2}\left(4 a^{4}-3 b^{2}\right)$
4. $72 x^{6} y^{7}-96 x^{7} y^{6}$ Solution:
Greatest common factor in the given two terms is $24 x^{6} y^{6}$
$72 x^{6} y^{7}-96 x^{7} y^{6}$
$24 x^{6} y^{6}(3 y-4 x)$
5. $20 x^{3}-40 x^{2}+80 x$

Solution:

Greatest common factor in the given three terms is 20 x
$20 x^{3}-40 x^{2}+80 x$
20x ($x^{2}-2 x+4$)
6. $2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$

Solution:

Greatest common factor in the given three terms is $2 \mathrm{xy}^{2}$
$2 x^{3} y^{2}-4 x^{2} y^{3}+8 x y^{4}$
$2 x y^{2}\left(x^{2}-2 x y+4 y^{2}\right)$
7. $10 m^{3} n^{2}+15 m^{4} n-20 m^{2} n^{3}$

Solution:

Greatest common factor in the given three terms is $5 \mathrm{mn}^{2}$
$10 m^{3} n^{2}+15 m^{4} n-20 m^{2} n^{3}$
$5 m^{2} n\left(2 m n+3 m^{2}-4 n^{2}\right)$
8. $2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$

Solution:

Greatest common factor in the given three terms is $\mathrm{a}^{2} \mathrm{~b}^{4}$
$2 a^{4} b^{4}-3 a^{3} b^{5}+4 a^{2} b^{5}$
$a^{2} b^{4}\left(2 a^{2}-3 a b+4 b\right)$
9. $28 a^{2}+14 a^{2} b^{2}-21 a^{4}$

Solution:

Greatest common factor in the given three terms is $7 \mathrm{a}^{2}$
$28 a^{2}+14 a^{2} b^{2}-21 a^{4}$
$7 a^{2}\left(4 a+2 b^{2}-3 a^{2}\right)$
10. $a^{4} b-3 a^{2} b^{2}-6 a b^{3}$

Solution:

Greatest common factor in the given three terms is ab
$a^{4} b-3 a^{2} b^{2}-6 a b^{3}$
$a b\left(a^{3}-3 a b-6 b^{2}\right)$
11. $2 I^{2} m n-31 m^{2} n+4 I m n^{2}$

Solution:

Greatest common factor in the given three terms is Imn
$2 l^{2} m n-31 m^{2} n+4 I m n^{2}$
Imn (2l-3m $+4 n$)
12. $x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}$

Solution:

Greatest common factor in the given three terms is $x^{2} y^{2}$
$x^{4} y^{2}-x^{2} y^{4}-x^{4} y^{4}$
$x^{2} y^{2}\left(x^{2}-y^{2}-x^{2} y^{2}\right)$

13. $9 x^{2} y+3 a x y$

Solution:

Greatest common factor in the given three terms is $3 x y$
$9 x^{2} y+3 a x y$
$3 x y(3 x+a)$
14. $16 m-4 m^{2}$

Solution:
Greatest common factor in the given two terms is 4 m
$16 m-4 m^{2}$
$4 m(4-m)$
15. $-4 a^{2}+4 a b-4 c a$

Solution:

Greatest common factor in the given three terms is -4 a
$-4 a^{2}+4 a b-4 c a$
$-4 a(a-b+c)$
16. $x^{2} y z+x y^{2} z+x y z^{2}$

Solution:

Greatest common factor in the given three terms is $x y z$
$x^{2} y z+x y^{2} z+x y z^{2}$
xyz ($x+y+z$)
17. $a x^{2} y+b x y^{2}+c x y z$

Solution:

Greatest common factor in the given three terms is $x y$
$a x^{2} y+b x y^{2}+c x y z$
$x y(a x+b y+c z)$

EXERCISE 7.3 PAGE NO: 7.7

Factorize each of the following algebraic expressions:

1. $6 x(2 x-y)+7 y(2 x-y)$

Solution:

We have,
$6 x(2 x-y)+7 y(2 x-y)$
By taking $(2 x-y)$ as common we get,
$(6 x+7 y)(2 x-y)$
2. $2 r(y-x)+s(x-y)$

Solution:

We have,
$2 r(y-x)+s(x-y)$
By taking (-1) as common we get,
$-2 r(x-y)+s(x-y)$
By taking $(\mathrm{x}-\mathrm{y})$ as common we get,
$(x-y)(-2 r+s)$
$(x-y)(s-2 r)$
3. $7 \mathrm{a}(2 \mathrm{x}-3)+3 \mathrm{~b}(2 \mathrm{x}-3)$

Solution:

We have,
$7 a(2 x-3)+3 b(2 x-3)$
By taking $(2 x-3)$ as common we get,
$(7 a+3 b)(2 x-3)$
4. $9 a(6 a-5 b)-12 a^{2}(6 a-5 b)$

Solution:

We have,
$9 a(6 a-5 b)-12 a^{2}(6 a-5 b)$
By taking ($6 a-5 b$) as common we get,
$\left(9 a-12 a^{2}\right)(6 a-5 b)$
$3 a(3-4 a)(6 a-5 b)$
5. $5(x-2 y)^{2}+3(x-2 y)$

Solution:

We have,
$5(x-2 y)^{2}+3(x-2 y)$
By taking ($x-2 y$) as common we get,
$(x-2 y)[5(x-2 y)+3]$
$(x-2 y)(5 x-10 y+3)$
6. $16(2 I-3 m)^{2}-12(3 m-2 I)$

Solution:

We have,
$16(2 \mathrm{l}-3 \mathrm{~m})^{2}-12(3 m-2 \mathrm{l})$
By taking (-1) as common we get,
$16(2 l-3 m)^{2}+12(2 l-3 m)$
By taking $4(2 l-3 m)$ as common we get,
$4(2 l-3 m)[4(2 l-3 m)+3]$
$4(2 l-3 m)(8 l-12 m+3)$
7. 3a $(x-2 y)-b(x-2 y)$

Solution:

We have,
$3 a(x-2 y)-b(x-2 y)$
By taking ($x-2 y$) as common we get,
(3a-b) $(x-2 y)$
8. $a^{2}(x+y)+b^{2}(x+y)+c^{2}(x+y)$

Solution:

We have,
$a^{2}(x+y)+b^{2}(x+y)+c^{2}(x+y)$
By taking $(x+y)$ as common we get,
$\left(a^{2}+b^{2}+c^{2}\right)(x+y)$
9. $(x-y)^{2}+(x-y)$

Solution:

We have,
$(x-y)^{2}+(x-y)$
By taking $(x-y)$ as common we get,
$(x-y)(x-y+1)$
10. $6(a+2 b)-4(a+2 b)^{2}$

Solution:

We have,
$6(a+2 b)-4(a+2 b)^{2}$

By taking $(a+2 b)$ as common we get,
$[6-4(a+2 b)](a+2 b)$
$(6-4 a-8 b)(a+2 b)$
$2(3-2 a-4 b)(a+2 b)$
11. $a(x-y)+2 b(y-x)+c(x-y)^{2}$

Solution:

We have,
$a(x-y)+2 b(y-x)+c(x-y)^{2}$
By taking (-1) as common we get,
$a(x-y)-2 b(x-y)+c(x-y)^{2}$
By taking $(x-y)$ as common we get,
$[a-2 b+c(x-y)](x-y)$
$(x-y)(a-2 b+c x-c y)$
12. $-4(x-2 y)^{2}+8(x-2 y)$

Solution:

We have,
$-4(x-2 y)^{2}+8(x-2 y)$
By taking $4(x-2 y)$ as common we get,
$[-(x-2 y)+2] 4(x-2 y)$
$4(x-2 y)(-x+2 y+2)$
13. $x^{3}(a-2 b)+x^{2}(a-2 b)$

Solution:

We have,
$x^{3}(a-2 b)+x^{2}(a-2 b)$
By taking $x^{2}(a-2 b)$ as common we get,
$(x+1)\left[x^{2}(a-2 b)\right]$
$x^{2}(a-2 b)(x+1)$
14. $(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$

Solution:

We have,
$(2 x-3 y)(a+b)+(3 x-2 y)(a+b)$
By taking $(a+b)$ as common we get,
$(a+b)[(2 x-3 y)+(3 x-2 y)]$
$(a+b)[2 x-3 y+3 x-2 y]$
(a $a+b)[5 x-5 y]$
$(a+b) 5(x-y)$
15. $4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$

Solution:

We have,
$4(x+y)(3 a-b)+6(x+y)(2 b-3 a)$
By taking $(x+y)$ as common we get,

$$
\begin{aligned}
& (x+y)[4(3 a-b)+6(2 b-3 a)] \\
& (x+y)[12 a-4 b+12 b-18 a] \\
& (x+y)[-6 a+8 b] \\
& (x+y) 2(-3 a+4 b) \\
& (x+y) 2(4 b-3 a)
\end{aligned}
$$

EXERCISE 7.4 PAGE NO: 7.12

Factorize each of the following expressions:

1. $q \mathrm{q}$ - $\mathrm{pr}+\mathrm{qs}$ - ps

Solution:

We have,
$q r-p r+q s-p s$
By grouping similar terms we get,
$\mathrm{qr}+\mathrm{qs}-\mathrm{pr}-\mathrm{ps}$
$q(r+s)-p(r+s)$
$(q-p)(r+s)$
2. $p^{2} q-p r^{2}-p q+r^{2}$

Solution:

We have,
$p^{2} q-p r^{2}-p q+r^{2}$
By grouping similar terms we get,
$p^{2} q-p q-p r^{2}+r^{2}$
$p q(p-1)-r^{2}(p-1)$
$(p-1)\left(p q-r^{2}\right)$

Solution:

We have,
$1+x+x y+x^{2} y$
$1(1+x)+x y(1+x)$
$(1+x)(1+x y)$
4. $a x+a y-b x-b y$

Solution:

We have,
$a x+a y-b x-b y$
$a(x+y)-b(x+y)$
$(a-b)(x+y)$
5. $\mathbf{x} \mathbf{a}^{2}+\mathbf{x} b^{2}-\mathbf{y a} a^{2}-\mathbf{y b} b^{2}$

Solution:

We have,
$x a^{2}+x b^{2}-y a^{2}-y b^{2}$
$x\left(a^{2}+b^{2}\right)-y\left(a^{2}+b^{2}\right)$
$(x-y)\left(a^{2}+b^{2}\right)$
6. $x^{2}+x y+x z+y z$

Solution:

We have,
$x^{2}+x y+x z+y z$
$x(x+y)+z(x+y)$
$(x+y)(x+z)$
7. $2 a x+b x+2 a y+b y$

Solution:
We have,
$2 a x+b x+2 a y+b y$
By grouping similar terms we get,
$2 a x+2 a y+b x+b y$
$2 a(x+y)+b(x+y)$
$(2 a+b)(x+y)$
8. $a b-b y-a y+y^{2}$

Solution:

We have,
$a b-b y-a y+y^{2}$
By grouping similar terms we get,
$A b-a y-b y+y^{2}$
$a(b-y)-y(b-y)$
$(a-y)(b-y)$
9. $a x y+b c x y-a z-b c z$

Solution:

We have,
$a x y+b c x y-a z-b c z$
By grouping similar terms we get,
$a x y-a z+b c x y-b c z$
$a(x y-z)+b c(x y-z)$
$(a+b c)(x y-z)$
10. $\mathbf{l m}^{\mathbf{2}}-\mathrm{mn}^{\mathbf{2}}-\mathbf{I m}+\mathbf{n}^{2}$

Solution:

We have,
$\mathrm{Im}^{2}-\mathrm{mn}^{2}-\mathrm{Im}+\mathrm{n}^{2}$
By grouping similar terms we get,
$\mathrm{Im}^{2}-\mathrm{Im}-\mathrm{mn}^{2}+\mathrm{n}^{2}$
Im $(m-1)-n^{2}(m-1)$
$\left(\operatorname{lm}-n^{2}\right)(m-1)$
11. $x^{3}-y^{2}+x-x^{2} y^{2}$

Solution:

We have,
$x^{3}-y^{2}+x-x^{2} y^{2}$
By grouping similar terms we get,
$x+x^{3}-y^{2}-x^{2} y^{2}$
$x\left(1+x^{2}\right)-y^{2}\left(1+x^{2}\right)$
$\left(x-y^{2}\right)\left(1+x^{2}\right)$
12. $6 x y+6-9 y-4 x$

Solution:
We have,
$6 x y+6-9 y-4 x$
By grouping similar terms we get,
$6 x y-4 x-9 y+6$
$2 x(3 y-2)-3(3 y-2)$
$(2 x-3)(3 y-2)$
13. $x^{2}-2 a x-2 a b+b x$

Solution:

We have,
$x^{2}-2 a x-2 a b+b x$
By grouping similar terms we get,
$x^{2}+b x-2 a x-2 a b$
$x(x+b)-2 a(x+b)$
$(x-2 a)(x+b)$
14. $x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$

Solution:

We have,
$x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3}$
By grouping similar terms we get,
$x^{3}+3 x y^{2}-2 x^{2} y-6 y^{3}$
$x\left(x^{2}+3 y^{2}\right)-2 y\left(x^{2}+3 y^{2}\right)$
$(x-2 y)\left(x^{2}+3 y^{2}\right)$
15. $a b x^{2}+(a y-b) x-y$

Solution:

We have,
$a b x^{2}+(a y-b) x-y$
$a b x^{2}+a y x-b x-y$
By grouping similar terms we get,
$a b x^{2}-b x+a y x-y$
$b x(a x-1)+y(a x-1)$
$(b x+y)(a x-1)$
16. $(a x+b y)^{2}+(b x-a y)^{2}$

Solution:

We have,
$(a x+b y)^{2}+(b x-a y)^{2}$
$a^{2} x^{2}+b^{2} y^{2}+2 a x b y+b^{2} x^{2}+a^{2} y^{2}-2 a x b y$
$a^{2} x^{2}+b^{2} y^{2}+b^{2} x^{2}+a^{2} y^{2}$
By grouping similar terms we get,
$a^{2} x^{2}+a^{2} y^{2}+b^{2} y^{2}+b^{2} x^{2}$
$a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(x^{2}+y^{2}\right)$
$\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)$
17. $16(a-b)^{3}-24(a-b)^{2}$

Solution:

We have,
$16(a-b)^{3}-24(a-b)^{2}$
$8(a-b)^{2}[2(a-b)-3]$
$8(a-b)^{2}(2 a-2 b-3)$
18. $a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)$

Solution:

We have,
$a b\left(x^{2}+1\right)+x\left(a^{2}+b^{2}\right)$
$a b x^{2}+a b+x a^{2}+x b^{2}$
By grouping similar terms we get,
$a b x^{2}+x a^{2}+x b^{2}+a b$
$a x(b x+a)+b(b x+a)$
$(a x+b)(b x+a)$
19. $a^{2} x^{2}+\left(a x^{2}+1\right) x+a$

Solution:

We have,
$a^{2} x^{2}+\left(a x^{2}+1\right) x+a$
$a^{2} x^{2}+a x^{3}+x+a$
$a x^{2}(a+x)+1(x+a)$
$(x+a)\left(a x^{2}+1\right)$
20. $a(a-2 b-c)+2 b c$

Solution:

We have,
$a(a-2 b-c)+2 b c$
$a^{2}-2 a b-a c+2 b c$
$a(a-2 b)-c(a-2 b)$
$(a-2 b)(a-c)$
21. $a(a+b-c)-b c$

Solution:

We have,
$a(a+b-c)-b c$
$a^{2}+a b-a c-b c$
$a(a+b)-c(a+b)$
$(a+b)(a-c)$
22. $x^{2}-11 x y-x+11 y$

Solution:

We have,
$x^{2}-11 x y-x+11 y$
By grouping similar terms we get,
$x^{2}-x-11 x y+11 y$
$x(x-1)-11 y(x-1)$
$(x-11 y)(x-1)$
23. $a b-a-b+1$

Solution:

We have,
$a b-a-b+1$
$a(b-1)-1(b-1)$
$(a-1)(b-1)$
24. $x^{2}+y-x y-x$

Solution:

We have,
$x^{2}+y-x y-x$
By grouping similar terms we get,
$x^{2}-x+y-x y$
$x(x-1)-y(x-1)$
$(x-y)(x-1)$

EXERCISE 7.5 PAGE NO: 7.17

Factorize each of the following expressions:

1. $16 x^{2}-25 y^{2}$

Solution:

We have,
$16 x^{2}-25 y^{2}$
$(4 x)^{2}-(5 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$ we get, $(4 x+5 y)(4 x-5 y)$
2. $27 \mathrm{x}^{2}-12 \mathrm{y}^{2}$

Solution:

We have,
$27 x^{2}-12 y^{2}$
By taking 3 as common we get,
$3\left[(3 x)^{2}-(2 y)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3(3 x+2 y)(3 x-2 y)$
3. $144 a^{2}-289 b^{2}$

Solution:

We have,
$144 a^{2}-289 b^{2}$
$(12 a)^{2}-(17 b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(12 a+17 b)(12 a-17 b)$
4. $12 m^{2}-27$

Solution:

We have,
$12 m^{2}-27$
By taking 3 as common we get,
$3\left(4 m^{2}-9\right)$
$3\left[(2 m)^{2}-3^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3(2 m+3)(2 m-3)$

5. $125 x^{2}-45 y^{2}$

Solution:

We have,
$125 x^{2}-45 y^{2}$
By taking 5 as common we get,
$5\left(25 x^{2}-9 y^{2}\right)$
$5\left[(5 x)^{2}-(3 y)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$5(5 x+3 y)(5 x-3 y)$
6. $144 a^{2}-169 b^{2}$

Solution:

We have,
$144 a^{2}-169 b^{2}$
$(12 a)^{2}-(13 b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(12 a+13 b)(12 a-13 b)$
7. $(2 a-b)^{2}-16 c^{2}$

Solution:

We have,
$(2 a-b)^{2}-16 c^{2}$
$(2 a-b)^{2}-(4 c)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(2 a-b+4 c)(2 a-b-4 c)$
8. $(x+2 y)^{2}-4(2 x-y)^{2}$

Solution:

We have,

$$
\begin{aligned}
& (x+2 y)^{2}-4(2 x-y)^{2} \\
& (x+2 y)^{2}-[2(2 x-y)]^{2}
\end{aligned}
$$

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$ we get,
$[(x+2 y)+2(2 x-y)][x+2 y-2(2 x-y)]$
$(x+4 x+2 y-2 y)(x-4 x+2 y+2 y)$
$(5 x)(4 y-3 x)$
9. $3 a^{5}-48 a^{3}$

Solution:

We have,
$3 a^{5}-48 a^{3}$
By taking 3 as common we get,
$3 a^{3}\left(a^{2}-16\right)$
$3 a^{3}\left(a^{2}-4^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3 a^{3}(a+4)(a-4)$
10. $a^{4}-16 b^{4}$

Solution:

We have,
$a^{4}-16 b^{4}$
$\left(a^{2}\right)^{2}-\left(4 b^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+4 b^{2}\right)\left(a^{2}-4 b^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+4 b^{2}\right)(a+2 b)(a-2 b)$
11. $x^{8}-1$

Solution:

We have,
$\mathrm{X}^{8}-1$
$\left(x^{4}\right)^{2}-(1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{4}+1\right)\left(x^{4}-1\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{4}+1\right)\left(x^{2}+1\right)(x-1)(x+1)$
12. $64-(a+1)^{2}$

Solution:

We have,
$64-(a+1)^{2}$
$8^{2}-(a+1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$[8+(a+1)][8-(a+1)]$
$(a+9)(7-a)$
13. $36 \mathrm{I}^{2}-(\mathrm{m}+\mathrm{n})^{2}$

Solution:

We have,
$361^{2}-(m+n)^{2}$
$(6 \mathrm{l})^{2}-(m+n)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(61+m+n)(6 I-m-n)$
14. $25 x^{4} y^{4}-1$

Solution:
We have,
$25 x^{4} y^{4}-1$
$\left(5 x^{2} y^{2}\right)^{2}-(1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(5 x^{2} y^{2}-1\right)\left(5 x^{2} y^{2}+1\right)$
15. $a^{4}-1 / b^{4}$

Solution:

We have,
$a^{4}-1 / b^{4}$
$\left(a^{2}\right)^{2}-\left(1 / b^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+1 / b^{2}\right)\left(a^{2}-1 / b^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2}+1 / b^{2}\right)(a-1 / b)(a+1 / b)$
16. $x^{3}-144 x$

Solution:

We have,
$x^{3}-144 x$
$x\left[x^{2}-(12)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x(x+12)(x-12)$
17. $(x-4 y)^{2}-625$

Solution:

We have,
$(x-4 y)^{2}-625$
$(x-4 y)^{2}-(25)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(x-4 y+25)(x-4 y-25)$
18. $9(a-b)^{2}-100(x-y)^{2}$

Solution:

We have,
$9(a-b)^{2}-100(x-y)^{2}$
$[3(a-b)]^{2}-[10(x-y)]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$[3(a-b)+10(x+y)][3(a-b)-10(x-y)][3 a-3 b+10 x-10 y][3 a-3 b-10 x+10 y]$
19. $(3+2 a)^{2}-25 a^{2}$

Solution:

We have,
$(3+2 a)^{2}-25 a^{2}$
$(3+2 a)^{2}-(5 a)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$

$$
\begin{aligned}
& (3+2 a+5 a)(3+2 a-5 a) \\
& (3+7 a)(3-3 a) \\
& (3+7 a) 3(1-a)
\end{aligned}
$$

20. $(x+y)^{2}-(a-b)^{2}$

Solution:

We have,
$(x+y)^{2}-(a-b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$[(x+y)+(a-b)][(x+y)-(a-b)]$
$(x+y+a-b)(x+y-a+b)$
21. $1 / 16 x^{2} y^{2}-4 / 49 y^{2} z^{2}$

Solution:

We have,
$1 / 16 x^{2} y^{2}-4 / 49 y^{2} z^{2}$
$(1 / 4 x y)^{2}-(2 / 7 y z)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(x y / 4+2 y z / 7)(x y / 4-2 y z / 7)$
$y^{2}(x / 4+2 / 7 z)(x / 4-2 / 7 z)$
22. $75 a^{3} b^{2}-108 b^{4}$

Solution:

We have,
$75 a^{3} b^{2}-108 a b^{4}$
$3 a b^{2}\left(25 a^{2}-36 b^{2}\right)$
$3 a b^{2}\left[(5 a)^{2}-(6 b)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$3 a b^{2}(5 a+6 b)(5 a-6 b)$
23. $x^{5}-16 x^{3}$

Solution:

We have,
$x^{5}-16 x^{3}$
$x^{3}\left(x^{2}-16\right)$
$x^{3}\left(x^{2}-4^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x^{3}(x+4)(x-4)$
24. $50 / x^{2}-2 x^{2} / 81$

Solution:

We have,
$50 / x^{2}-2 x^{2} / 81$
$2\left(25 / x^{2}-x^{2} / 81\right)$
$2\left[(5 / x)^{2}-(x / 9)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2(5 / x+x / 9)(5 / x-x / 9)$
25. $256 x^{3}-81 x$

Solution:

We have,
$256 x^{3}-81 x$
$\mathrm{x}\left(256 \mathrm{x}^{4}-81\right)$
$x\left[\left(16 x^{2}\right)^{2}-9^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x(4 x+3)(4 x-3)\left(16 x^{2}+9\right)$
26. $a^{4}-(2 b+c)^{4}$

Solution:

We have,
$a^{4}-(2 b+c)^{4}$
$\left(a^{2}\right)^{2}-\left[(2 b+c)^{2}\right]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left[a^{2}+(2 b+c)^{2}\right]\left[a^{2}-(2 b+c)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left[a^{2}+(2 b+c)^{2}\right][a+2 b+c][a-2 b-c]$
27. $(3 x+4 y)^{4}-x^{4}$

Solution:

We have,
$(3 x+4 y)^{4}-x^{4}$
$\left[(3 x+4 y)^{2}\right]^{2}-\left(x^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left[(3 x+4 y)^{2}+x^{2}\right]\left[(3 x+4 y)^{2}-x^{2}\right]\left[(3 x+4 y)^{2}+x^{2}\right][3 x+4 y+x][3 x+4 y-x]\left[(3 x+4 y)^{2}+x^{2}\right][4 x+4 y][2 x$ $+4 y]\left[(3 x+4 y)^{2}+x^{2}\right] 8[x+2 y][x+y]$
28. $p^{2} q^{2}-p^{4} q^{4}$

Solution:

We have,
$p^{2} q^{2}-p^{4} q^{4}$
$(p q)^{2}-\left(p^{2} q^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(p q+p^{2} q^{2}\right)\left(p q-p^{2} q^{2}\right)$
$p^{2} q^{2}(1+p q)(1-p q)$

29. $3 x^{3} y-243 x y^{3}$

Solution:

We have,
$3 x^{3} y-243 x y^{3}$
$3 x y\left(x^{2}-81 y^{2}\right)$
$3 x y\left[x^{2}-(9 y)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
(3xy) $(x+9 y)(x-9 y)$
30. $a^{4} b^{4}-16 c^{4}$

Solution:

We have,
$a^{4} b^{4}-16 c^{4}$
$\left(a^{2} b^{2}\right)^{2}-\left(4 c^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+4 c^{2}\right)\left(a^{2} b^{2}-4 c^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+4 c^{2}\right)(a b+2 c)(a b-2 c)$
31. $x^{4}-625$

Solution:

We have,
$x^{4}-625$
$\left(x^{2}\right)^{2}-(25)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+25\right)\left(x^{2}-25\right)$
$\left(x^{2}+25\right)\left(x^{2}-5^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+25\right)(x+5)(x-5)$
32. $x^{4}-1$

Solution:

We have,
$\mathrm{X}^{4}-1$
$\left(x^{2}\right)^{2}-(1)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+1\right)\left(x^{2}-1\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+1\right)(x+1)(x-1)$
33. $49(a-b)^{2}-25(a+b)^{2}$

Solution:

We have,
$49(a-b)^{2}-25(a+b)^{2}$
$[7(a-b)]^{2}-[5(a+b)]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$[7(a-b)+5(a+b)][7(a-b)-5(a+b)]$ $(7 a-7 b+5 a+5 b)(7 a-7 b-5 a-5 b)$
(12a-2b) $(2 a-12 b)$
$2(6 a-b) 2(a-6 b)$
$4(6 a-b)(a-6 b)$
34. $x-y-x^{2}+y^{2}$

Solution:
We have,
$x-y-x^{2}+y^{2}$
$x-y-\left(x^{2}-y^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x-y-(x+y)(x-y)$
$(x-y)(1-x-y)$
35. 16(2x-1) $)^{2}-25 y^{2}$

Solution:

We have,
$16(2 x-1)^{2}-25 y^{2}$
$[4(2 x-1)]^{2}-(5 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(8 x+5 y-4)(8 x-5 y-4)$
36. $4(x y+1)^{2}-9(x-1)^{2}$

Solution:

We have,
$4(x y+1)^{2}-9(x-1)^{2}$
$[2(x y+1)]^{2}-[3(x-1)]^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(2 x y+2+3 x-3)(2 x y+2-3 x+3)$
$(2 x y+3 x-1)(2 x y-3 x+5)$
37. $(2 x+1)^{2}-9 x^{4}$

Solution:

We have,
$(2 x+1)^{2}-9 x^{4}$
$(2 x+1)^{2}-\left(3 x^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(2 x+1+3 x^{2}\right)\left(2 x+1-3 x^{2}\right)$
$\left(3 x^{2}+2 x+1\right)\left(-3 x^{2}+2 x+1\right)$
38. $x^{4}-(2 y-3 z)^{2}$

Solution:

We have,
$x^{4}-(2 y-3 z)^{2}$
$\left(x^{2}\right)^{2}-(2 y-3 z)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(x^{2}+2 y-3 z\right)\left(x^{2}-2 y+3 z\right)$
39. $a^{2}-b^{2}+a-b$

Solution:

We have,
$a^{2}-b^{2}+a-b$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$(a+b)(a-b)+(a-b)$
$(a-b)(a+b+1)$
40. $16 a^{4}-b^{4}$

Solution:

We have,
$16 a^{4}-b^{4}$
$\left(4 a^{2}\right)^{2}-\left(b^{2}\right)^{2}$
$\left(4 a^{2}+b^{2}\right)\left(4 a^{2}-b^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(4 a^{2}+b^{2}\right)(2 a+b)(2 a-b)$
41. $a^{4}-16(b-c)^{4}$

Solution:

We have,
$a^{4}-16(b-c)^{4}$
$\left(a^{2}\right)^{2}-\left[4(b-c)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left[a^{2}+4(b-c)^{2}\right]\left[a^{2}-4(b-c)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left[a^{2}+4(b-c)^{2}\right][(a+2 b-2 c)(a-2 b+2 c)]$
42. $2 a^{5}-32 a$

Solution:

We have,
$2 a^{5}-32 a$
$2 a\left(a^{4}-16\right)$
$2 a\left[\left(a^{2}\right)^{2}-(4)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2 a\left(a^{2}+4\right)\left(a^{2}-4\right)$
$2 a\left(a^{2}+4\right)\left(a^{2}-2^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2 a\left(a^{2}+4\right)(a+2)(a-2)$
43. $a^{4} b^{4}-81 c^{4}$

Solution:

We have,
$a^{4} b^{4}-81 c^{4}$
$\left(a^{2} b^{2}\right)^{2}-\left(9 c^{2}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+9 c^{2}\right)\left(a^{2} b^{2}-9 c^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$\left(a^{2} b^{2}+9 c^{2}\right)(a b+3 c)(a b-3 c)$
44. $x^{9}-y^{9}{ }^{9}$

Solution:

We have,
$x^{9}-y^{9}{ }^{9}$
$-x y\left(x^{8}-y^{8}\right)$
$-x y\left[\left(x^{4}\right)^{2}-\left(y^{4}\right)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$-x y\left(x^{4}+y^{4}\right)\left(x^{4}-y^{4}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$-x y\left(x^{4}+y^{4}\right)\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$-x y\left(x^{4}+y^{4}\right)\left(x^{2}+y^{2}\right)(x+y)(x-y)$
45. $x^{3}-x$

Solution:

We have,
$\mathrm{x}^{3}-\mathrm{x}$
$x\left(x^{2}-1\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$x(x+1)(x-1)$
46. $18 a^{2} x^{2}-32$

Solution:

We have,
$18 a^{2} x^{2}-32$
$2\left[(3 a x)^{2}-(4)^{2}\right]$
By using the formula $\left(a^{2}-b^{2}\right)=(a-b)(a+b)$
$2(3 a x+4)(3 a x-4)$

EXERCISE 7.6 PAGE NO: 7.22

Factorize each of the following algebraic expressions:

1. $4 x^{2}+12 x y+9 y^{2}$

Solution:

We have,
$4 x^{2}+12 x y+9 y^{2}$
By using the formula $(x+y)^{2}=x^{2}+y^{2}+2 x y$
$(2 x)^{2}+(3 y)^{2}+2(2 x)(3 y)$
$(2 x+3 y)^{2}$
$(2 x+3 y)(2 x+3 y)$

2. $9 a^{2}-24 a b+16 b^{2}$

Solution:

We have,
$9 a^{2}-24 a b+16 b^{2}$
By using the formula $(x-y)^{2}=x^{2}+y^{2}-2 x y$
Here $x=3 a, y=4 b$ So,
$(3 a)^{2}+(4 b)^{2}-2(3 a)(4 b)$
$(3 a-4 b)^{2}$
(3a-4b) (3a-4b)

3. $p^{2} q^{2}-6 p q r+9 r^{2}$

Solution:

We have,
$p^{2} q^{2}-6 p q r+9 r^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(p q)^{2}+(3 r)^{2}-2(p q)(3 r)$
$(p q-3 r)^{2}$
$(p q-3 r)(p q-3 r)$
4. $36 \mathrm{a}^{2}+36 \mathrm{a}+9$

Solution:

We have,
$36 \mathrm{a}^{2}+36 \mathrm{a}+9$
$(6 \mathrm{a})^{2}+2 \times 6 \mathrm{a} \times 3+3^{2}$
$(6 a+3)^{2}$
5. $a^{2}+2 a b+b^{2}-16$

Solution:

We have,
$a^{2}+2 a b+b^{2}-16$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(a+b)^{2}-4^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a+b+4)(a+b-4)$
6. $9 z^{2}-x^{2}+4 x y-4 y^{2}$

Solution:

We have,
$9 z^{2}-x^{2}+4 x y-4 y^{2}$
$(3 z)^{2}-\left[x^{2}-2(x)(2 y)+(2 y)^{2}\right]$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(3 z)^{2}-(x-2 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$[(x-2 y)+3 z][-x+2 y+3 z)]$
7. $9 a^{4}-24 a^{2} b^{2}+16 b^{4}-\mathbf{2 5 6}$

Solution:

We have,
$9 a^{4}-24 a^{2} b^{2}+16 b^{4}-256$
$\left(3 a^{2}\right)^{2}-2\left(4 a^{2}\right)\left(3 b^{2}\right)+\left(4 b^{2}\right)^{2}-(16)^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$ $\left(3 a^{2}-4 b^{2}\right)^{2}-(16)^{2}$

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(3 a^{2}-4 b^{2}+16\right)\left(3 a^{2}-4 b^{2}-16\right)$
8. $16-a^{6}+4 a^{3} b^{3}-4 b^{6}$

Solution:

We have,
$16-a^{6}+4 a^{3} b^{3}-4 b^{6}$
$4^{2}-\left[\left(a^{3}\right)^{2}-2\left(a^{3}\right)\left(2 b^{3}\right)+\left(2 b^{3}\right)^{2}\right]$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$4^{2}-\left(a^{3}-2 b^{3}\right)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left[4+\left(a^{3}-2 b^{3}\right)\right]\left[4-\left(a^{3}-2 b^{3}\right)\right]$
9. $a^{2}-2 a b+b^{2}-c^{2}$

Solution:

We have,
$a^{2}-2 a b+b^{2}-c^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(a-b)^{2}-c^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a-b+c)(a-b-c)$
10. $x^{2}+2 x+1-9 y^{2}$

Solution:

We have,
$x^{2}+2 x+1-9 y^{2}$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(x+1)^{2}-(3 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x+3 y+1)(x-3 y+1)$
11. $a^{2}+4 a b+3 b^{2}$

Solution:

We have,
$a^{2}+4 a b+3 b^{2}$
By using factors for 3 i.e., 3 and 1
$a^{2}+a b+3 a b+3 b^{2}$
By grouping we get,
$a(a+b)+3 b(a+b)$
$(a+3 b)(a+b)$
12. $96-4 \mathrm{x}-\mathrm{x}^{2}$

Solution:

We have,
$96-4 x-x^{2}$
$-x^{2}-4 x+96$
By using factors for 96 i.e., 12 and 8
$-x^{2}-12 x+8 x+96$
By grouping we get,
$-x(x+12)+8(x+12)$
$(x+12)(-x+8)$
13. $a^{4}+3 a^{2}+4$

Solution:

We have,
$a^{4}+3 a^{2}+4$
$\left(a^{2}\right)^{2}+\left(a^{2}\right)^{2}+2\left(2 a^{2}\right)+4-a^{2}$
$\left(a^{2}+2\right)^{2}+\left(-a^{2}\right)$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(a^{2}+2+a\right)\left(a^{2}+2-a\right)$
$\left(a^{2}+a+2\right)\left(a^{2}-a+2\right)$
14. $4 \mathrm{x}^{4}+1$

Solution:
We have,
$4 x^{4}+1$
$\left(2 x^{2}\right)^{2}+1+4 x^{2}-4 x^{2}$
$\left(2 x^{2}+1\right)^{2}-4 x^{2}$

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(2 x^{2}+1+2 x\right)\left(2 x^{2}+1-2 x\right)$
$\left(2 x^{2}+2 x+1\right)\left(2 x^{2}-2 x+1\right)$
15. $4 x^{4}+y^{4}$

Solution:
We have,
$4 x^{4}+y^{4}$
$\left(2 x^{2}\right)^{2}+\left(y^{2}\right)^{2}+4 x^{2} y^{2}-4 x^{2} y^{2}$
$\left(2 x^{2}+y^{2}\right)^{2}-4 x^{2} y^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(2 x^{2}+y^{2}+2 x y\right)\left(2 x^{2}+y^{2}-2 x y\right)$
16. $(x+2)^{4}-6(x+2)+9$

Solution:

We have,
$(x+2)^{4}-6(x+2)+9$
$\left(x^{2}+2^{2}\right)^{2}-6 x-12+9$
$\left(x^{2}+2^{2}+2(2)(x)\right)-6 x-12+9$
$x^{2}+4+4 x-6 x-12+9$
$x^{2}-2 x+1$
By using the formula $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(x-1)^{2}$
17. $25-p^{2}-q^{2}-2 p q$

Solution:

We have,
$25-p^{2}-q^{2}-2 p q$
$25-\left(p^{2}+q^{2}+2 p q\right)$
$(5)^{2}-(p+q)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(5+p+q)(5-p-q)$
$-(p+q+5)(p+q-5)$
18. $x^{2}+9 y^{2}-6 x y-25 a^{2}$

Solution:

We have,
$x^{2}+9 y^{2}-6 x y-25 a^{2}$
$(x-3 y)^{2}-(5 a)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x-3 y+5 a)(x-3 y-5 a)$
19. $49-\mathrm{a}^{2}+8 \mathrm{ab}-16 \mathrm{~b}^{2}$

Solution:

We have,
$49-a^{2}+8 a b-16 b^{2}$
$49-\left(a^{2}-8 a b+16 b^{2}\right)$
$49-(a-4 b)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(7+a-4 b)(7-a+4 b)$
$-(a-4 b+7)(a-4 b-7)$
20. $a^{2}-8 a b+16 b^{2}-25 c^{2}$

Solution:

We have,
$a^{2}-8 a b+16 b^{2}-25 c^{2}$
$(a-4 b)^{2}-(5 c)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a-4 b+5 c)(a-4 b-5 c)$
21. $x^{2}-y^{2}+6 y-9$

Solution:

We have,
$x^{2}-y^{2}+6 y-9$
$x^{2}+6 y-\left(y^{2}-6 y+9\right)$
$x^{2}-(y-3)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x+y-3)(x-y+3)$
22. $25 x^{2}-10 x+1-36 y^{2}$

Solution:

We have,
$25 x^{2}-10 x+1-36 y^{2}$
$(5 x)^{2}-2(5 x)+1-(6 y)^{2}$
$(5 x-1)^{2}-(6 y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(5 x-6 y-1)(5 x+6 y-1)$
23. $a^{2}-b^{2}+2 b c-c^{2}$

Solution:

We have,
$a^{2}-b^{2}+2 b c-c^{2}$
$a^{2}-\left(b^{2}-2 b c+c^{2}\right)$
$a^{2}-(b-c)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a+b-c)(a-b+c)$
24. $a^{2}+2 a b+b^{2}-c^{2}$

Solution:

We have,
$a^{2}+2 a b+b^{2}-c^{2}$
$(a+b)^{2}-c^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a+b+c)(a+b-c)$
25. $49-x^{2}-y^{2}+2 x y$

Solution:

We have,
$49-x^{2}-y^{2}+2 x y$
$49-\left(x^{2}+y^{2}-2 x y\right)$
$7^{2}-(x-y)^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$[7+(x-y)][7-x+y]$
$(x-y+7)(y-x+7)$
26. $a^{2}+4 b^{2}-4 a b-4 c^{2}$

Solution:

We have,

$$
\begin{aligned}
& a^{2}+4 b^{2}-4 a b-4 c^{2} \\
& a^{2}-2(a)(2 b)+(2 b)^{2}-(2 c)^{2} \\
& (a-2 b)^{2}-(2 c)^{2}
\end{aligned}
$$

By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(a-2 b+2 c)(a-2 b-2 c)$
27. $x^{2}-y^{2}-4 x z+4 z^{2}$

Solution:

We have,
$x^{2}-y^{2}-4 x z+4 z^{2}$
$x^{2}-2(x)(2 z)+(2 z)^{2}-y^{2}$
As $(a-b)^{2}=a^{2}+b^{2}-2 a b$
$(x-2 z)^{2}-y^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$(x+y-2 z)(x-y-2 z)$

EXERCISE 7.7 PAGE NO: 7.27

Factorize each of the following algebraic expressions:

1. $x^{2}+12 x-45$

Solution:

We have,
$x^{2}+12 x-45$
To factorize the given expression we have to find two numbers p and q such that $p+q=12$ and $p q=$ -45
So we can replace $12 x$ by $15 x-3 x$
-45 by 15×3
$x^{2}+12 x-45=x^{2}+15 x-3 x-45$
$=x(x+15)-3(x+15)$
$=(x-3)(x+15)$
2. $40+3 x-x^{2}$

Solution:

We have,
$40+3 x-x^{2}$
$-\left(x^{2}-3 x-40\right)$
By considering, $p+q=-3$ and $p q=-40$
So we can replace $-3 x$ by $5 x-8 x$
-40 by 5×-8
$-\left(x^{2}-3 x-40\right)=x^{2}+5 x-8 x-40$
$=-x(x+5)-8(x+5)$
$=-(x-8)(x+5)$
$=(-x+8)(x+5)$
3. $a^{2}+3 a-88$

Solution:

We have,
$a^{2}+3 a-88$
By considering, $\mathrm{p}+\mathrm{q}=3$ and $\mathrm{pq}=-88$
So we can replace 3a by 11a-8a
-40 by -11×8
$a^{2}+3 a-88=a^{2}+11 a-8 a-88$
$=a(a+11)-8(a+11)$
$=(a-8)(a+11)$
4. $a^{2}-14 a-51$

Solution:

We have,
$a^{2}-14 a-51$
By considering, $p+q=-14$ and $p q=-51$
So we can replace $-14 a$ by $3 a-17 a$
-51 by -17×3
$a^{2}-14 a-51=a^{2}+3 a-17 a-51$
$=a(a+3)-17(a+3)$
$=(a-17)(a+3)$
5. $x^{2}+14 x+45$

Solution:

We have,
$x^{2}+14 x+45$
By considering, $p+q=14$ and $p q=45$
So we can replace $14 x$ by $5 x+9 x$
45 by 5×9
$x^{2}+14 x+45=x^{2}+5 x+9 x+45$
$=x(x+5)-9(x+5)$
$=(x+9)(x+5)$
6. $x^{2}-22 x+120$

Solution:

We have,
$x^{2}-22 x+120$
By considering, $p+q=-22$ and $p q=120$
So we can replace $-22 x$ by $-12 x-10 x$
120 by -12×-10
$x^{2}-22 x+120=x^{2}-12 x-10 x+120$
$=x(x-12)-10(x-12)$
$=(x-10)(x-12)$
7. $x^{2}-11 x-42$

Solution:

We have,
$x^{2}-11 x-42$
By considering, $p+q=-11$ and $p q=-42$
So we can replace $-11 x$ by $3 x-14 x$
-42 by 3×-14
$x^{2}-11 x-42=x^{2}+3 x-14 x-42$
$=x(x+3)-14(x+3)$
$=(x-14)(x+3)$
8. $a^{2}+2 a-3$

Solution:

We have,
$a^{2}+2 a-3$
By considering, $p+q=2$ and $p q=-3$
So we can replace 2a by 3a-a
-3 by 3×-1
$a^{2}+2 a-3=a^{2}+3 a-a-3$
$=a(a+3)-1(a+3)$
$=(a-1)(a+3)$
9. $a^{2}+14 a+48$

Solution:

We have,
$a^{2}+14 a+48$
By considering, $p+q=14$ and $p q=48$
So we can replace 14 a by $8 \mathrm{a}+6 \mathrm{a}$
48 by 8×6
$a^{2}+14 a+48=a^{2}+8 a+6 a+48$
$=a(a+8)+6(a+8)$
$=(a+6)(a+8)$
10. $x^{2}-4 x-21$

Solution:

We have,
$x^{2}-4 x-21$
By considering, $p+q=-4$ and $p q=-21$
So we can replace $-4 x$ by $3 x-7 x$
-21 by 3×-7
$x^{2}+4 x-21=x^{2}+3 x-7 x-21$
$=x(x+3)-7(x+3)$
$=(x-7)(x+3)$
11. $y^{2}+5 y-36$

Solution:

We have,
$y^{2}+5 y-36$
By considering, $p+q=5$ and $p q=-36$
So we can replace 5 y by $9 \mathrm{y}-4 \mathrm{y}$
-36 by 9×-4
$y^{2}+5 y-36=y^{2}+9 y-4 y-36$
$=y(y+9)-4(y+9)$
$=(y-4)(y+9)$
12. $\left(a^{2}-5 a\right)^{2}-36$

Solution:

We have,
$\left(a^{2}-5 a\right)^{2}-36$
$\left(a^{2}-5 a\right)^{2}-6^{2}$
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$\left(a^{2}-5 a\right)^{2}-6^{2}=\left(a^{2}-5 a+6\right)\left(a^{2}-5 a-6\right)$
So now we shall factorize the expression ($a^{2}-5 a+6$)
By considering, $p+q=-5$ and $p q=6$
So we can replace -5 a by a -6 a
6 by 1×-6
$a^{2}-5 a-6=a^{2}+a-6 a-6$
$=a(a+1)-6(a+1)$
$=(a-6)(a+1)$
So now we shall factorize the expression ($a^{2}-5 a+6$)
By considering, $p+q=-5$ and $p q=-6$
So we can replace $-5 a$ by $-2 a-3 a$
6 by -2×-3
$a^{2}-5 a+6=a^{2}-2 a-3 a+6$
$=a(a-2)-3(a-2)$
$=(a-3)(a-2)$
$\therefore\left(a^{2}-5 a\right)^{2}-36=\left(a^{2}-5 a+6\right)\left(a^{2}-5 a-6\right)$
$=(a+1)(a-6)(a-2)(a-3)$
13. $(a+7)(a-10)+16$

Solution:

We have,

$$
\begin{aligned}
& (a+7)(a-10)+16 \\
& a^{2}-10 a+7 a-70+16 \\
& a^{2}-3 a-54
\end{aligned}
$$

By considering, $p+q=-3$ and $p q=-54$
So we can replace $-3 a$ by $6 a-9 a$
-54 by 6×-9
$a^{2}-3 a-54=a^{2}+6 a-9 a-54$
$=a(a+6)-9(a+6)$
$=(a-9)(a+6)$

EXERCISE 7.8 PAGE NO: 7.30

Resolve each of the following quadratic trinomials into factors:

1. $2 x^{2}+5 x+3$

Solution:

We have,
$2 x^{2}+5 x+3$
The coefficient of x^{2} is 2
The coefficient of x is 5
Constant term is 3
We shall split up the center term i.e., 5 into two parts such that their sum $p+q$ is 5 and product $p q=2$ $\times 3$ is 6

So, we express the middle term $5 x$ as $2 x+3 x$
$2 x^{2}+5 x+3=2 x^{2}+2 x+3 x+3$
$=2 x(x+1)+3(x+1)$
$=(2 x+3)(x+1)$
2. $2 x^{2}-3 x-2$

Solution:

We have,

$$
2 x^{2}-3 x-2
$$

The coefficient of x^{2} is 2
The coefficient of x is -3
Constant term is -2
So, we express the middle term $-3 x$ as $-4 x+x$
$2 x^{2}-3 x-2=2 x^{2}-4 x+x-2$
$=2 x(x-2)+1(x-2)$
$=(x-2)(2 x+1)$
3. $3 x^{2}+10 x+3$

Solution:

We have,
$3 x^{2}+10 x+3$
The coefficient of x^{2} is 3
The coefficient of x is 10
Constant term is 3

So, we express the middle term 10 x as $9 \mathrm{x}+\mathrm{x}$
$3 x^{2}+10 x+3=3 x^{2}+9 x+x+3$
$=3 x(x+3)+1(x+3)$
$=(3 x+1)(x+3)$
4. $7 \mathrm{x}-6-2 \mathrm{x}^{2}$

Solution:

We have,
$7 x-6-2 x^{2}$
$-2 x^{2}+7 x-6$
$2 x^{2}-7 x+6$
The coefficient of x^{2} is 2
The coefficient of x is -7
Constant term is 6
So, we express the middle term $-7 x$ as $-4 x-3 x$
$2 x^{2}-7 x+6=2 x^{2}-4 x-3 x+6$
$=2 x(x-2)-3(x-2)$
$=(x-2)(2 x-3)$
5. $7 x^{2}-19 x-6$

Solution:

We have,
$7 x^{2}-19 x-6$
The coefficient of x^{2} is 7
The coefficient of x is -19
Constant term is -6
So, we express the middle term $-19 x$ as $2 x-21 x$
$7 x^{2}-19 x-6=7 x^{2}+2 x-21 x-6$
$=x(7 x+2)-3(7 x+2)$
$=(7 x+2)(x-3)$
6. $28-31 x-5 x^{2}$

Solution:

We have,
$28-31 x-5 x^{2}$
$-5 x^{2}-31 x+28$
$5 x^{2}+31 x-28$
The coefficient of x^{2} is 5
The coefficient of x is 31
Constant term is -28
So, we express the middle term $31 x$ as $-4 x+35 x$
$5 x^{2}+31 x-28=5 x^{2}-4 x+35 x-28$
$=x(5 x-4)+7(5 x-4)$
$=(x+7)(5 x-4)$
$7.3+23 y-8 y^{2}$

Solution:

We have,
$3+23 y-8 y^{2}$
$-8 y^{2}+23 y+3$
$8 y^{2}-23 y-3$
The coefficient of y^{2} is 8
The coefficient of y is -23
Constant term is -3
So, we express the middle term $-23 y$ as $-24 y+y$
$8 y^{2}-23 y-3=8 y^{2}-24 y+y-3$
$=8 y(y-3)+1(y-3)$
$=(8 y+1)(y-3)$
8. $11 x^{2}-54 x+63$

Solution:

We have,
$11 x^{2}-54 x+63$
The coefficient of x^{2} is 11
The coefficient of x is -54
Constant term is 63
So, we express the middle term $-54 x$ as $-33 x-21 x$
$11 x^{2}-54 x+63=11 x^{2}-33 x-21 x+63$
$=11 x(x-3)-21(x-3)$
$=(11 x-21)(x-3)$
9. $7 x-6 x^{2}+20$

Solution:

We have,
$7 x-6 x^{2}+20$
$-6 x^{2}+7 x+20$
$6 x^{2}-7 x-20$
The coefficient of x^{2} is 6
The coefficient of x is -7
Constant term is -20
So, we express the middle term $-7 x$ as $-15 x+8 x$
$6 x^{2}-7 x-20=6 x^{2}-15 x+8 x-20$
$=3 x(2 x-5)+4(2 x-5)$
$=(3 x+4)(2 x-5)$
10. $3 x^{2}+22 x+35$

Solution:

We have,
$3 x^{2}+22 x+35$
The coefficient of x^{2} is 3
The coefficient of x is 22
Constant term is 35
So, we express the middle term $22 x$ as $15 x+7 x$
$3 x^{2}+22 x+35=3 x^{2}+15 x+7 x+35$
$=3 x(x+5)+7(x+5)$
$=(3 x+7)(x+5)$
11. $12 x^{2}-17 x y+6 y^{2}$

Solution:
We have,
$12 x^{2}-17 x y+6 y^{2}$
The coefficient of x^{2} is 12
The coefficient of x is $-17 y$
Constant term is $6 y^{2}$
So, we express the middle term $-17 x y$ as $-9 x y-8 x y$

$$
\begin{aligned}
& 12 x^{2}-17 x y+6 y^{2}=12 x^{2}-9 x y-8 x y+6 y^{2} \\
& =3 x(4 x-3 y)-2 y(4 x-3 y)
\end{aligned}
$$

$=(3 \mathrm{x}-2 \mathrm{y})(4 \mathrm{x}-3 \mathrm{y})$
12. $6 x^{2}-5 x y-6 y^{2}$

Solution:

We have,
$6 x^{2}-5 x y-6 y^{2}$
The coefficient of x^{2} is 6
The coefficient of x is $-5 y$
Constant term is $-6 y^{2}$
So, we express the middle term $-5 x y$ as $4 x y-9 x y$
$6 x^{2}-5 x y-6 y^{2}=6 x^{2}+4 x y-9 x y-6 y^{2}$
$=2 x(3 x+2 y)-3 y(3 x+2 y)$
$=(2 x-3 y)(3 x+2 y)$
13. $6 x^{2}-13 x y+2 y^{2}$

Solution:

We have,
$6 x^{2}-13 x y+2 y^{2}$
The coefficient of x^{2} is 6
The coefficient of x is $-13 y$
Constant term is $2 y^{2}$
So, we express the middle term $-13 x y$ as $-12 x y-x y$
$6 x^{2}-13 x y+2 y^{2}=6 x^{2}-12 x y-x y+2 y^{2}$
$=6 x(x-2 y)-y(x-2 y)$
$=(6 x-y)(x-2 y)$
14. $14 x^{2}+11 x y-15 y^{2}$

Solution:

We have,
$14 x^{2}+11 x y-15 y^{2}$
The coefficient of x^{2} is 14
The coefficient of x is $11 y$
Constant term is $-15 y^{2}$
So, we express the middle term 11 xy as $21 \mathrm{xy}-10 \mathrm{xy}$
$14 x^{2}+11 x y-15 y^{2}=14 x^{2}+21 x y-10 x y-15 y^{2}$
$=2 x(7 x-5 y)+3 y(7 x-5 y)$
$=(2 x+3 y)(7 x-5 y)$
15. $6 a^{2}+17 a b-3 b^{2}$

Solution:

We have,
$6 a^{2}+17 a b-3 b^{2}$
The coefficient of a^{2} is 6
The coefficient of a is 17 b
Constant term is $-3 b^{2}$
So, we express the middle term $17 a b$ as $18 a b-a b$
$6 a^{2}+17 a b-3 b^{2}=6 a^{2}+18 a b-a b-3 b^{2}$
$=6 a(a+3 b)-b(a+3 b)$
$=(6 a-b)(a+3 b)$
16. $36 a^{2}+12 a b c-15 b^{2} c^{2}$

Solution:

We have,
$36 a^{2}+12 a b c-15 b^{2} c^{2}$
The coefficient of a^{2} is 36
The coefficient of a is $12 b c$
Constant term is $-15 b^{2} \mathrm{c}^{2}$
So, we express the middle term 12abc as 30abc - 18abc
$36 a^{2}-12 a b c-15 b^{2} c^{2}=36 a^{2}+30 a b c-18 a b c-15 b^{2} c^{2}$
$=6 a(6 a+5 b c)-3 b c(6 a+5 b c)$
$=(6 a+5 b c)(6 a-3 b c)$
$=(6 a+5 b c) 3(2 a-b c)$
17. 15x $x^{2}-16 x y z-15 y^{2} z^{2}$

Solution:

We have,
$15 x^{2}-16 x y z-15 y^{2} z^{2}$
The coefficient of x^{2} is 15
The coefficient of x is $-16 y z$
Constant term is $-15 y^{2} z^{2}$
So, we express the middle term $-16 x y z$ as $-25 x y z+9 x y z$
$15 x^{2}-16 x y z-15 y^{2} z^{2}=15 x^{2}-25 y z+9 y z-15 y^{2} z^{2}$
$=5 x(3 x-5 y z)+3 y z(3 x-5 y z)$
$=(5 x+3 y z)(3 x-5 y z)$
18. $(x-2 y)^{2}-5(x-2 y)+6$

Solution:

We have,
$(x-2 y)^{2}-5(x-2 y)+6$
The coefficient of $(x-2 y)^{2}$ is 1
The coefficient of ($x-2 y$) is -5
Constant term is 6
So, we express the middle term $-5(x-2 y)$ as $-2(x-2 y)-3(x-2 y)$
$(x-2 y)^{2}-5(x-2 y)+6=(x-2 y)^{2}-2(x-2 y)-3(x-2 y)+6$
$=(x-2 y-2)(x-2 y-3)$
19. $(2 a-b)^{2}+2(2 a-b)-8$

Solution:

We have,
$(2 a-b)^{2}+2(2 a-b)-8$
The coefficient of $(2 a-b)^{2}$ is 1
The coefficient of (2a-b) is 2
Constant term is -8
So, we express the middle term $2(2 a-b)$ as $4(2 a-b)-2(2 a-b)$
$(2 a-b)^{2}+2(2 a-b)-8=(2 a-b)^{2}+4(2 a-b)-2(2 a-b)-8$
$=(2 a-b)(2 a-b+4)-2(2 a-b+4)$
$=(2 a-b+4)(2 a-b-2)$

EXERCISE 7.9 PAGE NO: 7.32

Factorize each of the following quadratic polynomials by using the method of completing the square:

1. $p^{2}+6 p+8$

Solution:

We have,
$p^{2}+6 p+8$
Coefficient of p^{2} is unity. So, we add and subtract square of half of coefficient of p.
$p^{2}+6 p+8=p^{2}+6 p+3^{2}-3^{2}+8$ (Adding and subtracting 3^{2})
$=(p+3)^{2}-1^{2}$ (By completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(p+3-1)(p+3+1)$
$=(p+2)(p+4)$
2. $q^{2}-10 q+21$

Solution:

We have,
$q^{2}-10 q+21$
Coefficient of q^{2} is unity. So, we add and subtract square of half of coefficient of q.
$q^{2}-10 q+21=q^{2}-10 q+5^{2}-5^{2}+21$ (Adding and subtracting 5^{2})
$=(q-5)^{2}-2^{2}$ (By completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(q-5-2)(q-5+2)$
$=(q-3)(q-7)$
3. $4 y^{2}+12 y+5$

Solution:

We have,
$4 y^{2}+12 y+5$
$4\left(y^{2}+3 y+5 / 4\right)$
Coefficient of y^{2} is unity. So, we add and subtract square of half of coefficient of y.
$4\left(y^{2}+3 y+5 / 4\right)=4\left[y^{2}+3 y+(3 / 2)^{2}-(3 / 2)^{2}+5 / 4\right]$ (Adding and subtracting $\left.(3 / 2)^{2}\right)$
$=4\left[(y+3 / 2)^{2}-1^{2}\right]$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=4(y+3 / 2+1)(y+3 / 2-1)$
$=4(y+1 / 2)(y+5 / 2)($ by taking LCM $)$
$=4[(2 y+1) / 2][(2 y+5) / 2]$
$=(2 y+1)(2 y+5)$
4. $p^{2}+6 p-16$

Solution:

We have,
$p^{2}+6 p-16$
Coefficient of p^{2} is unity. So, we add and subtract square of half of coefficient of p.
$p^{2}+6 p-16=p^{2}+6 p+3^{2}-3^{2}-16$ (Adding and subtracting 3^{2})
$=(p+3)^{2}-5^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(p+3+5)(p+3-5)$
$=(p+8)(p-2)$
5. $x^{2}+12 x+20$

Solution:
We have,
$x^{2}+12 x+20$
Coefficient of x^{2} is unity. So, we add and subtract square of half of coefficient of x.
$x^{2}+12 x+20=x^{2}+12 x+6^{2}-6^{2}+20$ (Adding and subtracting 6^{2})
$=(x+6)^{2}-4^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(x+6+4)(x+6-4)$
$=(x+2)(x+10)$
6. $a^{2}-14 a-51$

Solution:

We have,
$a^{2}-14 a-51$
Coefficient of a^{2} is unity. So, we add and subtract square of half of coefficient of a.
$a^{2}-14 a-51=a^{2}-14 a+7^{2}-7^{2}-51$ (Adding and subtracting 7^{2})
$=(a-7)^{2}-10^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(a-7+10)(9-7-10)$
$=(a-17)(a+3)$
7. $a^{2}+2 a-3$

Solution:

We have,
$a^{2}+2 a-3$
Coefficient of a^{2} is unity. So, we add and subtract square of half of coefficient of a.
$a^{2}+2 a-3=a^{2}+2 a+1^{2}-1^{2}-3$ (Adding and subtracting 1^{2})
$=(a+1)^{2}-2^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(a+1+2)(a+1-2)$
$=(a+3)(a-1)$
8. $4 x^{2}-12 x+5$

Solution:

We have,
$4 x^{2}-12 x+5$
$4\left(x^{2}-3 x+5 / 4\right)$
Coefficient of x^{2} is unity. So, we add and subtract square of half of coefficient of x.
$4\left(x^{2}-3 x+5 / 4\right)=4\left[x^{2}-3 x+(3 / 2)^{2}-(3 / 2)^{2}+5 / 4\right]$ (Adding and subtracting $\left.(3 / 2)^{2}\right)$
$=4\left[(x-3 / 2)^{2}-1^{2}\right]$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=4(x-3 / 2+1)(x-3 / 2-1)$
$=4(x-1 / 2)(x-5 / 2)(b y$ taking LCM)
$=4[(2 x-1) / 2][(2 x-5) / 2]$
$=(2 x-5)(2 x-1)$
9. $y^{2}-7 y+12$

Solution:

We have,
$y^{2}-7 y+12$
Coefficient of y^{2} is unity. So, we add and subtract square of half of coefficient of y .
$y^{2}-7 y+12=y^{2}-7 y+(7 / 2)^{2}-(7 / 2)^{2}+12\left[\right.$ Adding and subtracting $\left.(7 / 2)^{2}\right]$
$=(y-7 / 2)^{2}-(7 / 2)^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$
$=(y-(7 / 2-1 / 2))(y-(7 / 2+1 / 2))$
$=(y-3)(y-4)$
10. $z^{2}-4 z-12$

Solution:

We have,
$z^{2}-4 z-12$
Coefficient of z^{2} is unity. So, we add and subtract square of half of coefficient of z.
$z^{2}-4 z-12=z^{2}-4 z+2^{2}-2^{2}-12$ [Adding and subtracting 2^{2}]
$=(z-2)^{2}-4^{2}$ (Completing the square)
By using the formula $\left(a^{2}-b^{2}\right)=(a+b)(a-b)$

$$
\begin{aligned}
& =(z-2+4)(z-2-4) \\
& =(z-6)(z+2)
\end{aligned}
$$

