
152

Reactive Caching for Composed Services
Polling at the Speed of Push

SEBASTIAN BURCKHARDT,Microsoft Research, United States

TIM COPPIETERS, Vrije Universiteit Brussel, Belgium

Sometimes, service clients repeat requests in a polling loop in order to refresh their view. However, such

polling may be slow to pick up changes, or may increase the load unacceptably, in particular for composed

services that disperse over many components. We present an alternative reactive polling API and reactive
caching algorithm that combines the conceptual simplicity of polling with the efficiency of push-based change

propagation. A reactive cache contains a summary of a distributed read-only operation and maintains a

connection to its dependencies so changes can be propagated automatically.

We first formalize the setting using an abstract calculus for composed services. Then we present a fault-

tolerant distributed algorithm for reactive caching that guarantees eventual consistency. Finally, we implement

and evaluate our solution by extending the Orleans actor framework, and perform experiments on two bench-

marks in a distributed cloud deployment. The results show that our solution provides superior performance

compared to polling, at a latency that comes close to hand-written change notifications.

CCS Concepts: • Computing methodologies → Distributed computing methodologies; Distributed
programming languages; • Software and its engineering→ Concurrent programming structures; Frame-

works;

Additional Key Words and Phrases: Services, Distributed Programming, Reactive Programming, Actor Model,

Virtual Actors

ACM Reference Format:
Sebastian Burckhardt and Tim Coppieters. 2018. Reactive Caching for Composed Services: Polling at the Speed

of Push. Proc. ACM Program. Lang. 2, OOPSLA, Article 152 (November 2018), 38 pages. https://doi.org/10.1145/

3276522

1 INTRODUCTION
To simplify development and operation, cloud services are often split into component services

that offer different functionality and may depend on each other. Some service components provide

generic functionality such as durable storage or communication. Others, especially microservices,
offer an application-specific functionality. Microservices are commonly implemented using actor

frameworks [Akka 2016; Armstrong 2010; Chuang et al. 2013; Orbit 2016; Orleans 2016; Sang et al.

2016; SF Reliable Actors 2016] that further partition the service into small, application-defined

entities. For example, actors may represent individual user profiles, articles, game sessions, devices,

bank accounts, or chat rooms.

Services must often process large volumes of requests, including both external requests and

internal requests between components. For example, when a user connects from a browser, a single

external service request may in turn issue many more requests among internal component services.

Authors’ addresses: Sebastian Burckhardt, Microsoft Research, United States, sburckha@microsoft.com; Tim Coppieters,

Vrije Universiteit Brussel, Belgium, coppieters.tim@gmail.com.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/11-ART152

https://doi.org/10.1145/3276522

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

https://doi.org/10.1145/3276522
https://doi.org/10.1145/3276522
https://doi.org/10.1145/3276522

152:2 Sebastian Burckhardt and Tim Coppieters

Often, such requests are needed simply to get a cohesive view of application state that is scattered

across the micro-services, actors, or partitions.

The challenge we address in this work arises when clients require an up-to-date view of the

distributed application state, i.e. would like to refresh on changes. The most common solution

is to simply repeat the request periodically, i.e. run a polling loop on the client. This is easy to

understand and implement. Low-frequency polling is an easy solution, but does not deliver changes

quickly. High-frequency polling, on the other hand, produces tremendous extra load on the service,

in particular if each request spawns many more internal requests.

To do better, we propose a combination of an efficient push-based caching algorithm with a

convenient, polling-like API:

(1) We propose a distributed, fault-tolerant algorithm for maintaining reactive caches. A reactive

cache maintains a subscription to the data it depends on, so that changes can be pushed to

the cache.

(2) We provide a client API for reactive polling that resembles a standard polling loop, but is built

on top of the reactive caching mechanism, and thus receives push-based change notifications.

Chirper Example. Consider an application where users post messages to their own timeline, and

view a timeline containing all messages posted by people they are following. We can implement

such a service using two partitioned microservices as shown in Fig. 1, written in a virtual-actor-style

imperative pseudocode. Many actor frameworks support the development of microservices in a

comparable style [Bernstein et al. 2017; Chuang et al. 2013; Orbit 2016; Orleans 2016; Sang et al.

2016; SF Reliable Actors 2016].

1 service Posts partition userid: string
2 {
3 // stores all messages by this user

4 state map⟨time,string⟩ ;
5 // update operations

6 op Post(t: time, msg: string) {
7 state[t] = msg ;
8 }
9 op Unpost(t: time) {
10 state.remove(t) ;
11 }
12 // read operations

13 op Get(): list⟨pair⟨time,string⟩⟩) {
14 var msgs=new list⟨pair⟨time,string⟩⟩() ;
15 foreach(var m in state)
16 msgs.add((m.key, m.value)) ;
17 return msgs ;
18 }
19 }

20 service Timeline partition userid: string
21 {
22 // stores set of followed users

23 state set⟨string⟩ ;
24 // update operations

25 op Follow(id: string) { state.add(id) ; }
26 op Unfollow(id: string) {state.remove(id) ;}
27 // read operation

28 op Get(): list⟨pair⟨time,string⟩⟩ {
29 // retrieve posts by this user

30 var msgs = await Posts⟨userid⟩.Get() ;
31 // incorporate posts of followed users

32 foreach(var f in state) {
33 var fm = await Posts⟨f⟩.Get() ;
34 // add all posts to the list

35 foreach(var m in fm){msgs.add(m) ;}
36 }
37 msgs.sort() ;
38 return msgs ;
39 }
40 }

Fig. 1. Pseudocode for the Chirper service example.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:3

41

42

43 while (interested) {
44 try {
45 var result = Timeline⟨myuserid⟩.Get() ;
46 display(result) ;
47 // wait 5 seconds before refresh

48 await delay(5000) ;
49 } catch(TimeoutException) {
50 display("no response, retrying...") ;
51 }
52 }

54 var rp = CreateReactivePoll(
55 // anonymous function

56 ()⇒ Timeline⟨myuserid⟩.Get()
57)
58 while (interested) {
59 try {
60 var result = await rp.NextResult() ;
61 display(result) ;
62 } catch(TimeoutException) {
63 display("no response, retrying...") ;
64 }
65 }
66 rp.Dispose() ;

Fig. 2. (a) left: conventional client-side polling. (b) right: proposed reactive poll API.

The Posts service is partitioned by user, with each partition identified by a user-id string. The

state of each partition is a collection that maps timestamps to strings, representing all posts by that

user. The operations Post and Unpost add or remove posts, respectively, and the operation Get
(line 13) returns a list of all posts.

The Timeline service is similarly partitioned by user. The state of each partition is a set of strings,

which represent the users followed by this user (line 23). The operations Follow and Unfollow
modify that set. The operation Get returns a combined, sorted list of all messages posted by this

user and all followed users. First, it makes a remote call to the Posts⟨userid⟩ service partition, to
retrieve all posts by this user (line 30). Then, it runs a loop to retrieve the messages of all followed

users, adding them to the list. Finally it sorts and returns the list (line 37, line 38). We illustrate a

distributed execution of Timeline.Get in Fig. 3.

Polling. Consider a client that wants to refresh the user display whenever the timeline changes (as

a consequence of any post, unpost, follow, or unfollow operations). A straightforward polling-based

solution is shown in Fig. 2a on the left. It repeatedly queries the timeline (line 45) and updates the

display (line 46), then waits for some fixed time interval (line 47).

Polling is easy to understand, and handles failures gracefully (line 50). However, choosing a

satisfactory polling interval is not always possible. Infrequent polling means the displayed result

can lag significantly behind the current state; but frequent polling dramatically increases the

load on the service, requiring us to pay for more servers to keep up. We demonstrate this effect

experimentally in section 5.

Reactive Polling API. To take advantage of our new mechanism, developers replace the polling

loop in Fig. 2a with the code shown in Fig. 2b on the right. It first creates a ReactivePoll object
(line 54), passing the request to execute as a lambda (line 56). Inside the loop, we repeatedly call

NextResult (line 60) to get the first and successive results, and display them. When called in the

first iteration of the loop, await rp.NextResult() behaves just like a normal, asynchronous request;

but under the covers, the runtime now tracks what data the request depends on and maintains

a connection to it. When called again in subsequent iterations of the loop, await rp.NextResult()
awaits until the result is actually different from the last returned result. Therefore, it is no longer

necessary to add a time delay into each iteration - successive loop iterations are now triggered only

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:4 Sebastian Burckhardt and Tim Coppieters

Timeline⟨Alice⟩

{Bob}

Posts⟨Alice⟩

{x,y}

Posts⟨Bob⟩

{z}Posts⟨Alice⟩.Get () → { x, y } Posts⟨Bob⟩.Get () → { z }

Timeline⟨Alice⟩.Get () → { x, y, z }

Fig. 3. Illustration of a distributed execution of Timeline.Get, summaries, and dependencies.

by actually differing results, as pushed by the reactive caching mechanism under the hood. When

no longer needed, the code must dispose the ReactivePoll object (line 66) to release resources for

the tracking.
1

Actor Framework Integration. While our idea and algorithm are not tied to any particular

framework, our implementation uses a virtual actor framework [Bernstein et al. 2014; Orleans 2016]

to demonstrate how reactive caching can be provided automatically without changing the service

code. Note that some actor frameworks, including virtual actors, have altered the basic actor model

to emphasize a service-nature of actors. For example, they offer a type-checked RPC interface

instead of just one-way messages, and favor stable addresses over dynamic creation and garbage

collection. Building a micro-service from virtual actors is thus very similar to building a service

from micro-services, but with extra convenience and performance. In particular, the framework

can provide automatic runtime support for failure detection and recovery, and for load balancing

over elastic clusters.

Alternative Solutions. It is possible to keep clients up-to-date using alternative solutions, but they
require significant changes to the original service code (Fig. 1). The observer pattern is a common

ad-hoc solution. It means that the programmer explicitly adds state, operations, and code to track

dependencies and propagate changes at the application level. This can quickly become complex.

Even for non-distributed programs, the observer pattern is error-prone [Salvaneschi et al. 2014]

and difficult to maintain.

Another common approach is to use streams [Orleans 2016; Reactors.IO 2016], or to use publish-
subscribe services [Eugster et al. 2003]. These allow elegant expression and efficient execution

of dataflow computations, and are extremely convenient for many workloads, in particular for

analytics. However, they are not a panacea. Handling applications with dynamically changing

dependencies can be challenging, e.g. (1) applications that mix state- and event-based paradigms,

e.g. want to first read the state but then also subscribe to changes; (2) applications that depend on

state dispersed over multiple components in a manner that is nontrivial to convert into a functional

join expression; or (3) subscriptions that require data-dependent dynamic switching of streams

or topics. In such applications, concurrency- or failure-induced bugs are hard to avoid. Reactive

caching solves this problem for the developer: it constructs and maintains a dynamic dataflow

graph automatically by tracking dependencies at runtime.

Failures. Failures are a normal occurrence when operating services in the cloud. If using a

framework, it will typically detect a failed partition and recover it by restarting it and recovering

1
Our C# implementation supports the IDisposable pattern, so the application can employ a using clause to automatically

dispose the ReactivePoll object when control exits the scope.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:5

its state. However, this process is not fully transparent, as some state may be lost, in particular in-

progress requests. Also, requests that update multiple partitions can fail non-atomically. The Chirper

application handles failures via idempotence: it expects clients to retry any update operations (Post,
Unpost, Follow, or Unfollow) that do not complete successfully.

Note thatReactivePoll objects do not require any special consideration of failures by the developer,
since they are built on top of a fault-tolerant reactive caching algorithm.

Recursive Summaries. Our algorithm caches summaries that record (1) the result of executing

an operation, and (2) what that result depends on. When computing a summary at some service

partition, it can call remote operations, which are also summarized. This execution leads to a

dependency tree (Fig. 3). Note that dependencies can be detected dynamically during execution,

e.g. by instrumenting service calls; there is no requirement for a static analysis. The summaries are

shown as black boxes in Fig. 3.

Eventual Consistency. We call a summary up-to-date if it reflects an execution of the operation

on a snapshot of the current global state. Our algorithm guarantees that any summary that is not

up-to-date is eventually recomputed. In particular, any final result is snapshot-consistent. Moreover,

because we maintain a dependency graph and immediately propagate changes along its edges, the

change propagation happens at the speed of push: it does not have to wait for some arbitrary timer

interval to expire, as with polling.

Incremental Repair. To refresh a summary that is not up-to-date, we recompute the operation.

During recomputation, we elide nested operation calls for which we have a summary and instead

use the cached result. After recomputing a summary, we propagate the new result to dependent

summaries only if the new result is different than the old one. This means that the summary tree

(Fig. 3) is not simply replaced, but is repaired using an incremental and parallel bottom-up process.

Inconsistent Views. Even in a standard polling loop, an operation that reads from more than one

partition (e.g. Timeline.Get) is not guaranteed to see a globally consistent snapshot. Developers

must thus take care to write such operations robustly. Still, the reads are at least sequentially
consistent. For example, if an operation reads from partition A first, then from partition B, what it

reads from B is at least as fresh as what it read from A.

Consistency Tradeoff. When using reactive caching, the consistency guarantees are weaker for
intermediate results, but stronger for final results: Intermediate results may be not sequentially

consistent, but final results are guaranteed to be snapshot consistent. As intermediate results are

recomputed quickly, reactive caching is particularly useful for applications where rapid refresh is

more important than the consistency of intermediate results.

1.1 Contributions
Overall, we make the following contributions.

Polling API. We propose an API to replace polling loops (Fig. 2a) with a polling-abstraction

(Fig. 2b) that can be optimized under the hood.

Service Calculus. As a foundational contribution, we present a minimal core calculus that models

composed, partitioned services communicating asynchronously (§2). This calculus provides a

concise reference and means of comparison for virtual actors and related middleware programming

models [Chuang et al. 2013; Orbit 2016; Orleans 2016; Sang et al. 2016; SF Reliable Actors 2016]. It

also enables us to describe our algorithm precisely. We include a type system, and prove progress

and preservation theorems.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:6 Sebastian Burckhardt and Tim Coppieters

Reactive Caching Algorithm. We present a novel distributed, fault-tolerant reactive caching

algorithm (§3). By using a distributed, bipartite dependence graph of summaries and caches, it

avoids a central point of contention or failure, and can scale elastically. For reference, we include a

complete formalization of the algorithm in appendix §C.

Implementation. We have implemented the algorithm as an extension of the Orleans virtual actor

runtime [Orleans 2016]. Since the latter already provides failure detection and elasticity, reactive

caching is fully automatic. In particular, developers who wish to use it do not have to make any
changes to the service code. The only required change is on the client, replacing polling loops with

reactive polling objects (i.e. refactor Fig. 2a to Fig. 2b).

Evaluation. We provide a performance evaluation (§5) in the Orleans context, on two benchmarks.

It demonstrates that the propagation latency when using reactive caching is much better than when

using polling, and that the throughput when using reactive caching is better than when polling

with high frequency.

2 FORMULATION
To describe the problem and our solution precisely, we now define a minimal core calculus for

composed services. It models partitioned services, asynchronous communication, and failures, by

extending the simply typed lambda calculus with imperative features and failure transitions.

All code executes within the context of a service partitionG⟨v⟩, each identified by a partition key
v . A service partition’s behavior is defined by a service definition G, which defines the partition

key type, the type of the internal state, an initial state, and the public operations. For example,

we previously showed informal service definitions for Timeline and Posts in Fig. 1, and service

partitions Timeline⟨Alice⟩, Posts⟨Alice⟩ and Posts⟨Bob⟩ in Fig. 3.

Unlike objects or conventional actors, service partitions are not created or deleted by the program,

but exist perpetually, just like virtual actors [Bernstein et al. 2014]. In fact, service partitions

and service definitions are the semantic equivalent of Orleans grain instances and grain classes

[Bernstein et al. 2014] that are marked with a [Reentrant] attribute. Hence our use of the letters д
and G to represent them.

2.1 Syntax
We show the basic syntax in Fig. 4a on the left. We use a standard call-by-value evaluation, with

a minimal syntax based on variables x , functions λx : t .e , values v , expressions e , and function

application e e ′. The remaining syntax extends this core calculus with types and imperative features

as usual (see [Pierce 2002] for an extensive treatment of the topic). For example, we can define

syntactic sugar for let-expressions (let x = e in e ′) ≡ ((λx : t .e ′) e) and sequential composition

(e; e ′) ≡ let x = e in e ′ (where x not free in e ′).
We include the unit constant () and the unit type, but we elide other basic types or constants for

simplicity. We distinguish between serializable types s , and general types t . The latter can include

function types and task types task s which represent the future result of a remote operation call.

Non-serializable values cannot be stored in the state, nor sent in messages. Function types t →µ t
′

include an effect µ which is either r or u, for read-only or update.

A service definition G is of the form ⟨s⟩ v0 (o : f). The type s specifies the partition key type

(we can use unit for non-partitioned services). The value v0 defines the initial state of the service

partition. The list (o : f) is comprised of definitions (o : f) containing an operation name o and a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:7

function f , the implementation. Operation names are distinguished into read-only operations or
and update operations ou .

2

Each service partition has locally mutable state, similar to a mutable reference, and can make

asynchronous calls to another partition (of the same or a different service). We extend the expression

syntax accordingly. The expression key reads the key of the service partition on which the code is

executing. The expressions get and (set e) read and update the state, respectively. The expression

G⟨e⟩.o(e ′) performs an asynchronous operation call to a remote service partition G⟨e⟩, where e
is an expression that evaluates to the partition key, o is the name of the operation, and e ′ is an
expression that evaluates to the argument to be passed to the operation. A remote call immediately

returns a special value, a placeholder p of type task s , which is commonly called a future [Flanagan
and Felleisen 2001; Moreau 1970]. Thus, multiple remote calls can be simultaneously in progress.

For an expression e of type task s , the expression await e waits for the placeholder to resolve and

returns the result.

For example, we can perform two sequential calls as

await G1⟨v1⟩.o1(); await G2⟨v2⟩.o2().

Or, we can execute the same two calls in parallel as

let x = G1⟨v1⟩.o1() in (let y = G2⟨v2⟩.o2() in (await x ; await y)).

Parallelizing calls within an operation can often improve latency significantly; for example, we

can rewrite the code in Fig. 1 to perform the calls on line 33 in parallel.

2
Note that it is in fact common practice to include informal, un-enforced purity information in service APIs; for example,

REST services use the GET verb to identify read-only operations and enable HTTP caching, and POST or PUT verbs for

identifying operations that may mutate service state.

x ::= . . . (variable)

c ::= () | . . . (constant)

f ::= λx :t .e (function)

v ::= c | x | f (value)

| p | done v
s ::= unit | . . . (serializable type)

t ::= s | task s (general type)

| t →µ t
′

µ ::= r | u (effect)

e ::= v | e e ′ (expression)

| key (read my key)

| get | set e (read/write state)

| G⟨e⟩.o(e ′) (operation call)

| await e (wait for response)

G ::= ⟨s⟩ v0 (o : f) (service definition)

o ::= or | ou (operation name)

or ::= . . . (read-only operation)

ou ::= . . . (update operation)

E[◦] ::= ◦ (execution context)

| set E[◦]
| await E[◦]
| E[◦] e | v E[◦]
| G⟨E[◦]⟩.o(e) | G⟨v⟩.o(E[◦])

p ::= д.i/д′.o (placeholder)

д ::= G⟨v⟩ (service partition)

i ::= . . . (unique identifier)

m ::= call r v (call message)

| rsp r v (response message)

r ::= д.i/д′.o (service call)

| i/д.o (external call)

T ::= (r :e) (service task pool)

R ::= σ T (service state)

S ::= (д :R) (service collection)

N ::=m (network)

Fig. 4. (a) left: Syntax of the service calculus. (b) right: Syntax for defining the operational semantics.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:8 Sebastian Burckhardt and Tim Coppieters

e,σ ,N →д e ′,σ ′,N ′ Local Step App

E[λx :t .e v],σ ,N →д E[e[v/x]],σ ,N

Get

E[get],σ ,N →д E[σ],σ ,N
Set

E[set v],σ ,N →д E[()],v,N

Key

д = G⟨v⟩

E[key],σ ,N →д E[v],σ ,N
Resolve

E[await done v],σ ,N →д E[v],σ ,N

Call

i fresh r = д.i/д′.o

E[д′.o(v)],σ ,N →д E[r],σ , (call r v) N

Fig. 5. Operational semantics: Local steps.

2.2 Semantics
We define the operational semantics using a combination of local steps (which evaluate expressions

locally at a service partition) and system steps (which change the state of the entire system). An

expression can take a local step if it contains a redex (reducible subexpression). To define which

subexpressions can be evaluated, and in what order, we define execution contexts E[◦] as shown in

Fig. 4b on the top right. This definition ensures call-by-value semantics, and for operation calls, it

ensures we first evaluate the partition key, and then the operation argument, before calling the

operation.

Local Steps. Local steps take place in the context of a particular service partition д = G⟨v⟩. They
are defined by a д-local step relation e,σ ,N →д e ′,σ ′,N ′

as defined by the six rules in Fig. 5,

which use the syntax in Figs. 4a and 4b. Note that the service partition д is a suffix to the arrow.

Besides transforming the expression e , a local step can also read or update the local state σ , and
append messages to the list of outgoing messages N . The (App) rule represents function application

as usual and has no other effects. The rule (Key) reads the partition key determined by д. The
rules (Get) and (Set) read and update the partition state σ , respectively. The rule (Call) performs an

asynchronous operation call. For tracking the resolution of this request both locally and globally, it

creates a request identifier r = д.i/д′.o, where i is a globally unique identifier. This identifier r is
used to construct a request message (call r v) which is added to N . The same identifier r is also
returned to the application (i.e. inserted into the evaluation context) as a placeholder for the final

result. As we shall discuss in the next section, a system step replaces placeholders with a final result

of the form done v when processing a response message for the corresponding request. Thereafter,

an expression that awaits this result can resume with that value, as shown in the rule (Resolve).

System Steps. A global system configuration is of the form S | N , where S defines the state

of all service partitions, and N defines the state of the network. System steps are of the form

S | N → S ′ | N ′
, and are shown in Fig. 6, using the syntax in Figs. 4a and 4b.

The network state N is simply an unordered set of messagesm of the form (call r v) or (rsp r v).
The request identifier r identifies caller and callee, and thus determines the routing. There are

no ordering guarantees for message delivery. Requests can also be received from the outside; in

fact, there is nothing to evaluate without at least one such external request to start things off. The

system step (ExtCall) models an incoming external call (note that the prerequisite ⊢ д : G ensures

the request targets a well-typed service definition G) and (ExtRsp) models an outgoing response.

We allow infinitely many service partitions and infinite executions. However, at any point of

an execution, only finitely many partitions have been active so far, and all others are still in their

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:9

S | N → S ′ | N ′ System Step

ExtCall

i fresh ⊢ call r v r = i/д.o

S | N → S | (call r v) N
ExtRsp

r = i/д.o

S | (rsp r v) N → S | N

Activate

д < dom S ⊢ д : G G = . . .v0 . . .

S | N → (д :v0) S | N

RcvCall

r = . . ./д.o д = G⟨v ′⟩ G = . . . (o : f) . . .

(д :σ T) S | (call r v) N → (д :σ (r : f v) T) S | N

RcvRsp

r = д.i/д′.o T ′ = T [(done v)/r]
(д :σ T) S | (rsp r v) N → (д :σ T ′) S | N

CompleteReq

e,σ ,N →+д e ′,σ ′,N ′ e ′ = v

(д :σ (r :e) T) S | N → (д :σ ′ T) S | (rsp r v) N ′

TakeTurn

e,σ ,N →+д e ′,σ ′,N ′ e ′ = E[await p]

(д :σ (r :e) T) S | N → (д :σ ′ (r :e ′) T) S | N ′

Fig. 6. Operational semantics: System Steps.

initial state. Therefore, we can represent the system state S as a finite map (д :R) to store the state

R for each accessed service partition д. The state R is of the form σ T , where σ is the user-defined

partition state, and T is a task pool which contains tuples (r : e) where r is the identifier of the
request that spawned the task, and the expression e is the current evaluation state of that task. As

needed, the system step (Activate) can add a not-yet-accessed service partition to this map, in its

initial state with an empty task pool.

The rule (RcvCall) models the processing of a call message (call r v) at a service partition д. It
retrieves the corresponding operation definition (o : f) from the class definitionG and adds a new

entry (r : (f v)) to the task pool, where (f v), is the application of the function that implements

this operation to the operation argument received in the message.

The task pool can contain placeholders p for results of calls made. These match the request

identifier r in the messages. In rule (RcvRsp) shows how a response (rsp r v) is processed by

replacing all occurrences of the placeholder r in any expression in the task pool T with done v .
The remaining two rules work on an existing entry (r :e) in the task pool. They perform one

or more local evaluation steps e,σ ,N →+д e ′,σ ′,N ′
. If e evaluates all the way to a value e ′ = v ,

the rule (CompleteReq) applies; it removes the entry (r :e) from the task pool and adds a response

message (rsp r v) to the network. If e evaluates to an expression of the form e ′ = E[await p], i.e.
gets stuck waiting for the placeholder p to resolve, then the rule (TakeTurn) applies: it leaves e ′ in
the task pool for future consideration (once the placeholder is replaced). As we shall see later, any

well-typed expression that cannot take a local step is either a value v , or of the form E[await p],
thus the two rules (TakeTurn) and (CompleteReq) cover all maximal local executions.

Failure Steps. We model four types of failures using nondeterministic system steps (Fig. 7). The

step (LoseMessage) represents a message being lost. (LosePartition) represents the entire state of a

service partition being lost. Note that since services live forever, this is effectively a “restart” from

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:10 Sebastian Burckhardt and Tim Coppieters

Failure System Steps LoseMessage

S | m N → S | N

LosePartition

д = G⟨v ′⟩

(д :σ T) S | N → S | N
LoseTasks

д = G⟨v ′⟩

(д :σ T) S | N → (д :σ) S | N

TimeOut

(д :σ (r :E[await p]) T) S | N → (д :σ T) S | N

Fig. 7. Operational semantics: System Steps that represent Failures.

the initial state. (LoseTasks) represents all tasks being lost, but the state surviving; this is typical

for many stateful, persistent services (e.g. storage), that can save and recover the durable state σ ,
but may still lose in-progress requests. (TimeOut) models a request timing out before the response

arrives; it simply drops the task from the task pool without sending a response (which, in turn,

causes waiting callers to time out).

Executions. We can now define executions as a sequence of steps starting in the initial state. Note

that we include infinite executions in the formalization, which is necessary for stating liveness

properties such as eventual consistency [Burckhardt 2014].

Definition 2.1. An execution X is a finite or infinite alternating sequence of system states and

transitions s0 t0 s1 t1..., such that (1) each si = Si | Ni is a system configuration, (2) s0 is the empty

configuration, and (3) each ti is a derivation of Si | Ni → Si+1 | Ni+1.

For notational convenience, given an execution X , we let X [0..n] denote the prefix execution
consisting of the first n + 1 states and n transitions. Also, we use square brackets to index states

X [i] = si and parentheses to index transitions X (i) = ti .

2.3 Type System
The type system plays an important role: it ensures that operation arguments, return values,

partition states, and partition keys are well-typed and serializable. Moreover, it ensures that

distributed read-only operations do not modify the state of any of the service partitions. As a

validation of the service calculus, we now prove progress and preservation theorems.

All the type rules are shown in Fig. 8, organized into groups that apply to expression types,

service definitions, or system configurations, respectively. For typing expressions, we use a type

judgment of the form Γ ⊢µ e : t , where µ is an effect (either r for read-only or u for update). The

typing environment Γ is of the form (x :t) G?, containing variable typings (x :t), and optionally a

service definition G, if typing expressions within the context of a particular service.

The rules (TVar), (TAbs) and (TApp) rules are standard, and (TUnit) is obvious. (TAwait) and

(TDone) are straightforward, and require or produce task types, respectively. (TOpCall) checks that

the class G ′
is well typed, that the key and argument types match, and that we are not calling an

update operation from a read-only effect context. (TPlaceholder) types a placeholder returned by

an operation call. The rules (TKey), (TGet), and (TSet) are specific to a service context: thus, the

typing context Γ must contain a service definition G, which determines the type of the key and the

type of the partition state. The (TSet) operation requires an update effect context.

The service definition type rules (TOperation), (TDefinition) enforce that each operation defini-

tion is properly typed for the contextG of the partition that contains them, for the correct effect µ
as indicated by the operation name (or or ou), and also enforces that only serializable types appear

in any argument type, return type, key type, or state type.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:11

Γ ⊢µ e : t Expression Typing

TVar

(x :t) Γ ⊢µ x : t
TAbs

(x :t) Γ ⊢µ e : t
′

Γ ⊢µ (λx :t .e) : t →µ t
′

TApp

Γ ⊢µ e : t →µ t
′ Γ ⊢µ e

′
: t

Γ ⊢µ (e e ′) : t ′

TUnit

Γ ⊢µ () : unit
TAwait

Γ ⊢µ e : task s

Γ ⊢µ await e : s
TDone

Γ ⊢µ v : s

Γ ⊢µ done v : task s

TOpCall

⊢ G ′
: sk , sσ G ′ ⊢ν (oν : f) : sa →ν sr Γ ⊢µ e : sk Γ ⊢µ e

′
: sa ν ≤ µ

Γ ⊢µ G
′⟨e⟩.oν (e

′) : task sr

TPlaceholder

⊢ д : G ⊢ д′ : G ′ G ′ ⊢ν (oν : f) : sa →ν sr ν ≤ µ

Γ G ⊢µ (д/д′.oν) : task sr

TKey

⊢ G : sk , sσ

Γ G ⊢µ key : sk
TGet

⊢ G : sk , sσ

Γ G ⊢µ get : sσ
TSet

⊢ G : sk , sσ Γ G ⊢u e : sσ

Γ G ⊢u set e : unit

Service Definition Typing TOperation

G ⊢µ f : s →µ s
′

G ⊢ (oµ : f) : s →µ s
′

TDefinition

G = ⟨sk ⟩ a σ D ⊢ σ : sσ ∀(oµ : f) ∈ D : (G ⊢µ (oµ : f) : _)

⊢ G : sk , sσ

⊢ S | N Configuration Typing

TConfiguration

∀(д :R) ∈ S : (⊢ (д :R)) ⊢ N

⊢ S | N
TMessages

∀m ∈ N : (⊢m)

⊢ N

TPartition

⊢ G : sk , sσ ⊢µ v : sk

⊢ G⟨v⟩ : G
TCallMsg

⊢ д : G G ⊢ (o : f) : s → s ′ ⊢µ v : s

⊢ call (_/д.o) v

TRspMsg

⊢ д : G G ⊢ (o : f) : s → s ′ ⊢µ v : s ′

⊢ rsp (_/д.o) v

TPartitionData

⊢ д : G ⊢ G : sk , sσ ⊢µ σ : sσ ∀(r :e) ∈ T : (G ⊢ (r :e))

⊢ (д :σ T)

TTask

⊢ д : G G ⊢ (oµ : f) : s → s ′ G ⊢µ e : s
′

G ⊢ ((_/д.oµ) :e)

TLocalState

⊢ д : G G ⊢µ e : te ⊢µ G : sk , sσ ⊢ σ : sσ ⊢ N

⊢µ (д, e,σ ,N) : te

Fig. 8. Typing judgments for expressions, service definitions, and system configurations.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:12 Sebastian Burckhardt and Tim Coppieters

The system configuration type rules ensure that all pieces (including messages, partition records,

and task pools) are well-typed. Note that we take some notational shortcuts with empty collections,

which are implicitly well-typed.

Progress and Preservation. The last rule in Fig. 8 types tuples (д, e,σ ,N) and is used to concisely

state the following preservation and progress guarantees. The proofs are included in §A. Local

preservation means that local steps do preserve the type of an expression, the local state, and emit

only well-typed messages:

Theorem 2.2 (Local Preservation). If ⊢µ (д, e,σ ,N) : t , and e,σ ,N →д e ′,σ ′,N ′, then
⊢µ (д, e ′,σ ′,N ′) : t .

Local progress means that each task in the task pool of a partition has either completed its evaluation,

is waiting for a response from a remote call, or can take a local step:

Theorem 2.3 (Local Progress). If ⊢µ (д, e,σ ,N) : t , then exactly one of:
(1) e = v for some value v
(2) e = E[await p] for some placeholder p
(3) there exist e ′,σ ′,N ′ such that e,σ ,N →д e ′,σ ′,N ′.

Global preservation means that all of the state in the system (including all messages, all states, and

all expressions in all task pools) remains well-typed during execution:

Theorem 2.4 (Global Preservation). If ⊢ S | N and S | N → S ′ | N ′, then ⊢ S ′ | N ′.

Global progress is also guaranteed, despite divergence of local tasks, lost messages, or failed

partitions. It is easy to see (hence we do not formulate a theorem) that a configuration S |N can

always take a system step, either adding new requests, losing messages, losing partitions, or losing

tasks and/or time them out. Interestingly, timeouts thereby “solve” the problem of various forms of

divergence, including divergence of local computations.

2.4 Reactive Caching
We cache results of distributed read-only operations using summaries. Formally, a summary is

a tuple (д,or ,va ,vr) where д is the service partition called, or is the operation name, va is the

argument, and vr is the value returned.

Example. Consider again the Timeline.Get operation of the Chirper application in Fig. 3. Its

depicted system configuration is

S = ((Timeline⟨Alice⟩ : {Bob}) (Posts⟨Alice⟩ : {x ,y}) (Posts⟨Bob⟩ : {z})

and the summaries represented by the black boxes are

(Timeline⟨Alice⟩,Get, (), {x ,y}) (Posts⟨Alice⟩,Get, (), {x ,y}) (Posts⟨Bob⟩,Get, (), {z})

Intuitively, we consider a summary to be up-to-date if its result is a possible result of executing the

operation on a snapshot of the current global state. Formally:

Definition 2.5. Given an execution X and position n, we say the summary (д,or ,va ,vr) is up-to-
date at n if there exists an execution Y such that

• Y [0..n] = X [0..n]
• Y (n) is the (ExtCall) rule for some request id r of the form i/д.or , and with v = va
• for all n′ > n, Y (n′) is not an (ExtCall) rule

• for some n′ > n, Y (n′) is an (ExtRsp) rule with matching r and v = vr

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:13

Our reactive caching algorithm guarantees that all summary caches are eventually up-to-date.

This implies that if there are no more changes, caches stabilize to a final value that is snapshot

consistent. We formalize the syntax and the algorithm in appendix C, which is included with the

complete version of this paper.

3 DISTRIBUTED ALGORITHM
To make reactive caching practical for distributed systems, we need to tolerate faults, provide

elasticity, and provide good performance despite large communication latencies. It is not imme-

diately clear how to do so. For example, a centralized solution for tracking summaries and their

dependencies creates a central point of congestion and failure. In contrast, we developed a fully

decentralized and fault-tolerant algorithm.

The key idea is to combine summary trees with summary caching: rather than letting a summary

depend directly on other summaries that may be located on other partitions, summaries can depend

only on local caches of summaries. This allows us to handle faults, and it greatly improves the

performance of recomputing summaries since all their dependencies are stored in local caches. It

also allows summary caches to be shared by co-located service partitions. We now explain the

mechanism in detail; see the complete version of this paper for a formalization.

3.1 Bipartite Dependence Graph
We maintain two relations between summaries and caches: summaries depend on local caches, and

local caches subscribe to remote summaries. Together, these relations form a bipartite dependence

graph as shown in Fig. 9. The subscription and dependency relations are maintained and used as

follows.

Summary Subscriptions. Each cache is subscribed to the remote summary that it is representing

(solid bidirectional arrows). The summary maintains a list of these subscriptions; whenever the

summary changes after an execution (i.e. produces a different result than before), this new result is

pushed to all the subscribed caches.

SummaryComputation. When a summary is computed or recomputed, the computation executes

in a special mode. All operation calls are intercepted instead of being executed normally, and the

result is instead looked up in the local cache. If found, execution continues immediately with the

cached result. If not found, a new cache entry is created, subscribed to the remote summary, and

filled in when the result arrives, at which time execution continues.

Cache Dependencies. For each cache, the algorithm tracks all the local summaries that depend

on this cache (dotted arrows), i.e. used this cache during execution. Whenever a cache receives a

new, different result from the summary it subscribes to, it invalidates all the dependent summaries,

and schedules them for recomputation.

With reactive caching in place, support for reactive polling is straightforward. We treat the

passed-in lambda like a summary, and (re-)compute it like a summary to obtain the first, as well as

successive results.

3.2 Change Propagation
The reactive caching algorithm propagates changes incrementally via invalidation and lazy recom-

putation of summaries. Whenever the state of a service partition changes, all of its summaries are

marked invalid. After recomputation, if a summary still has the same output, no further action is

required. Otherwise, the changed summary pushes the new result to its subscribed caches. Those

caches then invalidate their dependent summaries, and so on.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:14 Sebastian Burckhardt and Tim Coppieters

Timeline[Alice⟩

{Bob}

Posts⟨Alice⟩

{x,y}

Posts⟨Bob⟩

{}

Posts⟨Bob⟩, Get, (), { }

Posts⟨Alice⟩, Get, (), {x, y} Posts⟨Bob⟩, Get, (), { }

Timeline⟨Alice⟩, Get, (), {x,y}

Posts⟨Alice⟩, Get, (), {x, y}

Timeline⟨Alice⟩, Get, (), {x,y}

ReactivePoll

Result: {x,y}

Failure Domain

Partition

Summary

Cache

1

2

3

4

5 Legend:

Fig. 9. Illustration of a bipartite dependency graph of summaries and caches. The numbers are used for
describing update propgation in §3.2.

Our dependency tracking ensures that whenever a cached summary is not up-to-date, meaning

that it is not consistent with a global snapshot of the current state (Def. 2.5), then it is replaced “at

the speed of push”, i.e. at the speed at which changes are propagated upward the dependency tree. In

the typical case where a local recomputation has negligible latency compared to messages between

nodes, the propagation latency is approximately (depth of summary tree * message latency).

For example, consider the situation in Fig. 9, and assume Bob posts a new message z, which
invalidates summary 1. Then, it takes a total of only two messages to propagate all changes and

refresh all summaries. We now walk through this in detail. After recomputing summary 1, it returns

a new result {z}, which is sent to the subscribed cache 2 (this is the first message). Cache 2 then

invalidates the dependent summary 3. When summary 3 recomputes, it can do so locally and

quickly, because it reads from the local caches 4 and 2 instead of making remote calls. The result is

{x,y,z} which is different than before, so summary 3 sends this new result to the subscribed cache 5

(this is the second message). Cache 5 then invalidates the reactive computation, which recomputes

and returns {x,y,z} to the code awaiting NextResult().
Minimizing the number of messages is important because message transport is often a domi-

nating contributor to both latency (because of slow communication between machines) and CPU

consumption (because of costly serialization and deserialization).

3.3 Fault Tolerance
To achieve fault tolerance, we exploit that colocated components fail together. For example, if a

service partition fails, then its summaries and local caches fail too. We express this using logical

failure domains, shown as light gray boxes in Fig. 9. The failure domain at the top resides on a client,

where the reactive computation is used. All components within a failure domain fail together.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:15

The key observation is that there is now only one relation that crosses failure domains: the sub-

scription relation (solid bidirectional arrows in Fig. 9). Therefore, fault tolerance can be guaranteed

simply by repairing one-sided failures of these subscription edges. In particular, no state needs to

be persisted:

• Suppose a cache fails, and the summary detects a dangling subscription. This can be easily

repaired by removing the subscription — there is no subscriber listening to updates any more.

• Suppose a summary fails. Then, the cache detects the dangling subscription.
3
In that case, we

can simply send a new subscription request, which is delivered to the failed service partition

after it recovers. The recovered partition can then compute a new summary and subscribe

the cache to the new summary.

3.4 Consistency
The algorithm guarantees that if a summary cache is not up-to-date, there are messages or recom-

putations already underway that cause it to be replaced. This implies that if the dependencies of an

operation no longer change, it reaches a final value that is consistent with the latest global state.

Ephemeral Inconsistency. When computing summaries, we read from local caches, which may

not provide a snaphot-consistent, or even sequentially-consistent view. However, a summary that

is based on an inconsistent view is also not up-to-date and thus guaranteed to be replaced. Thus,

any inconsistencies are ephemeral.

Performance/Consistency Tradeoff. Given its weakened consistency and fast propagation speed,

reactive caching is most attractive for applications where propagation latency is essential, i.e. where

it is more important to refresh the result of an operation rapidly, than to have a guarantee that

intermediate results are sequentially consistent.

Ephemeral Cycles. A summary participating in a cycle represents a nonterminating computation.

But nonterminating computations time out, and we do not store them in summaries. Thus, cycles

can appear only as temporary effect when reading stale caches, and do not cause progress problems

for the algorithm.

Garbage Collection. A summary is deleted if there are no caches subscribed to it. A cache is

deleted if no summaries or reactive computations depend on it. Since the dependency graph is

(eventually) acyclic, this means that summaries are garbage collected when no longer needed.

3.5 Other Performance Benefits

Batching. Some time may pass in between marking a summary for recomputation and the actual

recomputation. In particular, it may be marked multiple times, but recomputed only once. This

batching effect is important for maintaining good throughput under high update frequencies, as

we demonstrate in the evaluation section.

Sharing. Any number of summaries can depend on the same cache, but there is at most one cache

per summary on each machine. Sharing caches in this way can be very space-efficient. For example,

an application can use reactive polling to monitor a configuration setting. Even if there are many

service partitions “polling” this configuration setting, there will be just a single cache for it per

machine.

Large Fan-out. The reactive polling improves performance in situations with a large fan-out

(summaries with many subscriptions): rather than sending updates to each summary, it is enough

3
To detect dangling subscriptions, our implementation (§4) currently uses a 30-second periodic resubscription mechanism.

This could be optimized, e.g. by using faster failure detection options within the virtual actor runtime.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:16 Sebastian Burckhardt and Tim Coppieters

to send one update to each cache, one per machine, and the machine then forwards the update

locally to the summaries.

Back-Pressure. Our experiments show that in the case of high update rates, it is beneficial

to throttle the sending of results to subscribed caches, since only the latest result matters. Our

mechanism achieves this by sending results to caches one at a time, and measuring the response

time. If above a configurable threshold, we back off — that is, we wait for an extra delay equal to

the round trip time of the push.

4 IMPLEMENTATION
We have implemented reactive caching as an extension of Orleans, an open-source distributed

virtual actor framework for .NET available on GitHub [Orleans 2016]. The Orleans runtime already

provides distributed protocols for managing the creation, placement, discovery, recovery, and

load-balancing of service partitions, which are called virtual actors, or grains [Bernstein et al. 2014;

Bykov et al. 2011]. What we added is (a) extensions to the grain objects to store summaries, (b)

interception of grain calls during summary computations, (c) modifications to the grain scheduler

to distinguish between normal execution and summary computations, and (d) a silo-wide cache

manager.

Detecting Changes. The propagation algorithm described in § 3.2 requires that we detect whenever

the state of a grain changes. Unfortunately, in Orleans, we cannot easily detect whether an operation

has side effects, because grains are C# objects, and the use of heap and libraries obfuscates the

presence of side effects. Therefore, we conservatively assume that all operations change the grain’s
state. This is not as wasteful as it may seem at first, because if re-execution of the summary produces

the same result, propagation stops.

Programmers can annotate an operation with a [ReadOnly] attribute to avoid the re-execution

overhead; also, we assume that any operation called as part of a summary computation does not

change the grain state, and thus avoid invalidation of summaries in that case.

Re-execution. Our algorithm changes the way grain operations are executed, which can surprise

programmers. Any method that is called during a summary computation is prone to being re-

executed without the programmer explicitly performing the call. Conversely, calling any such

method may skip the execution entirely and instead return a cached result. In theory, this is fine as

long the method does not modify any state, and if it does not have an external dependency that is

invisible to our staleness detection (e.g. read a clock or do arbitrary I/O).

These conditions are usually satisfied as reactive polling is meant to be used only with read-only

operations. However, currently, we cannot enforce that. For a different host language, one can

imagine a type/effect system along the lines of what we show in the calculus. However, note also

that a naive rigid enforcement is not advisable, because we want to allow harmless side effects

(such as writing a timestamped message to a log).

Determinism. We do not require that grain operations are deterministic. For example, it is o.k.

for an operation to call two other grains in parallel, and return the first of the two results returned.

By definition, a cached value is considered stale only if a recomputation must return a different

result, not if it may return a different result.

External Dependencies. Some operations are likely to have external dependencies. To support

reactive polling across service boundaries, users can implement a façade-grain for each external

dependency. Each façade grain can use its own choice of mechanism to refresh its state, e.g.

notifications provided by the external service, if supported, or polling, or hybrid approaches such as

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:17

Table 1. Parameter combinations. The fanout is the average number of views that depend on an item, and is
equal to (#views ∗ #deps)/#items.

Name #items #views #deps. max robots

low-load 600 20 4 n/a

fanout-1 20,000 20,000 1 2,000

fanout-20 10,000 20,000 10 2,000

fanout-200 1,000 20,000 10 1,000

long-polling. Any changes in the façade-grain are then automatically propagated to the summaries

that depend on it.

5 PERFORMANCE EVALUATION
Our evaluation compares the latency and resource consumption of reactive polling to two alterna-

tives: periodic polling at various frequencies, and handwritten propagation at the application level.

Note that these comparisons are not entirely apples-to-apples. For one, normal polling guarantees

causal consistency, while reactive polling can (temporarily) return inconsistent results. Also, unlike

the other two solutions, the hand-written propagation is not fault tolerant, and requires extensive

changes to the service code. We measure it so we know the limit on what performance is achievable

within the framework.

To conduct the experiments, we implemented two benchmarks and designed three series of

experiments that measure low-load latency (§5.1), variable-load throughput (§5.2), and overall

timeliness (§5.3).

Item-View Benchmark. This benchmarkmodels an application using item grains that are observed

by view grains. It is a microbenchmark, i.e. it isolates the mechanism we want to measure (change

propagation) and removes all other aspects of the application. Each view depends on a fixed number

of items, selected at random at the beginning of the test. Views are updated when items change.

We vary the number of items and views to simulate different workloads (Table 1). For example, a

high fan-out (= average number of views that depend on an item) means that whenever an item is

mutated, many views need to be updated.

Chirper Benchmark. This benchmark is based on the chirper example introduced earlier (Fig. 1).

Random state machines simulate users that choose between actions such as watch, post, follow,

unfollow, or delete. All grain state (including followers, and posted messages) is reliably persisted

in cloud storage. Service responses are tested for timeliness, giving us a measure of application

performance as perceived by the user.

All benchmarks run on five Orleans silos deployed as a Windows Azure cloud service, using A4

machines (8 cores, and 14GB of RAM). The robots (client simulations) run on 10 load generator

servers. To account for unexpected variations, we made sure to run each experiment series on at

least 2 different datacenters, on at least 3 different days, and running the experiments in different

order. We observed that for different deployments, absolute numbers can vary up to 10% (since the

actual machine specifications can vary), but for a single deployment, the relative performance of

the various solutions was stable.

5.1 Latency Experiments
Our latency experiments use the low-load parameters (see Table 1) to eliminate delays caused

by queueing and contention. We measure two types, called query latency and propagation latency.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:18 Sebastian Burckhardt and Tim Coppieters

0ms 1ms 2ms 3ms 4ms 5ms

Normal (P)
Normal (S)

Reactive, uncached (P)
Reactive, uncached (S)

Reactive, cached (P)
Reactive, cached (S)

0.0ms 0.5ms 1.0ms 1.5ms 2.0ms

Handwritten Push

Reactive NextResult

0ms 20ms 40ms 60ms 80ms

Polling (10ms)

Polling (50ms)

Polling (100ms)

Fig. 10. Measured latencies under low load, in milliseconds. The line in the middle of each box is the median,
and the left and right edge are the first and third quartile. (top) Latencies for parallel and sequential queries;
(middle) latencies for mutation response, handwritten application-level propagation, and propagation via
reactive computation; (bottom) propagation latencies for the polling solution at various frequencies.

Latencies are measured 4000 times each (200 times per view, separated by 500ms). We describe

the results using the median and lower and upper quartiles. Average and standard deviation are

unsuitable statistics because of the long tail of the distribution.

5.1.1 Query Latency. Each view offers a distributed read-only operation that calls four items (either

sequentially or in parallel) and aggregates the returned values. We compare

• the latency of the read-only operation executed directly

• the latency of the first NextResult() of a reactive polling loop for the same read-only operation

The normal latency for the sequential and parallel versions are shown in the top two rows of Fig. 10.

The median latency is about 1.2ms for the parallel query and 3.8ms for the sequential query. This is

consistent with the round-trip time of a typical grain call taking a bit less than 1ms.

For the reactive polling, we distinguish two cases. If the relevant summaries are not already

cached on the silo, the query takes about 25% longer than normal (rows 2,3). This overhead is caused

by the installation and removal of the summary caches, and by scheduling overhead. However, if

summaries for the items are already cached on the silo (for example, if another view is tracking the

same items), the latency of NextResult() is less than 200µs (rows 4,5) because remote calls can be

completely avoided.

Conclusions. The results demonstrate that (1) the latency overhead of constructing the depen-

dency graph is modest, and (2) reactive caching, even without reactive polling, (i.e. even if calling

NextResult() only once) can dramatically improve the latency of a read-only operation.

5.1.2 Propagation Latency. For measuring propagation latency, a view calls an update operation

on one of the items it depends on, and measures how much time elapses until it receives the change

propagation.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:19

views

items

robots
reads

writes

propagation
load

generators
(cluster of 10

machines)

service
(cluster of 5

machines)

Fig. 11. Experimental setup for throughput experiments.

First, we measured the speed of handwritten propagation at the application level, where each

item sends a direct notification message to all dependent views when mutated. The results show

that the propagation message arrives about 1ms after the mutation is inititiated (see middle of

Fig. 10), which represents the baseline round-trip-time for messages sent between grains in Orleans.

Second, wemeasured the speed of change propagation provided by the reactive caching algorithm

(§3.2), i.e. the time elapsed untilNextResult returns the changed result. In that case, the propagation

takes about 300µs longer, due to the scheduling overhead of our implementation.

Finally, we looked at the propagation speed of a polling-based solution. Fig. 10, at the bottom,

shows the measured latencies, using a sequential query and various polling intervals. As expected,

we see a median propagation time in the neighborhood of half of the polling interval plus the query

latency, and a wide inter-quartile distance. However, polling as frequently as every 100ms is usually

not advisable or even possible (we show impact of polling on throughput in §5.2). Reasonable

polling intervals are more typically between 1 and 30 seconds, with a median propagation latency

that is easily three orders of magnitude worse than for handwritten change propagation or reactive

polling.

Conclusions. The results show that the latency of change propagation for reactive polling is much

better than for a normal polling, and competitive with hand-written change propagation.

5.2 Throughput Experiments
For the throughput experiments, we generate external load as shown in Fig. 11. The load generator

contains up to 2000 robots, distributed over 10 machines. Each robot simulates a user, by running a

continuous loop that sends requests to the service, either to read a view, or to update an item. The

percentage of updates in the mix is configurable.

Each experiment gradually increases the robots and measures the throughput over time. The

result is a curve that shows how throughput (number of requests handled per second) responds to

load (number of requests concurrently in flight). For example, for the fanout20 configuration and a

request mix containing 10% updates, we obtained the curves shown in Fig. 12; each line corresponds

to one experiment, and each bundle of similar lines corresponds to several experiments using the

same propagation mechanism.

The best possible throughput is achieved when change propagation is turned off entirely - because

all machine resources are available for handling requests. Here, we reach close to 120k requests

per second. But as soon as we use a change propagation or polling mechanism, the throughput

is lower, because it consumes machine resources that are diverted from processing requests:

hand-written propagation (dotted lines) reaches about 45k, propagation by reactive computations

reaches about 35k. For 10s-polling, the throughput reaches about 70k (better than automatic or

manual propagation), but for 1s-polling, it reaches only about 20k (worse than automatic or manual

propagation).

To compare the solutions across different configurations and update ratios, we ran this type of

experiment for all combinations, but extended to run fixed load (the maximum number of robots as

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:20 Sebastian Burckhardt and Tim Coppieters

0

20000

40000

60000

80000

100000

120000

500 200015001000

th
ro

u
g

h
p

u
t
[r

e
q
/s

]

load [# conc.req.]

reactive polling

Fig. 12. Throughput response of different propagation mechanisms, for fanout-20 with 10% updates.

125

108

102

81

124

91

122

107

98

80

120

76

118

104

97

76

102

58

131

118

110

88

52

53

0k 20k 40k 60k 80k 100k 120k 140k

No
Propagation
(Baseline)

Polling
(10s)

Polling
(5s)

Polling
(1s)

Handwritten
Propagation

Reactive Polling

fanout1

117

76

52

23

111

70

118

74

50

25

97

55

115

70

46

17

46

33

109

68

42

13

7

17

0k 20k 40k 60k 80k 100k 120k 140k

0.1%
1%
10%
100%

Update
Percentage

fanout20

91

62

41

10

80

57

89

56

37

13

45

33

85

55

35

11

8

14

79

51

33

7

1

9

0k 20k 40k 60k 80k 100k

fanout200

Fig. 13. Measured throughput (in thousands of requests per second) for varying configurations (Table 1),
propagation mechanisms, and percentage of updates.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:21

in Table 1) for a while at the end, to measure average peak throughput for that load. The results are

shown in Fig. 13. Each column corresponds to a configuration in Table 1; each row corresponds

to a choice of propagation mechanism; and each bar color corresponds to update percentage. For

example, the dark gray bars (10% updates) in the middle column (fanout20) correspond to the peak

throughput in Fig. 12.

Baseline. With update propagation turned off (top row), all requests are simple operations on a

single grain. We reach a throughput in the neighborhood of 120k for the fanout1 and fanout20

configurations (under a load of 2000 concurrent requests), and near 90k for the fanout200 config-

uration (under load of 1000 concurrent requests). Though throughput is largely consistent, the

numbers show some unexpected variation: throughput degrades somewhat with higher update

percentages, and jumps up for the specific combination of fanout1 and 100% updates. We suspect

they are caused by load balancing differences within the Orleans runtime regarding items, views,

and requests.

Polling. The extra work incurred by polling is (a) inversely proportional to the polling interval, and
(b) proportional to the number of items a view depends on. The reduction in throughput (relative to

the baseline) is thus modest for views that depend on only 1 item (left column), especially for large

polling intervals, but if the view depends on 10 items (middle and right column), the throughput

reduction is significant.

Hand-Written Propagation. The extra work incurred by hand-written propagation at the appli-

cation level is proportional to both the percentage of updates and the fan-out. The results confirm

this: (1) we see o.k. throughput results for update percentages up to 1%, and (2) we see terribly low

throughput for the combination of high fanout and high update percentage, as low as 1k (lowest of

all) for fanout200 and 100% updates.

Reactive Polling. There are two main differences to be expected compared to hand-written

propagation: (1) reactive computations incur a bit more work due to scheduling indirection, re-

execution of summaries, and management of reactive caches; and (2) reactive computations can

adapt to back-pressure and reduce the number of updates sent. We can observe these effects:

throughput for reactive computations is generally lower than for hand-written propagation, except

for high update rates and/or fanout where hand-written propagation suffers, because it is sending

more messages.

Conclusions. The results show that reactive polling is generally competitive with hand-written

propagation, despite the added benefit of fault tolerance and a simpler programming model. It

is even better in cases where there are many updates to be propagated, thanks to its batching

optimization. Polling, while terrible when using a high frequency, remains an acceptable solution

under low frequency, i.e. for applications that do not require quick propagation time. It can be

tuned to reliably consume little resources, and does not suffer under high update rates.

5.3 Chirper Experiments
Our final experiment measures user-perceived timeliness of the chirper application. We simulate

users by state machines that pick randomly from a list of actions, starting a new action immediately

upon completion of a previous one. Each test starts with 100 users and adds 400 users every 2

seconds. The cumulative activity of the users creates the messages that appear in timelines. The

user actions and their probability weight are: Follow (3): pick a user at random and follow (we use

a bias to create an asymmetric distribution, reflecting that popularity concentrates on influential

users). Unfollow (1): stop following a user. Post (3): post a random message. Delete (1) delete a

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:22 Sebastian Burckhardt and Tim Coppieters

0.001%

0.010%

0.100%

1.000%

10.000%

100.000%

load [# clients]

m
is

s
e
d

 d
e
a
d

li
n

e
s
 [

%
]

polling(10s)

polling(5s)

polling(1s)

reactive polling

hand-written propagation

Fig. 14. User-observed timeliness of chirper benchmark under various propagation mechanisms. Note the
exponential scale on the y-axis.

random message. Watch (3): initiate a 15-20s period of watching the current timeline, using one of

the available mechanisms (polling, reactive polling, or hand-written propagation).

To measure timeliness, we keep track of two kinds of “deadlines”: (a) any request issued to the

service should receive its response within 1s; and (b) if the timeline changes during a watching

period, any new message should have a timestamp no older than 1s back. We then measure

timeliness as the percentage of missed deadlines.

Fig. 14 shows the results. Note that the y-axis is logarithmic. We make the following observations.

For one, if using polling, a significant percentage of deadlines are missed, unless the polling is very

frequent. Second, explicit propagation is still noticeably better than reactive computations at low

load, but with the gap closing when the load increases. These observations are consistent with the

conclusions we reached for the item-view benchmark.

6 RELATEDWORK

Self-Adjusting Computation. Our techniques are inspired by, and closely related to, previous

work on self-adjusting computation [Acar 2009; Acar et al. 2008, 2010, 2009; Hammer et al. 2009],

imperative reactive programming [Demetrescu et al. 2011], and incremental concurrent revisions

[Burckhardt et al. 2011]. While they target quite different environments, these papers have a

common theme: to improve performance of repeated computations by incrementally repairing

an in-memory representation of the computation when inputs change. This same idea underlies

our use of summaries and reactive caches. The difference is that here, we use the encapsulation

afforded by service composition as a means to decompose the computation. Moreover, our algorithm

executes in a distributed setting and is fault-tolerant. More generally, the theme of incremental

update propagation is also found in other reactive programming models [Demetrescu et al. 2016],

and the model-view paradigm [Burckhardt et al. 2013; React 2016].

Actor Frameworks. Actor frameworks [Akka 2016; Armstrong 2010; Bernstein et al. 2017; Chuang

et al. 2013; Orbit 2016; Orleans 2016; Sang et al. 2016; SF Reliable Actors 2016] directly embody

the composed-services paradigm for building scalable distributed systems. Actors are not only

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:23

suitable for formal study, but can also deliver excellent performance in practice, and distribute

easily over elastic clusters since they do not share memory and communicate asynchronously.

Many of the actor frameworks mentioned above, and in particular virtual actors, go beyond basic

actors: they provide a programming model where actors behave more like miniature services. Our

service calculus captures this practice in a form suitable for formal study.

Functional Reactive Programming. In functional reactive programming (FRP) [Acar et al. 2006;

Cooper and Krishnamurthi 2006; Courtney 2001; Czaplicki and Chong 2013; Elliott and Hudak

1997; Hudak et al. 2003; Meyerovich et al. 2009; Wan and Hudak 2000], views are expressed as

signals that depend on event streams, and defined using a vocabulary of functional operators or

combinators [Acar et al. 2006; Cooper and Krishnamurthi 2006; Czaplicki and Chong 2013; Elliott

and Hudak 1997; Wan and Hudak 2000]. FRP, as well as related approaches, can deliver superior

ease of use and unrivaled performance for the type of queries that are convenient to express.

However, note that it is in general not straightforward to obtain a functional query that is

equivalent to requests composed in an imperative style (e.g. the code in Fig. 1). In particular, if

the dependencies are data-dependent, this may require the use of nontrivial join operators. Such

join operators are not only more difficult to write, but can also be challenging for the runtime to

execute efficiently. Imperative code as in Fig. 1, in contrast, gives the programmer full control and

transparency over how the distributed computation is broken down.

GUI Construction. Much research has focused on reactive programming for graphical user

interfaces [Burckhardt et al. 2013; Czaplicki and Chong 2013; Meyerovich et al. 2009] on the client.

These solutions do typically not address the service side, or assume a single server. An exception is

distributed ReScala [Drechsler et al. 2014] which parallelizes update propagation across multiple

servers. However, unlike our solution, it does not handle faults or provide elasticity, and it needs to

know the dataflow dependencies in advance. It guarantees glitch-freedom without coordination,

but only under the limiting assumption that updates are not concurrent, in stark contrast to our

workload that exhibits a large volume of concurrent independent updates on actors.

Cloud Scale. Reactive techniques have been successfully applied to large-scale data-parallel

computations used for data analytics [Dean and Ghemawat 2008; Zaharia et al. 2012]. Some systems

incrementalize mapreduce queries [Bhatotia et al. 2011; Condie et al. 2010] or queries constructed

from a vocabulary of functional operators [Gunda et al. 2010], possibly including fixpoints as in

Naiad [McSherry et al. 2013]. Frameworks for stream programming [Flink 2016] have also gained

popularity - they are more low-level and very flexible. In all those solutions, the user assumes

responsibility for expressing and tracking dependencies, by publishing or subscribing to streams,

which requires significant changes to the service code. In contrast, our solution tracks dependencies

and pushes changes automatically.

Semantics and Consistency. Change propagation can be semantically subtle. A so-called glitch
occurs if an observer sees two observables A, B that have inconsistent state, meaning that the set

of updates propagated to A is different from the set of updates propagated to B. Many reactive

systems strive to eliminate glitches (e.g. using topological ordering of dependencies), but some

embrace them. Since we are emulating a polling loop, not a globally consistent snapshot, we are

not preventing glitches. Avoiding glitches in a distributed system may add significant latency, but

it would be interesting to figure out just how much. This general tradeoff is similar to variations of

eventual consistency [Burckhardt 2014].

At the other end of the spectrum are synchronous reactive languages [Benveniste et al. 2000;

Berry and Gonthier 1992; Caspi et al. 1987; Gautier et al. 1987], where time is explicit, and systems

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:24 Sebastian Burckhardt and Tim Coppieters

make very strong semantic guarantees. It is hard to imagine an efficient implementation of such

models in our context, given the high cost of distributed coordination.

Other. The problem of combining object-oriented and reactive paradigms is not new [Salvaneschi

and Mezini 2013], as there is often a desire to connect object-oriented GUI frameworks with

functional-reactive backends [Ignatoff et al. 2006]. In some sense our problem is the exact opposite:

adding reactivity to an object-oriented (or rather, actor) back-end to support a reactive user interface.

SuperGlue [McDirmid and Hsieh 2006] is another example that adds reactivity to objects. In our

experience, actor models provide a much better home for reactivity thanmainstream object-oriented

programs, because actors completely prevent the passing of shared data structures as arguments

and return values. Our dependency tracking algorithm crucially relies on this fact when computing

and caching summaries. AmbientTalk/R[Cutsem et al. 2014] also introduces reactive programming

into the actor model. But its focus is not on fault-tolerant elastic services, but on providing reactivity

within a mobile ad-hoc network. So-called ambient behaviours can be exposed, which allow actors

to share behaviours using an intentional description of the behaviour.

7 CONCLUSION
We have motivated, explained, implemented, and evaluated a new reactive caching mechanism

that allows latency-sensitive clients to replace polling loops with a similarly looking, but more

efficiently executing reactive caching algorithm that uses push-based change propagation.

Given the novelty of our approach, many more questions remain to be investigated in future

work. We would like to gather more experience with early adopters; we have already started a

collaborationwith a game developer team. A very interesting endeavor is to explore the performance

cost of guaranteeing causality, which would make reactive polling semantically equivalent to polling

loops. Moreover, we would like to explore how to combine reactive caching with other mechanisms,

such as streams and event sourcing. Also, for collection data types, using diffing optimizations may

further improve performance. Finally, we are working on extending our formal development of the

service calculus and the reactive caching algorithm, in particular adding formulations and proofs

of the consistency guarantees.

A TYPE SYSTEM
A.1 Proof of Theorem 2.2
Starting with derivations

(a) e,σ ,N →д e ′,σ ′,N ′

(b) ⊢µ (д,E[e],σ ,N) : t
(c) G ⊢µ e : t (from (b) using lemma A.2a)

for some д = G⟨vk ⟩. We proceed below by structural induction on (c), with a case distinction over

the inference rule used for the conclusion. In each case, we need to construct a derivation for

⊢µ (д, e ′,σ ′,N ′) : t . We discharge each case by showing that the following derivations exist

(x) G ⊢µ e
′
: t

(y) ⊢µ σ ′
: sσ (only needed if σ ′ , σ)

(z) ⊢ N ′
(only needed if N ′ , N)

which is then sufficient to construct the required derivation using Lemma A.2b.

• (TVar), (TAbs), (TUnit), (TDone), (TPlaceholder): these are not applicable because it would

mean e is already a value, and cannot take an evaluation step.

• (TKey): Then e = key and e ′ = vk . (c) is (TKey) and ensures that t = sk , and (b)’s prerequisite
⊢ д : G means that ⊢µ k : tk , which gives us (x) using the lemma A.4.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:25

• (TGet): Then e = get and e ′ = σ . (c) is (TGet) and ensures that t = sσ and (b) ensures that

⊢µ σ : sσ , which gives us x using the lemma A.4.

• (TSet): Then e = set v , e ′ = (), and σ ′ = v . Since t = unit thus (x) is direct by (TUnit).

Moreover, σ ′ = v , and (TSet) says that G ⊢µ v : sσ , which gives us (y) using lemma A.5 and

lemma A.3.

• (TAwait): Then e = await done v and e ′ = v . (c) must decompose into (TAwait) and (TDone)

and have a prerequisite G ⊢µ v : t which is (x).

• (TOpCall): Then e = д′.o(va) and e ′ = r = д.i/д′.o and N ′ = call r vaN . For (x) we need

(TPlaceholder), which we can assemble from the prerequisites of (b) and (c). Also, for (z) we

need the message typing (TMessages) which we get using (TCall) and the prerequisites of (b)

and (c) as well as the same placeholder typing, and using the lemmas A.5 and A.3.

• (TApp): Then e = λx :t .eb v and e ′ = E[e[v/x]]. We get (x) from (b) using the substitution

lemma A.1.

A.2 Proof of Theorem 2.4
We start with ⊢ S | N , which provides typing derivations for all messages in N and all service

partition data in S , including for each partition a key, state, and task pool. We then need to show

that whatever is modified/added by the global step S | N → S ′ | N ′
remains typable, to prove

⊢ S ′ | N ′
. We distinguish by step.

• (ExtCall) adds a new message which is well typed thanks to the prerequisite.

• (ExtRsp) only removes a message.

• (Activate) the prerequisites ensure the partition reference д and initial valuev0 are well typed,
so the added partition data (д :v0) is as well (TPartitionData).

• (RcvCall) the added task pool entry is well-typed according to (TTask) because the incoming

message is well typed according to (TCallMsg), giving exactly the required prerequisites.

• (RcvRsp) Using lemma A.6.

• (CompleteReq) Using local preservation theorem.

• (TakeTurn) Using local preservation theorem.

• (Failure Transitions): only remove things.

A.3 Proof of Theorem 2.3
We need to show that if G ⊢µ E[e] : t , then exactly one of:

(1) e = v for some value v
(2) e = E[await p] for some placeholder p
(3) e can take a step.

Clearly, not more than one can be true since v and await p are different and neither is a redex. We

prove that at least one is true using structural induction over the type derivation G ⊢µ e : t .

• (TVar), (TAbs), (TUnit), (TDone), (TPlaceholder): claim is immediate since in that case e is a
value.

• (TKey), (TGet), (TSet): Can take a local step.

• (TAwait): Then e = await e ′, t = task s and G ⊢µ e
′
: s . Now, use induction hypothesis and

distinguish cases:

– if e ′ can take a step so can e
– if e ′ = E[await e ′′] then also e = E[await e ′′].
– if e ′ is a value, it has to be done v ′

(then e can take a step) or a placeholder (then e =
await p = E[await p]) because those are the only values of type task t ′

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:26 Sebastian Burckhardt and Tim Coppieters

• (TApp): Then e = (ef ea) and G ⊢µ ef : tf and G ⊢µ ea : ta . Use induction hypothesis on ef . If
it can take a step, so can e . If it is of the form E[await p], then so is e . If it is a value vf , then
use induction hypothesis on ea . If it can take a step, so can e . If it is of the form E[await p],
then so is e . If it is a value va , then e = (vf va) can take an (App) step, since the typing

constraints guarantee that vf is a lambda.

• (TOpCall): Then e = G⟨e⟩.o(e ′). Do a case distinction analogous to what we did for (TApp).

A.4 Lemmas
Expressions of same type can be substituted without breaking type derivations:

Lemma A.1. If (x :s)Γ ⊢µ e : t and Γ ⊢µ e
′
: s , then Γ ⊢µ e[e

′/x] : t .

Similarly, expression contexts allow substitution:

Lemma A.2. If G ⊢µ E[e] : t , then
(a) G ⊢µ e : t

′ for some type t ′

(b) if G ⊢µ e
′
: t ′, then G ⊢µ E[e ′] : t

Expression contexts do not evaluate expressions inside bound contexts:

Lemma A.3. If G ⊢µ E[e] : t , then e has no free variables.

Serializable value typing is independent of context:

Lemma A.4. ⊢µ v : s implies Γ ⊢µ v : s for any Γ

Lemma A.5. if v is not a variable, then Γ ⊢µ v : s implies ⊢µ v : s

Placeholders can be substituted without breaking type derivations:

Lemma A.6. If Γ ⊢µ e : t , and ⊢ д′ : G ′, and G ′ ⊢ (oν : f) : sa →ν sr , and ⊢µ v : sr , then
Γ ⊢µ e[(done v)/(д.i/д′.o)] : t .

B ELASTICITY AND PERSISTENCE
In this section we show how the grain calculus can be implemented on an elastic cluster with

storage separation, i.e. built from a combination of unreliable compute servers and reliable storage.

We start with a version that supports only volatile grains (i.e. does not provide persistence), and

then show a model that demonstrates how to add persistence.

B.1 Volatile Silo Cluster Model
This model is a straightforward modification of the previous one, where system configuration

group grains into so-called silos. Each silo is identified by a unique silo identifier. To express this,

we add the following syntax:

L ::= (s :X) (silos)

s ::= . . . (silo identifier)

X ::= (д :R) (grainstore)

System configurations are now of the form L | N , where N is the network as before, but L is

a collection of silos. Each silo is identified by a unique silo identifier s and contains a collection

of grains X , where X is a collection of grains (just like S was before). Most rules are adapted

straightforwardly to use a “nested collection” L of grains, instead of a flat collection S . However,
the failure rules are different now: rather than failing individual grains, (FailSilo) fails an entire silo.

All state of the grains in the silos is lost.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:27

L | N → L′ | N ′ Elastic Silo Cluster, Volatile Grains

ExtCall

i fresh ⊢ call r v r = i/д.o д = G⟨v⟩

L | N → L | (call r v) N
Fail-Message

L | m N → L | N

NewSilo

s < dom L

L | N → (s :) L | N
FailSilo

(s :X) L | N → L | N

RcvCall

r = . . ./д.o д = G⟨v ′⟩ G = . . . (o : f) . . .

(s : (д :σ T) X) L | (call r v) N → (s : (д :σ (r : f v) T) X) L | N

RcvRsp

r = д.i/д′.o T ′ = T [(done v)/r]
(s : (д :σ T) X) L | (rsp r v) N → (s : (д :σ T ′) X) L | N

Activate

д < domX ∪ active(L) ⊢ д : G G = ⟨t⟩ a σ D

(s :X) L | N → (s : (д :σ) X) L | N

TakeTurn

e,σ ,N →+д E[await p],σ ′,N ′

(s : (д :σ (r :e) T) X) L | N → (s : (д :σ ′ (r :E[await p]) T) X) L | N ′

CompleteReq

e,σ ,N →+д v,σ ′,N ′ д = G⟨v⟩

(s : (д :σ (r :e) T) X) L | N → (s : (д :σ ′ T) X) L | (rsp r v) N ′

If we define observations as traces of call and response transitions relating to external requests,

and if all grain classes are volatile, then this model is observationally equivalent to the grain calculus

shown earlier.

B.2 Persistent Silo Cluster Model
To handle persistent grains, we can modify the previous model by adding persistent storage, which

is a simple map from grain references to values:

P ::= (д :σ) (persistent store)

Then, we define system configurations L | N | P that include a persistent store. The store is

updated whenever persistent grains are modified (write-through).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:28 Sebastian Burckhardt and Tim Coppieters

L | N | P → L′ | N ′ | P ′ Elastic Silo Cluster w/ Persistent Store

ExtCall

i fresh ⊢ call r v r = i/д.o

L | N | P → L | (call r v) N | P
Fail-Message

L | m N | P → L | N | P

NewSilo

s fresh

L | N | P → (s :) L | N | P
FailSilo

(s :X) L | N | P → L | N | P

RcvCall

r = . . ./д.o д = G⟨v ′⟩ G = . . . (o : f) . . .

(s : (д :σ T) X) L | (call r v) N | P → (s : (д :σ (r : f v) T) X) L | N | P

RcvRsp

r = д.i/д′.o T ′ = T [(done v)/r]
(s : (д :σ T) X) L | (rsp r v) N | P → (s : (д :σ T ′) X) L | N | P

Activate-V

д < domX ∪ active(L) ⊢ д : G G = . . . volatile σ . . .

(s :X) L | N | P → (s : (д :σ) X) L | N | P

TakeTurn-V

e,σ ,N →+д E[await p],σ ′,N ′ д = G⟨v⟩ G = . . . volatile . . .

(s : (д :σ (r :e) T) X) L | N | P → (s : (д :σ ′ (r :E[await p]) T) X) L | N ′ | P

CompleteReq-V

e,σ ,N →+д v,σ ′,N ′ д = G⟨v⟩ G = . . . volatile . . .

(s : (д :σ (r :e) T) X) L | N | P → (s : (д :σ ′ T) X) L | (rsp r v) N ′ | P

Activate-P

д < dom P ⊢ д : G G = . . . persistent σ . . .

L | N | P → L | N | (д :σ) P

Load-P

д < domX ∪ active(L)

(s :X) L | N | (д :σ) P → (s : (д :σ) X) L | N | (д :σ) P

TakeTurn-P

e,σ ,N →+д E[await p],σ ′,N ′ д = G⟨v⟩ G = . . . persistent . . .

(s : (д :σ (r :e) T) X) L | N | (д :σ) P → (s : (д :σ ′ (r :E[await p]) T) X) L | N ′ | (д :σ ′) P

CompleteReq-P

e,σ ,N →+д v,σ ′,N ′ G = . . . persistent . . .

(s : (д :σ (r :e) T) X) L | N | (д :σ) P → (s : (д :σ ′ T) X) L | (rsp r v) N ′ | (д :σ ′) P

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:29

C REACTIVE CACHING ALGORITHM
In this section, we present a detailed model to document our distributed fault-tolerant algorithm

for reactive caching. This model matches the description of summaries and caches from §3, and

documents a somewhat abstracted version of our algorithm precisely.

C.1 Overview
We start by summarizing the overall mechanism.

• Silos represent failure domains, i.e. contain things that all fail together.

• A silo can contain any number of service partitions.

• A service partition can be located on any silo, but no more than one silo at a time.

• A partition can store a summary for any of its cacheable operations and call argument.

• Each silo can store a local cache for any summary.

• Caches subscribe to summaries.

• A summary keeps a list of subscribed caches, and sends any new results to all subscribed

caches.

• When a partition asks for the first or next result of a reactive computation, it looks in the

cache, and may return a cachekey placeholder.

• When a cache receives a new result, it replaces all cachekey-placeholders in the silo with the

new result.

• A summary can have a value (the last result computed) or not (no result computed yet).

• If a summary has a value, it also has a read set (the dependencies) and a dirty flag.

• A summary is marked dirty if a cache in its read set receives a new result.

• If the state of a partition is changed, all its summaries are marked dirty.

• Summaries are computed or recomputed using a special type of task called summary compu-

tation.

• A summary computation is started if the summary has no value yet, or if it is dirty.

• Only one summary computation can be active per summary.

• Summary computations track a read set and have a dirty flag.

• A summary computation is marked dirty if a cache in its read set receives a new result.

• If the state of a partition is changed, all its summary computations are marked dirty.

• When a summary computation completes, the summary assumes its result value, read set,

and dirty flag.

• If a silo is lost, all contained caches and summaries are lost.

• The loss of a subscribed cache is detected when a result is pushed to it.

• The loss of a summary to which a cache is subscribed is detected during the periodic renew.

• Renewing a subscription to a lost summarymeans the partition is reactivated and the summary

is recomputed.

C.2 Formalization Choices
For the formalization, we make the following simplifications or assumptions:

• A reactive computation is not a general anonymous function, but must be a single operation

call. This is already the case for the example shown in Fig. 2b, and can be easily achieved by

defining an auxiliary operation if desired.

• We are not modeling result trackers directly; rather, we represent their function using

two expressions first and next which can be called to obtain a first, or a successive result,

respectively.

• We consider all partitions to be volatile. Adding persistence is an orthogonal issue.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:30 Sebastian Burckhardt and Tim Coppieters

All timing is replaced by simple nondeterministic transitions. Also, cast-out of cache entries is a

simple nondeterministic transition; we are not modeling details about when this should happen (in

the actual implementation, cache entries are cast out once the last result tracker is disposed).

C.3 Syntax
Themodified syntax is shown in Fig. 15. Reactive computations, caches, and summaries are identified

by a cache key of the form д/oc/v composed of a partition, operation, and argument value. These

cache keys are used to label messages, as keys to index the cache and summary collections, and as

a new kind of placeholder that gets substituted whenever a cache receives a new value.

Expression Syntax. At the top left, we show the changes to the expression syntax. It includes two

new asynchronous expressions returning task types. The expression first G⟨e⟩.oc (e) is a reactive
computation, containing a single operation call. It returns done v immediately if the local cache

already contains a cached result v; otherwise it returns a placeholder that resolves once a result
is received. The expression next G⟨e⟩.oc (e) returns a placeholder that resolves to done v when

the local cache receives a new value v , or its first value v . In both cases, the placeholder is not a

request identifier r as before, but a cache key k that gets substituted whenever the corresponding

cache receives a new value.

Configurations. The system configurations are analogous to the volatile cluster model, i.e. com-

prised of silos and a network. However, silos now have additional data structures (caches, summaries,

summary computations) and the network may contain new types of messages.

Messages. There are four new messages; sub s k , renew s k , and unsub s k are sent from a cache

entry on silo s to the corresponding summary k to subscribe, renew, or cancel a subscription,

respectively. push s k v is sent from summary k to a silo s in order to update the cached result of

that summary on that silo to the latest value v .

Caches. Each silo has a cache C that stores cache entriesw consisting of a summary key k , and
either a value v or no value if none has arrived yet.

Summaries. Partition records now contain a collection Z of summaries. Each summary z is of the
form (k :Y d) where k is the summary key, Y is a list of silos that have subscribed to this summaries,

e ::= . . . (expression)

| first G⟨e⟩.oc (e) (reactive computation)

| next G⟨e⟩.oc (e) (reactive change)

p ::= r | k (placeholder)

k ::= д/oc/v (cache key)

m ::= . . . (message)

| sub s k (subscribe)

| renew s k (renew)

| unsub s k (unsubscribe)

| push s k v (push update)

L ::= (s :X C) (silos)

C ::=w (cache)

w ::= (k :v) | (k :) (cache entry)

X ::= (д :R) (partition store)

R ::= σ T Z (partition data)

T ::= u (task pool)

u ::= (r :e) (normal task)

| (k :e Q) (comp. task)

Q ::= k dirty? (read set)

Z ::= z (summaries)

z ::= (k :Y d) (summary)

Y ::= s (subscribed silos)

d ::= (val v Q)? (summary state)

Fig. 15. Syntax extensions for reactive caching, and for silo configurations including summaries and caches.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:31

and d is the state of this summary, which is either empty, or a combination (val v Q) of a value and
a read set (also possibly dirty).

Task pools. The task pool for each partition record now contains an additional type of task, called

summary computation, which is keyed by the summary key k . For each such entry (k :e Q), we
track not only the current expression e , but also a read set Q contains summary keys this this

summary computation depends on, and possibly a flag dirty which means at least one dependency

has already changed and the reactive computation will have to be restarted to compute the latest

result.

e,σ ,N ,C →s,д e ′,σ ′,N ′,C Local Step (outside reactive computation)

SimpleStep

e,σ ,N →д e ′,σ ′,N ′

e,σ ,N ,C →s,д e ′,σ ′,N ′,C

Cache-Miss1

(e = first д′.oc (v)) ∨ (e = next д′.oc (v)) k = д′/oc/v k < domC C ′ = (k :) C

E[e],σ ,N ,C →s,д E[k],σ , (sub s k) N ,C ′

Cache-Miss2

(e = first д′.oc (v)) ∨ (e = next д′.oc (v)) k = д′/oc/v C = (k :) C ′

E[e],σ ,N ,C →s,д E[k],σ ,N ,C

Cache-Hit1

k = д′/oc/v (k :v ′) ∈ C

E[first д′.oc (v)],σ ,N ,C →s,д E[done v ′],σ ,N ,C

Cache-Hit2

k = д′/oc/v (k :v ′) ∈ C

E[next д′.oc (v)],σ ,N ,C →s,д E[k],σ ,N ,C

e,N ,C,Q →s,д,σ e ′,N ′,C ′,Q ′ Local Step (inside reactive computation)

SimpleStep

e,σ ,N →д e ′,σ ′,N ′

e,σ ,N ,C →s,д e ′,σ ′,N ′,C

Cache-Hit

k = д′/oc/v (k :v ′) ∈ C Q ′ = k Q

E[д′.oc (v)],N ,C,Q →s,д,σ E[done v ′],N ,C,Q ′

Cache-Miss1

k = д′/oc/v k < domC C ′ = (k :) C

E[д′.oc (v)],N ,C,Q →s,д,σ E[k], (sub s k) N ,C ′,Q

Cache-Miss2

k = д′/oc/v C = (k :) C ′

E[д′.oc (v)],N ,C,Q →s,д,σ E[k],N ,C,Q

Fig. 16. Local steps outside of reactive computations (top) and inside reactive computations (bottom).

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:32 Sebastian Burckhardt and Tim Coppieters

C.4 Operational Semantics
As before, partitions have a task pool to process incoming operation calls. However, there are addi-

tional mechanisms involved. We give a brief description here before inspecting the corresponding

rules in more detail.

This summary tracks what caches are subscribed to it, and pushes any freshloy As before,

partitions have a task pool to process incoming operation calls. However, they also may have one

or more summary tasks executing, which compute summary results. Summary results are pushed

to the subscribed We have broken the operational semantics into four separate sections, to facilitate

explanation. In §C.4.2 we describe the standard execution semantics.

C.4.1 Local Steps. The local execution of a local step is now distinguished into two modes: inside

and outside of reactive computations. We show these in Fig. 16.

Outside. For local steps outside of reactive computations, the transition rule contains a new

component C which is the cache. The (SimpleStep) rule imports all the same rules for local steps

from Fig. 5, ignoring the cache C . The other three rules define the semantics of the first α and

next α expressions for some reactive computation α , based on whether a cache entry for α already

exists or not. If a cache entry does not exist, (Cache-Miss1) applies and handles both expressions

the same way: a new cache entry (with no value) is created, a subscription message is sent, and a

cache-key placeholder is returned. If a cache entry exists but has no value, (Cache-Miss2) applies

which does not send a subscription message but is otherwise the same. If a cache entry exists,

(Cache-Hit1) returns a first result immediately. (Cache-Hit2) returns a placeholder, thus blocking

execution until the cache changes in response to a received latest result.

Inside. For local steps outside of reactive computations, the transition rule contains an additional

component Q which is the read set. When a call to another partition (which must be to a cacheable

operation) is performed, and it hits in the cache, (Cache-Hit) returns the cached value and records

the dependency in the read set. If it misses, (Cache-Miss1) or (Cache-Miss2) returns a placeholder.

It does not record the dependency; this will instead happen at the time the value is substituted.

C.4.2 Normal System Steps. The system steps corresponding to regular execution of operation

calls are shown in Fig. 17. They are analogous to the steps of the volatile cluster model, with one

difference: the rules (TakeTurn) and (CompleteReq) now perform invalidation if the partition state is
changed by the local execution (i.e. if σ , σ ′

). The invalidation judgment inv(T Z ,T ′ Z ′) traverses

thread pool T and summaries Z and marks all summary computations and all summaries as dirty.

C.4.3 Summary Computations. The system steps corresponding to summary computations are

shown in Fig. 18. A new summary can be created for any well-typed combination of operation

and argument, by (NewSummary). We made this rule nondeterministic for simplicity, but it would

usually happen if there is a corresponding subscription request. (DisposeSummary) can remove the

summary, but only if it does not have an active summary computation and no subscribed silos.

(CompStart) starts a new summary computation, adding it to the task pool. It applies only if

there is not one already in the task pool. (CompTurn) executes a summary up until the point where

it blocks awaiting a placeholder. When a summary finishes, we distinguish based on whether the

computed result is different. If it is the same as before, (CompDoneSame) applies, and updates

the summary with the read set including dirty flag (which may be different even if the result

is the same), but does not send any notification. Otherwise, (CompDone) applies, which sends

notifications to all subscribed silos.

C.4.4 Pushing. The system steps corresponding to summary computations are shown in Fig. 19.

If the cache entry does not exist, (RcvPush-Gone) applies and sends an unsubscription message

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:33

L | N → L′ | N ′ System Steps (1/4)

ExtCall

i fresh ⊢ call r v r = i/д.o д = G⟨v⟩

L | N → L | (call r v) N
Fail-Message

L | m N → L | N

NewSilo

s fresh

L | N → (s :) L | N
FailSilo

(s : . . .) L | N → L | N

Activate

д < domX ∪ active(L) ⊢ д : G G = ⟨t⟩ a σ D

(s :X C) L | N → (s : (д :σ) X C) L | N

RcvCall

r = . . ./д.o д = G⟨v ′⟩ G = . . . (o : f) . . .

(s : (д :σ T Z) X C) L | (call r v) N → (s : (д :σ (r : f v) T Z) X C) L | N

RcvRsp

r = д.i/д′.o T ′ = T [(done v)/r]
(s : (д :σ T Z) X C) L | (rsp r v) N → (s : (д :σ T ′ Z) XC) L | N

TakeTurn

e,σ ,N ,C →+s,д E[await p],σ ′,N ′,C ′
if σ = σ ′

then T Z = T ′ Z ′
else inv(T Z ,T ′ Z ′)

(s : (д :σ (r :e) T Z) X C) L | N → (s : (д :σ ′ (r :E[await p]) T ′ Z ′) X C ′) L | N ′

CompleteReq

e,σ ,N ,C →+s,д v,σ ′,N ′,C ′
if σ = σ ′

then T Z = T ′ Z ′
else inv(T Z ,T ′ Z ′)

(s : (д :σ (r :e) T Z) X C) L | N → (s : (д :σ ′ T ′ Z ′) X C ′) L | (rsp r v) N ′

inv(T Z ,T ′ Z ′)
inv(T ,T ′) inv(Z ,Z ′)

inv(T Z ,T ′ Z ′) inv(,)

inv(z, z ′) inv(Z ,Z ′)

inv(z Z , z ′ Z ′)

InvSummary

inv((k : . . . (val v Q) . . .), (k : . . . (val v (Q dirty)) . . .))

inv(u,u ′) inv(T ,T ′)

inv(u T ,u ′ T ′)
RegularTask

inv((r :e), (r :e))

InvComp

inv((k :e Q), (k :e (Q dirty)))

Fig. 17. System steps (1/2): execution of normal operations.

back. Otherwise, (RcvPush) applies . It updates the cache with the latest value. Any placeholder

appearing in a normal task is replaced with the received result value, by rule (Task). Any placeholder

appearing in a summary computation is replaced with the received result value and the read set is

extended to record the dependency, by rule (CompRead). Finally, there is an invalidation effect on

summaries or summary computations whose read set already includes the updated key k : any such

read set is marked dirty by the rules (CompInv) and (SummaryInv), respectively.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:34 Sebastian Burckhardt and Tim Coppieters

C.4.5 Subscription Management. The system steps for subscription managements are in Fig. 20.

C.5 Consistency Guarantees
Informally, the guarantee is that any stale cache (i.e. cache whose current value is not consistent

with an atomic execution of the corresponding computation on a global snapshot of the current

state) eventually receives a new result, unless the silo that contains the cache fails before that point.

A more precise formulation and proof of the consistency guarantees remains future work.

REFERENCES
Umut A. Acar. 2009. Self-adjusting computation (an overview). InWorkshop on Partial Evaluation and Program Manipulation

(PEPM).
Umut A. Acar, Amal Ahmed, and Matthias Blume. 2008. Imperative self-adjusting computation. In Principles of Programming

Languages (POPL).

L | N → L′ | N ′ System steps (2/4)

NewSummary

k = д′/oc/v ⊢ k k < domZ Z ′ = (k :) Z

(s : (д :σ T Z) X C) L | N → (s : (д :σ T Z ′) X C) L | N

DisposeSummary

Z = (k :d) Z ′
nocomp(k,T)

(s : (д :σ T Z) X C) L | N → (s : (д :σ T Z ′) X C) L | N

CompStart

k = д′/oc/v nocomp(k,T) ⊢ д : G G ⊢ (oc : f)

(s : (д :σ T ((k :Y d) Z)) X C) L | N → (s : (д :σ ((k : f v) T) (z Z)) X C) L | N

CompTurn

e,N ,C,Q →+s,д,σ E[await p],N ′,C ′,Q ′

(s : (д :σ (k :e Q) T Z) X C) L | N → (s : (д :σ (k :E[await p] Q ′) T Z) X C ′) L | N ′

CompDone

e,N ,C,Q →+s,д,σ v,N ′,C ′,Q ′
notifyk,v (Y ,N

′,N ′′)

(s : (д :σ (k :e Q) T (k :Y d) Z) X C) L | N → (s : (д :σ T (k :Yval v Q ′) Z) X C ′) L | N ′′

CompDoneSame

e,N ,C,Q →+s,д,σ v,N ′,C ′,Q ′ v = v ′

(s : (д :σ (k :e Q)T (k :Y valv ′Q ′′)Z)X C)L | N → (s : (д :σ T (k :Y valvQ ′)Z)X C ′)L | N ′′

nocomp(k,T)
nocomp(k,)

nocomp(k,T)

nocomp(k, (r :e) T)

k ′ , k nocomp(k,T)

nocomp(k, (k ′
:e Q) T)

notifyk,v (Y ,N ,N
′)

notifyk,v (,N ,N)

notifyk,v (Y ,N ,N
′)

notifyk,v (z Y ,N , (push s k v) N
′)

Fig. 18. System steps for summary computations.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

Reactive Caching for Composed Services 152:35

L | N → L′ | N ′ System Steps (3/4)

RcvPush

updk,v (X ,X
′)

(s :X ((k : _) C)) L | (push s k v) N → (s :X ′ ((k :v) C)) L | N

RcvPush-Gone

k < domC

(s :X C) L | (push s k v) N → (s :X C) L | (unsub s k) N

updk,v (X ,X
′)

updk,v (,)

updk,v (T ,T
′) updk,v (Z ,Z

′) updk,v (X ,X
′)

updk,v ((д :σ T Z) X , (д :σ T ′ Z ′) X ′)

updk,v (u,u
′) updk,v (T ,T

′)

updk,v (u T ,u ′ T ′)

updk,v (z, z
′) updk,v (Z ,Z

′)

updk,v (z Z , z
′ Z ′)

Task

e ′ = e[(done v)/k]
updk,v ((r :e), (r :e

′))
CompInd

k < Q k < e

updk,v ((k
′
:e Q), (k ′

:e Q))

CompRead

k < Q k ∈ e e ′ = e[(done v)/k] Q ′ = Q k

updk,v ((k
′
:e Q), (k ′

:e ′ Q ′))

CompInv

k ∈ Q e ′ = e[(done v)/k] Q ′ = Q dirty

updk,v ((k
′
:e Q), (k ′

:e ′ Q ′))
SummaryEmpty

z = (k ′
:Y)

updk,v (z, z)

SummaryInd

z = (k ′
:Yval v ′ Q) k < Q

updk,v (z, z)
SummaryInv

z = (k ′
:Yval v ′ Q) k ∈ Q

updk,v (z, (k
′
:Yval v ′ (Q dirty)))

Fig. 19. System steps for receiving a push message on a silo.

Umut A. Acar, Guy Blelloch, Ruy Ley-Wild, Kanat Tangwongsan, and Duru Türkoğlu. 2010. Traceable data types for

self-adjusting computation. In Programming Language Design and Implementation (PLDI).
Umut A. Acar, Guy E. Blelloch, Matthias Blume, Robert Harper, and Kanat Tangwongsan. 2009. An experimental analysis

of self-adjusting computation. Transactions on Programming Languages and Systems (TOPLAS) 32 (November 2009),

3:1–3:53. Issue 1.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2006. Adaptive Functional Programming. ACM Trans. Program. Lang.
Syst. 28, 6 (Nov. 2006), 990–1034.

Akka 2016. Akka - Actors for the JVM. Apache 2 License, https://github.com/akka/akka.

Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (Sept. 2010), 68–75.

Albert Benveniste, Benoit Caillaud, and Paul Le Guernic. 2000. Compositionality in Dataflow Synchronous Languages. Inf.
Comput. 163, 1 (Nov. 2000), 125–171.

Phil Bernstein, Sergey Bykov, Alan Geller, Gabriel Kliot, and Jorgen Thelin. 2014. Orleans: Distributed Virtual Actors for
Programmability and Scalability. Technical Report MSR-TR-2014-41. Microsoft Research.

Philip A. Bernstein, Sebastian Burckhardt, Sergey Bykov, Natacha Crooks, Jose M. Faleiro, Gabriel Kliot, Alok Kumbhare,

Muntasir Raihan Rahman, Vivek Shah, Adriana Szekeres, and Jorgen Thelin. 2017. Geo-Distribution of Actor-Based

Services. Proc. ACM Program. Lang. 1 (October 2017), 107:1–107:26.
Gérard Berry and Georges Gonthier. 1992. The ESTEREL Synchronous Programming Language: Design, Semantics,

Implementation. Sci. Comput. Program. 19, 2 (Nov. 1992), 87–152.
Pramod Bhatotia, Alexander Wieder, Rodrigo Rodrigues, Umut A. Acar, and Rafael Pasquin. 2011. Incoop: MapReduce

for Incremental Computations. In Symposium on Cloud Computing (SOCC ’11). ACM, New York, NY, USA, Article 7,

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

152:36 Sebastian Burckhardt and Tim Coppieters

L | N → L′ | N ′ System Steps (4/4): Subscription Management

CastOut

k < X

(s :X (k :v) C) L | N → (s :X C) L | (unsub s k) N

RenewSubscription

(s :X (k :v) C) L | N → (s :X (k :v) C) L | (renew s k) N

ResendSubscription

(s :X (k :) C) L | N → (s :X (k :) C) L | (sub s k) N

Unsubscribe

k = д/oc/v X ′ = (д :σ T (k :Y ′ d) Z) X Y ′ = Y \ s ′

(s : (д :σ T (k :Y d) Z) X C) L | (unsub s ′ k) N → (s :X ′ C) L | N

UnsubscribeFailed

k = д/oc/v s ′ failed X ′ = (д :σ T (k :Y ′ d) Z) X Y ′ = Y \ s ′

(s : (д :σ T ((k :Y d) Z)) X C) L | N → (s :X ′ C) L | N

Subscribe

k = д/oc/v z = (k :Y) z ′ = (k :s ′ Y)

(s : (д :σ T (z Z)) X C) L | (sub s ′ k) N → (s : (д :σ T (z ′ Z)) X C) L | N

Subscribe-Send

k = д/oc/v z = (k :Y val v ′ Q) z ′ = (k : (s ′ Y)val v ′ Q)

(s : (д :σ T (z Z)) X C) L | (sub s ′ k) N → (s : (д :σ T (z ′ Z)) X C) L | (push s k v ′) N

Renew-Ok

k = д/oc/v z = (k :Y d) s ′ ∈ Y

(s : (д :σ T (z Z)) X C) L | (renew s ′ k) N → (s : (д :σ T (z Z)) X C) L | N

Renew-Resubscribe

k = д/oc/v z = (k :Y) s ′ < Y z ′ = (k :s ′ Y)

(s : (д :σ T (z Z)) X C) L | (renew s ′ k) N → (s : (д :σ T (z ′ Z)) X C) L | N

Renew-Resend

k = д/oc/v z = (k :Yval v ′ Q) s ′ < Y z ′ = (k : (s ′ Y)val v ′ Q)

(s : (д :σ T (z Z)) X C) L | (renew s ′ k) N → (s : (д :σ T (z ′ Z)) X C) L | (push s k v) N

Fig. 20. System steps for subscription management.

14 pages.

Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found. Trends Program. Lang. 1, 1-2 (Oct. 2014), 1–150.
Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, Sean McDirmid, Michal Moskal, Nikolai Tillmann, and Jun Kato.

2013. It’s Alive! Continuous Feedback in UI Programming. In Programming Language Design and Implementation (PLDI).
95–104.

Sebastian Burckhardt, Daan Leijen, Jaeheon Yi, Caitlin Sadowski, and Tom Ball. 2011. Two for the Price of One: A Model for

Parallel and Incremental Computation. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
Sergey Bykov, Alan Geller, Gabriel Kliot, James Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud Computing for

Everyone. In ACM Symposium on Cloud Computing (SOCC ’11). Article 16, 14 pages.
Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. 1987. LUSTRE: A Declarative Language for Real-time

Programming. In Principles of Programming Languages (POPL). 178–188.
Wei-Chiu Chuang, Bo Sang, Sunghwan Yoo, Rui Gu, Milind Kulkarni, and Charles Killian. 2013. EventWave: Programming

Model and Runtime Support for Tightly-coupled Elastic Cloud Applications. In Proceedings of the 4th Annual Symposium
on Cloud Computing (SOCC ’13). ACM, New York, NY, USA, Article 21, 16 pages. https://doi.org/10.1145/2523616.2523617

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

https://doi.org/10.1145/2523616.2523617

Reactive Caching for Composed Services 152:37

Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled Elmeleegy, and Russell Sears. 2010. MapReduce

Online. In Networked Systems Design and Implementation (NSDI). USENIX Association, Berkeley, CA, USA, 21–21.

Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding Dynamic Dataflow in a Call-by-value Language. In

European Symposium on Programming (ESOP). Springer-Verlag, Berlin, Heidelberg, 294–308.
Antony Courtney. 2001. Frappé: Functional reactive programming in Java. In Practical Aspects of Declarative Languages

(PADL). Springer, 29–44.
Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton, Dries Harnie, Kevin Pinte, and

Wolfgang De Meuter. 2014. AmbientTalk: programming responsive mobile peer-to-peer applications with actors.

Computer Languages, Systems & Structures 40, 3-4 (2014), 112–136. https://doi.org/10.1016/j.cl.2014.05.002

Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional Reactive Programming for GUIs. In Programming
Language Design and Implementation (PLDI). 411–422.

Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun. ACM 51, 1

(2008), 107–113.

Camil Demetrescu, Sebastian Erdweg, Matthew A. Hammer, and Shriram Krishnamurthi. 2016. Programming Language

Techniques for Incremental and Reactive Computing (Dagstuhl Seminar 16402). Dagstuhl Reports 6, 10 (2016), 1–12.
https://doi.org/10.4230/DagRep.6.10.1

Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. 2011. Reactive Imperative Programming with Dataflow Constraints.

In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 407–426.
Joscha Drechsler, Guido Salvaneschi, Ragnar Mogk, and Mira Mezini. 2014. Distributed REScala: An Update Algorithm for

Distributed Reactive Programming. In Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA). 16.
Conal Elliott and Paul Hudak. 1997. Functional Reactive Animation. In International Conference on Functional Programming

(ICFP) (ICFP ’97). 263–273.
Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The Many Faces of Publish/Sub-

scribe. ACM Comput. Surv. 35, 2 (June 2003), 114–131.
Cormac Flanagan and Matthias Felleisen. 2001. The Semantics of Future and Its Use in Program Optimization. (09 2001).

Flink 2016. Apache Flink. https://flink.apache.org/.

Thierry Gautier, Paul Le Guernic, and Löic Besnard. 1987. SIGNAL: A Declarative Language for Synchronous Programming

of Real-time Systems. In Functional Programming Languages and Computer Architecture. 257–277.
Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic

Management of Data and Computation in Datacenters. In Operating Systems Design and Implementation (OSDI) (OSDI’10).
USENIX Association, Berkeley, CA, USA, 75–88.

Matthew A. Hammer, Umut A. Acar, and Yan Chen. 2009. CEAL: a C-based language for self-adjusting computation. In

Programming Language Design and Implementation (PLDI).
Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003. Arrows, Robots, and Functional Reactive Programming.

Springer Berlin Heidelberg, 159–187.

Daniel Ignatoff, Gregory H. Cooper, and Shriram Krishnamurthi. 2006. Crossing State Lines: Adapting Object-Oriented
Frameworks to Functional Reactive Languages. Springer Berlin Heidelberg, Berlin, Heidelberg, 259–276.

Sean McDirmid and Wilson C. Hsieh. 2006. SuperGlue: Component Programming with Object-Oriented Signals. Springer,
206–229.

Frank McSherry, Derek Murray, Rebecca Isaacs, and Michael Isard. 2013. Differential dataflow. In Proceedings of CIDR 2013.
Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Greenberg, Aleks Bromfield, and Shriram

Krishnamurthi. 2009. Flapjax: A Programming Language for Ajax Applications. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 1–20.

Luc Moreau. 1970. The Semantics of Scheme with Future. 31 (02 1970).

Orbit 2016. Orbit - Virtual Actors for the JVM. BSD 3-clause license. https://github.com/orbit/orbit.

Orleans 2016. Orleans - Distributed Virtual Actor Model for .NET. MIT license. https://github.com/dotnet/orleans.

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

React 2016. React - A declarative JavaScript library for building user interfaces. Available under BSD 3-clause license.

https://github.com/facebook/react.

Reactors.IO 2016. Available under BSD 3-clause license. https://github.com/reactors-io/reactors.

Guido Salvaneschi, Sven Amann, Sebastian Proksch, and Mira Mezini. 2014. An Empirical Study on Program Comprehension

with Reactive Programming. In International Symposium on Foundations of Software Engineering (FSE). 564–575.
Guido Salvaneschi and Mira Mezini. 2013. Reactive Behavior in Object-oriented Applications: An Analysis and a Research

Roadmap. In International Conference on Aspect-oriented Software Development (AOSD). New York, NY, USA, 37–48.

Bo Sang, Gustavo Petri, Masoud Saeida Ardekani, Srivatsan Ravi, and Patrick Eugster. 2016. Programming Scalable Cloud

Services with AEON. In Proceedings of the 17th International Middleware Conference (Middleware ’16). ACM, New York,

NY, USA, Article 16, 14 pages. https://doi.org/10.1145/2988336.2988352

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

https://doi.org/10.1016/j.cl.2014.05.002
https://doi.org/10.4230/DagRep.6.10.1
https://doi.org/10.1145/2988336.2988352

152:38 Sebastian Burckhardt and Tim Coppieters

SF Reliable Actors 2016. Service Fabric Reliable Actors. Available for the Windows Azure platform, see

https://azure.microsoft.com/en-us/documentation/articles/service-fabric-reliable-actors-get-started/.

Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Programming from First Principles. SIGPLAN Not. 35, 5 (May

2000), 242–252.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2012. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster

Computing. In Networked Systems Design and Implementation (NSDI). USENIX, 15–28.

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 152. Publication date: November 2018.

	Abstract
	1 Introduction
	1.1 Contributions

	2 Formulation
	2.1 Syntax
	2.2 Semantics
	2.3 Type System
	2.4 Reactive Caching

	3 Distributed Algorithm
	3.1 Bipartite Dependence Graph
	3.2 Change Propagation
	3.3 Fault Tolerance
	3.4 Consistency
	3.5 Other Performance Benefits

	4 Implementation
	5 Performance Evaluation
	5.1 Latency Experiments
	5.2 Throughput Experiments
	5.3 Chirper Experiments

	6 Related Work
	7 Conclusion
	A Type System
	A.1 Proof of Theorem 2.2
	A.2 Proof of Theorem 2.4
	A.3 Proof of Theorem 2.3
	A.4 Lemmas

	B Elasticity and Persistence
	B.1 Volatile Silo Cluster Model
	B.2 Persistent Silo Cluster Model

	C Reactive Caching Algorithm
	C.1 Overview
	C.2 Formalization Choices
	C.3 Syntax
	C.4 Operational Semantics
	C.5 Consistency Guarantees

	References

