RDF Meta Model and Schema

CS 431 - March 31, 2008
Carl Lagoze - Cornell University

Looking behind the curtain: RDF Meta-model

RDF Meta-Model provides base level for inferences

Given a set of facts...
Derive additional facts

Some facts
- Sam has a Prius
- APriusisacar
- A Car is a type of vehicle
- Sam has a bicycle
- A bicycle is a type of vehicle

Inference by subsumption: Sam has two vehicles

Inference by human judgment: Sam is an
environmentalist.

RDF meta-model basic elements

» All defined in rdf namespace
— http://lwww.w3.0rg/1999/02/22-rdf-syntax-ns#

« Types (or classes)

rdf:Resource - everything that can be identified (with a
URI)

rdf:Property - specialization of a resource expressing a
binary relation between two resources

rdf:statement - a triple with properties rdf:subject,
rdf:predicate, rdf:object

* Properties

rdf:type - subject is an instance of that category or
class defined by the value

rdf:subject, rdfipredicate, rdf:object - relate elements
of statement tuple to a resource of type statement.

Use of rdf:type

"Resource named http://foo.org/inst is
member of class http://foo.org/classes/
cl1”

<http://foo.org/inst> <rdf:type> <http://
foo.org/classes/cl1>

http://foo.orgfinst

rdf:type

http://foo.org/classes/cl1

Typing the Resources in
Statements

|

ex.age 23

rdf:type

<7xml version="1.0" 7=

- <rdf:RDF xmlns:gss="http://www.w3.0rq/2001/11/IsaViz/graphstylesheets#"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins: xsd="http://www.w3.0rg/2001/XMLSchema#"
x:gi__p,)s:rdfs="http://www.w3.0rgf2000f01/rdf-schema#"
xmjs: ex="http://example.org/terms#">

- <ex:person rdf: about="info:123">
<ex:age

rdf:datatype="http://www.w3.0rg/2001/XMLSchema#integer'>23</ex: age>
</ex:personz
</rdf:RDF >

Formalizing a statement

* An RDF statement is a triple consisting of:
- subject - rdf:type resource
- property - rdf:type property
- object > rdf:type resource | literal

— Examples

« <http://www.cs.cornell.edu/lagoze> <http://purl.org/dc/elements/
creator>
“Carl Lagoze”

« <http://www.cs.cornell.edu/lagoze> <http://purl.org/dc/elements/
creator>
<mailto:lagoze@cs.cornell>

+ Expressible as:
- triple (nsl:s ns2:p ns3:0)

RDF statements and basic types

_~ rdf:statement

ajeolpald:yp.

N
A

rdf:property

Simple type inferencing

explicit triple Allows inference
(:8 :p :0) (:8 rdf:type rdf:Resource)
(:p rdf:type rdf:Property)
(:0 rdf:type rdf:Resource)

Reification - Statements about statements

_~ rdf:statement

ajeolpaid:yp.

rdf:prc;perty
"CL says 'WYA wrote Digital Libraries™

Reification Structure

Staff member 85740 said the weight of item 10245 1s 2.4 units

http:lew.w3.orR§999/02/22—rd-syrﬁax—ns#Statement

http/i\www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http:/Awww.example.com/2002/04/products#triple 12345
http:Awww.w3.0rg/1999/02/22-rdf-syntax-ns#subject

http:/iwww.example.com/2002/04/products#item10245

http:¥Awww.w3.0rg/1999/02/22-rdf-syntax-ns#predicate

http:/iwww_.example.com/termsiveight

htty. /Awww w3.0rg/1999/02/22-rdf-syntax-ns#object
v

"2.4"Mhttp:/Mww.w3.0rg/2001/XMLSchema#decimal

http:/Amwww_example[com/terms/iveight

v
http: /Awww.example.com/staffid/85740 "2.4"Mhttp:/Mvww.w3.0rg/2001/XMLSchema#decimal

httpy/purl.org/dc/elements/1.1/creator

Reification XML

<?¥Xml version="1.0"2>

<!DOCTYPE rdf:RDF [<!'ENTITY xsd "http://www.w3.org/2001/XMLSchemaf">] >

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:de="http://purl.org/dc/elements/1.1/"
Xxmlns:exterms="http://wuw.exawple.con/termns/"
xml:base="http://www.example.con/2002/04/products">

<rdf:Description rdf:ID="iteml0245">
<gxterms:weight rdf:datatype="g&xsd;decimal”>2.4</exterms: weight>
</rdf:Description>

<rdf:Statement rdf:about="#triplel2345">
<rdf:subject rdf:resource="http://wvv.example.con/2002/04/productsffitenl10z245"/>
<rdf:predicate rdf:resource="http://wuw.example.com/terms/weight"/>
<rdf:object rdf:datatype="&xsd;decimal’>2.4</rdf:object>

<dc:creator rdf:resource="http://www.example.con/staffid/85740"/>
</rdf:Statement>

</rdf:RDF>

Why Schema (1)?

Enables communities to share machine readable
tokens and locally define human readable labels.

“Nom” < » “Author”

cc$ 1 OO $a”

Why Schema (2)?
Relationships among vocabularies

Why Schema(3)?
Relationships among vocabulary elements

1SA

ms:director

» “John Smith”

dc:Creator

RDF Schemas

- Declaration of vocabularies

- classes, properties, and relationships defined by a particular
community

- relationship of properties to classes
* Provides substructure for inferences based on
existing triples
NOT prescriptive, but descriptive
- NOTE: This is different from XML Schema

+ Schema language is an expression of basic RDF model

- uses meta-model constructs: resources, statements,
properties

- schema are “legal” rdf graphs and can be expressed in RDF/
XML syntax

RDFs Namespace

Class-related
- rdfs:Class, rdfs:subClassOf

Property-related
- rdfs:subPropertyOf, rdfs:domain, rdfs:range

RDF Schema: Specializing Properties

* rdfs:subPropertyOf - allows specialization of
relations

- E.g., the property "father” is a subPropertyOf the
property parent

* subPropertyOf semantics

Explicit Model Inferences

(:s rdfs:subPropertyOf :0) (s rdf:type rdf:Property)
(‘o rdf:type rdf:Property)

(is :p o) (35 :q :0)
(:p rdfs:subPropertyOf :q)

(:p rdfs:subPropertyOf :q) (:p rdfs:subPropertyOf :r)
(:q rdfs:subPropertyOf :r)

Inferences from Property
Relationships

) , cs431:hasC hi_ln;L_;:g-'l_SH asSister
) cs431:hasChild , — I —
‘;3‘*311133-2_ hildl cs431:hasSibling. @ —— cs43thasChild _ ___——

cs431:hasChild rdfs:subPropertyOf _ #5431:-hasDescendant
|

cs431:hasBrother rdfs:subPropertyOf

rdfs:subPropertyOf cs431:hasSibling
cs431:hasSister

Sub-Property Semantics

¢5431:hasDescendant cs431 il"’ sDes ‘::5"“"'11‘.(0543 | :(Ion'h* —cs431:has f‘f”ﬁ'l_i'i”

-

— —— — — cs431 has!| hild __—W———""—___cs431:hasSister g ____
——— ¢5431:has Child _ %s%l:be"%‘-* m— cs43lhasChild T esdd1zeve)
e aling ™\ i . — — - — X)
(esHtualice y—oqaThaschid cs431:has Sibling__W~——=<__ —

b T o -—"---_“7 -> cs431:hasDescendant e
~gs431:hasDescendant ¢ cs43 charles Yy — e —
1N S s)

- Note the inferences we can not make at this time:
- E.g., transitivity, reflexity

» But, just wait (OWL)

Property-based semantics

Provide basis for type inference from properties
NOT restrictive like xml schema constraints
rdfs:domain

- classes of resources that have a specific property
rdfs:range

- classes of resources that may be the value of a specific
property

Explicit Model Inferences

(is :p :0) (:s rdf:type :1)
(:p rdfs:domain :t)

(:s :p :0) (:o rdf:type :t)
(:p rdfsirange :1)

Inferences from Constraints

cs431 :hasChiI-;L_L:§431 ‘hasSister
cs431:hasChild —— —_—
c::331 -hasChild cs431 :has:;il_)my_—_ _— cs431:hasChild

>

rdf-type cs431:Person

cs431 :cha
df:type

rdf.type
cs431 :allce cs431:Parent

(:has-child rdfes:domain parent)
(:has-child rdfs:range person)

(:has-sibling rdfs:domain person)

(:has-brother rdfs:range :male-person)
(:has-sister rdfs:range :female-person)

Class Declaration

» rdfs:Class
- A resources denoting a set of resources;
- Range of rdf:type

f: df:t
‘ rdf:type ,‘ rdi-type » rdfs:class

ex:MotorVehicle rdf:type rdfs:Class
exthings:companyCar rdf:type ex:MotorVehicle

Class Hierarchy

 rdfs:subClassOf

- Create class hierarchy

rdfs:subClassOf '
rdf:type \Qﬁtype

rdf:class rdf:class

ex:MotorVehicle rdf:type rdfs:Class
ex:SUV rdf:type rdfs:Class

ex:SUV rdf:subClassOf ex:MotorVehicle
exthings:companyCar rdf:type ex:SUV

Sub-Class Inferencing

Explicit Model Inferences

(:s rdf:type :0) (‘o rdf:type rdfs:Class)

(:s rdf:type :0) (:s rdf:type :c)
(‘0 rdfs:subClassOf :c)

(:s rdfs:subClassOf :0) (:s rdfs:subClassOf :c)
(:0 rdfs:subClassOf :c)

(:s rdfs:subClassOf :0) (:s rdf:type rdfs:Class)
(:o rdf:type rdfs:Class)

(:s rdf:type rdfs:Class) (:s rdfs:subClassOf
rdf:Resource)

Sub-class Inferencina Examble

_(:_3;431 -hasChild

N

cs431.eve
cs431:.charles

cs431:FemalePerson
rdf.type
rdf.type
cs431:Person

rdf.type
rdf:type

df:type

rdfs:Resource

rdf.type
rdf.type

rdf.type
cs431 :allce cs431:Parent

cs431:hasChild ___'___‘,;.‘ -
cs431 :has:’%il:nl__ cs431:hasChild -

(:parent rdfs:subClassOf :person)

(:male-person rdfs:subClassOf :person)
(:female-person rdfs:subClassOf :person)

(:mother rdfs:subClassOf :parent)

(:mother rdfs:subClassOf :female-person)

cs431:alice
cs431:.charles
cs431:doris

rdf:type

cs431:Person

Components of the Semantic Web

Unicode

-
W | Rules Trust

W

R Data Proof §

Data Logic é

f- n

:::c Ontology vocabulary .T"_g

=

a

Problems with RDF/RDFs
Non-standard, overly “liberal”

Sﬂpgig’:li.rl\gﬁon between class and instances
- <Species, type, Class>
- <Lion, type, Species>
- <Leo, type, Lion>
Properties themselves can have properties
- <hasDaughter, subPropertyOf, hasChild>
- <hasDaugnter, type, Property>
No distinction between language constructors and
ontology vocabulary, so constructors can be
applied to themselves/each other
- <type, range, Class>
- <Property, type, Class>
- <type, subPropertyOf, subClassOf>
No known reasoners for these non-standard
semantics

Problems with RDF/RDFs
Weaknesses in expressivity

* No localized domain and range constraints
- Can't say the range of hasChild is person in context of
persons and elephants in context of elephants
No existence/cardinality constraints

- Can't say that all instances of persons have a mother that
is also a person

- Can't say that persons have exactly two biological parents

No transitive, inverse or symmetric properties
- Can't say isPartOf is a transitive property

- Can't say isPartOf is inverse of hasPart

- Can't say touches is symmetric

So, we need a more expressive and well-grounded
ontology language....

What is an Ontology?

A formal specification of conceptualization shared
In a community

Vocabulary for defining a set of things that exist
in a world view

Formalization allows communication across
application systems and extension

Parallel concepts in other areas:

- Domains: database theory

- Types: AI

- Classes: OO systems

- Types/Sorts: Logic

Global vs. Domain-specific

XML and RDF are ontologically neutral

* No standard vocabulary just primitives
- Resource, Class, Property, Statement, etc.

» Compare to classic first order logic

- Conjunction, disjunction, implication, existential, universal
quantifier

Components of an Ontology

Vocabulary (concepts)
Structure (attributes of concepts and hierarchy)
Relationships between concepts

Logical characteristics of relationships

- Domain and range restrictions

- Properties of relations (symmetry, transitivity)
- Cardinality of relations

- etc.

Wordnet

On-line lexical reference system, domain-
independent

>100,000 word meanings organized in a faxonomy
with semantic relationships

- Synonymy, meronymy, hyponymy, hypernymy

Useful for text retrieval, etfc.

CYC

Effort in AT community to accommodate all of
human knowledgelll

Formalizes concepts with logical axioms specifying
constraints on objects and classes

Associated reasoning tools
- Contents are proprietary but there is OpenCyc

So why re-invent ontologies for the Web

 Not re-invention
- Same underlying formalisms (frames, slots, description
logic)
* But new factors
- Massive scale

- Tractability

- Knowledge expressiveness must be limited or reasoning
must be incomplete

- Lack of central control
* Need for federation
- Inconsistency, lies, re-interpretations, duplications
+ New facts appear and modify constantly

- Open world vs. Close world assumptions

- Contrast to most reasoning systems that assume anything
absent from knowledge base is not true

- Need to maintain monotonicity with tolerance for
contradictions

- Need to build on existing standards
- URI, XML, RDF

Web Ontology Language (OWL)

- W3C Web Ontology Working Group (WebOnt)
- Follow on to DAML, OIL efforts

- W3C Recommendation

* Vocabulary extension of RDF

Species of OWL

- OWL Lite

- Good for classification hierarchies with simple
constraints (e.g., thesauri)

- Reasoning is computational simple and efficient

- OWL DL

- Computationally complete and decidable (computation in
finite time)

- Correspondence to description logics (decidable
fragment of first-order logic)

- OWL Fuli

- Maximum expressiveness
- No computational guarantees (probably never will be)

Each language is extension of simpler predecessor

Description Logics

Fragment of first-order logic designed for logical
representation of object-oriented formalisms

- frames/classes/concepts
- sets of objects

- roles/properties
» binary relations on objects

- individuals

Representation as a collection of statements, with
unary and binary predicates that stand for
concepts and roles, from which deductions can be
made

High expressivity with decidability and
completeness

- Decidable fragment of FOL

Description Logics Primitives

Atomic Concept

- Human

Atomic Role

- likes

Conjunction

- human intersection male
Disjunction

- hice union rich
Negation

- not rich

Existential Restriction
- exists has-child.Human

Value Restriction
- for-all has-child.Blond

Number Restriction
- > 2 has-wheels

Inverse Role
- has-child, has-parent

Transitive role
- has-child

Description Logic - Tboxes

* Terminological knowledge
Concept Definitions
- Father is conjunction of Man and has-child.Human
- Axioms

- motorcycle subset-of vehicle
- has-favorite.Brewery subrelation-of drinks.Beer

Description Logics: Aboxes

Assertional knowledge

Concept assertions
- John is-a Man

Role assertions
- has-child(John, Bill)

Description Logics: Basic Inferencing

*+ Subsumption
- Is C1 subclass-of C2
- Compute taxonomy

- Consistency
- Can C have any individuals

Namespaces and OWL

<rdf:RDF
Xmlns ="http
¥xmlns:vin ="http:
xml:bhase ="http
xmlns: food="http:
xmlns:owl ="http:
xmlns:rdf ="http:
xmlns:rdfs="http:
xmlns:xsd ="http:

2w,
A/ uu,
PR 73040 8
A/,
A/ uu,
PR 10
A/,
A/ uu,

w3
w3
w3
w3
w3
w3
w3
w3

.org/TR/2004/REC-0owl-guide-20040210/wine#"
.org/TR/2004/REC-0owl-guide-200402 10/ wine#"
org/TR/2004/REC-owl-guide-20040210/wine#"
.org/TR/2004/REC-owl-guide-200402 10/ food#"
.0rg/2002/07/0wlg"
.org/1999/02/22-rdf-syntax-nsg"
Lorg/2000/01/rdf-schemag"”
Lorg/2001/XMLSchema# ">

OWL Class Definition

<owl:Class rdf:ID="Winery"/>
<owl:Class rdf:ID="Region"/>
<owl:Class rdf:ID="ConsumableThing"/>

<owl:Class rdf:ID="Wine'">
<rdfs:subClass0Of rdf:resource="&food;PotablelLiguid"/>
<rdfs:label xml:lang="en">wine</rdfs: label:>
<rdfs:label xwl:lang="fr">vin</rdfs: label>

</owl:Class>

Why owl:class vs. rdfs:class

- Rdfs:class is "class of all classes”

- In DL class can not be treated as individuals
(undecidable)

» Thus owl:class, which is expressed as
rdfs:subclass of rdfs:class

- No problem for standard rdf processors since an
owl:class “is a" rdfs:class

* Note: there are other times you want to treat
class of individuals
- Class drinkable liquids has instances wine, beer, ...
- Class wine has instances merlot, chardonnay, zinfandel, ...

OWL class building operations

disjointWith
- No vegetarians are carnivores
sameClassAs (equivalence)

Enumerations (on instances)
- The Ivy League is Cornell, Harvard, Yale,

Boolean set semantics (on classes)
- Union (logical disjunction)
* Class parent is union of mother, father

- Intersection (logical conjunction of class with properties)

* Class WhiteWine is conjunction of things of class wine and
have property white

- complimentOf (logical negation)
* Class vegetarian is disjunct of class carnivore

OWL Properties

Two types
s ObjectProperty - relations between instances of classes

s DatatypeProperty - relates an instance to an rdfs:Literal or
XML Schema datatype

(Both rdfs:subClassOf rdf:Property)

<owl:DatatypeProperty rdf:ID="name">
<rdfs:domain rdf:resource="Person" />

<rdfs:range rdf:resource=
"http://www.w3.0rg/2001/XMLSchema/string" />

</owl:DatatypeProperty>

<owl:ObjectProperty rdf:ID="activity">
<rdfs:domain rdf:resource="Person" />
<rdfs:range rdf:resource="ActivityArea" />

</owl: ObjectProperty>

OWL property building operations & restrictions

Transitive Property
- P(x.,y) and P(y,z) -> P(x,z)
SymmetricProperty
- P(x)y) iff P(y,x)
Functional Property
- P(x,y) and P(x,z) -> y=z
inverseOf
- P1(x)y) iff P2(yx)
» InverseFunctional Property
- P(y,x) and P(z x) -> y=z
» Cardinality
- Only Oor 1in lite and full

OWL DataTypes

* Full use of XML schema data type definitions

Examples
- Define a type age that must be a non-negative integer

- Define a type clothing size that is an enumeration “small”
“medium” “large”

OWL Instance Creation

* Create individual objects filling in slot/attribute/
property definitions

<Person ref:ID="“William Arms’>
<rdfs:label>Bill</rdfs:label>
<age><xsd:integer rdf:value="“57"/></age>
<shoesize><xsd:decimal rdf:value=“10.5"/></shoesize>
</Person>

OWL Lite Summary

Schema constructs Equality constructs Headers
Class (i.e. owl:Class) equivalentClass imports
rdf:Property equivalentProperty priorVersion
rdfs:subClassOf samelndividualAs backwardCompat-
rdfs:subPropertyOf differentFrom ibleWith
rdfs:domain alIDifferent incompatibleWith
rdfs:range
Individual Cardinality Property type

o minCardinality restrictions
Property characteristics (0 or1) allvValuesFrom
inverseOf maxCardinality someValuesFrom
TransitiveProperty (Oor1)
FunctionaIPrqperty Cardinality (0 or 1) RDF datatyping
InverseFunctionalProperty
SymmetricProperty Class intersection

intersectionOf

OWL DL and Full Summary

Class axioms
oneOf
disjointWith

Property fillers
hasValue

Class expressions
equivalentClass
rdfs:subClassOf
unionOf
intersectionOf
complementOf

Arbirtary cardinality
minCardinality
maxCardinality
Cardinality

OWL DL vs. OWL-Full

»+ Same vocabulary

- OWL DL restrictions

- Type separation
« Class can not also be an individual or property
* Property can not also be an individual or class

- Separation of ObjectProperties and DatatypeProperties

Language Comparison

DTD XSD | RDF(S) OWL

Bounded lists (“X is known to have exactly 5 X
children”)

Cardinality constraints (Kleene operators) X X
Class expressions (unionOf, complementOf) X
Data types X
Enumerations X X
Equivalence (properties, classes, instances) X
Formal semantics (model-theoretic & axiomatic) X
Inheritance X X
Inference (transitivity, inverse) X
Qualified contraints (“all children are of type person” X
Reification X X

Protégé and RACER - tools for
building, manipulating and reasoning
over ontologies
* Protege -

- Use the 3.x version

- Multiple plug-ins are available

* Protégé OWL plug-in

* Other semantic web related plug-ins

* Racer
- Description Logic based reasoning engine
- Server-based
- Integrates with Protégé-OWL

