

REA Business Modeling
Language

Toward a REA based Domain Specific Visual Language

Mohannad M. Al-Jallad

Department of Computer and Systems Sciences

Degree project 30 HE credits

Degree subject (Engineering and Management of Information Systems)

Degree project at the master level

Autumn/Spring term 2012

Supervisor: Paul Johannesson

Reviewer: Petia Wohed

Swedish title: REA Affärsmodelleringsspråk - ett REA baserat visuellt och domänspecifikt språk

Abstract
Resources Events Agents (REA) ontology is a profound business modeling ontology that was
developed to define the architecture of accounting information systems. Nevertheless, REA did not
manage to get the same attention as other business modeling ontologies. One reason of such abandon
is the absence of a meaningful visual notation for the ontology, which has resulted in an abstruse
ontology to non-academic audience. Another reason for this abandon is the fact that REA does not
have a standard formal representation. This has resulted in a humble amount of researches which have
focused on defining meta-models of the ontology while neglecting the wider purpose of REA-based
information systems development. Consequently, the ontology was deviated away from its original
purpose, and rather used in business schools.

To solve the aforementioned issues, this research presents a Model Driven Development (MDD)
technique in the form of a REA-based Domain Specific Visual Language (DSVL) that is implemented
within a modeling and code generation editor. This effort was taken in order to answer the question of
“How would a REA-DSVL based tool make the REA ontology implementable in the domain of
information systems development?”

In order to answer the research question, a design science methodology (DSRM) was implemented as
the structure of this research. The DSRM was chosen because this research aims to develop three main
artifacts. These are; a meta-model of REA, a visual notation of REA, and a REA-DSVL-based
modeling and code generation tool.

The first phase of the DSRM was to identify the problems which were mentioned earlier, followed by
the requirements identification phase which drew the outline of the; meta-model, the visual notation,
and the tool. After that, the development phase was conducted in order to develop the aforementioned
artifacts. The editor was then demonstrated using a case study of a local company in Stockholm-
Sweden. Finally, the resulted artifacts were evaluated based on the collected requirements and the
results from the case study.

Based on the analyses of the artifacts and the case study, this research was concluded with the result
that a REA-based DSVL tool can help in boosting the planning and analysis phases of the software
development lifecycle (SDLC). This is achieved by automating some of the conventional software
planning and design tasks, which would lead to more accurate systems’ designs; thus, minimizing the
time of the planning and design phases. And it can be achieved by abstracting the direct logic of REA
through providing functionalities that help users from different backgrounds (academic and
professional) to embrace a business modeling editor rather than an ontology; thus, attracting a wider
users base for implementing REA.

Keywords

Resource Event Agent, REA ontology, Domain Specific Visual Language, DSVL, Domain Specific
Language, DSL, meta-modeling, Eclipse, Ecore, EMF, GMP, visual notation development.

Acknowledgement

I would like to think of this research as the result of all the past events which have resulted in me
coming here to Sweden, attending my current school, meeting all the great people that I have met here,
and finally finishing this work. I thank the lord for all that happened, and for what is yet to come.

This research wouldn’t have seen the light if it wasn’t for the profound support and perfect guidance
of Professor. Paul Johannesson, whose wisdom and knowledge are sources that I had the honor to
witness and learn from. For that sir, I thank you.

Even though my gratitude cannot be expressed by words to them, I would like to extend my gratitude
to my family. To my father’s soul, my mother, sister, and brothers, thank you. Without each and every
one of you, I wouldn’t be the man that I am today.

Mohannad M. Al-Jallad

Table of Content

1. Introduction .. 1

1.1 Background .. 1
1.2 Problem definition ... 3
1.3 Research Question ... 4
1.4 Disposition ... 4

2. Extended Background ... 5
2.1 On ontologies, modeling languages, and meta-models 5
2.2 Business modeling ontologies ... 6
2.3 The Resource Event Agent (REA) ontology .. 8
2.4 Model Driven Architecture (MDA) and Model Driven Engineering (MDE)10
2.5 A REA-Based DSVL ...11
2.6 Eclipse’s Graphical Modeling Framework (GMF) ..12
2.7 Related work ...14

3. Methodology ... 17
3.1 Choice of research method ..18

3.1.1 Problem identification and motivation ...18
3.1.2 Define the objectives for a solution ...18
3.1.3 Design and Development ..18
3.1.4 Demonstration ...21
3.1.5 Evaluation ...22
3.1.6 State of the art techniques and methods ...23
3.1.7 Ethical and social considerations ..23

3.2 Application of research method ..24
3.2.1 Problem identification and motivation ...24
3.2.2 Define the objectives for a solution ...24
3.2.3 Design and Development ..25
3.2.4 Demonstration ...29
3.2.5 Evaluation ...30
3.2.6 Ethical and social considerations ..31

4. Results and Analysis ... 32
4.1 Problem identification and motivation ...32
4.2 Define the objectives for a solution ...32
4.3 . Design and Development ...34

4.3.1 Meta-Model development ..34
4.3.2 Visual notation development ..37

4.3.3 Visual notation implementation ..38
4.3.4 Editor generation ...40

4.4 Demonstration ...45
4.5 Evaluation ...46

4.5.1 The meta-model ..46
4.5.2 The visual notation ...47
4.5.3 The REA-DSVL Editor ..48

4.6 Results Validity ..52

5. Conclusion .. 52

6. Discussion ... 54

Bibliography .. 58

Appendix A .. 61
A.1 Literature Resources ... i
A.2 REA elements relationships matrix .. i
A.3 First basic meta-mode ..ii
A.4 REA-DSVL elements relationship s matrix ... iii
A.5 Visual implementation classes ... iv
A.6 ABS Wheels business ... v
A.7 ABS Wheels’ REA Processes .. vi
A.8 ABS Wheels’ REA models ... vii
A.9 ABS Wheels’ REA data-models ... xv

List of Figures
Figure 1: The basic REA model .. 8
Figure 2: The aspects of a modeling language .. 12
Figure 3: GMF Dashboard .. 13
Figure 4: Graphical implementation methods in GMF ... 14
Figure 5: REA-DSVL development process ... 19
Figure 6: Events design process .. 26
Figure 7: The visual implementation of "Agent" meta-class .. 28
Figure 8: Generating the "gmfgen" file ... 29
Figure 9: REA-DSVL's meta-model ... 36
Figure 10: Concept 1 ... 37
Figure 11: Concept 2 ... 37
Figure 12: Concept 3 ... 37
Figure 13: Concept 3 improvements ... 38
Figure 14: The final visual notation after implementation.. 39
Figure 15: REA DSVL First Run .. 40
Figure 16: New REA Diagram.. 41
Figure 17: New REA Diagram Wizard ... 41
Figure 18: REA-DSVL Editor .. 41
Figure 19: The properties window for an exchange event .. 42
Figure 20: Diagram validation .. 43
Figure 21: Multiple processes per diagram ... 50
Figure 22: colored Multiple processes diagram .. 51
Figure 23: Current and future solutions .. 56

List of Tables
Table 1: GMF Dashboard elements .. 13
Table 2: REA-DSVL and REA-DSVL editor Requirements ... 33
Table 3: DSVL Modeling tools ... 33
Table 4: Summary of REA DSVL Editor's main functionalities .. 44
Table 5: The final status of the requirements .. 49

1

1. Introduction
This chapter intends to provide the background of this research and the problem it addresses, and it
describes the following content of this research document.

1.1 Background
Enterprises implement information systems to improve their businesses. Information systems add
values to different aspects within an enterprise. These aspects include the enterprise’s work
procedures, its employees, and the development and implementation methodologies within that
enterprise (HEVNER, Alan R. et al., 2004). Due to the fact that businesses are competitive in nature,
and that an enterprise might need to change its business or parts of it to compete with other enterprises
which operate in the same business domain, the impact of performing changes to a business without
carefully studying the enterprise’s knowledge and its business domain can be very costly; thus,
enterprise models, which reflect different structural aspects within the enterprise, can be very helpful
in assessing the impact of such changes (B. YU, J.A. Harding, K. Popplewell, 2000) (RAHMOUNI,
M. and Lakhoua, M.N., 2011).

Enterprise modeling has emerged, amongst other reasons, to provide a source for enterprise domain
knowledge. This enterprise knowledge makes it easier for different roles within an enterprise to
understand and analyze different aspects of the enterprise (ZOUGGAR, N. et al., 2009). While
enterprise models provide a description of the processes and business environment as they exist in a
specific enterprise, enterprise ontologies provide definitions of the concepts and relationships that
would appear in the domain of the enterprise’s business in general. This nature of domain ontologies
authorizes them to be used as blueprints of business-domains which are practiced within different
enterprises. Keeping the purpose of business ontologies in mind, modeling languages are still needed
to build models of the processes, business, or structure of the modeled enterprises. In this sense,
ontologies and modeling languages are complementing each other in the domain of enterprise
modeling (ZOUGGAR, N. et al., 2009).

Several enterprise/business modeling ontologies were introduced throughout literature and practice.
The most well-accepted and used ones are e3-value, Resource-Event-Agent (REA), and Business
Model Ontology (BMO) (SCHUSTER, R. and Motal, T., 2009) (SONNENBERG, C. et al., 2011 b)
(SONNENBERG, C. et al., 2011 a) (GAILLY, Frederik and Poels, Geert, 2007). Some of these
ontologies are suitable for developing business information systems. Others fit for supporting the
knowledge base of their domains when used. REA is an ontology that was developed first to provide a
financial analysis model (MCCARTHY, William E., 1982) , and then it has emerged across two
decades to support the development of business information systems (GEERTS, Guido L. et al., 1996)
(GEERTS, Guido L. and McCarthy, William E., 2000) (GEERTS, Guido L. and McCarthy, William
E., 2002) (GEERTS, Guido L. and McCarthy, William E., 2006). Although REA, and other similar
business modeling ontologies, claim their suitability in supporting the production of information
systems, the implementations of such ontologies is limited in that domain.

In order to put business models into a practical perspective, conventional means for information
systems development have been elevated to higher levels of abstraction. This movement toward
abstractness is elaborated on the usage of models as key drivers for systems representation and

2

development (MU, Liping et al., 2010). Model Driven Development (MDD) is an approach for
describing and building software systems. Using this approach, different software modeling languages
are used to model different aspects of the software. These models are then used to generate one
software system (STAAB, Steffen et al., 2010). While MDD focuses on the general methodology of
model-based software development, Model Driven Engineering (MDE) focuses on the design and
specification of the modeling languages which are used in MDD (STAAB, Steffen et al., 2010). MDE
can be considered as a generalized/global approach that is based on the Model Driven Architecture
(MDA).

On its behalf, MDA is an architecture that was developed by the Object Management Group (OMG)
to facilitate the separation between the business logic, system requirements, and the platform of
software systems (OMG, 2003). The specifications document of MDA defines four layers1 to
accomplish this separation of concerns. MDA uses technologies developed by OMG, namely UML
and MOF, at its technical base (OMG, 2003). In order to expand the benefits of MDA outside the
boundaries of OMG’s technologies, MDE (as a generalization of MDA) uses the four-layered
architecture in general technical spaces. One of these technical spaces is the usage of ontologies as
means for modeling software systems (LAFORCADE, Pierre, 2010).

MDE is practically built on top of two main concepts; modeling languages, which are used to produce
models, and model transformation which is related to the transfer of models from one modeling
language to another (STAAB, Steffen et al., 2010). Models are implementations (or products) of
modeling languages. Modeling languages on their behalf are implementations of meta-models. Meta-
models are defined as models of models, or models which are used to build other models
(GONZALEZ-PEREZ, Cesar and Henderson-Sellers, Brian, 2008). Meta-models are also considered
the core artifacts which are used for models transformation, and they are required to successfully
deliver the benefits of MDE when generating model-driven systems (STAAB, Steffen et al., 2010).

Domain Specific Modeling (DSM) is an implementation method of MDE. Similar to ontologies,
modeling languages in DSM are designed specifically for modeling particular domains and not any
other. In MDA, UML can be used to model different spaces including the particular domain of any
given DSM language. This nature of DSM gives domain experts more control over the correctness
and completeness of their models as it gives these experts more control over the domains that they are
familiar with (LAFORCADE, Pierre, 2010). For example, if a manager of some financial department
wants to build a model that represents her department, a typical DSM language would provide her
with elements which directly represent; employees, money, contracts…etc. On the other hand, when
using UML, this manager would need to model these business entities using UML classes according
to the appropriate Object Oriented (OO) relations between these entities. This of course is a difficult
task to non-technical IS personnel; thus, the need for IS engineers would be inevitable in the latter
scenario. This, indeed, is one of the benefits associated with using DSM languages; that is, to allow
the direct participation of system owners in designing and developing their own business solutions.

One variant of DSM languages is referred to as Domain Specific Visual Languages (DSVL).
A DSVL provides business modelers with visual modeling mechanisms. Domain experts can use such
mechanisms, usually implemented inside MDD tools, to design models that represent their businesses.
Such designing tools provide customary business domain concepts in the form of visual components
(drawings or figures). These tools would then use the developed models to generate business
applications for the modeled domains automatically (SPRINKLE, Jonathan and Karsai, Gabor, 2004).

1 The details of the four-layered architecture will be discussed in the next chapter.

3

Usually, modeling languages which are used within DSVL-based tools are specifically designed to
support the very specific need of a particular business. In order to bring the benefits of ontologies and
DSVLs together, an ontology-based visual modeling language should be produced, and then
implemented within a DSVL-based modeling tool. This, indeed, is an outline of what this research is
trying to accomplish. This research tries to contribute to the movement toward models evolution, by
incorporating a well-distinguished business modeling ontology, namely the Resource-Event-Agent
(REA), in the domain of MDD. This attempt is carried out in order to bring business modeling
ontologies, the REA ontology in this case, closer to the domain of information systems development.

1.2 Problem definition
Resource Event Agent (REA) is a business ontology which has well defined roots from the heart of
the economic theory. REA was originally developed to support the creation of financial databases,
and it has emerged later to support the production of business information systems (GEERTS, Guido
L. and McCarthy, William E., 2002). REA faces some problems which limit the ontology’s capability
of reaching the level of systems development support that it was created for. The main problem is that
REA is still viewed as a raw ontology (SONNENBERG, C. et al., 2011 a) (GAILLY, Frederik and
Poels, Geert, 2007). REA is described in a set of papers by McCarthy and Geerts without a formal
representation of the ontology1, and it lacks a standard visual notation for it to be accepted by IS
professionals who do not possess a previous knowledge of REA. These problems have suppressed the
true power of REA in designing business information systems, which has resulted in a very few
practical implementations of the ontology. The previous problems form the foundation of this
research. This section intends to describe the identified problems in details.

REA lacks a formal representation that conveys a common and a single comprehension of the
ontology among its users. There have been many attempts to represent the ontology in a formal
manner (GAILLY, Frederik and Poels, Geert, 2007) (SONNENBERG, C. et al., 2011 a)
(SONNENBERG, C. et al., 2011 b); though, most of these attempts were incomplete or inaccurate
due to the complexity of the ontology and its numerous bifurcations. In addition to that, some of the
previous attempts managed to provide different meta-models with different cardinalities. These results
are invulnerable evidence to the severity of the mentioned problem.

In addition to a formal representation, REA also lacks a visual notation that places it as a modeling
language rather than a rigorous business ontology. According to (SONNENBERG, C. et al., 2011 a),
William E. McCarthy, the founder of REA, personally expressed to the authors that REA needs a
sufficient visual notation like the one associated with e3-value, and that such a visual notation would
make the ontology easier to reach business modelers. Furthermore, providing REA users with a
modeling tool like the one available for e3-value might help in making such goal easier to reach.

The amount of work that has been done so far around the previously mentioned problems, tried to
solve one of the identified problems, but not the other. The previous problems can be solved by
building a modeling language which has an abstract syntax in the form of a meta-model; thus, solving
the problem of the formal representation, and by building a concrete syntax in the form of a visual
notation, which would solve the problem of the missing visual notation. These solutions might help in
solving their associated problems; though, the main problem of bringing REA closer to an

1 A formal representation in this discussion means a meta-model with clear cardinalities between the
ontology’s entities.

4

implementation context requires providing mechanisms that allow the generation of system objects,
which can be used directly in building software systems. The latter problem can be solved by
developing a DSVL-based MDD tool, which can be used for modeling and code generation
(SPRINKLE, Jonathan and Karsai, Gabor, 2004) (LAFORCADE, Pierre, 2010).

Developing a visual notation and a meta-model for REA are direct solutions for their associated
problems, and their results can be directly judged by the developed artifacts. On the other hand, using
a DSVL for bringing the ontology closer to an implementation context is theoretically expected;
nevertheless, a deeper exploration of the DSVL and its implementation is needed in order to reveal the
extent to which a REA-DSVL based tool can bring the ontology closer to information systems
development context.

1.3 Research Question
Based on the problems described in the previous section, REA still faces a challenge in being widely
implemented in the architecture of business information systems. The main goal of this research is to
develop a REA-based DSVL. A typical DSVL consists of a meta-model and a visual notation; thus,
these two artifacts should be developed as a first step. The developed DSVL is then to be
implemented in a tool according to DSM specifications (LAFORCADE, Pierre, 2010). This effort is
carried out in order to help answering the question:

“How would a REA-DSVL based tool make the REA ontology implementable in the domain of
information systems development?”

1.4 Disposition

This report is structured as follows; the first chapter described the requirements and motives behind
this research, and it defined the problems that this research is intending to solve. This chapter also
presented the research question that can be answered by solving the identified problems.

Chapter two provides an extended background of different topics that are covered in this research.
Then chapter three presents the methodology followed in this research and its rationale, and it
provides the details of how each phase of the methodology was conducted.

Chapter four represents the results and analysis of the research according to the followed
methodology. Chapter five then concludes the main results of this research, and finally, chapter five
discusses the results and their analysis, and it provides an overview of the limitations of the research.
Then it describes how a typical set of future works can be built on top of this research.

5

2. Extended Background
This chapter intends to discuss some of the topics and technologies which are used in this research.
First, ontologies, modeling languages and meta-models are described and their relations are discussed.
Then, Business modeling ontologies are presented, followed by a description of the REA ontology.
After that, MDA and MDE are discussed, and then all the previous topics are discussed together in
order to explain what this research is trying to do. After that, a brief description of one MDD
framework is given, followed by a discussion of the related research in the domain of REA.

2.1 On ontologies, modeling languages, and
meta-models

Ontology, as a concept, is a descendant from the branch of philosophy known as Metaphysics.
Metaphysics in philosophy concerns the study of essences and origins of things, and it is divided into
two branches; these are general metaphysics, and specific metaphysics. Ontologies, in philosophy, are
the first branch of metaphysics, or the general metaphysics. Ontologies concern the study and
investigation of general concepts of beings which, if known, can help in revealing the essence of
beings (WAND, Yair, 1996) (SÁNCHEZ, Diana Marcela et al., 2007).

More recently, ontologies have been used in different research fields of computer science like;
Artificial Intelligence (AI), Object Oriented paradigm, and Databases. In computer science ontologies,
things that can be represented are considered concepts of ontologies. Concepts are the primary
components of ontologies, and they reflect the essence of the things that they are trying to capture.
Based on that, ontologies in computer science are built on top of two main concepts, these are;
Conceptualization and Representation, where conceptualization refers to the process of creating
concepts of things from the ontology’s domain. Representation is the process of presenting these
concepts in a simple manner, which one can use to communicate his/her understanding of different
concepts and how they are related to each other. In computer science, representation is usually
depicted using models (SÁNCHEZ, Diana Marcela et al., 2007).

Models are abstract representations of complex realities (MU, Liping et al., 2010). Meta-models are
models which are used to build other models, or simply, models of models (MU, Liping et al., 2010)
(GONZALEZ-PEREZ, Cesar and Henderson-Sellers, Brian, 2008). Models in computer science are
usually produced using modeling languages. Modeling languages, as traditional languages, consist of
three main parts. These parts are; an abstract syntax, at least one concrete syntax, and semantics
(STAAB, Steffen et al., 2010) (MU, Liping et al., 2010). Abstract syntax is the collection of language
constructs and how they are related, and it is usually represented by meta-models. The second part,
the concrete syntax, can be of a visual or textual nature. The concrete syntax is a method for
presenting the language constructs to the language users. Finally, semantics of a language assign
meanings to the language constructs (STAAB, Steffen et al., 2010).

A special kind of modeling languages is referred to as Domain Specific Languages (DSLs). DSLs
refers to modeling languages that cover a small bounded set of concepts, in a way that these concepts
together serve functionalities related to a specific domain or discipline. DSLs are different from the
Generic Programming Languages (GPLs), which are languages that are used to perform several
functionalities regardless of the domain (VAN DEURSEN, Arie et al., 2000). HTML is an example of

6

DSL, while Java is an example of GPL. HTML is only used for building web pages, while Java can be
used for building desktop applications, network programs, and HTML pages. DSLs which use
graphical notations for its concrete syntaxes are referred to as Domain Specific Visual Languages
(DSVLs) (SPRINKLE, Jonathan and Karsai, Gabor, 2004).

As seen from the previous discussion of modeling languages and ontologies, domain ontologies
define the set of concepts that cover the constructs of a specific domain, and they rely on the user of
the ontology to assign a representation of these concepts according to their understanding. On the
other hand, modeling languages have more organized structure, and they provide a formal
representation of the language constructs that is shared among all language users. This nature of
ontologies makes them the main source of knowledge for a specific domain. Modeling languages,
which are built on top of such ontologies, provide a formalization of the domains that they are built to
support. In this sense, a typical ontology driven modeling language will take its constructs from the
concepts of an ontology. These constructs are then used to build the modeling language’s abstract and
concrete syntaxes. The modeling language would also provide a set of semantics that convey a
common and a clear understanding of the language constructs; thus, the relation between ontologies
and modeling languages can be seen as of a complementary nature (GUIZZARDI, Giancarlo, 2006).

This research, in one of its steps, aims to build a domain specific visual language (DSVL) based on a
business modeling ontology, namely the REA ontology. The resulted modeling language will then be
used as the core language for an MDE based implementation. Business modeling ontologies and
Modeling Driven Engineering (MDE) will be discussed in the following sections.

2.2 Business modeling ontologies
Ontologies in computer science are categorized into three main categories according to their
generality. Generality in this context means the collection of concepts that ontologies cover. These
categories are; top-level ontologies, domain and task ontologies, and application ontologies
(SÁNCHEZ, Diana Marcela et al., 2007). Top-level ontologies cover concepts which are not limited
to a specific domain or problem (ex: time, space, distance…etc). Domain and task ontologies cover
concepts from a specific domain, and at the same time they are not limited to a specific
implementation of that domain. For example, business domain ontologies cover general concepts of
businesses (ex: actors, roles, resources…etc) without relying on the exact nature of the business (ex:
financial business, engineering business…etc). Finally, application ontologies cover concepts which
are associated with a specific domain or a problem (ex: engineering management, engineering
finance…etc). This research focuses on one of the ontologies which are associated with the domain of
enterprises business modeling. Such ontologies are referred to as business modeling ontologies
(GAILLY, Frederik and Poels, Geert, 2007).

Today, several business modeling ontologies are available. The most well-accepted and used ones
among these ontologies are e3-value, Resource-Event-Agent (REA), and Business Model Ontology
(BMO) (SCHUSTER, R. and Motal, T., 2009) (SONNENBERG, C. et al., 2011 a) (SONNENBERG,
C. et al., 2011 b) (GAILLY, Frederik and Poels, Geert, 2007). Each of the aforementioned ontologies
managed to provide a specific value to the domain of business modeling, and each of them had quite
sufficient amount of related research built on top of it, either to extend the ontology, or to relate it to
other domains of enterprise modeling.

7

Business Model Ontology (BMO) is a business ontology based on the analysis of different academic
and industrial endeavors, which has resulted in an ontology that relies on four major business pillars.
BMO’s business pillars are; the product, the customer interface, the infrastructure, and the financial
aspects of businesses (CORALLO, Angelo et al.). The foundation of BMO takes the internal
perspective of businesses. It aims to model the value proposition of the business and how to make
profit out of it; though, it does not directly relate the modeled business to the business network around
it (SCHUSTER, R. and Motal, T., 2009).

E3-value (GORDIJN, Jaap, 2002) is another business modeling ontology which supports the
modeling of networks between enterprises that exchange resources (values) among themselves. The
basic constructs of e3-value represent the participants in a business network, the economic values that
are exchanged between these participants, and the nature and direction of exchange (GORDIJN, J. et
al., 2006). Unlike BMO and REA, E3-value has a modeling language built on top of it. Moreover, the
e3-value based modeling language is supported within a tool that can be found on the original website
of the ontology1.

The third major business modeling ontology is the Resource-Event-Agent (REA) ontology. As its
name suggests, the main objective of REA models is to mainly represent the resources, agents
(actors), and events that are associated with the business of a specific enterprise. REA takes the
perspective of the enterprise that is being modeled, rather than a holistic view of the business-network
like in the case of e3-value (SCHUSTER, R. and Motal, T., 2009) (ZHANG, Guoqiang et al., 2010).
REA ontology was also extended to cover a wider set of concepts related to business environments.
Such extension helps in modeling the details of what should be handled in the business rather than just
what is being handled (GEERTS, Guido L. and McCarthy, William E., 2002) (GEERTS, Guido L.
and McCarthy, William E., 2006). Extended REA covers concepts like contracts and commitments,
which are missing in other business modeling ontologies.

Researchers in the domain of business modeling gave REA the upper hand over e3-value and BMO
when it comes to designing business information systems. BMO focuses on categorizing business
aspects which are needed for the production and delivery of services, but it does not focus on
conceptualizing the main elements of business environments (SONNENBERG, C. et al., 2011 a)
(SONNENBERG, C. et al., 2011 b). BMO also focuses on the internal perspective of the business,
without viewing the network around it; thus, leaving REA and e3-value as better candidates for
modeling a wider range of business effective elements. (SCHUSTER, R. and Motal, T., 2009).

Some researchers placed e3-value in the same position as BMO. Due to the holistic approach of e3-
value, it can be considered as a good reference for the managerial perspective to have an overview of
the modeled business network. BMO, on the other hand, is suitable for the internal managerial
perspective of the modeled business (GAILLY, Frederik and Poels, Geert, 2007).

Compared to e3-value and BMO, REA provides additional levels of details which can help in forming
conceptual models of both the internal and external business processes and environments (GAILLY,
Frederik and Poels, Geert, 2007) (SCHUSTER, R. and Motal, T., 2009). Because REA’s foundation is
based on real concepts from the accounting theory, REA business models are useful when developing
accounting information systems (GAILLY, Frederik and Poels, Geert, 2007).

Due to its suitability for developing information systems, this research takes REA as the foundation
ontology for building a modeling language, which in its turn, will be used as the base modeling

1 http://e3value.few.vu.nl/tools/

8

language for an MDE implementation. A detailed explanation of REA will be presented in the next
section.

2.3 The Resource Event Agent (REA)
ontology

Resource-Event-Agent (REA) is a business modeling ontology that was initially created as an
accountability framework for building accounting information systems. The framework was then
extended a number of times to cover more general aspects of enterprise business modeling; thus,
making the framework suitable to be viewed as a business domain ontology (GEERTS, Guido L. and
McCarthy, William E., 2002).

According to the progressive nature of REA’s creation, the ontology has two models that represent its
overall concepts space; these are the basic and extended REA models. The basic REA model is based
on REA’s first accountability framework, and the extended REA model represents the additional
enterprise business domain concepts (GEERTS, Guido L. and McCarthy, William E., 2002).

In REA’s view of business environments, any business activity is built on top of three main pillars,
these are; Resources, Events, and Agents (thus the name REA). Agents are entities (individuals,
organizations, companies…etc) that participate in the business-related processes. These agents can be
within or outside the modeled enterprise or business. Resources are things of value that are being
exchanged or produced in the course of the running business. Events are the activities which lead to
the interaction between different Agents in order to exchange of produce Resources. When all the
previous components of REA interact with each other, they form what is known as the "business
value chain" (GEERTS, Guido L. and McCarthy, William E., 2002) (HRUBY, Pavel et al., 2005).
Figure 1 shows the basic REA model.

Figure 1: The basic REA model as it appears in (GEERTS, Guido L. and McCarthy, William E., 2002)

Agents in REA can be internal or external agents depending on the perspective that is taken while
developing REA models. REA models are based on the internal perspective of the modeled business,
which means that any agent that works for the modeled business (or enterprise) is considered an

9

internal agent, while other participants are considered external agents (GEERTS, Guido L. and
McCarthy, William E., 2002).

REA has two main types of economic events, these are; exchange and conversion events. Exchange
events represent business tasks at which different resources are being exchanged between internal and
external agents. Conversion events represent the tasks which lead to the creation of new resources
from other resources, and they are usually executed by internal agents. Depending on the perspective
of the modeled business, each of the events types can be either an increment event or a decrement
event. Increment events are events that add resources to the business, and decrement events are events
that remove resources out of the business’s custody. In REA, all events (exchange and conversion)
occur in combination of at least one increment and one decrement events. Such relation between
events is referred to as Duality relationship (HRUBY, Pavel et al., 2005). Each exchange event must
have exactly one internal agent and one external agent who exchange resources. Conversion events on
the other hand, must have at least one internal agent who performs the conversion. Both exchange and
conversion events operate on exactly one resource at a time (GEERTS, Guido L. and McCarthy,
William E., 2002).

A sale operation is a typical example of exchange events. In a sale operation, a product (resource) is
given to the product buyer (external agent) by the cashier (internal agent). In return, the product buyer
gives money (other resource) back to the cashier. As noticed in the previous example, the task at
which the cashier gives away the product is a typical example of a decrement exchange event. The
event is considered decrement because a resource, the product in this case, is being removed out of the
cashier’s custody. In the same sense, the task of receiving cash from the buyer is an example of an
increment exchange event because money is added to the cashier’s custody.

As mentioned earlier, REA has an extended model that covers additional concepts of business
environments. The extended model of REA adds Commitments as a new ontological concept
(GEERTS, Guido L. and McCarthy, William E., 2002) . Commitments are promises of performing
economic events in the future (HRUBY, Pavel et al., 2005). In the previous sale example, if the
cashier arranges a delivery of the product to the buyer’s house, or the buyer paid for the product using
a credit-card, then these promises of performing events are modeled as commitments. The previous
examples are modeled as commitments because the delivery of the physical product will take place at
some point in the future, as well as the payment through the credit-card. In the latter case, the money
will be actually collected by the cashier after a period of time, and not at the time of performing the
credit-card payment.

Because they rely directly on economic events, commitments have the same categorization of
economic events. Depending on the economic events that they promise to fulfill, commitments can be
either exchange or conversion commitments, and for each type they are either increment or decrement
commitments (HRUBY, Pavel et al., 2005).

In addition to Commitments, the authors of REA identified Contracts and Schedules as means to
aggregate exchange and conversion commitments on the policy level (GEERTS, Guido L. and
McCarthy, William E., 2000). Contracts are associated with exchange commitments, and they usually
contain a set of Terms that define the conditions which lead to the execution of one or more
commitments. Schedules are associated with conversion commitments, and they hold the same rules
as for contracts (HRUBY, Pavel et al., 2005). The policy level specifications and the process level
view are two more extensions of REA that were not extensively researched.

10

This research aims to build a modeling language for the REA ontology. The modeling language will
cover the concepts from the basic and extended models. The ultimate purpose of the modeling
language is to be used in a model driven development context; thus, bringing REA closer to its
software implementation purposes. Model Driven Development will be discussed in the next section.

2.4 Model Driven Architecture (MDA) and
Model Driven Engineering (MDE)

Model Driven Development (MDD) is a continuation to the researchers’ effort in providing higher
levels of abstraction to the process of software development. Software programmers used to write the
details of how both the system and software should react to deliver the functionalities required from
the software. With the advancements of programming languages and the introduction of compilers,
software programmers focused more on the software part, leaving the details of systems manipulation
to the compilers. More recently, the move toward incorporating models in the process of writing the
business logic of software systems became an aspiration to software engineers due to the new
challenges that came to surface with the usage of object oriented languages. The process of
incorporating models in the process of software development is referred to as Model Driven
Development (MDD). The most distinguished effort in the domain of MDD is realized in the goals
and aims of what is known as the Model Driven Architecture (MDA) (ATKINSON, Colin and Kühne,
Thomas, 2003).

Model Driven Architecture (MDA) is a standard that was developed by the Object Management
Group (OMG) to facilitate an architecture that is used when incorporating models in the process of
software development. MDA describes the types of models which are needed to successfully deliver
model-based software, and it describes how these models are related to each other. MDA dictates that
any model-based generated software should be viewed from three different viewpoints. The first
viewpoint is the Computation Independent Viewpoint, which describes the business logic and the
requirements of the software system. The models that depict this information are referred to as
Computation Independent Models (CIM). The second viewpoint is the Platform Independent
Viewpoint, which describes the structure of the software (like the framework used, the scheduling
techniques used…etc) without mentioning the technical specifications of the platform that the system
should operate on. The models which are associated with this viewpoint are called Platform
Independent Models (PIM). The third and final viewpoint is the Platform Specific Viewpoint, and as
the name suggests, this view point is associated with the view of the system from the perspective of a
specific platform. The models which are used for this purpose are referred to as Platform Specific
Models (PSM) (OMG, 2003).

In order to achieve the goals of MDD, the OMG has identified an infrastructure that facilitates the
structure of modeling languages which are used to build the models needed for MDD (ATKINSON,
Colin and Kühne, Thomas, 2003) (MU, Liping et al., 2010). The OMG’s standard infrastructure, also
known as the four-layer architecture, relies on technologies developed by the OMG. The first layer of
this architecture, referred to as M3, is represented by an OMG standard know as the Meta-Object
Facility (MOF). MOF is used to define the next layer of the architecture which is referred to as M2.
M2 layer is represented by the famous Unified Modeling Language (UML). The UML is a method
used to represent systems in an object oriented manner using graphical notations. The third layer (M1)
of the architecture holds models which are developed using UML, and the final layer (M0) holds the

11

user data which is used to model the third layer (ATKINSON, Colin and Kühne, Thomas, 2003) (MU,
Liping et al., 2010).

As it was mentioned earlier, MDE as a generalization of MDA takes the four-layer architecture to
contexts outside the boundaries of the technologies used in MDA (STAAB, Steffen et al., 2010).
MDE views the four-layer architecture as a sequence of; meta-meta-model, meta-model, model, and
user data that correspond to the layers described earlier M3, M2, M1, and M0 respectively. Such view
of the four-layer architecture makes it easier to assign different technologies to the meta-meta-model
and meta-model layers. The authors in (MU, Liping et al., 2010) have identified five different
technologies that can be applied to these layers; thus, showing that this structure can be useful for
different MDE implementations.

As it was described earlier, MDE is based on two main concepts; these are modeling languages and
model transformation (STAAB, Steffen et al., 2010). Modeling languages were discussed earlier in
section 2.1. Model transformation simply refers to the process of mapping the abstract syntax (meta-
model) of one modeling language to an abstract syntax of another modeling language. A pre-requisite
for model transformation is that both abstract syntaxes should be developed using the same meta-
meta-model (STAAB, Steffen et al., 2010). As MDE is a generalization of MDA, then modeling
languages which aim at implementing MDE should support model transformation according to MDA
specifications (OMG, 2003).

This research aims to build a modeling language based on the four-layer architecture that was
described earlier. The technology that will be used for building the language is based on Eclipse’s
Modeling Project. Eclipse Modeling Project is a collection of frameworks, tools, and standards which
aim at implementing MDA practically (ECLIPSE, 2012). The core framework of Eclipse’s modeling
project is the Eclipse Graphical Modeling Framework (GMF) which is a framework accompanied
with a toolset that provide the ability to generate; tools, Java code, and other applications based on
Ecore meta-models. Ecore serves the same purpose as UML. The Eclipse Modeling Project is the
project that will be used for building the REA-based modeling language in this research.

2.5 A REA-Based DSVL
The previous structure of modeling languages that was described in section 2.1 is the traditional
structure of languages in general. (MU, Liping et al., 2010) has identified the same structure, and
mentioned that this structure can be viewed as consisting of three main parts, these are structure,
behavior, and presentation (MU, Liping et al., 2010). Figure 2 shows the structure of modeling
languages according to Liping’s view. The main section of a modeling language is the structure (the
abstract syntax), which contains the main concepts of the language and the relations between these
concepts. In the case of REA ontology, this section contains the constructs described in section 2.3
(economic resources, agents, events, commitments …etc). The second section of a modeling language
is the presentation (The concrete syntax). This section contains the parts which represent the concepts
from the structure. Presentation can be of visual figures, texts, tables…etc. As for the REA ontology,
there is no official visual representation of the ontology; thus, a visual notation should to be developed
for the ontology in order for it to be considered as a DSVL. The final part of a modeling language is
the behavior (including semantics). This section describes how the dynamics of a language are
executed. Dynamics in this context refers to how the components of the abstract syntax are linked to
the visual notation components (semantics). In the case of MDE languages, the behavior section also
describes how models represented by one language can be transformed to other languages.

12

Liping’s view of modeling languages provide a suitable representation of languages that are used for
MDE based implementations rather than the conventional languages structure. This structure details
the presentation as being of textual or graphical nature, and most importantly, it defines
transformation which is an important characteristic of MDD modeling languages.

Figure 2: The aspects of a modeling language

Consequently, in order to build a DSVL which conveys the structure described in Figure 2, a meta-
meta-model, Ecore in this case, is used for building the meta-model (the structure or the abstract
syntax) of a REA based DSVL. As the language to be produced by this research is a DSVL, then a
visual notation is required. Eclipse GMF provides mechanisms for developing such a notation which
will be used as the concrete syntax for this language. The behavior section has two parts, model
transformation which is supported by GMF, and execution, which refers to the linkage of the visual
components and the meta-model. This operation is supported by GMF, and it will be discussed in the
next section. Models transformation will not be discussed in this research since the REA-DSVL will
not be integrated with other languages.

2.6 Eclipse’s Graphical Modeling
Framework (GMF)

This section includes technical information needed for understanding some of the technical sections of
this report. The information presented in this section is based on the tutorial presented in
(ECLIPSE.ORG), and it assumes that the reader had followed the first few steps of the tutorial and
had created a new GMF project.

When a new project is created, a GMF project provides a dashboard that describes the relations
between GMF components. Figure 3 shows the dashboard associated with a GMF project. As it
appears in Figure 3, the GMF consists of six files, these are; Domain Model, Domain Gen Model,
Graphical Def Model, Tooling Def Model, Mapping Model, and Diagram Editor Gen Model. Table 1
defines the main rules of each of these files.

13

Figure 3: GMF Dashboard

File Purpose
Domain Model Contains the meta-model Ecore file.
Diagram Gen Model An auto-generated file based on the meta-model Ecore file. This file is

responsible for creating the basic editor environment in the form of Eclipse
plug-in.

Graphical Def Model Contains a file that links the elements of the meta- model with their default
or user-defined graphical definitions.

Tooling Def Model Contains the file that controls the layout of the generated modeling
environment.

Mapping Model Contains the file that links the graphical definitions and the tool functions
that will create these elements. Mapping Model is also responsible for
defining additional validation rules, and for preparing the environment to be
finally released for generation

Diagram Editor Gen
Model

is responsible for generating the modeling environment (the editor)

Table 1: GMF Dashboard elements

As it appears in the dashboard, users should prepare their Ecore conceptual model as a first step, and
then they can use the “Drive” boxes to generate next files. All of the newly generated files (except for
the Domain Gen Model) need to be customized according to the users’ needs. Any change in the
domain model requires regenerating the rest of the files. Any change in; Graphical Def Model,
Tooling Def Model, or Mapping Model; requires regenerating the Diagram Editor Gen Model. Thus,
users should choose wisely when to move ahead when deriving the next set of files.

Graphical Def Model is responsible for defining shapes of the domain elements. There are two
options for implementing the graphical concept in GMF. One of these options is to follow the
tutorial’s method. This method can be found in the second section of (ECLIPSE.ORG). The tutorial
suggested building custom elements using predefined geometric objects. The definition of these
objects is placed directly in the Graphical Def Model file. Geometric objects definitions are

14

represented by sets of points, each of these points has X and Y locations on an XY plane. The XY
plane represents the screen place that will be occupied by the figure.

Another option for defining graphical shapes in GMF is to use custom java classes for each element.
These classes implement the Eclipse Draw2d API for building 2D graphics. Using this API, custom
classes extend the super class “org.eclipse.draw2d.Shape”. This class defines two methods for
drawing objects, one of them is responsible for filling the objects, and the other is responsible for
drawing the outline of objects. After writing these classes, the user maps them to their corresponding
definition in the Graphical Def Model file. Figure 4 shows the two methods and their implementation
results.

Figure 4: Graphical implementation methods in GMF

The GMF provides two options for generating editors. The first is to produce an Eclipse plugin that
gives the Eclipse-IDE users an option for creating a modeling file. If this option is used, users will
have the full Eclipse interface with all menu items. Typical Eclipse menu items include options for
building java files, debugging…etc. If the user chooses to create a new domain diagram file in this
case, the user will have a modeling environment within Eclipse which includes all the defined domain
visual elements.

The other option is to generate the editor as a “Rich Client Platform” (RCP). If this method is used,
users will have a single option for creating their domain diagrams. The interface in this case will
contain only the menu items necessary for modeling. This option is very concise, yet serves the
purpose of the modeling tool.

2.7 Related work

The effort to produce a meta-level support for REA is not new. McCarthy (GEERTS, Guido L. and
McCarthy, William E., 2000) started this effort by extending the conceptual model of REA to contain

15

more generic constructs than the ones found in his first model. This effort targeted the implementation
of REA in the design and development of accounting information systems. Efforts continued to
provide different UML profiles, web-based profiles, and XML representations of the ontology,
nevertheless; efforts to represent REA as a DSL or a DSVL were limited to only one work
(SONNENBERG, C. et al., 2011 a).

(SONNENBERG, C. et al., 2011 a) managed to produce a domain-specific-language based on REA
(REA-DSL); nevertheless, some limitations and drawbacks were identified on different aspects of the
produced language, for example, according to (SONNENBERG, C. et al., 2011 a), a duality in REA
connects stock-flows together. According to (HRUBY, Pavel et al., 2005) though, dualities connect
events together, and stock-flows have no means to be directly connected. The latter opinion was also
supported by McCarthy in (GEERTS, Guido L. and McCarthy, William E., 2002).

Another example of the flaws found in (SONNENBERG, C. et al., 2011 a) was its proposal of new
patterns to solve problems which were already solved. In their work, the authors mentioned that
events of the same nature might occur over different periods of time, and they gave the example of
paying for goods with partial payments. For that purpose, they have suggested “economic event
series” to cover the collection of such events. Greets and McCarthy, on the other hand, had presented
the elements “commitment”, “term”, and “contract” to solve this exact issue (GEERTS, Guido L. and
McCarthy, William E., 2000), and these solutions are part of the original REA definition. On top of
that, the solution covered only the basic model of REA. The extended model was considered a future
work of that research.

Although the work of (SONNENBERG, C. et al., 2011 a) had some flaws, it had influenced the use of
DSLs as a method for solving the identified REA problems. Literature about DSLs was reviewed in
order to gain a better insight of the term and its scope. The authors of (VAN DEURSEN, Arie et al.,
2000) provided a description and examples of the DSL terminology. An adequate review of meta-
models, and their relations to DSLs was provided in (MU, Liping et al., 2010). The latter paper in
general discussed the four layered architecture of MDA. It has provided several examples of the
architecture’s implementations. The idea of linking a meta-model to a visual notation was presented in
this paper as well, and this idea has inspired the architecture of the DSL to be developed in this
research.

Up to this point, the term DSL was used to describe the modeling language to be developed, though,
after reviewing some resources like (LI, Karen et al., 2010), the term DSVL was used instead. DSVLs
provided both a closer representation of the language to be developed, and it provided a different
“language name” than the one used by (SONNENBERG, C. et al., 2011 a). The latter resource used
the phrase “REA-DSL” to describe the language that was produced in that work, thus, a different
name was needed to refer to the language to be developed in this research.

The work of Gailly and Poels in (GAILLY, Frederik and Poels, Geert, 2005) and (GAILLY, Frederik
and Poels, Geert, 2007) managed to provide two different meta-models for REA. Their first work
suggested a formal representation of the ontology based on OWL, and the second one suggested a
UML-based meta-model which improves the overall ontology. It was obvious from the conclusion
that the authors have drawn on their second paper that their first meta-model was not suitable for
viewing REA as a business modeling ontology, but rather as a business domain ontology; thus, the
discussion of their first meta-model can be discarded. Although the authors have claimed that their
second meta-model has covered detailed aspects of REA and based on that it can be used for
modeling business, they have missed a vital part of distinction, which is the separation between the

16

two kinds of events and commitments. The authors divided their event meta-class into two sub-
classes, increment-event and decrement-event meta-classes. At the same time, they did not do the
same distinction for exchange and conversion events, which is considered of a higher priority because
an exchange or conversion decides the type of the stock-flow to be used, and the type of the
commitment to be linked to such events.

(ZHANG, Guoqiang et al., 2010) suggested a new business modeling framework that is based on
REA and one management strategy framework. The framework was then implemented with OWL.
This work had quite sufficient representations of REA’s basic and extended models, though it did not
contain any representation of their understanding of REA in the form a meta-models, but rather in the
form of OWL models.

(SCHUSTER, R. and Motal, T., 2009) has presented an attempt to link e3-value models to REA, and
for that purpose the authors have suggested some changes to the core representations of REA, which
is outside the scope of this research,

Finally, (SONNENBERG, C. et al., 2011 b) has presented in this work a REA-based XML language.
The authors of this work are the same authors of REA-DSL which was discussed earlier. This
language is simply an XMl schema that represents the same REA logic that was presented in the
author’s first work; thus, the same flaws can be found in both places.

Away from the validity of the previous researches, it is noticeable that all of the previous attempts
focused on one aspect of the identified problems from section 1.2 and neglected others. All the
previously discussed researches did not consider the wider image of the problem, which is the
implementation of REA in the domain of information systems development. Based on this fact, this
research tries to bring the different solutions under one hood, and in addition to that, it provides a first
attempt toward solving the wider problem of REA, that is bringing REA closer to its implementations
purposes.

17

3. Methodology
Information systems (IS) research is a special kind of IT research, which in its folds concentrates on
enterprises and how information is manipulated within them. In IS research; two methodologies are
usually used to gain knowledge about the research domain; these are behavioral science and design
science. While these two methodologies can be seen as running similar processes, behavioral science
is usually associated with theories creation, and design science is associated with the creation and
evaluation of artifacts (HEVNER, Alan R. et al., 2004). Based on the fact that this research aims to
build something in order to solve a problem, then this research can be seen as an IS design science
research.

Design science research can be conducted following different frameworks. According to (HEVNER,
Alan R. and Chatterjee, Samir, 2010) there exists one widely accepted and distinguished design
science methodology referred to as the Design Science Research Methodology (DSRM) (PEFFERS,
Ken et al., 2007). This methodology consists mainly of six activities, these are:

1. Problem identification and motivation: Reasoning about the problem is presented along with
possible solutions’ justification in compliance with the problem roots.

2. Define the objectives for a solution: Identification of the solution objectives based on the nature
of the problem. The objectives can be quantitative or qualitative, and they require knowledge of
the state of the problem, and knowledge of other available solutions if any.

3. Design and Development: In this activity the identified objectives are implemented into a design;
based on which the artifacts are developed.

4. Demonstration: Demonstrate that the artifact is capable of solving the whole or parts of the
identified problems. Typical demonstration methods include case-studies, simulation,
experimenting...etc.

5. Evaluation: Includes measuring the efficiency of the solution in solving the problem, this means
checking whether the artifact succeeds in fulfilling the objectives from the second activity. The
nature of the evaluation method depends on the nature of the objective, and it requires knowledge
of the appropriate evaluation methods. If the evaluation showed that the artifact is not fully suited
to solve the problem or parts of it; the researcher can go back to the third activity of the process,
or proceed to the next activity and consider any further improvements as sub-projects of the
current one.

6. Communication: Communicate all aspects of the research to the interested community. This phase
will be omitted from this report, as this research is a master’s degree thesis; thus, the report itself
is a mean of communicating its content to the targeted audience.

This research follows the process identified by DSRM. This chapter covers the grounding of the
methods choice used within each step of DSRM, and how such methods were implemented to answer
the question of this research.

18

3.1 Choice of research method
Following the same structure of DSRM; this section describes the methods choice in each step of this
research and the rationale behind such choices.

3.1.1 Problem identification and motivation

This research revolves around the REA ontology; thus, this activity was focused on finding the body
of knowledge around REA and how well it was realized in the real world. It also tried to find the
extent of REA's practical implementation in the field of information systems development. For this
purpose; literature review was the natural method of choice for commencing the study. Other
observatory methods did not fit in this activity because REA is a typical theoretical ontology which
can be best sought in literature.

3.1.2 Define the objectives for a solution

At this point, the problems related to REA were identified, and their boundaries were drawn. Based on
the identified problems, an initial set of goals for this research was set. In order to find how similar
goals were approached, literature review was conducted.

Literature review was conducted as it was the main source used in identifying the problems. Some
resources have identified similar or close problems, and these resources have used methods for
attacking such problems; thus, it was natural to review these literature resources.

Internet searching was also conducted at this phase in order find software tools for building the
DSVL. This activity included searching for commercial, open-source, and educational tools. Then a
comparison between these tools was performed in order to find the best tool which fits the DSVL-
development purpose.

3.1.3 Design and Development

The development process of REA DSVL went through four main successive-recurring phases. As
depicted in Figure 5, these phases were; meta-model development, visual-notation development,
visual notation implementation, and editor generation. These phases were successive in their flow in a
way that each phase had to be finished before the next one gets initiated. The phases were recurrent in
case of errors or design improvements. If an error appeared in one phase, the problematic phase was
reconducted, and then its following phases were reconducted in the same original successive order.
This section describes the method choice in each of these phases.

Meta-Model Development

Two main options were considered for the construction of the meta-model. The first option was to use
an existing meta-model of the ontology from a previous work, and then to implement it in the chosen
development environment. The second option was to create the meta-model from scratch. The first
option proved problematic in several ways; first, the understanding of REA is different from one
researcher to another; thus, the meta-models produced by each researcher would be different from
other researchers. Another problem was an ethical one, as the generated artifacts of this research were
to be published online, and the original owners of the meta-models might have concerns regarding
publishing their work under different projects. Thus, the second option seemed more appropriate.

19

A framework for the developing meta-models for DSLs was described in (SCHAFER, Christian et al.,
2011). This paper managed to accumulate best practices from other frameworks targeting the same
purpose. As this research tries to build a DSVL, the aforementioned framework was a suitable
guideline for developing the abstract syntax of the DSVL; thus, some of the guidelines presented in
that framework were implemented in building the meta-model of this DSVL.

Figure 5: REA-DSVL development process

Visual-notation development

This part of the research was completely dependent on the researcher’s imagination and sense of
creativity. Some concerns were taken into account, like the influence of previously experienced
modeling languages on the imagination of the notation designer. These concerns were also considered
an opportunity to overcome some of the limitations found in other modeling languages.

Another option was to take the notation from other modeling languages, and use it for REA. This
option is both non-ethical, and could cause confusion to the users of other languages, who might use
the notation from the developed DSVL of this research.

In order to provide the best applicable notation, a set of design-concepts were developed based on the
relations and elements of REA. These design-concepts were then implemented (as row graphics)

20

using graphical modeling software in order to have a grip on the notations’ graphical aspects
(dimensions, position to screen…etc).

Visual notation implementation

As mentioned in section 2.6, GMF provides two methods for implementing graphical notations. As
this section is discussing the choice of research methods, it is inevitable to discuss the technical
options which were presented in section 2.6 because the implementation of REA-DSVL is based on
Eclipse’s GMF.

The choice between the two methods which were presented in 2.6 was clear and direct. The second
option with the custom java classes was chosen for four main reasons. The first reason is the
flexibility and reliability provided by the Draw2d API compared to the first method. Using the API,
one can define shapes with the finest level of details. The API also provides a set of classes which
allow the developer to control the look and feel of shapes with guaranteed results; that is, any
logically written code will produce results in the rendered shapes. The first method, however, does not
have a validation mechanism; thus, one can define as many attributes from the predefined set of
attributes, and only the ones that apply to the parent shape will be rendered. This might result in a
number of unnecessary attributes which are bypassed by the GMF engine.

The second reason for choosing the API method was that any change in the “Graphical Def Model”
file requires deriving a new “Diagram Editor Gen Model” file. While developing the notation; one
needs to check how any change on the graphical definition will be reflected on the modeling
environment. If the first method was used, changes would have to be applied directly to the
“Graphical Def Model” file; thus, a new “Diagram Editor Gen Model” file would have to be
generated in order to test any change. In the case of the second method, changes were applied to the
java class, not to the “Graphical Def Model” file. “Graphical Def Model” file in this case held only
the references to classes’ names and locations under the graphical shapes that they define. So using
the second method saves time and effort when testing the graphical definition.

The third reason for choosing the second method was maintainability. For example, “Event” domain
element was broken down into four subtypes, these elements share the same shape characteristics,
except for the internal symbols that define events-types (exchange or conversion) and value-types
(increment or decrement). If the first method was used, all graphical definitions would have needed to
reproduce the same general event shape characteristics. They would have also needed to define the
distinctive characteristics of exchange, conversion, increment, and decrement. In this case, if a change
was to be applied to the main event shape, all four subtypes were needed to apply the same change to
their definitions. On the other hand, when the second method was used, it was easy to define a super
class that handled the graphical definition for the "Event" shape, and then defined four classes that
inherited the super class. Using this method, if a change is required to the main event shape, only the
super class will be updated.

While working with GMF editor; one can face difficulties in moving from one view to another, and in
finding the attributes needed to configure different elements in each view. These difficulties become
very clear when using the first method. The GMF itself is relatively new, and it is still undergoes
continuous fixing and updating. The tutorial’s author in section 2 of (ECLIPSE.ORG) expressed this
while explaining methods to overcome the difficulties associated with using the first method. The

21

second method has the advantage of stability in this context, because java classes have a robust and
permanent structure. In the event of changing the future architecture of GMF, java classes will remain
immutable. This indeed was another reason behind selecting the second method.

These were the main reasons behind choosing the programming option over the static one.

Editor generation

This section also discusses technical options from GMF. For the same reasons given in the previous
section, technical information from section 2.6 will be discussed in this section. GMF provides two
main methods for generating editors; these are RCP or Plugin generation.

The option with RCP was chosen for generating the REA-DSVL Editor. The tool to be developed is a
business modeling tool, and some of its users might not have a technical background; thus, it was
essential to provide them with a simple environment that was easy to operate. In addition to that, the
core modeling functionalities are the same using the two previous options; thus, there was no need to
include overhead functionalities which were not directly related to the purpose of the editor. The size
of the final produced editor increases dramatically when the first option is used. The choice of the
RCP option was mainly based on these factors.

3.1.4 Demonstration

This step of DSRM can be conducted using simulation, case-study, or experimentation (HEVNER,
Alan R. and Chatterjee, Samir, 2010, p.30). A typical case study requires studying the subject of
research in its natural environment over a period of time. Simulation is about mimicking reality using
software systems, and experimentation is concerned with testing causes and effects
(BHATTACHERJEE, Anol, 2012).

Experimentation was first chosen as an evaluation strategy rather than a demonstration strategy in this
research; therefore, it was not performed at this phase. Simulation, on the other hand, was not a
suitable choice for this task. Although the generated models by the developed tool would mimic the
structure of the business environment, though they do not produce the same outcomes of the actual
business, in other words, the produced models would not simulate the actual business.

A case study was chosen as the demonstration strategy of the developed artifact. This research
provides a solution that can be best used to model running businesses; thus, a running business in
Stockholm-Sweden was chosen to be modeled. It is necessary to point out that the case study was
chosen as a demonstration strategy, and an interview within that case was conducted as the strategy’s
method. This methodological structure follows the one identified in (DENSCOMBE, Martyn, 2007).

The carried out case study did not expand over time as it would be expected by typical case studies;
instead, it was a small case study performed using an unstructured one-to-one interview with the
business manager. This methodology was sufficient enough for two main reasons; the first one was
the small number of employees, which were seven. All business activities carried out by these seven
employees were directly supervised by the business manager; thus, interviewing the business manager
was sufficient enough to acquaint all performed business activities. The second reason was the
purpose of the case study. According to (DENSCOMBE, Martyn, 2007, p.38), case studies can be
performed for many reasons, one of which is to describe events, processes, and relationships carried
out in the case study. The latter reason perfectly fits the purpose of this demonstrative task, as the

22

used methodology was sufficient to gain an insight of the running business processes. Accordingly,
other lengthy research methodologies, like observations for example, were not performed in this case.

The chosen case study was a small tires and rims trading company in Stockholm. The first factor
behind choosing this company was the fact that REA targets the modeling of accounting business
environments. Any running business with financial objectives would have accounting trends to
measure profitability and unprofitability means in that business; thus, the main concern with finding
an appropriate case study was the availability of such accounting trends, which were perfectly
available in the chosen business. In this sense, this case study can be generalized to similar businesses
regardless of their size or business-type, as long as these businesses have similar business profitability
measures.

Another reason for choosing this company was its small business size, which at the same time, was
adequate for covering the full functionalities of the developed artifact. The developed modeling tool is
based on the developed visual notation and meta-model. A typical model designed by this tool, would
use the visual notation for modeling, and simultaneously generate a data-models based on the original
meta-model. Consequently, modeling one sufficient business process from the case study would be
sufficient to demonstrate the full functionalities of the tool.

The small business size has also helped in formulating a better realization of the selected business
boundaries. Larger businesses would have required longer interviews, observations, and analysis,
which would have resulted in the same tool demonstration results.

Another important reason for choosing this company was the availability and willingness of the
business owner to conduct this case study.

3.1.5 Evaluation

According to the structure of DSRM (HEVNER, Alan R. and Chatterjee, Samir, 2010, p.30), this
activity revolves around analyzing the data that was observed during the demonstration activity, and
then compare the results of the research to the original purpose of the artifacts. This activity dictates
checking the artifacts against the gathered requirements. As the requirements of this research contain
both quantitative and qualitative requirements, the quantitative requirements were evaluated directly
according to their fulfillment, and the qualitative requirements were evaluated based on the techniques
that will be presented in this section.

The meta-model’s completeness and structure is best judged by experts in the domain of REA and
meta-modeling. Such an evaluation can be carried out by surveying the opinions or interviewing the
mentioned experts. To find experts who were willing to review the meta-model seemed quite hard
when compared to other evaluation options; thus, this evaluation was not performed using the former
methods; rather, it was evaluated quantitatively based on the coverage of REA’s elements.

Experts in REA and visual composition were required to judge the visual notation’s quality in
accordance to REA. As it seemed difficult to reach such opinions, this evaluative approach was not
taken. Compared to the literature found on REA based meta-modeling, literature about ontological
visual composition could not be found; thus, the qualitative requirements of the visual notation were
evaluated based on its usage within the tool. The visual notation also had some quantitative features
related to REA that has been evaluated quantitatively.

The developed tool represents the main artifact of this research due to its direct relation to the research
question. As with the meta-model and the visual notation, the tool had a set of requirements

23

associated with it; thus, the first step was to evaluate these requirements. After that, the main purpose
of the tool and its relation to the research question was evaluated.

Experimentation was the first strategy chosen for evaluating the tool. Experiments target the
measuring of causes and effects relationships. Causes are typically what the researcher wants to test,
and effects are the desired results that the researcher wants to reach (BHATTACHERJEE, Anol,
2012, p.83). A typical experiment should include testing the subject of that experiment on treatment
and control groups. A treatment group is an experimental group that uses the subject of the
experiment (the cause) to perform predefined tasks. The control group is a group that performs the
same tasks as the treatment group without using that subject of the experiment.

Unfortunately, an experiment was designed for evaluating the qualitative aspects of the tool, but only
a partial set of the experimental groups responded to the experiment call; thus, another form of
evaluation based on informed arguments was conducted for this task. Informed arguments are simply
arguments which are based on the analysis of the context that these arguments are presented in. Such
arguments should consider all aspects of their context, including the points that support them as well
as the points that defy them (GOCSIK, Karen, 2005).

3.1.6 State of the art techniques and methods

In order to follow up the latest techniques and methods which were used for solving similar problems,
the criteria for selecting literature resources included looking up recent literature that dealt with REA.
This has revealed DSLs and DSVLs as means for building a REA-based modeling language. MDA
and MDE in general are considered state of the art techniques for systems development, and they
constitute the essence of this research.

3.1.7 Ethical and social considerations

Some of the ethical and social considerations which have been taken on the level of methods choice
included the choice of developing the meta-model from scratch. This in turn, was based on the two
factors; firstly, the previous suggested meta-models were analyzed objectively based on the reviewed
REA resources, and when limitations were found, the choice for developing the meta-model was
supported. Secondly, the meta-model is part of the modeling language and the editor which were
planned to be available online; thus, including any artifact developed by the other authors needed their
approval, and since this seemed to be a difficult task to accomplish, the idea was dropped entirely.

Ethical and social aspects were carefully considered during the implementations of the methods which
were described in this sub-chapter. These considerations will be described at the end of the
implementation discussion.

24

3.2 Application of research method
Following the same structure of DSRM; this section describes the methods used in each step of this
research and how they were implemented.

3.2.1 Problem identification and motivation

Literature review was conducted on different areas related to enterprises and business modeling. In
order to have a better understanding of the problem domain, many concepts were studied. These
concepts included; REA ontology, meta-modeling, domain specific languages (DSL), domain specific
visual languages (DSVL), Model Driven Architecture (MDA), Unified Modeling Language (UML),
Meta Object Facility (MOF), Eclipse Modeling Project (EMP) and many others.

The criteria behind selecting the appropriate publication were based on three factors. The first
criterion was the relevance of the paper. The second criterion was the year at which the resource was
published. The newer the resource was the better its chances of being reviewed. The final criterion
was the popularity (number of citations) of relevant papers.

These criteria proved easy for some of the mentioned topics like EMP, and in some cases, the latter
criterion had to be dropped. This had to be done because some topics were slightly covered in
literature, and so their citation count was low. This usually occurred when searching for composite
topics (e.g. REA based DSL, REA + DSL, “REA” and “DSL”).

The sources used for locating literature were; KTH university library1, IEEE Xplore Digital Library 2
Google scholar3, Springer Link4, ACM Digital library5, Science Direct6, and Google search engine.
This research was held in KTH; thus, the first logical source to use was the KTH university library.
When some of the needed concepts were looked up, the resulted relevant resources were most of the
time found in IEEE Xplore, Springer, and ACM libraries. That was the main reason behind choosing
the latter sources.

This research was conducted based on an initial task of building a meta-model for a business
ontology. Topics like “business ontology” and “MDA” were provided with the task description. The
first step was to gain an overview of these concepts. MDA was an easy topic to locate as it had a
dedicated website (OMG, 2003). MDA was originally reviewed to have a better understanding of
UML and MOF (OMG, 2011). Further reading into business ontologies and the problems associated
with each of them revealed greater details which have finally lead to this research. Based on the
reviewed resources, the problems which were presented in section 1.2 of this report were identified.

3.2.2 Define the objectives for a solution

Following the same approach of literature review that was described in the previous section, similar
problems and their solutions were reviewed. Some aspects of the identified problems had clear and
direct solutions; thus, the requirements for such aspects were set directly without further navigation.

1 http://www.kth.se/kthb
2 http://ieeexplore.ieee.org
3 http://scholar.google.se
4 www.springerlink.com
5 http://dl.acm.org
6 www.sciencedirect.com

25

Other problems’ aspects left the door open to choose from different technical implementations to
attack such concerns.

The problem of the formal representation of REA had a number of research papers which tackled the
problem. These papers were reviewed in order to check how the problem was attacked, and if
possible, check the developed meta-models. As this research is trying to bring the REA ontology to its
implementation purposes, a formal representation had to be combined with a technical
implementation. For this purpose, the literature was searched for terms like “MDE, MDD, meta-
modeling, DSL, and REA”.

The problem of the missing visual notation had quite a direct solution which was to design a visual
notation. Literature and internet searching for modeling tips were conducted, though no significant
results were found; thus, standard requirements were formulated for the notation.

Because there were attempts to solve some of the identified problems, the limitations of the previous
solutions were narrowed down, and the original REA papers were reviewed in order to have a better
understanding of what was missing in the previously suggested solutions. After the limitations were
lined out, some requirements were formulated in order to overcome the limitations identified in other
solutions.

The requirements for the tool to be developed were formulated based mainly on the functionalities
provided by the platform which was used for developing the DSVL. The developed tool in this
research can be considered a Proof-of-Concept tool rather than an actual commercial tool; thus, the
tool requirements were not strict as if they were based on well-known software standards like
ISO/IEC 9126-1:20011. For the previous reason, the requirements of the tool were lightly formulated,
and it focused more on its main purpose of being an MDD tool.

3.2.3 Design and Development

Meta-Model development
As mentioned earlier in this research, the Eclipse’s Graphical Modeling Project (GMP) was
chosen for the development of this modeling language. GMP uses Ecore as the core language for the
development of its domain models; thus, in REA-DSVL, Ecore was the language used for building the
meta-model of the language. The practical development process of the meta-model, including
installing eclipse and the required plugins, is typical to the process in the first tutorial of
(ECLIPSE.ORG). This section describes the steps that follow the installation and the creation of a
new Ecore file.

When the design of the domain model started, the basic REA model was taken as the first input for
building the entire meta-model. Some guidelines were taken from (SCHAFER, Christian et al., 2011)
while designing REA-DSVL’s meta-model. One of the guidelines was to break down the domain
elements into principal components. The main components of the basic REA model are; Events,
Agents, and Resources. Other components associated with the extended REA model are;
Commitments. All the mentioned REA elements were to be modeled in the final meta-model, in
addition to some additional elements from the policy level as Terms, Resource-Type, and Contracts.

Elements of the basic REA model alone were not sufficient to build a prototypical domain model.
”Events” had to be broken down into ”Exchange Events (EE)” and ”Conversion Events (CE)”; simply

1 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=22749

26

because these two kinds of REA events represent different kinds of events, and they have different
kinds of relations with other REA elements. ”Resources” and ”Agents” were considered basic
elements at this stage, so they were not broken down further. Exchange and Conversion events were
broken down further into a third level; the new level represented the incremental and decremental
aspects of each event type. After the last step was done, events were represented in three levels as it
appears in the upper section of Figure 6.

According to the guidelines in (SCHAFER, Christian et al., 2011), after decomposing the elements of
a domain model; generalization relationships are drawn between the elements. The next guideline was
to remove any additional generalization relationships (including elements) that do not add further
information to the meta-model. After applying the previous guidelines, ”Conversion Events” and
”Exchange Events” meta-classes were removed from the meta-model, and their children were directly
connected to the main ”Event” meta-class. Figure 6 shows the events design process.

Figure 6: Events design process

Some aspects of REA could not be designed as features for events, resources, or agents meta-classes,
but rather as separate domain elements. Such features included the relations connecting REA elements
together, like; Events-Events relations (dualities), and Events-Resources relations (stock flows).
Duality relationships connect multiple instances of events together; thus, they needed a dedicated
model element to represent them. Events-Agents relationships were kept as default links because
these relations are explicitly linking one instance of the “Event” class with one instance of the
“Agent” class directly. Following the foregoing reasoning, relations between events and resources
(stock flows) link an instance of an event class with another of a resources class, and so it should
follow the same rule that was applied on events-agents relationships, rather than that, “stock flow”
relations were given their own domain elements like “Dualities”, this in fact was the first error
encountered while designing the meta-model.

27

To solve the problem encountered earlier, the class ”Stock flow” and its subclasses; ”Give”, ”Take”,
”Produce”, ”Use”, and ”Consume” were removed from the meta-model, and the connections between
these classes and ”Event” subclasses were extended from ”Event” subclasses directly to the
”Resource” class directly. The removed subclasses (Give, Take, Produce, Use, and Consume) were
replaced with links that have the same labels.

After fixing the basic meta- model, it was extended to cover REA’s extended model and some of
REA’s policy level elements. These elements are; “Commitments”, “Resource Types”, “Terms”, and
“Contracts”. As with events; commitments were decomposed into four sub-classes, these were;
“Increment Exchange Commitment (IEC)”, “Decrement Exchange Commitment (DEC)”, “Increment
Conversion Commitment (ICC)”, and “Decrement Conversion Commitments (DCC)”. Commitments
were then associated with the appropriate events meta-classes. Similar to events’ dualities, increment
and decrement commitments are associated via a “reciprocity” relationship. Reciprocities can link
multiple instances of commitments together; thus, they had been given their own domain elements.

The rest of REA elements were added as meta-classes, and the relations between all the elements were
set according to the original REA model. Cardinalities and relationships were then confirmed with the
ones in (HRUBY, Pavel et al., 2005) for validity.

After the development of the meta-model, the development of the visual-notation started. This phase
is described in the next section.

Visual-notation development

This phase entailed developing a set of design concepts which correspond to the set requirements
which were suggested for the visual-notation. Three different design concepts of the visual notation
were developed in order to provide a wider base of choices. These concepts were drafted out using a
pen and a pad, and then they were implemented in Adobe Flash Professional CS5. Other graphical
modeling tools could be used for the same purpose. The main idea behind using such tools is to
provide a live experience of how the designed notation would feel in a computerized environment.
This activity would give the designer a first impression of the notation that is being developed, and
the ability to perform any improvements before implementing the design in the GMF.

After implementing the concepts in the graphical modeling tool, one design concept was chosen, and
it was implemented in the next phase.

Visual notation implementation

This phase included developing Java classes for the meta-model’s elements based on the selected
concept from the previous phase. These classes implemented the Eclipse Draw2d API. Amongst other
usages, this API is used for building 2D graphics programmatically. More information about the API
can be found under ”GEF and Draw2d Plug-in Developer Guide” section of the official Eclipse
documentation.

The first step in building the aforementioned Java classes was to determine the elements which have
common shapes, and then to develop super classes which were responsible for rendering these shapes.
After that, all classes with the same common shape extended the corresponding super class. The super
classes have inner functionalities for determining the type of the loaded child instances, and

28

accordingly, they draw the detailed graphics for each of their subclasses. As a rule of thumb, all
classes with the same super class in the meta-model would have the same general graphical shape.

An example of the previous operation is depicted in Figure 7. ”Agent” meta-class in REA’s meta-
model has two subclasses. These are; ”Internal Agent” and ”External Agent”. The Agents’ figures
share the same conventional stickman shape. The only difference between the two shapes is the filled
head of the stickman. As it appears in the figure, ”Agent.java” (the super class) has a method that
draws all parts of the stickman, and according to the instance of the subclass that is calling this
method, the head will either be outlined or filled as an oval.

Figure 7: The visual implementation of "Agent" meta-class

From a programming perspective, some might argue that the subclasses can be implemented as inner
classes. This might also work, but from an OO design perspective, inner classes are typically used for
encapsulating structures as parts of larger classes, in other words, an inner class is a part of the
encapsulating class, but in the case of this implementation, they are different classes. This method will
also allow any dramatic future changes plausible and easier to implement. At the end, it is a matter of
choice; any of these methods can be used.

Sections of the code in Figure 7 show that the code of the “Agent” class was written from an aspect
ratio perspective. This simply means writing the graphical class to maintain the right ratios between
the components of the graphical shape. For example, if one wants to draw a rectangle that has a width
of twice its height, then the rectangle can be said to have the dimensions of (width, width*1/2), were
the first parameter is the width, and the second is the height. Aspect ratio programming for graphics is
very important when resizing graphical shapes, as it guarantees the coherence of the graphical shape’s
components to the overall shape.

29

After writing the classes for model elements, they were tested in the test editor of Eclipse. Even
though the design concepts from the previous phase were implemented in a graphical tool, some
elements were edited in this phase after experiencing the actual modeling elements in a live modeling
environment. These elements were edited programmatically in order to improve the modeling
experience. The suggested improvements covered the shapes of events and commitments elements.

After this task was finished and tested, it was time to generate the final editor. The process of
generating the editor is described in the next section.

Editor generation

This by far was the shortest phase in the DSVL’s development lifecycle. After the “Mapping Model”
file of the GEF project was prepared, the editor’s generator file was derived with the “RCP” option
checked. Figure 8 shows how this operation was done. After completing the third step of Figure 8, a
new Eclipse project was automatically generated with all the elements needed to run the editor. After
that, a “Product Configuration” file was created inside the generated project, and it was configured
according to the method described in (VOGEL, Lars, 2007).

Figure 8: Generating the "gmfgen" file

By the end of this phase, the design and development task was finished, and it was time to
demonstrate the generated editor in a practical scenario.

3.2.4 Demonstration

After generating the tool, it was the time to demonstrate its functions in a real case study. The case
that was chosen is a tires and rims trading company in Stockholm/Sweden called ABS Wheels1. The
business case from the case study was analyzed, then modeled based on the results of the analysis.

The first meeting with the company’s manager included describing the purpose of the research, and
giving a brief introduction of REA. The benefit of REA’s applications and how it can help in
managerial decisions were also illustrated with examples, and then the link between these applications
and this research was explained. After that, the interviewed manager was asked if he would accept the
indication of his company’s name in this research, and if he would accept to record the interview for
academic purposes, to which he answered with approval.

1 http://www.abswheels.se

30

From there, open-ended questions were asked to the interviewed manager regarding his business in
general. Then the questions took more restrictive manner, which targeted the relation between the
business activities and the explained REA concepts. The questions did not take any fixed structure,
because the interviewee did not have any prior knowledge of REA. Some explanations and reminders
of REA reoccurred throughout the interview. For example, the interviewee first provided only three
main REA processes which were carried out in his business, which was expected. The
interviewee was then asked to think of all his business processes that cost him or provide him with
money, as REA is about evaluating the total expenses and profits of a business. The latter question
seemed to fit the interviewee’s business perspective and background better than the first question.
After the latter question, the interviewee started to detail all the tasks that cost or provide him with
money, which raised the number of identified REA processes to ten.

After concluding the interview, its questions and answers were compiled into a case description. This
case description was sent to the business manager for confirmation, to which he replied with no
additional comments.

Following the interview, the business was analyzed and modeled using the developed tool. Pivotal
agents and resources were identified, and then the main events and their types (exchange or
conversion) were identified. After that, the identified events were modeled and linked to the related
agents and resources. Commitments and contracts were identified and modeled later when they were
needed.

3.2.5 Evaluation

As mentioned in the method choice section for evaluation, this activity targeted the evaluation of the
meta-model, the visual notation, and the modeling tool. The meta-model had quantitative
requirements and no special quantitative requirements; thus, its evaluation was based on the
fulfillment of these requirements directly. The visual-notation had one quantitative and one qualitative
requirement. The quantitative requirement was judged based on the fulfillment of that requirement.
The qualitative requirement could not be evaluated independently, but rather as a part of the modeling
tool. The modeling tool is the main artifact of this research, and it had a set of qualitative
requirements. The fulfillment of the tool’s requirements was planned to be evaluated based on an
experiment which was not conducted due to the limited responses, and instead was judged using on
informed arguments.

An experiment was designed for two groups with similar knowledge of REA, typically students with
an academic knowledge of REA. The treatment group was asked to use the developed tool to model a
small business scenario from the previous case study, and the control group was asked to model the
same case using another designing tool like Microsoft’s Visio. After that, a set of questions were
compiled to measure the level of the experimental groups comfort in designing REA models using
each technique. The evaluation in this case was designed to measure the correctness of the designed
models, and how the groups responded to the questions.

As the tool was used for modeling the business from the case study, the experience of using the tool
was used for formulating arguments which were used for judging both the fulfillment of the tool’s
requirements, and the extent to which the tool can answer the research question.

31

3.2.6 Ethical and social considerations

Ethical and social considerations which were taken into account at the problem identification phase
included identifying real existing problems that if solved, would lead to tangible benefits to the
domain of study. Another consideration was related to judging previous attempts to solve the
problems objectively, and based on such judgment; the choice was taken to continue with studying the
identified problems. Another ethical consideration was taken when existing works of a similar nature
were criticized. Such criticism was based on profound evidences of the claims and with the sole
purpose of validating the legitimacy of arguments.

A lot of ethical considerations had to be observed in the development phase. Starting with the meta-
model, all the knowledge that was used to build this meta-model was presented. Existing REA meta-
models were reviewed only for the purpose of knowledge and suitability check. None of the reviewed
meta-models was used to develop the REA meta-model of this research, and all of the reviewed meta-
models were listed in the background of this research.

As for the visual notation, the notation was developed based on the writer’s own merit. None of the
previously developed notations, if any, was used. The visual notation was also designed in a way that
conceives the maximal simplicity while covering full REA concepts. Several visual concepts were
designed in order to provide the DSVL users with the best possible visual notation. The notation’s
symbols are directly related to REA, and they do not hide or include any symbolic figures that might
cause any ethical or social harm to language users.

The editor was designed and generated to ensure a minimum usage of the platform resources. The
packaged editor was checked for malicious code and infected files as they are forbidden by both;
ethics and law. The generated tool was also produced in a way that covers full modeling needs, and at
the same time in a way that occupies the minimal set of users’ machine resources.

When the case study was conducted, the business owner was asked if he would agree to publish the
details of the case study and his company name before publishing them. Based on the manager’s
approval, the details of this information were revealed in this report. The analyzed business of the
case study was presented in a way relevant to this research, and in order to save the privacy of the
business, other business related information that did not affect the purpose of the case study was not
included. As for the reader, the case study was described in a summarized manner while covering all
business details related to this research.

As for the evaluation, a typical experiment was designed to evaluate the developed language and tool.
Unfortunately, the experiment could not be completed due to the unsatisfactory number of
participants. No attempts to forge the results were undertaken, as it is completely unethical, and that it
would not help the author of this report in realizing the true value of his work.

32

4. Results and Analysis
In this chapter, the results of this research are presented according to the phases of the design science
which were discussed in the previous chapter.

4.1 Problem identification and motivation
The results of the problem identification and motivation phase have been presented in section 1.2 of
this report; thus, this section will just list the identified problems and the results of the literature
review that was conducted for identifying the problems and constructing the requirements.

The major problems which have been identified were:

• REA is a business modeling ontology that was originally created to support the development
of business information systems for enterprises. Although the ontology has been developed
since the 1980’s, it is still not widely used in developing information systems, this is due to

o The ontology does not have a common formal representation, which has resulted in
many researches focusing on defining meta-models of the ontology while ignoring
the wider image of the ontology’s purpose for developing information systems.

o The ontology does not have a formal visual notation that takes the ontology to the
next level of being a modeling language. The lack of a visual notation limited the
ontology’s expansion, which has resulted in containing the ontology within a
scientific context.

This research has evolved on top of an idea for creating a meta-model of REA. Literature review
revealed that the problem was wider than simply creating a meta-model of the ontology. For this
purpose, literature about the topics which has been used throughout this research has been reviewed.
The set of the total reviewed resources for this research is available in (Appendix A.1).

4.2 Define the objectives for a solution
Literature review revealed a general method for solving the identified problems. The general solution
suggested building a DSVL for REA which can be implemented in a MDD tool. DSVLs, as modeling
languages, consist of three parts, the abstract syntax in the form of meta-model, the concrete syntax in
the form of visual notation, and the language’s semantics in the form of mapping the visual notation
to the elements of the meta-model. Table 2 presents the set of requirements which have been gathered
for the meta-model, the visual notation, and the MDD tool (the REA-DSVL Editor).

After setting the requirements for the general solution, the tools and standards to be used for
development were narrowed down to tools which allow the development of both meta-models and
visual notations together. This insured that the selected tools would generate a language that conforms
to the structure of DSVLs. These tools were then analyzed according to some factors. Table 3 shows
the set of modeling tools which were considered for developing the DSVL. The table also shows the
main factors which were taken to determine the final toolset to be used in the DSVL development.

33

Requirement
Reference

Requirement

MMR1 Develop a Meta-Model of the REA ontology

MMR1.1 The meta-model should cover the elements defined in the basic REA model including;
“Resource”, “Event”, “Agent”, “Duality”, and “Stock-flow”.

MMR1.2 The meta-model should cover the elements defined in the extended REA model
“Commitment”, ”Contract”, and “Reciprocity”.

VNR1 Develop a REA based visual notation

VNR1.1 The visual notation should be simple.

VNR1.2 The visual notation should provide symbols that cover the elements of REA identified in
MMR1.

MTR1 Develop a REA based modeling tool

MTR1.1 The tool should provide functionality for designing REA diagrams.

MTR1.2 The tool should provide functionality for generating REA based data-models.

MTR1.3 The generated data-models should be written in a machine independent format.

MTR1.4 The tool should provide convenient and easy to use functionalities, by providing a
comprehensive user interface and minimum set of functionalities.

MTR1.5 The tool should be reachable by different users with different operating systems.

Table 2: REA-DSVL and REA-DSVL editor Requirements

Tool Name Meta-modeling
support

Visual modeling
support

Dedicated editor
generation

License type

Poseidon for DSLs 1 Yes Yes Yes Commercial
MOFLON 2 Yes Limited to UML

profiles
No Open source

ADOCUS 3 Yes Limited to UML
profiles

No Commercial

MetaEdit+4 Yes Yes No Commercial
Microsoft Domain-Specific
Language (DSL) Tools5

Yes Yes Yes Commercial

Eclipse GMP Yes Yes Yes Open Source
Table 3: DSVL modeling tools

1 http://www.gentleware.com
2 http://www.moflon.org
3 http://www.adocus.com
4 http://www.metacase.com
5http://www.microsoft.com/en-us/download/details.aspx?id=2379#overview

34

MetaEdit+ and ADOCUS provide functionalities for building domain-models at the meta-meta-level,
and then make instances of them within the same tool. They do not possess functionalities for
generating dedicated modeling environments like GMP. In addition to that, MetaEdit+, Poseidon,
and ADOCUS have their own implementations of UML. MOFLON has its own implementation of
MOF. Eclipse Modeling Framework (EMF) of the GMP, on the other hand, has a unique standard of
its own, the Ecore. This standard is recognized by OMG as it has provided an Ecore-based UML file
in its website that can be used within EMF to build UML models based on Ecore.

Microsoft Domain-Specific Language provides a powerful toolset for building DSLs, but in a
comparison between Microsoft’s tool and Eclipse’s GMP, the latter provide more choices of
platforms that can run the generated editors. GMP supports MAC OS, Solaris, Linux, in addition to
Windows, which was the only supported platform by Microsoft’s toolset. In addition to that,
Microsoft’s visual studio is needed in order to use the DSL toolset, and the visual studio has a
commercial license. Eclipse, on the other hand, is an open-source. Poseidon for DSLs has also a
commercial license; thus, it was not considered.

At the end of this stage, the GMP was selected as the toolset to be used for development.

4.3 . Design and Development
This section will present the results of the four main phases which have been held under the
development activity as described in section 3.2.3.

4.3.1 Meta-Model development

As mentioned earlier, the first phase of the development process covered the development of the
REA-DSVL meta-model. The first meta-model that was developed went through major design
changes, and is available in Appendix A.3. After applying the method and design changes which
were mentioned in section 3.2.3, the final version of the meta-model became the one presented in
Figure 9.

In this discussion, it is inevitable to discuss some of the major design decisions that helped in shaping
the final design of the meta-model. While designing the meta-model, it was extremely important to
keep the final purpose of the meta-model in perspective. This meta-model is the backbone of the
DSVL to be developed. This idea provided a guideline while designing the domain model. For
example, it was not necessary, if needed at all, to add a super meta-class that aggregates top-level
meta-classes of the domain model. In this meta-model though, it was necessary to add such an
element even though it did not add further information to the business domain of REA. REA-
DSVL meta-model contains an element called “REA_Model”. This element is the uppermost meta-
class of the model, and it acts as the container of all model elements. One can think of it as the canvas
of a painting, while other model elements are the shapes that make a complete painting. The foregoing
metaphor is not only an explanatory example of this element’s task, but rather a practical explanation
of what it does. The REA_Model meta-class is the canvas of the designed diagrams which are based
on this meta-model.

Other elements of the meta-model were modeled based on the decisions described in section 3.2.3,
and according to the relationships matrix that is available in Appendix A.2; thus the cardinalities will
not be discussed in this section as they are can be found in any REA resource. As depicted in Figure
9, elements of the basic and extended REA models were modeled in the meta-model.

35

Events were broken down into decrement and increment, and exchange and conversion. Facilitating
events to exchange and conversion events was important, because in REA, exchange events must
have exactly one internal agent and one external agent, but conversion events can have at max one
internal agent, and they do not associate directly with external agents.

Increment and decrement divisions were added because in REA, any duality must contain at least one
increment and one decrement event of the same nature (exchange or conversion). If these were not
facilitated, one could make a duality between only two incremental events for example, or worst,
make a connection between two incremental or decremental events of the same type. Accordingly, it
was necessary to break down both the event-type (exchange or conversion) and its incremental value
(increment or decrement) on the meta-class level. For the same previous reasons, commitments
followed the same structure.

Dualities and Reciprocities were facilitated to indicate the connection between events which belong to
the same category. If a duality or reciprocity was modeled using one meta-class, then there would
have been a way at which users can connect exchange events to conversion events for example, which
violates the rules of REA severely.

These were the major decisions which lead to formulate the major structure of this meta-model.

Figure 9: REA-DSVL's meta-model

4.3.2 Visual notation development

As mentioned in section 3.2.3, three main design concepts were prepared in order to provide a wider
base of choices for a better visual notation. These design-concepts are depicted in Figure 10, Figure
11, and Figure 12. One of these concepts was
chosen for implementation in the next phase.

The first concept in Figure 10 has the theme of
linear duality representation. As it appears in the
figure, dualities were represented as containers
which hold all the participating events. Each
event is then linked to the resource that it will
(give, take…etc), and the agent who provide
such resource.

Two main problems were identified in Concept 1.
The first problem concerned the practicality of
the notation, and the second problem concerned
the representation of agents.

If this notation was to be applied to large
business domains, the whole model would have
to take a vertical structure consisting of linear
dualities and reciprocities. This might cause
difficulties for modelers when tracking their
models; thus, affecting the notation’s practicality.

The model should also allow its readers to read
its content in their common language; for
example, the increment exchange event in Figure
10 should be easily read as “The Customer Pays
Money to the Cars Dealer”. As it appears in the
figure, the reader should interpret the exchange
relationship in order to reach such a result. The
notation was designed in this way in order to
minimize the number of relations (links) that
associate agents with events. The number of
agents’ links in a typical REA duality is twice the
number of events in that duality. By designing
the notation this way; the number of agents’ links
would have dropped to the half, unfortunately, it
was not practical.

Concept 2 in Figure 11 represents events in
hexagonal shapes. The idea was to link the
associated events together by their borders.
The final business value chain would take the
shape of a beehive according to this concept.
Practicality issues also limited the

Figure 10: Concept 1

Figure 11: Concept 2

Figure 12: Concept 3

38

implementation of this concept. First, the concept defines a new rule on top of REA’s. The figure
shows that there are two points; “to” and “from”. These points describe the flow of resources within
events. The agent who is linked to the “from” point is the one who is providing the associated event
with the linked resource. These rules might be confusing to some of the intended audience, typically
the nontechnical ones. The coupling of events by borders was another reason for discarding this
concept. The latter limitation can be visualized when thinking about resizing the model or editing it. If
only one of the events was resized, then all of its adjacent events would have been resized
accordingly.

Concept 3 in Figure 12 is a simple representation of REA elements and concepts using familiar
shapes. As it appears in the figure, dualities have their own figures. As with the earlier concepts,
incremental characteristics are represented using (+) sign, and decremental ones with (-) sign. An
Exchange, as a concept, is depicted with opposing arrows which reflect the give-and-take nature of
exchanges. Events are depicted as normal rectangles with headers that hold the “E” character (E
for Event) and the title of the event. In the body of each event, there is a representation of the type
(exchange or conversion) and the value-effect nature (increment or decrement) of the event. Among
the three design concepts, concept 3 seemed to provide the best representation; thus, it was chosen for
implementation in the next phase.

Dualities and Reciprocities were depicted as lozenges (diamond shapes) with the character “D” or “R”
to represent each of them respectively. Dualities and Reciprocities serve the same purpose for events
and commitments; thus, it was quite reasonable to give them the same shape. As with events and
commitments, dualities and reciprocities have the symbols which indicate “exchange” or
“conversion”.

The “Resource” element was modeled as a circle, and “Resource Type” was modeled as double
circles due to its tight relation to the “Resource” element. “Internal agent” and “External agent” were
depicted using the famous stickman shape, with minor difference in filling the head of external agent.

The “Contract” element was depicted in the form of a paper with a folded tip to give an impression of
using a document. Terms were depicted as triangles to give a sense of direction from the contract
element that is linked to them, and they have the (+) and (-) to indicate the effect of the term.

4.3.3 Visual notation implementation

This phase covered the development of the graphical Java classes for the concept’s elements from the
previous phase. As mentioned in section 3.2.3, after implementing the visual notation and testing it in
a live modeling environment, “Event” and “Commitment” shapes were edited for a better
optimization of the designed models. Figure 13 shows the nature of these improvements. Such
changes were easily implemented due to the described aspect-ratio programming style.

Figure 13: Concept 3 improvements

The final sets of the rendered graphics is depicted in Figure 14, and structure of the classes written
for this task are presented in Appendix A.5.

Figure 14: The final visual notation after implementation

4.3.4 Editor generation

This phase ended with generating the DSVL’s editor that is called “REA DSVL Editor”. This tool is
available on online for both the Windows platform1 and the Mac OS X2. When the editor is launched
for the first time, it will open a window similar to the one that appears in Figure 15. Users can
customize their editor view by moving the “outline” and “Properties” windows into the desired screen
location.

Figure 15: REA DSVL First Run

As it appears in Figure 15, the editor has four main menus; these are; “File”, “Edit”, “Window”, and
“Help”. These menus provide customary functionalities like (save, open, exit…etc), which are
provided by most of software systems. Figure 16 shows the file menu of REA DSVL Editor. The
editor allows its users to create “REA Diagrams” as the only available option.

When the user selects “REA Diagram” from the menu in Figure 16, a new diagram wizard is
launched as shown in Figure 17. The first window of the wizard allows the user to create files with
the “.rea_diagram” extension. This file type represents the graphical model to be designed, or simply
the diagram. After typing the name of the diagram file, the user has the choice to either create a
domain-model file for the diagram, or to finish the wizard without creating such a model.

Domain-model files with the extension of “.rea” are XML data models based on the
“.rea_diagram” files. These data models conform to the relations identified in the original REA meta-
model that was developed earlier. The content of a domain-model (also referred to as data-model) are
auto-generated at runtime while modeling the “.rea_diagram” diagrams.

1 https://docs.google.com/open?id=0B1dkJd7veJw7SS1OZG4zekRQeWM
2 https://docs.google.com/open?id=0B1dkJd7veJw7NDlpRV9tekhDUFE

41

After creating the diagram file for the user, the tool opens the modeling environment as depicted in
Figure 18. The part of the editor that is marked as (1) represents the menu of REA’s modeling
elements. Users click on their desired element from that menu, and then click inside the modeling area
to create an instance of that element like the one shown in section (3).

Figure 17: New REA Diagram Wizard

Figure 16: New REA Diagram

Figure 18: REA-DSVL Editor

42

The editor provides modelers with other options for creating elements on the modeling area. Part (4)
of Figure 18 represents a quick flyer menu. The flyer menu appears after few seconds when the
mouse is pointed to a blank space in the modeling area. Another option for creating elements is the
context menu associated with each of the diagram’s elements. Part (3) of Figure 18 shows the context
menu associated with a decrement exchange event. When the modeler points her mouse over an
element in the modeling area, two arrows will appear on the border of that element. One of these
arrows is directed toward the element, and the other is directed outside the element. The arrow
directed inwards represents the links (relationships) to that element from other diagram elements, and
the outer arrow represents the opposite. When one of these arrows is dragged to an empty area of the
diagram, a context menu with the appropriate relationships appear. Modelers can choose the
relationship type that they want to draw from the context menu, and then they can connect the
relationship end to an already existing element, or they can create new elements according to the
relationship type.

Part (2) of Figure 18 shows the “properties” window. This window is used to edit; names,
relationships, and the look and feel of modeling elements. The “properties” window has two tabs;
these are “Core” and “Appearance” tabs. The properties window changes its content according to the
selected modeling element. The “Core” tab contains pairs of “Property” and “Value” elements. The
“Property” elements represent the relations of the selected modeling element which are based on the
meta-model, and the “Value” elements represent the implementation of these relations in the diagram.
Figure 19 shows an example of how this window would look like when selecting an exchange event.

Figure 19: The properties window for an exchange event

It is worth mentioning here that the relation between the properties window and the designed models
is bidirectional, this means that, if the relationships were set on the designing area, the properties

43

window will change accordingly, and if the relationships were set using the properties window, the
model will draw the links between its elements based on the configured relationships.

The other tab of the properties menu, namely “Appearance”, has options that allow the user to change
the look and feel of the modeled elements. These options include changing the font’s type, size, and
color of the model labels. It includes also functionalities for changing the colors of the diagram
elements. Some valuable appearance options are also available to the links of the model. If a link
between two elements was selected, the editor provides options for the link to avoid obstacles (other
links or elements).

After creating a new “REA Diagram” file from the “File” menu, a new menu entitled “Diagram” will
appear in the tool bar of the editor. In addition to “Diagram”, a new menu item with the label
“Validate diagram” will appear in the “Edit” menu as shown in Figure 19. The “Diagram” menu
provides the same functionalities as the ones provided by the properties view. When the user clicks on
the “Validate Diagram” menu item, the diagram will be validated according to the relations identified
in the first developed REA meta-model. In case of violations to the meta-model, an error sign will
appear on the upper right corner of the diagram element, and when the user points her mouse over that
error sign, a list of errors will be listed as a tooltip.

Figure 20: Diagram validation

In addition to the views and functionalities described earlier, the “outline” window of the editor shows
an overview of the complete model, and it provides a highlighted blue rectangle of the viewable part
of the model that appears on the screen.

Another feature provided by this tool is its ability to produce images from the designed models. This
can be achieved by showing the context menu of the diagram. To do that, the user presses the right
mouse button on an empty area of the diagram, then chooses the context element “File >> Save image
as”.

These were the major functionalities provided by “REA DSVL Editor”. A quick summary of these
functionalities is provided in Table 4. The next section will present the results from the next phase of
the DSRM, namely, the demonstration phase.

44

Functionality
Name

Place in editor Functionality Description

Create new REA
diagram file

File >> New
>>REA Diagram

Used for creating new REA diagram file with the extension
“.rea_diagram”.

Create a REA
diagram from a
data-model

File >> Initialize
rea_diagram
diagram file

Used for creating “.rea_diagram” files from “.rea” files. The “.rea”
files are xml files based on the main REA meta-model. The
“.rea_diagram” files are also XML files, though they hold the visual
REA models information.

Modeling and
Editing diagrams

Modeling canvas
and properties
view tab

The modeling canvas provides three main methods for creating new
elements, these are:

• Elements palette.

• Context menu of the created elements.

• Flyer menu.

For editing the relationships of elements, one can manipulate the
relations directly through drag and drop, or can use the “properties”
tab for editing both the relationships and the “Look and Feel” of
elements.

Validate
Diagrams

Edit >> Validate
Diagram

When the “Validate Diagram” from the edit menu is clicked, the
modeled diagram will be validated against the meta-model that was
developed earlier.

Models Overview Overview view
tab

Shows the complete designed model and the current viewable
section of the diagram or model.

Create Images of
the designed
Diagrams

File >> Save
image as

Saves the modeled diagram as an image.

Table 4: Summary of REA DSVL Editor's main functionalities

45

4.4 Demonstration
After interviewing the manager of ABS Wheels, a business description of the company’s business
activities was compiled and sent to the manager for confirmation. The business description of ABS
Wheels is available in Appendix A.6. After the manager’s reply with no further comments, the
analysis of the business was conducted according to REA, and the main REA elements of the business
were identified.

The business description in Appendix A.6 was written in a way that makes it easy for the reader to
identify the REA processes in ABS Wheels; thus, instead of discussing the details of why the business
was modeled in a specific manner, which is not the purpose of this section, the results of this analysis
are directly provided in Appendix A.7. Following this step, business models of ABS Wheels were
designed using the REA DSVL Editor. The processes diagrams and their associated data-models
(XML files) are available in Appendix A.8 and Appendix A.9 respectively.

For the purpose of demonstration, the modeling of one process from the case study will be described
in this section. The following text is taken from the business description in Appendix A.6, and it
describes the process of publishing advertisements for the ABS Wheels.

“The company occasionally places advertisements for its business on radio stations,
magazines, and Internet websites. The payment for such advertisements is done at the time
when the ad is requested.”

To start modeling, a new “.rea_diagram” file was created with its associated “.rea” data-model. The
events from the previous description are clear and simple. The company’s manager (Internal agent)
pays for the Advertising channel (External agent) some money (Resource), and the advertising
channel publishes advertisements (resource) for ABS Wheels (Internal agent). For that purpose, an
increment exchange event with the name “Get advertised” was modeled, then another decrement
exchange event with the name “Pay for advertisements” was modeled, and both of these events were
linked to an exchange duality element.

After that, the agents and resources which were previously identified were modeled using the
appropriate elements from the editor. After completing the model, an image of the model was
generated. The generated image is used in this report under Figure 21.

Figure 21: ABS Wheels Advertising process as generated from REA-DSVL Editor

46

As described in the previous section, the “.rea” file content is created automatically while developing
the model. The content of the “.rea” file which was created for this process is presented bellow in its
XML format:

<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:InternalAgent" name="ABS Wheels"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Advertising Channel"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Shop manager"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for
advertisements" give="//@hasResources.0" partOf="//@hasDualities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.2"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get advertised"
take="//@hasResources.1" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasResources name="Money"/>
 <hasResources name="Advertisement"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="Advertising
exchange" containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>
</rea:REAModel>

The XML schema that is called “rea” is an XML schema that is based on the REA meta-model that
was created for this modeling language. All the tags available in this XML file represent elements
from the schema file, and they are simply depicted in the meta-model as the relationships between the
root element (REAModel) and all other sub elements.

When the modeling of ABS Wheels started, the intention was to develop all the process under one
model. This, however, seemed to be a hard task to achieve. This point will be elaborated on during the
evaluation of the tool. There were no other significant limitations that appeared during modeling the
process of ABS Wheels. The following section will discuss the evaluation of the tool.

4.5 Evaluation
As mentioned earlier, the evaluation was done based on the extent to which the collected requirements
were fulfilled using the developed artifacts. For this purpose, each of the requirements will be
revisited and compared with its associated results which were presented in this chapter so far. The
editor was evaluated using informed arguments in order to check its suitability for answering the
research question.

4.5.1 The meta-model

The meta-model requirements were of a quantitative nature based on the reasons provided in section
 3.1.5. The first requirements MMR1.1 and MMR1.2 suggested that the meta-model should cover the
elements of the basic and extended REA models. As seen in the meta-model that was presented
earlier, the meta-model covers these concepts, and it adds additional concepts from REA’s policy
level specifications (Contracts, Terms, and Resource-type). By fulfilling these requirements, the
fulfillment of the main requirement (MMR1) was confirmed.

47

The meta-model has covered its purpose as being the structure (abstract syntax) of the modeling
language. A full meta-model of REA is necessary for producing full REA models. McCarthy in
(GEERTS, Guido L. et al., 1996) has emphasized the importance of full REA models when building
enterprise information systems. Full REA models help in increasing the knowledge base of the
modeled enterprises. This is achieved by revealing the full enterprise’s value chain; thus, showing the
full business activities and business processes of the modeled enterprise. Based on that, according to
McCarthy, the obtained business knowledge would typically help in advancing the planning and
analysis phases of the software engineering lifecycle. McCarthy also mentioned that if full REA
models were to be implemented as data-models, then they would provide a skeleton schema that is
useful for other phases of the software engineering lifecycle.

Although this meta-model covers both the basic and extended REA models, other ontological
concepts of REA were omitted from this meta-model. The omitted concepts included the full REA
policy level representations, and REA process view. The omitted concepts were described in the work
of McCarthy as “less occurring” or rare. These elements were omitted because the conception which
was taken while designing the meta-model targeted the representation of business processes rather
than complete enterprise business network.

4.5.2 The visual notation

Literature that discusses visual composition of modeling languages could not be found in order to
provide a base for developing the visual notation. For the same purpose, it was hard to formulate
scientific informed arguments based on literature. For this purpose, the evaluation of the visual
notation was based directly on the use of REA DSVL within the Editor. Based on the aforementioned
facts, this section tends to evaluate the visual notation based on the fulfillment of the requirements,
and the experience of using the notation within the REA DSVL Editor.

The final visual notation was presented in section 4.2.3. As described earlier, the visual notation
represents the concrete syntax that language users directly interact with; thus, a basic requirement of
simplicity was needed. This requirement is available under VNR1.1. To fulfill this requirement,
simple geometric symbols were used while developing the notation to generate easily recallable
figures. For the same purpose, elements of REA with close characteristics were designed in similar
forms with minor differences. For example, commitments and events have the same relationships’
nature with agents and resources; thus, they were designed using the same shape with the difference
of the letters “E” and “C”.

As with events and commitments, dualities and reciprocities were modeled using the same shapes
with minor differences in the characters “D” and “R”. The symbols which represent “increment”,
”decrement”, “exchange”, and “conversion” are shared among all elements of the visual notation,
which would makes it easier for the notation users to get used to the notation. The “exchange” symbol
was modeled as two opposing arrows to represent the “give and take” relationship, and the
“conversion” symbol was depicted close to the “recycling” symbol to indicate the transformation from
one state to another.

The other requirement of the visual notation, VNR1.2, simply suggested that the visual notation
should cover all the meta-model’s elements, which as seen in Figure 14 was fulfilled.

Although the previous claims are legitimate, a proper evaluation should be based on an opinion other
than the author’s. For this reason, the requirement VNR1.1 cannot be considered as fulfilled, but

48

rather as plausible. The second requirements VNR1.2 is of a quantitative nature; thus, it is safe to
assume its fulfillment.

4.5.3 The REA-DSVL Editor

The requirements which were formulated for the editor were clear and simple. The editor’s
requirements targeted the very basic functionalities that should be available in any MDD editor.
Requirements MTR1.1 and MTR1.2, which mandated the tool should provide functionalities for
developing REA based diagrams and data-models, were fulfilled as it was described in section 4.2.4.

As seen in the data-models (Appendix A.9), the format of the generated files is XML. XML supports
the development of Platform Independent Models (PIM) of MDA that were described in section 2.4.
When thinking about code generation, using XML allows the implementation of the business in
different programming languages and techniques. This in turn fulfills the requirement MTR1.3.

Although it is not a requirement of MDD, the tool was generated for two platforms, the Microsoft
windows and Mac OS X. Eclipse’s GMP allows generating the tool for Linux and Solaris platforms as
well. This implementation fulfilled the requirement MTR1.5. This requirement was added to allow
different platform users to use the editor on different operating systems; thus attracting a wider base
of users.

The easy-to-use functionalities which were described in requirement MTR1.4 were assumingly
fulfilled in different ways. The REA-DSVL Editor operates on two file types only. One of these files
is directly manipulated by the user (the .rea_diagram file), and the other is auto-edited (the .rea file).
This allows users to focus on their designs rather than the development of complex data-models.

As mentioned earlier in the section 4.3, REA-DSVL Editor was used to model a real business
scenario. The diagrams and data-models generated for the case study are listed in Appendix A.8 and
Appendix A.9 respectively. When comparing the business description and the generated models, one
can see that the tool managed to build diagrams that cover the complete business processes of the
studied company. Based on the developed models of the case study, users of the editor may have the
conception that their models should encapsulate the complete business in one diagram. Such
technique can be used, thought it would result in complex and large diagrams. A typical technique for
business modeling using the REA-DSVL Editor would be to divide the processes among several
diagrams for simplicity. Either way, the REA DSVL Editor supports both modeling techniques.

As an example of complex diagrams, the first four processes from the case study were modeled in one
diagram as shown in Figure 22. As it appears in the figure, this diagram might be difficult to read.
These difficulties can be overtaken by applying some changes to the appearance of the diagram
elements. Events and dualities which belong to one process could be painted with unique colors using
the properties view that was described in section 4.2.4. When the latter modification is applied to the
model in Figure 22, the resulted model would look like the one in Figure 23. This functionality of the
editor supports the requirement indentified in MTR1.4 too.

Other editor functionalities like “links optimization”, “validation”, and “image generation” support
the requirement MTR1.4. This requirement; though, cannot be considered as fulfilled because it was
not evaluated based on an experiment like the one that was described in section 3.2.5. Accordingly,
this requirement is considered plausibly fulfilled.

Before moving to the conclusion chapter of this report, it is necessary to elaborate on the issue of the
complex diagrams. The aforementioned issue with the representation part triggered another issue with

49

data-models which are generated based on complex diagrams. In their current forms, different
modeling diagrams generate different data-models. Accordingly, a business that is modeled using
different diagrams would have its inner structure distributed among different data-models. The latter
issue might result in redundant data objects if data-models were not interpreted carefully by system
developers. This latter issue can be solved by defining an element that aggregates each process
specifications. This would be achieved by implementing the process level specifications of REA.
Such implementation would solve both the problem of the complex diagrams, and the problem of
data-models’ unity. The aforementioned solution is discussed in greater details in the last chapter of
this report. The final set of the requirements and their status is provided in Table 5.

Requirement Reference Status Requirement Reference Status

MMR1 Fulfilled MTR1 Fulfilled

MMR1.1 Fulfilled MTR1.1 Fulfilled

MMR1.2 Fulfilled MTR1.2 Fulfilled

VNR1 Fulfilled MTR1.3 Fulfilled

VNR1.1 Plausible MTR1.4 Plausible

VNR1.2 Fulfilled MTR1.5 Fulfilled

Table 5: The final status of the requirements

Figure 22: Multiple processes per diagram

51

Figure 23: colored Multiple processes diagram

4.6 Results Validity and limitations
Based on the practical limitations identified earlier, the REA-DSVL Editor can be useful for modeling
businesses of the same or smaller size than the business in the case study of this research. Larger
business can still be modeled using the tool, though this might result in great number of diagrams and
data-models.

The meta-model has covered its requirements, and when compared to other meta-models of REA, the
meta-model provided additional details that other meta-models have missed. Saying that, the meta-
model needs an evaluation based on the opinions of people who are experienced in the domain of
REA modeling and meta-modeling.

The visual notation’s requirements were simple and limited. This was reached due to the absence of
literature resources dealing with visual composition. The same reason resulted in an evaluation of the
visual notation symbols that might be biased.

The evaluation of the REA-DSVL editor was based on the analysis of one case study, and the
perspective taken in the evaluation is of the language developer. Although the author has tried to
provide a subjective analysis of the language, a better evaluation would have been provided if the
experiment in section 3.2.5 was conducted. Such evaluation is needed for better judgment of the
visual notation, and for collecting additional requirements from the users who might request
functionalities that the author might not have thought about.

5. Conclusion
The developed tool proved that REA can be practically used in business modeling. The analysis of the
language revealed that such DSVLs can indeed help in promoting the usage of REA in systems
development; though, with its current limitations, the developed tool needs additional functionalities
to make such goal even more practical.

Ordinary business owners with standard knowledge of software tools can be requested to model their
businesses using the REA-DSVL Editor. This might provide an initial step toward engaging such
owners in the process of software development for their business. Business analysts would have a
better view of the business when the models are built by business owners, which in turn would lead to
less analysis time, and more accurate analysis process.

The last point might hold true when the barrier of REA knowledge is neglected. The tool allows its
users to connect the elements of their models according to the relations of the meta-model. In this
sense, users are not allowed to makes “REA-errors”. REA-errors in this sense means, for example,
connecting some elements to the wrong set of other elements. Users, though, might miss some of the
mandatory REA relations. These missing relations can be solved by using the validation functionality
of the tool, which provides user-friendly messages that can direct the user toward solving such issues.
Under these circumstances, users do not need to have an extensive knowledge of REA, but rather, a
brief introduction to the tool itself and its functionalities.

53

The tool also allows business analysts to produce their correct and complete REA based business
models. From there, they forward their “.rea” files to software architects. In this scenario, software
architects will not need to interpret business documents and produce data-models anymore. The data-
models would be generated accurately according to the designed business models. This might
overcome some of the typical problems associated with the analysis and design phases of the SDLC;
thus, it would typically lead to an accurate systems design, and less development time.

Implementing the process level specifications of REA in its meta-model would provide a base for
representing the enterprise along its processes in one model. This would typically help in viewing the
complete network of the systems around the modeled enterprise; thus, making any integrations easier.

Implementing the process level specifications would also make it easier to link the current REA-
DSVL to other standards like BPMN. BPMN based MDD tools provide mechanisms for modeling
direct systems implementations. The intervention of software developers would not be necessary for
writing the actual software code in this case. The last implementation would bring the idea of MDD
REA-based systems closer to reality.

This research has revealed that the research question can be answered by the main following points:

• A REA based DSVL tool can help in speeding up the analysis and design phases of the
traditional SDLC. The previous advantages can be achieved by :

o Automating some of the customary software design tasks. This is achieved by
automatically generating data-models in the form of XML files for the modeled
processes; thus, saving the time needed for transferring analysis documents to
software objects.

o Providing non-REA experts with simple modeling environments that they can
understand; thus, attracting more users to the ontology. This would also support the
practice of agile systems development.

• The research has also revealed that in order to support further phases of the SDLC using a
REA-DSVL based modeling tool, the process level specifications of REA should be
supported by the DSVL and the tool.

6. Discussion
This research provided a step toward implementing REA in business software using a model driven
development technique. The research revealed that such goal can be achieved using REA based
DSVL tools. Although the developed tool lacks the practicality to model large businesses, its core
purpose was fulfilled, and REA based data-models were generated from visual models; therefore,
providing a wider prospect of methods that can be used to implement REA as a true business
architecture.

This project succeeded in proposing a meta-model, a visual notation, and a tool capable of generating
data-models based on the previous two artifacts. Other works managed to provide one or two of these
three artifacts under one work. Resources like (ZHANG, Guoqiang et al., 2010) (SONNENBERG, C.
et al., 2011 b) (GAILLY, Frederik and Poels, Geert, 2007) managed to develop REA based meta-
models. Regardless of the completeness or correctness of these meta-models, their work was limited
to only proposing these meta-models. Other works managed to build direct implementations of REA
as software packages; though this is far from the purpose of this project. Some works managed to
build a meta-model and a visual notation based on REA like (SONNENBERG, C. et al., 2011 a);
though, the tool produced for that language was a proof of concept, targeting the modeling perspective
of the language, without supporting the generation of data-models. The same authors of REA-DSL
have produced a different XML language (SONNENBERG, C. et al., 2011 b) based on the meta-
model developed in their previous work. The purpose of the language was to provide a mechanism for
REA based models transformation. Regardless of the problems that have been identified in the
previous work (discussed in section 2.7), the suggested XML schema requires its users to write their
REA models using XML, which is quite a hard task for non-domain experts. The tool provided in this
project; on the other hand, generates standard XML files that are based on an XML schema, and that
XML schema was generated from the developed meta-model. In this sense, users do not need to
worry about the complexity associated with writing XML files. On top of that, users have a visual
notation that can be used for modeling business diagrams. Users of the visual notation do not need to
have a profound knowledge of REA, as the tool provides functionalities to help users produce correct
and complete business models.

One of the points which support the validity of the developed meta-mode of this work appears clearly
in the work of (GAILLY, Frederik and Poels, Geert, 2005) and (GAILLY, Frederik and Poels, Geert,
2007). The authors of the aforementioned resources produced their first meta-model which depicted
“events” of REA as a single meta-class. On their second meta-model at which they claimed a wider
representation of REA over their first model, they have added a new level of details for “events” by
suggesting “increment events” and “decrement events”. The meta-model of this research managed to
provide this level of details, and added a further new level for facilitating the “exchange” and
“conversion” levels of events specifications.

As for the limitations of this work, the DSVL tool was not evaluated properly. Away from the
functionalities provided by the tool, a proper evaluation of the tool would reveal the limitations of the
visual notation. It might be true that the visual notation at its current state covers all REA concepts,

55

but its simplicity and expression suitability are best judged by users of the tool, and by visual designs
experts.

Another limitation of this research is the extensibility of results. This limitation is associated with the
analyses that were based on the analysis of one case study. Other evaluation techniques might reveal
additional limitations of the DSVL, or new requirements for the tool. Such evaluation techniques
should emphasize the involvement of technical personnel; who can judge the applicability of the
generated artifacts to fulfill their designated purposes. An experiment like the one described in section
 3.2.5 would provide a good baseline for evaluating both the visual notation and the editor.

Possible ethical and social consequences of the conclusions would obviously include cases when any
of the developed artifacts is used practically. As mentioned in the conclusion chapter, the editor
supports faster planning and design phases of the SDLC. The previous conclusion holds true when a
careful interpretation of the generated data-models is done. Due to the separation of REA models, the
generated data-models will contain different objects for the same entities which have been used
between different REA models. If not carefully managed, these entities could be represented in
different system objects (DB objects, Java objects…etc), which might result in poor systems designs.

Another important consequence of the conclusions is their suitability for ontologies like REA. The
conclusions were based on implementing the REA ontology. REA has special characteristics as it was
designed on the first place to support the development of information systems. Other business
ontologies like; e3-value, BMO, or any other business modeling ontology might need its own careful
study in order to reach the same conclusions. It is a common mistake to think that any business
modeling ontology should have the same conclusion as REA’s; though, this might be true for some
business modeling ontologies, but not others.

The future work that can be built on top of this research would include evaluating the meta-model and
the visual notation in a better way. This includes performing the experiment that was described in
section 3.2.5. One major work would include expanding the REA-DSVL and the editor to support
large business diagrams. This can be achieved by using “diagram partitioning” technique of GMP. In
its current specifications, the tool builds all REA processes in one diagram, and the representation of a
process as an entity is abstract as processes are implicitly modeled using REA events and
commitments. The new solution suggests providing a dedicated element for REA processes, and this
new element would typically encapsulate its associated REA constructs. Figure 24 depicts how such
solution would solve some of the identified language and editor issues.

All the previous suggested work was based on the analyses’ results of this research. A typical future
work; though, should focus on the main purpose of this research, which is the implementation of REA
in developing business information systems.

This research has concluded that DSVLs can help in engaging REA in software development. Future
work can proof that a REA based DSVL would reach the ultimate goal of MDD, by building software
based completely on models. At the beginning, this might sound like a long shot, but practically it is
not. The following is a brief discussion of how this can be achieved.

The first step of such a solution would be to build a database infrastructure which is based on REA.
Up until now, this task cannot be reached without human intervention. A proof of concept was
conducted (aside from this research) in the form of converting the generated “.rea” files into java
objects. This was achieved by using a method similar to the one found in (MCNEILL, Ken, 2010)

56

with some modifications. Using the same functionality, one can annotate the generated java classes as
JPA1 objects. From there, generating the database structure can be easily automated using models.

The next step would be to define the business logic. As known, REA is a static ontology that does not
support flow of events. Luckily, Eclipse has a running proposal2 to extend its previous support of
BPMN 1.0 to version 2.0. Both of Eclipse’s BPMN specifications are based on EMF, which at its core
is based on Ecore. As described earlier, models transformation would be an easy task in this case as
both languages (REA-DSVL and Eclipse’s BPMN 2.0) are based on the same meta-meta-language,
Ecore. The latter operation would typically result in business process models based on the original
“.rea_diagram”. Running the new business process models using Eclipse’s engine would result in an
operational REA processes; thus, a complete REA based MDD implementation.

Figure 24: Current and future solutions

These were some of the future contributions that could be built on top of this project. Other
implementations of the DSVL would include choreographing the DSVL with other aspects of

1 http://docs.oracle.com/javaee/5/tutorial/doc/bnbqa.html#bnbqb
2 http://www.eclipse.org/proposals/soa.bpmn2-modeler/

57

enterprise strategy and planning techniques, which would result in a professional enterprise package
that incorporates REA; thus, promoting the ontology as a major player in the domain of enterprises
information systems.

Bibliography
1. ATKINSON, Colin and Thomas KÜHNE. 2003. Model-Driven Development: A Metamodeling

Foundation. IEEE Software. 20(5), pp.36-41.
2. B. YU, J.A. Harding, K. Popplewell. 2000. A reusable enterprise model. International Journal of

Operations & Production Management. 20(1), pp.50 - 69.
3. BHATTACHERJEE, Anol. 2012. Data Collection Strategies. In: SOCIAL SCIENCE

RESEARCH:PRINCIPLES, METHODS, AND PRACTICES, pp.83-103.
4. CORALLO, Angelo, Fabrizio ERRICO, Marco DE MAGGIO, and Enza GIANGRECO. A methodology

aimed at fostering and sustaining the development processes of an IE-based industry. In: Evolving Towards
the Internetworked Enterprise, Springer, pp.28-30.

5. DENSCOMBE, Martyn. 2007. The Good Research Guide for small-scale social research projects.
6. ECLIPSE. 2012. Eclipse Modeling Project. [online]. [Accessed Feb 2012]. Available from World Wide

Web: <http://www.eclipse.org/modeling/>
7. ECLIPSE.ORG. Graphical Modeling Framework. [online]. [Accessed 17 May 2012]. Available from

World Wide Web: <http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial#Get_started>
8. GAˇSEVI´C, Dragan, Dragan DJURI´C, and Vladan DEVEDˇZI´. 2006. Model Driven Architecture and

Ontology Development. Berlin: Springer.
9. GAILLY, Frederik and Geert POELS. 2005. Development of a formal REA-ontology Representation. In:

Michele MISSIKOFF and Antonio DE NICOLA, (eds). CEUR Workshop Proceedings. Porto (Portugal):
CEUR-WS.org.

10. GAILLY, Frederik and Geert POELS. 2007. Ontology-driven Business Modelling: Improving the
Conceptual Representation of the REA Ontology. Belgium.

11. GEERTS, Guido L. and William E. MCCARTHY. 2000. The Ontological Foundation of REA Enterprise
Information Systems. Paper presented to the American Accounting Association Conference, Philadelphia.

12. GEERTS, Guido L. and William E. MCCARTHY. 2002. An ontological analysis of the economic
primitives of the extended-REA enterprise information architecture. International Journal of Accounting
Information Systems. 3(1), p.1–16.

13. GEERTS, Guido L. and William E. MCCARTHY. 2006. Policy-Level Specifications in REA Enterprise
Information Systems. JOURNAL OF INFORMATION SYSTEMS. 20(2), p.37–63.

14. GEERTS, Guido L., William E. MCCARTHY, and Stephen R. ROCKWELL. 1996. Automated integration
of enterprise accounting models throughout the systems development life cycle. Intelligent Systems in
Accounting, Finance and Management. 5(3), p.113–128.

15. GOCSIK, Karen. 2005. Dartmouth Writing Program. [online]. [Accessed July 2012]. Available from
World Wide Web: <http://www.dartmouth.edu/~writing/materials/student/ac_paper/what.shtml#argument>

16. GONZALEZ-PEREZ, Cesar and Brian HENDERSON-SELLERS. 2008. Software Development
Methodologies and Metamodelling. In: Metamodelling for Software Engineering, pp.1-20.

17. GORDIJN, Jaap. 2002. E3value in a Nutshell. Lausanne , Switzerland.
18. GORDIJN, J., E. YU, and B. VAN DER RAADT. 2006. E-service design using i* and e3-value modeling.

Software, IEEE. 23(3), pp.26-33.
19. GUDAS, Saulius, Audrius LOPATA, and Tomas SKERSYS. 2005. Approach to Enterprise Modelling for

Information Systems Engineering. INFORMATICA. 16(2), pp.175-192.
20. GUIZZARDI, Giancarlo. 2006. On Ontology, ontologies, Conceptualizations,Modeling Languages, and

(Meta)Models. In: Proceedings of the 2007 conference on Databases and Information Systems IV: Selected
Papers from the Seventh International Baltic Conference., pp.18-39.

21. HEVNER, Alan R. and Samir CHATTERJEE. 2010. Design research in information systems : theory and
practice. New York: Springer.

http://www.eclipse.org/modeling/
http://wiki.eclipse.org/Graphical_Modeling_Framework/Tutorial#Get_started
http://www.dartmouth.edu/~writing/materials/student/ac_paper/what.shtml#argument

59

22. HEVNER, Alan R., Salvatore T. MARCH, Jinsoo PARK, and Sudha RAM. 2004. Design science in
Information Systems research. MIS Quarterly. 28(March), pp.p.75 -105.

23. HOSKING, John and John GRUNDY. 2007. Meta tools for implementing domain specific visual
languages. In: roceedings of the twenty-second IEEE/ACM international conference on Automated software
engineering. ACM.

24. HRUBY, Pavel, Jesper KIEHN, and Vibe SCHELLER. 2005. Model-Driven Design Using Business
Patterns. Berlin: Springer.

25. LAFORCADE, Pierre. 2010. A Domain-Specific Modeling approach for supporting the specification of
Visual Instructional Design Languages and the building of dedicated editors. Journal of Visual Languages
& Computing.

26. LI, Karen, John HOSKING, John GRUNDY et al. 2010. Augmenting DSVL Meta-Tools with Pattern
Specification, Instantiation and Reuse. In: Proceedings of the Second International Workshop on Visual
Formalisms for Patterns.

27. MCCARTHY, William E. 1982. The REA Accounting Model: A Generalized Framework for Accounting
Systems in a Shared Data Environment. The Accounting Review. 57(3), pp.554-578.

28. MCNEILL, Ken. 2010. Metamodeling with EMF: Generating concrete, reusable Java snippets. [online].
[Accessed Apr 2012]. Available from World Wide Web: <http://www.ibm.com/developerworks/library/os-
eclipse-emfmetamodel/>

29. MU, Liping, Terje GJøSÆTER, Andreas PRINZ et al. 2010. Specification of modelling languages in a
flexible meta-model architecture. In: Software Architecture: Proceedings of the Fourth European
Conference., pp.302-308.

30. OMG. 2003. MDA Guide Version 1.0.1. [online]. Available from World Wide Web:
<http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf>

31. OMG. 2011. OMG Meta Object Facility (MOF) Core Specification. formal/2011-08-07.
32. OSTERWALDER, Alexander and Yves PIGNEUR. Business Model Generation.
33. PEFFERS, Ken, Tuure TUUNANEN, Marcus A. ROTHENBERGER, and Samir CHATTERJEE. 2007. A

Design Science Research Methodology for Information Systems Research. Journal of management
information systems. 4(3), pp.45-77.

34. RAHMOUNI, M. and Lakhoua, M.N. 2011. State of the art of enterprise modeling. In: Logistics
(LOGISTIQUA), 2011 4th International Conference on., pp.311 -316.

35. SÁNCHEZ, Diana Marcela, José María CAVERO, and Esperanza Marcos MARTÍNEZ. 2007. The Road
Toward Ontologies. In: Ontologies for Software Engineering and Software technology, Springer, pp.3-20.

36. SCHAFER, Christian, Thomas KUHN, and Mario TRAPP. 2011. A Pattern-based Approach to DSL
Development. In: The 11th Workshop on Domain-Specific Modeling. Portland.

37. SCHUSTER, R. and T. MOTAL. 2009. From e3-value to REA: Modeling multi-party eBusiness
Collaborations. In: Commerce and Enterprise Computing, 2009. CEC '09. IEEE Conference on., pp.202-
208.

38. SONNENBERG, C., C. HUEMER, B. HOFREITER, and D. MAYRHOFER. 2011 b. REA-XML: An
Unambiguous Language for REA Business Models. e-Business Engineering (ICEBE), 2011 IEEE 8th
International Conference on., pp.44-51.

39. SONNENBERG, C., C. HUEMER, B. HOFREITER et al. 2011 a. The REA-DSL: A Domain Specific
Modeling Language for Business Models. In: Advanced Information Systems Engineering: 23rd
International Conference, CAiSE 2011. London, UK, pp.252-266.

40. SPRINKLE, Jonathan and Gabor KARSAI. 2004. A domain-specific visual language for domain model
evolution. Journal of Visual Languages & Computing. 15(3–4), p.291–307.

41. STAAB, Steffen, Tobias WALTER, Gerd GRÖNER, and Fernando PARREIRAS. 2010. Model Driven
Engineering with Ontology Technologies. In: Uwe AßMANN, Andreas BARTHO, and Christian WENDE,
(eds). Reasoning Web. Semantic Technologies for Software Engineering, Berlin / Heidelberg: Springer,
pp.62-98.

42. VAN DEURSEN, Arie, Paul KLINT, and Joost Norris VISSER. 2000. Domain-specific languages: an
annotated bibliography. ACM SIGPLAN Notices. 35(6), pp.26-36.

43. VOGEL, Lars. 2007. Eclipse RCP Tutorial. [online]. [Accessed April 2012]. Available from World Wide
Web: <http://www.vogella.com/articles/EclipseRCP/article.html>

http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/
http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.vogella.com/articles/EclipseRCP/article.html

60

44. WAND, Yair. 1996. Ontology as a foundation for meta-modelling and method engineering. Information
and Software Technology. 38(4), pp.281-287.

45. ZHANG, Guoqiang, Suling JIA, Qiang WANG, and Qi LIU. 2010. REA-based Enterprise Business
Domain Ontology Construction. Journal of Software. 5(5), p.522.

46. ZOUGGAR, N., D. CHEN, and B. VALLESPIR. 2009. Semantic Enrichment of Enterprise Modelling –
Use of Ontology. In: Interoperability for Enterprise Software and Applications China, 2009. IESA '09.
International Conference on., pp.252 -258.

Appendix A

A.1 Literature Resources
1. The Practice of Enterprise Modeling. Paul Johannesson; John Krogstie; Andreas L. Opdahl

2. Conceptual Modeling for Advanced Application Domains. ER 2004 Workshops CoMoGIS, CoMWIM, ECDM, CoMoA,

DGOV, and eCOMO. Shanghai, China, November 8-12, 2004 Proceedings

3. Enterprise Modeling and Computing with UML. Peter Rittgen

4. Lecture Notes in Computer Science Commenced Publication in 1973. Gerhard Goos; Juris Hartmanis; Jan van Leeuwen

5. Approach to Enterprise Modelling for Information Systems Engineering. Saulius GUDAS; Audrius LOPATA

6. Formal methods in object oriented business modelling. Michalis Glykas; George Valiris

7. Semantic Enrichment of Enterprise Modelling – Use of Ontology. Nabila Zouggar; David Chen; Bruno Vallespir

8. State of the Art of Enterprise Modeling. Mouna Rahmouni; Mohamed Najeh Lakhoua

9. Success factors for strategic information systems. Helmut Krcmar; Henry C. Lucas, Jr.

10. E3-value in a Nutshell. Jaap Gordijn

11. e-Service Design Using i* and e3value Modeling. Jaap Gordijn; Eric Yu; Bas van der Raadt

12. Evolving Towards the Internetworked Enterprise : Technological and Organizational Perspectives. Ronald Maier

13. Business Model Generation. Alexander Osterwalder; Yves Pigneur

14. A Design Science Research Methodology for Information Systems Research. KEN PEFFERS; TUURE TUUNANEN;

MARCUS A. ROTHENBERGER; SAMIR CHATTERJEE

15. A domain-specific visual language for domain model evolution. Jonathan Sprinklea; Gabor Karsaib

16. Meta Tools for Implementing Domain Specific Visual Languages. John Hosking; John Grundy

17. On Marrying Ontological and Metamodeling Technical Spaces. Fernando Silva Parreiras; Steffen Staab; Andreas Winter

18. A meta-model for formulating knowledge-based models of software development. Peiwei Mi; Walt Scacchi

19. Metamodeling in EIA/CDIF—Meta-Metamodel and Metamodels. RONY G. FLATSCHER

20. Evaluation of Novel Approaches to Software Engineering. Leszek A. Maciaszek; César González-Pérez; Stefan Jablonski (Eds.)

21. A powertype-based metamodelling framework. Cesar Gonzalez-Perez; Brian Henderson-Sellers

22. The Rationale of Powertype-based Metamodelling to Underpin Software Development Methodologies. Brian Henderson-Sellers;

Cesar Gonzalez-Perez

23. Software Development Methodologies and Metamodelling. Cesar Gonzalez-Perez, (Book chapter)

24. Ontology as a foundation for meta-modelling and method engineering. Yair Wand

25. Specification of Modelling Languages in a Flexible Meta-model Architecture. Liping Mu; Terje Gjøsæter; Andreas Prinz

26. Modelling software development methodologies: A conceptual foundation. Cesar Gonzalez-Perez; Brian Henderson-Sellers

27. A Meta Model for Representing Arbitrary Meta Model Hierarchies. Bernhard Volz

28. A Taxonomy of Metamodel Hierarchies. Ralf Gitzel; Tobias Hildenbrand

29. Metamodeling with Eclipse. Luis Pedro; Matteo Risoldi

30. A Pattern-based Approach to DSL Development. Christian Sch¨afer; Thomas Kuhn; Mario Trapp

ii

31. From domain ontologies to modeling ontologies to executable simulation models. Gregory A. Silver; Osama Al-Haj Hassan;

John A. Miller

32. An ontological analysis of the economic primitives of the extended-REA enterprise information architecture. Guido L. Geerts;

William E. McCarthy

33. From e3-value to REA: Modeling multi-party eBusiness Collaborations. Rainer Schuster; Thomas Motal

34. Positioning REA as a business domain ontology. Frederik Gailly; Wim Laurier; Geert Poels

35. REA-based Enterprise Business Domain Ontology Construction. Guoqiang Zhang; Suling Jia; Qiang Wang; and Qi Liu

36. REA-XML: An unambiguous language for REA business models. Dieter Mayrhofer; Christian Huemer; Birgit Hofreiter;

Christian Sonnenberg

37. The Ontological Foundation of REA Enterprise Information Systems. Guido L. Geerts

38. The REA-DSL: A Domain Specific Modeling Language for Business Models. C. Sonnenberg; C. Huemer; B. Hofreiter; D.

Mayrhofer; A. Braccini

39. Innovations in Information Systems Modeling: Methods and Best Practices. Terry Halpin; John Krogstie; Erik Proper

40. An empirical study on the efficiency of different design pattern representations in UML class diagrams. Gerardo Cepeda Porras ;

Yann-Gaël Guéhéneuc

41. Business modelling withUML: the implementation of CRM systems for online retailing. Pauline A. Wilcoxa

42. EMF: Eclipse Modeling Framework,Second Edition. Dave Steinberg; Frank Budinsky; Marcelo Paternostro; Ed Merks

43. Business Modeling for Service Descriptions:A Meta Model and a UML Profile. Gregor Scheithauer; Guido Wirtz

44. Model-Driven Design Using Business Patterns. Pavel Hruby ; Jesper Kiehn ; Christian Vibe Scheller

45. Electronic Communications of the EASST Volume X (2010) : Proceedings of the Second International Workshop on Visual

Formalisms for Patterns.

46. Domain-Specific Languages: An Annotated Bibliography. Arie van Deursen; Paul Klint; Joost Visse

A.2 REA elements relationships matrix

• This table is read from left to right.
• The numbers represent cardinalities associated with the corresponding relationship.
• A relation is pronounced as (Row Element (RE) + Relationship (R) + Cardinality (C) + Column Element (CE)).
• The highlighted example relation is pronounced as “Resource Type(RE) is reserved by(R) 0 or more (C) Commitments (CE)”.

Elements Event Resource Agent Commitment Term Contract Resource Type

Event Duality <*,*> Give <1,1>
Take <1,1>
Consume
<1,0..1>

Use <1,0..1>
Produce <1,1>

Provide <1,1>
Receive from

<1,1>

Fulfillment <0,*> - - -

Resource Given to <0,*>
Taken from <0,*>

Consumed by
<0,*>

Used by <0,*>
Produced by <0,*>

- - Reserved By <0,*> - - Specified By
<0,*>

Agent Provide <0,*>
Receive from

<0,*>

- - Provide <0,*>
Receive from

<0,*>

- Party <0,*> -

Commitment Fulfillment <1,*> Reserves <0,*> Provide <1,1>
Receive from

<1,1>

Reciprocity <*,*> Initiated by
<0,1>

Initiated by
<0,*>

Reserves <0,*>

Term - - - Initiates <1,*> - Initiated by
<1,1>

-

Contract - - Has Parties <2,*> Initiates <2,*> Initiates <2,*> - -

Resource Type - Specifies <0,*> - Reserved by <0,*> - - -

ii

A.3 First basic meta-mode

A.4 REA-DSVL elements relationship s matrix

• The relations are pronounced in the same way as in A.1.
• This table contains only the relations that appear in the meta-

model and implementation of REA-DSVL.

Meta-model
 Elements

IE
E

D
E

E

IC
E

D
C

E

IE
C

D
E

C

IC
C

D
C

C

ED CD ER CR

In
te

rn
al

A

ge
nt

E
xt

er
na

l
A

ge
nt

R
es

ou
rc

e

R
es

ou
rc

e

T
yp

e

In
cr

em
en

t T
er

m

D
ec

re
m

e
nt

 T
er

m

IEE PO P RF T
DEE PO RF P G
ICE PO PB PROD
DCE PO PB C,U
IEC F PO P RF Reserves Reserves
DEC F PO RF P Reserves Reserves
ICC F PO PB Reserves Reserves
DCC F PO PB Reserves Reserves
Resource Type Specifies
Increment Term I
Decrement Term I
Contract has has

Symbol Meaning Symbol Meaning
IEE Increment Exchange Event PROD Produce
DEE Decrement Exchange Event U Use
ICE Increment Conversion Event C Consume
DCE Decrement Conversion Event PB Processed By
IEC Increment Exchange Commitment I Initiates
DEC Decrement Exchange Commitment G Give
ICC Increment Conversion Commitment
DCC Decrement Conversion Commitment
ED Exchange Duality
CD Conversion Duality
ER Exchange Reciprocity
CR Conversion Reciprocity
F Fulfillment
PO Part Of
P Provide
RF Receive From
T Take

A.5 Visual implementation classes

Class Name Super Class Referenced shape

Agent - -

ExternalAgent Agent

InternalAgent Agent

Contract - Contract

Commitment - -

IncrementExchangeCommitment Commitment Increment Exchange Commitment

DecrementExchangeCommitment Commitment Decrement Exchange Commitment

IncrementConversionCommitment Commitment Increment Conversion Commitment

DecrementConversionCommitment Commitment Decrement Conversion Commitment

Event - -

IncrementExchangeEvent Event Increment Exchange Event

DecrementExchangeEvent Event Decrement Exchange Event

IncrementConversionEvent Event Increment Conversion Event

DecrementConversionEvent Event Decrement Conversion Event

Term - -

DecrementTerm Term

IncrementTerm Term

Resource - Resource

RsourceType - Rsource Type

BindingShape - -

ExchangeDuality BindingShape Exchange Duality

ConversionDuality BindingShape Conversion Duality

ExchangeReciprocity BindingShape Exchange Reciprocity

ConversionReciprocity BindingShape Conversion Reciprocity

v

A.6 ABS Wheels business

“ABS Wheels” is a high-level distributor; this means that the company imports its storage of tires and
rims directly from manufacturers. When the company buys what it needs, the full payment is done at
the time of order, this means that the manufacturer will be prepare the shipment as soon as payment is
done. Such deals are typically handled by the “ABS Wheels” manager directly.

Rims and tires trading follow similar processes. The process starts when customers make their
reservations either online, or through the salesman in the office by phone. Customers can pay directly
through the company’s website or directly to the salesman if they were in-shop customers. If the
customer wants to pay on partial payments, then the company provides the option of partial payments
through a 3thd party collection company. This option is also available for online users. In the latter
case of partial payments, “ABS Wheels” pays a monthly percentage to the collection company.

When an order is done over the Internet or by phone, the customer will be requested to choose a
delivery option, the customer can either come to the company’s store and pick up the order, or pay an
extra fee for order shipment. If the customer chooses to pay for shipment, the company will send a
request to one of the available logistics companies and pay it to deliver the shipment for the customer.

When an order is finalized (either through Internet, phone or in-shop), the company’s employees who
are responsible for mounting and balance prepare the order from the company’s warehouse. The
company signs contracts with its employees. It pays them monthly based salaries

Auto-repairing services consist of changing cars oil and cars washing. These tasks are done by
dedicated company employees. The raw materials needed for these tasks like; oil, oil filters, cleaning
liquids…etc; are bought from spare-parts shops. The payment from for these raw materials is done
partially over predefined time. The customer who receives the auto-repair service pays directly after
receiving the service.

The company is renting its office and warehouse from a property owner. It has a contract signed with
the property owner, and it pays the rent on a monthly basis through a bank. The company also pays
monthly invoices to the telephone, Internet, electricity, and water companies.

The company occasionally places advertisements for its business on radio stations, magazines, and
Internet websites. The payment for such advertisements is done at the time when the ad is requested.

A.7 ABS Wheels’ REA Processes

Process Agents Resources Events Commitments
Rims Importing • Rims manufacturer (E)

• Shop manager (I)
• Rims
• Money

• Pay for Rims Shipment
(DEE)

• Receive Rims Shipment
(IEE)

Tires Importing • Tires manufacturer (E)
• Shop manager (I)

• Tires
• Money

• Pay for Tires Shipment
(DEE)

• Receive Tires Shipment
(IEE)

Rims sale • Customer (E)
• Collection company (E)
• Logistics company (E)
• Salesman (I)
• Loading and balance

employee (I)

• Logistics Service
• Money
• Rims

• Give Rims (DEE)
• Receive Rims Price (IEE)
• Pay for rims

transportation (DEE)
• Transport Rims (IEE)

• Pay monthly fees (DEC)
• Get monthly payments

(IEC)

Tires sale • Customer (E)
• Collection company (E)
• Logistics company (E)
• Salesman (I)
• Loading and balance

employee (I)

• Logistics Service
• Money
• Tires

• Give Tires (DEE)
• Receive Tires Price (IEE)
• Pay for tires

transportation (DEE)
• Transport Tires (IEE)

Spare parts
acquirement

• Spare parts provider
(E)

• Salesman (I)

• Spare parts
• Money

• Pay for spare parts
(DEE)

• Get spare parts (IEE)

Auto services • Customer (E)
• Service worker (I)
• Salesman (I)

• Auto-service
• Money
• Spare Parts

• Consume parts in
service (DCE)

• Apply Service to
Vehicle (ICE)

• Provide auto-service
(DEE)

• Get service fees (IEE)

Place Renting • Property owner (E)
• Bank (E)
• Shop Manager (I)

• ABS Wheels
Building

• Money

• Pay rent (DEE)
• Get The property (IEE)

• Pay Monthly Rent
(DEC)

• Get monthly
ownership (IEC)

• Rental Contract
(Contract)

Maintenance • Service provider (E)
• Bank (E)
• Salesman (I)
• ABS Wheels(I)

• Building
Requirements

• Money

• Pay for services (DEE)
• Get services (IEE)

• Pay monthly fees (DEC)
• Get Building Running

needs (IEC)

Advertising • Advertising channel (E)
• ABS wheels (I)
• Shop manager(I)

• Advertisement
• Money

• Pay for advertisements
(DEE)

• Get advertised (IEE)

Employment • Service provider (E)
• Shop manager(I)

• Labor Service
• Money

• Pay salary (DEE)
• Get labor service (IEE)

• Pay monthly salary
(DEE)

• Reserve labor service
(IEC)

• Employment Contract
(Contract)

A.8 ABS Wheels’ REA models
• Tires importing and sales processes

• Rims importing and sales processes

ix

• Spare parts acquirement processes

• Auto-servicing process

• Place renting process

• Maintenance process

• Advertising process

• Employment process

A.9 ABS Wheels’ REA data-models
• Tires importing and sales processes

<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0"
name="TiresTradingAndImportingProcesses">
 <hasAgents xsi:type="rea:ExternalAgent" name="Logistics Company"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Customer"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Tires Manufacturer"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Collection Company"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Salesman"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Load and balance
employee"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Shop Manager"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for Tires
Shipment" give="//@hasResources.0" partOf="//@hasDualities.1"
provide="//@hasAgents.2" receiveFrom="//@hasAgents.6"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Give Tires"
give="//@hasResources.2" partOf="//@hasDualities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.4"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Transport Tires"
give="//@hasResources.1" partOf="//@hasDualities.0"
provide="//@hasAgents.0" receiveFrom="//@hasAgents.5"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Receive Tires
Shipment" take="//@hasResources.2" partOf="//@hasDualities.1"
receiveFrom="//@hasAgents.2" provide="//@hasAgents.6"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Receive Tires
Price" take="//@hasResources.0" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.4"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Pay for tires
transportation" take="//@hasResources.0" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.0" provide="//@hasAgents.5"/>
 <hasResources name="Money"/>
 <hasResources name="Logistics service"/>
 <hasResources name="Tires"/>
 <hasCommitments xsi:type="rea:DecrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Pay monthly fee"
fulfillment="//@hasEvents.1" partOf="//@hasReciprocities.0"
receiveFrom="//@hasAgents.4" provide="//@hasAgents.3"/>
 <hasCommitments xsi:type="rea:IncrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Get monthly payments"
fulfillment="//@hasEvents.4" partOf="//@hasReciprocities.0"
provide="//@hasAgents.4" receiveFrom="//@hasAgents.3"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="TiresTradingDuality"
containsDecrementEvent="//@hasEvents.1 //@hasEvents.2"
containsIncrementEvent="//@hasEvents.4 //@hasEvents.5"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="TiresImportingDuality"
containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.3"/>
 <hasReciprocities xsi:type="rea:ExchangeReciprocity"
name="PaymentsCollectionReciprocity"
containsDecrementCommitment="//@hasCommitments.0"
containsIncrementCommitment="//@hasCommitments.1"/>

</rea:REAModel>

xvi

• Rires importing and sales processes

 <?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0" name="RimsTradingProcess">
 <hasAgents xsi:type="rea:InternalAgent" name="Shop Manager"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Rims Manufacturer"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Salesman"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Logistics Company"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Loading and balance
employees"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Customer"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Collection Company"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Receive Rims
Shipment" take="//@hasResources.1" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for Rims
Shipment" give="//@hasResources.0" partOf="//@hasDualities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.0"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Give Rims"
give="//@hasResources.1" partOf="//@hasDualities.1"
provide="//@hasAgents.5" receiveFrom="//@hasAgents.2"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Receive Rims
Price" take="//@hasResources.0" partOf="//@hasDualities.1"
receiveFrom="//@hasAgents.5" provide="//@hasAgents.2"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for rims
transportation" give="//@hasResources.0" partOf="//@hasDualities.1"
provide="//@hasAgents.3" receiveFrom="//@hasAgents.4"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Transport Rims"
take="//@hasResources.2" partOf="//@hasDualities.1"
receiveFrom="//@hasAgents.3" provide="//@hasAgents.4"/>
 <hasResources name="Money"/>
 <hasResources name="Rims"/>
 <hasResources name="Logistics service"/>
 <hasCommitments xsi:type="rea:DecrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Pay monthly fee"
fulfillment="//@hasEvents.2" partOf="//@hasReciprocities.0"
receiveFrom="//@hasAgents.2" provide="//@hasAgents.6"/>
 <hasCommitments xsi:type="rea:IncrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Get monthly payments"
fulfillment="//@hasEvents.3" partOf="//@hasReciprocities.0"
provide="//@hasAgents.2" receiveFrom="//@hasAgents.6"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="RimsImportingDuality"
containsDecrementEvent="//@hasEvents.1"
containsIncrementEvent="//@hasEvents.0"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="RimsTradingDuality"
containsDecrementEvent="//@hasEvents.2 //@hasEvents.4"
containsIncrementEvent="//@hasEvents.3 //@hasEvents.5"/>
 <hasReciprocities xsi:type="rea:ExchangeReciprocity"
name="PaymentsCollectionReciprocity"
containsDecrementCommitment="//@hasCommitments.0"
containsIncrementCommitment="//@hasCommitments.1"/>
</rea:REAModel>

xvii

• Spare parts acquirement processes
<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:ExternalAgent" name="Spare parts supplier"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Salesman"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Bank"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for spare
parts" give="//@hasResources.1" partOf="//@hasDualities.0"
provide="//@hasAgents.0" receiveFrom="//@hasAgents.1"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get spare
parts" take="//@hasResources.0" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.0" provide="//@hasAgents.1"/>
 <hasResources name="Spare Parts"/>
 <hasResources name="Money"/>
 <hasCommitments xsi:type="rea:DecrementExchangeCommitment"
reservesResource="//@hasResources.1" name="Pay extra fees"
fulfillment="//@hasEvents.0" partOf="//@hasReciprocities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasCommitments xsi:type="rea:IncrementExchangeCommitment"
reservesResource="//@hasResources.1" name="Invest partial Payment money"
fulfillment="//@hasEvents.1" partOf="//@hasReciprocities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.2"/>
 <hasDualities xsi:type="rea:ExchangeDuality"
name="SpareToolsPossession" containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>
 <hasReciprocities xsi:type="rea:ExchangeReciprocity"
name="PartialPaymentsCommitments"
containsDecrementCommitment="//@hasCommitments.0"
containsIncrementCommitment="//@hasCommitments.1"/>

</rea:REAModel>

• Auto-servicing process
<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:InternalAgent" name="Service worker"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Customer"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Salesman"/>
 <hasEvents xsi:type="rea:DecrementConversionEvent" name="Consume parts
in service" consume="//@hasResources.0" partOf="//@hasDualities.0"
processedBy="//@hasAgents.0"/>
 <hasEvents xsi:type="rea:IncrementConversionEvent" name="Apply Service
to Vehicle" produce="//@hasResources.1" partOf="//@hasDualities.0"
processedBy="//@hasAgents.0"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Provide auto-
service" give="//@hasResources.1" partOf="//@hasDualities.1"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.0"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get service
fees" take="//@hasResources.2" partOf="//@hasDualities.1"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.2"/>
 <hasResources name="Spare Parts"/>
 <hasResources name="Auto Service"/>
 <hasResources name="Money"/>
 <hasDualities xsi:type="rea:ConversionDuality"
name="AutoServiceConversion" containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>

xviii

 <hasDualities xsi:type="rea:ExchangeDuality"
name="AutoServiceExchange" containsDecrementEvent="//@hasEvents.2"
containsIncrementEvent="//@hasEvents.3"/>
</rea:REAModel>

• Place renting process
<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:ExternalAgent" name="Bank"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Shop Manager"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Property Owner"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay Rent"
give="//@hasResources.0" partOf="//@hasDualities.0"
provide="//@hasAgents.0" receiveFrom="//@hasAgents.1"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get The
property" take="//@hasResources.1" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.0" provide="//@hasAgents.1"/>
 <hasResources name="Money"/>
 <hasResources name="ABS Wheels Building"/>
 <hasCommitments xsi:type="rea:DecrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Pay Monthly Rent"
fulfillment="//@hasEvents.0" partOf="//@hasReciprocities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasCommitments xsi:type="rea:IncrementExchangeCommitment"
reservesResource="//@hasResources.1" name="Get monthly ownership"
fulfillment="//@hasEvents.1" partOf="//@hasReciprocities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.0"/>
 <hasContracts hasDecrementCommitment="//@hasCommitments.0"
betweenParties="//@hasAgents.1 //@hasAgents.2" title="Rental Contract"
hasIncrementCommitment="//@hasCommitments.1"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="RentExchange"
containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>
 <hasReciprocities xsi:type="rea:ExchangeReciprocity" name="Monthly
Rent Commetments" containsDecrementCommitment="//@hasCommitments.0"
containsIncrementCommitment="//@hasCommitments.1"/>
</rea:REAModel>

• Maintenance process
<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:InternalAgent" name="ABS Wheels"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Services providers"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Salesman"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Bank"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for
services" give="//@hasResources.0" partOf="//@hasDualities.0"
provide="//@hasAgents.3" receiveFrom="//@hasAgents.2"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get services"
take="//@hasResources.1" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasResources name="Money"/>
 <hasResources name="Building Requirements"/>
 <hasCommitments xsi:type="rea:DecrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Pay monthly fees"

xix

fulfillment="//@hasEvents.0" partOf="//@hasReciprocities.0"
receiveFrom="//@hasAgents.2" provide="//@hasAgents.3"/>
 <hasCommitments xsi:type="rea:IncrementExchangeCommitment"
reservesResource="//@hasResources.1" name="Get Building Running needs"
fulfillment="//@hasEvents.1" partOf="//@hasReciprocities.0"
provide="//@hasAgents.0" receiveFrom="//@hasAgents.1"/>
 <hasDualities xsi:type="rea:ExchangeDuality"
containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>
 <hasReciprocities xsi:type="rea:ExchangeReciprocity"
containsDecrementCommitment="//@hasCommitments.0"
containsIncrementCommitment="//@hasCommitments.1"/>
</rea:REAModel>

• Advertising process
<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:InternalAgent" name="ABS Wheels"/>
 <hasAgents xsi:type="rea:ExternalAgent" name="Advertising Channel"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Shop manager"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay for
advertisements" give="//@hasResources.0" partOf="//@hasDualities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.2"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get advertised"
take="//@hasResources.1" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasResources name="Money"/>
 <hasResources name="•	Advertisement"/>
 <hasDualities xsi:type="rea:ExchangeDuality" name="Advertising
exchange" containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>
</rea:REAModel>

• Employment process
<?xml version="1.0" encoding="UTF-8"?>
<rea:REAModel xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:rea="http://rea_extended/1.0">
 <hasAgents xsi:type="rea:ExternalAgent" name="Employee"/>
 <hasAgents xsi:type="rea:InternalAgent" name="Shop Manager"/>
 <hasEvents xsi:type="rea:DecrementExchangeEvent" name="Pay salary"
give="//@hasResources.0" partOf="//@hasDualities.0"
provide="//@hasAgents.0" receiveFrom="//@hasAgents.1"/>
 <hasEvents xsi:type="rea:IncrementExchangeEvent" name="Get labor
service" take="//@hasResources.1" partOf="//@hasDualities.0"
receiveFrom="//@hasAgents.0" provide="//@hasAgents.1"/>
 <hasResources name="Money"/>
 <hasResources name="Labor Service"/>
 <hasCommitments xsi:type="rea:DecrementExchangeCommitment"
reservesResource="//@hasResources.0" name="Pay monthly salary"
fulfillment="//@hasEvents.0" partOf="//@hasReciprocities.0"
receiveFrom="//@hasAgents.1" provide="//@hasAgents.0"/>
 <hasCommitments xsi:type="rea:IncrementExchangeCommitment"
reservesResource="//@hasResources.1" name="Reserve labor service"
fulfillment="//@hasEvents.1" partOf="//@hasReciprocities.0"
provide="//@hasAgents.1" receiveFrom="//@hasAgents.0"/>

xx

 <hasContracts hasDecrementCommitment="//@hasCommitments.0"
betweenParties="//@hasAgents.1 //@hasAgents.0" title="Employment
contract" hasIncrementCommitment="//@hasCommitments.1"/>
 <hasDualities xsi:type="rea:ExchangeDuality"
containsDecrementEvent="//@hasEvents.0"
containsIncrementEvent="//@hasEvents.1"/>
 <hasReciprocities xsi:type="rea:ExchangeReciprocity"
containsDecrementCommitment="//@hasCommitments.0"
containsIncrementCommitment="//@hasCommitments.1"/>
</rea:REAModel>

Departmen of Computer and Systems Sciences

KTH

Forum 100

SE-164 40Kista

Phone: 08 – 16 20 00

www.kth.se

	1. Introduction
	1.1 Background
	1.2 Problem definition
	1.3 Research Question
	1.4 Disposition

	2. Extended Background
	2.1 On ontologies, modeling languages, and meta-models
	2.2 Business modeling ontologies
	2.3 The Resource Event Agent (REA) ontology
	2.4 Model Driven Architecture (MDA) and Model Driven Engineering (MDE)
	2.5 A REA-Based DSVL
	2.6 Eclipse’s Graphical Modeling Framework (GMF)
	2.7 Related work

	3. Methodology
	3.1 Choice of research method
	3.1.1 Problem identification and motivation
	3.1.2 Define the objectives for a solution
	3.1.3 Design and Development
	3.1.4 Demonstration
	3.1.5 Evaluation
	3.1.6 State of the art techniques and methods
	3.1.7 Ethical and social considerations

	3.2 Application of research method
	Problem identification and motivation
	3.2.2 Define the objectives for a solution
	3.2.3 Design and Development
	3.2.4 Demonstration
	3.2.5 Evaluation
	3.2.6 Ethical and social considerations

	4. Results and Analysis
	4.1 Problem identification and motivation
	4.2 Define the objectives for a solution
	4.3 . Design and Development
	4.3.1 Meta-Model development
	4.3.2 Visual notation development
	4.3.3 Visual notation implementation
	4.3.4 Editor generation

	4.4 Demonstration
	4.5 Evaluation
	4.5.1 The meta-model
	4.5.2 The visual notation
	4.5.3 The REA-DSVL Editor

	4.6 Results Validity and limitations

	5. Conclusion
	6. Discussion
	Bibliography
	Appendix A
	A.1 Literature Resources
	A.2 REA elements relationships matrix
	A.3 First basic meta-mode
	A.4 REA-DSVL elements relationship s matrix
	A.5 Visual implementation classes
	A.6 ABS Wheels business
	A.7 ABS Wheels’ REA Processes
	A.8 ABS Wheels’ REA models
	A.9 ABS Wheels’ REA data-models

