
Meredith

CAHILL GORDON & REINDEL EIGHTY PINE STREET

New York, N.Y. 10005

FLOYD ABRAMS ROGER ANDRUS MICHAEL A. BECKER HENRY G. BISGAIER SUSAN BUCKLEY KEVIN J. BURKE P. KEVIN CASTEL WALTER C. CLIFF, P.C. BENJAMIN J. COHEN JOSEPH P. CONWAY MARSHALL COX THOMAS F. CURNIN RAYMOND L. FALLS, JR. PATRICIA FARREN BART FRIEDMAN CIRO A. GAMBONI CHARLES A. GILMAN STEPHEN A. GREENE ROBERT M. HALLMAN WILLIAM M. HARTNETT DAVID R. HYDE THOMAS R. JONES ALLEN S. JOSLYN THOMAS J. KAVALER LAWRENCE A. KOBRIN IMMANUEL KOHN EDWARD P. KRUGMAN WILLIAM T. LIFLAND MICHAEL MACRIS

JONATHAN I. MARK DENIS MCINERNEY, P.C. RAND MCQUINN * GERARD M. MEISTRELL ROGER MELTZER CLIFFORD L. MICHEL JOHN P. MITCHELL MATHIAS E. MONE HUGH P. MORRISON, JR DONALD J. MULVIHILL KENNETH W. ORCE CHARLES PLATTO ROY L. REGOZIN RICHARD L. REINHOLD DEAN RINGEL THORN ROSENTHAL RICHARD J. SABELLA IRWIN SCHNEIDERMAN, P.C. H. RICHARD SCHUMACHER JOHN SCHUSTER LAURENCE A. SILVERMAN HOWARD G. SLOANE LAURENCE T. SORKIN LEONARD A. SPIVAK GERALD S. TANENBAUM MICHAEL P. TIERNEY ROBERT USADI JOHN R. VAUGHAN GEORGE WAILAND RALPH O. WINGER GARY W. WOLF JOHN R. YOUNG

DMTCE 0U2

1.6

CORYDON B. DUNHAM SAMUEL ESTREICHER RICHARD A. MAHFOOD, Q.C. ** MICHAEL S. SACKHEIM JOHN J. STANTON, JR. COUNSEL

FREDDY DRESSEN *** EUROPEAN COUNSEL

WASHINGTON, D.C. OFFICE 1990 K STREET. N.W WASHINGTON, D.C. 20006

EUROPEAN OFFICE EUROPEAN OFFICE 19 RUE FRANÇOIS I^{ER} 75008 PARIS, FRANCE

TELEX /CABLE RCA 232184 WUT 127068 CAGO UR COTTOFRANK NYK CAGO UR FACSIMILE 212-269-5420

* ADMITTED D.C. ONLY ** ALSO ADMITTED ENGLAND AND JAMAICA *** ADMITTED FRANCE ONLY

TELEPHONE 212-701-3000 WRITER'S DIRECT NUMBER

(212) 701-3680

Des Moines TCE Site - Site Map Re: and Geophysical Investigation of South Parking Lot at Meredith's Locust Street Property

Superfund

Dear Mr. Curtis:

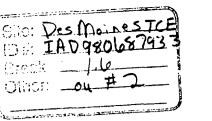
On behalf of Meredith Corporation ("Meredith"), I have enclosed two copies of (1) a topographical map of Meredith's Parking Lot, prepared by Bishop Engineering Company, Des Moines, Iowa, dated October 25, 1989, and (2) a Report entitled "Geophysical Investigation on the Meredith Corporation South Parking Lot", prepared by Layne GeoSciences, Inc., dated February 1990. These have been prepared under the supervision of Meredith's consultant, Environ Corporation, pursuant to the Proposal For Conducting a Geophysical Investigation of the South Parking Lot, Meredith's Locust Street Property (June 1989), previously submitted to and approved by EPA.

Please direct any technical questions or comments with respect to these materials to John Schroeter at Environ Corporation (415) 655-7400.

Meredith's voluntary conduct of the tasks reflected in these materials and their submission are not intended and should not be construed as an admission or acknowledgment of any fault, liability or responsibility regarding the Des Moines TCE Site or otherwise, and Meredith reserves all rights and defenses, including the right to seek contribution from any responsible party,

CAHILL GORDON & REINDEL

with respect to such site or otherwise. Meredith believes that if any remediation of the South Parking Lot is undertaken, it should not be Meredith's responsibility.


Yours sincerely,

Robert M. Hallman

Mr. Glenn M. Curtis Environmental Engineer, Remedial Project Manager U.S. Environmental Protection Agency Region VII, Superfund 726 Minnesota Avenue Kansas City, KS 66101

[Enclosures]

cc: Jerry L. Hadenfeldt, Esq. John H. Schroeter, P.E.

RECEIVED

[*LG1*

MAR 1 2 1990

REMD SECTION

GEOPHYSICAL INVESTIGATION ON THE MEREDITH CORPORATION SOUTH PARKING LOT DES MOINES, IOWA

Submitted to:

ENVIRON CORPORATION EMERYVILLE, CALIFORNIA

By:

LAYNE GEOSCIENCES, INC. A SUBSIDIARY OF LAYNE-WESTERN CO., INC.

PROJECT NUMBER 1706

FEBRUARY 1990

Table of Contents

1.0 Introduction

÷

÷

į

2

ŝ

ł

2.0 Gradiometer Survey

3.0 Electromagnetic (EM) Induction Survey

4.0 Survey Results

Appendix A - Quadrature and In-phase Electromagnetic Induction Data

Appendix B - Vertical Magnetic Gradient

List of Figures

Figure No.

ŝ

.

.....

1.1

3

1 - 1 - 1 - 1 - 1

т -

1111

State State

1	Vertical Dipole Quadrature Component
2	Vertical Dipole In-phase Component
3	Vertical Magnetic Gradient Contour Interval: 100 Gammas
4	Vertical Magnetic Gradient Contour Interval: 50 Gammas
5	Vertical Magnetic Gradient Contour Interval: 50 Gammas Negative Anomalies Shaded

1.0 Introduction

A geophysical survey was conducted by Layne GeoSciences, Inc. on the paved 2-acre south parking lot at the Meredith Corporation in Des Moines, Iowa. The survey was conducted on October 25, 1989 by Layne GeoSciences geophysicists.

The primary objective of the geophysical survey was to identify the potential presence of buried drums and other metallic objects buried beneath the parking lot up to a depth of approximately 15 feet. In addition, the survey was conducted to delineate potential trench boundaries and other areas of disturbed soil. The objectives of the survey were addressed by utilizing an EG&G G-856 proton precession gradiometer and a Geonics EM-31-DL conductivity instrument. electromagnetic induction terrain Standard operating procedures for the instruments were followed during the survey as prescribed in the manufacturers manuals.

2.0 Gradiometer Survey

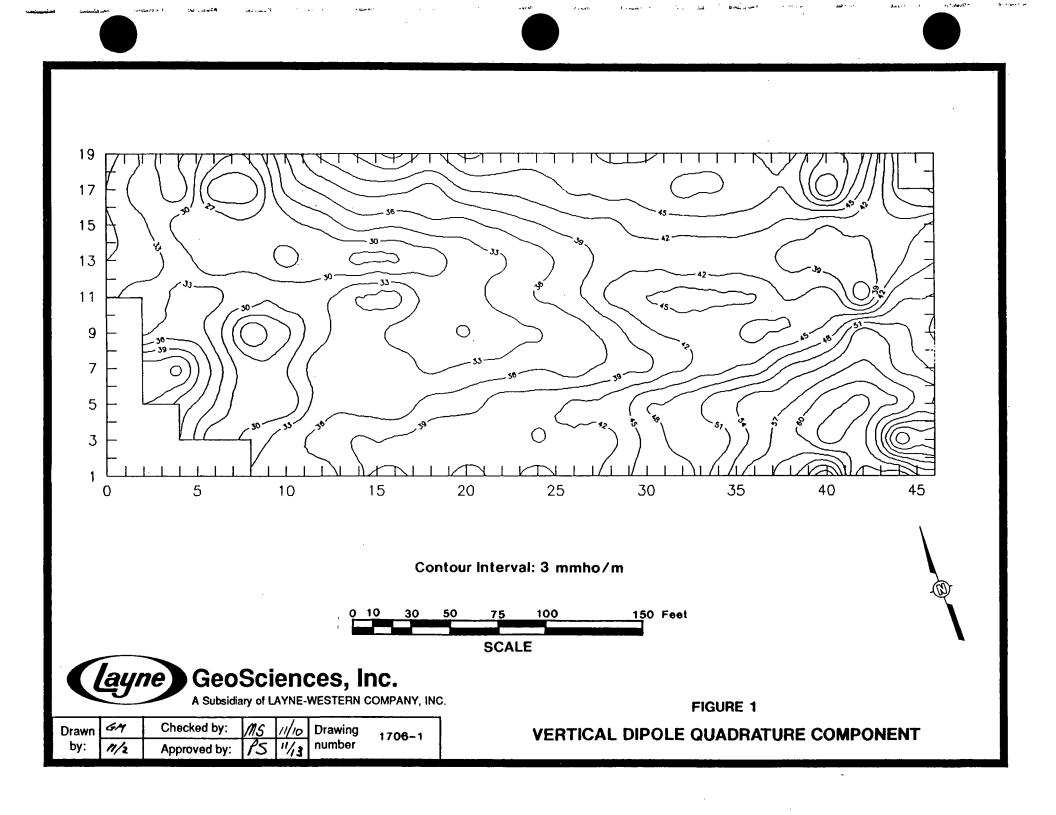
A total field gradiometer survey was conducted in place of the proposed total field magnetometer survey due to the difficulty in establishing a base station in the immediate vicinity of the parking lot which would be unaffected by railroad traffic and a substantial quantity of large metallic objects surrounding the parking lot. Two sensors mounted vertically on a staff at heights of seven and four feet above the ground surface were used to acquire the gradient data. The gradiometer survey did not require the use of a base station because it inherently eliminates time variations in the data. The gradient measurements are made almost simultaneously and are very closely spaced compared to the source of magnetic storms and diurnal variations. Such effects on the two readings are essentially identical and therefore removed on the differential. The gradient data were processed utilizing EG&G's MAGPAC magnetic software program to derive the vertical magnetic gradient for each station.

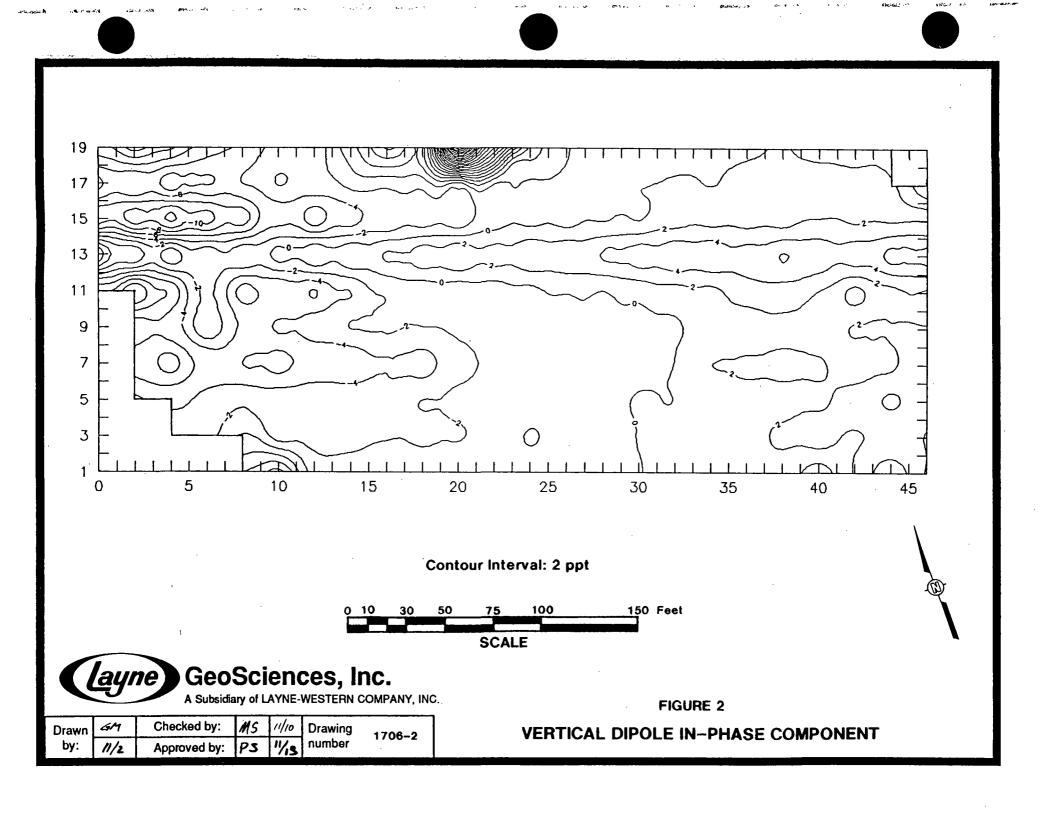
The gradiometer survey was conducted on a 10-foot grid over the surface of the parking lot. The data were recorded on 10-foot centers along 20 profiles traversing the length of the parking lot. A 10-foot grid was used in order to detect the possible presence of single 55-gallon drums.

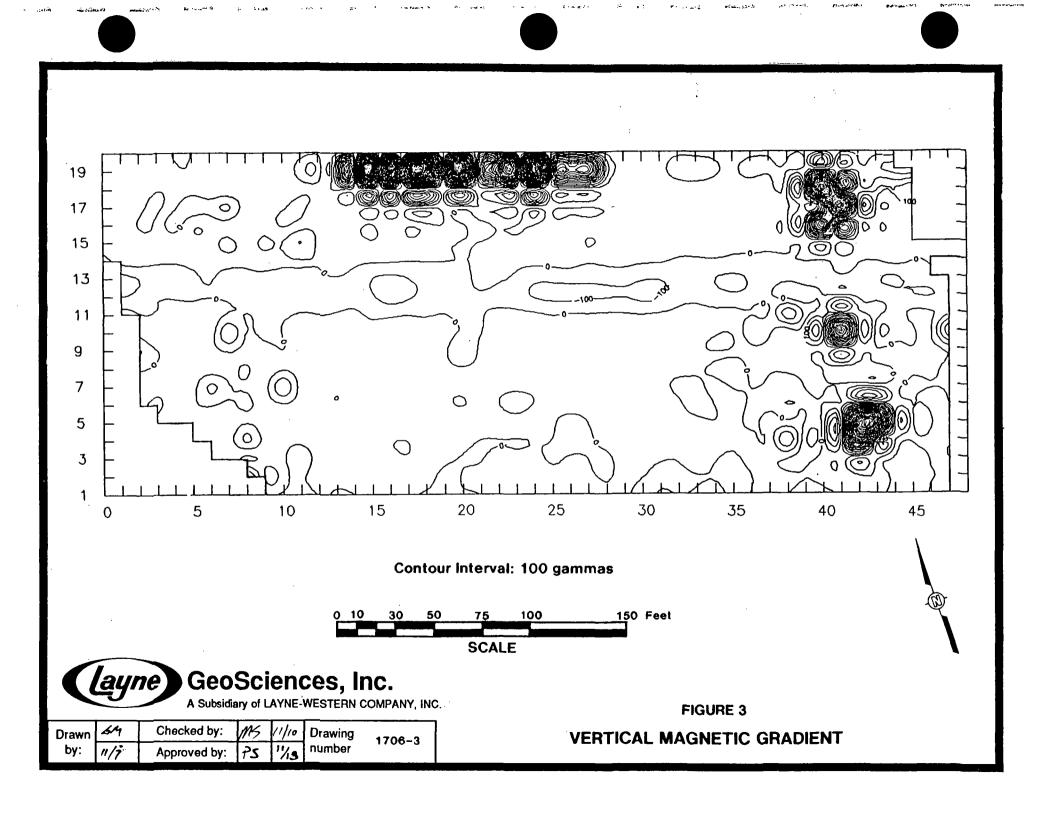
Calibration of the magnetometer for accuracy was not necessary as the sensor operation is based on nuclear precession. The precision or repeatability of the magnetometer was checked by taking successive readings periodically while traversing the profiles. If successive readings were within 1 gamma of each other the readings were considered valid. Successive non-repeating readings were obtained in several areas of the parking lot due to high magnetic field gradients which sharply degraded the signal of the proton precession magnetometer. The high gradients were encountered in the vicinity of the steel stairway and pedestrian

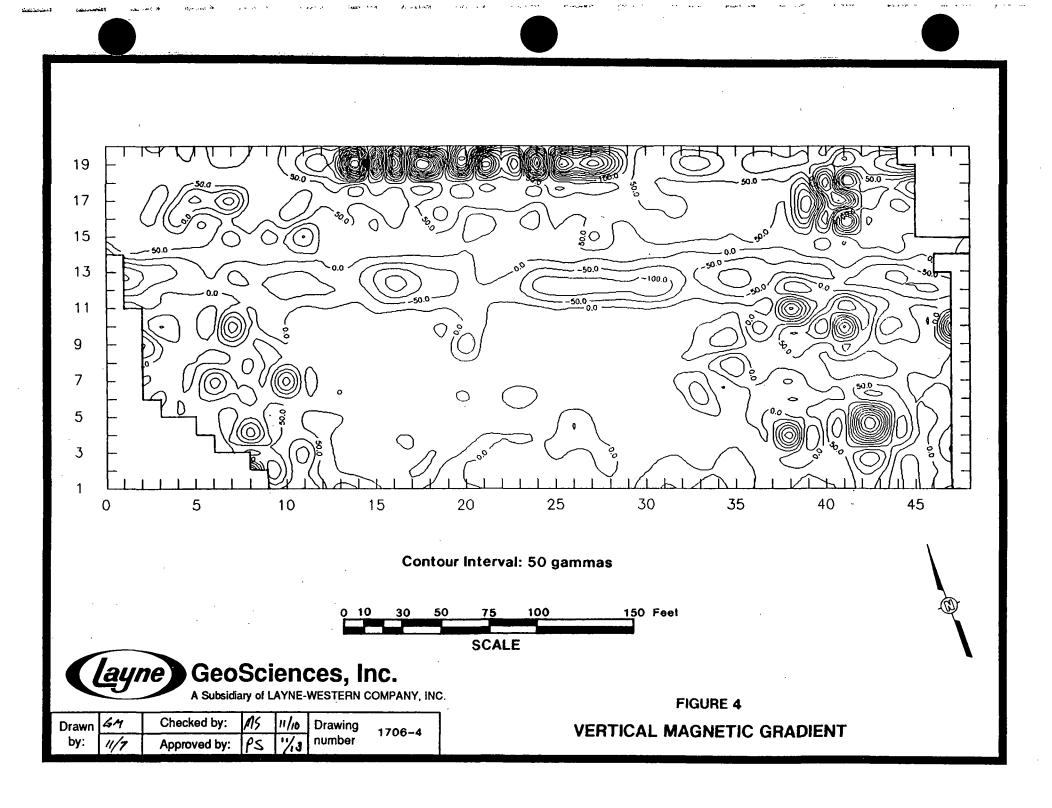
bridge used to cross the railroad tracks on the northern boundary of the parking lot and the protective steel posts around the three drains in the eastern portion of the parking lot.

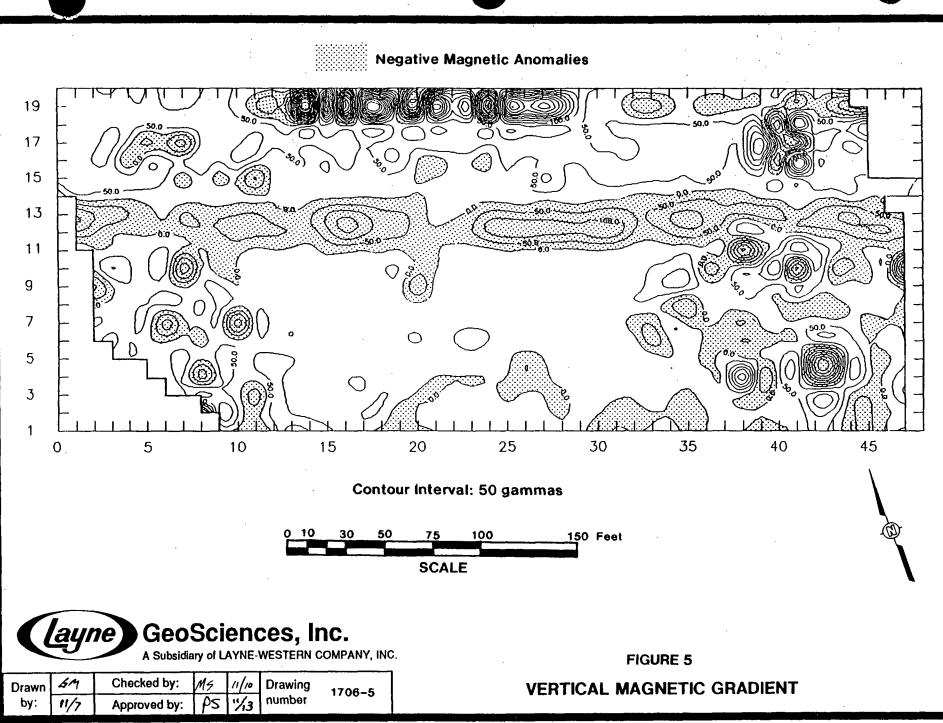
3.0 Electromagnetic (EM) Induction Survey


The EM survey was conducted for two primary objectives: 1) to measure lateral changes in subsurface conductivities which may indicate the potential presence of trenches and other areas of disturbed soil and 2) to identify the potential presence of buried drums and other metallic objects buried beneath the parking lot. The survey was conducted in the vertical dipole mode with both the quadrature and in-phase components of the induced magnetic field recorded. The quadrature component of the induced EM field was recorded to determine lateral changes in subsurface conductivities or geologic structure. The in-phase component of the induced EM field is significantly more sensitive to metallic objects and therefore was used to detect the potential presence of buried drums and other metallic objects. The vertical component EM data were downloaded to a computer for analysis utilizing Geonics EM-31 software.


The EM-31 survey was conducted on a 20-foot grid over the surface of the parking lot. The data were recorded on 20-foot centers along 10 profiles traversing the length of the parking lot. The instrument was continuously monitored for anomalies between stations. A 20-foot grid was sufficient grid density to detect the potential presence of trenches and other areas of disturbed soil as well as single 55-gallon drums.


The calibration of the EM instrument is not critical when recording relative changes in the quadrature and in-phase components of the induced field as was done in this survey. However, the instrument was field calibrated according to the manufacturer's specifications to check for "drift" in the instrument's performance during the survey. Instrument "drift" was not observed during the EM survey. The precision or repeatability of the instrument was checked by taking successive readings periodically while traversing the profiles. Measurements were considered valid if successive measurements could be repeated.


4.0 Survey Results


The data obtained from the electromagnetic induction and magnetic gradient surveys are presented in five plots (Figures 1-5). Profile line numbers are indicated on the vertical or Y-axis of the plots and the station numbers are indicated on the horizontal or X-axis of the plots. The location of anomalies described in this section are given by x,y coordinates (station number, profile line number). The vertical dipole quadrature and in-phase components of the induced magnetic field are shown in Figures 1 and 2, respectively and the magnetic gradient data are presented in Figures 3-5.

.

An average ground conductivity of approximately 30-40 mmho/m (millimhos/meter) was determined from the data. The conductivities are in the range for silt and clay-rich soil. Two areas of relatively high conductivity (>45 mmho/m) are present in the northeast and southeast portions of the parking lot. The areas of elevated conductivity centered about coordinates (40,17) and (40,4) on Figure 1 may indicate the presence of disturbed or altered soil. The only potential trench boundary detected by the quadrature component is apparently associated with the most recently installed city sewer line beneath Profile 13.

The magnetic gradient data were initially contoured with a contour interval of 100 gammas as shown in Figure 3. The magnitude of the large positive and negative anomalies were decreased by a factor of 10 to improve the resolution of these anomalies at a contour interval of 50 gammas (Figure 4). The negative magnetic anomalies have been shaded to ease in distinguishing between areas of positive and negative magnetic relief as shown in Figure 5. The shape of the gradient anomalies associated with the surface runoff drains is a function of the proximity of station locations to the steel posts and cross bars.

Most of the anomalies detected by the surveys are evident on the quadrature, in-phase and gradient plots and can be directly correlated to surface and subsurface cultural features. The cultural features and coordinates of their related anomalies are described below:

- Steel stairway and pedestrian bridge on the north boundary of the parking lot. (14,19) to (22,19) Quadrature Plot (12,19) to (26,19) In-phase Plot (11,20) to (29,20) Gradient Plot
- Approximate alignment of most recently constructed city sewer line and trench. The in-phase and gradient data suggest that the sewer is constructed with steel reinforced concrete.
 (0,13) to (46,13) Quadrature
 (0,13) to (46,13) and (0,15) to (7,15) In-phase Plots
 (0,13) to (48,13) Gradient Plot
- Protective steel posts and cross bars around the surface run-off drain in the northeast corner of the parking lot. (41,17) Quadrature Plot (41,17) Gradient Plot
- Protective steel posts and cross bars around the surface run-off drain in the east-central portion of the parking lot.
 - (41,10) Quadrature Plot
 - (41,11) In-phase Plot
 - (41,10) Gradient Plot

 Protective steel posts and cross bars around the surface run-off drain in the southeast corner of the parking lot.*
 (41,4) Quadrature Plot
 (41,4) In-phase Plot

(42,4) Gradient Plot

*The actual location of the surface run-off drain in the southeast corner of the parking lot is approximately 20 feet north of the location shown on the Bishop Engineering base map.

- Light pole guy wire and guy anchor in west-central portion of the parking lot. (8,9) Quadrature Plot (8,10) In-phase Plot (8,10) Gradient Plot
- Light pole in east-central portion of the parking lot.
 (36,9) Quadrature Plot
 (36,9) In-phase Plot
 (36,10) Gradient Plot
- Steel protective casings for monitoring wells in the southwest corner of the parking lot. (10,1) In-phase Plot (10,1) Gradient Plot
- Manhole cover in northwest portion of the parking lot.
 (7,15) Gradient Plot
- Gradient anomalies along the north boundary of the parking lot that are not associated with the stairway and bridge appear to result from the proximity of the railroad tracks to the parking lot. (0,20) to (46,20) Gradient Plot
- Power pole and overhead lines (47,10) Gradient Plot

A few of the anomalies present on the in-phase and gradient plots could not be correlated to known cultural features and may indicate the potential presence of buried metallic objects or objects containing metal. The locations of these anomalies are described by the following coordinates:

- (3,17) to (8,17)
 In-phase and Gradient Plots
- (11,15) to (12,15) In-phase and Gradient Plots

- (4,7) to (17,7) In-phase Plot (4,7) to (12,7) Gradient Plot
- (8,4) In-phase and Gradient Plots
- (38,11) Gradient Plot
- (38,4) Gradient Plot

ŝ

It is important to note, however, that the proximity of the magnetic gradient anomaly located at coordinates (38,11) to the alignment of the new city sewer line suggests that the source of this anomaly may be related to metallic materials used in the construction of the sewer line.

In addition to the anomalies listed above that could not be correlated to known cultural features, the elevated conductivity and numerous small magnetic anomalies in the southeastern portion of the parking lot may indicate the presence of disturbed or altered soil containing small metallic objects. The elevated conductivity may also result from one or more of the following geologic and hydrologic conditions:

- increased clay content of the sediment
- increased moisture content of the sediment
- higher groundwater conductivity

The gradual increase in conductivity from west to east across the parking lot suggests that the increase is the result of a lateral change in geologic conditions and is not the result of subsurface cultural materials.

The amplitude (approximately 260 gammas above background) and shape of the magnetic gradient anomaly located at coordinates (38,4) may indicate the presence of a single 55-gallon steel drum buried at a shallow depth beneath the parking lot surface. A 55-gallon drum buried at a depth of approximately 5 feet can produce an anomaly with an amplitude greater than several hundred gammas, depending on the orientation of the drum. The amplitude and shape of the smaller magnetic gradient anomalies in the southeastern portion of the parking lot do not suggest the presence of other buried drums or metallic objects with a similar mass. The sources of the smaller anomalies may be small pieces of scrap metal or reinforcement bar used in the construction of the surface run-off drain and parking lot. The EM and magnetic gradient data do not indicate the possible presence of numerous buried drums or trench boundaries in the southeastern portion of the parking lot.

CLG1

<u>Appendix A</u>

111

ł

;

1

ł

Quadrature and In-phase Electromagnetic Induction Data

	ne : 1					
	Component	B Con	tains 1 se	gments	s.	
Segment :		74-01		460	Themanner	
	ation : 80		station :		Increament	: 20
Station		-	In-phas			
8	33.600	•		ppt		
10	34.400	mS/m		ppt		
12	33.600	mS/m		ppt		
• 14	38.800			ppt		
16	38.400	mS/m mS/m		ppt		
18	40.000	mS/m mS/m		ppt		
20	37.800 39.800	mS/m mS/m		ppt		
22	37.800	•		ppt ppt	•	
24	40.200	mS/m		ppt		
26	43.200		_	ppt		
.28	46.600	mS/m		ppt ppt		
30		mS/m				
32	46.000 52.600			ppt		
34 36	59.400			ppt ppt		
38	54.600			ppt		
40	45.200			ppt		
40	65.400	•		ppt		
44	65.600			ppt		
46	59.400			ppt		
40	33.400	100/10	1.000	ppc		
> Lin	ne:3					
	ne: 3 Component	B Con	tains 1 se	aments	5.	
Mode V	Component	B Con	tains 1 se	gments	5.	
Mode V Segment : 1	Component 1			-		:-20
Mode V Segment : 1	Component 1 ation : 460	Fina	l station	: 40		:-20
Mode V Segment : 1 Initial sta	Component 1 ation : 460 Conduct	Fina	l station In-phas	: 40 e		:-20
Mode V Segment : 1 Initial sta Station 46	Component 1 ation : 460 Conduct	Fina ivity mS/m	l station In-phas 1.891	: 40 e ppt		:-20
Mode V Segment : 3 Initial sta Station 46 44	Component 1 ation : 460 Conduct 45.200	Fina ivity mS/m mS/m	l station In-phas 1.891	: 40 e		:-20
Mode V Segment : 3 Initial sta Station 46 44	Component 1 ation : 460 Conduct 45.200 43.800	Fina ivity mS/m mS/m POST	l station In-phas 1.891 2.047	: 40 e ppt ppt		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST.	Fina ivity mS/m mS/m POST mS/m	1 station In-phas 1.891 2.047 1.734	: 40 e ppt ppt ppt		:-20
Mode V Segment : 3 Initial sta Station 46 44 > Con	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. -60.600	Fina ivity mS/m mS/m POST mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071	: 40 e ppt ppt ppt ppt		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42 40 38	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200	Fina ivity mS/m mS/m POST mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432	: 40 e ppt ppt ppt ppt ppt		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42 40 38 36	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400	Fina ivity mS/m mS/m POST mS/m mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469	: 40 e ppt ppt ppt ppt ppt ppt		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42 40 38 36 34	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 59.400 54.600 48.800	Fina ivity mS/m mS/m POST mS/m mS/m mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963	: 40 e ppt ppt ppt ppt ppt ppt		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42 40 38 36 34 32	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 59.400 54.600 48.800 49.800	Fina ivity mS/m mS/m POST mS/m mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289	: 40 e ppt ppt ppt ppt ppt ppt ppt		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 59.400 54.600 48.800 49.800 45.600	Fina ivity nS/m POST nS/n nS/n nS/n nS/n nS/n nS/n nS/n	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036	: 40 e ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200	Fina ivity nS/n NS/n POST nS/n nS/n nS/n nS/n nS/n nS/n nS/n nS	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590	: 40 e ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 40.000	Fina Fivity mS/m POST mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795	: 40 e ppt pppt pppt pppt pppt pppt pppt ppp		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 59.400 54.600 48.800 49.800 45.600 41.200	Fina Fina S/n MS/N POST MS/N MS/N MS/N MS/N MS/N MS/N MS/N MS/M MS/M	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120	40 e ppt ppp ppppppppppppppppppppppppppppp		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 40.000 42.200 39.600	Fina Fina S/n MS/N POST MS/M MS/M MS/M MS/M MS/M MS/M MS/M MS	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361	40 eppp ppppppppppppppppppppppppppppppppp		:-20
Mode V Segment : 1 Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 40.000 42.200	Fina Fina S/n MS/N POST MS/N MS/N MS/N MS/N MS/N MS/N MS/N MS/M MS/M	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192	40 e ppp pppppppppppppppppppppppppppppppp		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22 20	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 39.600 41.400	Fina ivity mS/m MS/m POST mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673	40 e ppp pppppppppppppppppppppppppppppppp		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22 20 18	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 40.000 42.200 39.600 41.400 41.200	Fina ivity mS/m POSJ/m mS/m mS/m mS/m mS/m mS/m mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673 -2.192	40 e ppp pppppppppppppppppppppppppppppppp		:-20
Mode V Segment : : Initial sta Station 46 44 > Cor 42 40 38 36 34 32 30 28 26 24 22 20 18 16	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 39.600 41.400 41.200 39.400	Fina ivity mS/m POS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673 -2.192 -3.504	40 epp pppppppppppppppppppppppppppppppppp		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 39.600 41.400 41.200 39.400 39.400	Fina ivity mS/m POS/m MS/m MS/m MS/m MS/M MS/M MS/M MS/M M	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673 -2.192 -3.504 -3.179	40 40 40 40 40 40 40 40 40 40		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 39.600 41.200 39.600 41.400 39.400 39.400 37.600	Fina ivity mS/m POS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/m	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673 -2.192 -3.504 -3.179 -3.083	40 epp pppppppppppppppppppppppppppppppppp		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 39.600 39.400 39.400 37.600 35.800 31.200 27.400	Fina iviS/n POS/n POS/n nS/n nS/n nS/n nS/n nS/n nS/n nS/n	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673 -2.192 -3.504 -3.179 -3.083 0.181	40 40 40 40 40 40 40 40 40 40 40 40 40 4		:-20
Mode V Segment : : Initial sta Station 46 44 > Con 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8	Component 1 ation : 460 Conduct 45.200 43.800 nment : ST. 60.600 64.200 59.400 54.600 48.800 49.800 45.600 41.200 39.600 41.400 41.200 39.400 39.400 37.600 35.800 31.200	Fina iviS/n POSS/n nSST nSS/n nSS/n nSS/n nSS/n nSS/n nSS/n nSS/n nSS/n nSS/n nSS/n nSS/n n nSS/n n nSS/n n n nSS/n n n n	1 station In-phas 1.891 2.047 1.734 3.071 2.432 1.469 0.963 0.289 0.036 -0.590 -0.795 0.120 -1.361 -2.192 -2.673 -2.192 -3.504 -3.179 -3.083 0.181 -2.902	40 40 40 40 40 40 40 40 40 40 40 40 40 4		:-20

2

1

1

;

į

÷

> Line						C
Mode V C	Component	B Con	tains 1 s	segment	5.	
Segment : 1 Initial stat	ion : 20	Final	station	: 460	Increament	: 20
Station	Conduct	ivity	In-pha	ase		
2	42.000	mS/m	-3.637	ppt		
4	38.000	mS/m	-4.636	ppt		
6	32.800	mS/m	-3.143	ppt		
8	27.000	mS/m	-2.420	ppt		
10	27.400	mS/m	-2.950	ppt		
12	34.600	mS/m	-1.975	ppt		
· 14	34.600	mS/m	-2.661	ppt		
16	33.000	mS/m	-2.432	ppt		
18	37.200	mS/m	-1.975	ppt		
20	37.800	mS/m	-1.385	ppt		
22	41.000	mS/m	-1.156	ppt		
24	40.800	mS/m	-0.373	ppt		
26	42.600	mS/m	-0.470	ppt		
28	43.600	mS/m	-0.807	ppt		
30	47.800	mS/m	0.205	ppt		
32	49.800	mS/m	0.024	ppt		
34	53.600	mS/m	1.228	ppt		
36	56.600	mS/m	1.264	ppt		
38	57.000	mS/m	1.313	ppt		
40	62.000	mS/m	1.686	ppt		
	ent : ST.		1.000	ppc		
42	64.200		3.179	ppt		
42	59.800		4.371			
44	57.200	mS/m mS/m	2.721	ppt ppt		
40	57.200		2.,21	ppe		
	: 7					
	omponent	B Cont	ains 1 s	egments	5.	
Segment : 1		_				
Initial stat					Increament	:-20
Station	Conduct	ivity	In-pha	se		
46	50.200	mS/m	3.817	ppt		
44	53.400	mS/m	1.698	ppt		
42	58.000	mS/m	0.470	ppt		
40	54.800	mS/m	2.240	ppt		
38	51.800	mS/m	2.541	ppt		
36	46.000	mS/m	2.324	ppt		
34	43.600	mS/m	1.987	ppt		
32	41.600	mS/m	0.036	ppt		
30	38.400	mS/m	-0.735	ppt		
28	36,800		-1.024			
26	34.000	mS/m	-1.276	ppt		
24	35.800	mS/m	-1.529	ppt		
22	34.200	mS/m	-1.854	ppt		
		mS/m				
20	33.600	•	-2.709 -5.154	ppt		
18	32.400	mS/m mS/m		ppt		
16	35.200	mS/m	-4.203	ppt		
14	34.000	mS/m	-5.816	ppt ·		
12	35.800	mS/m	-5.913	ppt		
10	29.800	mS/m	-6.912	ppt		
8	28.200	mS/m	-6.045	ppt		
6	35.000	mS/m	-5.395	ppt		
4	45.400	mS/m	-8.959	ppt		
2	43.600	mS/m	-6.936	ppt		

ar 111 a.

-

والمرار محمد الم

. . .

: . |

.....

•

1 ¥

1

:

:

.

•

1

i .

.

Segment : 1 Initial stat	-		ntains 1 : 1 station		
	Conduc		In-pha		
2	32.400	mS/m		* *	
4	34.600		-5.046	ppt	
	ent : GUY				
6		•	-0.012		
8 10	21.400 26.200	mS/m mS/m	-4.359 -3.697		
12		ms/m ms/m			
14	34.400	ms/m ms/m	-1.903		
16		mS/m	-1.602	* *	•
18	30.200	mS/m	-2.023		
20	29.800	mS/m	-1.541		
22		mS/m			
24	32.800	mS/m	-0.879		
26	33.800	mS/m	-0.578		
28	37.200	mS/m	-0.530		
30	41.400	mS/m	-0.638		
32	42.800	mS/m	-0.361	ppt	
34	42.800	mS/m	1.301		
36	41.000	mS/m	0.542	ppt	
38	42.400	mS/m	1.590		
40	46.200	mS/m	0.747		
42		mS/m	2.192		
44	52.400	mS/m	2.168	ppt	
	47.400 : 11	mS/m B Cor	2.059 htains 1 s	ppt	.s.
> Line	47.400 : 11 component ion : 460	B Cor Fina	2.059 ntains 1 s al station	ppt egment	
> Line Mode V C egment : 1	47.400 : 11 :omponent ion : 460 Conduct	B Cor Fina ivity	2.059 ntains 1 s al station In-pha	ppt egment : 0 se	
> Line Mode V C egment : 1 hitial stat	47.400 : 11 component ion : 460	B Cor Fina ivity mS/m	2.059 ntains 1 s al station In-pha 1.662	ppt egment : 0 se ppt	
> Line Mode V C egment : 1 nitial stat Station	47.400 : 11 :omponent ion : 460 Conduct 48.200 47.200	B Cor Fina ivity mS/m mS/m	2.059 ntains 1 s al station In-pha 1.662 1.325	ppt egment : 0 se ppt ppt	
> Line Mode V C egment : 1 nitial stat Station 46 44 42	47.400 : 11 component ion : 460 Conduct 48.200 47.200 34.600	B Cor Fina ivity mS/m mS/m mS/m	2.059 ntains 1 s al station In-pha 1.662	ppt egment : 0 se ppt ppt	
> Line Mode V C egment : 1 nitial stat Station 46 44 42 > Comm	47.400 11 2000 20	B Cor Fina ivity mS/m mS/m mS/m POST	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735	ppt egment : 0 se ppt ppt ppt	
> Line Mode V C egment : 1 nitial stat Station 46 44 42 > Comm 40	47.400 11 2000 2	B Cor Fina ivity mS/m mS/m POST mS/m	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879	ppt egment : 0 se ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38	47.400 11 2000 20	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155	ppt egment : 0 se ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36	47.400 11 2000	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035	ppt egment : 0 se ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 nitial stat Station 46 44 42 > Comm 40 38 36 34	47.400 11 10 20 20 48.200 48.200 34.600 ent: ST. 43.800 41.800 45.200 45.400	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421	ppt egment : 0 se ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32	47.400 11 200 200 48.200 47.200 34.600 ent: ST. 43.800 41.800 45.200 45.400 46.400	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30	47.400 11 200 200 48.200 34.600 ent: ST. 43.800 41.800 45.200 45.400 46.400 45.000	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28	47.400 47.400 component ion : 460 Conduct 48.200 47.200 34.600 ent : ST. 43.800 41.800 45.200 45.400 46.400 45.000 42.800	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26	47.400 47.400 component ion : 460 Conduct 48.200 47.200 34.600 ent : ST. 43.800 41.800 45.200 45.400 45.400 45.400 45.400 38.400	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24	47.400 11 component ion : 460 Conduct 48.200 47.200 34.600 ent : ST. 43.800 45.200 45.400 45.400 45.400 45.400 38.400 36.200	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22	47.400 2: 11 component ion: 460 Conduct 48.200 47.200 34.600 ent: ST. 43.800 45.200 45.400 45.400 45.400 45.400 38.400 36.200 34.600	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 nitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20	47.400 11 component ion : 460 Conduct 48.200 47.200 34.600 ent : ST. 43.800 45.200 45.400 45.400 45.400 38.400 38.400 36.200 31.800	B Cor Fina ivity nS/m nS/m nS/m nS/m nS/n nS/n nS/n nS/n	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22	47.400 2: 11 component ion: 460 Conduct 48.200 47.200 34.600 41.800 45.200 45.400 45.400 45.400 45.400 38.400 36.200 34.600 31.800 32.400	B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313	ppt egment :egment seppt ppt ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18	47.400 11 component ion : 460 Conduct 48.200 47.200 34.600 ent : ST. 43.800 45.200 45.400 45.400 45.400 38.400 38.400 36.200 31.800	B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	2.059 htains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18 16	47.400 11 component ion : 460 Conduct 48.200 47.200 34.600 ent : ST. 43.800 45.200 45.400 45.400 45.400 38.400 36.200 34.600 31.800 32.400 37.000	B Cor Fina ivity nS/n nS/n nS/n nS/n nS/n nS/n nS/n nS/	2.059 htains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301 -1.722	ppt egment :e pppt ppppppppppppppppppppppppppppppppp	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18 16 14	47.400 2: 11 component ion: 460 Conduct 48.200 47.200 34.600 41.800 45.200 45.400 45.400 45.400 36.400 34.600 31.800 32.400 37.000 36.000	B Cor Fina ivity nS/n nS/n POST nS/n nS/n nS/n nS/n nS/n nS/n nS/n nS	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301 -1.722 -3.986 -6.141 -5.804	ppt egment :egment seppt ppp ppp ppp ppp ppp ppp ppp tttt ppp tttt	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8	47.400 2: 11 component ion: 460 Conduct 48.200 47.200 34.600 41.800 45.200 45.400 45.400 45.400 36.200 34.600 31.800 32.400 32.400	B Cor Fina ivity nS/n nS/n POST nS/n nS/n nS/n nS/n nS/n nS/n nS/n nS	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301 -1.722 -3.986 -6.141 -5.804 -6.876	ppt egment sepptppppppppppppppppppppppppppppppppp	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6	47.400 11 10 10 10 10 10 10 10 10	B Cor Fina ivity nS/n nS/n POSS/n NS/N NS/N NS/N NS/N NS/N NS/N NS/N	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301 -1.722 -3.986 -6.141 -5.804 -6.876 -1.674	pp eg :e pppp ppppppppppppppppppppppppppppp	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4	47.400 11 10 10 10 10 10 10 10 10	B Cor Fina ivity nS/n nS/n POSS/n NS/N NS/N NS/N NS/N NS/N NS/N NS/N	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301 -1.722 -3.986 -6.141 -5.804 -6.876 -1.674 -7.647	pp eg :e ppp pppppppppppppppppppppppppppppp	
> Line Mode V C egment : 1 hitial stat Station 46 44 42 > Comm 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6	47.400 11 10 10 10 10 10 10 10 10	B Cor Fina ivity nS/n nS/n POSS/n NS/N NS/N NS/N NS/N NS/N NS/N NS/N	2.059 ntains 1 s al station In-pha 1.662 1.325 -0.735 1.879 3.155 3.035 1.421 1.144 0.590 -0.036 0.145 -0.542 -1.132 -1.313 -1.301 -1.722 -3.986 -6.141 -5.804 -6.876 -1.674	pp eg :e pppp ppppppppppppppppppppppppppppp	

1.

-

1

:

.

; .

÷

! {

1

1

LGI

>	Line : 13					
Mode V	Component	t B Co	ontains 1	segmer	nts.	
Segment	: 1					
Initial	station : 0	Final	l station	: 540	Increament : 20	
Statio	n Conduct	tivity	In-pha	ise		
0	36.000	mS/m	5.515	ppt		
2	35.600	mS/m	1.614	ppt		
4	31.400	mS/m	1.433	ppt		
6	27.000	mS/m	-0.421	ppt		
8	29.000		-0.397			
10	26.200		0.879			
12	27.600	•	1.758	ppt		
14	26.400		1.782	ppt		
16	26.600	•	2.300			
18	28.200	· · ·	3.324	ppt		
20 22	31.000		3.998 2.830			
24	32.600 34.600		3.769	ppt ppt		
26	36.800		3.528			
28	40.000	•	4.191	ppt		
30	41.000	_ · .	5.202	ppt		
32 .	39.200	•	5.720	ppt		
34	39.600	•	5.636	ppt		
36	39.800		4.889			
38	37.600	•	6.190	ppt		
40	37.800	•	5.527	ppt		
42	38.200		4.973	ppt		
44	41.400	mS/m	6.695	ppt		
46	44.800	mS/m	6.924	ppt		
48	48.600	mS/m	9.345	ppt		
50	53.600		11.970	ppt		
52	42.600	mS/m	8.742	ppt		
54	46.200	mS/m	8.477	ppt		
54	46.200					
54 > L	46.200 ine : 15	mS/m	8.477	ppt	.5.	
54 > L Mode V	46.200 ine : 15 Component	mS/m	8.477	ppt	.5.	
54 > L Mode V Segment :	46.200 ine : 15 Component	mS/m B Cor	8.477	ppt egment	:5. Increament :-20	
54 > L Mode V Segment :	46.200 ine : 15 Component 1 tation : 460	mS/m B Cor) Fina	8.477 htains 1 s al station	ppt egment		
54 > L Mode V Segment : Initial s	46.200 ine : 15 Component 1 tation : 460	mS/m B Cor) Fina	8.477 htains 1 s	ppt egment		
54 > L Mode V Segment : Initial s Statio	46.200 ine : 15 Component 1 tation : 460 n Conduct	mS/m B Cor Fina	8.477 Ntains 1 s Il station In-pha	ppt egment : 0 se		
54 > L Mode V Segment : Initial s Station 46	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600 39.800	mS/m B Cor Fina tivity mS/m mS/m mS/m	8.477 ntains 1 s 1 station In-pha 1.903 1.770 1.686	ppt egment : 0 se ppt		
54 > L Mode V Segment : Initial s Statio: 46 44	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600	mS/m B Cor Fina tivity mS/m mS/m mS/m mS/m	8.477 ntains 1 s 1 station In-pha 1.903 1.770	ppt egment : 0 se ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600 39.800 39.200 41.000	mS/m B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m	8.477 ntains 1 s 1 station 1.903 1.770 1.686 2.107 1.180	ppt egment : 0 se ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.000	mS/m B Cor Fina tivity mS/m mS/m mS/m mS/m mS/m	8.477 ntains 1 s 1 station 1.903 1.770 1.686 2.107 1.180 1.216	ppt egment : 0 se ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.000 43.800	mS/m B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m	8.477 ntains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301	ppt egment : 0 se ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.000 43.800 43.600	nS/m B Cor ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 ntains 1 s al station 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036	ppt egment segment se ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.000 43.800 43.600 43.400	nS/m B Cor Fina ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	8.477 ntains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072	ppt egment segment se ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.000 43.800 43.600 43.400 41.200	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.000 43.800 43.600 43.400 41.200 40.800	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867	ppt egment : 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.000 43.800 43.600 43.400 43.400 41.200 40.800 38.800	nS/m B Cor Finativity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686	ppt egment : 0 ppt ppt ppt ppt ppt ppt ppt ppt ppt pp		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.000 43.600 43.600 43.400 43.400 43.400 38.800 36.800	nS/m B Cor Finativity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987	ppt egment : 0 ppt ppt ppt ppt ppt ppt ppt ppt ppt pp		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.800 43.600 43.400 41.200 40.800 38.800 36.800 34.800	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588	ppt egment :egment :se ppt ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.800 43.600 43.400 43.400 41.200 40.800 38.800 36.800 34.800 35.200	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071	ppt egment :egment :se ppt ppt ppt ppt ppt ppt ppt ppt ppt pp		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.000 43.800 43.600 43.400 41.200 40.800 38.800 36.800 34.800 35.200 33.400	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 htains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938	ppt egment :segment :se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.800 43.600 43.400 43.400 41.200 40.800 38.800 36.800 34.800 35.200	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071	ppt egment :se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.800 43.600 43.400 40.800 38.800 36.800 34.800 35.200 33.400 34.400	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 htains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938 -4.949	ppt egment :se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Statio: 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.800 43.600 43.400 40.800 38.800 36.800 34.800 35.200 33.400 34.400 30.800	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 htains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938 -4.949 -7.225	ppt egment :se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.600 39.800 39.200 41.000 43.800 43.600 43.400 40.800 38.800 36.800 34.800 35.200 33.400 34.400 30.800 28.800	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 htains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938 -4.949 -7.225 -4.696	ppt egment :se ppttttt pppt pppt pppttttttttttttttttt		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.800 43.600 43.400 43.400 43.400 36.800 34.800 35.200 33.400 34.400 30.800 29.800 29.000	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 htains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938 -4.949 -7.225 -4.696 -9.043 -10.850 -12.656	ppt egment segment se ppt pppppppppppppppppppppppppppppppppp		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2	46.200 ine: 15 Component 1 tation: 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.800 43.800 43.600 43.400 43.400 43.400 36.800 34.800 35.200 33.400 34.400 30.800 29.800 29.800 29.000 33.400	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 atains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938 -4.949 -7.225 -4.696 -9.043 -10.850 -12.656 -11.247	ppt egment e		
54 > L Mode V Segment : Initial s Station 46 44 42 40 38 36 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4	46.200 ine : 15 Component 1 tation : 460 n Conduct 43.000 39.800 39.800 39.200 41.000 43.800 43.600 43.400 43.400 43.400 36.800 34.800 35.200 33.400 34.400 30.800 29.800 29.000	nS/m B Cor Fina ivity nS/m nS/m nS/m nS/m nS/m nS/m nS/m nS/m	8.477 htains 1 s al station In-pha 1.903 1.770 1.686 2.107 1.180 1.216 1.301 1.036 -0.072 -0.169 -0.867 -0.686 -0.987 -3.588 -3.071 -3.938 -4.949 -7.225 -4.696 -9.043 -10.850 -12.656	ppt egment e		

i

ł

1

:

ł ł

í

LGI

> Line	e : 17					
Mode V (в Со	ntains 1 s	egment	s	
Segment : 1						
Initial stat Station	Conduct		station : In-pha		Increament	: 20
0	36.000					
2	30.800	•	-3.962			
4	35.000	•	-2.661			
6	22.200		-3.733			
8	22.000	•	-3.986			
10	33.600		-1.806			
· 12 14	36.800 40.000		-2.709 -1.252	ppt ppt		
16	40.000	•	-1.361			
18	37.800		-1.252	ppt		
20	42.200		-0.831	ppt		
22	42.800		0.048			
24	43.800		-0.349	ppt		
26 28	45.600 46.200		-0.421 -0.313	ppt ppt		
30	46.400		-0.072	ppt		
32	49.000		0.265			
34	48.200	•	-0.048	ppt		
36	46.800		0.325	ppt		
38	45.400		0.313	ppt		
	ent : ST.		0 955	nnt		
40 42	56.800 45.000		0.855 0.795	ppt ppt		
44	34.800		0.373	ppt		
46	28.800		-4.070	ppt		
> Line	: 19					
		B Co	ntains 1 s	egment		
Segment : 1	Component			-		:-20
Segment : 1 Initial stat	component	Fin	al station	: 0	is. Increament	:-20
Segment : 1	Component	Fin ivity	al station In-pha	: 0 se		:-20
Segment : 1 Initial stat Station	component ion : 440 Conduct 34.200 49.000	Fin ivity mS/m mS/m	al station In-pha -0.409 -0.735	: O se		:-20
Segment : 1 Initial stat Station 44 42 40	component ion : 440 Conduct 34.200 49.000 51.200	Fin ivity mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397	: 0 se ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38	component ion : 440 Conduct 34.200 49.000 51.200 43.800	Fin ivity mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048	: 0 se ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36	component conduct 34.200 49.000 51.200 43.800 45.000	Fin ivity mS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096	: 0 se ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34	component conduct 34.200 49.000 51.200 43.800 45.000 47.400	Fin ivity mS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072	: 0 se ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32	component conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723	: 0 se ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34	component conduct 34.200 49.000 51.200 43.800 45.000 47.400	Fin ivity mS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072	: 0 se ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26	component conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 44.400 45.600	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590	: 0 se ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26 > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 44.400 45.600 ment : CAR	Fin ivity nS/m nS/m nS/m nS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120	: 0 se ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26 > Comm 24	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 nent : CAR 45.800	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674	: 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26 > Comm 24 > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 nent : CAR 45.800 nent : CAR	Fin ivity nS/m nS/m nS/m nS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120	: 0 se ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26 > Comm 24 > Comm skipped or	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR 45.800 ent : CAR deleted	Fin ivity nS/m nS/m nS/m nS/m mS/m mS/m mS/m mS/m	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120	: 0 se ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26 > Comm 24 > Comm skipped or > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 44.400 45.600 ent : CAR 45.800 ent : CAR deleted ent : STA	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408	: 0 se ppt pptt pptt ppt ppt ppt ppt ppt ppt p		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 32 30 28 26 > Comm 24 > Comm skipped or	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR 45.800 ent : CAR deleted ent : STA	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120	: 0 se ppt pppt pppt pppt pppt pppt ppt ppt pp		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 24 > Comm 20 18	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 44.400 45.600 ent : CAR 45.800 ent : CAR deleted ent : STA 49.000	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408	: 0 se ppt pptt pptt ppt ppt ppt ppt ppt ppt p		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.800 ent : CAR 45.800 ent : CAR deleted ent : STA 49.000 44.200 ent : VAN 49.200	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408	: 0 se ppt pppt pppt pppt pppt pppt ppt ppt pp		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR deleted ent : STA 49.000 44.200 ent : VAN 49.200 ent : CAR	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842	: 0 se ppt pppt pppt pppt pppt pppt ppt ppt tt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR deleted ent : STA 49.000 44.200 ent : VAN 49.200 ent : CAR deleted	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842 6.358	: 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm 16 > Comm	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR deleted ent : STA 49.000 ent : VAN 49.200 ent : CAR deleted 42.800	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842 6.358 -3.179	: 0 se ppt ppt ppt ppt ppt ppt ppt ppt ppt ppt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm 16 > Comm 20 18	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR 45.800 ent : CAR deleted 49.000 44.200 ent : VAN 49.200 ent : CAR deleted 42.800 36.000	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842 6.358 -3.179 -3.215	: 0 se ppttppptt ppttppptt pptttpptt pptttppt ppt ppt ppt tt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm 16 > Comm 20 18 8	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR deleted ent : STA 49.000 44.200 ent : VAN 49.200 ent : CAR deleted 42.800 36.000 27.600	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842 6.358 -3.179 -3.215 -5.587	: 0 se ppptttppppppppppppppppppppppppppppppp		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm 16 > Comm 20 18	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR 45.800 ent : CAR deleted 49.000 44.200 ent : VAN 49.200 ent : CAR deleted 42.800 36.000	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842 6.358 -3.179 -3.215	: 0 se ppttppptt ppttppptt pptttpptt pptttppt ppt ppt ppt tt		:-20
Segment : 1 Initial stat Station 44 42 40 38 36 34 30 28 26 > Comm 24 > Comm 20 18 > Comm 20 18 > Comm 16 > Comm 20 18 5 kipped or 12 10 8 6	component ion : 440 Conduct 34.200 49.000 51.200 43.800 45.000 47.400 45.800 44.400 45.600 ent : CAR 45.800 ent : CAR deleted ent : STA 49.000 44.200 ent : VAN 49.200 ent : CAR deleted 42.800 36.000 27.600 28.600	Fin ivity mS/m mS/m mS/m mS/m mS/m mS/m mS/m mS/	al station In-pha -0.409 -0.735 -0.397 0.048 -0.096 -0.072 -0.723 -1.590 -0.674 0.120 3.408 42.074 2.842 6.358 -3.179 -3.215 -5.587 -7.032	: o se ppptttt ppptttttt pppppppppppppppppppp		:-20

1

{

<u>Appendix B</u>

÷

111

ŝ

.

1

Vertical Magnetic Gradient Data

Profile No. Station No.	Gamma g
1 9 -	-12.4
1 10	-19.200001
1 11	-52.5
1 12	17.799999
1 13	133.5
1 14	96.599998
1 15	60.200001
1 16	28.6
1 17	18.700001
1 18	-16
1 19	-6.6
1 20	-6.8
1 21	1.5
1 22	19.799999
1 23	34.400002
1 24 1 25 1 26	13.5 20.700001
1 26	9.9
1 27	34.099998
1 28	14.6
1 29	14.1
1 30	-26.4
1 31	7.4
1 32	-4.9
1 33	13.8
1 34	17.700001
1 35	-14.3
1 36	2.8
1 37	8.7
1 38	1.1
1 39	-48
1 40	-14.7
1 41	14.4
1 42	66.300003
1 43	30.200001
1 44	-35.5
1 45	-60.900002
1 46	13.8
1 47	68.099998

Profile No.	station No.	Gammas
2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	44444449337654321098765432109876543210 987654321098765432109876543210 98765432109876543210 98765443210 98765443210 98765443210 98765443210 98765443210 98765443210 98765443210 98765443210 98765444444444444444444444444444444444444	9.7 -3.8 -57.5 -37.799999 76.800003 111.099998 14.1 20.70001 6.1 16.20001 21.299999 0.6 -19.299999 0.6 -19.299999 -5.6 -2.9 -17.5 -13.7 2.6 15.5 -5.9 8.7 19.200001 19.700001 24.4 25.1 15.7 9.4 5.3 -25.799998 38.099998 53.400002 27.20001 27.9 35.599998 47.099998 70.599998 47.099998 70.599998 21.1 46.900002 15.5 239.100006

No. No.	
Profile Station	Gamaa
G G G G G G G G	10.1 40.900002 124.900002 68.699997 18.5 -74.900002 58.200001 28 24.9 13 15.3 8.7 52.900002

ţ

1

ì

ļ

:

1. · · · · · ·

į

:

ł

i

. 1. No. 1

i i

A CONTRACTOR

......

ļ 100

{ į

1

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Profile No.	station No.	Gammas	
	444444444444444444444444444444444444444	44444449876543210987654321098765432109876543210987654321098765432109876543210987654321098765432109876	76.099998 20.20001 9.3 114.599998 -159.899994 -2045 74.699997 41.099998 -84.699997 282.5 36.099998 18.1 16.9 40.099998 17 17.1 15 14.1 25.70001 20.4 -12.9 -40.799999 -1.9 2.9 -2.7 -1.2 -1.3 27.20001 39.5 20 1.3 2.1 9.8 12.5 32.70001 59.200001 26.9 31.9 6.299999 120.900002 4.400002 0.6	

No.	No.							
Profile	station	Gammag						
4 ี	345 678	324336-673555223123343231-432212222-34-37-95-	4050140525074 27 22242 361 555672 4.7 254873 28		09009 90099999 0090009 9009999 900009 99 9	2827 80999 09 90009 9 99 90990	889 19 91129 9 99 9 82993 8 99 99 99 99 99 99 99 99 99 99 99 99 99	02
5	47	37	• /	01	00	0	1	

aline warmen

·····

1. J.

ę

ł

ŝ

i

:

ï

9 2 -107.5 9 3 -1.8 9 4 48.099998
9 5 40.299999 9 6 35.099998 9 7 -10.1 9 8 41.099998 9 10 1.1 9 11 40.400002 9 12 23.700001 9 13 22.299999 9 14 20.299999 9 15 7.3 9 16 24.9 9 17 27.799999 9 18 17.4 9 19 26 9 20 -93.800003 9 21 20.200001 9 22 31 9 23 27 9 24 23.9 9 25 32 9 26 20.799999 9 27 26.5 9 28 32.700001 9 29 28 9 30 39.200001 9 31 33 9 32 35.200001 9 31 35 9 34 115.699997 9 35 88.59998 9 36 23.5 9 37 38.59998 9 39 63.099998 9 40 33.5 9 41 103.800003 9 42 55.599998 9 43 4.5 9 44 23.6 9 45 6.2 9 46 31 9 47 -46.700001

1

.

•

:

;

:

No.	No.			
Profile No.	Station	Gammas		
	2345678911123456789012222222222233333333340	5.1030358-12-10.83144. -7.3.145.751-7.3.44. -7.3.144.31-1-7.2-5.431.33.8-268.23 -7.5.41.33.44. -7.5.41.33.5.5.5.5.33.5.5.5.5.5.5.5.5.5.5.5.5.	0000 9999 4 .700 3 .700 3 .700 3 .700 2 .700 2 .700 2 .700 2 .700 2 .600 9 .899 .1 6	01 0001 0002 001 001 00006 002 002

Profile No. Station No.	Gammas			
$12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\$	4444440987654321098765432222211111111111111111111111111111111	25. 35. 14. 16. 11. 127. 15.00 27.4 56.00 74.8 120. 15.00 10	5990990 990 9 00 9 00 9 00 9 00 9 00 9 0	98 02 99 01 93 97 02 99 97 009 97 009 97 0003 9997 0002 9997 0002 9997 0002 9997 0002 9997 0002 9997 0000 9997 0000 9990 999
12 12 12 12 12 12 12	12 - 5 $11 - 6$ $10 - 7$ $9 - 49$ $8 - 46$ $7 - 23$ $6 - 3$ $6 - 3$ $5 - 9$ $4 - 7$ $3 - 9$ $2 - 57$	5.20 3.1 .5 .9		998 002 01

No.	No.						
lle	lon	mmag					
Prof	stat	gamm					
13	1 - 2 -	-14 -98					
13 13 13	3 - 4 -	-85 -48	. 5	9	99	9	8
13 13		-25 L0.	.2 4				
13 13 13	7 - 8 -	-53 -28	. 2	0			
13 13 13	9 - 10	-33 -4	6		~ ~		• 1
13 13 13	11 12 13	-2	2. 0. .1	2			
13 13	14 15		4.	5	00	0	03
13 13	16 17	-1 -1	3 C 0 C) . : }	30	0	003
13 13	18 19	-6 -5	5.	4	00	0	02
13 13 13	20 21 22	-2 18 12	.7	0	99 00	0	99 1
13 13 13	22 23 24	-1 -6	з.	6			
13 13	25 26	-6 -5	7. 6.	5 5	99	9	98
13 13	27 28	-6	9. 0.	1 5		9	98
13 13	29 30	-5 -7	5.	6	00 99	9	97
13 13	31 32 33	-4	3. 8. 8.	2	99	9	99
13 13 13 13	34 35	-9		3	00		
13 13	36 37		8.			0	03
13 13	38 39	-5 -7	4. 5.		00		
13 13	40 41	-2	3.	1	• •		•.
13 13	42 43	-8	3.	8	00	0	
13 13 13	44 45 46	-1 -5 -3	5.	2		9	99

:

:

. :

-

Profile No. Station No.	Gammas
14 48 14 47 14 46	89.300003 40 11.5
14 45 14 44 14 43 14 42	46.299999 13.8 21.4
14 41 14 40 14 39 14 38 14 37	27.9 18.299999 -15.1
14 36 14 35 14 34 14 33	-35.299999 -19.4 -2.7
14 32 14 31 14 30 14 29	-6.4 18.799999 19.700001 30.1
14 28 14 27 14 26 14 25	27.9 35 34.400002
14 24 14 23 14 22 14 21 14 20	21.799999 22.9 9.5
14 19 14 18 14 17	5.4 8.3 7
14 13 14 12	21.299999 40.400002 7.9
14 11 14 10 14 9 14 8 14 7	5.6 16.9 31.4 16.4 27.5
14 7 14 6 14 5 14 4 14 3	27.5 33.799999 31.799999 17.6 28.4
14 2 14 1 14 0	37.700001 37.900002 -45.599998

Profile No.	Station No.	Gammag
15 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	40.599998 14 21.6 25.799999 40 24.799999 -2.8 0.1 21.9 29.700001 20.5 43.599998 22.9 108.800003 62.099998 34.700001 57.700001 63.299999 69.599998

and the second s

į

ł

1

١

1

•

į

- :

.....

÷

i

No.	No.	
Profile	Station	Gammag
17 17 17 17 17 17 17 17	1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 112 13 4 5 6 7 8 9 0 112 1 3 4 5 6 7 8 9 0 112 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2	61.099998 77.699997 82.099998 43.400002 57.700001 85.5 85 100.400002 75.400002 88.099998 63.700001 72.199997 88.199997 89.800003 95.699997 84.5 35 44.900002 43.099998 79.300003 66.199997 53.900002 60 64.900002 86.699997

No.					
Profile No. Station No.					
18 4 18 4 18 4 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18 1 18	43210987654555545553476688642~42~4666701474565	744422223409864461150609133581349983	518,95 8574 552457793873 24.025 0990000909	99090 0900 990990 0900 9909900000 0 90 9	3

19 45 -171.800003

ļ

i

1

ł

ì

÷

ł

B E F I I F F I I F F I I S S 20 44 70.800003 20 20 42 33.700001 20 20 42 33.700001 20 20 40 58 20 39 7.3 20 38 37.200001 20 37 27.299999 20 36 42.5 20 35 48.299999 20 34 41.200001 20 33 42.90002 20 32 35.299999 20 31 47.099998 20 30 51.799999 20 28 59.299999 20 28 59.299999 20 28 59.299999 20 27 51.700001 20 23 -28.6 20 22 9.700001 20 23 -242.300003	No. No.	
20 43 43 20 42 33.700001 20 41 33.599998 20 40 58 20 39 7.3 20 38 37.200001 20 37 27.299999 20 36 42.5 20 35 48.299999 20 34 41.20001 20 32 35.299999 20 31 47.099998 20 30 51.799999 20 29 59.299999 20 28 59.299999 20 28 59.299999 20 27 51.700001 20 26 33.200001 20 25 -5 20 24 -24.200001 20 23 -28.6 20 22 29.700001 20 21 -210 20 20 -383.39994 20 19 -114.80003 20 18 -242.300003 20 17 44.299999 20 16 -120.199997 20 15 89.099988 20 14 -45.700001 20 13 13.8 20 12 16.5 20 11 39.700001 20 9 84.800003 20 8 42.900002 20 7 40.299999 20 6 30.70001 20 5 97.900002 20 4 104.80003 20 3 33.799999 20 2 58 20 1 83.5	rofil. tatio	Gammag
20 0 97 5	20 44 20 43 20 42 20 41 20 40 20 39 20 38 20 35 20 32 20 31 20 32 20 32 20 32 20 33 20 30 20 29 20 28 20 29 20 20 20 21 20 20 20 20 20 19 20 16 20 10 20 11 20 10 20 20 20 14 20 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20	70.800003 43 33.70001 33.599998 58 7.3 37.200001 27.299999 42.5 48.299999 41.200001 42.900002 35.299999 47.099998 51.799999 59.29999 59.2999 59.29999 59.2999 59.2999 59.2999 59.2999 59.29999 59.