Ready for Math Reproducible Worksheets

Reproducible Worksheets for:

Ready for Fractions and Decimals

These worksheets practice math concepts explained in the Ready for Math series, written by Rebecca Wingard-Nelson, illustrated by Tom LaBaff.

Ready for Math reproducible worksheets are designed to help teachers, parents, and tutors use the books in the Ready for Math series in the classroom and home. Teachers, librarians, tutors, and parents are granted permission and encouraged to make photocopies of these worksheets.

These worksheets are reproducible for educational use only and are not for resale.
© 2014 by Enslow Publishers, Inc.
Visit www.enslow.com or www.bluewaveclassroom.com and search for the Ready for Math series, then download worksheets for the following titles:

Ready for Addition

Library Ed: 978-0-7660-4245-2
Paperback: 978-1-4644-0433-7

Ready for Division

Library Ed: 978-0-7660-4249-0
Paperback: 978-1-4644-0441-2

Ready for Multiplication

Library Ed: 978-0-7660-4248-3
Paperback: 978-1-4644-0439-9
Ready for Subtraction
Library Ed: 978-0-7660-4246-9
Paperback: 978-1-4644-0435-1

Ready for Fractions and Decimals

Library Ed: 978-0-7660-4247-6
Paperback: 978-1-4644-0437-5
Titles in this series can be purchased from many vendors, or directly from:
Enslow Publishers, Inc.
40 Industrial Road, Box 398
Berkeley Heights, NJ 07922-0398
Phone: 1-800-398-2504
E-mail: customerservice@enslow.com
Web Page: http://www.enslow.com

Comparing Fractions, pages 16-17

Why did the elephant stand on the marshmallow? So he wouldn't fall into the hot chocolate.

Use the symbols < or > to compare fractions.
(1) $\frac{2}{4} \square \frac{1}{4}$
(2) $\frac{3}{4} \square \frac{2}{4}$
(3) $\frac{1}{4} \square$ $\frac{3}{4}$
(4) $\frac{2}{4} \square \frac{1}{4}$

Comparing Fractions, pages 16-17

Why did the elephant stand on the marshmallow? So he wouldn't fall into the hot chocolate.

Use the symbols < or > to compare fractions.
(1) $\frac{2}{4}>\frac{1}{4}$
(2) $\frac{3}{4}>\frac{2}{4}$
(3) $\frac{1}{4}<\frac{3}{4}$
(4) $\frac{2}{4}>\frac{1}{4}$

Comparing Fractions, pages 16-17
How does a crazy chicken tell time? With a cuckoo cluck.
Use the symbols < or > to compare fractions.
(1) $\frac{2}{3} \square \frac{1}{3}$
(2) $\frac{1}{3} \square \frac{2}{3}$
(3) $\frac{1}{3} \square$
$\frac{2}{3}$
(4) $\frac{2}{3} \square \frac{1}{3}$

Comparing Fractions, pages 16-17
How does a crazy chicken tell time? With a cuckoo cluck.
Use the symbols < or > to compare fractions.
(1) $\frac{2}{3}>\frac{1}{3}$
(2) $\frac{1}{3}<\frac{2}{3}$
(3) $\frac{1}{3}<$
$\frac{2}{3}$
(4) $\frac{2}{3}>\frac{1}{3}$

Comparing Mixed Numbers pg 18-19

What occurs once in a minute, twice in a moment, but never in a thousand years? The letter "M."

Use the symbols < or > to compare mixed numbers.
(1) $\frac{2}{3} \square$
$2 \frac{2}{3}$
(2) $2 \frac{1}{3} \square 3 \frac{1}{3}$
(3) $5 \frac{2}{3} \square \frac{2}{3}$
(4) $\frac{1}{3} \square 4 \frac{2}{3}$

Comparing Mixed Numbers pg 18-19

What occurs once in a minute, twice in a moment, but never in a thousand years? The letter "M."

Use the symbols < or > to compare mixed numbers.
(1) $\frac{2}{3}<2 \frac{2}{3}$
(2) $2 \frac{1}{3}<3 \frac{1}{3}$
(3) $5 \frac{2}{3} \longrightarrow \frac{2}{3}$

$$
\text { (4) } \frac{1}{3}<4 \frac{2}{3}
$$

Comparing Mixed Numbers pg 18-19

What goes Tick-tick, woof-woof? A watch dog.
Complete the Activity by comparing the fractions to see if they are equal or if one is greater than the other.
(1) $\frac{8}{3} \square \frac{5}{2}$
(2) $\frac{9}{18} \square$
$\frac{3}{4}$
(3) $\frac{8}{24} \square \frac{2}{6}$
(4) $\frac{2}{4} \square 3 \frac{5}{6}$
(5) $\frac{1}{6} \square \frac{7}{6}$ $\frac{7}{6}$
(6) $\frac{12}{36} \square$ $\frac{2}{5}$

(10) $\frac{6}{5} \square \frac{6}{30}$

Comparing Mixed Numbers pg 18-19

What goes Tick-tick, woof-woof? A watch dog.
Complete the Activity by comparing the fractions to see if they are equal or if one is greater than the other.

(2) $\frac{9}{18}<\frac{3}{4}$
(3) $\frac{8}{24} \backsim \frac{2}{6}$
(4) $\frac{2}{4}<3 \frac{5}{6}$
(5) $\frac{1}{6}<\frac{7}{6}$
(6) $\frac{12}{36}<\frac{2}{5}$

(8) $\frac{16}{24}=\frac{4}{6}$
(9) $\frac{12}{30}>\frac{6}{24}$
(10) $\frac{6}{5}>\frac{6}{30}$

Equivalent Fractions, pages 20-21

Why did the elephant stand on the marshmallow? So he wouldn't fall into the hot chocolate.

Fill in the missing number to make the fractions equal to each other.
(1) $\frac{1}{2}=\frac{}{20}$
(2) $\underline{5}=\frac{40}{48}$
(3) $\frac{1}{5}=\frac{}{45}$
(4) $\frac{1}{3}=\frac{10}{30}$
(5) $\frac{2}{5}=\frac{}{30}$

- $\frac{1}{4}=\frac{}{20}$
(2) $\frac{3}{6}=\underline{15}$
(8) $\overline{6}=\frac{24}{36}$
(9) $\overline{3}=\frac{10}{15}$
(10) $\frac{1}{6}=\frac{}{42}$

Equivalent Fractions, pages 20-21

Why did the elephant stand on the marshmallow? So he wouldn't fall into the hot chocolate.

Fill in the missing number to make the fractions equal to each other.

$$
\text { (1) } \frac{1}{2}=\frac{10}{20}
$$

$$
\text { (2) } \frac{5}{6}=\frac{40}{48}
$$

(3) $\frac{1}{5}=\frac{9}{45}$
(4) $\frac{1}{3}=\frac{10}{30}$
(5) $\frac{2}{5}=\frac{12}{30}$
(6) $\frac{1}{4}=\frac{5}{20}$
(7) $\frac{3}{6}=\frac{15}{30}$
(8) $\frac{4}{6}=\frac{24}{36}$
(9) $\frac{2}{3}=\frac{10}{15}$
(10) $\frac{1}{6}=\frac{7}{42}$

Equivalent Fractions, pages 20-21

Why did the elephant stand on the marshmallow? So he wouldn't fall into the hot chocolate.

Fill in the missing number to make the fractions equal to each other.

$$
\text { (1) } \frac{1}{2}=7
$$

$$
\text { (2) } \overline{6}=\frac{9}{54}
$$

(3) $\frac{1}{4}=\frac{9}{}$
(4) $\frac{2}{6}=\frac{}{48}$
(5) $\frac{1}{5}=6$
(6) $\underline{2}=\frac{16}{24}$
(7) $\underline{2}=\frac{8}{20}$
(8) $\frac{1}{=} \frac{2}{6}$
(9) $\frac{4}{6}=\frac{8}{}$
(10) $\frac{3}{4}=\frac{15}{}$

Equivalent Fractions, pages 20-21

Why did the elephant stand on the marshmallow? So he wouldn't fall into the hot chocolate.

Fill in the missing number to make the fractions equal to each other.

$$
\text { (1) } \frac{1}{2}=\frac{7}{14}
$$

$$
\text { (2) } \frac{1}{6}=\frac{9}{54}
$$

(3) $\frac{1}{4}=\frac{9}{36}$
(4) $\frac{2}{6}=\frac{16}{48}$
(5) $\frac{1}{5}=\frac{6}{30}$
(6) $\frac{2}{3}=\frac{16}{24}$
(7) $\frac{2}{5}=\frac{8}{20}$
(8) $\frac{1}{3}=\frac{2}{6}$
(9) $\frac{4}{6}=\frac{8}{12}$
(10) $\frac{3}{4}=\frac{15}{20}$

Estimating Fractions, pages 22-23

What does the dog say when he sits on sandpaper? Ruff! Ruff!
Estimate to see if one fraction is greater than the other, or if they are equal.

(2) $\frac{2}{3} \square \frac{1}{2}$

(4) $\frac{2}{5} \square \frac{2}{5}$

Estimating Fractions, pages 22-23

What does the dog say when he sits on sandpaper? Ruff! Ruff!
Estimate to see if one fraction is greater than the other, or if they are equal.

(2) $\frac{2}{3}>\frac{1}{2}$
(3) $\frac{5}{6}>\frac{1}{3}$
(4) $\frac{2}{5}=\frac{2}{5}$
(5) $\frac{2}{6}<\frac{2}{4}$
(6) $\frac{1}{4}<\frac{3}{5}$
(7) $\frac{2}{4}<\frac{2}{3}$
(8) $\frac{1}{3}<\frac{3}{4}$
(9) $\frac{3}{4}>\frac{1}{5}$
(10) $\frac{3}{5}>\frac{2}{6}$

Estimating Fractions, pages 22-23

Who always steals the soap in the bathroom? The robber ducky!
Estimat to see if one fraction is greater than the other, or if they are equal.

(4) $\frac{1}{3} \square \frac{2}{4}$

(6) $\frac{1}{2} \square \frac{1}{2}$

Estimating Fractions, pages 22-23

Who always steals the soap in the bathroom? The robber ducky!
Estimat to see if one fraction is greater than the other, or if they are equal.
(1) $\frac{4}{6}>\frac{1}{3}$
(2) $\frac{2}{5}>\frac{1}{4}$
(3)

(4) $\frac{1}{3}<\frac{2}{4}$
(5) $\frac{1}{4}<\frac{3}{5}$
(6) $\frac{1}{2}=\frac{1}{2}$
(7) $\frac{2}{4}<\frac{4}{5}$
(8) $\frac{2}{3}<\frac{3}{4}$
(9) $\frac{1}{5}=\frac{1}{5}$
(10) $\frac{3}{4}>\frac{2}{3}$

Fractions in Measurements pg 24-25

What has teeth but doesn't bite? A Comb!
Using a ruler, measure each line to the closest $1 / 4$ inch.
(1) \qquad

2
(3)

4 \qquad

5 \qquad

6
(7)
(8) \qquad
(9) \qquad

10

Fractions in Measurements pg 24-25

What has teeth but doesn't bite? A Comb!
Using a ruler, measure each line to the closest 1/4 inch.
(1) $11 / 2^{\prime \prime}$
2. $61 / 2$ "

3 $21 / 4$ "
4) $4^{\prime \prime}$
(5) 3"

6 $61 / 4$ "
(7) $21 / 2^{\prime \prime}$
(8) $1 / 2$ "

- $31 / 2^{\prime \prime}$
(10) $51 / 2^{\prime \prime}$

Fractions in Measurements pg 24-25

Did you hear the one about the skunk? It stunk!
Using a ruler, measure each line to the closest $1 / 4$ inch.
(1) \qquad

2
(3)

4

5 \qquad
(6) \qquad

7
(8)

9 \qquad

10

Fractions in Measurements pg 24-25

Did you hear the one about the skunk? It stunk!
Using a ruler, measure each line to the closest $1 / 4$ inch.
(1) $21 / 4^{\prime \prime}$
(2) $51 / 2^{\prime \prime}$
(3) 3 "
(4) 6 "
(5) $31 / 2^{\prime \prime}$

6 $43 / 4^{\prime \prime}$
(7) $31 / 4^{\prime \prime}$
(8) $61 / 4^{\prime \prime}$
(9) $21 / 2^{\prime \prime}$
(10) $51 / 4$ "

Adding Fractions, pages 26-27

What do you call a happy mushroom? A Fun-Guy!
Add the fractions.
(1) $\frac{3}{5}+\frac{3}{4}=$
(2) $\frac{1}{3}+\frac{1}{3}=$
(3) $\frac{1}{4}+\frac{1}{5}=$
(4) $\frac{2}{5}+\frac{2}{5}=$
(5) $\frac{2}{3}+\frac{2}{4}=$
(6) $\frac{2}{4}+\frac{4}{5}=$
(7) $\frac{1}{5}+\frac{2}{3}=$
(8) $\frac{4}{5}+\frac{1}{4}=$
(9) $\frac{3}{4}+\frac{3}{5}=$
(10) $\frac{3}{4}+\frac{2}{4}=$

Adding Fractions, pages 26-27

What do you call a happy mushroom? A Fun-Guy!
Add the fractions.
(1) $\frac{3}{5}+\frac{3}{4}=1 \frac{7}{20}$
(2) $\frac{1}{3}+\frac{1}{3}=\frac{2}{3}$
(3) $\frac{1}{4}+\frac{1}{5}=\frac{9}{20}$
(4) $\frac{2}{5}+\frac{2}{5}=\frac{4}{5}$
(5) $\frac{2}{3}+\frac{2}{4}=1 \frac{1}{6}$
(6) $\frac{2}{4}+\frac{4}{5}=1 \frac{3}{10}$
(7) $\frac{1}{5}+\frac{2}{3}=\frac{13}{15}$
(8) $\frac{4}{5}+\frac{1}{4}=1 \frac{1}{20}$
(9) $\frac{3}{4}+\frac{3}{5}=1 \frac{7}{20}$
(10) $\frac{3}{4}+\frac{2}{4}=1 \frac{1}{4}$

Adding Fractions, pages 26-27

What sort of music was invented by cavemen? Rock music!
Add the fractions.
(1) $\frac{4}{6}+\frac{1}{4}=$
(2) $\frac{3}{4}+\frac{1}{5}=$
(3) $\frac{1}{6}+\frac{2}{4}=$
(4) $\frac{2}{8}+\frac{5}{6}=$
(5) $\frac{2}{6}+\frac{3}{4}=$
(6) $\frac{7}{8}+\frac{4}{6}=$
(7) $\frac{3}{6}+\frac{6}{8}=$
(8) $\frac{4}{8}+\frac{4}{8}=$
(9) $\frac{2}{5}+\frac{5}{8}=$
(10) $\frac{1}{5}+\frac{1}{6}=$

Adding Fractions, pages 26-27

What sort of music was invented by cavemen? Rock music!
Add the fractions.
(1) $\frac{4}{6}+\frac{1}{4}=\frac{11}{12}$
(2) $\frac{3}{4}+\frac{1}{5}=\frac{19}{20}$
(3) $\frac{1}{6}+\frac{2}{4}=\frac{2}{3}$
(4) $\frac{2}{8}+\frac{5}{6}=1 \frac{1}{12}$
(5) $\frac{2}{6}+\frac{3}{4}=1 \frac{1}{12}$
(6) $\frac{7}{8}+\frac{4}{6}=1 \frac{13}{24}$
(7) $\frac{3}{6}+\frac{6}{8}=1 \frac{1}{4}$
(8) $\frac{4}{8}+\frac{4}{8}=1$
(9) $\frac{2}{5}+\frac{5}{8}=1 \frac{1}{40}$
(10) $\frac{1}{5}+\frac{1}{6}=\frac{11}{30}$

Subtraction Fractions, pages 28-29

What do you call a rooster with a bad sunburn? A fried chicken.
Subtract the fractions.
(1) $\frac{4}{5}+\frac{2}{5}=$
(2) $\frac{2}{3}-\frac{1}{3}=$
(3) $\frac{3}{4}-\frac{2}{4}=$
$=$
(4) $\frac{2}{3}-\frac{1}{3}=$
(5) $\frac{3}{5}+\frac{3}{5}=$
(6) $\frac{2}{5}-\frac{1}{5}=$
(7) $\frac{1}{4}+\frac{3}{4}=$
(8) $\frac{3}{5}-\frac{2}{5}=$
(9) $\frac{2}{4}-\frac{1}{4}=$
(10) $\frac{4}{5}-\frac{1}{5}=$

Subtraction Fractions, pages 28-29

What do you call a rooster with a bad sunburn? A fried chicken.
Subtract the fractions.

$$
\text { (1) } \frac{4}{5}+\frac{2}{5}=1 \frac{1}{5}
$$

$$
\text { (2) } \frac{2}{3}-\frac{1}{3}=\frac{1}{3}
$$

$$
\text { (3) } \frac{3}{4}-\frac{2}{4}=\frac{1}{4}
$$

$$
\text { (4) } \frac{2}{3}-\frac{1}{3}=\frac{1}{3}
$$

$$
\text { (5) } \frac{3}{5}+\frac{3}{5}=1 \frac{1}{5}
$$

(6) $\frac{2}{5}-\frac{1}{5}=\frac{1}{5}$
(7) $\frac{1}{4}+\frac{3}{4}=1$
(8) $\frac{3}{5}-\frac{2}{5}=\frac{1}{5}$
(9) $\frac{2}{4}-\frac{1}{4}=\frac{1}{4}$
(10) $\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$

Subtraction Fractions, pages 28-29

What is a bow that is impossible to tie? A rainbow.
Subtract the fractions.
(1) $\frac{7}{8}-\frac{4}{8}=$
(2) $\frac{2}{4}-\frac{1}{4}=$
(3) $\frac{6}{8}-\frac{1}{8}=\square$
(4) $\frac{2}{8}-\frac{1}{8}=$
(5) $\frac{5}{8}-\frac{1}{8}=$
(6) $\frac{2}{4}-\frac{1}{4}=$

$$
\text { (7) } \frac{4}{5}-\frac{1}{5}=
$$

(8) $\frac{3}{5}-\frac{1}{5}=$
(9) $\frac{4}{5}-\frac{2}{5}=$
(10) $\frac{2}{5}-\frac{1}{5}=$

Subtraction Fractions, pages 28-29

What is a bow that is impossible to tie? A rainbow.
Subtract the fractions.
(1) $\frac{7}{8}-\frac{4}{8}=\frac{3}{8}$
(2) $\frac{2}{4}-\frac{1}{4}=\frac{1}{4}$
(3) $\frac{6}{8}-\frac{1}{8}=\frac{5}{8}$
(4) $\frac{2}{8}-\frac{1}{8}=\frac{1}{8}$
(5) $\frac{5}{8}-\frac{1}{8}=\frac{1}{2}$
(6) $\frac{2}{4}-\frac{1}{4}=\frac{1}{4}$
(7) $\frac{4}{5}-\frac{1}{5}=\frac{3}{5}$
(8) $\frac{3}{5}-\frac{1}{5}=\frac{2}{5}$
(9) $\frac{4}{5}-\frac{2}{5}=\frac{2}{5}$
(10) $\frac{2}{5}-\frac{1}{5}=\frac{1}{5}$

Decimals and Fractions, pages 32-33

How can you tell if an elephant is hiding in your bathtub? You can smell the peanuts on his breath.

Convert the fractions into decimal numbers.
(1) $\frac{2}{4}=$
(2) $\frac{3}{4}=$
(3) $\frac{1}{4}=$
(4) $\frac{1}{2}=$
(5) $\frac{1}{4}=$
(6) $\frac{3}{4}=$
(7) $\frac{1}{4}=$
(8) $\frac{1}{2}=$
(9) $\frac{3}{4}=$
(10) $\frac{1}{4}=$

Decimals and Fractions, pages 32-33

How can you tell if an elephant is hiding in your bathtub? You can smell the peanuts on his breath.

Convert the fractions into decimal numbers.

$$
\text { (1) } \frac{2}{4}=0.5
$$

$$
\text { (2) } \frac{3}{4}=0.75
$$

(3) $\frac{1}{4}=0.25$
(4) $\frac{1}{2}=0.5$
(5) $\frac{1}{4}=0.25$
(6) $\frac{3}{4}=0.75$
(7) $\frac{1}{4}=0.25$
(8) $\frac{1}{2}=0.5$
(9) $\frac{3}{4}=0.75$
(10) $\frac{1}{4}=0.25$

Decimals and Fractions, pages 32-33

How can you tell if an elephant is hiding in your bathtub? You can smell the peanuts on his breath.

Convert the decimal numbers into fractions.
(1) $0.5=$
3) $0.75=$
(5) $0.667=$
(7) $0.75=$
9. $0.667=$

Decimals and Fractions, pages 32-33

How can you tell if an elephant is hiding in your bathtub? You can smell the peanuts on his breath.

Convert the decimal numbers into fractions.
(1) $0.5=\frac{1}{2}$
(2) $0.5=\frac{1}{2}$
(3) $0.75=\frac{3}{4}$
(4) $0.333=\frac{1}{3}$

5 $0.667=\frac{2}{3}$

- $0.25=\frac{1}{4}$
(7) $0.75=\frac{3}{4}$
(8) $0.333=\frac{1}{3}$
- $0.667=\frac{2}{3}$
(10) $0.75=\frac{3}{4}$

Equivalent Decimals, pages 34-35

What is the difference between a healthy rabbit and a sick joke? One is a fit bunny, the other is a bit funny.

Which of the decimals have the same value?
(1)
$0.37 \quad 0.15$
(2)
0.40
0.4
(3)
$0.1 \quad 0.10$
(4)
0.21
0.40
(5)
$0.38 \quad 0.18$
(6)
0.49
0.490
(7)
$0.41 \quad 0.140$

9
$0.05 \quad 0.050$
10
0.20
0.2

Equivalent Decimals, pages 34-35

What is the difference between a healthy rabbit and a sick joke? One is a fit bunny, the other is a bit funny.

Which of the decimals have the same value?
(1)

$$
0.37>0.15
$$

(2)
$0.40=0.4$
(3)
$0.1=0.10$
(4)
$0.21<0.40$
(5)
$0.38>0.18$
(6) $0.49=0.490$
(7) $0.41>0.140$
${ }^{8}$
$0.46>0.02$
(9) $0.05=0.050$

10
$0.20=0.2$

Equivalent Decimals, pages 34-35

What is the difference between a healthy rabbit and a sick joke? One is a fit bunny, the other is a bit funny.

Which of the decimals have the same value?
(1)
$0.46 \quad 0.460$
2
$0.04 \quad 0.41$

3
$0.38 \quad 0.33$
4

6
0.444
0.44
7
$0.03 \quad 0.030$

9
$0.20 \quad 0.200$

10
$0.16 \quad 0.38$

Equivalent Decimals, pages 34-35

What is the difference between a healthy rabbit and a sick joke? One is a fit bunny, the other is a bit funny.

Which of the decimals have the same value?
(1)
$0.46=0.460$
(2) $0.04<0.41$
(3)
$0.38>0.33$
(4)
$0.7=0.700$
(5)
$0.5=0.50$
(6) $0.444>0.44$
(7) $0.03=0.030$
${ }^{8}$
$0.31>0.27$
(9)

$$
0.20=0.200
$$

$0.16<0.38$

Comparing Decimals, pages 36-37

Who always steals the soap in the bathroom? The robber ducky!
Use < or > or = to compare each set of decimals.

${ }^{1}$	0.14	0.07	${ }^{2}$	0.08	0.48
${ }^{3}$	0.46	0.26	4	0.21	0.31
5	0.18	0.29	6	0.12	0.13
(7)	0.37	0.05	8	0.40	0.40
${ }^{9}$	0.22	0.42	10	0.47	0.03
11	0.44	0.11	(12)	0.04	0.25
${ }^{13}$	0.28	0.44	${ }^{14}$	0.42	0.08
${ }^{15}$	0.30	0.20	${ }^{16}$	0.24	0.30
(17)	0.03	0.47	${ }^{18}$	0.49	0.09
19	0.25	0.23	${ }^{20}$	0.15	0.11

Comparing Decimals, pages 36-37

Who always steals the soap in the bathroom? The robber ducky!
Use $<$ or $>$ or = to compare each set of decimals.

(1)	$0.14>0.07$	(2)	$0.08<0.48$
(3)	$0.46>0.26$	(4)	$0.21<0.31$
(5)	$0.18<0.29$	(6)	$0.12<0.13$
(7)	$0.37>0.05$	(8)	$0.40=0.40$
(9)	$0.22<0.42$	(10)	$0.47>0.03$
(11)	$0.44>0.11$	(12)	$0.04<0.25$
(13)	$0.28<0.44$	(14) $0.42>0.08$	
(15) $0.30>0.20$	(16) $0.24<0.30$		
(17) $0.03<0.47$	(18) $0.49>0.09$		
(19) $0.25>0.23$	(20) $0.15>0.11$		

Comparing Decimals, pages 36-37

Tongue Twister: How much wood could a woodchuck chuck, if a woodchuck could chuck wood? It would chuck as much as a woodchuck could, if a woodchuck could chuck wood.

Use < or > or = to compare each set of decimals.
$1)$
0.28
0.14
(4)
0.31
0.12
(5)
$0.11 \quad 0.50$
$0.11 \quad 0.50$

7
$0.10 \quad 0.04$

9
$0.27 \quad 0.16$
${ }^{11} \quad 0.23 \quad 0.48$
${ }^{13}$
(15)

$$
0.17 \quad 0.27
$$

(17) $\quad 0.48 \quad 0.10$
(19) $\quad 0.37 \quad 0.01$

6

12

14

$$
0.48 \quad 0.10
$$

16

18

20
(2) 0.15
0.29
0.38
0.27
0.18
0.10
0.20
0.27
0.25
0.17
0.45
0.08
0.35
0.30

Comparing Decimals, pages 36-37

Tongue Twister: How much wood could a woodchuck chuck, if a woodchuck could chuck wood? It would chuck as much as a woodchuck could, if a woodchuck could chuck wood.

Use < or > or = to compare each set of decimals.
(1)

$$
0.28>0.14
$$

(3)
$0.31>0.12$
5. $\quad 0.11<0.50$
(7)
$0.10>0.04$

9
$0.27>0.16$
(1) $\quad 0.23<0.48$
13) $0.47>0.26$
(15) $0.17<0.27$
(17) $\quad 0.48>0.10$
(19) $0.37>0.01$
(2)
(4) $0.38>0.27$

6
$0.18>0.10$
(8) $0.01<0.13$

10
$0.43>0.16$

12

14

16

18

20
$0.35>0.30$

Rounding Decimals, pages 38-39

How do you catch an elephant? Hide in the grass and make a noise like a peanut.
Round each decimals to the nearest tenth place.
(1) \qquad 2) $0.68=$ \qquad
(3)
$0.52=$
(4) $0.16=$ \qquad
(5)
$0.64=$
(6) $0.71=$ \qquad
(7)
$0.91=$ \qquad 8) $0.32=$ \qquad

9
$0.36=$
10) $0.54=$ \qquad
11) $0.98=$ \qquad (12) $0.19=$ \qquad

13
$0.41=$
$0.96=$

15 \qquad 16) $0.46=$ \qquad
17)
$0.63=$ \qquad (18) $0.13=$ \qquad

19
$0.29=$ \qquad 20) $0.3=$ \qquad

Rounding Decimals, pages 38-39

How do you catch an elephant? Hide in the grass and make a noise like a peanut.
Round each decimals to the nearest tenth place.
(1)

$$
0.39=0.4
$$

(2) $0.68=0.7$
(3)
$0.52=0.5$
4. $0.16=0.2$
(5)
$0.64=0.6$
(6) $0.71=0.7$

7 $0.91=0.9$
(8) $0.32=0.3$

9
$0.36=0.4$
10) $0.54=0.5$
(12) $0.19=0.2$
$0.98=1$
$0.19=0.2$
(13) $0.41=0.4$
(14) $0.96=1$

15
$0.78=0.8$
(16) $0.46=0.5$
(17) $0.63=0.6$
(18) $0.13=0.1$

19
$0.29=0.3$
(20) $0.3=0.3$

Rounding Decimals, pages 38-39

What is a bow that is impossible to tie? A rainbow.
Round the decimal to the nearest tenth place
(1)
$0.11=$ \qquad (2) $0.49=$ \qquad
(3)
$0.19=$
4) $0.97=$ \qquad
(5)
$0.15=$
(6) $0.37=$ \qquad
(7)
$0.65=$ \qquad (8) $0.43=$ \qquad

9
$0.66=$ \qquad 10) $0.54=$ \qquad

11
$0.68=$
12) $0.29=$ \qquad

13

$$
0.87=
$$

$0.95=$ \qquad
(16) $0.59=$ \qquad

17

$$
0.72=
$$

\qquad (18) $0.84=$ \qquad

19
$0.41=$ \qquad $0.7=$ \qquad

Rounding Decimals, pages 38-39

What is a bow that is impossible to tie? A rainbow.
Round the decimal to the nearest tenth place
(1)
$0.11=0.1$
(2) $0.49=0.5$

3
$0.19=0.2$
4) $0.97=1$

5
$0.15=0.2$
(6) $0.37=0.4$
7. $0.65=0.7$
(8) $0.43=0.4$
(9)
$0.66=0.7$
10) $0.54=0.5$
(11) $0.68=0.7$
(12) $0.29=0.3$
(13) $0.87=0.9$
(14) $0.95=1$
(15)
$0.31=0.3$
(16) $0.59=0.6$
(17) $0.72=0.7$
(18) $0.84=0.8$

19
$0.41=0.4$
20
$0.7=0.7$

Estimating Decimals page 40-41

What goes...Now you see me, now you don't. A Zebra using a crosswalk!
Estimate by rounding each decimal equation to the nearest whole number. Is your estimate close to the actual answer on the answer sheet?

1 \qquad (2) $7.5-3.6=$ \qquad
(3)
$0.88+6.02=$
(4) $10.24-3.25=$ \qquad
5) $5.77+0.2=$ \qquad
(6) $2.7+0.26=$ \qquad
(7) $6.17+0.73=$ \qquad (8) $7.19-0.10=$ \qquad
9) $32.4-22.6=$ \qquad (10) $0.94-0.03=$ \qquad

Estimating Decimals page 40-41

What goes...Now you see me, now you don't. A Zebra using a crosswalk!
Estimate by rounding each decimal equation to the nearest whole number. Is your estimate close to the actual answer on the answer sheet?

1
$3.1+5.7=8.8$
(2) $7.5-3.6=3.9$
${ }^{3} 0.88+6.02=6.9$
(4) $10.24-3.25=6.99$
5) $5.77+0.2=5.97$
(6) $2.7+0.26=2.96$
(7) $6.17+0.73=6.9$
(8) $7.19-0.10=7.09$
$32.4-22.6=9.8$
10) $0.94-0.03=0.91$

Estimating Decimals page 40-41

What goes...Now you see me, now you don't. A Zebra using a crosswalk!
Estimate by rounding each decimal equation to the nearest whole number. Is your estimate close to the actual answer on the answer sheet?
(1) \qquad (2) $9.1-5.9=$ \qquad
(3)
$0.13+7.80=$
(4) $5.3-1.1=$ \qquad
(5) \qquad (6) $7.16-0.10=$ \qquad
(7) $6.66+3.33=$ \qquad (8) $5.06-.09=$ \qquad
9) $5.66+0.33=$ \qquad
(10) $9.1+0.94=$ \qquad

Estimating Decimals page 40-41

What goes...Now you see me, now you don't. A Zebra using a crosswalk!
Estimate by rounding each decimal equation to the nearest whole number. Is your estimate close to the actual answer on the answer sheet?
(1)
$4.61+0.29=4.9$ (2) $9.1-5.9=3.2$
${ }^{3} 0.13+7.80=7.93$
(4) $5.3-1.1=4.2$

5
$4.8-3.9=0.9$
(6) $7.16-0.10=7.06$
(7) $6.66+3.33=9.99$
${ }^{8} 5.06-.09=4.97$
9) $5.66+0.33=5.99$

10
$9.1+0.94=10.04$

Adding Decimals, pg 42-43

Tongue Twister: Shallow ships show some signs of sinking.
Complete the activity by adding the decimal numbers.
(1) 4.5
$+7.8$
(2) 0.14
$+0.76$
(3)
8.4
$+2.4$
(4) 2.7
$+5.4$
5
0.38
$+0.32$
(6) 3.4
$+1.8$
7) 9.5

+ 7.9
(8) 2.5
$+4.5$
9
0.85
$+0.82$

10) 1.7
$+2.0$

Adding Decimals, pg 42-43

Tongue Twister: Shallow ships show some signs of sinking.
Complete the activity by adding the decimal numbers.
(1) $\begin{array}{r}4.5 \\ +7.8 \\ \hline 12.3\end{array}$
(2) 0.14
$+0.76$
0.90

(3) | 8.4 |
| ---: |
| +2.4 |
| 10.8 |

(4) 2.7
$+5.4$
8.1

(5) | 0.38 |
| ---: |
| +0.32 |
| 0.70 |

(6) $\begin{array}{r}3.4 \\ +1.8 \\ \hline 5.2\end{array}$
(8) $\begin{array}{r}2.5 \\ +4.5 \\ \hline 7.0\end{array}$
(9) $\begin{array}{r}0.85 \\ +0.82 \\ \hline 1.67\end{array}$
(10) 1.7
12.0
+3.7

Adding Decimals, pg 42-43

Tongue Twister: Shallow ships show some signs of sinking.
Complete the activity by adding the decimal numbers.
1)
0.20
+0.99
(2) 0.52
$+0.88$
${ }^{3}$
0.65
$+0.70$
(4) $\begin{array}{r}4.9 \\ +7.9 \\ \hline\end{array}$

6 0.73
$+0.46$
8) 6.6
$+2.2$
${ }^{10} 0.68$
$+0.57$

Adding Decimals, pg 42-43

Tongue Twister: Shallow ships show some signs of sinking.
Complete the activity by adding the decimal numbers.
(1) $\begin{array}{r}0.20 \\ +0.99 \\ \hline 1.19\end{array}$
2) 0.52
$+0.88$
1.40

(3) | 0.65 |
| ---: |
| +0.70 |
| 1.35 |

(4) 4.9
$+7.9$
12.8
(5) 2.1
$\begin{array}{r}+7.5 \\ \hline 9.6\end{array}$
(6) 0.73
$+0.46$
1.19

(7) | 0.51 |
| ---: |
| +0.14 |
| 0.65 |

(8) 6.6
$+2.2$
8.8

(9) | 0.84 |
| ---: |
| +0.74 |
| 1.58 |

${ }^{10} 0.68$
$+0.57$
1.25

Subtracting Decimals page 44-45

How do you catch a squirrel? Climb into a tree and act like a nut.
Subtract the decimal numbers.
(1)

0.97
-0.44

(2)
$\begin{array}{r}0.85 \\ -0.26 \\ \hline\end{array}$
3
$\begin{array}{r}1.6 \\ -1.5 \\ \hline\end{array}$
${ }^{8} \quad 1.4$
-1.0
(12) $\begin{array}{r}9.4 \\ -5.1 \\ \hline\end{array}$
(7) $\begin{array}{r}0.46 \\ -0.27 \\ \hline\end{array}$

9
$\begin{array}{r}3.0 \\ -2.3 \\ \hline\end{array}$
10
$\begin{array}{r}8.4 \\ -1.1 \\ \hline\end{array}$
11
$\begin{array}{r}0.86 \\ -0.59 \\ \hline\end{array}$
(5)
6.2
-5.2
(6)
0.39
-0.31

Subtracting Decimals page 44-45

How do you catch a squirrel? Climb into a tree and act like a nut.
Subtract the decimal numbers.
(1)

0.97
$-\quad 0.44$
0.53

(2)
$\begin{array}{r}0.85 \\ -0.26 \\ \hline 0.59\end{array}$
(3)
$\begin{array}{r}1.6 \\ -1.5 \\ \hline 0.1\end{array}$
4
0.44
-0.36
0.08
5

6.2
-5.2
1.0

6 0.39

- 0.31
0.08
(7) $\begin{array}{r}0.46 \\ -0.27 \\ \hline 0.19\end{array}$
$8 \quad 1.4$
$\begin{array}{r}-1.0 \\ \hline 0.4\end{array}$
(9) $\begin{array}{r}3.0 \\ -2.3 \\ \hline 0.7\end{array}$
(10) $\begin{array}{r}8.4 \\ -1.1 \\ \hline 7.3\end{array}$
(11)
$\begin{array}{r}0.86 \\ -0.59 \\ \hline 0.27\end{array}$

12) 9.4
-5.1

Subtracting Decimals page 44-45

How do you catch a squirrel? Climb into a tree and act like a nut.
Complete the activity by subracting the bottom decimal number from the top decimal number.
(1)

8.0
-1.4

(2)
0.57
-0.27
(3)
$\begin{array}{r}4.8 \\ -4.2 \\ \hline\end{array}$
(4)
0.32
-0.21
(5)
$\begin{array}{r}0.44 \\ -0.24 \\ \hline\end{array}$
(6)
$\begin{array}{r}0.17 \\ -0.16 \\ \hline\end{array}$
(7) $\begin{array}{r}9.8 \\ -9.6\end{array}$
${ }^{8} \quad 0.58$
-0.52
(9) 0.68

10
(11) 8.2
-2.7
12) 3.9
-1.3

Subtracting Decimals page 44-45

How do you catch a squirrel? Climb into a tree and act like a nut.
Complete the activity by subracting the bottom decimal number from the top decimal number.
(1)

8.0
-1.4
6.6

(2)
$\begin{array}{r}0.57 \\ -0.27 \\ \hline 0.30\end{array}$
(3)
$\begin{array}{r}4.8 \\ -4.2 \\ \hline 0.6\end{array}$
4
0.32
$\begin{array}{r}-0.21 \\ \hline 0.11\end{array}$
(5)

0.44
$-\quad 0.24$
0.20

(6)
(7) $\begin{array}{r}9.8 \\ -9.6 \\ \hline 0.2\end{array}$
(8) $\begin{array}{r}0.58 \\ -0.52 \\ \hline 0.06\end{array}$
(9) $\begin{array}{r}0.68 \\ -0.11 \\ \hline 0.57\end{array}$
(10) $\begin{array}{r}0.43 \\ -0.31 \\ \hline 0.12\end{array}$

11
$\begin{array}{r}8.2 \\ -2.7 \\ \hline 5.5\end{array}$
${ }^{12} \quad 3.9$
-1.3
2.6

