Reactivity of Transition Metal Complexes (H&S 3rd Ed., Chpt. 26)

Four main types of reactivity:

1) Substitution reactions: $ML_n + L' \rightarrow ML_{n-1}L' + L$

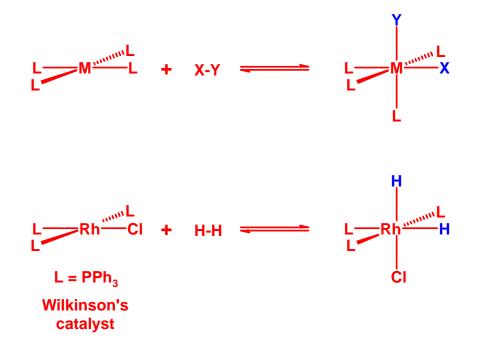
egs.
$$[Fe(H_2O)_6]^{3+} + 3 \operatorname{acac}^- \rightarrow Fe(\operatorname{acac})_3 + 6 H_2O$$

 $[Cu(H_2O)_6]SO_4 + 4 NH_3 \rightarrow [Cu(NH_3)_4(H_2O)_2]SO_4$

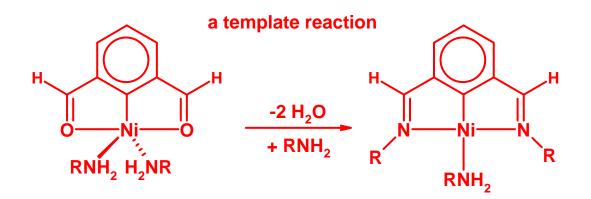
2) Addition (dissociation) reactions: $ML_n + L' \rightarrow ML_nL'$

egs.
$$[Cu(acac)_2] + py \implies [Cu(acac)_2(py)]$$

Td SqPy


dissociation (the reverse reaction) usually requires heat or light to occur:

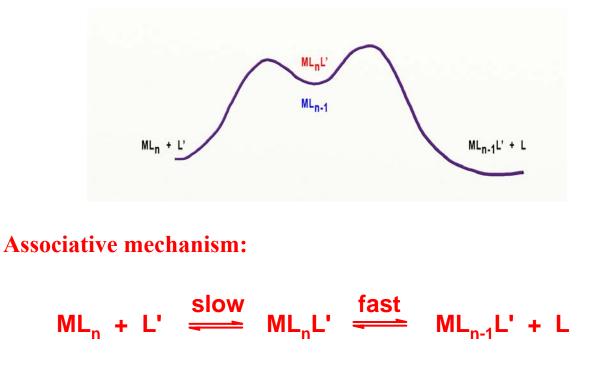
$$\begin{bmatrix} \text{NiCl}_2 \text{py}_4 \end{bmatrix} \xrightarrow{\begin{array}{c} 180 \text{ }\circ\text{C} \\ -2 \text{ }\text{py} \end{array}} \begin{bmatrix} \text{NiCl}_2 \text{py}_2 \end{bmatrix} \xrightarrow{\begin{array}{c} 220 \text{ }\circ\text{C} \\ -\text{ }\text{py} \end{array}}$$
$$\begin{bmatrix} \text{NiCl}_2 \text{py} \end{bmatrix} \xrightarrow{\begin{array}{c} 350 \text{ }\circ\text{C} \\ -\text{ }\text{py} \end{array}} \begin{bmatrix} \text{NiCl}_2 \end{bmatrix}$$


3) Redox (e⁻ transfer) reactions: $ML_n^{x+} \rightarrow ML_n^{(x+1)+} + e^{-}$

eg.
$$[\operatorname{Ru}(\operatorname{NH}_3)_6]^{2+} \rightarrow [\operatorname{Run}(\operatorname{NH}_3)_6]^{3+} + e^{-1}$$

also includes *oxidative-addition* (and its reverse: *reductive-elimination*), especially of SqP complexes

4) Reactions at coordinated ligands (many variants here)


Substitution Reactions

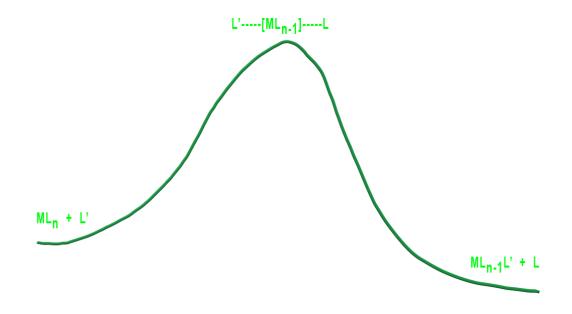
General mechanistic considerations

Four recognized mechanisms for ligand substitution in inorganic chemistry:

- 1) Associative (A)
- 2) Dissociative (**D**)
- 3) Associative Interchange (I_A)
- 4) Dissociative Interchange (I_D)

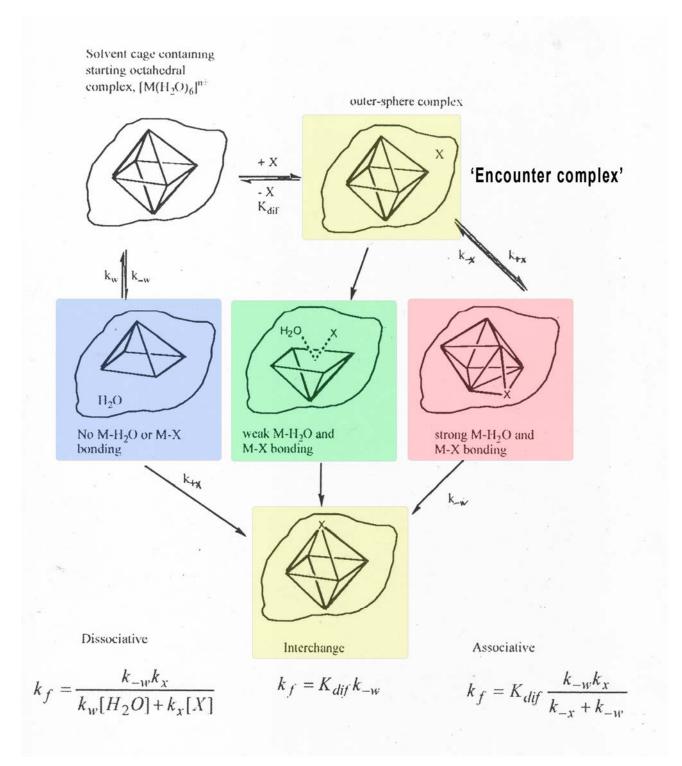
Associative and Dissociative differ from I_A and I_D respectively in that there is a discrete *intermediate* of higher or lower coordination number:

A mechanism (cont.):

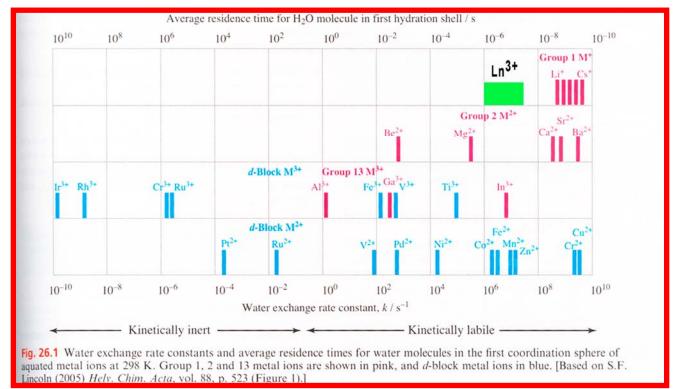

- rates depends on starting complex and incoming ligand concentration
- sensitive to nature of L' (but solvent effects can sometimes mask this)
- more likely for low coordination number complexes

Dissociative mechanism:

$$\begin{array}{c} +L' \\ \text{slow} \\ \text{ML}_n \xrightarrow{\text{slow}} \text{ML}_{n-1} + L \xrightarrow{\text{fast}} \text{ML}_{n-1}L' \end{array}$$


- equivalent to a S_N1 reaction in organic chemistry
- \bullet rates depend only on concentration of starting complex ML_n
- insensitive to nature of incoming ligand L'
- more common for high coordination number complexes and those containing very bulky ligands L

Interchange mechanisms: concerted reaction with no discrete intermediate of higher or lower coordination number


- more common than true A or D mechanisms
- based on the Eigen-Wilkins 'encounter complex' model
- I_A has both leaving and entering ligands strongly bound in the TS and shows sensitivity to the nature and concentration of L'
- I_D has both leaving and entering ligands weakly bound in the TS and shows little sensitivity to the identity or concentration of L'

Eigen-Wilkins 'encounter complex'

Substitution in Octahedral Complexes

- mechanism generally found to be I_D (there are of course exceptions); true D mechanism is rare
- water exchange rates vary enormously across the d-block:

(water exchange rates are simply representative of general exchange kinetics for the *d*-block metals but they are very useful to know since much chemistry is done in water and they have been extensively studied as a result)

How can we rationalize these widely varying rates?

1) Non-d-block metals show decreasing k with increasing Q/r

- since this is a dissociative mechanism, weakening the M-OH₂ bond should increase rate and the strength of ion-dipole interaction depends on Q/r
- no directional (crystal field) effects associated with spherical ions
- 2) Even though there isn't an obvious Q/r trend for the dblock metals, there is some influence of charge

egs.

 Fe^{2+} and Ru^{2+} are about 10^4 x faster in water exchange than Fe^{3+} and Ru^{3+} , respectively

BUT V^{2+} is about 10 x SLOWER than V^{3+} so the trend is not perfect

However, within a charge series the Q/r ratio doesn't hold:

 V^{2^+} has one of the lowest Q/r and yet has one of the slowest rates and Cr^{2^+} and Cu^{2^+} are very different in size but almost the same in rate

3) Jahn-Teller ions show exceptional fast water exchange:

waters in the coordination sphere of Cr^{2+} (d⁴) and Cu^{2+} (d⁹) have an average residence time of *less than a nanosecond*!!

- Jahn-Teller ions already show elongation of two (or four) M-OH₂ bonds so it is not too surprising that these waters are less tightly bound and more easily lost in an I_D mechanism
- 4) Besides the Jahn-Teller ions, water exchange rates are also significantly influenced by the dⁿ count for other dblock ions
 - even though the true mechanism is probably I_D not D, it is useful to think about changes in CFSE going from an Oh ground state to a square pyramidal intermediate (or transition state):
 - a net gain in CFSE is a stabilizing influence on the intermediate, lowering ΔG^* and increasing the rate
 - a net loss in CFSE is a destabilizing influence on the intermediate, increasing ΔG^* and decreasing the rate

Does this actually work? Let's look at the change in CFSE (square pyramidal – octahedral) for various d counts:

d ⁿ	$\Delta \mathbf{CFSE}$ (high spin)	$\Delta \mathbf{CFSE}$ (low spin)
1	+0.06	
2	+0.11	
3	-0.20	
4	+0.31	-0.14
5	0	-0.09
6	+0.06	-0.40
7	+0.11	+0.11
8	-0.20	
9	+0.31	
10	0	

So, as long as we stay within a particular ionic charge group we do pretty well:

For first row **3**+ ions:

 $Cr^{3+}(d^3) \Delta CFSE = -0.20$ is in fact substitution inert

followed in increasing order of lability by:

 $Fe^{3+} (d^5) \Delta CFSE = 0$ V³⁺ (d²) $\Delta CFSE = +0.11$ Ti³⁺ (d¹) $\Delta CFSE = +0.06$ For first row 2+ ions:

 V^{2+} (d³) $\triangle CFSE = -0.20$ is quite slow (87 s⁻¹)

Ni²⁺ (d⁸) \triangle CFSE = -0.20 is labile but 2nd slowest overall (10⁴ s⁻¹)

Co²⁺ (d⁷) \triangle CFSE = +0.11; Fe²⁺ (d⁶) \triangle CFSE = +0.06; Mn²⁺ (d⁵) \triangle CFSE = 0; Zn²⁺ (d¹⁰) \triangle CFSE = 0 are very close in lability to one another and fast exchanging (10⁷ s⁻¹)

 Cr^{2+} (d⁴) $\triangle CFSE = +0.31$; Cu^{2+} (d⁹) $\triangle CFSE = +0.31$ are both Jahn-Teller distorted ions and have large changes in CFSE as well. There exchange rates are among the fastest known for any ions at >10⁹ s⁻¹

Second and third row metals

- generally less labile
- partly due to less favourable $\triangle CFSE$ for these low spin metals (remember Δ_{oct} is larger for these metals so the CFSE corresponds to a greater energy in general)
- note that the especially unfavourable ∆CFSE of -0.40 for low spin d⁶ ions leads to substitution inert octahedral Rh³⁺ and Ir³⁺ complexes