Name: _____ Period: ____ Date: _____

REACTIONS / MOLES / STOICHIOMETRY NOTES HONORS CHEMISTRY

Directions: This packet will serve as your notes for this chapter. Follow along with the PowerPoint presentation and fill in the missing information. Important terms / ideas are in all capitals and bolded!

•	CHEMICAL REACTION:			
	-Changes the way	are	together	
	-Atoms	_ be created or des	stroyed!	
•	Indicators of a Reaction			
	1)		3)	
	2)		4)	
•	CHEMICAL EQUATION:			
	-REACTANTS:			
	-PRODUCTS:			
	_		>	
•	Symbols in Equations			
	separates the reac	tants	liquid	
	separates reactant	rs from products	aqueous or water soluti	on
	indicates a reversil	ble reaction	indicates heat is supplie	ed
	solid		CATALYST	
	gas			
•	Rules for Writing Equatio	ns		
	1) Reactants must be on	the		
	2) Products must be on t	he		
	3) Correct	(and) should be written	
	4) Anshou	ıld separate the pro	oducts from reactants	
	-Ex:			

•	Equation	Practice
---	----------	----------

•

•

-Examples: Write the skeleton equation for each reaction: Hydrogen (g) + Bromine (g) form ______ Potassium chlorate breaks down into ______ and _____ **Balancing Chemical Equations** -Since we cannot break the ______, equations MUST be balanced -Balanced equations have the ______ of each type of atom on both sides of the equation _____ go in _____ of the formulas so the # of atoms of each element is the same on each side WHAT GOES _____ = WHAT COMES _____! -Coefficients vs. Subscripts: Equation Examples ٠ -Example #1: -Example #2: Errors to Avoid -NEVER change a ______ to balance an equation Ex: _______ is a different compound than ______ -NEVER put a ______ in the middle of a formula • Ex: Best Rule for Balancing... ٠ MAKE A _____ li

-Show it:

• Balancing Chemical Equations

-Example #1:

-Example #2:

*If a polyatomic ion is present on _____ sides of the equation, it can be placed in the table as a _____ and not be _____!

Balancing Practice

-Examples: Make a Reactants / Products Table and balance.

○ _____+ ____ → ____

○ _____+ ____ → _____

○ _____+ _____ → ____+ _____

• Types of Reactions

-_____ of reactions exist... but there are only several categories of reactions

-We will examine _____ types:

• SYNTHESIS REACTION:

_____ + ____ **>** _____

-Example: _______ Iron plus oxygen produces ______

-Example: Predict the products for the reaction and balance.

• DECOMPOSITION REACTION:

_____ → _____ + _____

-Example: ______ decomposes into carbon and water with the help of a ______

-Example: Predict the products for the reaction and balance.

• SINGLE-REPLACEMENT REACTION:

_____ + _____ → _____ + _____

-Metals replace ______, nonmetals replace _____!!

-Sometimes it _____! A must be _____ than B!!

-ACTIVITY SERIES

κ **Activity Series of Metals** Ba Sr Name Symbol Ca can any metal Na Lithium Li lower than it, otherwise Mg Potassium К ΑĪ WILL OCCUR!! Calcium Ca Mn Decreasing reactivity Sodium Na Zn Cr Magnesium Metals from Li to Na will Mg 0 Fe Aluminum ΑI H from acids and Cd Zinc Zn Со water... from Mg to Pb will Ni Iron Fe _____ H from ____ Sn Lead Pb ΡЬ only! (Hydrogen) $(H)^*$ н Copper Cu Sb As Higher halogens (______ Mercury Hg Bi Silver can _____ any halogen Ag Cu lower than it!! Hg Ag PŤ Write the list: Au

Most Lithium Reactive Potassium Barium Strontium Calcium Sodium Magnesium Aluminum Manganese Zinc Chromium Iron Cadmium Cobalt Nickel Tin Lead Hydrogen Antimony Arsenic Bismuth Copper Mercury Silver Platinum Least Gold Reactive

Li

ONLY IF ____ IS MORE REACTIVE THAN ___!!

-Example: Many ______ (but not all) will displace ______ with an acid

-Example: Predict the products for the reaction and balance.

-Example: Predict the products for the reaction and balance.

• DOUBLE-REPLACEMENT REACTION:

-Example: Predict the products for the reaction and balance.

5

• COMBUSTION REACTION:

• Determining the Reaction Type

-Examine the ______ to determine the type: (E = element / C = compound)

0	E + E	
0	$C + C \rightarrow C$	
0	С	
0	E + <i>C</i>	
0	$C + C \rightarrow C + C$	
0	CH + O₂	

Reactions Practice

-Examples: Determine the type of reaction for each. Then, predict the products and balance.

urement

	-We can measure by mass or volume or we can pieces
	-We measure mass in
	-We measure volume in
	-We count pieces in numbers, or, or, or, or!
•	Conversion
	-Mole conversions are useful but not in a lab
	1 mole element = (grams)
	-Get it right from the!
	-For example, 1 mole of arsenic hasg
•	MOLAR MASS:
	-How to Determine Molar Mass:
	 Determine the # of of the individual elements that make up the compound (just look at the)
	2) Look up the of each element
	3) Multiply the of each by the # of of each
	4) Add up the
	-Example: Find the molar mass of glucose ().

• Practice

-Examples: Calculate the molar mass of each.

o ____:

o _____:

o _____:

• PERCENT COMPOSITION:

-Determine the mass of each ______ and divide each by the total mass of the _____

-Formula:

-Example: Calculate the % composition of a compound that is _____ g of Ag and _____ g of S.

-Example: A compound is formed when _____ g Mg combines with _____ g N. What is the % composition?

-Example: Calculate the % composition of _____.

-Example: What is the % composition of _____?

٠

٠

•

-When measuring and	, we use moles
-Used to count very items	
-Helps convert from the	to the
-BUT, WHAT AMOUNT?:	"
-THAT AMOUNT, BUT OF WHAT?	
• REPRESENTATIVE PARTICLES:	
Ex:	
Conversions	
1 mole =	atoms
1 mole =	molecules
1 mole =	formula units
These can be used in	problems!!
Atoms to Moles	
-Example: A sample of Mg has contained in the sample?	atoms of Mg. How many moles of Mg are
Practice	
-Example: How many atoms are there in m	oles of Xe?
-Example: How many moles of MgCl2 are	formula units of MgCl ₂ ?

-Example: How many molecules of CO2 are there in _____ moles of CO2?

• Mole-Mass Relationship

-Sometimes it is convenient to have measurements in _____ instead of _____

-We already know that ______ = _____ from the Periodic Table

-_____ using Dimensional Analysis!

-Example: How many grams are there in _____ moles of H₂O?

-Example: How many moles are there in _____ grams of Cu?

• Practice

-Example: How many moles is _____ g NaOH?

-Example: How many grams are there in _____ moles of CO2?

-Example: How many atoms are there in _____ g of C?

• Mole-Volume Relationship

-Many chemicals exist as _____ but difficult to _____

-Moles of a gas can be related to volume (_____), but temperature and pressure also play a role

-Standard Temp. and Pressure (STP):

-At STP:

1 mole gas = _____ liters

-Example: What is the volume of _____ moles of CO2 at STP?

-Example: What is the volume of _____ grams of He at STP?

• Practice

-Example: How many moles are _____ L of O2 at STP?

-Example: What is the volume of _____ g of CH4 at STP?

• EMPIRICAL FORMULA:

-How to Determine:

- 1) Change the % to _____ (if necessary)
- 2) Convert grams to _____ for each element
- 3) Divide ALL of the mole answers by the _____ (mole ratio)
- 4) If all ______ to get whole #
- 5) Use the whole # to represent the number of each ______... write the formula

-Example: Determine the empirical formula of the following compound: _____% C, ____% O, and _____% Cl.

• Practice

-Example: Determine	the empirical formula (of a compound that is	% K,	% C,
% H, and	% O.			

-Example: Methamphetamine is made of _____% C, ____% H, and ____% N. What is its empirical formula?

• MOLECULAR FORMULA:

-How to Determine:

- 1) Calculate the _____ formula (if needed)
- 2) Calculate the _____ of the empirical formula
- 3) Divide the given _____ molar mass by the _____ molar mass
- 4) Multiply _____ of empirical formula by this #
- 5) Write the molecular formula
- -Example: Determine the molecular formula of a compound composed of _____% C and ____% H with a molar mass of 70 g/mol.

-Combustion Example: Combustion of 10.68 g of Vitamin C (containing only C, H, and O) yields ______ g of CO_2 and ______ g of H_2O . The molar mass of the compound is 176.1 g/mol. What are the empirical and molecular formulas of this compound?

-Example: A compound is known to be composed of _____% C, ____% H, and ____% Cl. Its molar mass is known to be 197.92 g. What is its molecular formula?

• STOICHIOMETRY:

	·			
-Use this informa	tion to "	" the	to make how r	nuch you wan
-Example: eg	gs + cups flour ·	+ cup sugar +	_cups milk → co	ookies
I need	_eggs for every	_ cookies		
I need	_ cups flour for eve	ry sugar		
I need	_cups milk for ever	y cookies		
т	here's a	for each ingredie	nt and product!	
-Example: H2	+O₂ → H₂	0		
I need	_H₂ for every	O ₂		
I need	_H₂O for every	_ O ₂		
I need	_H₂ for every	H₂O		
There's a	for each	reactant and produc	t	!!
Balanced Equatior	IS			
-Coefficients in a (gase:	balanced chemical e s), or	equation can represent	a ratio of	_, molecules,
-Convert from an	amount of one	to ar	nother or to amounts	s of
-Use				
Equations must	be		_ and	in ord

-Always follow this same basic format...

• Mole to Mole Conversions

-Example: Sodium and chlorine gas react to produce sodium chloride. How many moles of sodium chloride can be produced from _____ moles of sodium?

-Example: How many moles of O2 are produced when _____ moles of aluminum oxide decompose?

• Mass to Mass Conversions

-Example: If ______ g of Fe (3+) are added to a solution of copper (II) sulfate, how much solid copper would form?

-Example: Silicon computer chips are made using the following reaction: SiCl₄ + 2 Mg \rightarrow 2 MgCl₂ + Si. How many grams of Mg are needed to make _____ g of Si?

• Mass to Volume Conversions

-Example: Potassium metal reacts with water to produce potassium hydroxide and hydrogen gas. If _____ g K is reacted completely, how many liters of H_2 gas can be produced at STP?

• Practice

-Example: In order to combust _____ moles of C_2H_2 , how many moles of O_2 are required? Balance the following: $C_2H_2 + O_2 \rightarrow CO_2 + H_2O$

-Example: Sodium and chlorine gas react to give sodium chloride. If you end up with _____ g of NaCl, how many grams of Na did you start with?

-Example: If Mg and _____ L of HCl gas are reacted, how many grams of MgCl2 are formed?

• LIMITING REAGENT:

-Amount of reactants available for a reaction ______ the amount of product that can be made

-EXCESS REAGENT:

-To determine the limiting reagent, you must do _____ stoichiometry problems with the reactants

-Reactant that makes the _____ amount of _____ is the limiting reagent!!!

-How to Determine:

1) Convert to ______ for each of the givens (remember two problems!)

2) Use the _____ to convert to moles of the product

- 3) Keep going to ______ of the product (could just compare moles, but usually the question asks you this anyway)
- 4) Reactant that produces the _____ product is the limiting reactant

• Limiting Reagent Problems

-Example: Copper reacts with sulfur to form copper (I) sulfide. If _____ g of Cu reacts with _____ g S, how much product will be formed?

-Example: How much of the _____ reagent will be left over from the previous problem?

• Practice

-Example: Identify the limiting reagent and how much ammonia gas can be produced when _____ g of nitrogen gas reacts with _____ g of hydrogen gas.

-Example: How many ______ of excess reagent are left over from the previous problem?

-Example: Use the equation: $Mg + 2 HCl \rightarrow MgCl_2 + H_2$. Identify the limiting reagent when _____ g HCl reacts with _____ g Mg. How much $MgCl_2$ will form?

• PERCENT YIELD:

-No one is ______ in the laboratory... used to figure out how ______ the methods were

-ACTUAL YIELD:

-THEORETICAL YIELD:

-Equation:

-How to Determine:

1) _____ is given or found in lab

2) Calculate ______ by dimensional analysis (may need limiting reagent)

3) Use the _____

*SHOULD ______ BE GREATER THAN _____... WHY?

-Example: A group of students determined that they should get _____ g of product from a reaction. They actually ended up with _____ g. What is their percent yield?

• Practice

-Example: About _____ g of aluminum are reacted with _____ g of copper (II) sulfate producing aluminum sulfate and copper. If _____ g of copper are produced, what is the percent yield?