READING QUIZ

CEE 271: Applied Mechanics II, Dynamics

- Lecture 21: Ch.16, Sec.1-4 -

Prof. Albert S. Kim
Civil and Environmental Engineering, University of Hawaii at Manoa
Date: \qquad

PLANAR RIGID BODY MOTION: TRANSLATION and ROTATION

Today's objectives: Students

 will be able to(1) Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis.

In-class activities:

- Reading Quiz
- Applications
- Types of Rigid-Body Motion
- Planar Translation
- Rotation About a Fixed Axis
- Concept Quiz
- Group Problem Solving
- Attention Quiz
(1) If a rigid body is in translation only, the velocity at points A and B on the rigid body \qquad -.
(a) are usually different
(b) are always the same
(c) depend on their position
(d) depend on their relative position ANS: \qquad
(2) If a rigid body is rotating with a constant angular velocity
$(\boldsymbol{\omega})$ about a fixed axis, the velocity vector at point $P\left(\boldsymbol{r}_{p}\right)$ is
(a) $\boldsymbol{\omega} \times \boldsymbol{r}_{p}$
(b) $\boldsymbol{r}_{p} \times \boldsymbol{\omega}$
(c) $d \boldsymbol{r}_{p} / d t$
(d) All of the above. ANS: \qquad

APPLICATIONS

- Passengers on this amusement ride are subjected to curvilinear translation since the vehicle moves in a circular path but they always remains upright.
- If the angular motion of the rotating arms is known, how can we determine the velocity and acceleration experienced by the passengers? Why would we want to know these values?
- Does each passenger feel the same acceleration?

APPLICATIONS(continued)

PLANAR RIGID BODY MOTION

- There are three types of planar rigid body motion.
- Gears, pulleys and cams, which rotate about fixed axes, are often used in machinery to generate motion and transmit forces. The angular motion of these components must be understood to properly design the system.
- To do this design, we need to relate the angular motions of contacting bodies that rotate about different fixed axes. How is this different than the analyses we did in earlier chapters?

RIGID BODY MOTION (Section 16.1)

- There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center of mass requires a different approach.
- For example, in the design of gears, cams, and links in machinery or mechanisms, rotation of the body is an important aspect in the analysis of motion.
- We will now start to study rigid body motion. The analysis will be limited to planar motion.
- A body is said to undergo planar motion when all parts of the body move along paths equidistant from a fixed plane.

PLANAR RIGID BODY MOTION (continued)

Path of curvilinear translation
A. Translation: Translation occurs if every line segment on the body remains parallel to its original direction during the motion. When all points move along straight lines, the motion is called rectilinear translation. When the paths of motion are curved lines, the motion is called curvilinear translation.

PLANAR RIGID BODY MOTION (continued)

Rotation about a fixed axis
B. Rotation about a fixed axis: In this case, all the particles of the body, except those on the axis of rotation, move along circular paths in planes perpendicular to the axis of rotation.
C. General plane motion: In this case, the body undergoes both translation and rotation. Translation occurs within a plane and rotation occurs about an axis perpendicular to this plane.

PLANAR RIGID BODY MOTION (continued)

An example of bodies undergoing the three types of motion is shown in this mechanism.

(1) The wheel and crank undergo rotation about a fixed axis. In this case, both axes of rotation are at the location of the pins and perpendicular to the plane of the figure.
(2) The piston undergoes rectilinear translation since it is constrained to slide in a straight line.
(3) The connecting rod (right) undergoes curvilinear translation, since it will remain horizontal as it moves along a circular path.
(9) The connecting rod (left) undergoes general plane motion, as it will both translate and rotate.

- Now \qquad since $r_{B / A}$ is constant.
- So, $\boldsymbol{v}_{B}=\boldsymbol{v}_{A}$, and by following similar logic, $a_{B}=a_{A}$.
- Note, all points in a rigid body subjected to translation move with the \qquad velocity and acceleration.

The positions of two points A and B on a translating body can be related by

$$
\boldsymbol{r}_{B}=\boldsymbol{r}_{A}+\boldsymbol{r}_{B / A}
$$

where r_{A} and r_{B} are the absolute position vectors defined from the fixed $x-y$ coordinate system, and $\boldsymbol{r}_{B / A}$ is the relative-position vector between B and A. The velocity at B is

$$
\boldsymbol{v}_{B}=\boldsymbol{v}_{A}+\frac{d \boldsymbol{r}_{B / A}}{d t}
$$

-

RIGID-BODY MOTION: ROTATION ABOUT A FIXED AXIS (Section 16.3)

- When a body rotates about a fixed axis, any point P in the body travels along a circular path. The angular position of P is defined by θ.
- The change in angular position, $d \boldsymbol{\theta}$, is called the angular displacement, with units of either radians or revolutions: 1 revolution $=(2 \pi)$ radians
- Angular velocity, ω, is obtained by taking the time derivative of angular displacement:

$$
\omega=\frac{d \boldsymbol{\theta}}{d t} \quad(\mathrm{rad} / \mathrm{s})
$$

- Similarly, angular acceleration is

$$
\boldsymbol{\alpha}=\frac{d^{2} \boldsymbol{\theta}}{d t^{2}}=\frac{d \boldsymbol{\omega}}{d t} \quad \text { or } \quad \alpha=\omega\left(\frac{d \omega}{d \theta}\right) \quad \mathrm{rad} / \mathrm{s}^{2}
$$

RIGID-BODY MOTION: ROTATION ABOUT A FIXED

 AXIS (continued)- If the angular acceleration of the body is constant, $\alpha=\alpha_{C}$, the equations for angular velocity and acceleration can be integrated to yield the set of algebraic equations below.

$$
\begin{align*}
\omega & =\omega_{0}+\alpha_{C} t \tag{1}\\
\theta & =\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha_{C} t^{2} \tag{2}\\
\omega^{2} & =\omega_{0}^{2}+2 \alpha_{C}\left(\theta-\theta_{0}\right) \tag{3}
\end{align*}
$$

where θ_{0} and ω_{0} are the initial values of the body's angular position and angular velocity. Note these equations are very similar to the constant acceleration relations developed for the rectilinear motion of a particle.

RIGID-BODY ROTATION: ACCELERATION OF POINT P

- The acceleration of P is expressed in terms of its normal (a_{n}) and tangential $\left(a_{t}\right)$ components. In scalar form, these are $a_{t}=\alpha r$ and $a_{n}=\omega^{2} r$.
- The tangential component, a_{t}, represents the time rate of change in the velocity's magnitude. It is directed tangent to the path of motion.
- The normal component, a_{n}, represents the time rate of change in the velocity's direction. It is directed toward the center of the circular path.

RIGID-BODY ROTATION: VELOCITY OF POINT P

- The magnitude of the velocity of P is equal to ωr (the text provides the derivation). The velocity's direction is tangent to the circular path of P.
- In the vector formulation, the magnitude and direction of v can be determined from the cross product of ω and r_{p}. Here r_{p} is a vector from any point on the axis of rotation to P.

$$
\boldsymbol{v}=\boldsymbol{\omega} \times \boldsymbol{r}_{p}=\boldsymbol{\omega} \times r
$$

- The direction of v is determined by the right-hand rule.

RIGID-BODY ROTATION: ACCELERATION OF POINT P (continued)

- The magnitude of the acceleration vector is

$$
a=\sqrt{\left(a_{t}\right)^{2}+\left(a_{n}\right)^{2}}
$$ by differentiating the velocity. reduces to

- Using the vector formulation, the acceleration of P can also be defined

$$
\begin{aligned}
\boldsymbol{a} & =\frac{d \boldsymbol{v}}{d t}=\frac{d \omega}{d t} \times \boldsymbol{r}_{P}+\omega \times \frac{d \boldsymbol{r}_{P}}{d t} \\
& =
\end{aligned}
$$

- It can be shown that this equation

$$
\boldsymbol{a}=\quad=\boldsymbol{a}_{t}+\boldsymbol{a}_{n}
$$

ROTATION ABOUT A FIXED AXIS: PROCEDURE

- Establish a sign convention along the axis of rotation.
- If a relationship is known between any two of the variables (α, ω, θ, or t), the other variables can be determined from the equations:

$$
\omega=\frac{d \theta}{d t}, \quad \alpha=\frac{d \omega}{d t}, \quad \alpha d \theta=\omega d \omega
$$

- If α is constant, use the equations for constant angular acceleration.
- To determine the motion of a point, the scalar equations

$$
\underline{v=\omega r, a_{t} \overline{=\alpha r, a_{n}=\omega^{2} r,} \text { and } a=\sqrt{\left(a_{t}\right)^{2}+\left(a_{n}\right)^{2}}}
$$

can be used.

- Alternatively, the vector form of the equations can be used (with $\mathbf{i}, \mathbf{j}, \mathrm{k}$ components).

$$
\begin{aligned}
\boldsymbol{v} & =\boldsymbol{\omega} \times \boldsymbol{r}_{P}=\boldsymbol{\omega} \times \boldsymbol{r} \\
\boldsymbol{a} & =\boldsymbol{a}_{t}+\boldsymbol{a}_{n}=\boldsymbol{\alpha} \times \boldsymbol{r}_{P}+\boldsymbol{\omega} \times\left(\boldsymbol{\omega} \times \boldsymbol{r}_{P}\right)=\boldsymbol{\alpha} \times \boldsymbol{r}-w^{2} \boldsymbol{r}_{\underline{\bar{E}}}
\end{aligned}
$$

EXAMPLE

- Given: The motor gives the blade an angular acceleration $\alpha=20 e^{-0.6 t} \mathrm{rad} / \mathrm{s}^{2}$, where t is in seconds. The initial conditions are that when $t=0$, the blade is at rest.
- Find: The velocity and acceleration of the tip P of one of the blades when $t=3 \mathrm{sec}$. How many revolutions has the blade turned in 3 sec ?
- Plan:
(1) Determine the angular velocity and displacement of the blade using kinematics of angular motion.
(2) The magnitudes of the velocity and acceleration of point P can be determined from the scalar equations of motion for a point on a rotating body. Why scalar?

1. Since the angular acceleration is given as a function of time, $\alpha=20 e^{-0.6 t} \mathrm{rad} / \mathrm{s}^{2}$, the angular velocity and displacement can be found by integration.

$$
\begin{equation*}
\omega=\omega_{0}+\int_{0}^{t} \alpha d t=0+\int_{0}^{t} 20 e^{-0.6 t} d t=\frac{100}{3}\left(1-e^{-0.6 t}\right) \tag{4}
\end{equation*}
$$

when $t=3 \mathrm{sec}$,
Angular displacement

$$
\begin{align*}
\theta & =\theta_{0}+\int_{0}^{t} \omega d t=0+\int_{0}^{t} \frac{100}{3}\left(1-e^{-0.6 t}\right) d t \tag{5}\\
& =\frac{100}{3}\left[t-\frac{1}{0.6}\left(1-e^{-0.6 t}\right)\right]
\end{align*}
$$

when $t=3 \mathrm{sec}, \quad=8.53 \mathrm{rev}$.
Also , when $t=3 \mathrm{sec}, \alpha=20 e^{-0.6(3)}=$

EXAMPLE (continued)

2. The velocity of point P on the the fan, at a radius of 1.75 ft , is determined as

$$
v_{P}=\omega r=(\quad)(1.75)=48.685 \mathrm{ft} / \mathrm{s}
$$

The normal and tangential components of acceleration of point P are calculated as

$$
\begin{array}{ll}
a_{n} & =\omega^{2} r=(\quad)^{2}(1.75)= \\
a_{t} & =\alpha r=(3.306)(1.75)=\quad \mathrm{ft} / \mathrm{s}^{2} \\
\mathrm{ft} / \mathrm{s}^{2}
\end{array}
$$

The magnitude of the acceleration of P is determined by

$$
\begin{aligned}
a_{P} & =\sqrt{\left(a_{n}\right)^{2}+\left(a_{t}\right)^{2}}=\sqrt{(1354.41)^{2}+(5.786)^{2}} \\
& =
\end{aligned}
$$

CONCEPT QUIZ

1．A disk is rotating clockwise at $4 \mathrm{rad} / \mathrm{s}$ ．If it is subjected to a constant angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$ ，determine the acceleration at B ．
（a）$(+4 \mathbf{i}+32 \mathbf{j}) \mathrm{ft} / \mathrm{s}^{2}$
（b）$(+4 \mathbf{i}-32 \mathbf{j}) \mathrm{ft} / \mathrm{s}^{2}$
（c）$(-4 \mathbf{i}+32 \mathbf{j}) \mathrm{ft} / \mathrm{s}^{2}$
（d）$(-4 \mathbf{i}-32 \mathbf{j}) \mathrm{ft} / \mathrm{s}^{2}$

ANS： \qquad

CONCEPT QUIZ（continued）

2．A Frisbee is thrown and curves to the right．It is experiencing
（a）rectilinear translation．
（b）curvilinear translation．
（c）pure rotation．
（d）general plane motion．
ANS： \qquad

GROUP PROBLEM SOLVING

－Given：Starting from rest when gear A is given a constant angular acceleration， $\alpha_{A}=4.5 \mathrm{rad} / \mathrm{s}^{2}$ ．The cord is wrapped around pulley D which is rigidly attached to gear B ．
－Find：The velocity of cylinder C and the distance it travels in 3 seconds．
－Plan：
（1）The angular acceleration of gear B（and pulley D ）can be related to α_{A} ．
（2）The acceleration of cylinder C can be determined by using the equations for motion of a point on a rotating body since $\left(a_{t}\right)_{D}$ at point P is the same as $a c$ ．
（3）The velocity and distance of C can be found by using the constant acceleration equations．

GROUP PROBLEM SOLVING（Solution）

1．Gear A and B will have the same speed and tangential component of acceleration at the point where they mesh．Thus，

$$
\begin{align*}
a_{t}=\alpha_{A} r_{A} & =\alpha_{B} r_{B} \tag{6}\\
(4.5)(75) & =\alpha_{B}(225) \tag{7}\\
\alpha_{B} & =1.5 \mathrm{rad} / \mathrm{s}^{2} \tag{8}
\end{align*}
$$

Since gear B and pulley D turn together，$\alpha_{D}=\alpha_{B}=$

GROUP PROBLEM SOLVING(continued)

2. Assuming the cord attached to pulley D is inextensible and does not slip, the velocity and acceleration of cylinder C will be the same as the velocity and tangential component of acceleration along the pulley D :

$$
a_{C}=\left(a_{t}\right)_{D}=\alpha_{D} r_{D}=(1.5)(0.125)=
$$

3. Since α_{A} is constant, α_{D} and α_{C} will be constant. The constant acceleration equation for rectilinear motion can be used to determine the velocity and displacement of cylinder C when $t=3 \mathrm{~s}\left(s_{0}=v_{0}=0\right)$:

$$
\begin{align*}
v_{c} & =v_{0}+a_{C} t=0+0.1875(3)= \\
s_{c} & =s_{0}+v_{0} t+(0.5) a_{C} t^{2} \tag{9}\\
& =0+0+(0.5) 0.1875(3)^{2}= \tag{10}
\end{align*}
$$

ATTENTION QUIZ

(1) The fan blades suddenly experience an angular acceleration of $2 \mathrm{rad} / \mathrm{s}^{2}$. If the blades are rotating with an initial angular velocity of $4 \mathrm{rad} / \mathrm{s}$, determine the speed of point P when the blades have turned 2 revolutions (when $\omega=8.14 \mathrm{rad} / \mathrm{s}$).

(a) $14.2 \mathrm{ft} / \mathrm{s}$
(c) $23.1 \mathrm{ft} / \mathrm{s}$
(b) $17.7 \mathrm{ft} / \mathrm{s}$
(d) $26.7 \mathrm{ft} / \mathrm{s}$ ANS: \qquad
(2) Determine the magnitude of the acceleration at P when the blades have turned the 2 revolutions.
(a) $0 \mathrm{ft} / \mathrm{s}^{2}$
(c) $115.95 \mathrm{ft} / \mathrm{s}^{2}$
(b) $3.5 \mathrm{ft} / \mathrm{s}^{2}$
(d) $116 \mathrm{ft} / \mathrm{s}^{2}$

ANS: \qquad

Today's objectives: Students will be able to
(1) Determine the velocity and acceleration of a rigid body undergoing general plane motion using an absolute motion analysis.

In-class activities:

- Reading Quiz
- Applications
- General Plane Motion
- Concept Quiz
- Group Problem Solving
- Attention Quiz

READING QUIZ

(1) A body subjected to general plane motion undergoes a/an
(a) translation.
(b) rotation.
(c) simultaneous translation and rotation.
(d) out-of-plane movement. ANS:
(2) In general plane motion, if the rigid body is represented by a slab, the slab rotates
(a) about an axis perpendicular to the plane.
(b) about an axis parallel to the plane.
(c) about an axis lying in the plane.
(d) None of the above.

ANS: \qquad

APPLICATIONS

- The dumping bin on the truck rotates about a fixed axis passing through the pin at A. It is operated by the extension of the hydraulic cylinder BC.
- The angular position of the bin can be specified using the angular position coordinate , and the position of point C on the bin is specified using the coordinate
- As a part of the design process for the truck, an engineer had to relate the translational velocity at which the hydraulic cylinder extends and the resulting angular velocity of the bin.

APPLICATIONS(continued)

- The large window is opened using a hydraulic cylinder $A B$.
- The position B of the hydraulic cylinder rod is related to the angular position, θ, of the window.
- A designer has to relate the translational velocity at B of the hydraulic cylinder and the angular velocity and acceleration of the window. How would you go about the task?

APPLICATIONS(continued)

- The position of the piston, x, can be defined as a function of the angular position of the crank, θ. By differentiating x with respect to time, the velocity of the piston can be related to the angular velocity, ω, of the crank. This is necessary when designing an engine.
- The stroke of the piston is defined as the total distance moved by the piston as the crank angle varies from 0 to 180°. How does the length of crank $A B$ affect the stroke?

ABSOLUTE MOTION ANALYSIS (Section 16.4)

- The figure below shows the window using a hydraulic cylinder $A B$.

- The absolute motion analysis method relates the position of a point, B, on a rigid body undergoing rectilinear motion to the angular position, θ, of a line contained in the body.
- Once a relationship in the form of is established, the velocity and acceleration of point B are obtained in terms of the angular velocity and angular acceleration of the rigid body by taking the first and second time-derivatives of the position function.
- Usually the chain rule must be used when taking the derivatives of the position coordinate equation.

- Given: The platform P is constrained to move vertically by the smooth vertical guides. The cam C rotates with a constant angular velocity, ω.
- Find: The velocity and acceleration of platform P as a function of the angle θ of cam C.
- Plan: Use the fixed reference point O and define the position of the platform, P, in terms of the parameter θ. Take successive time derivatives of the position equation to find the velocity and acceleration.

EXAMPLE I(continued)

- Solution:

- By geometry, $y=r+r \sin \theta$
- By differentiating with respect to time,

$$
v_{P}=r \cos \theta(\dot{\theta})=
$$

- Note that the cam rotates with a constant angular velocity, ω.
- Differentiating v_{P} to find the acceleration,

$$
a_{P}=\frac{d(r \omega \cos \theta)}{d t}=r \omega(-\sin \theta)(\omega)=
$$

- Given: Crank $A B$ rotates at a constant velocity of $\omega=150 \mathrm{rad} / \mathrm{s}$.
- Find: The velocity of point P when $\theta=30^{\circ}$.
- Plan: Define x as a function of θ and differentiate with respect to time.

EXAMPLE II(continued)

- Solution:

$$
\begin{align*}
x_{P}= & 0.2 \cos \theta+\sqrt{(0.75)^{2}-(0.2 \sin \theta)^{2}} \tag{11}\\
v_{P}= & -0.2 \omega \sin \theta+(0.5)\left[(0.75)^{2}-(0.2 \sin \theta)^{2}\right]^{-0.5} \\
& \times(-2)(0.2 \sin \theta)(0.2 \cos \theta) \omega \\
= & -0.2 \omega \sin \theta-\frac{\left[0.5(0.2)^{2} \sin 2 \theta \omega\right]}{\sqrt{(0.75)^{2}-(0.2 \sin \theta)^{2}}} \tag{12}
\end{align*}
$$

- At $\theta=30^{\circ}, \omega=150 \mathrm{rad} / \mathrm{s}$ and

$$
v_{P}=
$$

CHECK YOUR UNDERSTANDING QUIZ

(1) The position, s, is given as a function of angular position, θ, as $s=10 \sin 2 \theta$. The velocity, v, is
(a) $20 \cos 2 \theta$
(b) $20 \sin 2 \theta$
(c) $20 \omega \cos 2 \theta$
(d) $20 \omega \sin 2 \theta$ ANS:
(2) If $s=10 \sin 2 \theta$, the acceleration, a, is
(a) $20 \alpha \sin 2 \theta$
(b) $20 \alpha \cos 2 \theta-40 \omega^{2} \sin 2 \theta$
(c) $20 \alpha \cos 2 \theta$
(d) $-40 \alpha \sin 2 \theta$

ANS: \qquad

- Solution:

- Relate x, the distance between O and the plate, to θ.

$$
x=120 \sin \theta+150(\mathrm{~mm})
$$

- Take time derivatives of the position to find the velocity and acceleration.
- $v_{C}=d x / d t=120 \cos \theta(\dot{\theta})=$
(mm / s)
$a_{C}=d v_{C} / d t=$
- When $\theta=30^{\circ}, \omega=4 \mathrm{rad} / \mathrm{s}$, and $\alpha=2 \mathrm{rad} / \mathrm{s}^{2}$. Substituting,

$$
\begin{aligned}
& v_{C}=120(4) \cos 30^{\circ}=\quad \mathrm{mm} / \mathrm{s}(\rightarrow) \\
& a_{C}=120(2) \cos 30^{\circ}+120\left(4^{2}\right)\left(-\sin 30^{\circ}\right)=\quad \mathrm{mm} / \mathrm{s}^{2}(\leftarrow)
\end{aligned}
$$

GROUP PROBLEM SOLVING

- Given: The circular cam is rotating about the fixed point O with $\omega=4 \mathrm{rad} / \mathrm{s}, \alpha=2 \mathrm{rad} / \mathrm{s}^{2}$ with the dimensions shown.
- Find: The velocity and acceleration of the plate when $\theta=30^{\circ}$.
- Plan: Set the coordinate x to be the distance between O and the plate. Relate x to the angular position, θ. Then take time derivatives of the position to find the velocity and acceleration.

ATTENTION QUIZ

(1) The sliders shown below are confined to move in the horizontal and vertical slots. If $v_{A}=10 \mathrm{~m} / \mathrm{s}$, determine the connecting bar's angular velocity when $\theta=30^{\circ}$.

(a) $10 \mathrm{rad} / \mathrm{s} \circlearrowleft$
(b) $10 \mathrm{rad} / \mathrm{s} \circlearrowright$
(c) $8.7 \mathrm{rad} / \mathrm{s} \circlearrowright$
(d) $8.7 \mathrm{rad} / \mathrm{s} \circlearrowleft$

ANS: \qquad

