Name: \qquad Period: \qquad Date: \qquad

REACTIONS / MOLES / STOICHIOMETRY NOTES HONORS CHEMISTRY

Directions: This packet will serve as your notes for this chapter. Follow along with the PowerPoint presentation and fill in the missing information. Important terms / ideas are in all capitals and bolded!

- CHEMICAL REACTION:
-Changes the way \qquad are \qquad together
-Atoms \qquad be created or destroyed!
- Indicators of a Reaction

1)
2)
3)
4)

- CHEMICAL EQUATION:
-REACTANTS:
-PRODUCTS:
- Symbols in Equations
___ separates the reactants
\qquad separates reactants from products
\qquad indicates a reversible reaction
\qquad solid
gas
- Rules for Writing Equations

1) Reactants must be on the \qquad
2) Products must be on the \qquad
3) Correct \qquad (and \qquad) should be written
4) $A n$ \qquad should separate the products from reactants -Ex:

- Equation Practice
-Examples: Write the skeleton equation for each reaction:
- Hydrogen (g) + Bromine (g) form \qquad
- Potassium chlorate breaks down into \qquad and \qquad
- Balancing Chemical Equations
-Since we cannot break the \qquad equations MUST be balanced
-Balanced equations have the \qquad of each type of atom on both sides of the equation -__ 90 in \qquad of the formulas so the \# of atoms of each element is the same on each side

WHAT GOES \qquad = WHAT COMES \qquad
-Coefficients vs. Subscripts:

- Equation Examples
-Example \#1:
-Example \#2:
- Errors to Avoid
-NEVER change a \qquad to balance an equation
- Ex: \qquad is a different compound than \qquad
-NEVER puta \qquad in the middle of a formula
- Ex:
- Best Rule for Balancing...
\qquad !!
-Show it:
- Balancing Chemical Equations
-Example \#1:

-Example \#2:

*If a polyatomic ion is present on \qquad sides of the equation, it can be placed in the table as a \qquad and not be \qquad

- Balancing Practice
-Examples: Make a Reactants / Products Table and balance.
- \qquad $+$ \qquad \rightarrow
\qquad $+$ \qquad \rightarrow \qquad
- \qquad
\qquad \rightarrow \qquad $+$ \qquad
- Types of Reactions
\qquad of reactions exist... but there are only several categories of reactions -We will examine \qquad types:
- SYNTHESIS REACTION:
\qquad $+$ \qquad \rightarrow \qquad
-Example: \qquad ... Iron plus oxygen produces \qquad
-Example: Predict the products for the reaction and balance.
- DECOMPOSITION REACTION:
\qquad \rightarrow \qquad $+$ \qquad
-Example: \qquad decomposes into carbon and water with the help of a \qquad -Example: Predict the products for the reaction and balance.
- SINGLE-REPLACEMENT REACTION:

-ACTIVITY SERIES

- Higher metal \qquad can \qquad any metal
lower than it, otherwise
\qquad WILL OCCUR!!
- Metals from Li to Na will
\qquad H from acids and water... from Mg to Pb will
\qquad H from \qquad only!
- Higher halogens (
\qquad can \qquad any halogen _) lower than it!!

Write the list:

Activity Series of Metals		
	Name	Symbol
	Lithium	Li
	Potassium	K
	Calcium	Ca
	Sodium	Na
	Magnesium	Mg
	Aluminum	AI
	Zinc	Zn
	Iron	Fe
	Lead	Pb
	(Hydrogen)	$(\mathrm{H})^{*}$
	Copper	Cu
	Mercury	Hg
	Silver	Ag

Li	Lithium
K	Potassium
Ba	Barium
Sr	Strontium
Ca	Calcium
Na	Sodium
Mg	Magnesium
Al	Aluminum
Mn	Manganese
Zn	Zinc
Cr	Chromium
Fe	Iron
Cd	Cadmium
Co	Cobalt
Ni	Nickel
Sn	Tin
Pb	Lead
H	Hydrogen
Sb	Antimony
As	Arsenic
Bi	Bismuth
Cu	Copper
Hg	Mercury
Ag	Silver
Pt	Platinum
Au	Gold

Most

ONLY IF \qquad IS MORE REACTIVE THAN \qquad !!
-Example: Many \qquad (but not all) will displace \qquad with an acid
-Example: Predict the products for the reaction and balance.
-Example: Predict the products for the reaction and balance.

- DOUBLE-REPLACEMENT REACTION:
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad
-Metals in the compound are ALWAYS written \qquad !!
-Sometimes these \qquad either!
-Usually involves a \qquad !!
-Example: Precipitate is formed from the reaction of two \qquad solutions
-Example: Predict the products for the reaction and balance.
- COMBUSTION REACTION:
\qquad $+$ \qquad \rightarrow \qquad $+$ \qquad
-If the reaction is COMPLETE, the products are always \qquad and \qquad !! If INCOMPLETE, the products are \qquad and \qquad $!$
-Example: Burning a \qquad in the presence of \qquad (very common to us) producing \qquad
-Example: Predict the products for the reaction and balance.
- Determining the Reaction Type
-Examine the \qquad to determine the type: $(E=$ element $/ C=$ compound $)$
- $E+E$
- $C+C \rightarrow C$ \qquad
- C \qquad
- $E+C$
- $C+c \rightarrow C+C$ \qquad
- $\mathrm{CH}+\mathrm{O}_{2}$
- Reactions Practice
-Examples: Determine the type of reaction for each. Then, predict the products and balance.
\circ \qquad $+$ \qquad \rightarrow
\circ \qquad $+$ \qquad \rightarrow
\circ \qquad $+$ \qquad \rightarrow
。 \qquad

○ \qquad $+$ \qquad

○ \qquad $+$ \qquad

- Measurement
-We can measure by mass or volume or we can \qquad pieces
-We measure mass in \qquad
-We measure volume in \qquad
-We count pieces in numbers, or \qquad or \qquad or.. \qquad $!$
- Conversion
-Mole conversions are useful but not \qquad in a lab...

1 mole element = \qquad (grams)
-Get it right from the \qquad !!
-For example, 1 mole of arsenic has \qquad 9

- MOLAR MASS:
-How to Determine Molar Mass:

1) Determine the \# of \qquad of the individual elements that make up the compound (just look at the \qquad
2) Look up the \qquad of each element
3) Multiply the \qquad of each by the \# of \qquad of each
4) Add up the \qquad
-Example: Find the molar mass of glucose (\qquad).

- Practice
-Examples: Calculate the molar mass of each.

○ \qquad :
\qquad

○ \qquad :

- PERCENT COMPOSITION:

-Determine the mass of each \qquad and divide each by the total mass of the \qquad -Formula:
-Example: Calculate the \% composition of a compound that is \qquad g of Ag and \qquad g of S.
-Example: A compound is formed when \qquad g Mg combines with \qquad g N. What is the \% composition?
-Example: Calculate the \% composition of \qquad _.
-Example: What is the \% composition of \qquad $?$

- MOLE:
-When measuring \qquad and \qquad we use moles
-Used to count very \qquad items
-Helps convert from the \qquad to the \qquad
-BUT, WHAT AMOUNT?: \qquad " \qquad
-THAT AMOUNT, BUT OF WHAT?
- REPRESENTATIVE PARTICLES:

Ex:

- Conversions
1 mole = \qquad atoms
1 mole = \qquad molecules
1 mole = \qquad formula units

These can be used in \qquad problems!!

- Atoms to Moles
-Example: A sample of Mg has \qquad atoms of Mg . How many moles of Mg are contained in the sample?
- Practice
-Example: How many atoms are there in \qquad moles of Xe ?
-Example: How many moles of MgCl_{2} are \qquad formula units of MgCl_{2} ?
-Example: How many molecules of CO_{2} are there in \qquad moles of CO_{2} ?
- Mole-Mass Relationship
-Sometimes it is convenient to have measurements in \qquad instead of \qquad
-We already know that \qquad $=$ \qquad from the Periodic Table
\qquad using Dimensional Analysis!
-Example: How many grams are there in \qquad moles of $\mathrm{H}_{2} \mathrm{O}$?
-Example: How many moles are there in \qquad grams of Cu ?
- Practice
-Example: How many moles is \qquad 9 NaOH ?
-Example: How many grams are there in \qquad moles of CO_{2} ?
-Example: How many atoms are there in \qquad g of C ?
- Mole-Volume Relationship
-Many chemicals exist as \qquad but difficult to \qquad
-Moles of a gas can be related to volume (\qquad), but temperature and pressure also play a role -Standard Temp. and Pressure (STP):
-At STP:
1 mole gas = \qquad liters
-Example: What is the volume of \qquad moles of CO_{2} at STP?
-Example: What is the volume of \qquad grams of He at STP?
- Practice
-Example: How many moles are \qquad L of O_{2} at STP?
-Example: What is the volume of \qquad g of CH_{4} at STP?

- EMPIRICAL FORMULA:

-How to Determine:

1) Change the \% to \qquad (if necessary)
2) Convert grams to \qquad for each element
3) Divide ALL of the mole answers by the \qquad (mole ratio)
4) If all \qquad then move on... if not then \qquad to get whole \#
5) Use the whole \# to represent the number of each \qquad ... write the formula
-Example: Determine the empirical formula of the following compound: \qquad \% C
\qquad \% O, and \qquad \% Cl.

- Practice
-Example: Determine the empirical formula of a compound that is \qquad \% K, \qquad \% C
\qquad \% H , and \qquad \% 0.
-Example: Methamphetamine is made of \qquad \% C \qquad \% H, and \qquad \% N. What is its empirical formula?

- MOLECULAR FORMULA:

-How to Determine:

1) Calculate the \qquad formula (if needed)
2) Calculate the \qquad of the empirical formula
3) Divide the given \qquad molar mass by the \qquad molar mass
4) Multiply \qquad of empirical formula by this \#
5) Write the molecular formula
-Example: Determine the molecular formula of a compound composed of \qquad \% C and
\qquad $\% \mathrm{H}$ with a molar mass of $70 \mathrm{~g} / \mathrm{mol}$.
-Combustion Example: Combustion of 10.68 g of Vitamin C (containing only C, H, and O) yields - 9 of CO_{2} and \qquad g of $\mathrm{H}_{2} \mathrm{O}$. The molar mass of the compound is $176.1 \mathrm{~g} / \mathrm{mol}$. What are the empirical and molecular formulas of this compound?
-Example: A compound is known to be composed of \qquad \% C \qquad \% H, and \qquad \% Cl. Its molar mass is known to be 197.92 g . What is its molecular formula?

- STOICHIOMETRY:

-Balanced equation is much like a \qquad .. tells you the necessary \qquad amounts, and the amount of product that will be made
-Use this information to " \qquad " the \qquad to make how much you want
-Example: \qquad eggs + \qquad cups flour + \qquad cup sugar + \qquad cups milk \rightarrow \qquad cookies

I need \qquad eggs for every \qquad cookies

I need \qquad cups flour for every \qquad sugar

I need \qquad cups milk for every \qquad cookies

There's a \qquad for each ingredient and product!
-Example: \qquad $\mathrm{H}_{2}+$ \qquad $\mathrm{O}_{2} \rightarrow$ \qquad $\mathrm{H}_{2} \mathrm{O}$

I need \qquad H_{2} for every \qquad O_{2}

I need \qquad $\mathrm{H}_{2} \mathrm{O}$ for every \qquad O_{2}

I need \qquad H_{2} for every \qquad $\mathrm{H}_{2} \mathrm{O}$

There's a \qquad for each reactant and product... \qquad !!

- Balanced Equations
-Coefficients in a balanced chemical equation can represent a ratio of \qquad molecules,
\qquad (gases), or \qquad ... NOT \qquad !
-Convert from an amount of one \qquad to another or to amounts of \qquad -Use \qquad

Equations must be \qquad and \qquad in order to do these problems!!

- Stoichiometry Problems
- Always follow this same basic format...

- Mole to Mole Conversions
-Example: Sodium and chlorine gas react to produce sodium chloride. How many moles of sodium chloride can be produced from \qquad moles of sodium?
-Example: How many moles of O_{2} are produced when \qquad moles of aluminum oxide decompose?
- Mass to Mass Conversions
-Example: If \qquad g of $\mathrm{Fe}(3+)$ are added to a solution of copper (II) sulfate, how much solid copper would form?
-Example: Silicon computer chips are made using the following reaction: $\mathrm{SiCl}_{4}+2 \mathrm{Mg} \rightarrow 2 \mathrm{MgCl}_{2}+$ Si. How many grams of Mg are needed to make \qquad g of Si ?
- Mass to Volume Conversions
-Example: Potassium metal reacts with water to produce potassium hydroxide and hydrogen gas. If __ 9 K is reacted completely, how many liters of H_{2} gas can be produced at STP?
- Practice
-Example: In order to combust \qquad moles of $\mathrm{C}_{2} \mathrm{H}_{2}$, how many moles of O_{2} are required? Balance the following: $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
-Example: Sodium and chlorine gas react to give sodium chloride. If you end up with \qquad g of NaCl , how many grams of Na did you start with?
-Example: If $M g$ and \qquad L of HCl gas are reacted, how many grams of MgCl_{2} are formed?

- LIMITING REAGENT:

-Amount of reactants available for a reaction \qquad the amount of product that can be made

-EXCESS REAGENT:

-To determine the limiting reagent, you must do \qquad stoichiometry problems with the reactants -Reactant that makes the \qquad amount of \qquad is the limiting reagent!!!
-How to Determine:

1) Convert to \qquad for each of the givens (remember two problems!)
2) Use the \qquad to convert to moles of the product
3) Keep going to \qquad of the product (could just compare moles, but usually the question asks you this anyway)
4) Reactant that produces the \qquad product is the limiting reactant

- Limiting Reagent Problems
-Example: Copper reacts with sulfur to form copper (I) sulfide. If \qquad gof Cu reacts with
\qquad $g S$, how much product will be formed?
-Example: How much of the \qquad reagent will be left over from the previous problem?
- Practice
-Example: Identify the limiting reagent and how much ammonia gas can be produced when \qquad 9 of nitrogen gas reacts with \qquad g of hydrogen gas.
-Example: How many \qquad of excess reagent are left over from the previous problem?
-Example: Use the equation: $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$. Identify the limiting reagent when \qquad HCl reacts with \qquad $g \mathrm{Mg}$. How much MgCl_{2} will form?
- PERCENT YIELD:
-No one is \qquad in the laboratory... used to figure out how \qquad the methods were
-ACTUAL YIELD:
-THEORETICAL YIELD:
-Equation:
-How to Determine:

1) \qquad is given or found in lab
2) Calculate \qquad by dimensional analysis (may need limiting reagent)
3) Use the \qquad
*SHOULD \qquad BE GREATER THAN \qquad ... WHY?
-Example: A group of students determined that they should get \qquad g of product from a reaction. They actually ended up with \qquad g. What is their percent yield?

- Practice
-Example: About \qquad g of aluminum are reacted with \qquad g of copper (II) sulfate producing aluminum sulfate and copper. If \qquad g of copper are produced, what is the percent yield?

