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Superfund 

Re: Des Moines TCE Site - Site Map 
and Geophysical Investigation of 
South Parking Lot at Meredith's 
Locust Street Property 

Dear Mr. Curtis: 

On behalf of Meredith Corporation ("Meredith"), 
I have enclosed two copies of (1) a topographical map of 
Meredltfi's Parking Lot, prepared by Bishop Engineering 
Company, Des Moines, Iowa, dated October 25, 1989, and (2) 
a Report entitled "Geophysical Investigation on the 
Meredith Corporation South Parking Lot", prepared by Layne 
GeoSciences, Inc., dated February 1990. These have been 
prepared under the supervision of Meredith's consultant, 
Environ Corporation, pursuant to the Proposal For Conduct
ing a Geophysical Investigation of the South Parking Lot, 
Meredith's Locust Street Property (June 1989), previously 
submitted to and approved by EPA. 

Please direct any technical questions or com
ments with respect to these materials to John Schroeter at 
Environ Corporation (415) 655-7400. 

Meredith's voluntary conduct of the tasks 
reflected in these materials and their submission are not 
intended and should not be construed as an admission or 
acknowledgment of any fault, liability or responsibility 
regarding the Des Moines TCE Site or otherwise, and 
Meredith reserves all rights and defenses, including the 
right to seek contribution from any responsible party. 
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with respect to such site or otherwise. Meredith believes 
that if any remediation of the South Parking Lot is under
taken, it should not be Meredith's responsibility. 

Yours sincerely. 

Robert M. Hallman 

Mr. Glenn M. Curtis 
Environmental Engineer, 
Remedial Project Manager 

U.S. Environmental Protection 
Region VII, Superfund 
726 Minnesota Avenue 
Kansas City, KS 66101 

[Enclosures] 

cc: Jerry L. Hadenfeldt, Esq. 
John H. Schroeter, P.E. 

Agency 
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1.0 Introduction 

A geophysical survey was conducted by Layne GeoSciences, Inc. on 
the paved 2-acre south parking lot at the Meredith Corporation in 
Des Moines, Iowa. The survey was conducted on October 25, 1989 by 
Layne GeoSciences geophysicists. 

The primary objective of the geophysical survey was to identify the 
potential presence of buried drums and other metallic objects 
buried beneath the parking lot up to a depth of approximately 15 
feet. In addition, the survey was conducted to delineate potential 
trench boundaries and other areas of disturbed soil. The 
objectives of the survey were addressed by utilizing an EG&G G-856 
proton precession gradiometer and a Geonics EM-31-DL 
electromagnetic induction terrain conductivity instrument. 
Standard operating procedures for the instruments were followed 
during the survey as prescribed in the manufacturers manuals. 

2.0 Gradiometer Survey 

A total field gradiometer survey was conducted in place of the 
proposed total field magnetometer survey due to the difficulty in 
establishing a base station in the immediate vicinity of the 
parking lot which would be unaffected by railroad traffic and a 
substantial quantity of large metallic objects surrounding the 
parking lot. Two sensors mounted vertically on a staff at heights 
of seven and four feet above the ground surface were used to 
acquire the gradient data. The gradiometer survey did not require 
the use of a base station because it inherently eliminates time 
variations in the data. The gradient measurements are made almost 
simultaneously and are very closely spaced compared to the source 
of magnetic storms and diurnal variations. Such effects on the two 
readings are essentially identical and therefore removed on the 
differential. The gradient data were processed utilizing EG&G's 
MAGPAC magnetic software program to derive the vertical magnetic 
gradient for each station. 

The gradiometer survey was conducted on a 10-foot grid over the 
surface of the parking lot. The data were recorded on 10-foot 
centers along 2 0 profiles traversing the length of the parking lot. 
A 10-foot grid was used in order to detect the possible presence 
of single 55-gallon drums. 

Calibration of the magnetometer for accuracy was not necessary as 
the sensor operation is based on nuclear precession. The precision 
or repeatability of the magnetometer was checked by taking 
successive readings periodically while traversing the profiles. 
If successive readings were within 1 gamma of each other the 
readings were considered valid. Successive non-repeating readings 
were obtained in several areas of the parking lot due to high 
magnetic field gradients which sharply degraded the signal of the 
proton precession magnetometer. The high gradients were 
encountered in the vicinity of the steel stairway and pedestrian 
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bridge used to cross the railroad tracks on the northern boundary 
of the parking lot and the protective steel posts around the three 
drains in the eastern portion of the parking lot. 

3.0 Electromagnetic (EM) Induction Survey 

The EM survey was conducted for two primary objectives: 1) to 
measure lateral changes in subsurface conductivities which may 
indicate the potential presence of trenches and other areas of 
disturbed soil and 2) to identify the potential presence of buried 
drums and other metallic objects buried beneath the parking lot. 
The survey was conducted in the vertical dipole mode with both the 
quadrature and in-phase components of the induced magnetic field 
recorded. The quadrature component of the induced EM field was 
recorded to determine lateral changes in subsurface conductivities 
or geologic structure. The in-phase component of the induced EM 
field is significantly more sensitive to metallic objects and 
therefore was used to detect the potential presence of buried drums 
and other metallic objects. The vertical component EM data were 
downloaded to a computer for analysis utilizing Geonics EM-31 
software. 

The EM-31 survey was conducted on a 20-foot grid over the surface 
of the parking lot. The data were recorded on 2 0-foot centers 
along 10 profiles traversing the length of the parking lot. The 
instrument was continuously monitored for anomalies between 
stations. A 20-foot grid was sufficient grid density to detect the 
potential presence of trenches and other areas of disturbed soil 
as well as single 55-gallon drums. 

The calibration of the EM instrument is not critical when recording 
relative changes in the quadrature and in-phase components of the 
induced field as was done in this survey. However, the instrument 
was field calibrated according to the manufacturer's specifications 
to check for "drift" in the instrument's performance during the 
survey. Instrument "drift" was not observed during the EM survey. 
The precision or repeatability of the instrument was checked by 
taking successive readings periodically while traversing the 
profiles. Measurements were considered valid if successive 
measurements could be repeated. 

4.0 Survey Results 

The data obtained from the electromagnetic induction and magnetic 
gradient surveys are presented in five plots (Figures 1-5). 
Profile line numbers are indicated on the vertical or Y-axis of the 
plots and the station numbers are indicated on the horizontal or 
X-axis of the plots. The location of anomalies described in this 
section are given by x,y coordinates (station number, profile line 
number). The vertical dipole quadrature and in-phase components 
of the induced magnetic field are shown in Figures 1 and 2, 
respectively and the magnetic gradient data are presented in 
Figures 3-5. 
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An average ground conductivity of approximately 30-4 0 mmho/m 
(millimhos/meter) was determined from the data. The conductivities 
are in the range for silt and clay-rich soil. Two areas of 
relatively high conductivity (>45 mmho/m) are present in the 
northeast and southeast portions of the parking lot. The areas of 
elevated conductivity centered about coordinates (40,17) and (40,4) 
on Figure 1 may indicate the presence of disturbed or altered soil. 
The only potential trench boundary detected by the quadrature 
component is apparently associated with the most recently installed 
city sewer line beneath Profile 13. 

The magnetic gradient data were initially contoured with a contour 
interval of 100 gammas as shown in Figure 3. The magnitude of the 
large positive and negative anomalies were decreased by a factor 
of 10 to improve the resolution of these anomalies at a contour 
interval of 50 gammas (Figure 4). The negative magnetic anomalies 
have been shaded to ease in distinguishing between areas of 
positive and negative magnetic relief as shown in Figure 5. The 
shape of the gradient anomalies associated with the surface run
off drains is a function of the proximity of station locations to 
the steel posts and cross bars. 

Most of the anomalies detected by the surveys are evident on the 
quadrature, in-phase and gradient plots and can be directly 
correlated to surface and subsurface cultural features. The 
cultural features and coordinates of their related anomalies are 
described below: 

• Steel stairway . and pedestrian bridge on the north 
boundary of the parking lot. 
(14,19) to (22,19) Quadrature Plot 
(12.19) to (26,19) In-phase Plot 
(11.20) to (29,20) Gradient Plot 

• Approximate alignment of most recently constructed city 
sewer line and trench. The in-phase and gradient data 
suggest that the sewer is constructed with steel 
reinforced concrete. 
(0,13) to (46,13) Quadrature" 
(0,13) to (46,13) and (0,15) to (7,15) In-phase Plots 
(0,13) to (48,13) Gradient Plot 

• Protective steel posts and cross bars around the surface 
run-off drain in the northeast corner of the parking lot. 
(41,17) Quadrature Plot 
(41,17) Gradient Plot 

• Protective steel posts and cross bars around the surface 
run-off drain in the east-central portion of the parking 
lot. 
(41.10) Quadrature Plot 
(41.11) In-phase Plot 
(41,10) Gradient Plot 
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• Protective steel posts and cross bars around the surface 
run-off drain in the southeast corner of the parking 
lot.* 
(41,4) Quadrature Plot 
(41,4) In-phase Plot 
(42,4) Gradient Plot 

*The actual location of the surface run-off drain in the 
southeast corner of the parking lot is approximately 2 0 
feet north of the location shown on the Bishop 
Engineering base map. 

e Light pole guy wire and guy anchor in west-central 
portion of the parking lot. 
(8.9) Quadrature Plot 
(8.10) In-phase Plot 
(8,10) Gradient Plot 

• Light pole in east-central portion of the parking lot. 
(36,9) Quadrature Plot 
(36.9) In-phase Plot 
(36.10) Gradient Plot 

• Steel protective casings for monitoring wells in the 
southwest corner of the parking lot. 
(10,1) In-phase Plot 
(10,1) Gradient Plot 

• Manhole cover in northwest portion of the parking lot. 
(7,15) Gradient Plot 

• Gradient anomalies along the north boundary of the 
parking lot that are not associated with the stairway and 
bridge appear to result from the proximity of the 
railroad tracks to the parking lot. 
(0,20) to (46,20) Gradient Plot 

• Power pole and overhead lines 
(47,10) Gradient Plot 

A few of the anomalies present on the in-phase and gradient plots 
could not be correlated to known cultural features and may indicate 
the potential presence of buried metallic objects or objects 
containing metal. The locations of these anomalies are described 
by the following coordinates: 

e (3,17) to (8,17) 
In-phase and Gradient Plots 

• (11,15) to (12,15) 
In-phase and Gradient Plots 
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• (4,7) to (17,7) In-phase Plot 
(4,7) to (12,7) Gradient Plot 

e (8,4) In-phase and Gradient Plots 

e (38,11) Gradient Plot 

• (38,4) Gradient Plot 

It is important to note, however, that the proximity of the 
magnetic gradient anomaly located at coordinates (38,11) to the 
alignment of the new city sewer line suggests that the source of 
this anomaly may be related to metallic materials used in the 
construction of the sewer line. 

In addition to the anomalies listed above that could not be 
correlated to known cultural features, the elevated conductivity 
and numerous small magnetic anomalies in the southeastern portion 
of the parking lot may indicate the presence of disturbed or 
altered soil containing small metallic objects. The elevated 
conductivity may also result from one or more of the following 
geologic and hydrologic conditions: 

• increased clay content of the sediment 
• increased moisture content of the sediment 
• higher groundwater conductivity 

The gradual increase in conductivity from west to east across the 
parking lot suggests that the increase is the result of a lateral 
change in geologic conditions and is not the result of subsurface 
cultural materials. 

The amplitude (approximately 260 gammas above background) and shape 
of the magnetic gradient anomaly located at coordinates (38,4) may 
indicate the presence of a single 55-gallon steel drum buried at 
a shallow depth beneath the parking lot surface. A 55-gallon drum 
buried at a depth of approximately 5 feet can produce an anomaly 
with an amplitude greater than several hundred gammas, depending 
on the orientation of the drum. The amplitude and shape of the 
smaller magnetic gradient"anomalies in the southeastern portion of 
the parking lot do not suggest the presence of other buried drums 
or metallic objects with a similar mass. The sources of the 
smaller anomalies may be small pieces of scrap metal or 
reinforcement bar used in the construction of the surface run-off 
drain and parking lot. The EM and magnetic gradient data do not 
indicate the possible presence of numerous buried drums or trench 
boundaries in the southeastern portion of the parking lot. 



LGI. 

Appendix A 

Quadrature and In-phase Electromagnetic Induction 
Data 



<^iy 

> Line : 1 
Mode V Component B Contains 1 segments. 

Segment : 1 
Initial station : 80 Final station : 460 Increament : 20 

Station Conductivity In-phase 
8 33.600 mS/m 3.962 ppt 
10 34.400 mS/m 6.743 ppt 
12 33.600 mS/m -0.867 ppt 
14 38.800 mS/m -0.072 ppt 
16 38.400 mS/m -0.012 ppt 
18 40.000 mS/m -0.024 ppt 
20 37.800 mS/m -0.217 ppt 
22 39.800 mS/m 0.000 ppt 
24 37.800 mS/m -0.301 ppt 
26 40.200 mS/m -0.506 ppt 
.28 43.200 mS/m -0.145 ppt 
30 46.600 mS/m -0.024 ppt 
32 46.000 mS/m 0.157 ppt 
34 52.600 mS/m 1.228 ppt 
36 59.400 mS/m 1.313 pet 
38 54.600 mS/m 0.999 ppt 
40 45.200 mS/m -1.313 ppt 
42 65.400 mS/m 2.143 ppt 
44 65.600 mS/m 5.840 ppt 
46 59.400 mS/m 1.830 ppt 

> Line : 3 
Mode V Component B Contains 1 segments. 

Segment : 1 
Initial station : 460 Final station : 40 Increament :-20 

Station Conductivity In-phase 
46 45.200 mS/m 1.891 ppt 
44 43.800 mS/m 2.047 ppt 
> Comment : ST.POST 

42 -60.600 mS/m 1.734 ppt 
40 64.200 mS/m 3.071 ppt 
38 59.400 mS/m 2.432 ppt 
36 54.600 mS/m 1.469 ppt 
34 48.800 mS/m 0.963 ppt 
32 49.800 mS/m 0.289 ppt 
30 45.600 mS/m 0.036 ppt 
28 41.200 mS/m -0.590 ppt 
26 40.000 mS/m -0.795 ppt 
24 42.200 mS/m 0.120 ppt 
22 39.600 mS/m -1.361 ppt 
20 41.400 mS/m -2.192 ppt 
18 41.200 mS/m -2.673 ppt 
16 39.400 mS/m -2.192 ppt 
14 39.400 mS/m -3.504 ppt 
12 37.600 mS/m -3.179 ppt 
10 35.800 mS/m -3.083 ppt 
8 .31.200 mS/m 0.181 ppt 
6 27.400 mS/m -2.902 ppt 
4 36.000 mS/m -3.348 ppt 



> Line : 5 
Mode V Component B Contains 1 segments. 

Segment : 1 
Initial station : 20 Final station : 460 Increament : 20 

Station Conductivity In-phase 
2 42.000 mS/m -3.637 ppt 
4 38.000 mS/m -4.63 6 ppt 
6 32.800 mS/m -3.143 ppt 
8 27.000 mS/m -2.420 ppt 
10 27.400 mS/m -2.950 ppt 
12 34.600 mS/m -1.975 ppt 
14 34.600 mS/m -2.661 ppt 
16 33.000 mS/m -2.432 ppt 
18 37.200 mS/m -1.975 ppt 
20 37.800 mS/m -1.385 ppt 
22 41.000 mS/m -1.156 ppt 
24 40.800 mS/m -0.373 ppt 
26 42.600 mS/m -0.470 ppt 
28 43.600 mS/m -0.807 ppt 
30 47.800 mS/m 0.205 ppt 
32 49.800 mS/m 0.024 ppt 
34 53.600 mS/m 1.228 ppt 
3 6 56.600 mS/m 1.2 64 ppt 
38 57.000 mS/m 1.313 ppt 
40 62.000 mS/m 1.686 ppt 
> Comment : ST.POST 

42 64.200 mS/m 3.179 ppt 
44 59.800 mS/m 4.371 ppt 
46 57.200 mS/m 2.721 ppt 

> Line : 7 
Mode V Component B Contains 1 segments. 

Segment : 1 
Initial station : 460 Final station : 20 Increeiment :-20 

Station Conductivity In-phase 
46 50.200 mS/m 3.817 ppt 
44 53.400 mS/m 1.698 ppt 
42 58.000 mS/m 0.470 ppt 
40 54.800 mS/m 2.240 ppt 
38 51.800 mS/m 2.541 ppt 
36 46.000 mS/m 2.324 ppt 
34 43.600 mS/m 1.987 ppt 
32 41.600 mS/m 0.036 ppt 
30 38.400 mS/m -0.735 ppt 
28 36.800 mS/m -1.024 ppt 
26 34.000 mS/m -1.276 ppt 
24 35.800 mS/m -1.529 ppt 
22 34.200 mS/m -1.854 ppt 
20 33.600 mS/m -2.709 ppt 
18 32.400 mS/m -5.154 ppt 
16 35.200 mS/m -4.203 ppt 
14 34.000 mS/m -5.816 ppt 
12 35.800 mS/m -5.913 ppt 
10 29.800 mS/m -6.912 ppt 
8 28.200 mS/m -6.045 ppt 
6 35.000 mS/m -5.395 ppt 
4 45.400 mS/m -8.959 ppt 
2 43.600 mS/m -6.936 ppt 
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> Line : 9 
Mode V Component B Contains 1 segments. 

Segment : 1 
Initial station : 20 Final station : 460 Increament : 20 

Station Conductivity In-phase 

2 
4 
> 

6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 

> 
lode 

tial 

32.400 
34.600 

mS/m 
mS/m 

Comment : GUY.LINE 
31.400 
21.400 
26.200 
32.200 
34.400 
32.200 
30.200 
29.800 
31.200 
32.800 
33.800 
37.200 
41.400 
42.800 
42.800 
41.000 
42.400 
46.200 
55.600 
52.400 
47.400 

Line : 11 
V Component 
: 1 
station : 460 

Station Conduct 
46 
44 
42 
— > 
40' 
38 
36 
34 
32 
30 
28 
26 
24 
22 
20 
18 
16 
14 
12 
10 
8 
6 
4 
2 

48.200 
47.200 
34.600 

Comment : ST. 
43.800 
41.800 
45.200 
45.400 
46.400 
45.000 
42.800 
38.400 
36.200 
34.600 
31.800 
32.400 
37.000 
36.000 
32.400 
31.800 
32.000 
34.200 
34.400 
30.800 
33.600 

mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 

-4.684 
-5.046 

-0.012 
-4.359 
-3.697 
-2.830 
-1.903 
-1.602 
-2.023 
-1.541 
-1.385 
-0.879 
-0.578 
-0.530 
-0.638 
-0.361 
1.301 
0.542 
1.590 
0.747 
2.192 
2.168 
2.059 

B Contains 1 s 

Final 
ivity 
mS/m 
mS/m 
mS/m 
POST 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 

station 

ppt 
ppt 

ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 

egments. 

: 0 Increament 
In-phase 
1.662 
1.325 

-0.735 

1.879 
3.155 
3.035 
1.421 
1.144 
0.590 

-0.036 
0.145 

-0.542 
-1.132 
-1.313 
-1.301 
-1.722 
-3.986 
-6.141 
-5.804 
-6.876 
-1.674 
-7.647 
-12.042 
-7.598 

ppt 
ppt 
ppt 

ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
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Mode V 
Segment : 

Component 
1 

Initial station : 0 

Station 
0 

2 
4 
6 
8 

• 10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 

B Contains 1 

Final 

Conductivity 
36.000 
35.600 
31.400 
27.000 
29.000 
26.200 
27.600 
26.400 
26.600 
28.200 
31.000 
32.600 
34.600 
36.800 
40.000 
41.000 
39.200 
39.600 
39.800 
37.600 
37.800 
38.200 
41.400 
44.800 
48.600 
53.600 
42.600 
46.200 

> Line : 15 
Mode V 

Segment : 1 
Component 

Initial station : 460 
Station 
46 
44 
42 
40 
38 
36 
34 
32 
30 
28 
26 
24 
22 
20 
18 
16 
14 
12 
10 
8 
6 
4 
2 
0 

mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 

station 

segments 

: 540 

In-phase 
5.515 
1.614 
1.433 

-0.421 
-0.397 
0.879 
1.758 
1.782 
2.300 
3.324 
3.998 
2.830 
3.769 
3.528 
4.191 
5.202 
5.720 
5.636 
4.889 
6.190 
5.527 
4.973 
6.695 
6.924 
9.345 

11.970 
8.742 
8.477 

ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 

B Contains 1 segments. 

Final 
Conductivity 
43.000 
39.600 
39.800 
39.200 
41.000 
43.000 
43.800 
43.600 
43.400 
41.200 
40.800 
38.800 
36.800 
34.800 
35.200 
33.400 
34.400 
30.800 
28.800 
27.600 
29.800 
29.000 
33.400 
36.600 

mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 

Station : 0 I3 
In-phase 
1.903 
1.770 
1.686 
2.107 
1.180 
1.216 
1.301 
1.036 

-0.072 
-0.169 
-0.867 
-0.686 
-0.987 
-3.588 
-3.071 
-3.938 
-4.949 
-7.225 
-4.696 
-9.043 

-10.850 
-12.656 
-11.247 
-9.332 

ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 

Increament 20 

Increament -20 
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> 

Mode 
Segment 
Initial 

Line : 17 
7 Component 
: 1 
station : 0 

Station Conduct 
0 

2 
4 
6 
8 

10 
• 12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 

> 
40 
42 
44 
46 

> 

36.000 
30.800 
35.000 
22.200 
22.000 
33.600 
36.800 
40.000 
40.000 
37.800 
42.200 
42.800 
43.800 
45.600 
46.200 
46.400 
49.000 
48.200 
46.800 
45.400 

Comment : ST. 
56.800 
45.000 
34.800 
28.800 

Line : 19 
Mode V Component 

Initial 
• .1. 

station : 440 

B Contains 1 segments 

Final 
ivity 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
POST 
mS/m 
mS/m 
mS/m 
mS/m 

station : 460 
In-phase 

-3.444 
-3.962 
-2.661 
-3.733 
-3.986 
-1.806 
-2.709 
-1.252 
-1.361 
-1.252 
-0.831 
0.048 

-0.349 
-0.421 
-0.313 
-0.072 
0.265 

-0.048 
0.325 
0.313 

0.855 
0.795 
0.373 

-4.070 

ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 

ppt 
ppt 
ppt 
ppt 

B Contains 1 segments 

Final station 
Station Conductivity 
44 
42 
40 
38 
36 
34. 
32 
30 
28 
26 

34.200 
49.000 
51.200 
43.800 
45.000 
47.400 
45.800 
44.400 
44.400 
45.600 

mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 
mS/m 

In-pha 
-0.409 
-0.735 
-0.397 
0.048 

-0.096 
-0.072 
-0.723 
-1.590 
-0.674 
0.120 

: 0 
se 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 
ppt 

Increament 20 

> Comment : CAR 
24 45.800 mS/m 3.408 ppt 
> Comment : CAR 

skipped or deleted 
> Comment : STAIRS 

20 49.000 mS/m 42.074 ppt 
18 44.200 mS/m 2.842 ppt 
> Comment : VAN 

16 49.200 mS/m 6.358 ppt 
> Comment : CAR 

skipped or deleted 
12 42.800 mS/m -3.179 ppt 
10 36.000 mS/m -3.215 ppt 
8 27.600 mS/m -5.587 ppt 
6 28.600 mS/m -7.032 ppt 
4 33.600 mS/m -10.452 ppt 
2 32.600 mS/m -12.969 ppt 

38.000 mS/m -9.164 ppt 
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