

Reactor Hazard Identification Case Study

Hazard Identification and Risk Analysis using RAST

Version: 1.0 Revision Date: 13 September 2018 Document Owner: Louisa Nara, CCPS Global Technical Director

Process Description

MCMT is produced in three steps that occur sequentially within a single process reactor. In the first reaction step (called metalation), the process operator feeds a mixture of methylcyclopentadiene (MCPD) dimer and diethylene glycol dimethyl ether (diglyme) solvent into the reactor. An outside operator then hand-loads blocks of sodium metal through a 6-inch gate valve on top of the reactor, closing the valve when complete. The process operator then heats the mixture with the hot oil piping system, setting reactor pressure control at 3.45 bar and hot oil temperature control at 182°C.

Intended Reaction

The initial reaction mixture contains approximately 0.11 weight fraction sodium, 0.45 weight fraction MCPD dimer and 0.44 weight fraction diglyme solvent. Heating this mixture begins the metalation reaction by melting the sodium and splitting each MCPD dimer molecule into two MCPD molecules. The melted sodium then reacts with the MCPD to form sodium methylcyclopentadiene, hydrogen gas, and heat. The hydrogen gas vented to the atmosphere through the pressure control valve and 1-inch vent line.

Once the mixture temperature reaches 99°C, the process operator starts the agitator. The mixing and higher temperature acts to increase the metalation reaction rate. At a reaction temperature of about 149°C, the process operator turns off the hot oil system and heat generated by the metalation reaction continues to raise the mixture temperature. At a temperature of about 182°C, the process operator initiates the control system cooling program, which intermittently injects water into the jacket based on the rate of reaction temperature increase.

In addition to the intended reaction, a solvent (diglyme) decomposition occurs at elevated temperature. This reaction was unknown to operations personnel. VSP (Vent Sizing Package) tests was run for the typical recipe in a sealed system with results used to better understand decomposition kinetics. Test results indicated a maximum temperature rate of 1300°C/min and maximum pressure rate of 2200 bar/min with maximum temperature of 650°C at which point the test cell ruptured (such that the reaction may not have been complete). The overall heat of decomposition from the experiment is greater than -1110 J/g mixture (-260 cal/g) as indicated by the greater than 440 C temperature rise in a nearly adiabatic test apparatus and an average liquid heat capacity of roughly 2.5 J/g C.

Equipment and Site Description

The reaction equipment is a 2450 gallon vessel with a Maximum Allowable Work Pressure (MAWP) of 600 psig (41 barg). Cooling is provided by adding water to the vessel jacket which evaporates and is vented to the atmosphere. The cooling surface area is approximately 160 ft² (15 m²).

The manufacturing facility is located on a 5-acre site in an industrial area and extends approximately 100 m from the reactor. A small control building is located roughly 50 ft (15 m) from the reactor. There is a trucking company and other businesses adjacent to the site with larger buildings/warehouse approximately 460 ft (140 m) away.

Inputs for RAST

Chemical data for the materials used in this example is not in the RAST chemical database as provided from CCPS, but they may be added by the User. Information from the Sigma-Aldrich Safety Data Sheet (SDS), ExxonMobil SDS, Protective Action Criteria (PAC) database Revision 29, and selected properties estimated by group contribution methods will be used. The RAST chemical data input sheets for methylcyclopentadiene and diglyme are shown below.

< Go To Chemical Data	Clear Chemical Data Ir	nputs User Che	emical Data Input	
Chemical Properties	Starting Chemical That is Similar	User Supplied Values	Properties of User Chemical to be Saved	
Chemical Name =			Methylcyclopentidiene Dimer	
CAS Number =		26472-00-4	26472-00-4	
Data Source:		Group Contribution Estimates, Sigma Aldrich/ExonMobil SDS, PAC Database (ERPG)		
Mol Weight =		160.26	160.26	
Melting Point, TM (C) =		-51	-51	
Boil Point, TB (C) =		200	200	
Vap Pres A =			9.261	٦
Vap Pres B =			3982.29	
Vap Pres C =			43.0	
Dens A =			0.964	
Dens B =			0.00091	
Lin C A =			0.315	٢
Lin C B =			0.00086	
Lat Ht A =			65.9	
Lat Ht B =			0.032	
Lat Ht C =			0.00000	
Flash Pt (C) =		31.8	31.8	
LFL (Vol %) =		1	1	
UFL (Vol %) =		10	10	
Autolgnition Temperature (C) =		480	480	
Ease of Ignition =				
Fuel Reactivity =				
Liquid Conductivity				
Dust Deflagration Class				
Solids Mean Particle Size (micron)				
Solids Part Size at 10% Fract (micron)				
Dust Min Ignition Energy (mJ)				
Dust-Flam Vapor Hybrid?				
ERPG-1 or Odor (ppm) =		0.34	0.34	
ERPG-2 (ppm) =		3.7	3.7	
ERPG-3 (ppm) =		21	21	
NFPA Health =		2	2	
NFPA Flammability =		3	3	
NFPA Reactivity =		0	0	
Dermal Toxicity =				
Aquatic Toxicity =		Very Toxic	Very Toxic	
Reactivity Category =				
Good Warning Properties?				

_						
Γ	Calculate Physical Pro	ants from Data Points				
	Property	Units	Point 1	Point 2		
	Temperature	С	25	200		
ł	Vapor Pressure (absolute)	mmHg	1.32	760		
	Liquid Density	gm/ml	0.941	0.781		
	Liquid Heat Capacity	cal/gm C	0.337	0.488		
	Heat of Vaporization	cal/gm	65.1	59.5		

Save Chemical Data to Chemical Table Go To Chemical Table to Delete User Chemical >

Estimated Boiling Point, C = 200.0

< Go To Chemical Data	Clear Chemical Data Ir	oputs User Che	emical Data Input	
Chemical Properties	Starting Chemical That is Similar	User Supplied Values	Properties of User Chemical to be Saved	
Chemical Name =			Diglyme	
CAS Number =		111-96-6	111-96-6	
Data Source:		Group Contribution Estimates, Sigma Aldrich SDS,PAC Database (ERPG)		
Mol Weight =		134.17	134.17	
Melting Point, TM (C) =		-64	-64	
Boil Point, TB (C) =		162	162	
Vap Pres A =			12.716	1
Vap Pres B =			4984.70	Calc
Vap Pres C =			43.0	
Dens A =			0.969	Te
Dens B =			0.00104	Vapor Pr
Liq C A =			0.569	Liq
Liq C B =			0.00086	Liquid
Lat Ht A =			113.6	Heat
Lat Ht B =			0.207	
Lat Ht C =			0.00000	E
Flash Pt (C) =		57	57	
LFL (Vol %) =		1.5	1.5	
UFL (Vol %) =		17.4	17.4	
AutoIgnition Temperature (C) =				
Ease of Ignition =				
Fuel Reactivity =				
Liquid Conductivity				
Dust Deflagration Class				
Solids Mean Particle Size (micron)				
Solids Part Size at 10% Fract (micron)				
Dust Min Ignition Energy (mJ)				
Dust-Flam Vapor Hybrid?				
ERPG-1 or Odor (ppm) =		15	15	
ERPG-2 (ppm) =		91	91	
ERPG-3 (ppm) =		200	200	
NFPA Health =		0	0	
NFPA Flammability =		2	2	
NFPA Reactivity =		0	0	
Dermal Toxicity =				
Aquatic Toxicity =				
Reactivity Category =				
Good Warning Properties?				

Calculate Physical Pro	operty Consta	ints from Data	a Points
Property	Units	Point 1	Point 2
Temperature	С	25	162
Vapor Pressure (absolute)	mmHg	0.82	760
Liquid Density	gm/ml	0.943	0.8
Liquid Heat Capacity	cal/gm C	0.591	0.709
Heat of Vanorization	cal/am	108.4	80

Save Chemical Data to Chemical Table Go To Chemical Table to Delete User Chemical >

Estimated Boiling Point, C = 162.0

Sodium was entered as a generic dissolved solid. The final chemical mixture from the RAST Chemical Data Input worksheet as:

RAST <u>does not</u> account for changing composition during reaction. The liquid composition entered is intended to represent the Chemical Hazards for the equipment. Consider adding small quantity of dissolved gas or evaluation of multiple cases of different composition.

Equipment Data Entry is entered on the Equipment Input worksheet. Note that there are few required fields and information may be added later to improve results.

<< Go To Main Menu		<u>Equipm</u>	ent Input	Go To Process Conditions Input >
< Go To Chemical Data	Save Input to Equ	ipment Table	Clear Input	Go To Plant Layout >
				Go To Reaction Input >
Equipment Identification:	Methylation plus Diglyme	Decomposition	Equipment Descr	iption
Equipment Type:	Stirred Reactor/Crystallize	er		
Location:	Dutdoors			
E - dans			Disis Deserved	
Equipmen	arameters		Piping Paramet	ers
MAWP (gauge) =	2300	yai	Pipe Length – Pining Vulnerable to Damage?	
Full Vacuum Rated?		Dai	Apply Screwed Connection Penalty2	
Estimated High Temperature Failure	=	с	7 ppg oddwed odmedian r charg.	
Estimated Embrittlement Temperature	9 =	c	Pump / Agitator Par	ameters
Nozzle or Pipe Size =	100	mm	Pump Type =	
Number of Flanges or Nozzles =			Seal or Containment Type =	
Material of Construction			Remote Start Pump?	
Estimated Equip Mass based on C. S	leel 11198	kg	Pump Automated Suction or Discharge?	
Equipment Mass =]	kg		Estimated User Entry
Internal Corrosive or Stress Cracking Poten	ial?		Pump Volume (including piping to block valves), liter	15.1
Susceptible to Vibration Fatigue?			Pump Surface (including piping to block valves), m ²	0.69
Motor Power =		Kwatt		
Insulation	Yes		I ransportation Equipment or I	Piping Parameters
Tracing 2			Equipment of Piping Connection -	
Felimatod Equipment Max Wotted Am	a - 21	60 m	Other Equipment Ba	ramatore
Liser Equipment Max Wetted Area	21	sq m	Replacement Cost & Business Loss	
Equipment Elevation to Surface =	•	m	Drum Oven Volume =	cu m
Drain Valve Size		mm	High Speed Rotating Equipment?	
			Bellows or Expansion Joint Used?	
Vessel/Ta	nk Parameters		Sight Glass Used?	
Vessel/Tank Geometry?				
Low Pressure Tank with Weak Seam R	oof?		Relief Device Para	meters
Vessel/Tank Considered as "Storage	?		Relief Device Identification	
Conductive Dip Pipe or Bottom Fill	,		Relief Type =	Rupture Disk
			Relief Discharges to:	
Heat Irans	ter Parameters		Relief Set Pressure (gauge) =	28 bar
Heating Transfer Area =		sq m	Relief Size (equiv. diameter) =	100 mm
Heating Eluid Tomporture -	192	rwau /sq m C	Relief Design Actual Flow Rate =	Kg/min
Heat Transfer Eluid Proceure (aguae)	- 102	bar	Release Fipe Diameter =	· · · · · · · · · · · · · · · · · · ·
Tube Failure Release to Atmosphere	2	udi	Closest Distance From Relief to Elevated Work Area	
Heat Transfer Fluid Name =			Furthest Distance from Relief to Elevated Work Area	
Heat Transfer Eluid State =			Elevation of Nearest Work Area =	
Quantity Hot Oil Handled (for F&E)	. +		Enter Distances from Relief Location ONLY if Dif	ferent from Equipment Location
Tube (or Leak) Diameter =	+	mm	Relief Distance to Property Limit or Fence Line =	m
Number of Tubes =			Relief Distance to Occupied Bldg 1 or Area =	
Cooling Transfer Area =	15	sa m	Relief Distance to Center of Occ Bldg 1 =	- m
Cooling Overall U =	0.5	Kwatt /sq m C	Occ Bldg 2 in Same Wind Direction for Relief?	
Coolant Temperature =	100	С	Relief Distance to Occupied Bldg 2 =	m
			Relief Distance to Center of Occ Bldg 2 =	m
•				

Since the reactor is operated batch-wise, the feedrate may be set to zero on the Process Conditions worksheet. A separate case to evaluate overfill of the reactor during the fill steps could be also be run.

	<< Go To Main Menu		Proces	<mark>ss Condition</mark>	<u>ns Input</u>			Go To	Plant Layout >	
	< Go To Chemical Data	Sav	e Input to Equi	pment Table		Clear Input		Go To I	Reaction Input >	
	< Go To Equipment Input				-					
	Equipment Iden Equipm I	tification: Me ent Type: Sti Location: Ou	ethylation plus Dig rred Reactor/Crys ttdoors	lyme Decom tallizer		Pr	ocess Descrip	tion		
	Process/Ope	erating Condi	tions			Summary for	Methylcyclope	ntidiene Din	ner	
	Inventory Limit (blank is unlin	nited) =	k	g	Ope	erating Temperati	ure =	150	С	
	Liquid Head within Equipmen	nt, ∆h =	n	n	Opera	ting Pressure (ga	auge) =	3.45	bar	
	Limiting Maximum Fill Fract	tion =				Physical State =	·	Lic	Liquid	
	Limiting Minimum Fill Fract	ion =			Satu	uration Temperat	ure =	153.5	С	
	Maximum Feed Press (gau	ige) =	bi	ar	(Contained Mass	-	7020	kg	
	Maximum Feed or Flow Ra	ate =	0 kg/	min	Maxim	num Contained I	Mass =	7800	kg	
	Maximum Feed Temperatu	ure =	0	;	Inve	entory for Referen	nce =	7800	kg	
	Type of Feed (Batch or Cont	inuous)								
	Non-Ignitable Atmosphere Mai	intained?								
	Potential for Aerosol or M	list?								
	Pad Gas Name =					Ор	erating Proced	ures		
	Max Pad Gas Pressure (gau	uge)=	bi	ar	Percen	nt of Time in Ope	ration =			
	Maximum Pad Gas Rate	e =	kg/i	min	F	Frequent Turnard	ound or Cleanou	ıt?		
	Downstream Pressure (gau	Jge) =	bi	ar	Cei	ntralized Ventilati	on Shut-Off Bld	lg 1?		
	Maximum Back Flow Rat	te =	kg/i	min	Cer	ntralized Ventilati	ion Shut-Off Blo	lg 2?		
	Equipment Vents to =	-								
					Review of	f Operating Proc	cedures for			
					Select	ted Equipment I	tem by:	Revie	w Date:	
U	se Time-based Release for Equipmen	nt Rupture?		sec						

Plant and Site Layout information is entered on the Plant Layout worksheet. For this example, we have assumed 3 occupants in the control building and 20 in the warehouse as a daytime value.

As this example is for a reactor system, reaction information is added to the Reaction Input worksheet which also serves to provide high level reaction hazard screening. Limited kinetic information is needed which will provide a simple first order reaction model (shown graphically on the Reaction Input worksheet) used in the evaluation. As the kinetic information is not well known and the test container ruptured in both sealed experiments, one might assume a potential for deflagration or detonation. An activation energy of 20 kcal/mole is assumed to approximate the maximum temperature rate in the 600 to 650 C range as noted in the CSB report. It would be very important to obtain a good kinetic model, particularly in sizing of a pressure relief device to protect the equipment during a runaway reaction.

Notice the green line on the heat rate graph. This indicates that the cooling system is capable of maintaining temperature control as long as the system is below 200 C (which is noted in the screening criteria, Temperature of No Return (TNR) with Cooling is estimated to be 200 C.

Reports

Following entry of the input information, several reports may be run to summarize hazards and risks. A good report to start with is the **Hazard Summary**. Based on the input information, RAST suggests considering flammable hazards due to the hydrogen present and that maximum temperatures during an upset are above the mixture flash point. The estimated Emergency Response Planning Guideline – Level 3 (ERPG-3) concentrations indicated toxic hazards to be considered. The reaction information also suggested significant reaction hazards exist.

<< Go To Main Menu			
HAZARD SU	JMMARY		
RAST Vers	ion 1.1		Date:
Summary of Chemical Information	for Process Unit	: Stirred React	or/Crystallizer; Methylation plu
Physical State at Operating Conditions for Methylcyclopentidier	ne Dimer = Liquid a	and Feed of:	
Weight Fraction Methylcyclopentidiene Dimer	0.45		
Weight Fraction Diglyme	0.44		
Weight Fraction Sodium Weight Fraction Hydrogen	0.000006		
Normal Boiling Point, C	93.8	H	azard Screening
Flash Point, C Lower Elammable Limit at Initial Composition, vol %	-259.0	Note C	hemical Information in Bold
Combustible Dust?	No	Flammability	Hazard Sufficient for Further
ERPG-2 at Initial Composition, ppm	13.7		Consideration
ERPG-3 at Initial Composition, ppm	72.4		
Aquatic Toxicity Classification (or Corrosive to Human Tissue)	Very Toxic	l oxicity Ha	Zard Sufficient for Further
Considered Toxic by a Regulatory Agency?	No		Consideration
Heat of Reaction, kJoule/kg (Exothermic)	-1256.1	Reactivity H	azard Sufficient for Further
Highly Volatile or Gaseous Products Generated?	Yes		Consideration
Potential for Mixing Incompatible Materials?	N0 Ves	Process Fr	winment is Considered in
	165	Ha	azardous Service
	_	_	
Summary of Equipment and Process Conditions	Temperature	Pressure	Pressure Exceeds Relief Device
Equipment or vessel volume 2500 gal	C	bar gauge	Set Plessure?
Normal Operating Conditions	150	3.45]
Relief Device Set Pressure	269.8	28.00]
Catastrophic Failure/Burst Pressure	372.5	82.00	1
Catastrophic Failure High Temperature	600.0	1	
Temperature where Low Temp Embrittlement may Occur?	Not Entered		
Maximum Feed Pressure		Not Entered	
Maximum Gas Pad Pressure		Not Entered	-
Maximum from Liquid Displacement (based on 9 X compression or fe	ed pressure)	2.29	No
Estimated Maximum Headspace Deflagration Pressure		10.13	No
Maximum Pressure from Hydraulic Surge (Piping Only)	0.5	0.71	
Maximum Ambient Conditions	25	-0.71	NO
Minimum Coolant Temperature	100	0.48	No
Normal Boiling Point of Equipment Contents	93.8		-
Maximum from Heating Media Temperature	182	7.11	No
Estimated time to Relief Set Pressure or MAWP from Heat Transfer at Lo	w Level, min ah Level, min		-
Heating Media Source Pressure		0.00	No
Max from Mechanical Energy at Low Level: Insulated]
Estimated time to Relief Set or MAWP from Mechanical Energy at Low Le	evel, min		-
Max from Mechanical Energy at High Level: Insulated Estimated time to Relief Set or MAWP from Mechanical Energy at High L	evel min		+
Estimated and to react occor within a form weendmode Energy arright			Max. Temperature Exceeds High
			Temperature Failure
Maximum Temperature , C	706.1		Yes
			Embrittlement Temperature
Minimum Temperature, C	25		No
Potential for Uncontrolled Reaction	Yes	1	
Reaction Temperature of No Return is Less Than: Ambient Temperatu	re, Operating Tempe	erature, Heating	
Media Temperature,		ĩ	
Exothermic Reaction Temperature of No Return	>TNR	With Goo Corre	Pressure Exceeds Relief
Maximum Reaction based on Adiabatic and Initial	Temperature, C	Pressure, barg	Device Set Pressure?
Temperature as Operating Temperature	706.1	794.92	Yes
max Reaction Temp Exceeds High Temperature Failure?	Yes		
Potential for Pool Fire	Yes		
The Flash Point is Less Than: 60 C, Ambient Temperature + 5 C, Oper + 5 C, Max Machanical Energy T	ating Temperature +	5 C, Heating Med	lia Temperature
Quantity Flammable Available based on System Inventory	5000.0	kg	
Maximum Pool Fire Duration based on Direct Fire	187.6	minutes	
Fire Heat Input per API 521 for Process Vessel or	145449.6	Kwatt	
Equipment with Credit for Insulation	lo Return at Pool P	ire Duration	
Contents Reach remperature of N Contents Do Not Reach Relief Co	onditions at Pool Fi	ire Duration	
Contents Do Not Reach Failure or Rupt	ure Conditions at F	Pool Fire Duratio	n

Another very useful report is the **Scenario List**. Deviations of common Parameters for a Stirred Reactor that could lead to an unintended loss of hazardous material or energy along with the most common causes are listed. The list also contains comments why the scenario was selected. Scenarios in gray were not selected. The comments may explain why which may indicate a missing input. This table provides a "starting point" for identifying scenarios to consider for Risk Analysis. Note that "Uncontrolled Reaction – Adiabatic" cased by loss of cooling is one of the scenarios suggested for consideration.

<< Go To Main Menu Update Suggested Scenarios from the RAST Library Go To Sc							
Create User Scenario	<u>HAZOP Node</u> Plant Section = Equipment Type = Equipment Tag =	IZOP Node: ant Section = HAZOP Design Intent meetrylation plus brigging Dreampositions at Same weakdon or ystemizer containing Methylcyclopenidiene Dimer Mix that operates at 150 C and 3.45 bar. The volume is 2500 gal with a design pressure of 41 bar. The ment Tag = ment Tag = Methylation plus					
LOPA Menu Filters:			Scenarios with NO IPL's	Required will NOT be reported.			
Scenario Type	Scenario Comments	Parameters and Deviation	Initiating Event (Cause)	Initiating Event Description	Incident	Outcome	
Drain or Vent Valve Open	Drain or Vent Valve left open following infrequent maintenance, purging or cleaning	Flow-Loss of Containment	Human Failure Action once per quarter or less	Operator leaves Drain or Vent Open following infrequent maintenance	Drain or Vent Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration, Chemical Exposure, Flash Fire or Fireball, Vapor Cloud Explosion	
Mechanical Integrity Failure - Medium	Mechanical Integrity Loss of Containment for Medium Hole Size	Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from corrosion, faligue, etc.	Medium Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration, Chemical Exposure, Flash Fire or Fireball, Vapor Cloud Explosion	
Mechanical Integrity Failure - Very Large	Mechanical Integrity Loss of Containment for Very Large Hole Size	Flow-Loss of Containment	IEF=4 as determined by Process Safety	Failure from corrosion, faligue, etc.	Very Large Hole Size Leak	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration, Chemical Exposure, Flash Fire or Fireball, Vapor Cloud Explosion	
Mechanical Integrity Failure - Very Small	Mechanical Integrity Loss of Containment for Very Small Hole Size	Flow-Loss of Containment	IEF=3 as determined by Process Safety	Failure from corrosion, fatigue, etc.	Very Small Hole Size Leak	On-Site Toxic Release	
Seal Leak	No Agitator Seal indicated	Flow-Loss of Containment	Single Mechanical Seal Failure	Failure from corrosion, alignment, low flow, etc.	Mechanical Seal Failure above Liquid Level	On-Site Toxic Release, Toxic Infiltration, Flash Fire or Fireball	
					Vapor Relief Vent - Reaction	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration, Flash Fire or Fireball, Vapor Cloud Explosion	
Uncontrolled Reaction - Adiabatic	Noted as a Condensed Phase Detonable Material	Reaction-High Rate	Ite BPCS Instrument Loop Failure	Loss of Cooling results in Uncontrolled Exothermic Reaction	Equipment Rupture - Detonation	Off-Site Toxic Release, On-Site Toxic Release, Toxic Infiltration, Chemical Exposure, Flash Fire or Fireball, Vapor Cloud Explosion, Equipment Explosion	
Excessive Heat Input - Heat Transfer	Vapor Pressure plus pad gas Does Not exceed Maximum Allowable Working Pressure or Relief Set Pressure at Ambient or Heating Media Temperature	Pressure-High	BPCS Instrument Loop Failure	Failure of Flow Control	Criteria for Triggering Incidents Not Met		
Excessive Heat Input - Pool Fire Exposure	Fire duration is insufficient to heat equipment contents to Relief Set or Burst Pressure	Pressure-High	IEF=2 as determined by Process Safety	Leak of Flammable Material or Material above its Flash Point which may ignite	Criteria for Triggering Incidents Not Met		
Excessive Pad Gas Pressure	Maximum Pad Gas Pressure Does Not Exceed the Maximum Allowable Working Pressure or Relief Set Pressure	Flow-High	Regulator Failure	Regulator Fails causing high flow or pressure	Criteria for Triggering Incidents Not Met		
High Temperature Failure	Maximum Feed Temperature Exceeds Temperature limits of Equipment	Temperature-High	BPCS Instrument Loop Failure	Failure of Temperature Control	Criteria for Triggering Incidents Not Met		
Ignitable Headspace	Chemical is handled/stored above at sufficently high temperature such that vapor composition is above the flammable limits or fuel rich	Composition-Wrong Concentration	BPCS Instrument Loop Failure	Failure of Pressure or NonCombustible Atmosphere Control	Criteria for Triggering Incidents Not Met		
Overfill, Overflow, or Backflow	Maximum Feed Pressure or Downstream Equipment Pressure is not sufficient to active Relief Device resulting in Overfill	Level-High or Flow- Backflow	BPCS Instrument Loop Failure	Failure of Level Indication with continued addition of material	Criteria for Triggering Incidents Not Met		
Pad Gas Compression	Maximum Feed or Downstream Pressure does not exceed the Maximum Allowable Working Pressure or Relief Set Pressure	Pressure-High	BPCS Instrument Loop Failure	Failure of Pressure Control	Criteria for Triggering Incidents Not Met		
Piping or Equipment Leak - Small	Motor below Vibration Power Limit for Potential for Vibration Fatigue Failure of Rotating Equipment	Flow-Loss of Containment	Mechanical Failure	Loss of Alignment or Equipment Support causing Vibration or Excessive Movement	Criteria for Triggering Incidents Not Met		
Rotating Equipment Damage	Motor Power below Rotating Equipment Vibration or Damage Limit	Composition- Contaminants	Mechanical Failure	Breakage of rotating blade or internal parts due to alignment, wear,or fatigue	Criteria for Triggering Incidents Not Met		
Uncontrolled Reaction - Fire Induced	Maximum Temperature at Relief Set Pressure is less than the Temperature of No Return or Fire Duration Not Sufficient to Reach Reaction Conditions	Reaction-High Rate	IEF=2 as determined by Process Safety	Leak of Flammable Material or Material above its Flash Point which may ignite	Criteria for Triggering Incidents Not Met		
Vacuum Damage	Equipment is rated for Full Vacuum	Pressure-Low	BPCS Instrument Loop Failure	Failure of Pressure Control	Criteria for Triggering Incidents Not Met		

RAST also performs **Consequence Analysis** on each of the scenarios suggested (in addition to any scenarios the User adds). A summary of this analysis is found on the Consequence Summary worksheet. For example, the Incident Type suggested for the Uncontrolled Reaction scenario listed above is Rupture at Saturation Temperature.

The analysis provides tolerable frequency for the various incident outcome based on the company's risk criteria. In this example, Offsite toxic represents a very high consequence scenario. This may prompt the User to check the location and population density of offsite personnel and enter additional information. The explosion impacts are also significant with the occupants for both building entered at risk. The damage distance to 1 psi from the rupture is estimated at 149 m with fragments to 1004 m. If the released vapor forms a large cloud before ignition, RAST estimates a vapor cloud explosion may also occur with 1 psi blast overpressure to 682 m.

Unfortunately, this incident (Runaway Reaction and Explosion) occurred on December 19, 2007 near Jacksonville, Florida. There were 4 fatalities and 32 injured in the blast. Debris from the explosion was found up to one mile away which is in reasonable agreement with the estimated maximum fragment range of 1004 m (0.62 miles) from RAST.

CSB Final Report – T2 Laboratories Runaway Reaction. Figure 4. Injury and business locations

Finally, RAST provides a list of possible cause-consequence scenario cases that may be selected as a starting point for **Layers of Protection Analysis (LOPA)**. In addition to the scenario that occurred at T2 Laboratories, RAST provided an additional 90 cause-consequence pair cases. These cases (in addition to cases the study team identifies) may be evaluated by LOPA to ensure compliance with a company's risk criteria. RAST allows a Technical Administrator to enter a company risk matrix or table of tolerable frequencies for severe consequences. In this example, a tolerable frequency of 10⁻⁶ / year was entered into RAST for a scenario with the potential to result in multiple fatalities.

RAST contains Initiating Event frequencies and Probability of Failure upon Demand factors for common causes and protective layers used in LOPA analysis. RAST provides a LOPA format that helps to document process risk and the protective layers needed. A description of the scenario and tolerable frequency with key information from the Consequence Analysis is provided.

Information regarding Protective Layers such as instrumented interlocks, pressure relief systems, and other safety related protection systems may be captured by the analysis team in addition to the safety integrity level or probability of failure on demand. Once the mitigated scenario frequency meets the tolerable frequency, the scenario is considered adequately managed.

	Not Allowed							
BPCS Control or Human Response to Alarm +	BPCS Control or Human Response to Alarm +	SIS Function A	SIS Function B	Pressure Relief Device	SRPS 1	SRPS 2	SRPS 3	Notes / Comments

Reference:

United States Chemical Safety and Hazard Investigation Board (CSB), Investigation Report, "T2 Laboratories, Inc. Runaway Reaction, Jacksonville, Florida December 19, 2007," Report No. 2008-3-I-FL, 2009.