
React

#reactjs

Table of Contents

About 1

Chapter 1: Getting started with React 2

Remarks 2

Versions 2

Examples 3

Installation or Setup 3

Hello World Component 4

Hello World 5

What is ReactJS? 7

Hello World with Stateless Functions 7

For example: 8

Create React App 9

Installation 9

Configuration 9

Alternatives 9

Absolute Basics of Creating Reusable Components 10

Components and Props 10

Chapter 2: Communicate Between Components 12

Examples 12

Communication between Stateless Functional Components 12

Chapter 3: Communication Between Components 15

Remarks 15

Examples 15

Parent to Child Components 15

Child to Parent Components 16

Not-related Components 16

Chapter 4: Components 18

Remarks 18

Examples 18

Basic Component 18

Nesting Components 19

1. Nesting without using children 20

Pros 20

Cons 20

Good if 20

2. Nesting using children 20

Pros 21

Cons 21

Good if 21

3. Nesting using props 21

Pros 22

Cons 22

Good if 22

Creating Components 22

Basic Structure 22

Stateless Functional Components 23

Stateful Components 23

Higher Order Components 24

setState pitfalls 25

Props 27

Component states - Dynamic user-interface 28

Variations of Stateless Functional Components 29

Chapter 5: Forms and User Input 31

Examples 31

Controlled Components 31

Uncontrolled Components 31

Chapter 6: Higher Order Components 33

Introduction 33

Remarks 33

Examples 33

Simple Higher Order Component 33

Higher Order Component that checks for authentication 34

Chapter 7: How and why to use keys in React 36

Introduction 36

Remarks 36

Examples 36

Basic Example 36

Chapter 8: How to setup a basic webpack, react and babel environment 38

Remarks 38

Examples 39

How to build a pipeline for a customized "Hello world" with images. 39

Chapter 9: Installation 44

Examples 44

Simple setup 44

Setting up the folders 44

Setting up the packages 44

Setting up webpack 44

Testing the setup 45

Using webpack-dev-server 46

Setup 46

Modifying webpack.config.js 46

Chapter 10: Introduction to Server-Side Rendering 48

Examples 48

Rendering components 48

renderToString 48

renderToStaticMarkup 48

Chapter 11: JSX 49

Remarks 49

Examples 50

Props in JSX 50

JavaScript Expressions 50

String Literals 50

Props Default Value 50

Spread Attributes 51

Children in JSX 51

String Literals 51

JSX Children 51

JavaScript Expressions 52

Functions as Children 53

Ignored Values 53

Chapter 12: Keys in react 55

Introduction 55

Remarks 55

Examples 55

Using the id of an element 55

Using the array index 56

Chapter 13: Performance 57

Examples 57

The Basics - HTML DOM vs Virtual DOM 57

React's diff algorithm 58

Tips & Tricks 58

Performance measurement with ReactJS 59

Chapter 14: Props in React 60

Remarks 60

Examples 60

Introduction 60

Default props 61

PropTypes 61

Passing down props using spread operator 63

Props.children and component composition 63

Detecting the type of Children components 65

Chapter 15: React AJAX call 66

Examples 66

HTTP GET request 66

Ajax in React without a third party library - a.k.a with VanillaJS 67

HTTP GET request and looping through data 67

Chapter 16: React Boilerplate [React + Babel + Webpack] 69

Examples 69

Setting up the project 69

react-starter project 71

Chapter 17: React Component Lifecycle 74

Introduction 74

Examples 74

Component Creation 74

getDefaultProps() (ES5 only) 74

getInitialState() (ES5 only) 74

componentWillMount() (ES5 and ES6) 75

render() (ES5 and ES6) 75

componentDidMount() (ES5 and ES6) 75

ES6 Syntax 76

Replacing getDefaultProps() 76

Replacing getInitialState() 77

Component Update 77

componentWillReceiveProps(nextProps) 77

shouldComponentUpdate(nextProps, nextState) 77

componentWillUpdate(nextProps, nextState) 78

render() 78

componentDidUpdate(prevProps, prevState) 78

Component Removal 78

componentWillUnmount() 78

React Component Container 79

Lifecycle method call in different states 80

Chapter 18: React Forms 82

Examples 82

Controlled Components 82

Chapter 19: React Routing 84

Examples 84

Example Routes.js file, followed by use of Router Link in component 84

React Routing Async 85

Chapter 20: React Tools 86

Examples 86

Links 86

Chapter 21: React with Redux 87

Introduction 87

Remarks 87

Examples 87

Using Connect 87

Chapter 22: React, Webpack & Typescript installation 89

Remarks 89

Examples 89

webpack.config.js 89

The loader 89

Resolve TS extensions 89

tsconfig.json 90

include 90

compilerOptions.target 90

compilerOptions.jsx 90

compilerOptions.allowSyntheticDefaultImports 90

My First Component 91

Chapter 23: React.createClass vs extends React.Component 92

Syntax 92

Remarks 92

Examples 92

Create React Component 92

React.createClass (deprecated) 92

React.Component 92

Declare Default Props and PropTypes 93

React.createClass 93

React.Component 93

Set Initial State 94

React.createClass 94

React.Component 95

Mixins 95

React.createClass 95

React.Component 96

"this" Context 96

React.createClass 96

React.Component 97

Case 1: Bind inline: 97

Case 2: Bind in the class constructor 98

Case 3: Use ES6 anonymous function 98

ES6/React “this” keyword with ajax to get data from server 98

Chapter 24: Setting Up React Environment 100

Examples 100

Simple React Component 100

Install all dependencies 100

Configure webpack 100

Configure babel 101

HTML file to use react component 101

Transpile and bundle your component 101

Chapter 25: State in React 102

Examples 102

Basic State 102

setState() 102

Using setState() with an Object as updater 103

Using setState() with a Function as updater 103

Calling setState() with an Object and a callback function 104

Common Antipattern 104

State, Events And Managed Controls 106

Chapter 26: Stateless Functional Components 108

Remarks 108

Examples 108

Stateless Functional Component 108

Chapter 27: User interface solutions 112

Introduction 112

Examples 112

Basic Pane 112

Panel 112

Tab 113

PanelGroup 113

Clarification 114

Example view with `PanelGroup`s 115

Chapter 28: Using React with Flow 117

Introduction 117

Remarks 117

Examples 117

Using Flow to check prop types of stateless functional components 117

Using Flow to check prop types 117

Chapter 29: Using ReactJS in Flux way 118

Introduction 118

Remarks 118

Examples 118

Data Flow 118

Reverted 119

Chapter 30: Using ReactJS with jQuery 120

Examples 120

ReactJS with jQuery 120

Chapter 31: Using ReactJS with Typescript 122

Examples 122

ReactJS component written in Typescript 122

Stateless React Components in Typescript 123

Installation and Setup 123

Stateless and property-less Components 124

Credits 126

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: react

It is an unofficial and free React ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official React.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/react
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with React

Remarks

React is a declarative, component-based JavaScript library used for creating user interfaces.

To achieve MVC framework like functionalities in React, developers use it in conjunction with a
Flux flavour of choice, e.g. Redux.

Versions

Version Release Date

0.3.0 2013-05-29

0.4.0 2013-07-17

0.5.0 2013-10-16

0.8.0 2013-12-19

0.9.0 2014-02-20

0.10.0 2014-03-21

0.11.0 2014-07-17

0.12.0 2014-10-28

0.13.0 2015-03-10

0.14.0 2015-10-07

15.0.0 2016-04-07

15.1.0 2016-05-20

15.2.0 2016-07-01

15.2.1 2016-07-08

15.3.0 2016-07-29

15.3.1 2016-08-19

15.3.2 2016-09-19

15.4.0 2016-11-16

https://riptutorial.com/ 2

https://facebook.github.io/react/index.html
https://facebook.github.io/flux/
http://redux.js.org/
https://github.com/facebook/react/releases/tag/v0.3.0
https://github.com/facebook/react/releases/tag/v0.4.0
https://github.com/facebook/react/releases/tag/v0.5.0
https://github.com/facebook/react/releases/tag/v0.8.0
https://github.com/facebook/react/releases/tag/v0.9.0
https://github.com/facebook/react/releases/tag/v0.10.0
https://github.com/facebook/react/releases/tag/v0.11.0
https://github.com/facebook/react/releases/tag/v0.12.0
https://github.com/facebook/react/releases/tag/v0.13.0
https://github.com/facebook/react/releases/tag/v0.14.0
https://github.com/facebook/react/releases/tag/v15.0.0
https://github.com/facebook/react/releases/tag/v15.1.0
https://github.com/facebook/react/releases/tag/v15.2.0
https://github.com/facebook/react/releases/tag/v15.2.1
https://github.com/facebook/react/releases/tag/v15.3.0
https://github.com/facebook/react/releases/tag/v15.3.1
https://github.com/facebook/react/releases/tag/v15.3.2
https://github.com/facebook/react/releases/tag/v15.4.0

Version Release Date

15.4.1 2016-11-23

15.4.2 2017-01-06

15.5.0 2017-04-07

15.6.0 2017-06-13

Examples

Installation or Setup

ReactJS is a JavaScript library contained in a single file react-<version>.js that can be included in
any HTML page. People also commonly install the React DOM library react-dom-<version>.js
along with the main React file:

Basic Inclusion

<!DOCTYPE html>
<html>
 <head></head>
 <body>
 <script type="text/javascript" src="/path/to/react.js"></script>
 <script type="text/javascript" src="/path/to/react-dom.js"></script>
 <script type="text/javascript">
 // Use react JavaScript code here or in a separate file
 </script>
 </body>
</html>

To get the JavaScript files, go to the installation page of the official React documentation.

React also supports JSX syntax. JSX is an extension created by Facebook that adds XML syntax
to JavaScript. In order to use JSX you need to include the Babel library and change <script
type="text/javascript"> to <script type="text/babel"> in order to translate JSX to Javascript code.

<!DOCTYPE html>
<html>
 <head></head>
 <body>
 <script type="text/javascript" src="/path/to/react.js"></script>
 <script type="text/javascript" src="/path/to/react-dom.js"></script>
 <script src="https://npmcdn.com/babel-core@5.8.38/browser.min.js"></script>
 <script type="text/babel">
 // Use react JSX code here or in a separate file
 </script>
 </body>
</html>

Installing via npm

https://riptutorial.com/ 3

https://github.com/facebook/react/releases/tag/v15.4.1
https://github.com/facebook/react/releases/tag/v15.4.2
https://github.com/facebook/react/releases/tag/v15.5.0
https://github.com/facebook/react/releases/tag/v15.6.0
https://facebook.github.io/react/docs/installation.html
https://facebook.github.io/react/docs/jsx-in-depth.html

You can also install React using npm by doing the following:

npm install --save react react-dom

To use React in your JavaScript project, you can do the following:

var React = require('react');
var ReactDOM = require('react-dom');
ReactDOM.render(<App />, ...);

Installing via Yarn

Facebook released its own package manager named Yarn, which can also be used to install
React. After installing Yarn you just need to run this command:

yarn add react react-dom

You can then use React in your project in exactly the same way as if you had installed React via
npm.

Hello World Component

A React component can be defined as an ES6 class that extends the base React.Component class.
In its minimal form, a component must define a render method that specifies how the component
renders to the DOM. The render method returns React nodes, which can be defined using JSX
syntax as HTML-like tags. The following example shows how to define a minimal Component:

import React from 'react'

class HelloWorld extends React.Component {
 render() {
 return <h1>Hello, World!</h1>
 }
}

export default HelloWorld

A Component can also receive props. These are properties passed by its parent in order to specify
some values the component cannot know by itself; a property can also contain a function that can
be called by the component after certain events occur - for example, a button could receive a
function for its onClick property and call it whenever it is clicked. When writing a component, its
props can be accessed through the props object on the Component itself:

import React from 'react'

class Hello extends React.Component {
 render() {
 return <h1>Hello, {this.props.name}!</h1>
 }
}

export default Hello

https://riptutorial.com/ 4

https://www.npmjs.com/
https://yarnpkg.com/

The example above shows how the component can render an arbitrary string passed into the name
prop by its parent. Note that a component cannot modify the props it receives.

A component can be rendered within any other component, or directly into the DOM if it's the
topmost component, using ReactDOM.render and providing it with both the component and the DOM
Node where you want the React tree to be rendered:

import React from 'react'
import ReactDOM from 'react-dom'
import Hello from './Hello'

ReactDOM.render(<Hello name="Billy James" />, document.getElementById('main'))

By now you know how to make a basic component and accept props. Lets take this a step further
and introduce state.

For demo sake, let's make our Hello World app, display only the first name if a full name is given.

import React from 'react'

class Hello extends React.Component {

 constructor(props){

 //Since we are extending the default constructor,
 //handle default activities first.
 super(props);

 //Extract the first-name from the prop
 let firstName = this.props.name.split(" ")[0];

 //In the constructor, feel free to modify the
 //state property on the current context.
 this.state = {
 name: firstName
 }

 } //Look maa, no comma required in JSX based class defs!

 render() {
 return <h1>Hello, {this.state.name}!</h1>
 }
}

export default Hello

Note: Each component can have it's own state or accept it's parent's state as a prop.

Codepen Link to Example.

Hello World

Without JSX

https://riptutorial.com/ 5

https://codepen.io/sunnykgupta/pen/mRPxdo?editors=1010

Here's a basic example that uses React's main API to create a React element and the React DOM
API to render the React element in the browser.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>

 <!-- Include the React and ReactDOM libraries -->
 <script src="https://fb.me/react-15.2.1.js"></script>
 <script src="https://fb.me/react-dom-15.2.1.js"></script>

 </head>
 <body>
 <div id="example"></div>

 <script type="text/javascript">

 // create a React element rElement
 var rElement = React.createElement('h1', null, 'Hello, world!');

 // dElement is a DOM container
 var dElement = document.getElementById('example');

 // render the React element in the DOM container
 ReactDOM.render(rElement, dElement);

 </script>

 </body>
</html>

With JSX

Instead of creating a React element from strings one can use JSX (a Javascript extension created
by Facebook for adding XML syntax to JavaScript), which allows to write

var rElement = React.createElement('h1', null, 'Hello, world!');

as the equivalent (and easier to read for someone familiar with HTML)

var rElement = <h1>Hello, world!</h1>;

The code containing JSX needs to be enclosed in a <script type="text/babel"> tag. Everything
within this tag will be transformed to plain Javascript using the Babel library (that needs to be
included in addition to the React libraries).

So finally the above example becomes:

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8" />
 <title>Hello React!</title>

https://riptutorial.com/ 6

 <!-- Include the React and ReactDOM libraries -->
 <script src="https://fb.me/react-15.2.1.js"></script>
 <script src="https://fb.me/react-dom-15.2.1.js"></script>
 <!-- Include the Babel library -->
 <script src="https://npmcdn.com/babel-core@5.8.38/browser.min.js"></script>

 </head>
 <body>
 <div id="example"></div>

 <script type="text/babel">

 // create a React element rElement using JSX
 var rElement = <h1>Hello, world!</h1>;

 // dElement is a DOM container
 var dElement = document.getElementById('example');

 // render the React element in the DOM container
 ReactDOM.render(rElement, dElement);

 </script>

 </body>
</html>

What is ReactJS?

ReactJS is an open-source, component based front end library responsible only for the view layer
of the application. It is maintained by Facebook.

ReactJS uses virtual DOM based mechanism to fill in data (views) in HTML DOM. The virtual
DOM works fast owning to the fact that it only changes individual DOM elements instead of
reloading complete DOM every time

A React application is made up of multiple components, each responsible for
outputting a small, reusable piece of HTML. Components can be nested within other
components to allow complex applications to be built out of simple building blocks. A
component may also maintain internal state - for example, a TabList component may
store a variable corresponding to the currently open tab.

React allows us to write components using a domain-specific language called JSX. JSX allows us
to write our components using HTML, whilst mixing in JavaScript events. React will internally
convert this into a virtual DOM, and will ultimately output our HTML for us.

React "reacts" to state changes in your components quickly and automatically to rerender the
components in the HTML DOM by utilizing the virtual DOM. The virtual DOM is an in-memory
representation of an actual DOM. By doing most of the processing inside the virtual DOM rather
than directly in the browser's DOM, React can act quickly and only add, update, and remove
components which have changed since the last render cycle occurred.

Hello World with Stateless Functions

https://riptutorial.com/ 7

Stateless components are getting their philosophy from functional programming. Which implies
that: A function returns all time the same thing exactly on what is given to it.

For example:

const statelessSum = (a, b) => a + b;

let a = 0;
const statefulSum = () => a++;

As you can see from the above example that, statelessSum is always will return the same values
given a and b. However, statefulSum function will not return the same values given even no
parameters. This type of function's behaviour is also called as a side-effect. Since, the component
affects somethings beyond.

So, it is advised to use stateless components more often, since they are side-effect free and will
create the same behaviour always. That is what you want to be after in your apps because
fluctuating state is the worst case scenario for a maintainable program.

The most basic type of react component is one without state. React components that are pure
functions of their props and do not require any internal state management can be written as simple
JavaScript functions. These are said to be Stateless Functional Components because they are a
function only of props, without having any state to keep track of.

Here is a simple example to illustrate the concept of a Stateless Functional Component:

// In HTML
<div id="element"></div>

// In React
const MyComponent = props => {
 return <h1>Hello, {props.name}!</h1>;
};

ReactDOM.render(<MyComponent name="Arun" />, element);
// Will render <h1>Hello, Arun!</h1>

Note that all that this component does is render an h1 element containing the name prop. This
component doesn't keep track of any state. Here's an ES6 example as well:

import React from 'react'

const HelloWorld = props => (
 <h1>Hello, {props.name}!</h1>
)

HelloWorld.propTypes = {
 name: React.PropTypes.string.isRequired
}

export default HelloWorld

https://riptutorial.com/ 8

Since these components do not require a backing instance to manage the state, React has more
room for optimizations. The implementation is clean, but as of yet no such optimizations for
stateless components have been implemented.

Create React App

create-react-app is a React app boilerplate generator created by Facebook. It provides a
development environment configured for ease-of-use with minimal setup, including:

ES6 and JSX transpilation•
Dev server with hot module reloading•
Code linting•
CSS auto-prefixing•
Build script with JS, CSS and image bundling, and sourcemaps•
Jest testing framework•

Installation

First, install create-react-app globally with node package manager (npm).

npm install -g create-react-app

Then run the generator in your chosen directory.

create-react-app my-app

Navigate to the newly created directory and run the start script.

cd my-app/
npm start

Configuration

create-react-app is intentionally non-configurable by default. If non-default usage is required, for
example, to use a compiled CSS language such as Sass, then the eject command can be used.

npm run eject

This allows editing of all configuration files. N.B. this is an irreversible process.

Alternatives

Alternative React boilerplates include:

enclave•
nwb•

https://riptutorial.com/ 9

https://github.com/facebook/react/issues/5677#issuecomment-165125151
https://github.com/facebook/react/issues/5677#issuecomment-165125151
https://github.com/facebookincubator/create-react-app
https://github.com/eanplatter/enclave
https://github.com/insin/nwb

motion•
rackt-cli•
budō•
rwb•
quik•
sagui•
roc•

Build React App

To build your app for production ready, run following command

npm run build

Absolute Basics of Creating Reusable Components

Components and Props

As React concerns itself only with an application's view, the bulk of development in React will be
the creation of components. A component represents a portion of the view of your application.
"Props" are simply the attributes used on a JSX node (e.g. <SomeComponent someProp="some prop's
value" />), and are the primary way our application interacts with our components. In the snippet
above, inside of SomeComponent, we would have access to this.props, whose value would be the
object {someProp: "some prop's value"}.

It can be useful to think of React components as simple functions - they take input in the form of
"props", and produce output as markup. Many simple components take this a step further, making
themselves "Pure Functions", meaning they do not issue side effects, and are idempotent (given a
set of inputs, the component will always produce the same output). This goal can be formally
enforced by actually creating components as functions, rather than "classes". There are three
ways of creating a React component:

Functional ("Stateless") Components•

const FirstComponent = props => (
 <div>{props.content}</div>
);

React.createClass()•

const SecondComponent = React.createClass({
 render: function () {
 return (
 <div>{this.props.content}</div>
);
 }
});

https://riptutorial.com/ 10

https://github.com/motion/motion
https://github.com/mzabriskie/rackt-cli
https://github.com/mattdesl/budo
https://github.com/mattdesl/budo
https://github.com/petehunt/rwb
https://github.com/satya164/quik
https://github.com/saguijs/sagui
https://github.com/rocjs/roc

ES2015 Classes•

class ThirdComponent extends React.Component {
 render() {
 return (
 <div>{this.props.content}</div>
);
 }
}

These components are used in exactly the same way:

const ParentComponent = function (props) {
 const someText = "FooBar";
 return (
 <FirstComponent content={someText} />
 <SecondComponent content={someText} />
 <ThirdComponent content={someText} />
);
}

The above examples will all produce identical markup.

Functional components cannot have "state" within them. So if your component needs to have a
state, then go for class based components. Refer Creating Components for more information.

As a final note, react props are immutable once they have been passed in, meaning they cannot
be modified from within a component. If the parent of a component changes the value of a prop,
React handles replacing the old props with the new, the component will rerender itself using the
new values.

See Thinking In React and Reusable Components for deeper dives into the relationship of props
to components.

Read Getting started with React online: https://riptutorial.com/reactjs/topic/797/getting-started-
with-react

https://riptutorial.com/ 11

http://www.riptutorial.com/reactjs/example/4649/creating-components
https://facebook.github.io/react/docs/thinking-in-react.html
https://facebook.github.io/react/docs/reusable-components.html
https://riptutorial.com/reactjs/topic/797/getting-started-with-react
https://riptutorial.com/reactjs/topic/797/getting-started-with-react

Chapter 2: Communicate Between
Components

Examples

Communication between Stateless Functional Components

In this example we will make use of Redux and React Redux modules to handle our application state
and for auto re-render of our functional components., And ofcourse React and React Dom

You can checkout the completed demo here

In the example below we have three different components and one connected component

UserInputForm: This component display an input field And when the field value changes, it
calls inputChange method on props (which is provided by the parent component) and if the
data is provided as well, it displays that in the input field.

•

UserDashboard: This component displays a simple message and also nests UserInputForm
component, It also passes inputChange method to UserInputForm component, UserInputForm
component inturn makes use of this method to communicate with the parent component.

UserDashboardConnected: This component just wraps the UserDashboard component
using ReactRedux connect method., This makes it easier for us to manage the
component state and update the component when the state changes.

○

•

App: This component just renders the UserDashboardConnected component.•

const UserInputForm = (props) => {

 let handleSubmit = (e) => {
 e.preventDefault();
 }

 return(
 <form action="" onSubmit={handleSubmit}>
 <label htmlFor="name">Please enter your name</label>

 <input type="text" id="name" defaultValue={props.data.name || ''} onChange={
props.inputChange } />
 </form>
)

}

const UserDashboard = (props) => {

 let inputChangeHandler = (event) => {
 props.updateName(event.target.value);

https://riptutorial.com/ 12

https://jsbin.com/depavejudi/1/edit?js,output

 }

 return(
 <div>
 <h1>Hi { props.user.name || 'User' }</h1>
 <UserInputForm data={props.user} inputChange={inputChangeHandler} />
 </div>
)

}

const mapStateToProps = (state) => {
 return {
 user: state
 };
}
const mapDispatchToProps = (dispatch) => {
 return {
 updateName: (data) => dispatch(Action.updateName(data)),
 };
};

const { connect, Provider } = ReactRedux;
const UserDashboardConnected = connect(
 mapStateToProps,
 mapDispatchToProps
)(UserDashboard);

const App = (props) => {
 return(
 <div>
 <h1>Communication between Stateless Functional Components</h1>
 <UserDashboardConnected />
 </div>
)
}

const user = (state={name: 'John'}, action) => {
 switch (action.type) {
 case 'UPDATE_NAME':
 return Object.assign({}, state, {name: action.payload});

 default:
 return state;
 }
};

const { createStore } = Redux;
const store = createStore(user);
const Action = {
 updateName: (data) => {
 return { type : 'UPDATE_NAME', payload: data }
 },
}

ReactDOM.render(

https://riptutorial.com/ 13

 <Provider store={ store }>
 <App />
 </Provider>,
 document.getElementById('application')
);

JS Bin URL

Read Communicate Between Components online:
https://riptutorial.com/reactjs/topic/6137/communicate-between-components

https://riptutorial.com/ 14

https://jsbin.com/depavejudi/1/edit?js,output
https://riptutorial.com/reactjs/topic/6137/communicate-between-components

Chapter 3: Communication Between
Components

Remarks

There are a total of 3 cases of communication between React components:

Case 1: Parent to Child communication•
Case 2: Child to Parent communication•
Case 3: Not-related components (any component to any component) communication•

Examples

Parent to Child Components

That the easiest case actually, very natural in the React world and the chances are - you are
already using it.

You can pass props down to child components. In this example message is the prop that we
pass down to the child component, the name message is chosen arbitrarily, you can name it
anything you want.

import React from 'react';

class Parent extends React.Component {
 render() {
 const variable = 5;
 return (
 <div>
 <Child message="message for child" />
 <Child message={variable} />
 </div>
);
 }
}

class Child extends React.Component {
 render() {
 return <h1>{this.props.message}</h1>
 }
}

export default Parent;

Here, the <Parent /> component renders two <Child /> components, passing message for child
inside the first component and 5 inside the second one.

In summary, you have a component (parent) that renders another one (child) and passes to it
some props.

https://riptutorial.com/ 15

Child to Parent Components

Sending data back to the parent, to do this we simply pass a function as a prop from the parent
component to the child component, and the child component calls that function.

In this example, we will change the Parent state by passing a function to the Child component and
invoking that function inside the Child component.

import React from 'react';

class Parent extends React.Component {
 constructor(props) {
 super(props);
 this.state = { count: 0 };

 this.outputEvent = this.outputEvent.bind(this);
 }
 outputEvent(event) {
 // the event context comes from the Child
 this.setState({ count: this.state.count++ });
 }

 render() {
 const variable = 5;
 return (
 <div>
 Count: { this.state.count }
 <Child clickHandler={this.outputEvent} />
 </div>
);
 }
}

class Child extends React.Component {
 render() {
 return (
 <button onClick={this.props.clickHandler}>
 Add One More
 </button>
);
 }
}

export default Parent;

Note that the Parent's outputEvent method (that changes the Parent state) is invoked by the Child's
button onClick event.

Not-related Components

The only way if your components does not have a parent-child relationship (or are related but too
further such as a grand grand grand son) is to have some kind of a signal that one component
subscribes to, and the other writes into.

Those are the 2 basic operations of any event system: subscribe/listen to an event to be notify,

https://riptutorial.com/ 16

and send/trigger/publish/dispatch a event to notify the ones who wants.

There are at least 3 patterns to do that. You can find a comparison here.

Here is a brief summary:

Pattern 1: Event Emitter/Target/Dispatcher: the listeners need to reference the source to
subscribe.

to subscribe: otherObject.addEventListener('click', () => { alert('click!'); });○

to dispatch: this.dispatchEvent('click');○

•

Pattern 2: Publish/Subscribe: you don't need a specific reference to the source that triggers
the event, there is a global object accessible everywhere that handles all the events.

to subscribe: globalBroadcaster.subscribe('click', () => { alert('click!'); });○

to dispatch: globalBroadcaster.publish('click');○

•

Pattern 3: Signals: similar to Event Emitter/Target/Dispatcher but you don't use any random
strings here. Each object that could emit events needs to have a specific property with that
name. This way, you know exactly what events can an object emit.

to subscribe: otherObject.clicked.add(() => { alert('click'); });○

to dispatch: this.clicked.dispatch();○

•

Read Communication Between Components online:
https://riptutorial.com/reactjs/topic/6567/communication-between-components

https://riptutorial.com/ 17

https://github.com/millermedeiros/js-signals/wiki/Comparison-between-different-Observer-Pattern-implementations
https://riptutorial.com/reactjs/topic/6567/communication-between-components

Chapter 4: Components

Remarks

React.createClass was deprecated in v15.5 and expected to be removed in v16. There is a drop-in
replacement package for those that still require it. Examples using it should be updated.

Examples

Basic Component

Given the following HTML file:

index.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>React Tutorial</title>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.34/browser.min.js"></script>
 </head>
 <body>
 <div id="content"></div>
 <script type="text/babel" src="scripts/example.js"></script>
 </body>
</html>

You can create a basic component using the following code in a separate file:

scripts/example.js

import React, { Component } from 'react';
import ReactDOM from 'react-dom';

class FirstComponent extends Component {
 render() {
 return (
 <div className="firstComponent">
 Hello, world! I am a FirstComponent.
 </div>
);
 }
}
ReactDOM.render(
 <FirstComponent />, // Note that this is the same as the variable you stored above
 document.getElementById('content')
);

https://riptutorial.com/ 18

https://facebook.github.io/react/blog/#new-deprecation-warnings
https://github.com/facebook/react/issues/8854
https://www.npmjs.com/package/create-react-class
https://www.npmjs.com/package/create-react-class

You will get the following result (note what is inside of div#content):

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8" />
 <title>React Tutorial</title>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/15.2.1/react-dom.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-
core/5.8.34/browser.min.js"></script>
 </head>
 <body>
 <div id="content">
 <div className="firstComponent">
 Hello, world! I am a FirstComponent.
 </div>
 </div>
 <script type="text/babel" src="scripts/example.js"></script>
 </body>
</html>

Nesting Components

A lot of the power of ReactJS is its ability to allow nesting of components. Take the following two
components:

var React = require('react');
var createReactClass = require('create-react-class');

var CommentList = reactCreateClass({
 render: function() {
 return (
 <div className="commentList">
 Hello, world! I am a CommentList.
 </div>
);
 }
});

var CommentForm = reactCreateClass({
 render: function() {
 return (
 <div className="commentForm">
 Hello, world! I am a CommentForm.
 </div>
);
 }
});

You can nest and refer to those components in the definition of a different component:

var React = require('react');
var createReactClass = require('create-react-class');

var CommentBox = reactCreateClass({
 render: function() {

https://riptutorial.com/ 19

 return (
 <div className="commentBox">
 <h1>Comments</h1>
 <CommentList /> // Which was defined above and can be reused
 <CommentForm /> // Same here
 </div>
);
 }
});

Further nesting can be done in three ways, which all have their own places to be used.

1. Nesting without using children

(continued from above)

var CommentList = reactCreateClass({
 render: function() {
 return (
 <div className="commentList">
 <ListTitle/>
 Hello, world! I am a CommentList.
 </div>
);
 }
});

This is the style where A composes B and B composes C.

Pros

Easy and fast to separate UI elements•
Easy to inject props down to children based on the parent component's state•

Cons

Less visibility into the composition architecture•
Less reusability•

Good if

B and C are just presentational components•
B should be responsible for C's lifecycle•

2. Nesting using children

(continued from above)

https://riptutorial.com/ 20

var CommentBox = reactCreateClass({
 render: function() {
 return (
 <div className="commentBox">
 <h1>Comments</h1>
 <CommentList>
 <ListTitle/> // child
 </CommentList>
 <CommentForm />
 </div>
);
 }
});

This is the style where A composes B and A tells B to compose C. More power to parent
components.

Pros

Better components lifecycle management•
Better visibility into the composition architecture•
Better reusuability•

Cons

Injecting props can become a little expensive•
Less flexibility and power in child components•

Good if

B should accept to compose something different than C in the future or somewhere else•
A should control the lifecycle of C•

B would render C using this.props.children, and there isn't a structured way for B to know what
those children are for. So, B may enrich the child components by giving additional props down, but
if B needs to know exactly what they are, #3 might be a better option.

3. Nesting using props

(continued from above)

var CommentBox = reactCreateClass({
 render: function() {
 return (
 <div className="commentBox">
 <h1>Comments</h1>
 <CommentList title={ListTitle}/> //prop
 <CommentForm />
 </div>

https://riptutorial.com/ 21

);
 }
});

This is the style where A composes B and B provides an option for A to pass something to
compose for a specific purpose. More structured composition.

Pros

Composition as a feature•
Easy validation•
Better composaiblility•

Cons

Injecting props can become a little expensive•
Less flexibility and power in child components•

Good if

B has specific features defined to compose something•
B should only know how to render not what to render•

#3 is usually a must for making a public library of components but also a good practice in general
to make composable components and clearly define the composition features. #1 is the easiest
and fastest to make something that works, but #2 and #3 should provide certain benefits in various
use cases.

Creating Components

This is an extension of Basic Example:

Basic Structure

import React, { Component } from 'react';
import { render } from 'react-dom';

class FirstComponent extends Component {
 render() {
 return (
 <div>
 Hello, {this.props.name}! I am a FirstComponent.
 </div>
);
 }
}

render(

https://riptutorial.com/ 22

 <FirstComponent name={ 'User' } />,
 document.getElementById('content')
);

The above example is called a stateless component as it does not contain state (in the React
sense of the word).

In such a case, some people find it preferable to use Stateless Functional Components, which are
based on ES6 arrow functions.

Stateless Functional Components

In many applications there are smart components that hold state but render dumb components
that simply receive props and return HTML as JSX. Stateless functional components are much
more reusable and have a positive performance impact on your application.

They have 2 main characteristics:

When rendered they receive an object with all the props that were passed down1.
They must return the JSX to be rendered2.

// When using JSX inside a module you must import React
import React from 'react';
import PropTypes from 'prop-types';

const FirstComponent = props => (
 <div>
 Hello, {props.name}! I am a FirstComponent.
 </div>
);

//arrow components also may have props validation
FirstComponent.propTypes = {
 name: PropTypes.string.isRequired,
}

// To use FirstComponent in another file it must be exposed through an export call:
export default FirstComponent;

Stateful Components

In contrast to the 'stateless' components shown above, 'stateful' components have a state object
that can be updated with the setState method. The state must be initialized in the constructor
before it can be set:

import React, { Component } from 'react';

class SecondComponent extends Component {
 constructor(props) {
 super(props);

https://riptutorial.com/ 23

http://www.riptutorial.com/reactjs/example/5935/basic-state
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/Arrow_functions

 this.state = {
 toggle: true
 };

 // This is to bind context when passing onClick as a callback
 this.onClick = this.onClick.bind(this);
 }

 onClick() {
 this.setState((prevState, props) => ({
 toggle: !prevState.toggle
 }));
 }

 render() {
 return (
 <div onClick={this.onClick}>
 Hello, {this.props.name}! I am a SecondComponent.

 Toggle is: {this.state.toggle}
 </div>
);
 }
}

Extending a component with PureComponent instead of Component will automatically implement the
shouldComponentUpdate() lifecycle method with shallow prop and state comparison. This keeps your
application more performant by reducing the amount of un-necessary renders that occur. This
assumes your components are 'Pure' and always render the same output with the same state and
props input.

Higher Order Components

Higher order components (HOC) allow to share component functionality.

import React, { Component } from 'react';

const PrintHello = ComposedComponent => class extends Component {
 onClick() {
 console.log('hello');
 }

 /* The higher order component takes another component as a parameter
 and then renders it with additional props */
 render() {
 return <ComposedComponent {...this.props } onClick={this.onClick} />
 }
}

const FirstComponent = props => (
 <div onClick={ props.onClick }>
 Hello, {props.name}! I am a FirstComponent.
 </div>
);

https://riptutorial.com/ 24

https://facebook.github.io/react/docs/react-api.html#react.purecomponent

const ExtendedComponent = PrintHello(FirstComponent);

Higher order components are used when you want to share logic across several components
regardless of how different they render.

setState pitfalls

You should use caution when using setState in an asynchronous context. For example, you might
try to call setState in the callback of a get request:

class MyClass extends React.Component {
 constructor() {
 super();

 this.state = {
 user: {}
 };
 }

 componentDidMount() {
 this.fetchUser();
 }

 fetchUser() {
 $.get('/api/users/self')
 .then((user) => {
 this.setState({user: user});
 });
 }

 render() {
 return <h1>{this.state.user}</h1>;
 }
}

This could call problems - if the callback is called after the Component is dismounted, then
this.setState won't be a function. Whenever this is the case, you should be careful to ensure your
usage of setState is cancellable.

In this example, you might wish to cancel the XHR request when the component dismounts:

class MyClass extends React.Component {
 constructor() {
 super();

 this.state = {
 user: {},
 xhr: null
 };
 }

 componentWillUnmount() {
 let xhr = this.state.xhr;

 // Cancel the xhr request, so the callback is never called
 if (xhr && xhr.readyState != 4) {

https://riptutorial.com/ 25

 xhr.abort();
 }
 }

 componentDidMount() {
 this.fetchUser();
 }

 fetchUser() {
 let xhr = $.get('/api/users/self')
 .then((user) => {
 this.setState({user: user});
 });

 this.setState({xhr: xhr});
 }
}

The async method is saved as a state. In the componentWillUnmount you perform all your cleanup -
including canceling the XHR request.

You could also do something more complex. In this example, I'm creating a 'stateSetter' function
that accepts the this object as an argument and prevents this.setState when the function cancel
has been called:

function stateSetter(context) {
 var cancelled = false;
 return {
 cancel: function () {
 cancelled = true;
 },
 setState(newState) {
 if (!cancelled) {
 context.setState(newState);
 }
 }
 }
}

class Component extends React.Component {
 constructor(props) {
 super(props);
 this.setter = stateSetter(this);
 this.state = {
 user: 'loading'
 };
 }
 componentWillUnmount() {
 this.setter.cancel();
 }
 componentDidMount() {
 this.fetchUser();
 }
 fetchUser() {
 $.get('/api/users/self')
 .then((user) => {
 this.setter.setState({user: user});
 });
 }

https://riptutorial.com/ 26

 render() {
 return <h1>{this.state.user}</h1>
 }
}

This works because the cancelled variable is visible in the setState closure we created.

Props

Props are a way to pass information into a React component, they can have any type including
functions - sometimes referred to as callbacks.

In JSX props are passed with the attribute syntax

<MyComponent userID={123} />

Inside the definition for MyComponent userID will now be accessible from the props object

// The render function inside MyComponent
render() {
 return (
 The user's ID is {this.props.userID}
)
}

It's important to define all props, their types, and where applicable, their default value:

// defined at the bottom of MyComponent
MyComponent.propTypes = {
 someObject: React.PropTypes.object,
 userID: React.PropTypes.number.isRequired,
 title: React.PropTypes.string
};

MyComponent.defaultProps = {
 someObject: {},
 title: 'My Default Title'
}

In this example the prop someObject is optional, but the prop userID is required. If you fail to provide
userID to MyComponent, at runtime the React engine will show a console warning you that the
required prop was not provided. Beware though, this warning is only shown in the development
version of the React library, the production version will not log any warnings.

Using defaultProps allows you to simplify

const { title = 'My Default Title' } = this.props;
console.log(title);

to

https://riptutorial.com/ 27

console.log(this.props.title);

It's also a safeguard for use of object array and functions. If you do not provide a default prop for
an object, the following will throw an error if the prop is not passed:

if (this.props.someObject.someKey)

In example above, this.props.someObject is undefined and therefore the check of someKey will throw
an error and the code will break. With the use of defaultProps you can safely use the above check.

Component states - Dynamic user-interface

Suppose we want to have the following behaviour - We have a heading (say h3 element) and on
clicking it, we want it to become an input box so that we can modify heading name. React makes
this highly simple and intuitive using component states and if else statements. (Code explanation
below)

// I have used ReactBootstrap elements. But the code works with regular html elements also
var Button = ReactBootstrap.Button;
var Form = ReactBootstrap.Form;
var FormGroup = ReactBootstrap.FormGroup;
var FormControl = ReactBootstrap.FormControl;

var Comment = reactCreateClass({
 getInitialState: function() {
 return {show: false, newTitle: ''};
 },

 handleTitleSubmit: function() {
 //code to handle input box submit - for example, issue an ajax request to change name in
database
 },

 handleTitleChange: function(e) {
 //code to change the name in form input box. newTitle is initialized as empty string. We
need to update it with the string currently entered by user in the form
 this.setState({newTitle: e.target.value});
 },

 changeComponent: function() {
 // this toggles the show variable which is used for dynamic UI
 this.setState({show: !this.state.show)};
 },

 render: function() {

 var clickableTitle;

 if(this.state.show) {
 clickableTitle = <Form inline onSubmit={this.handleTitleSubmit}>
 <FormGroup controlId="formInlineTitle">
 <FormControl type="text" onChange={this.handleTitleChange}>
 </FormGroup>
 </Form>;
 } else {
 clickabletitle = <div>

https://riptutorial.com/ 28

 <Button bsStyle="link" onClick={this.changeComponent}>
 <h3> Default Text </h3>
 </Button>
 </div>;
 }

 return (
 <div className="comment">
 {clickableTitle}
 </div>
);
 }
});

ReactDOM.render(
 <Comment />, document.getElementById('content')
);

The main part of the code is the clickableTitle variable. Based on the state variable show, it can
be either be a Form element or a Button element. React allows nesting of components.

So we can add a {clickableTitle} element in the render function. It looks for the clickableTitle
variable. Based on the value 'this.state.show', it displays the corresponding element.

Variations of Stateless Functional Components

const languages = [
 'JavaScript',
 'Python',
 'Java',
 'Elm',
 'TypeScript',
 'C#',
 'F#'
]

// one liner
const Language = ({language}) => {language}

Language.propTypes = {
 message: React.PropTypes.string.isRequired
}

/**
* If there are more than one line.
* Please notice that round brackets are optional here,
* However it's better to use them for readability
*/
const LanguagesList = ({languages}) => {

 {languages.map(language => <Language language={language} />)}

}

LanguagesList.PropTypes = {

https://riptutorial.com/ 29

 languages: React.PropTypes.array.isRequired
}

/**
 * This syntax is used if there are more work beside just JSX presentation
 * For instance some data manipulations needs to be done.
 * Please notice that round brackets after return are required,
 * Otherwise return will return nothing (undefined)
 */
const LanguageSection = ({header, languages}) => {
 // do some work
 const formattedLanguages = languages.map(language => language.toUpperCase())
 return (
 <fieldset>
 <legend>{header}</legend>
 <LanguagesList languages={formattedLanguages} />
 </fieldset>
)
}

LanguageSection.PropTypes = {
 header: React.PropTypes.string.isRequired,
 languages: React.PropTypes.array.isRequired
}

ReactDOM.render(
 <LanguageSection
 header="Languages"
 languages={languages} />,
 document.getElementById('app')
)

Here you can find working example of it.

Read Components online: https://riptutorial.com/reactjs/topic/1185/components

https://riptutorial.com/ 30

http://codepen.io/vlad-bezden/pen/qrVjmW
https://riptutorial.com/reactjs/topic/1185/components

Chapter 5: Forms and User Input

Examples

Controlled Components

Controlled form components are defined with a value property. The value of controlled inputs is
managed by React, user inputs will not have any direct influence on the rendered input. Instead, a
change to the value property needs to reflect this change.

class Form extends React.Component {
 constructor(props) {
 super(props);

 this.onChange = this.onChange.bind(this);

 this.state = {
 name: ''
 };
 }

 onChange(e) {
 this.setState({
 name: e.target.value
 });
 }

 render() {
 return (
 <div>
 <label for='name-input'>Name: </label>
 <input
 id='name-input'
 onChange={this.onChange}
 value={this.state.name} />
 </div>
)
 }
}

The above example demonstrates how the value property defines the current value of the input
and the onChange event handler updates the component's state with the user's input.

Form inputs should be defined as controlled components where possible. This ensures that the
component state and the input value is in sync at all times, even if the value is changed by a
trigger other than a user input.

Uncontrolled Components

Uncontrolled components are inputs that do not have a value property. In opposite to controlled
components, it is the application's responsibility to keep the component state and the input value
in sync.

https://riptutorial.com/ 31

class Form extends React.Component {
 constructor(props) {
 super(props);

 this.onChange = this.onChange.bind(this);

 this.state = {
 name: 'John'
 };
 }

 onChange(e) {
 this.setState({
 name: e.target.value
 });
 }

 render() {
 return (
 <div>
 <label for='name-input'>Name: </label>
 <input
 id='name-input'
 onChange={this.onChange}
 defaultValue={this.state.name} />
 </div>
)
 }
}

Here, the component's state is updated via the onChange event handler, just as for controlled
components. However, instead of a value property, a defaultValue property is supplied. This
determines the initial value of the input during the first render. Any subsequent changes to the
component's state are not automatically reflected by the input value; If this is required, a controlled
component should be used instead.

Read Forms and User Input online: https://riptutorial.com/reactjs/topic/2884/forms-and-user-input

https://riptutorial.com/ 32

https://riptutorial.com/reactjs/topic/2884/forms-and-user-input

Chapter 6: Higher Order Components

Introduction

Higher Order Components ("HOC" in short) is a react application design pattern that is used to
enhance components with reusable code. They enable to add functionality and behaviors to
existing component classes.

A HOC is a pure javascript function that accepts a component as it's argument and returns a new
component with the extended functionality.

Remarks

HOCs are pretty often used in third party libraries. Such as the Redux connect function.

Examples

Simple Higher Order Component

Let's say we want to console.log each time the component mounts:

hocLogger.js

export default function hocLogger(Component) {
 return class extends React.Component {
 componentDidMount() {
 console.log('Hey, we are mounted!');
 }
 render() {
 return <Component {...this.props} />;
 }
 }
}

Use this HOC in your code:

MyLoggedComponent.js

import React from "react";
import {hocLogger} from "./hocLogger";

export class MyLoggedComponent extends React.Component {
 render() {
 return (
 <div>
 This component get's logged to console on each mount.
 </div>
);
 }

https://riptutorial.com/ 33

http://stackoverflow.com/questions/22268851/what-is-a-pure-function
https://github.com/reactjs/react-redux/blob/master/docs/api.m

}

// Now wrap MyLoggedComponent with the hocLogger function
export default hocLogger(MyLoggedComponent);

Higher Order Component that checks for authentication

Let's say we have a component that should only be displayed if the user is logged in.

So we create a HOC that checks for the authentication on each render():

AuthenticatedComponent.js

import React from "react";

export function requireAuthentication(Component) {
 return class AuthenticatedComponent extends React.Component {

 /**
 * Check if the user is authenticated, this.props.isAuthenticated
 * has to be set from your application logic (or use react-redux to retrieve it from
global state).
 */
 isAuthenticated() {
 return this.props.isAuthenticated;
 }

 /**
 * Render
 */
 render() {
 const loginErrorMessage = (
 <div>
 Please login in order to view this part of the
application.
 </div>
);

 return (
 <div>
 { this.isAuthenticated === true ? <Component {...this.props} /> :
loginErrorMessage }
 </div>
);
 }
 };
}

export default requireAuthentication;

We then just use this Higher Order Component in our components that should be hidden from
anonymous users:

MyPrivateComponent.js

import React from "react";

https://riptutorial.com/ 34

import {requireAuthentication} from "./AuthenticatedComponent";

export class MyPrivateComponent extends React.Component {
 /**
 * Render
 */
 render() {
 return (
 <div>
 My secret search, that is only viewable by authenticated users.
 </div>
);
 }
}

// Now wrap MyPrivateComponent with the requireAuthentication function
export default requireAuthentication(MyPrivateComponent);

This example is described in more detail here.

Read Higher Order Components online: https://riptutorial.com/reactjs/topic/9819/higher-order-
components

https://riptutorial.com/ 35

https://github.com/aspirantic/AuthenticatedComponent
https://riptutorial.com/reactjs/topic/9819/higher-order-components
https://riptutorial.com/reactjs/topic/9819/higher-order-components

Chapter 7: How and why to use keys in React

Introduction

Whenever you are rendering a list of React components, each component needs to have a key
attribute. The key can be any value, but it does need to be unique to that list.

When React has to render changes on a list of items, React just iterates over both lists of children
at the same time and generates a mutation whenever there's a difference. If there are no keys set
for the children, React scans each child. Otherwise, React compares the keys to know which were
added or removed from the list

Remarks

For more information, visit this link to read how to use keys:
https://facebook.github.io/react/docs/lists-and-keys.html

And visit this link to read why it is recommended to use keys:
https://facebook.github.io/react/docs/reconciliation.html#recursing-on-children

Examples

Basic Example

For a class-less React component:

function SomeComponent(props){

 const ITEMS = ['cat', 'dog', 'rat']
 function getItemsList(){
 return ITEMS.map(item => <li key={item}>{item}</i>);
 }

 return (

 {getItemsList()}

);
}

For this example, the above component resolves to:

 <li key='cat'>cat
 <li key='dog'>dog
 <li key='rat'>rat

https://riptutorial.com/ 36

https://facebook.github.io/react/docs/lists-and-keys.html
https://facebook.github.io/react/docs/reconciliation.html#recursing-on-children

Read How and why to use keys in React online: https://riptutorial.com/reactjs/topic/9665/how-and-
why-to-use-keys-in-react

https://riptutorial.com/ 37

https://riptutorial.com/reactjs/topic/9665/how-and-why-to-use-keys-in-react
https://riptutorial.com/reactjs/topic/9665/how-and-why-to-use-keys-in-react

Chapter 8: How to setup a basic webpack,
react and babel environment

Remarks

This build pipeline is not exactly what you would call "production ready" but it does give a solid
start for you to add on to it the things that you need in order to get the development experience
you're looking for. The approach that some people take (including myself at times) is to take a fully
built up pipeline of Yeoman.io or somewhere else and then strip off the things they don't want until
it suits there style. There's nothing wrong with this but perhaps with the example above you could
opt for the opposite approach and build up from bare bones.

Some things you might like to add are things like a testing framework and coverage statistics like
Karma with Mocha or Jasmine. Linting with ESLint. Hot module replacement in webpack-dev-
server so that you can get that Ctrl+S, F5 development experience. Also the current pipeline only
builds in dev mode so a production build task would be good.

Gotchas!

Notice in the context property of the webpack.config.js we have used the node path module to
define our path rather than just concatenating __dirname to the string /src this is because windows
hates forward slashses. So to make the solution more cross platform compatible use leverage
node to help us.

Explanation of webpack.config.js properties

context

This is the filepath for which webpack will use as it's root path for the purposes of resolving relative
file paths. So in index.jsx where we use require('./index.html') that dot actually resolves to the
src/ directory because we've defined it as such in this property.

entry

Where webpack looks first to begin bundling the solution. This is why you'll see that in the
index.jsx we are stitching together the solution with requires and imports.

output

This is where we define where webpack should be dropping the file files it has found to bundle.
We have also defined a name for the file in which our bundled javascript and styles will be
dropped.

devServer

These are settings specific to webpack-dev-server. The contentBase defines where the server

https://riptutorial.com/ 38

https://webpack.github.io/docs/troubleshooting.html#windows-paths
https://webpack.github.io/docs/troubleshooting.html#windows-paths

should make it's root, we've defined the dist/ folder as our base here. The port is the port that the
server will be hosted on. open is what is used to instruct webpack-dev-server to open your default
browser for you once it's spun up the server.

module > loaders

This defines a mapping for webpack to use so that is knows what to do when it finds different files.
The test property gives regex for webpack to use to determine if it should apply this module, in
most cases we've matches on file extensions. loader or loaders give the name of the loader
module that we'd like to use to load the file into webpack and let that loader take care of the
bundling of that file type. There is also a query property on the javascript, this just provides a query
string to the loader, so we could have probably used a query property on the html loader as well if
we wanted to. It's just a different way of doing things.

Examples

How to build a pipeline for a customized "Hello world" with images.

Step 1: Install Node.js

The build pipeline you will be building is based in Node.js so you must ensure in the first instance
that you have this installed. For instructions on how to install Node.js you can checkout the SO
docs for that here

Step 2: Initialise your project as an node module

Open your project folder on the command line and use the following command:

npm init

For the purposes of this example you can feel free to take the defaults or if you'd like more info on
what all this means you can check out this SO doc on setting up package configuration.

Step 3: Install necessary npm packages

Run the following command on the command line to install the packages necessary for this
example:

npm install --save react react-dom

Then for the dev dependencies run this command:

npm install --save-dev babel-core babel-preset-react babel-preset-es2015 webpack babel-loader
css-loader style-loader file-loader image-webpack-loader

Finally webpack and webpack-dev-server are things that are worth installing globally rather than
as a dependency of your project, if you'd prefer to add it as a dependency then that will work to, I
don't. Here is the command to run:

https://riptutorial.com/ 39

http://www.riptutorial.com/node-js/topic/1294/installing-node-js
http://www.riptutorial.com/node-js/example/2257/setting-up-a-package-configuration

npm install --global webpack webpack-dev-server

Step 3: Add a .babelrc file to the root of your project

This will setup babel to use the presets you've just installed. Your .babelrc file should look like this:

{
 "presets": ["react", "es2015"]
}

Step 4: Setup project directory structure

Set yourself up a directory stucture that looks like the below in the root of your directory:

|- node_modules
|- src/
 |- components/
 |- images/
 |- styles/
 |- index.html
 |- index.jsx
|- .babelrc
|- package.json

NOTE: The node_modules, .babelrc and package.json should all have already been there from
previous steps I just included them so you can see where they fit.

Step 5: Populate the project with the Hello World project files

This isn't really important to the process of building a pipeline so I'll just give you the code for
these and you can copy paste them in:

src/components/HelloWorldComponent.jsx

import React, { Component } from 'react';

class HelloWorldComponent extends Component {
 constructor(props) {
 super(props);
 this.state = {name: 'Student'};
 this.handleChange = this.handleChange.bind(this);
 }

 handleChange(e) {
 this.setState({name: e.target.value});
 }

 render() {
 return (
 <div>
 <div className="image-container">

 </div>
 <div className="form">
 <input type="text" onChange={this.handleChange} />

https://riptutorial.com/ 40

 <div>
 My name is {this.state.name} and I'm a clever cloggs because I built a React build
pipeline
 </div>
 </div>
 </div>
);
 }
}

export default HelloWorldComponent;

src/images/myImage.gif

Feel free to substitute this with any image you'd like it's simply there to prove the point that we can
bundle up images as well. If you provide your own image and you name it something different then
you'll have to update the HelloWorldComponent.jsx to reflect your changes. Equally if you choose an
image with a different file extension then you need to modify the test property of the image loader
in the webpack.config.js with appropriate regex to match your new file extension..

src/styles/styles.css

.form {
 margin: 25px;
 padding: 25px;
 border: 1px solid #ddd;
 background-color: #eaeaea;
 border-radius: 10px;
}

.form div {
 padding-top: 25px;
}

.image-container {
 display: flex;
 justify-content: center;
}

index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Learning to build a react pipeline</title>
</head>
<body>
 <div id="content"></div>
 <script src="app.js"></script>
</body>
</html>

index.jsx

https://riptutorial.com/ 41

import React from 'react';
import { render } from 'react-dom';
import HelloWorldComponent from './components/HelloWorldComponent.jsx';

require('./images/myImage.gif');
require('./styles/styles.css');
require('./index.html');

render(<HelloWorldComponent />, document.getElementById('content'));

Step 6: Create webpack configuration

Create a file called webpack.config.js in the root of your project and copy this code into it:

webpack.config.js

var path = require('path');

var config = {
 context: path.resolve(__dirname + '/src'),
 entry: './index.jsx',
 output: {
 filename: 'app.js',
 path: path.resolve(__dirname + '/dist'),
 },
 devServer: {
 contentBase: path.join(__dirname + '/dist'),
 port: 3000,
 open: true,
 },
 module: {
 loaders: [
 {
 test: /\.(js|jsx)$/,
 exclude: /node_modules/,
 loader: 'babel-loader'
 },
 {
 test: /\.css$/,
 loader: "style!css"
 },
 {
 test: /\.gif$/,
 loaders: [
 'file?name=[path][name].[ext]',
 'image-webpack',
]
 },
 { test: /\.(html)$/,
 loader: "file?name=[path][name].[ext]"
 }
],
 },
};

module.exports = config;

Step 7: Create npm tasks for your pipeline

https://riptutorial.com/ 42

To do this you will need to add two properties to the scripts key of the JSON defined in the
package.json file in the root of your project. Make your scripts key look like this:

 "scripts": {
 "start": "webpack-dev-server",
 "build": "webpack",
 "test": "echo \"Error: no test specified\" && exit 1"
 },

The test script will have already been there and you can choose whether to keep it or not, it's not
important to this example.

Step 8: Use the pipeline

From the command line, if you are in the project root directory you should now be able to run the
command:

npm run build

This will bundle up the little application you've built and place it in the dist/ directory that it will
create in the root of your project folder.

If you run the command:

npm start

Then the application you've built will be served up in your default web browser inside of a webpack
dev server instance.

Read How to setup a basic webpack, react and babel environment online:
https://riptutorial.com/reactjs/topic/6294/how-to-setup-a-basic-webpack--react-and-babel-
environment

https://riptutorial.com/ 43

https://riptutorial.com/reactjs/topic/6294/how-to-setup-a-basic-webpack--react-and-babel-environment
https://riptutorial.com/reactjs/topic/6294/how-to-setup-a-basic-webpack--react-and-babel-environment

Chapter 9: Installation

Examples

Simple setup

Setting up the folders

This example assumes code to be in src/ and the output to be put into out/. As such the folder
structure should look something like

example/
|-- src/
| |-- index.js
| `-- ...
|-- out/
`-- package.json

Setting up the packages

Assuming a setup npm environment, we first need to setup babel in order to transpile the React
code into es5 compliant code.

$npm install --save-dev babel-core babel-loader babel-preset-es2015 babel-preset-react

The above command will instruct npm to install the core babel libraries as well as the loader
module for use with webpack. We also install the es6 and react presets for babel to understand
JSX and es6 module code. (More information about the presets can be found here Babel presets)

$npm i -D webpack

This command will install webpack as a development dependency. (i is the shorthand for install
and -D the shorthand for --save-dev)

You might also want to install any additional webpack packages (such as additional loaders or the
webpack-dev-server extension)

Lastly we will need the actual react code

$npm i -D react react-dom

Setting up webpack

With the dependencies setup we will need a webpack.config.js file to tell webpack what to do

https://riptutorial.com/ 44

http://babeljs.io/docs/plugins/

simple webpack.config.js:

var path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'out'),
 filename: 'bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: 'babel-loader',
 query: {
 presets: ['es2015', 'react']
 }
 }
]
 }
};

This file tells webpack to start with the index.js file (assumed to be in src/) and convert it into a
single bundle.js file in the out directory.

The module block tells webpack to test all files encountered against the regular expression and if
they match, will invoke the specified loader. (babel-loader in this case) Furthermore, the exclude
regex tells webpack to ignore this special loader for all modules in the node_modules folder, this
helps speed up the transpilation process. Lastly, the query option tells webpack what parameters
to pass to babel and is used to pass along the presets we installed earlier.

Testing the setup

All that is left now is to create the src/index.js file and try packing the application

src/index.js:

'use strict'

import React from 'react'
import { render } from 'react-dom'

const App = () => {
 return <h1>Hello world!</h1>
}

render(
 <App />,
 document. getElementById('app')
)

This file would normally render a simple <h1>Hello world!</h1> Header into the html tag with the id

https://riptutorial.com/ 45

'app', but for now it should be enough to transpile the code once.

$./node_modules/.bin/webpack . Will execute the locally installed version of webpack (use $webpack if
you installed webpack globally with -g)

This should create the file out/bundle.js with the transpiled code inside and concludes the
example.

Using webpack-dev-server

Setup

After setting up a simple project to use webpack, babel and react issuing $npm i -g webpack-dev-
server will install the development http server for quicker development.

Modifying webpack.config.js

var path = require('path');

module.exports = {
 entry: './src/index.js',
 output: {
 path: path.resolve(__dirname, 'out'),
 publicPath: '/public/',
 filename: 'bundle.js'
 },
 module: {
 loaders: [
 {
 test: /\.js$/,
 exclude: /(node_modules)/,
 loader: 'babel',
 query: {
 presets: ['es2015', 'react']
 }
 }
]
 },
 devServer: {
 contentBase: path.resolve(__dirname, 'public'),
 hot: true
 }
};

The modifications are in

output.publicPath which sets up a path to have our bundle be served from (see Webpack
configuration files for more info)

•

devServer

contentBase the base path to serve static files from (for example index.html)○

•

https://riptutorial.com/ 46

https://github.com/webpack/docs/wiki/Configuration#outputpublicpath
https://github.com/webpack/docs/wiki/Configuration#outputpublicpath

hot sets the webpack-dev-server to hot reload when changes get made to files on disk○

And finally we just need a simple index.html to test our app in.

index.html:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>React Sandbox</title>
 </head>
 <body>

 <div id="app" />

 <script src="public/bundle.js"></script>
 </body>
</html>

With this setup running $webpack-dev-server should start a local http server on port 8080 and upon
connecting should render a page containing a <h1>Hello world!</h1>.

Read Installation online: https://riptutorial.com/reactjs/topic/6441/installation

https://riptutorial.com/ 47

https://riptutorial.com/reactjs/topic/6441/installation

Chapter 10: Introduction to Server-Side
Rendering

Examples

Rendering components

There are two options to render components on server: renderToString and renderToStaticMarkup.

renderToString

This will render React components to HTML on server. This function will also add data-react-
properties to HTML elements so React on client won't have to render elements again.

import { renderToString } from "react-dom/server";
renderToString(<App />);

renderToStaticMarkup

This will render React components to HTML, but without data-react- properties, it is not
recommended to use components that will be rendered on client, because components will
rerender.

import { renderToStaticMarkup } from "react-dom/server";
renderToStaticMarkup(<App />);

Read Introduction to Server-Side Rendering online:
https://riptutorial.com/reactjs/topic/7478/introduction-to-server-side-rendering

https://riptutorial.com/ 48

https://riptutorial.com/reactjs/topic/7478/introduction-to-server-side-rendering

Chapter 11: JSX

Remarks

JSX is a preprocessor step that adds XML syntax to JavaScript. You can definitely use React
without JSX but JSX makes React a lot more elegant.

Just like XML, JSX tags have a tag name, attributes, and children. If an attribute value is enclosed
in quotes, the value is a string. Otherwise, wrap the value in braces and the value is the enclosed
JavaScript expression.

Fundamentally, JSX just provides syntactic sugar for the React.createElement(component, props,
...children) function.

So, the following JSX code:

class HelloMessage extends React.Component {
 render() {
 return <div>Hello {this.props.name}</div>;
 }
}

ReactDOM.render(<HelloMessage name="Kalo" />, mountNode);

Compiles down to the following JavaScript code:

class HelloMessage extends React.Component {
 render() {
 return React.createElement(
 "div",
 null,
 "Hello ",
 this.props.name
);
 }
}

ReactDOM.render(React.createElement(HelloMessage, { name: "Kalo" }), mountNode);

In conclusion, note that the following line in JSX is neither a string nor HTML:

const element = <h1>Hello, world!</h1>;

It is called JSX, and it is a syntax extension to JavaScript. JSX may remind you of a template
language, but it comes with the full power of JavaScript.

The React team says in their docs that they recommend using it to describe what the UI should
look like.

https://riptutorial.com/ 49

Examples

Props in JSX

There are several different ways to specify props in JSX.

JavaScript Expressions

You can pass any JavaScript expression as a prop, by surrounding it with {}. For example, in
this JSX:

<MyComponent count={1 + 2 + 3 + 4} />

Inside the MyComponent, the value of props.count will be 10, because the expression 1 + 2 + 3 + 4
gets evaluated.

If statements and for loops are not expressions in JavaScript, so they can't be used in JSX
directly.

String Literals

Of course, you can just pass any string literal as a prop too. These two JSX expressions are
equivalent:

<MyComponent message="hello world" />

<MyComponent message={'hello world'} />

When you pass a string literal, its value is HTML-unescaped. So these two JSX expressions are
equivalent:

<MyComponent message="<3" />

<MyComponent message={'<3'} />

This behavior is usually not relevant. It's only mentioned here for completeness.

Props Default Value

If you pass no value for a prop, it defaults to true. These two JSX expressions are equivalent:

<MyTextBox autocomplete />

https://riptutorial.com/ 50

<MyTextBox autocomplete={true} />

However, the React team says in their docs using this approach is not recommended, because
it can be confused with the ES6 object shorthand {foo} which is short for {foo: foo} rather than
{foo: true}. They say this behavior is just there so that it matches the behavior of HTML.

Spread Attributes

If you already have props as an object, and you want to pass it in JSX, you can use ... as a
spread operator to pass the whole props object. These two components are equivalent:

function Case1() {
 return <Greeting firstName="Kaloyab" lastName="Kosev" />;
}

function Case2() {
 const person = {firstName: 'Kaloyan', lastName: 'Kosev'};
 return <Greeting {...person} />;
}

Children in JSX

In JSX expressions that contain both an opening tag and a closing tag, the content between those
tags is passed as a special prop: props.children. There are several different ways to pass children:

String Literals

You can put a string between the opening and closing tags and props.children will just be that
string. This is useful for many of the built-in HTML elements. For example:

<MyComponent>
 <h1>Hello world!</h1>
</MyComponent>

This is valid JSX, and props.children in MyComponent will simply be <h1>Hello world!</h1>.

Note that the HTML is unescaped, so you can generally write JSX just like you would write
HTML.

Bare in mind, that in this case JSX:

removes whitespace at the beginning and ending of a line;•
removes blank lines;•
new lines adjacent to tags are removed;•
new lines that occur in the middle of string literals are condensed into a single space.•

https://riptutorial.com/ 51

JSX Children

You can provide more JSX elements as the children. This is useful for displaying nested
components:

<MyContainer>
 <MyFirstComponent />
 <MySecondComponent />
</MyContainer>

You can mix together different types of children, so you can use string literals together with
JSX children. This is another way in which JSX is like HTML, so that this is both valid JSX and
valid HTML:

<div>
 <h2>Here is a list</h2>

 Item 1
 Item 2

</div>

Note that a React component can't return multiple React elements, but a single JSX
expression can have multiple children. So if you want a component to render multiple things
you can wrap them in a div like the example above.

JavaScript Expressions

You can pass any JavaScript expression as children, by enclosing it within {}. For example, these
expressions are equivalent:

<MyComponent>foo</MyComponent>

<MyComponent>{'foo'}</MyComponent>

This is often useful for rendering a list of JSX expressions of arbitrary length. For example, this
renders an HTML list:

const Item = ({ message }) => (
 { message }
);

const TodoList = () => {
 const todos = ['finish doc', 'submit review', 'wait stackoverflow review'];
 return (

 { todos.map(message => (<Item key={message} message={message} />)) }

https://riptutorial.com/ 52

);
};

Note that JavaScript expressions can be mixed with other types of children.

Functions as Children

Normally, JavaScript expressions inserted in JSX will evaluate to a string, a React element, or a
list of those things. However, props.children works just like any other prop in that it can pass any
sort of data, not just the sorts that React knows how to render. For example, if you have a custom
component, you could have it take a callback as props.children:

const ListOfTenThings = () => (
 <Repeat numTimes={10}>
 {(index) => <div key={index}>This is item {index} in the list</div>}
 </Repeat>
);

// Calls the children callback numTimes to produce a repeated component
const Repeat = ({ numTimes, children }) => {
 let items = [];
 for (let i = 0; i < numTimes; i++) {
 items.push(children(i));
 }
 return <div>{items}</div>;
};

Children passed to a custom component can be anything, as long as that component transforms
them into something React can understand before rendering. This usage is not common, but it
works if you want to stretch what JSX is capable of.

Ignored Values

Note that false, null, undefined, and true are valid children. But they simply don't render. These
JSX expressions will all render to the same thing:

<MyComponent />

<MyComponent></MyComponent>

<MyComponent>{false}</MyComponent>

<MyComponent>{null}</MyComponent>

<MyComponent>{true}</MyComponent>

This is extremely useful to conditionally render React elements. This JSX only renders a if
showHeader is true:

https://riptutorial.com/ 53

<div>
 {showHeader && <Header />}
 <Content />
</div>

One important caveat is that some "falsy" values, such as the 0 number, are still rendered by
React. For example, this code will not behave as you might expect because 0 will be printed when
props.messages is an empty array:

<div>
 {props.messages.length &&
 <MessageList messages={props.messages} />
 }
</div>

One approach to fix this is to make sure that the expression before the && is always boolean:

<div>
 {props.messages.length > 0 &&
 <MessageList messages={props.messages} />
 }
</div>

Lastly, bare in mind that if you want a value like false, true, null, or undefined to appear in the
output, you have to convert it to a string first:

<div>
 My JavaScript variable is {String(myVariable)}.
</div>

Read JSX online: https://riptutorial.com/reactjs/topic/8027/jsx

https://riptutorial.com/ 54

https://riptutorial.com/reactjs/topic/8027/jsx

Chapter 12: Keys in react

Introduction

Keys in react are used to identify a list of DOM elements from the same hierarchy internally.

So if you are iterating over an array to show a list of li elements, each of the li elements needs a
unique identifier specified by the key property. This usually can be the id of your database item or
the index of the array.

Remarks

Using the array index as a key is generally not recommended when the array is going to change
over time. From the React Docs:

As a last resort, you can pass item's index in the array as a key. This can work well if
the items are never reordered, but reorders will be slow.

A good example about this: https://medium.com/@robinpokorny/index-as-a-key-is-an-anti-pattern-
e0349aece318

Examples

Using the id of an element

Here we are having a list of todo items that is passed to the props of our component.

Each todo item has a text and id property. Imagine that the id property comes from a backend
datastore and is a unique numeric value:

todos = [
 {
 id: 1,
 text: 'value 1'
 },
 {
 id: 2,
 text: 'value 2'
 },
 {
 id: 3,
 text: 'value 3'
 },
 {
 id: 4,
 text: 'value 4'
 },
];

https://riptutorial.com/ 55

https://medium.com/@robinpokorny/index-as-a-key-is-an-anti-pattern-e0349aece318
https://medium.com/@robinpokorny/index-as-a-key-is-an-anti-pattern-e0349aece318

We set the key attribute of each iterated list element to todo-${todo.id} so that react can identify it
internally:

render() {
 const { todos } = this.props;
 return (

 { todos.map((todo) =>
 <li key={ `todo-${todo.id}` }>
 { todo.text }

 }

);
}

Using the array index

If you don't have unique database ids at hand, you could also use the numeric index of your array
like this:

render() {
 const { todos } = this.props;
 return (

 { todos.map((todo, index) =>
 <li key={ `todo-${index}` }>
 { todo.text }

 }

);
}

Read Keys in react online: https://riptutorial.com/reactjs/topic/9805/keys-in-react

https://riptutorial.com/ 56

https://riptutorial.com/reactjs/topic/9805/keys-in-react

Chapter 13: Performance

Examples

The Basics - HTML DOM vs Virtual DOM

HTML DOM is Expensive

Each web page is represented internally as a tree of objects. This representation is called
Document Object Model. Moreover, it is a language-neutral interface that allows programming
languages (such as JavaScript) to access the HTML elements.

In other words

The HTML DOM is a standard for how to get, change, add, or delete HTML elements.

However, those DOM operations are extremely expensive.

Virtual DOM is a Solution

So React's team came up with the idea to abstract the HTML DOM and create its own Virtual
DOM in order to compute the minimum number of operations we need to apply on the HTML DOM
to replicate current state of our application.

The Virtual DOM saves time from unnecessary DOM modifications.

How Exactly?

At each point of time, React has the application state represented as a Virtual DOM. Whenever
application state changes, these are the steps that React performs in order to optimise
performance

Generate a new Virtual DOM that represents the new state of our application1.

Compare the old Virtual DOM (which represents the current HTML DOM) vs the new Virtual
DOM

2.

Based on 2. find the minimum number of operations to transform the old Virtual DOM (which
represents the current HTML DOM) into the new Virtual DOM

3.

to learn more about that - read React's Diff Algorithm•

After those operations are found, they are mapped into their equivalent HTML DOM
operations

4.

remember, the Virtual DOM is only an abstraction of the HTML DOM and there is a •

https://riptutorial.com/ 57

isomorphic relation between them

Now the minimum number of operations that have been found and transferred to their
equivalent HTML DOM operations are now applied directly onto the application's HTML
DOM, which saves time from modifying the HTML DOM unnecessarily.

5.

Note: Operations applied on the Virtual DOM are cheap, because the Virtual DOM is a JavaScript
Object.

React's diff algorithm

Generating the minimum number of operations to transform one tree into another have a
complexity in the order of O(n^3) where n is the number of nodes in the tree. React relies on two
assumptions to solve this problem in a linear time - O(n)

Two components of the same class will generate similar trees and tw
components of different classes will generate different trees.

1.

It is possible to provide a unique key for elements that is stable across different
renders.

2.

In order to decide if two nodes are different, React differentiates 3 cases

Two nodes are different, if they have different types.1.

for example, <div>...</div> is different from ...•

Whenever two nodes have different keys2.

for example, <div key="1">...</div> is different from <div key="2">...</div>•

Moreover, what follows is crucial and extremely important to understand if you want to
optimise performance

If they [two nodes] are not of the same type, React is not going to even try at matching
what they render. It is just going to remove the first one from the DOM and insert the
second one.

Here's why

It is very unlikely that a element is going to generate a DOM that is going to look like
what a would generate. Instead of spending time trying to match those two structures,
React just re-builds the tree from scratch.

Tips & Tricks

When two nodes are not of the same type, React doesn't try to match them - it just removes the
first node from the DOM and inserts the second one. This is why the first tip says

If you see yourself alternating between two components classes with very similar output, you 1.

https://riptutorial.com/ 58

may want to make it the same class.

Use shouldComponentUpdate to prevent component from rerender, if you know it is not
going to change, for example

2.

shouldComponentUpdate: function(nextProps, nextState) {
 return nextProps.id !== this.props.id;
}

Performance measurement with ReactJS

You can't improve something you can't measure. To improve the performance of React
components, you should be able to measure it. ReactJS provides with addon tools to measure
performance. Import the react-addons-perf module to measure the performance

import Perf from 'react-addons-perf' // ES6
var Perf = require('react-addons-perf') // ES5 with npm
var Perf = React.addons.Perf; // ES5 with react-with-addons.js

You can use below methods from the imported Perf module:

Perf.printInclusive()•
Perf.printExclusive()•
Perf.printWasted()•
Perf.printOperations()•
Perf.printDOM()•

The most important one which you will need most of the time is Perf.printWasted() which gives you
the tabular representation of your individual component's wasted time

You can note the Wasted time column in the table and improve Component's performance using
Tips & Tricks section above

Refer the React Official Guide and excellent article by Benchling Engg. on React Performance

Read Performance online: https://riptutorial.com/reactjs/topic/6875/performance

https://riptutorial.com/ 59

https://i.stack.imgur.com/rCKLY.png
https://facebook.github.io/react/docs/perf.html
http://benchling.engineering/deep-dive-react-perf-debugging/
https://riptutorial.com/reactjs/topic/6875/performance

Chapter 14: Props in React

Remarks

NOTE: As of React 15.5 and up the PropTypes component lives in its own npm package, namely
'prop-types' and needs its own import statement when using PropTypes. See the official react
documentation for the breaking change: https://facebook.github.io/react/blog/2017/04/07/react-
v15.5.0.html

Examples

Introduction

props are used to pass data and methods from a parent component to a child component.

Interesting things about props

They are immutable.1.
They allow us to create reusable components.2.

Basic example

class Parent extends React.Component{
 doSomething(){
 console.log("Parent component");
 }
 render() {
 return <div>
 <Child
 text="This is the child number 1"
 title="Title 1"
 onClick={this.doSomething} />
 <Child
 text="This is the child number 2"
 title="Title 2"
 onClick={this.doSomething} />
 </div>
 }
}

class Child extends React.Component{
 render() {
 return <div>
 <h1>{this.props.title}</h1>
 <h2>{this.props.text}</h2>
 </div>
 }
}

https://riptutorial.com/ 60

https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html

As you can see in the example, thanks to props we can create reusable components.

Default props

defaultProps allows you to set default, or fallback, values for your component props. defaultProps
are useful when you call components from different views with fixed props, but in some views you
need to pass different value.

Syntax

ES5

var MyClass = React.createClass({
 getDefaultProps: function() {
 return {
 randomObject: {},
 ...
 };
 }
}

ES6

class MyClass extends React.Component {...}

MyClass.defaultProps = {
 randomObject: {},
 ...
}

ES7

class MyClass extends React.Component {
 static defaultProps = {
 randomObject: {},
 ...
 };
}

The result of getDefaultProps() or defaultProps will be cached and used to ensure that
this.props.randomObject will have a value if it was not specified by the parent component.

PropTypes

propTypes allows you to specify what props your component needs and the type they should be.
Your component will work without setting propTypes, but it is good practice to define these as it will
make your component more readable, act as documentation to other developers who are reading
your component, and during development, React will warn you if you you try to set a prop which is
a different type to the definition you have set for it.

https://riptutorial.com/ 61

Some primitive propTypes and commonly useable propTypes are -

 optionalArray: React.PropTypes.array,
 optionalBool: React.PropTypes.bool,
 optionalFunc: React.PropTypes.func,
 optionalNumber: React.PropTypes.number,
 optionalObject: React.PropTypes.object,
 optionalString: React.PropTypes.string,
 optionalSymbol: React.PropTypes.symbol

If you attach isRequired to any propType then that prop must be supplied while creating the instance
of that component. If you don't provide the required propTypes then component instance can not
be created.

Syntax

ES5

var MyClass = React.createClass({
 propTypes: {
 randomObject: React.PropTypes.object,
 callback: React.PropTypes.func.isRequired,
 ...
 }
}

ES6

class MyClass extends React.Component {...}

MyClass.propTypes = {
 randomObject: React.PropTypes.object,
 callback: React.PropTypes.func.isRequired,
 ...
};

ES7

class MyClass extends React.Component {
 static propTypes = {
 randomObject: React.PropTypes.object,
 callback: React.PropTypes.func.isRequired,
 ...
 };
}

More complex props validation

In the same way, PropTypes allows you to specify more complex validation

https://riptutorial.com/ 62

Validating an object

...
 randomObject: React.PropTypes.shape({
 id: React.PropTypes.number.isRequired,
 text: React.PropTypes.string,
 }).isRequired,
...

Validating on array of objects

...
 arrayOfObjects: React.PropTypes.arrayOf(React.PropTypes.shape({
 id: React.PropTypes.number.isRequired,
 text: React.PropTypes.string,
 })).isRequired,
...

Passing down props using spread operator

Instead of

var component = <Component foo={this.props.x} bar={this.props.y} />;

Where each property needs to be passed as a single prop value you could use the spread
operator ... supported for arrays in ES6 to pass down all your values. The component will now
look like this.

var component = <Component {...props} />;

Remember that the properties of the object that you pass in are copied onto the component's
props.

The order is important. Later attributes override previous ones.

 var props = { foo: 'default' };
 var component = <Component {...props} foo={'override'} />;
 console.log(component.props.foo); // 'override'

Another case is that you also can use spread operator to pass only parts of props to children
components, then you can use destructuring syntax from props again.

It's very useful when children components need lots of props but not want pass them one by one.

 const { foo, bar, other } = this.props // { foo: 'foo', bar: 'bar', other: 'other' };
 var component = <Component {...{foo, bar}} />;
 const { foo, bar } = component.props
 console.log(foo, bar); // 'foo bar'

Props.children and component composition

https://riptutorial.com/ 63

The "child" components of a component are available on a special prop, props.children. This prop
is very useful for "Compositing" components together, and can make JSX markup more intuitive or
reflective of the intended final structure of the DOM:

var SomeComponent = function () {
 return (
 <article className="textBox">
 <header>{this.props.heading}</header>
 <div className="paragraphs">
 {this.props.children}
 </div>
 </article>
);
}

Which allows us to include an arbitrary number of sub-elements when using the component later:

var ParentComponent = function () {
 return (
 <SomeComponent heading="Amazing Article Box" >
 <p className="first"> Lots of content </p>
 <p> Or not </p>
 </SomeComponent>
);
}

Props.children can also be manipulated by the component. Because props.children may or may
not be an array, React provides utility functions for them as React.Children. Consider in the
previous example if we had wanted to wrap each paragraph in its own <section> element:

var SomeComponent = function () {
 return (
 <article className="textBox">
 <header>{this.props.heading}</header>
 <div className="paragraphs">
 {React.Children.map(this.props.children, function (child) {
 return (
 <section className={child.props.className}>
 React.cloneElement(child)
 </section>
);
 })}
 </div>
 </article>
);
}

Note the use of React.cloneElement to remove the props from the child <p> tag - because props
are immutable, these values cannot be changed directly. Instead, a clone without these props
must be used.

Additionally, when adding elements in loops, be aware of how React reconciles children during a
rerender, and strongly consider including a globally unique key prop on child elements added in a
loop.

https://riptutorial.com/ 64

https://facebook.github.io/react/tips/children-props-type.html
https://facebook.github.io/react/tips/children-props-type.html
https://facebook.github.io/react/docs/top-level-api.html#react.children
https://facebook.github.io/react/docs/multiple-components.html
https://facebook.github.io/react/docs/multiple-components.html

Detecting the type of Children components

Sometimes it's really useful to know the type of child component when iterating through them. In
order to iterate through the children components you can use React Children.map util function:

React.Children.map(this.props.children, (child) => {
 if (child.type === MyComponentType) {
 ...
 }
});

The child object exposes the type property which you can compare to a specific component.

Read Props in React online: https://riptutorial.com/reactjs/topic/2749/props-in-react

https://riptutorial.com/ 65

https://riptutorial.com/reactjs/topic/2749/props-in-react

Chapter 15: React AJAX call

Examples

HTTP GET request

Sometimes a component needs to render some data from a remote endpoint (e.g. a REST API). A
standard practice is to make such calls in componentDidMount method.

Here is an example, using superagent as AJAX helper:

import React from 'react'
import request from 'superagent'

class App extends React.Component {
 constructor () {
 super()
 this.state = {}
 }
 componentDidMount () {
 request
 .get('/search')
 .query({ query: 'Manny' })
 .query({ range: '1..5' })
 .query({ order: 'desc' })
 .set('API-Key', 'foobar')
 .set('Accept', 'application/json')
 .end((err, resp) => {
 if (!err) {
 this.setState({someData: resp.text})
 }
 })
 },
 render() {
 return (
 <div>{this.state.someData || 'waiting for response...'}</div>
)
 }
}

React.render(<App />, document.getElementById('root'))

A request can be initiated by invoking the appropriate method on the request object, then calling
.end() to send the request. Setting header fields is simple, invoke .set() with a field name and
value.

The .query() method accepts objects, which when used with the GET method will form a query-
string. The following will produce the path /search?query=Manny&range=1..5&order=desc.

POST requests

request.post('/user')
 .set('Content-Type', 'application/json')

https://riptutorial.com/ 66

https://facebook.github.io/react/docs/react-component.html#componentdidmount
https://www.npmjs.com/package/superagent

 .send('{"name":"tj","pet":"tobi"}')
 .end(callback)

See Superagent docs for more details.

Ajax in React without a third party library - a.k.a with VanillaJS

The following would work in IE9+

import React from 'react'

class App extends React.Component {
 constructor () {
 super()
 this.state = {someData: null}
 }
 componentDidMount () {
 var request = new XMLHttpRequest();
 request.open('GET', '/my/url', true);

 request.onload = () => {
 if (request.status >= 200 && request.status < 400) {
 // Success!
 this.setState({someData: request.responseText})
 } else {
 // We reached our target server, but it returned an error
 // Possibly handle the error by changing your state.
 }
 };

 request.onerror = () => {
 // There was a connection error of some sort.
 // Possibly handle the error by changing your state.
 };

 request.send();
 },
 render() {
 return (
 <div>{this.state.someData || 'waiting for response...'}</div>
)
 }
}

React.render(<App />, document.getElementById('root'))

HTTP GET request and looping through data

The following example shows how a set of data obtained from a remote source can be rendered
into a component.

We make an AJAX request using fetch, which is build into most browsers. Use a fetch polyfill in
production to support older browsers. You can also use any other library for making requests (e.g.
axios, SuperAgent, or even plain Javascript).

We set the data we receive as component state, so we can access it inside the render method.

https://riptutorial.com/ 67

http://visionmedia.github.io/superagent/
https://developer.mozilla.org/en/docs/Web/API/Fetch_API
https://github.com/github/fetch
https://github.com/github/fetch
https://github.com/mzabriskie/axios
https://github.com/visionmedia/superagent

There, we loop through the data using map. Don't forget to always add a unique key attribute (or
prop) to the looped element, which is important for React's rendering performance.

import React from 'react';

class Users extends React.Component {
 constructor() {
 super();
 this.state = { users: [] };
 }

 componentDidMount() {
 fetch('/api/users')
 .then(response => response.json())
 .then(json => this.setState({ users: json.data }));
 }

 render() {
 return (
 <div>
 <h1>Users</h1>
 {
 this.state.users.length == 0
 ? 'Loading users...'
 : this.state.users.map(user => (
 <figure key={user.id}>

 <figcaption>
 {user.name}
 </figcaption>
 </figure>
))
 }
 </div>
);
 }
}

ReactDOM.render(<Users />, document.getElementById('root'));

Working example on JSBin.

Read React AJAX call online: https://riptutorial.com/reactjs/topic/6432/react-ajax-call

https://riptutorial.com/ 68

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://facebook.github.io/react/docs/lists-and-keys.html#keys
https://facebook.github.io/react/docs/lists-and-keys.html#keys
http://jsbin.com/varigiw/edit?js,output
https://riptutorial.com/reactjs/topic/6432/react-ajax-call

Chapter 16: React Boilerplate [React + Babel
+ Webpack]

Examples

Setting up the project

You need Node Package Manager to install the project dependencies. Download node for your
operating system from Nodejs.org. Node Package Manager comes with node.

You can also use Node Version Manager to better manage your node and npm versions. It is
great for testing your project on different node versions. However, it is not recommended for
production environment.

Once you have installed node on your system, go ahead and install some essential packages to
blast off your first React project using Babel and Webpack.

Before we actually start hitting commands in the terminal. Take a look at what Babel and Webpack
are used for.

You can start your project by running npm init in your terminal. Follow the initial setup. After that,
run following commands in your terminal-

Dependencies:

npm install react react-dom --save

Dev Dependecies:

npm install babel-core babel-loader babel-preset-es2015 babel-preset-react babel-preset-stage-0
webpack webpack-dev-server react-hot-loader --save-dev

Optional Dev Dependencies:

npm install eslint eslint-plugin-react babel-eslint --save-dev

You may refer to this sample package.json

Create .babelrc in your project root with following contents:

{
 "presets": ["es2015", "stage-0", "react"]
}

Optionally create .eslintrc in your project root with following contents:

{
 "ecmaFeatures": {
 "jsx": true,

https://riptutorial.com/ 69

https://nodejs.org/en/download/
https://github.com/creationix/nvm
https://babeljs.io/
https://webpack.github.io/
https://gist.github.com/KarandikarMihir/9ec0ee3ab189c98b6629a52533b54c70

 "modules": true
 },
 "env": {
 "browser": true,
 "node": true
 },
 "parser": "babel-eslint",
 "rules": {
 "quotes": [2, "single"],
 "strict": [2, "never"],
 },
 "plugins": [
 "react"
]
}

Create a .gitignore file to prevent uploading generated files to your git repo.

node_modules
npm-debug.log
.DS_Store
dist

Create webpack.config.js file with following minimum contents.

var path = require('path');
var webpack = require('webpack');

module.exports = {
 devtool: 'eval',
 entry: [
 'webpack-dev-server/client?http://localhost:3000',
 'webpack/hot/only-dev-server',
 './src/index'
],
 output: {
 path: path.join(__dirname, 'dist'),
 filename: 'bundle.js',
 publicPath: '/static/'
 },
 plugins: [
 new webpack.HotModuleReplacementPlugin()
],
 module: {
 loaders: [{
 test: /\.js$/,
 loaders: ['react-hot', 'babel'],
 include: path.join(__dirname, 'src')
 }]
 }
};

And finally, create a sever.js file to be able to run npm start, with following contents:

var webpack = require('webpack');
var WebpackDevServer = require('webpack-dev-server');
var config = require('./webpack.config');

https://riptutorial.com/ 70

new WebpackDevServer(webpack(config), {
 publicPath: config.output.publicPath,
 hot: true,
 historyApiFallback: true
}).listen(3000, 'localhost', function (err, result) {
 if (err) {
 return console.log(err);
 }

 console.log('Serving your awesome project at http://localhost:3000/');
});

Create src/app.js file to see your React project do something.

import React, { Component } from 'react';

export default class App extends Component {
 render() {
 return (
 <h1>Hello, world.</h1>
);
 }
}

Run node server.js or npm start in the terminal, if you have defined what start stands for in your
package.json

react-starter project

About this Project

This is simple boilerplate project. This post will guide you to set up the environment for ReactJs +
Webpack + Bable.

Lets get Started

we will need node package manager for fire up express server and manage dependencies
throughout the project. if you are new to node package manager, you can check here. Note :
Installing node package manager is require here.

Create a folder with suitable name and navigate into it from terminal or by GUI.Then go to terminal
and type npm init this will create a package.json file, Nothing scary , it will ask you few question
like name of your project ,version, description, entry point, git repository, author, license etc. Here
entry point is important because node will initially look for it when you run the project. At the end it
will ask you to verify the information you provide. You can type yes or modify it. Well that's it , our
package.json file is ready.

Express server setup run npm install express@4 --save. This is all the dependencies we needed
for this project.Here save flag is important, without it package.js file will not be updated. Main task
of package.json is to store list of dependencies. It will add express version 4. Your package.json
will look like "dependencies": { "express": "^4.13.4", },

https://riptutorial.com/ 71

https://docs.npmjs.com/getting-started/what-is-npm

After complete download you can see there is node_modules folder and sub folder of our
dependencies. Now on the root of project create new file server.js file. Now we are setting express
server. I am going to past all the code and explain it later.

var express = require('express');
// Create our app
var app = express();

app.use(express.static('public'));

app.listen(3000, function () {
 console.log('Express server is using port:3000');
});

var express = require('express'); this will gave you the access of entire express api.

var app = express(); will call express library as function. app.use(); let the add the functionality to
your express application. app.use(express.static('public')); will specify the folder name that will be
expose in our web server. app.listen(port, function(){}) will here our port will be 3000 and function
we are calling will verify that out web server is running properly. That's it express server is set up.

Now go to our project and create a new folder public and create index.html file. index.html is the
default file for you application and Express server will look for this file. The index.html is simple
html file which looks like

<!DOCTYPE html>
<html>

<head>
 <meta charset="UTF-8"/>
</head>

<body>
 <h1>hello World</h1>
</body>

</html>

And go to the project path through the terminal and type node server.js. Then you will see *
console.log('Express server is using port:3000');*.

Go to the browser and type http://localhost:3000 in nav bar you will see hello World.

Now go inside the public folder and create a new file app.jsx. JSX is a preprocessor step that adds
XML syntax to your JavaScript.You can definitely use React without JSX but JSX makes React a
lot more elegant. Here is the sample code for app.jsx

ReactDOM.render(
 <h1>Hello World!!!</h1>,
 document.getElementById('app')
);

Now go to index.html and modify the code , it should looks like this

https://riptutorial.com/ 72

http://localhost:3000

<!DOCTYPE html>
<html>

<head>
 <meta charset="UTF-8"/>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/babel-core/5.8.23
/browser.min.js"></script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.7/react.js">
</script>
 <script src="https://cdnjs.cloudflare.com/ajax/libs/react/0.14.7/react-dom.js"> </script>
</head>

<body>
 <div id="app"></div>

 <script type="text/babel" src="app.jsx"></script>
</body>

</html>

With this in place you are all done, I hope you find it simple.

Read React Boilerplate [React + Babel + Webpack] online:
https://riptutorial.com/reactjs/topic/5969/react-boilerplate--react-plus-babel-plus-webpack-

https://riptutorial.com/ 73

https://riptutorial.com/reactjs/topic/5969/react-boilerplate--react-plus-babel-plus-webpack-

Chapter 17: React Component Lifecycle

Introduction

Lifecycle methods are to be used to run code and interact with your component at different points
in the components life. These methods are based around a component Mounting, Updating, and
Unmounting.

Examples

Component Creation

When a React component is created, a number of functions are called:

If you are using React.createClass (ES5), 5 user defined functions are called•
If you are using class Component extends React.Component (ES6), 3 user defined functions are
called

•

getDefaultProps() (ES5 only)

This is the first method called.

Prop values returned by this function will be used as defaults if they are not defined when the
component is instantiated.

In the following example, this.props.name will be defaulted to Bob if not specified otherwise:

getDefaultProps() {
 return {
 initialCount: 0,
 name: 'Bob'
 };
}

getInitialState() (ES5 only)

This is the second method called.

The return value of getInitialState() defines the initial state of the React component. The React
framework will call this function and assign the return value to this.state.

In the following example, this.state.count will be intialized with the value of
this.props.initialCount:

https://riptutorial.com/ 74

getInitialState() {
 return {
 count : this.props.initialCount
 };
}

componentWillMount() (ES5 and ES6)

This is the third method called.

This function can be used to make final changes to the component before it will be added to the
DOM.

componentWillMount() {
 ...
}

render() (ES5 and ES6)

This is the fourth method called.

The render() function should be a pure function of the component's state and props. It returns a
single element which represents the component during the rendering process and should either be
a representation of a native DOM component (e.g. <p />) or a composite component. If nothing
should be rendered, it can return null or undefined.

This function will be recalled after any change to the component's props or state.

render() {
 return (
 <div>
 Hello, {this.props.name}!
 </div>
);
}

componentDidMount() (ES5 and ES6)

This is the fifth method called.

The component has been mounted and you are now able to access the component's DOM nodes,
e.g. via refs.

This method should be used for:

Preparing timers•
Fetching data•

https://riptutorial.com/ 75

Adding event listeners•
Manipulating DOM elements•

componentDidMount() {
 ...
}

ES6 Syntax

If the component is defined using ES6 class syntax, the functions getDefaultProps() and
getInitialState() cannot be used.

Instead, we declare our defaultProps as a static property on the class, and declare the state shape
and initial state in the constructor of our class. These are both set on the instance of the class at
construction time, before any other React lifecycle function is called.

The following example demonstrates this alternative approach:

class MyReactClass extends React.Component {
 constructor(props){
 super(props);

 this.state = {
 count: this.props.initialCount
 };
 }

 upCount() {
 this.setState((prevState) => ({
 count: prevState.count + 1
 }));
 }

 render() {
 return (
 <div>
 Hello, {this.props.name}!

 You clicked the button {this.state.count} times.

 <button onClick={this.upCount}>Click here!</button>
 </div>
);
 }
}

MyReactClass.defaultProps = {
 name: 'Bob',
 initialCount: 0
};

Replacing getDefaultProps()

Default values for the component props are specified by setting the defaultProps property of the
class:

https://riptutorial.com/ 76

MyReactClass.defaultProps = {
 name: 'Bob',
 initialCount: 0
};

Replacing getInitialState()

The idiomatic way to set up the initial state of the component is to set this.state in the constructor:

constructor(props){
 super(props);

 this.state = {
 count: this.props.initialCount
 };
}

Component Update

componentWillReceiveProps(nextProps)

This is the first function called on properties changes.

When component's properties change, React will call this function with the new properties.
You can access to the old props with this.props and to the new props with nextProps.

With these variables, you can do some comparison operations between old and new props, or call
function because a property change, etc.

componentWillReceiveProps(nextProps){
 if (nextProps.initialCount && nextProps.initialCount > this.state.count){
 this.setState({
 count : nextProps.initialCount
 });
 }
}

shouldComponentUpdate(nextProps, nextState)

This is the second function called on properties changes and the first on state changes.

By default, if another component / your component change a property / a state of your component,
React will render a new version of your component. In this case, this function always return true.

You can override this function and choose more precisely if your component must update or
not.

This function is mostly used for optimization.

In case of the function returns false, the update pipeline stops immediately.

https://riptutorial.com/ 77

componentShouldUpdate(nextProps, nextState){
 return this.props.name !== nextProps.name ||
 this.state.count !== nextState.count;
}

componentWillUpdate(nextProps, nextState)

This function works like componentWillMount(). Changes aren't in DOM, so you can do some
changes just before the update will perform.

/!\ : you cannot use this.setState().

componentWillUpdate(nextProps, nextState){}

render()

There's some changes, so re-render the component.

componentDidUpdate(prevProps, prevState)

Same stuff as componentDidMount() : DOM is refreshed, so you can do some work on the DOM
here.

componentDidUpdate(prevProps, prevState){}

Component Removal

componentWillUnmount()

This method is called before a component is unmounted from the DOM.

It is a good place to perform cleaning operations like:

Removing event listeners.•
Clearing timers.•
Stopping sockets.•
Cleaning up redux states.•

componentWillUnmount(){
 ...
}

An example of removing attached event listener in componentWillUnMount

import React, { Component } from 'react';

export default class SideMenu extends Component {

 constructor(props) {

https://riptutorial.com/ 78

 super(props);
 this.state = {
 ...
 };
 this.openMenu = this.openMenu.bind(this);
 this.closeMenu = this.closeMenu.bind(this);
 }

 componentDidMount() {
 document.addEventListener("click", this.closeMenu);
 }

 componentWillUnmount() {
 document.removeEventListener("click", this.closeMenu);
 }

 openMenu() {
 ...
 }

 closeMenu() {
 ...
 }

 render() {
 return (
 <div>
 <a
 href = "javascript:void(0)"
 className = "closebtn"
 onClick = {this.closeMenu}
 >
 ×

 <div>
 Some other structure
 </div>
 </div>
);
 }
}

React Component Container

When building a React application, it is often desirable to divide components based on their
primary responsibility, into Presentational and Container components.
Presentational components are concerned only with displaying data - they can be regarded as,
and are often implemented as, functions that convert a model to a view. Typically they do not
maintain any internal state. Container components are concerned with managing data. This may
be done internally through their own state, or by acting as intermediaries with a state-management
library such as Redux. The container component will not directly display data, rather it will pass the
data to a presentational component.

// Container component
import React, { Component } from 'react';
import Api from 'path/to/api';

https://riptutorial.com/ 79

class CommentsListContainer extends Component {
 constructor() {
 super();
 // Set initial state
 this.state = { comments: [] }
 }

 componentDidMount() {
 // Make API call and update state with returned comments
 Api.getComments().then(comments => this.setState({ comments }));
 }

 render() {
 // Pass our state comments to the presentational component
 return (
 <CommentsList comments={this.state.comments} />;
);
 }
}

// Presentational Component
const CommentsList = ({ comments }) => (
 <div>
 {comments.map(comment => (
 <div>{comment}</div>
)}
 </div>
);

CommentsList.propTypes = {
 comments: React.PropTypes.arrayOf(React.PropTypes.string)
}

Lifecycle method call in different states

This example serves as a complement to other examples which talk about how to use the lifecycle
methods and when the method will be called.

This example summarize Which methods (componentWillMount, componentWillReceiveProps,
etc) will be called and in which sequence will be different for a component in different states:

When a component is initialized:

getDefaultProps1.
getInitialState2.
componentWillMount3.
render4.
componentDidMount5.

When a component has state changed:

shouldComponentUpdate1.
componentWillUpdate2.
render3.
componentDidUpdate4.

https://riptutorial.com/ 80

When a component has props changed:

componentWillReceiveProps1.
shouldComponentUpdate2.
componentWillUpdate3.
render4.
componentDidUpdate5.

When a component is unmounting:

componentWillUnmount1.

Read React Component Lifecycle online: https://riptutorial.com/reactjs/topic/2750/react-
component-lifecycle

https://riptutorial.com/ 81

https://riptutorial.com/reactjs/topic/2750/react-component-lifecycle
https://riptutorial.com/reactjs/topic/2750/react-component-lifecycle

Chapter 18: React Forms

Examples

Controlled Components

A controlled component is bound to a value and its changes get handled in code using event
based callbacks.

class CustomForm extends React.Component {
constructor() {
 super();
 this.state = {
 person: {
 firstName: '',
 lastName: ''
 }
 }
}

handleChange(event) {
 let person = this.state.person;
 person[event.target.name] = event.target.value;
 this.setState({person});
}

render() {
 return (
 <form>
 <input
 type="text"
 name="firstName"
 value={this.state.firstName}
 onChange={this.handleChange.bind(this)} />

 <input
 type="text"
 name="lastName"
 value={this.state.lastName}
 onChange={this.handleChange.bind(this)} />
 </form>
)
}

}

In this example we initialize state with an empty person object. We then bind the values of the 2
inputs to the individual keys of the person object. Then as the user types, we capture each value
in the handleChange function. Since the values of the components are bound to state we can
rerender as the user types by calling setState().

NOTE: Not calling setState() when dealing with controlled components, will cause the user to
type, but not see the input because React only renders changes when it is told to do so.

https://riptutorial.com/ 82

It's also important to note that the names of the inputs are same as the names of the keys in the
person object. This allows us to capture the value in dictionary form as seen here.

handleChange(event) {
 let person = this.state.person;
 person[event.target.name] = event.target.value;
 this.setState({person});
}

person[event.target.name] is the same is a person.firstName || person.lastName. Of course this
would depend on which input is currently being typed in. Since we don't know where the user will
be typing, using a dictionary and matching the input names to the names of the keys, allows us to
capture the user input no matter where the onChange is being called from.

Read React Forms online: https://riptutorial.com/reactjs/topic/8047/react-forms

https://riptutorial.com/ 83

https://riptutorial.com/reactjs/topic/8047/react-forms

Chapter 19: React Routing

Examples

Example Routes.js file, followed by use of Router Link in component

Place a file like the following in your top level directory. It defines which components to
render for which paths

import React from 'react';
import { Route, IndexRoute } from 'react-router';
import New from './containers/new-post';
import Show from './containers/show';

import Index from './containers/home';
import App from './components/app';

export default(
 <Route path="/" component={App}>
 <IndexRoute component={Index} />
 <Route path="posts/new" component={New} />
 <Route path="posts/:id" component={Show} />

 </Route>
);

Now in your top level index.js that is your entry point to the app, you need only render this
Router component like so:

import React from 'react';
import ReactDOM from 'react-dom';
import { Router, browserHistory } from 'react-router';
// import the routes component we created in routes.js
import routes from './routes';

// entry point
ReactDOM.render(
 <Router history={browserHistory} routes={routes} />
 , document.getElementById('main'));

Now it is simply a matter of using Link instead of <a> tags throughout your application.
Using Link will communicate with React Router to change the React Router route to the
specified link, which will in turn render the correct component as defined in routes.js

import React from 'react';
import { Link } from 'react-router';

export default function PostButton(props) {
 return (
 <Link to={`posts/${props.postId}`}>

https://riptutorial.com/ 84

 <div className="post-button" >
 {props.title}
 {props.tags}
 </div>
 </Link>
);
}

React Routing Async

import React from 'react';
import { Route, IndexRoute } from 'react-router';

import Index from './containers/home';
import App from './components/app';

//for single Component lazy load use this
const ContactComponent = () => {
 return {
 getComponent: (location, callback)=> {
 require.ensure([], require => {
 callback(null, require('./components/Contact')["default"]);
 }, 'Contact');
 }
 }
};

//for multiple componnets
 const groupedComponents = (pageName) => {
 return {
 getComponent: (location, callback)=> {
 require.ensure([], require => {
 switch(pageName){
 case 'about' :
 callback(null, require("./components/about")["default"]);
 break ;
 case 'tos' :
 callback(null, require("./components/tos")["default"]);
 break ;
 }
 }, "groupedComponents");
 }
 }
};
export default(
 <Route path="/" component={App}>
 <IndexRoute component={Index} />
 <Route path="/contact" {...ContactComponent()} />
 <Route path="/about" {...groupedComponents('about')} />
 <Route path="/tos" {...groupedComponents('tos')} />
 </Route>
);

Read React Routing online: https://riptutorial.com/reactjs/topic/6096/react-routing

https://riptutorial.com/ 85

https://riptutorial.com/reactjs/topic/6096/react-routing

Chapter 20: React Tools

Examples

Links

Places to find React components and libraries;

Catalog of React Components•
JS.coach•

Read React Tools online: https://riptutorial.com/reactjs/topic/6595/react-tools

https://riptutorial.com/ 86

https://github.com/brillout/awesome-react-components
https://js.coach
https://riptutorial.com/reactjs/topic/6595/react-tools

Chapter 21: React with Redux

Introduction

Redux has come to be the status quo for managing application-level state on the front-end these
days, and those who work on "large-scale applications" often swear by it. This topic covers why
and how you should use the state management library, Redux, in your React applications.

Remarks

While React's component driven architecture is fantastic for breaking down the application into
modular, encapsulated little pieces, it introduces some challenges for managing the state of the
application as a whole. The time to use Redux is when you need to display the same data across
more than one component or page (aka route). At that point you can no longer store the data in
variables local to one component or the other, and sending messages between components
quickly becomes a mess. With Redux your components are all subscribing to the same shared
data in the store and thus the state can be easily reflected consistently across the entire
application.

Examples

Using Connect

Create a Redux store with createStore.

import { createStore } from 'redux'
import todoApp from './reducers'
let store = createStore(todoApp, { inistialStateVariable: "derp"})

Use connect to connect component to Redux store and pull props from store to component.

import { connect } from 'react-redux'

const VisibleTodoList = connect(
 mapStateToProps,
 mapDispatchToProps
)(TodoList)

export default VisibleTodoList

Define actions that allow your components to send messages to the Redux store.

/*
 * action types
 */

export const ADD_TODO = 'ADD_TODO'

https://riptutorial.com/ 87

export function addTodo(text) {
 return { type: ADD_TODO, text }
}

Handle these messages and create a new state for the store in reducer functions.

function todoApp(state = initialState, action) {
 switch (action.type) {
 case SET_VISIBILITY_FILTER:
 return Object.assign({}, state, {
 visibilityFilter: action.filter
 })
 default:
 return state
 }
}

Read React with Redux online: https://riptutorial.com/reactjs/topic/10856/react-with-redux

https://riptutorial.com/ 88

https://riptutorial.com/reactjs/topic/10856/react-with-redux

Chapter 22: React, Webpack & Typescript
installation

Remarks

To get syntax highlighting in your editor (e.g. VS Code) you'll need to download typing information
for the modules that you use in your project.

Say for example you use React and ReactDOM in your project, and you want to get highlighting
and Intellisense for them. You will need to add the types to your project using this command:

npm install --save @types/react @types/react-dom

Your editor should now automatically pick up on on this typing information and supply you with
autocomplete and Intellisense for these modules.

Examples

webpack.config.js

module.exports = {
 entry: './src/index',
 output: {
 path: __dirname + '/build',
 filename: 'bundle.js'
 },
 module: {
 rules: [{
 test: /\.tsx?$/,
 loader: 'ts-loader',
 exclude: /node_modules/
 }]
 },
 resolve: {
 extensions: ['.ts', '.tsx']
 }
};

The main components are (in addition to the standard entry, output and other webpack properties):

The loader

For this you need to create a rule that tests for the .ts and .tsx file extensions, specify ts-loader
as the loader.

https://riptutorial.com/ 89

Resolve TS extensions

You also need to add the .ts and .tsx extensions in the resolve array, or webpack won't see them.

tsconfig.json

This is a minimal tsconfig to get you up and running.

{
 "include": [
 "src/*"
],
 "compilerOptions": {
 "target": "es5",
 "jsx": "react",
 "allowSyntheticDefaultImports": true
 }
}

Let's go through the properties one by one:

include

This is an array of source code. Here we have only one entry, src/*, which specifies that
everything in the src directory is to be included in compilation.

compilerOptions.target

Specifies that we want to compile to ES5 target

compilerOptions.jsx

Setting this to true will make TypeScript automatically compile your tsx syntax from <div /> to
React.createElement("div").

compilerOptions.allowSyntheticDefaultImports

Handy property which will allow you to import node modules as if they are ES6 modules, so
instead of doing

import * as React from 'react'
const { Component } = React

you can just do

import React, { Component } from 'react'

without any errors telling you that React has no default export.

https://riptutorial.com/ 90

My First Component

import React, { Component } from 'react';
import ReactDOM from 'react-dom';

interface AppProps {
 name: string;
}
interface AppState {
 words: string[];
}

class App extends Component<AppProps, AppState> {
 constructor() {
 super();
 this.state = {
 words: ['foo', 'bar']
 };
 }

 render() {
 const { name } = this.props;
 return (<h1>Hello {name}!</h1>);
 }
}

const root = document.getElementById('root');
ReactDOM.render(<App name="Foo Bar" />, root);

When using TypeScript with React, once you've downloaded the React DefinitelyTyped type
definitions (npm install --save @types/react), every component will require you to add type
annotations.

You do this like so:

class App extends Component<AppProps, AppState> { }

where AppProps and AppState are interfaces (or type aliases) for your components' props and state
respectively.

Read React, Webpack & Typescript installation online:
https://riptutorial.com/reactjs/topic/9590/react--webpack---typescript-installation

https://riptutorial.com/ 91

https://riptutorial.com/reactjs/topic/9590/react--webpack---typescript-installation

Chapter 23: React.createClass vs extends
React.Component

Syntax

Case 1: React.createClass({ })•
Case 2: class MyComponent extends React.Component { }•

Remarks

React.createClass was deprecated in v15.5 and expected to be removed in v16. There is a drop-in
replacement package for those that still require it. Examples using it should be updated.

Examples

Create React Component

Let's explore the syntax differences by comparing two code examples.

React.createClass (deprecated)

Here we have a const with a React class assigned, with the render function following on to
complete a typical base component definition.

import React from 'react';

const MyComponent = React.createClass({
 render() {
 return (
 <div></div>
);
 }
});

export default MyComponent;

React.Component

Let's take the above React.createClass definition and convert it to use an ES6 class.

import React from 'react';

class MyComponent extends React.Component {

https://riptutorial.com/ 92

https://facebook.github.io/react/blog/#new-deprecation-warnings
https://github.com/facebook/react/issues/8854
https://www.npmjs.com/package/create-react-class
https://www.npmjs.com/package/create-react-class

 render() {
 return (
 <div></div>
);
 }
}

export default MyComponent;

In this example we're now using ES6 classes. For the React changes, we now create a class
called MyComponent and extend from React.Component instead of accessing React.createClass
directly. This way, we use less React boilerplate and more JavaScript.

PS: Typically this would be used with something like Babel to compile the ES6 to ES5 to work in
other browsers.

Declare Default Props and PropTypes

There are important changes in how we use and declare default props and their types.

React.createClass

In this version, the propTypes property is an Object in which we can declare the type for each prop.
The getDefaultProps property is a function that returns an Object to create the initial props.

import React from 'react';

const MyComponent = React.createClass({
 propTypes: {
 name: React.PropTypes.string,
 position: React.PropTypes.number
 },
 getDefaultProps() {
 return {
 name: 'Home',
 position: 1
 };
 },
 render() {
 return (
 <div></div>
);
 }
});

export default MyComponent;

React.Component

This version uses propTypes as a property on the actual MyComponent class instead of a property
as part of the createClass definition Object.

https://riptutorial.com/ 93

The getDefaultProps has now changed to just an Object property on the class called defaultProps,
as it's no longer a "get" function, it's just an Object. It avoids more React boilerplate, this is just
plain JavaScript.

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 render() {
 return (
 <div></div>
);
 }
}
MyComponent.propTypes = {
 name: React.PropTypes.string,
 position: React.PropTypes.number
};
MyComponent.defaultProps = {
 name: 'Home',
 position: 1
};

export default MyComponent;

Additionally, there is another syntax for propTypes and defaultProps. This is a shortcut if your build
has ES7 property initializers turned on:

import React from 'react';

class MyComponent extends React.Component {
 static propTypes = {
 name: React.PropTypes.string,
 position: React.PropTypes.number
 };
 static defaultProps = {
 name: 'Home',
 position: 1
 };
 constructor(props) {
 super(props);
 }
 render() {
 return (
 <div></div>
);
 }
}

export default MyComponent;

Set Initial State

There are changes in how we are setting the initial states.

https://riptutorial.com/ 94

React.createClass

We have a getInitialState function, which simply returns an Object of initial states.

import React from 'react';

const MyComponent = React.createClass({
 getInitialState () {
 return {
 activePage: 1
 };
 },
 render() {
 return (
 <div></div>
);
 }
});

export default MyComponent;

React.Component

In this version we declare all state as a simple initialisation property in the constructor, instead
of using the getInitialState function. It feels less "React API" driven since this is just plain
JavaScript.

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 this.state = {
 activePage: 1
 };
 }
 render() {
 return (
 <div></div>
);
 }
}

export default MyComponent;

Mixins

We can use mixins only with the React.createClass way.

https://riptutorial.com/ 95

React.createClass

In this version we can add mixins to components using the mixins property which takes an Array of
available mixins. These then extend the component class.

import React from 'react';

var MyMixin = {
 doSomething() {

 }
};
const MyComponent = React.createClass({
 mixins: [MyMixin],
 handleClick() {
 this.doSomething(); // invoke mixin's method
 },
 render() {
 return (
 <button onClick={this.handleClick}>Do Something</button>
);
 }
});

export default MyComponent;

React.Component

React mixins are not supported when using React components written in ES6. Moreover, they will
not have support for ES6 classes in React. The reason is that they are considered harmful.

"this" Context

Using React.createClass will automatically bind this context (values) correctly, but that is not the
case when using ES6 classes.

React.createClass

Note the onClick declaration with the this.handleClick method bound. When this method gets
called React will apply the right execution context to the handleClick.

import React from 'react';

const MyComponent = React.createClass({
 handleClick() {
 console.log(this); // the React Component instance
 },
 render() {

https://riptutorial.com/ 96

https://facebook.github.io/react/blog/2016/07/13/mixins-considered-harmful.html

 return (
 <div onClick={this.handleClick}></div>
);
 }
});

export default MyComponent;

React.Component

With ES6 classes this is null by default, properties of the class do not automatically bind to the
React class (component) instance.

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 handleClick() {
 console.log(this); // null
 }
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
}

export default MyComponent;

There are a few ways we could bind the right this context.

Case 1: Bind inline:

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 handleClick() {
 console.log(this); // the React Component instance
 }
 render() {
 return (
 <div onClick={this.handleClick.bind(this)}></div>
);
 }
}

export default MyComponent;

https://riptutorial.com/ 97

Case 2: Bind in the class constructor

Another approach is changing the context of this.handleClick inside the constructor. This way we
avoid inline repetition. Considered by many as a better approach that avoids touching JSX at all:

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 this.handleClick = this.handleClick.bind(this);
 }
 handleClick() {
 console.log(this); // the React Component instance
 }
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
}

export default MyComponent;

Case 3: Use ES6 anonymous function

You can also use ES6 anonymous function without having to bind explicitly:

import React from 'react';

class MyComponent extends React.Component {
 constructor(props) {
 super(props);
 }
 handleClick = () => {
 console.log(this); // the React Component instance
 }
 render() {
 return (
 <div onClick={this.handleClick}></div>
);
 }
}

export default MyComponent;

ES6/React “this” keyword with ajax to get data from server

import React from 'react';

class SearchEs6 extends React.Component{
 constructor(props) {
 super(props);
 this.state = {

https://riptutorial.com/ 98

 searchResults: []
 };
 }

 showResults(response){
 this.setState({
 searchResults: response.results
 })
 }

 search(url){
 $.ajax({
 type: "GET",
 dataType: 'jsonp',
 url: url,
 success: (data) => {
 this.showResults(data);
 },
 error: (xhr, status, err) => {
 console.error(url, status, err.toString());
 }
 });
 }

 render() {
 return (
 <div>
 <SearchBox search={this.search.bind(this)} />
 <Results searchResults={this.state.searchResults} />
 </div>
);
 }
}

Read React.createClass vs extends React.Component online:
https://riptutorial.com/reactjs/topic/6371/react-createclass-vs-extends-react-component

https://riptutorial.com/ 99

https://riptutorial.com/reactjs/topic/6371/react-createclass-vs-extends-react-component

Chapter 24: Setting Up React Environment

Examples

Simple React Component

We want to be able to compile below component and render it in our webpage

Filename: src/index.jsx

import React from 'react';
import ReactDOM from 'react-dom';

class ToDo extends React.Component {
 render() {
 return (<div>I am working</div>);
 }
}

ReactDOM.render(<ToDo />, document.getElementById('App'));

Install all dependencies

install react and react-dom
$ npm i react react-dom --save

install webpack for bundling
$ npm i webpack -g

install babel for module loading, bundling and transpiling
$ npm i babel-core babel-loader --save

install babel presets for react and es6
$ npm i babel-preset-react babel-preset-es2015 --save

Configure webpack

Create a file webpack.config.js in the root of your working directory

Filename: webpack.config.js

module.exports = {
 entry: __dirname + "/src/index.jsx",
 devtool: "source-map",
 output: {
 path: __dirname + "/build",
 filename: "bundle.js"
 },
 module: {
 loaders: [

https://riptutorial.com/ 100

 {test: /\.jsx?$/, exclude: /node_modules/, loader: "babel-loader"}
]
 }
}

Configure babel

Create a file .babelrc in the root of our working directory

Filename: .babelrc

{
 "presets": ["es2015","react"]
}

HTML file to use react component

Setup a simple html file in the root of the project directory

Filename: index.html

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title></title>
 </head>
 <body>
 <div id="App"></div>
 <script src="build/bundle.js" charset="utf-8"></script>
 </body>
</html>

Transpile and bundle your component

Using webpack, you can bundle your component:

$ webpack

This will create our output file in build directory.

Open the HTML page in a browser to see component in action

Read Setting Up React Environment online: https://riptutorial.com/reactjs/topic/7480/setting-up-
react-environment

https://riptutorial.com/ 101

https://riptutorial.com/reactjs/topic/7480/setting-up-react-environment
https://riptutorial.com/reactjs/topic/7480/setting-up-react-environment

Chapter 25: State in React

Examples

Basic State

State in React components is essential to manage and communicate data in your application. It is
represented as a JavaScript object and has component level scope, it can be thought of as the
private data of your component.

In the example below we are defining some initial state in the constructor function of our
component and make use of it in the render function.

class ExampleComponent extends React.Component {
 constructor(props){
 super(props);

 // Set-up our initial state
 this.state = {
 greeting: 'Hiya Buddy!'
 };
 }

 render() {
 // We can access the greeting property through this.state
 return(
 <div>{this.state.greeting}</div>
);
 }
}

setState()

The primary way that you make UI updates to your React applications is through a call to the
setState() function. This function will perform a shallow merge between the new state that you
provide and the previous state, and will trigger a re-render of your component and all decedents.

Parameters

updater: It can be an object with a number of key-value pairs that should be merged into the
state or a function that returns such an object.

1.

callback (optional): a function which will be executed after setState() has been executed
successfully. Due to the fact that calls to setState() are not guaranteed by React to be
atomic, this can sometimes be useful if you want to perform some action after you are
positive that setState() has been executed successfully.

2.

Usage:

The setState method accepts an updater argument that can either be an object with a number of

https://riptutorial.com/ 102

https://github.com/kolodny/immutability-helper#shallow-merge

key-value-pairs that should be merged into the state, or a function that returns such an object
computed from prevState and props.

Using setState() with an Object as updater

//
// An example ES6 style component, updating the state on a simple button click.
// Also demonstrates where the state can be set directly and where setState should be used.
//
class Greeting extends React.Component {
 constructor(props) {
 super(props);
 this.click = this.click.bind(this);
 // Set initial state (ONLY ALLOWED IN CONSTRUCTOR)
 this.state = {
 greeting: 'Hello!'
 };
 }
 click(e) {
 this.setState({
 greeting: 'Hello World!'
 });
 }
 render() {
 return(
 <div>
 <p>{this.state.greeting}</p>
 <button onClick={this.click}>Click me</button>
 </div>
);
 }

}

Using setState() with a Function as updater

//
// This is most often used when you want to check or make use
// of previous state before updating any values.
//

this.setState(function(previousState, currentProps) {
 return {
 counter: previousState.counter + 1
 };
});

This can be safer than using an object argument where multiple calls to setState() are used, as
multiple calls may be batched together by React and executed at once, and is the preferred
approach when using current props to set state.

this.setState({ counter: this.state.counter + 1 });

https://riptutorial.com/ 103

this.setState({ counter: this.state.counter + 1 });
this.setState({ counter: this.state.counter + 1 });

These calls may be batched together by React using Object.assign(), resulting in the counter
being incremented by 1 rather than 3.

The functional approach can also be used to move state setting logic outside of components. This
allows for isolation and re-use of state logic.

// Outside of component class, potentially in another file/module

function incrementCounter(previousState, currentProps) {
 return {
 counter: previousState.counter + 1
 };
}

// Within component

this.setState(incrementCounter);

Calling setState() with an Object and a callback
function

//
// 'Hi There' will be logged to the console after setState completes
//

this.setState({ name: 'John Doe' }, console.log('Hi there'));

Common Antipattern

You should not save props into state. It is considered an anti-pattern. For example:

export default class MyComponent extends React.Component {
 constructor() {
 super();

 this.state = {
 url: ''
 }

 this.onChange = this.onChange.bind(this);
 }

 onChange(e) {
 this.setState({
 url: this.props.url + '/days=?' + e.target.value
 });
 }

 componentWillMount() {

https://riptutorial.com/ 104

https://facebook.github.io/react/tips/props-in-getInitialState-as-anti-pattern.html

 this.setState({url: this.props.url});
 }

 render() {
 return (
 <div>
 <input defaultValue={2} onChange={this.onChange} />

 URL: {this.state.url}
 </div>
)
 }
}

The prop url is saved on state and then modified. Instead, choose to save the changes to a state,
and then build the full path using both state and props:

export default class MyComponent extends React.Component {
 constructor() {
 super();

 this.state = {
 days: ''
 }

 this.onChange = this.onChange.bind(this);
 }

 onChange(e) {
 this.setState({
 days: e.target.value
 });
 }

 render() {
 return (
 <div>
 <input defaultValue={2} onChange={this.onChange} />

 URL: {this.props.url + '/days?=' + this.state.days}
 </div>
)
 }
}

This is because in a React application we want to have a single source of truth - i.e. all data is the
responsibility of one single component, and only one component. It is the responsibility of this
component to store the data within its state, and distribute the data to other components via props.

In the first example, both the MyComponent class and its parent are maintaining 'url' within their
state. If we update state.url in MyComponent, these changes are not reflected in the parent. We
have lost our single source of truth, and it becomes increasingly difficult to track the flow of data
through our application. Contrast this with the second example - url is only maintained in the state
of the parent component, and utilised as a prop in MyComponent - we therefore maintain a single
source of truth.

https://riptutorial.com/ 105

State, Events And Managed Controls

Here's an example of a React component with a "managed" input field. Whenever the value of the
input field changes, an event handler is called which updates the state of the component with the
new value of the input field. The call to setState in the event handler will trigger a call to render
updating the component in the dom.

import React from 'react';
import {render} from 'react-dom';

class ManagedControlDemo extends React.Component {

 constructor(props){
 super(props);
 this.state = {message: ""};
 }

 handleChange(e){
 this.setState({message: e.target.value});
 }

 render() {
 return (
 <div>
 <legend>Type something here</legend>
 <input
 onChange={this.handleChange.bind(this)}
 value={this.state.message}
 autoFocus />
 <h1>{this.state.message}</h1>
 </div>
);
 }
}

render(<ManagedControlDemo/>, document.querySelector('#app'));

Its very important to note the runtime behavior. Everytime a user changes the value in the input
field

handleChange will be called and so•
setState will be called and so•
render will be called•

Pop quiz, after you type a character in the input field, which DOM elements change

all of these - the top level div, legend, input, h11.
only the input and h12.
nothing3.
whats a DOM?4.

You can experiment with this more here to find the answer

https://riptutorial.com/ 106

http://www.webpackbin.com/Vy_PgAeWz

Read State in React online: https://riptutorial.com/reactjs/topic/1816/state-in-react

https://riptutorial.com/ 107

https://riptutorial.com/reactjs/topic/1816/state-in-react

Chapter 26: Stateless Functional
Components

Remarks

Stateless functional components in React are pure functions of the passed in props. These
components do not rely on state and discard the use of component lifecycle methods. You may,
however, still define propTypes and defaultPropts.

See https://facebook.github.io/react/docs/reusable-components.html#stateless-functions for further
information about stateless functional components.

Examples

Stateless Functional Component

Components let you split the UI into independent, reusable pieces. This is the beauty of React; we
can separate a page into many small reusable components.

Prior to React v14 we could create a stateful React component using React.Component (in ES6), or
React.createClass (in ES5), irrespective of whether it requires any state to manage data or not.

React v14 introduced a simpler way to define components, usually referred to as stateless
functional components. These components use plain JavaScript functions.

For example:

function Welcome(props) {
 return <h1>Hello, {props.name}</h1>;
}

This function is a valid React component because it accepts a single props object argument with
data and returns a React element. We call such components functional because they are literally
JavaScript functions.

Stateless functional components typically focus on UI; state should be managed by higher-level
“container” components, or via Flux/Redux etc. Stateless functional components don’t support
state or lifecycle methods.

Benefits:

No class overhead1.
Don't have to worry about this keyword2.
Easy to write and easy to understand3.
Don't have to worry about managing state values4.

https://riptutorial.com/ 108

https://facebook.github.io/react/docs/reusable-components.html#stateless-functions

Performance improvement5.

Summary: If you are writing a React component that doesn't require state and would like to create
a reusable UI, instead of creating a standard React Component you can write it as a stateless
functional component.

Let's take a simple example :

Let's say we have a page that can register a user, search for registered users, or display a list of
all the registered users.

This is entry point of the application, index.js:

import React from 'react';
import ReactDOM from 'react-dom';

import HomePage from './homepage'

ReactDOM.render(
 <HomePage/>,
 document.getElementById('app')
);

The HomePage component provides the UI to register and search for users. Note that it is a typical
React component including state, UI, and behavioral code. The data for the list of registered users
is stored in the state variable, but our reusable List (shown below) encapsulates the UI code for
the list.

homepage.js:

import React from 'react'
import {Component} from 'react';

import List from './list';

export default class Temp extends Component{

 constructor(props) {
 super();
 this.state={users:[], showSearchResult: false, searchResult: []};
 }

 registerClick(){
 let users = this.state.users.slice();
 if(users.indexOf(this.refs.mail_id.value) == -1){
 users.push(this.refs.mail_id.value);
 this.refs.mail_id.value = '';
 this.setState({users});
 }else{
 alert('user already registered');
 }
 }

 searchClick(){
 let users = this.state.users;
 let index = users.indexOf(this.refs.search.value);

https://riptutorial.com/ 109

 if(index >= 0){
 this.setState({searchResult: users[index], showSearchResult: true});
 }else{
 alert('no user found with this mail id');
 }
 }

 hideSearchResult(){
 this.setState({showSearchResult: false});
 }

 render() {
 return (
 <div>
 <input placeholder='email-id' ref='mail_id'/>
 <input type='submit' value='Click here to register'
onClick={this.registerClick.bind(this)}/>
 <input style={{marginLeft: '100px'}} placeholder='search' ref='search'/>
 <input type='submit' value='Click here to register'
onClick={this.searchClick.bind(this)}/>
 {this.state.showSearchResult ?
 <div>
 Search Result:
 <List users={[this.state.searchResult]}/>
 <p onClick={this.hideSearchResult.bind(this)}>Close this</p>
 </div>
 :
 <div>
 Registered users:

 {this.state.users.length ?
 <List users={this.state.users}/>
 :
 "no user is registered"
 }
 </div>
 }
 </div>
);
 }
}

Finally, our stateless functional component List, which is used display both the list of registered
users and the search results, but without maintaining any state itself.

list.js:

import React from 'react';
var colors = ['#6A1B9A', '#76FF03', '#4527A0'];

var List = (props) => {
 return(
 <div>
 {
 props.users.map((user, i)=>{
 return(
 <div key={i} style={{color: colors[i%3]}}>
 {user}
 </div>

https://riptutorial.com/ 110

);
 })
 }
 </div>
);
}

export default List;

Reference: https://facebook.github.io/react/docs/components-and-props.html

Read Stateless Functional Components online: https://riptutorial.com/reactjs/topic/6588/stateless-
functional-components

https://riptutorial.com/ 111

https://facebook.github.io/react/docs/components-and-props.html
https://riptutorial.com/reactjs/topic/6588/stateless-functional-components
https://riptutorial.com/reactjs/topic/6588/stateless-functional-components

Chapter 27: User interface solutions

Introduction

Let's say we get inspired of some ideas from modern user interfaces used in programs and
convert them to React components. That's what "User interface solutions" topic consists of.
Attribution is appretiated.

Examples

Basic Pane

import React from 'react';

class Pane extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 return React.createElement(
 'section', this.props
);
 }
}

Panel

import React from 'react';

class Panel extends React.Component {
 constructor(props) {
 super(props);
 }

 render(...elements) {
 var props = Object.assign({
 className: this.props.active ? 'active' : '',
 tabIndex: -1
 }, this.props);

 var css = this.css();
 if (css != '') {
 elements.unshift(React.createElement(
 'style', null,
 css
));
 }

 return React.createElement(
 'div', props,
 ...elements

https://riptutorial.com/ 112

);
 }

 static title() {
 return '';
 }
 static css() {
 return '';
 }
}

Major differences from simple pane are:

panel has focus in instance when it is called by script or clicked by mouse;•
panel has title static method per component, so it may be extended by other panel
component with overridden title (reason here is that function can be then called again on
rendering for localization purposes, but in bounds of this example title doesn't make
sense);

•

it can contain individual stylesheet declared in css static method (you can pre-load file
contents from PANEL.css).

•

Tab

import React from 'react';

class Tab extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 var props = Object.assign({
 className: this.props.active ? 'active' : ''
 }, this.props);
 return React.createElement(
 'li', props,
 React.createElement(
 'span', props,
 props.panelClass.title()
)
);
 }
}

panelClass property of Tab instance must contain class of panel used for description.

PanelGroup

import React from 'react';
import Tab from './Tab.js';

class PanelGroup extends React.Component {
 constructor(props) {
 super(props);

https://riptutorial.com/ 113

 this.setState({
 panels: props.panels
 });
 }

 render() {
 this.tabSet = [];
 this.panelSet = [];
 for (let panelData of this.state.panels) {
 var tabIsActive = this.state.activeTab == panelData.name;
 this.tabSet.push(React.createElement(
 Tab, {
 name: panelData.name,
 active: tabIsActive,
 panelClass: panelData.class,
 onMouseDown: () => this.openTab(panelData.name)
 }
));
 this.panelSet.push(React.createElement(
 panelData.class, {
 id: panelData.name,
 active: tabIsActive,
 ref: tabIsActive ? 'activePanel' : null
 }
));
 }
 return React.createElement(
 'div', { className: 'PanelGroup' },
 React.createElement(
 'nav', null,
 React.createElement(
 'ul', null,
 ...this.tabSet
)
),
 ...this.panelSet
);
 }

 openTab(name) {
 this.setState({ activeTab: name });
 this.findDOMNode(this.refs.activePanel).focus();
 }
}

panels property of PanelGroup instance must contain array with objects. Every object there declares
important data about panels:

name - identifier of panel used by controller script;•
class - panel's class.•

Don't forget to set property activeTab to name of needed tab.

Clarification

When tab is down, needed panel is getting class name active on DOM element (means that it
gonna be visible) and it's focused now.

https://riptutorial.com/ 114

Example view with `PanelGroup`s

import React from 'react';
import Pane from './components/Pane.js';
import Panel from './components/Panel.js';
import PanelGroup from './components/PanelGroup.js';

class MainView extends React.Component {
 constructor(props) {
 super(props);
 }

 render() {
 return React.createElement(
 'main', null,
 React.createElement(
 Pane, { id: 'common' },
 React.createElement(
 PanelGroup, {
 panels: [
 {
 name: 'console',
 panelClass: ConsolePanel
 },
 {
 name: 'figures',
 panelClass: FiguresPanel
 }
],
 activeTab: 'console'
 }
)
),
 React.createElement(
 Pane, { id: 'side' },
 React.createElement(
 PanelGroup, {
 panels: [
 {
 name: 'properties',
 panelClass: PropertiesPanel
 }
],
 activeTab: 'properties'
 }
)
)
);
 }
}

class ConsolePanel extends Panel {
 constructor(props) {
 super(props);
 }

 static title() {
 return 'Console';
 }
}

https://riptutorial.com/ 115

class FiguresPanel extends Panel {
 constructor(props) {
 super(props);
 }

 static title() {
 return 'Figures';
 }
}

class PropertiesPanel extends Panel {
 constructor(props) {
 super(props);
 }

 static title() {
 return 'Properties';
 }
}

Read User interface solutions online: https://riptutorial.com/reactjs/topic/8112/user-interface-
solutions

https://riptutorial.com/ 116

https://riptutorial.com/reactjs/topic/8112/user-interface-solutions
https://riptutorial.com/reactjs/topic/8112/user-interface-solutions

Chapter 28: Using React with Flow

Introduction

How to use the Flow type checker to check types in React components.

Remarks

Flow | React

Examples

Using Flow to check prop types of stateless functional components

type Props = {
 posts: Array<Article>,
 dispatch: Function,
 children: ReactElement
}

const AppContainer =
 ({ posts, dispatch, children }: Props) => (
 <div className="main-app">
 <Header {...{ posts, dispatch }} />
 {children}
 </div>
)

Using Flow to check prop types

import React, { Component } from 'react';

type Props = {
 posts: Array<Article>,
 dispatch: Function,
 children: ReactElement
}

class Posts extends Component {
 props: Props;

 render () {
 // rest of the code goes here
 }
}

Read Using React with Flow online: https://riptutorial.com/reactjs/topic/7918/using-react-with-flow

https://riptutorial.com/ 117

https://flow.org/
https://flowtype.org/docs/react.html
https://riptutorial.com/reactjs/topic/7918/using-react-with-flow

Chapter 29: Using ReactJS in Flux way

Introduction

It comes very handy to use Flux approach, when your application with ReactJS on frontend is
planned to grow, because of limited structures and a little bit of new code to make state changes
in runtime more easing.

Remarks

Flux is the application architecture that Facebook uses for building client-side web applications. It
complements React's composable view components by utilizing a unidirectional data flow. It's
more of a pattern rather than a formal framework, and you can start using Flux immediately
without a lot of new code.

Flux applications have three major parts: the dispatcher, the stores, and the views (React
components). These should not be confused with Model-View-Controller. Controllers do exist in a
Flux application, but they are controller-views — views often found at the top of the hierarchy that
retrieve data from the stores and pass this data down to their children. Additionally, action creators
— dispatcher helper methods — are used to support a semantic API that describes all changes
that are possible in the application. It can be useful to think of them as a fourth part of the Flux
update cycle.

Flux eschews MVC in favor of a unidirectional data flow. When a user interacts with a React view,
the view propagates an action through a central dispatcher, to the various stores that hold the
application's data and business logic, which updates all of the views that are affected. This works
especially well with React's declarative programming style, which allows the store to send updates
without specifying how to transition views between states.

Examples

Data Flow

This is outline of comprehensive Overview.

Flux pattern assumes the use of unidirectional data flow.

Action — simple object describing action type and other input data.1.

Dispatcher — single action receiver and callbacks controller. Imagine it is central hub of
your application.

2.

Store — contains the application state and logic. It registers callback in dispatcher and emits
event to view when change to the data layer has occured.

3.

https://riptutorial.com/ 118

https://facebook.github.io/flux/docs/overview.html

View — React component that receives change event and data from store. It causes re-
rendering when something is changed.

As of Flux data flow, views may also create actions and pass them to dispatcher
for user interactions.

4.

Reverted

To make it more clearer, we can start from the end.

Different React components (views) get data from different stores about made changes.

Few components may be called controller-views, cause they provide the glue
code to get the data from the stores and to pass data down the chain of their
descendants. Controller-views represent any significant section of the page.

•

Stores can be remarked as callbacks that compare action type and other input data for
business logic of your application.

•

Dispatcher is common actions receiver and callbacks container.•

Actions are nothing than simple objects with required type property.

Formerly, you'll want to use constants for action types and helper methods
(called action creators).

•

Read Using ReactJS in Flux way online: https://riptutorial.com/reactjs/topic/8158/using-reactjs-in-
flux-way

https://riptutorial.com/ 119

https://riptutorial.com/reactjs/topic/8158/using-reactjs-in-flux-way
https://riptutorial.com/reactjs/topic/8158/using-reactjs-in-flux-way

Chapter 30: Using ReactJS with jQuery

Examples

ReactJS with jQuery

Firstly, you have to import jquery library . We also need to import findDOmNode as we’re going to
manipulate the dom. And obviously we are importing React as well.

import React from 'react';
import { findDOMNode } from ‘react-dom’;
import $ from ‘jquery’;

We are setting an arrow function ‘handleToggle’ that will fire when an icon will be clicked. We’re
just showing and hiding a div with a reference naming ‘toggle’ onClick over an icon.

handleToggle = () => {
 const el = findDOMNode(this.refs.toggle);
 $(el).slideToggle();
};

Let’s now set the reference naming ‘toggle’

<ul className=”profile-info additional-profile-info-list” ref=”toggle”>

 Office Email me@shuvohabib.com

The div element where we will fire the ‘handleToggle’ on onClick.

 <div className=”ellipsis-click” onClick={this.handleToggle}>
 <i className=”fa-ellipsis-h”/>
 </div>

Let review the full code below, how it looks like .

import React from ‘react’;
import { findDOMNode } from ‘react-dom’;
import $ from ‘jquery’;

export default class FullDesc extends React.Component {
 constructor() {
 super();
 }

 handleToggle = () => {
 const el = findDOMNode(this.refs.toggle);
 $(el).slideToggle();
 };

https://riptutorial.com/ 120

 render() {
 return (
 <div className=”long-desc”>
 <ul className=”profile-info”>

 User Name : Shuvo Habib

 <ul className=”profile-info additional-profile-info-list” ref=”toggle”>

 Office Email me@shuvohabib.com

 <div className=”ellipsis-click” onClick={this.handleToggle}>
 <i className=”fa-ellipsis-h”/>
 </div>
 </div>
);
 }
}

We are done! This is the way, how we can use jQuery in React component.

Read Using ReactJS with jQuery online: https://riptutorial.com/reactjs/topic/6009/using-reactjs-
with-jquery

https://riptutorial.com/ 121

https://riptutorial.com/reactjs/topic/6009/using-reactjs-with-jquery
https://riptutorial.com/reactjs/topic/6009/using-reactjs-with-jquery

Chapter 31: Using ReactJS with Typescript

Examples

ReactJS component written in Typescript

Actually you can use ReactJS's components in Typescript as in facebook's example. Just replace
'jsx' file's extension to 'tsx':

//helloMessage.tsx:
var HelloMessage = React.createClass({
 render: function() {
 return <div>Hello {this.props.name}</div>;
 }
});
ReactDOM.render(<HelloMessage name="John" />, mountNode);

But in order to make full use of Typescript's main feature (static type checking) should be done
couple things:

1) convert React.createClass example to ES6 Class:

//helloMessage.tsx:
class HelloMessage extends React.Component {
 render() {
 return <div>Hello {this.props.name}</div>;
 }
}
ReactDOM.render(<HelloMessage name="John" />, mountNode);

2) next add Props and State interfaces:

interface IHelloMessageProps {
 name:string;
}

interface IHelloMessageState {
 //empty in our case
}

class HelloMessage extends React.Component<IHelloMessageProps, IHelloMessageState> {
 constructor(){
 super();
 }
 render() {
 return <div>Hello {this.props.name}</div>;
 }
}
ReactDOM.render(<HelloMessage name="Sebastian" />, mountNode);

Now Typescript will display an error if the programmer forgets to pass props. Or if they added
props that are not defined in the interface.

https://riptutorial.com/ 122

Stateless React Components in Typescript

React components that are pure functions of their props and do not require any internal state can
be written as JavaScript functions instead of using the standard class syntax, as:

import React from 'react'

const HelloWorld = (props) => (
 <h1>Hello, {props.name}!</h1>
);

The same can be achieved in Typescript using the React.SFC class:

import * as React from 'react';

class GreeterProps {
 name: string
}

const Greeter : React.SFC<GreeterProps> = props =>
 <h1>Hello, {props.name}!</h1>;

Note that, the name React.SFC is an alias for React.StatelessComponent So, either can be used.

Installation and Setup

To use typescript with react in a node project, you must first have a project directory initialized with
npm. To initialize the directory with npm init

Installing via npm or yarn

You can install React using npm by doing the following:

npm install --save react react-dom

Facebook released its own package manager named Yarn, which can also be used to install
React. After installing Yarn you just need to run this command:

yarn add react react-dom

You can then use React in your project in exactly the same way as if you had installed React via
npm.

Installing react type definitions in Typescript 2.0+

To compile your code using typescript, add/install type definition files using npm or yarn.

npm install --save-dev @types/react @types/react-dom

or, using yarn

https://riptutorial.com/ 123

https://www.npmjs.com/
https://yarnpkg.com/

yarn add --dev @types/react @types/react-dom

Installing react type definitions in older versions of Typescript

You have to use a separate package called tsd

tsd install react react-dom --save

Adding or Changing the Typescript configuration

To use JSX, a language mixing javascript with html/xml, you have to change the typescript
compiler configuration. In the project's typescript configuration file (usually named tsconfig.json),
you will need to add the JSX option as:

"compilerOptions": {
 "jsx": "react"
},

That compiler option basically tells the typescript compiler to translate the JSX tags in code to
javascript function calls.

To avoid typescript compiler converting JSX to plain javascript function calls, use

"compilerOptions": {
 "jsx": "preserve"
},

Stateless and property-less Components

The simplest react component without a state and no properties can be written as:

import * as React from 'react';

const Greeter = () => Hello, World!

That component, however, can't access this.props since typescript can't tell if it is a react
component. To access its props, use:

import * as React from 'react';

const Greeter: React.SFC<{}> = props => () => Hello, World!

Even if the component doesn't have explicitly defined properties, it can now access props.children
since all components inherently have children.

Another similar good use of stateless and property-less components is in simple page templating.
The following is an examplinary simple Page component, assuming there are hypothetical Container
, NavTop and NavBottom components already in the project:

https://riptutorial.com/ 124

https://www.npmjs.com/package/tsd
https://www.typescriptlang.org/docs/handbook/jsx.html

import * as React from 'react';

const Page: React.SFC<{}> = props => () =>
 <Container>
 <NavTop />
 {props.children}
 <NavBottom />
 </Container>

const LoginPage: React.SFC<{}> = props => () =>
 <Page>
 Login Pass: <input type="password" />
 </Page>

In this example, the Page component can later be used by any other actual page as a base
template.

Read Using ReactJS with Typescript online: https://riptutorial.com/reactjs/topic/1419/using-reactjs-
with-typescript

https://riptutorial.com/ 125

https://riptutorial.com/reactjs/topic/1419/using-reactjs-with-typescript
https://riptutorial.com/reactjs/topic/1419/using-reactjs-with-typescript

Credits

S.
No

Chapters Contributors

1
Getting started with
React

Adam, Adrián Daraš, Alex, Alex Young, Anuj, Bart Riordan,
Cassidy, Community, Daksh Gupta, Dave Kaye, diabolicfreak,
DMan, Donald, Everettss, Gianluca Esposito, himanshuIIITian,
hyde, Ilya Lyamkin, Inanc Gumus, ivarni, jengeb, jolyonruss,
Jon Chan, JordanHendrix, juandemarco, Kaloyan Kosev,
Konstantin Grushetsky, Maksim, Marty, MaxPRafferty, Md.
Nahiduzzaman Rose, Md.Sifatul Islam, Ming Soon,
MMachinegun, Nick Bartlett, orvi, paqash, Prakash, rossipedia,
Shabin Hashim, Simplans, Sunny R Gupta, TheShadowbyte,
Timo, Tushar Khanna, user2314737

2
Communicate
Between
Components

Random User

3
Communication
Between
Components

David, Kaloyan Kosev

4 Components

akashrajkn, Anuj, Bart Riordan, Bond, Brandon Roberts, Denis
Ivanov, Diego V, DMan, Evan Hammer, Everettss, goldbullet,
GordyD, hmnzr, Ilya Lyamkin, ivarni, Jagadish Upadhyay,
jbmartinez, John Ruddell, jolyonruss, Jon Chan,
jonathangoodman, JordanHendrix, justabuzz, k170, Kousha,
Kyle Richardson, m_callens, Maayan Glikser, Michael Peyper,
Paul Graffam, philpee2, QoP, Radu Brehar, Sai Vikas, sjmarshy
, Timo, Vlad Bezden, WooCaSh, Zakaria Ridouh, zurfyx

5
Forms and User
Input

Everettss, Henrik Karlsson, ivarni, Timo

6
Higher Order
Components

Dennis Stücken

7
How and why to use
keys in React

Sammy I.

8
How to setup a basic
webpack, react and
babel environment

Bart Riordan, Tien Do, Zac Braddy

9 Installation Rene R, Ruairi O'Brien

https://riptutorial.com/ 126

https://riptutorial.com/contributor/1472764/adam
https://riptutorial.com/contributor/6812877/adrian-daras
https://riptutorial.com/contributor/4238662/alex
https://riptutorial.com/contributor/5932623/alex-young
https://riptutorial.com/contributor/1759688/anuj
https://riptutorial.com/contributor/1335264/bart-riordan
https://riptutorial.com/contributor/2910664/cassidy
https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/5662469/daksh-gupta
https://riptutorial.com/contributor/1378721/dave-kaye
https://riptutorial.com/contributor/2532763/diabolicfreak
https://riptutorial.com/contributor/225650/dman
https://riptutorial.com/contributor/2465599/donald
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/843493/gianluca-esposito
https://riptutorial.com/contributor/3620633/himanshuiiitian
https://riptutorial.com/contributor/1289344/hyde
https://riptutorial.com/contributor/5688541/ilya-lyamkin
https://riptutorial.com/contributor/115363/inanc-gumus
https://riptutorial.com/contributor/957731/ivarni
https://riptutorial.com/contributor/4419582/jengeb
https://riptutorial.com/contributor/313990/jolyonruss
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/4996204/jordanhendrix
https://riptutorial.com/contributor/1053772/juandemarco
https://riptutorial.com/contributor/1333836/kaloyan-kosev
https://riptutorial.com/contributor/352784/konstantin-grushetsky
https://riptutorial.com/contributor/51230/maksim
https://riptutorial.com/contributor/605213/marty
https://riptutorial.com/contributor/1612869/maxprafferty
https://riptutorial.com/contributor/3649961/md--nahiduzzaman-rose
https://riptutorial.com/contributor/3649961/md--nahiduzzaman-rose
https://riptutorial.com/contributor/6840615/md-sifatul-islam
https://riptutorial.com/contributor/7554156/ming-soon
https://riptutorial.com/contributor/2102463/mmachinegun
https://riptutorial.com/contributor/1759514/nick-bartlett
https://riptutorial.com/contributor/3654356/orvi
https://riptutorial.com/contributor/5502802/paqash
https://riptutorial.com/contributor/3477687/prakash
https://riptutorial.com/contributor/115049/rossipedia
https://riptutorial.com/contributor/1109178/shabin-hashim
https://riptutorial.com/contributor/2806499/simplans
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/1655857/theshadowbyte
https://riptutorial.com/contributor/3836229/timo
https://riptutorial.com/contributor/2285690/tushar-khanna
https://riptutorial.com/contributor/2314737/user2314737
https://riptutorial.com/contributor/414002/random-user
https://riptutorial.com/contributor/1254856/david
https://riptutorial.com/contributor/1333836/kaloyan-kosev
https://riptutorial.com/contributor/3449335/akashrajkn
https://riptutorial.com/contributor/1759688/anuj
https://riptutorial.com/contributor/1335264/bart-riordan
https://riptutorial.com/contributor/2474246/bond
https://riptutorial.com/contributor/2671303/brandon-roberts
https://riptutorial.com/contributor/1938881/denis-ivanov
https://riptutorial.com/contributor/1938881/denis-ivanov
https://riptutorial.com/contributor/1385678/diego-v
https://riptutorial.com/contributor/225650/dman
https://riptutorial.com/contributor/1373795/evan-hammer
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/5924322/goldbullet
https://riptutorial.com/contributor/713425/gordyd
https://riptutorial.com/contributor/907844/hmnzr
https://riptutorial.com/contributor/5688541/ilya-lyamkin
https://riptutorial.com/contributor/957731/ivarni
https://riptutorial.com/contributor/4700360/jagadish-upadhyay
https://riptutorial.com/contributor/3397274/jbmartinez
https://riptutorial.com/contributor/2733506/john-ruddell
https://riptutorial.com/contributor/313990/jolyonruss
https://riptutorial.com/contributor/1043674/jon-chan
https://riptutorial.com/contributor/3472247/jonathangoodman
https://riptutorial.com/contributor/4996204/jordanhendrix
https://riptutorial.com/contributor/124132/justabuzz
https://riptutorial.com/contributor/4405473/k170
https://riptutorial.com/contributor/834045/kousha
https://riptutorial.com/contributor/6338762/kyle-richardson
https://riptutorial.com/contributor/5270744/m-callens
https://riptutorial.com/contributor/581620/maayan-glikser
https://riptutorial.com/contributor/6902543/michael-peyper
https://riptutorial.com/contributor/803841/paul-graffam
https://riptutorial.com/contributor/4318086/philpee2
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/1016380/radu-brehar
https://riptutorial.com/contributor/2141947/sai-vikas
https://riptutorial.com/contributor/293465/sjmarshy
https://riptutorial.com/contributor/3836229/timo
https://riptutorial.com/contributor/30038/vlad-bezden
https://riptutorial.com/contributor/390747/woocash
https://riptutorial.com/contributor/6457567/zakaria-ridouh
https://riptutorial.com/contributor/2013580/zurfyx
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/502126/henrik-karlsson
https://riptutorial.com/contributor/957731/ivarni
https://riptutorial.com/contributor/3836229/timo
https://riptutorial.com/contributor/3890611/dennis-stucken
https://riptutorial.com/contributor/3413536/sammy-i-
https://riptutorial.com/contributor/1335264/bart-riordan
https://riptutorial.com/contributor/108616/tien-do
https://riptutorial.com/contributor/5188846/zac-braddy
https://riptutorial.com/contributor/6671969/rene-r
https://riptutorial.com/contributor/905741/ruairi-o-brien

10
Introduction to
Server-Side
Rendering

Adrián Daraš, MauroPorrasP

11 JSX Kaloyan Kosev, Ming Soon

12 Keys in react Dennis Stücken, thibmaek

13 Performance Aditya Singh, lustoykov, thibmaek

14 Props in React

Ahmad, Anuj, Danillo Corvalan, Everettss, Faktor 10, Fellow
Stranger, hansn, Ilya Lyamkin, Jack7, Jagadish Upadhyay,
JimmyLv, MaxPRafferty, QoP, Sergii Bishyr, vintproykt, WitVault
, zbynour

15 React AJAX call
adamboro, Fabian Schultz, Jason Bourne, lifeiscontent,
McGrady, Sunny R Gupta

16
React Boilerplate
[React + Babel +
Webpack]

Mihir, parlad neupane, Tien Do

17
React Component
Lifecycle

Alex Young, Alexg2195, Anuj, Ashari, Everettss, F. Kauder,
irrigator, John Ruddell, QoP, Salman Saleem, Saravana,
Siddharth, skav, Timo, ultrasamad, Vivian, WitVault

18 React Forms promisified

19 React Routing abhirathore2006, Robeen

20 React Tools brillout

21 React with Redux Jim

22
React, Webpack &
Typescript
installation

Aron

23
React.createClass vs
extends
React.Component

Kaloyan Kosev, leonardoborges, Michael Peyper, pwolaq,
Qianyue, sqzaman

24
Setting Up React
Environment

ghostffcode, Tien Do

25 State in React
Alex Young, Alexander, Brad Colthurst, Everettss, Kousha, Kyle
Richardson, QoP, skav, Timo

26
Stateless Functional
Components

Adam, Mark Lapierre, Mayank Shukla, Valter Júnior

https://riptutorial.com/ 127

https://riptutorial.com/contributor/6812877/adrian-daras
https://riptutorial.com/contributor/320791/mauroporrasp
https://riptutorial.com/contributor/1333836/kaloyan-kosev
https://riptutorial.com/contributor/7554156/ming-soon
https://riptutorial.com/contributor/3890611/dennis-stucken
https://riptutorial.com/contributor/3029016/thibmaek
https://riptutorial.com/contributor/3878940/aditya-singh
https://riptutorial.com/contributor/2762747/lustoykov
https://riptutorial.com/contributor/3029016/thibmaek
https://riptutorial.com/contributor/3104969/ahmad
https://riptutorial.com/contributor/1759688/anuj
https://riptutorial.com/contributor/1001745/danillo-corvalan
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/4109124/faktor-10
https://riptutorial.com/contributor/1417223/fellow-stranger
https://riptutorial.com/contributor/1417223/fellow-stranger
https://riptutorial.com/contributor/3719266/hansn
https://riptutorial.com/contributor/5688541/ilya-lyamkin
https://riptutorial.com/contributor/795372/jack7
https://riptutorial.com/contributor/4700360/jagadish-upadhyay
https://riptutorial.com/contributor/5871340/jimmylv
https://riptutorial.com/contributor/1612869/maxprafferty
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/5604676/sergii-bishyr
https://riptutorial.com/contributor/2396907/vintproykt
https://riptutorial.com/contributor/1745409/witvault
https://riptutorial.com/contributor/388834/zbynour
https://riptutorial.com/contributor/3772847/adamboro
https://riptutorial.com/contributor/6941627/fabian-schultz
https://riptutorial.com/contributor/5408958/jason-bourne
https://riptutorial.com/contributor/301252/lifeiscontent
https://riptutorial.com/contributor/6760995/mcgrady
https://riptutorial.com/contributor/1477051/sunny-r-gupta
https://riptutorial.com/contributor/5241520/mihir
https://riptutorial.com/contributor/4719725/parlad-neupane
https://riptutorial.com/contributor/108616/tien-do
https://riptutorial.com/contributor/5932623/alex-young
https://riptutorial.com/contributor/5510695/alexg2195
https://riptutorial.com/contributor/1759688/anuj
https://riptutorial.com/contributor/5834822/ashari
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/6608382/f--kauder
https://riptutorial.com/contributor/4453309/irrigator
https://riptutorial.com/contributor/2733506/john-ruddell
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/4060385/salman-saleem
https://riptutorial.com/contributor/2419531/saravana
https://riptutorial.com/contributor/1559420/siddharth
https://riptutorial.com/contributor/1246018/skav
https://riptutorial.com/contributor/3836229/timo
https://riptutorial.com/contributor/7235138/ultrasamad
https://riptutorial.com/contributor/2579308/vivian
https://riptutorial.com/contributor/1745409/witvault
https://riptutorial.com/contributor/6356919/promisified
https://riptutorial.com/contributor/1785635/abhirathore2006
https://riptutorial.com/contributor/4352287/robeen
https://riptutorial.com/contributor/270274/brillout
https://riptutorial.com/contributor/1910355/jim
https://riptutorial.com/contributor/3229534/aron
https://riptutorial.com/contributor/1333836/kaloyan-kosev
https://riptutorial.com/contributor/1358674/leonardoborges
https://riptutorial.com/contributor/6902543/michael-peyper
https://riptutorial.com/contributor/2048417/pwolaq
https://riptutorial.com/contributor/1165178/qianyue
https://riptutorial.com/contributor/518428/sqzaman
https://riptutorial.com/contributor/5266158/ghostffcode
https://riptutorial.com/contributor/108616/tien-do
https://riptutorial.com/contributor/5932623/alex-young
https://riptutorial.com/contributor/2212431/alexander
https://riptutorial.com/contributor/6111271/brad-colthurst
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/834045/kousha
https://riptutorial.com/contributor/6338762/kyle-richardson
https://riptutorial.com/contributor/6338762/kyle-richardson
https://riptutorial.com/contributor/4484822/qop
https://riptutorial.com/contributor/1246018/skav
https://riptutorial.com/contributor/3836229/timo
https://riptutorial.com/contributor/1472764/adam
https://riptutorial.com/contributor/604131/mark-lapierre
https://riptutorial.com/contributor/5185595/mayank-shukla
https://riptutorial.com/contributor/1173952/valter-junior

27
User interface
solutions

vintproykt

28
Using React with
Flow

JimmyLv, lifeiscontent, Rifat, Rory O'Kane

29
Using ReactJS in
Flux way

vintproykt

30
Using ReactJS with
jQuery

Kousha, Shuvo Habib

31
Using ReactJS with
Typescript

Everettss, John Ruddell, kevgathuku, Leone, Rajab Shakirov

https://riptutorial.com/ 128

https://riptutorial.com/contributor/2396907/vintproykt
https://riptutorial.com/contributor/5871340/jimmylv
https://riptutorial.com/contributor/301252/lifeiscontent
https://riptutorial.com/contributor/262456/rifat
https://riptutorial.com/contributor/578288/rory-o-kane
https://riptutorial.com/contributor/2396907/vintproykt
https://riptutorial.com/contributor/834045/kousha
https://riptutorial.com/contributor/2993242/shuvo-habib
https://riptutorial.com/contributor/3708596/everettss
https://riptutorial.com/contributor/2733506/john-ruddell
https://riptutorial.com/contributor/2390312/kevgathuku
https://riptutorial.com/contributor/7199720/leone
https://riptutorial.com/contributor/3914072/rajab-shakirov

	About
	Chapter 1: Getting started with React
	Remarks
	Versions
	Examples
	Installation or Setup
	Hello World Component
	Hello World
	What is ReactJS?
	Hello World with Stateless Functions

	For example:
	Create React App
	Installation
	Configuration
	Alternatives
	Absolute Basics of Creating Reusable Components

	Components and Props
	Chapter 2: Communicate Between Components
	Examples
	Communication between Stateless Functional Components

	Chapter 3: Communication Between Components
	Remarks
	Examples
	Parent to Child Components
	Child to Parent Components
	Not-related Components

	Chapter 4: Components
	Remarks
	Examples
	Basic Component
	Nesting Components

	1. Nesting without using children
	Pros
	Cons
	Good if

	2. Nesting using children
	Pros
	Cons
	Good if

	3. Nesting using props
	Pros
	Cons
	Good if
	Creating Components

	Basic Structure
	Stateless Functional Components
	Stateful Components
	Higher Order Components
	setState pitfalls
	Props
	Component states - Dynamic user-interface
	Variations of Stateless Functional Components

	Chapter 5: Forms and User Input
	Examples
	Controlled Components
	Uncontrolled Components

	Chapter 6: Higher Order Components
	Introduction
	Remarks
	Examples
	Simple Higher Order Component
	Higher Order Component that checks for authentication

	Chapter 7: How and why to use keys in React
	Introduction
	Remarks
	Examples
	Basic Example

	Chapter 8: How to setup a basic webpack, react and babel environment
	Remarks
	Examples
	How to build a pipeline for a customized "Hello world" with images.

	Chapter 9: Installation
	Examples
	Simple setup

	Setting up the folders
	Setting up the packages
	Setting up webpack
	Testing the setup
	Using webpack-dev-server

	Setup
	Modifying webpack.config.js
	Chapter 10: Introduction to Server-Side Rendering
	Examples
	Rendering components

	renderToString
	renderToStaticMarkup
	Chapter 11: JSX
	Remarks
	Examples
	Props in JSX

	JavaScript Expressions
	String Literals
	Props Default Value
	Spread Attributes
	Children in JSX

	String Literals
	JSX Children
	JavaScript Expressions
	Functions as Children
	Ignored Values
	Chapter 12: Keys in react
	Introduction
	Remarks
	Examples
	Using the id of an element
	Using the array index

	Chapter 13: Performance
	Examples
	The Basics - HTML DOM vs Virtual DOM
	React's diff algorithm
	Tips & Tricks
	Performance measurement with ReactJS

	Chapter 14: Props in React
	Remarks
	Examples
	Introduction
	Default props
	PropTypes
	Passing down props using spread operator
	Props.children and component composition
	Detecting the type of Children components

	Chapter 15: React AJAX call
	Examples
	HTTP GET request
	Ajax in React without a third party library - a.k.a with VanillaJS
	HTTP GET request and looping through data

	Chapter 16: React Boilerplate [React + Babel + Webpack]
	Examples
	Setting up the project
	react-starter project

	Chapter 17: React Component Lifecycle
	Introduction
	Examples
	Component Creation

	getDefaultProps() (ES5 only)
	getInitialState() (ES5 only)
	componentWillMount() (ES5 and ES6)
	render() (ES5 and ES6)
	componentDidMount() (ES5 and ES6)
	ES6 Syntax
	Replacing getDefaultProps()
	Replacing getInitialState()
	Component Update

	componentWillReceiveProps(nextProps)
	shouldComponentUpdate(nextProps, nextState)
	componentWillUpdate(nextProps, nextState)
	render()
	componentDidUpdate(prevProps, prevState)
	Component Removal

	componentWillUnmount()
	React Component Container
	Lifecycle method call in different states

	Chapter 18: React Forms
	Examples
	Controlled Components

	Chapter 19: React Routing
	Examples
	Example Routes.js file, followed by use of Router Link in component
	React Routing Async

	Chapter 20: React Tools
	Examples
	Links

	Chapter 21: React with Redux
	Introduction
	Remarks
	Examples
	Using Connect

	Chapter 22: React, Webpack & Typescript installation
	Remarks
	Examples
	webpack.config.js

	The loader
	Resolve TS extensions
	tsconfig.json
	include
	compilerOptions.target
	compilerOptions.jsx
	compilerOptions.allowSyntheticDefaultImports
	My First Component

	Chapter 23: React.createClass vs extends React.Component
	Syntax
	Remarks
	Examples
	Create React Component

	React.createClass (deprecated)
	React.Component
	Declare Default Props and PropTypes

	React.createClass
	React.Component
	Set Initial State

	React.createClass
	React.Component
	Mixins

	React.createClass
	React.Component
	"this" Context

	React.createClass
	React.Component
	Case 1: Bind inline:
	Case 2: Bind in the class constructor
	Case 3: Use ES6 anonymous function
	ES6/React “this” keyword with ajax to get data from server

	Chapter 24: Setting Up React Environment
	Examples
	Simple React Component
	Install all dependencies
	Configure webpack
	Configure babel
	HTML file to use react component
	Transpile and bundle your component

	Chapter 25: State in React
	Examples
	Basic State
	setState()

	Using setState() with an Object as updater
	Using setState() with a Function as updater
	Calling setState() with an Object and a callback function
	Common Antipattern
	State, Events And Managed Controls

	Chapter 26: Stateless Functional Components
	Remarks
	Examples
	Stateless Functional Component

	Chapter 27: User interface solutions
	Introduction
	Examples
	Basic Pane
	Panel
	Tab
	PanelGroup

	Clarification
	Example view with `PanelGroup`s

	Chapter 28: Using React with Flow
	Introduction
	Remarks
	Examples
	Using Flow to check prop types of stateless functional components
	Using Flow to check prop types

	Chapter 29: Using ReactJS in Flux way
	Introduction
	Remarks
	Examples
	Data Flow

	Reverted

	Chapter 30: Using ReactJS with jQuery
	Examples
	ReactJS with jQuery

	Chapter 31: Using ReactJS with Typescript
	Examples
	ReactJS component written in Typescript
	Stateless React Components in Typescript
	Installation and Setup
	Stateless and property-less Components

	Credits

