
Ready to innovate?
The Visual COBOL 5.0 Azure DevOps and
Serverless Computing Walkthrough

June 2019

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 2

Visual COBOL 5.0—
blue sky thinking
Ready to build your Cloud story?

This is primarily a how-to technical guide that enables COBOL and non-
COBOL developers to modernize legacy applications using the Cloud—
it’s all about bridging the old with the new.

New to Visual COBOL? This is your guided tour of everything it can
do towards modernizing core COBOL applications. Already on board?
This is the update that explains how to take your applications beyond the
next level and on to the Cloud.

What will you learn?
Much of this Guide focuses on the technical, practical aspect of creating
next-gen apps from COBOL code. Among other new skills, you will
discover how to…

• Bring a COBOL application into Visual Studio or Eclipse
• Edit, compile and debug COBOL applications using the IDE
• Modernize COBOL apps using .NET and C#
• Create and deploy a COBOL microservice as a Serverless application in

the Cloud
• Build, test and publish your application via a DevOps pipeline
• Understand the latest native Cloud technologies

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 3

What’s new in Visual COBOL 5.0?

This latest update of our unrivalled development
experience significantly extends Visual COBOL’s
capabilities. It brings the Cloud closer, enabling
access to DevOps and Serverless computing
for COBOL systems.

For Micro Focus, Visual COBOL 5.0 is where
meet our customers’ need for application
modernization using the Cloud. It’s where the
tools within Visual COBOL 5.0 help you deliver
innovation into the hands of your customer,
that much faster.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 4

Developers can target a broad range of platforms using the Visual COBOL compiler, including
Common Intermediate Language, the basis for .NET.

Run COBOL applications in .NET and take advantage of the .NET framework APIs and simplify
integration with other .NET languages, such as C#.

Visual COBOL also includes a complete object oriented syntax, streamlined for .NET.
Procedural COBOL is also supported and makes it possible to take your existing COBOL
applications into .NET. More here.

Let’s talk tooling.

Micro Focus Visual COBOL is a family of COBOL
application development tools. They provide the
advanced editing and debugging features within Visual
Studio and Eclipse. This solution enables developers to
modernize COBOL-based applications across Windows
and Linux, including .NET, JVM and Docker container and
Cloud platforms. More here.

https://www.microfocus.com/documentation/visual-cobol/VC40/VS2017/index.html?t=GUID-AC141190-9491-4CD0-89C4-97B5ACDB81CB.html
https://www.microfocus.com/media/brochure/visual_cobol_brochure.pdf

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 5

A quick word on serverless computing…

Imagine a time when the code changes you made
yesterday are in the hands of your customers today.
Where deployment is as simple as the click of a
button and applications automatically scale to meet
the needs of peak demand.

Serverless computing is the next innovation in public
Cloud. Automatically deploying and managing your
applications - you can keep focused on the job of
writing software.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 6

… and Azure DevOps

This range of software tools, hosted
in the Azure cloud, can accelerate
software delivery. The tools include:

Repos
Configuration
management systems

Pipelines
Continuous Integration and
Deployment automation

Boards
Agile planning and
monitoring tools

More here

https://azure.microsoft.com/en-gb/blog/introducing-azure-devops/

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 7

Who can use this Guide?

Anyone with programming skills, in any language,
primarily those working in COBOL, C# and .NET

While COBOL programmers will build on their
current capabilities, because COBOL is so easy
to learn, those beginning from a low base will
soon be coding with confidence.
Do I need Visual COBOL to use it?

Yes. Download a trial from the Cloud, Azure, AWS or here. New to Visual COBOL? Check out
these tutorials. And if you ever need help, go straight to the mothership. It takes two minutes to
register for the Visual COBOL forum of the Micro Focus Community website—and no time at all
to get your question answered…

Let’s do this.

https://www.microfocus.com/products/visual-cobol/product-trials/
https://www.microfocus.com/documentation/visual-cobol/vc40pu8/VS2017/H2GHGHDNET06.html
https://www.microfocus.com/documentation/visual-cobol/vc40pu8/VS2017/H2GHGHDNET06.html
https://community.microfocus.com/t5/Visual-COBOL/ct-p/VisualCOBOL

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 8

Your kit list

Visual COBOL to compile and run the COBOL
application. No license? No problem. Download the
trial version from here.

Visual Studio 2017 or 2019 to create and edit
the COBOL and C# application code. Trial the
professional version—the license covers the trial—
or use the free community edition.

An Azure subscription to deploy your application to
the Cloud and an Azure DevOps account. Sign up for
free Azure credits.

https://www.microfocus.com/en-us/products/visual-cobol/overview
https://www.microfocus.com/products/visual-cobol/product-trials/
https://visualstudio.microsoft.com/downloads/
https://www.microfocus.com/en-us/products/visual-cobol-personal-edition/overview
https://www.microfocus.com/en-us/products/visual-cobol-personal-edition/overview
https://azure.microsoft.com/en-gb/free/search/?&OCID=AID719823_SEM_iSQz9x31&lnkd=Google_Azure_Brand&dclid=CjkKEQjwlPTmBRDzoN6bxoHQ_r8BEiQA0AchZoZLXt-ojnnPsCYUEDOwbXGwF0ZaFnl4kiIW_aMwEOnw_wcB
https://azure.microsoft.com/en-gb/services/devops/?&OCID=AID736752_SEM_PDYPWLle&MarinID=sPDYPWLle_323127992375_%2Bazure%20%2Bdevops_b_c__63008337085_kwd-315506203429_

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 9

Now, let’s build a COBOL microservice in .Net

We’re going to extract the business logic from a
sample COBOL application - a simple green-screen
loan calculator – to use an API.

Step 1 for us today is to download the COBOL
source code.

Download the program source code, to a temporary
location, as a Zip file from here. Each folder has a
different part of the COBOL LoanCalc Application.

Step 2 is to understand the source code

We’ll run it as a standalone application and use Visual
Studio to compile, run and debug it.

To open the Visual Studio solution, browse
to the source code folder and double click the
AmortFunctions.sln file. When it opens in Visual Studio,
make the Solution Explorer window visible.

Of these two COBOL projects, LOANAMORT is the
main code. It processes loan payment schedules.
LOANAMORTSCREENS is the console-based user
interface.

Open the LOANAMORT.cbl file within the
LOANAMORT project. It’s a simple program that
calculates a payment schedule based on three factors:

 PRINCIPAL – the amount to borrow

 LOANTERM – the duration of the loan in months

 RATE – the interest charged during the loan term

The program data is an array denoting the monthly
payment schedule, and the total amount paid.

The LOANAMORTSCREENS application provides the
user interface.

https://github.com/MicroFocus/LoanAmortAzure

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 10

A quick note about Visual Studio for COBOL development

Visual Studio has bags of features for COBOL
development. Here’s just a couple to get you started:

• Expand the program in the solution explorer to view
the program’s copybooks within the fully functional
COBOL editor in Visual Studio

• Keywords and data items are colorized
• Click the arrow in the margin next to a COPY

statement to see copybook contents
•	 Hover	over	program	fields	to	see	information	about	

their type and usage
• The editor compiles your code in the background
and	flags	up	mistakes	with	a	red	squiggle.	Give	it	a	
go by inserting a deliberate coding error, but don’t
forget to undo your change—ctrl-z

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 11

Next—compile both projects using Build->Build Solution from the menu.
Make sure it’s error free by checking the Output window

Let’s run and debug the program

• Right-click the LOANAMORTSCREENS project. Choose Set as Startup Project
• Press F5 to run and debug the application and follow the on screen instructions
• Press CTRL-C to stop the application

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 12

Terminate the application if it is running and press F11 to step the through
the code a few lines

Now, hover over fields to examine their values. Want to set a breakpoint in
a line of the LOANAMORT program code? Press F9 where you want the
debugger to stop

Press F5 to resume running the application. It should stop at your
breakpoint. Stop debugging the code.

Let’s debug the code.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 13

Step 3 is to create an API.

We’re a step closer to building an API than you think. The Visual COBOL
compiler is creating a .NET executable enabling easy integration for
COBOL applications with C#.

So let’s create a C# project providing the entry point for an API that will
call COBOL to do the loan calculations.

While you don’t need an Azure subscription you may need to install some
Azure tools into Visual Studio as we progress. Here’s a quick hack for
checking you have Azure support.

Right click the solution item in the Solution Explorer and add-> New
Project before selecting Visual C# templates. Expand to see the full list.

Look for the project templates beneath the ‘Cloud’ heading. If is not as
shown in the next image, you’ll need to install Azure Workload Support
into Visual Studio.

Installing Azure workload support into Visual Studio

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 14

It’s easy. Click Modify in the Visual Studio installer and tick the Azure
Developments workload option, and update Visual Studio. You may
need to restart Visual Studio when you’re done – re-open the solution
when finished.

Checking you have Azure support installed - do you see Cloud templates?

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 15

Add the C# API

We’ve already created the C# project to get you
started. Add it to your solution. Right-click your
solution in the Solution Explorer and choose add-
>Existing Project.

Open the LoanAmortFunctions project folder,
select LoanAmortFunctions.csproj and click Open.
Spotted an error? You may need to install Azure
Workload support.

Once you have built the solution, check for errors
before moving onto the next steps.

Let’s take a look at the C# code.

Open the AmortLoanFunctions.cs
file in the C# LoanAmortFunctions
project. It’ll look like this:

• Line 13: The class that handles
the API

• Line 15: The name given to our
API

• Line 16: The method executed
when a client calls the API

• Line 18: loanParameters
contains the loan amount, rate
and term. Values passed in on
the URL are placed into this data
item

• Line 24: Checks the parameters
are correct

• Line 29: This is where the call to
the COBOL program takes place

• Line 37: If all is correct, we return
the payment schedule in JSON
format

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 16

Open the LoanParameters.cs file in the C#
LoanAmortFunctions project.

• Line 5: This is the input loan payment class declared
in C#

• It contains fields for term (T), rate (R) and principal
amount (P)

• The values of these fields will be referenced in the
URL when we invoke the API

• Line 17: A helper method to verify the parameters

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 17

Now, return to the open AmortLoanFunctions.cs file in the editor.

• Line 41: This method is called to process the API request

• Line 44: The parameters passed into the API are placed into a new data
structure called loaninfo.

 This data item corresponds to what the COBOL program expects to
receive. The COBOL compiler created the Loaninfo class and it matches
the parameters specified in the linkage section of the COBOL program.

• Line 51: Outdata is also a class generated by the compiler, and
contains the output parameters returned by the COBOL program.

• Line 57: The call to the COBOL program happens in the run unit, a
Micro Focus API for C# developers. The run unit isolates this call to the
COBOL program, any data it uses and sub programs it calls into a single
unit of work, separate from any other invocation of the program. Many
clients can simultaneously call the API; so run units isolate each request
without needing to adapt the COBOL program.

• Line 73: The result returned from the COBOL program is then
converted into a C# data structure. The code iterates over every item
in the array returned by COBOL, and formats it with extra information to
show details of every monthly payment.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 18

You can run and debug the API
locally, you don’t need to deploy
to Azure just yet. So make
LoanAmortFunctions the start-up
project. Once you hit F5 to begin
debugging, the Azure Emulator
should fire up. Visual Studio may
prompt you to install this software.
Do you see a popup message from
the Windows Defender Firewall?
Click Allow Access to continue.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 19

This is the Azure
emulator starting up

Copy this URL

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 20

The C# function is listening on a port for a request. Let’s test the function
using a browser. So paste the URL from the Azure emulator into a browser
window. Your browser will dictate the output, but it should look like this:

{“AmortList”:[{“PayDateNo”:”#0 20/04/2019”,”Balance”:” $92.00”,”InterestPaid”:”
$.41”,”PrincipalPaid”:” $8.14”,”Payment”:” $8.56”},{“PayDateNo”:”#1
20/05/2019”,”Balance”:” $84.00”,”InterestPaid”:” $.38”,”PrincipalPaid”:”
$8.17”,”Payment”:” $8.56”},{“PayDateNo”:”#2 20/06/2019”,”Balance”:”
$76.00”,”InterestPaid”:” $.35”,”PrincipalPaid”:” $8.21”,”Payment”:”
$8.56”},{“PayDateNo”:”#3 20/07/2019”,”Balance”:” $68.00”,”InterestPaid”:”
$.31”,”PrincipalPaid”:” $8.24”,”Payment”:” $8.56”},{“PayDateNo”:”#4
20/08/2019”,”Balance”:” $60.00”,”InterestPaid”:” $.28”,”PrincipalPaid”:”
$8.27”,”Payment”:” $8.56”},{“PayDateNo”:”#5 20/09/2019”,”Balance”:”
$52.00”,”InterestPaid”:” $.25”,”PrincipalPaid”:” $8.31”,”Payment”:”
$8.56”},{“PayDateNo”:”#6 20/10/2019”,”Balance”:” $44.00”,”InterestPaid”:”
$.21”,”PrincipalPaid”:” $8.34”,”Payment”:” $8.56”},{“PayDateNo”:”#7
20/11/2019”,”Balance”:” $36.00”,”InterestPaid”:” $.18”,”PrincipalPaid”:”
$8.37”,”Payment”:” $8.56”},{“PayDateNo”:”#8 20/12/2019”,”Balance”:”
$28.00”,”InterestPaid”:” $.15”,”PrincipalPaid”:” $8.41”,”Payment”:”
$8.56”},{“PayDateNo”:”#9 20/01/2020”,”Balance”:” $20.00”,”InterestPaid”:”
$.11”,”PrincipalPaid”:” $8.44”,”Payment”:” $8.56”},{“PayDateNo”:”#10
20/02/2020”,”Balance”:” $12.00”,”InterestPaid”:” $.08”,”PrincipalPaid”:”
$8.47”,”Payment”:” $8.56”},{“PayDateNo”:”#11 20/03/2020”,”Balance”:”
$.00”,”InterestPaid”:” $.05”,”PrincipalPaid”:” $12.00”,”Payment”:”
$12.05”}],”TotalInterest”:” $2.80”}

If we are going to get more meaningful results, we will need to pass some
parameters into the URL.

Add the following parameters onto your URL: ?P=100&T=12&R=5

P, T and R correspond to the Principal, Term and Rate parameters your
application will use. Your complete URL will look something like this…

http://localhost:7071/api/GetPaymentSchedule?P=100&T=12&R=5

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 21

This is the payment schedule in JSON format returned
from the COBOL program. This is what the browser
displays in its raw form.

Now, it’s time to debug your work.

With the emulator still running, set a breakpoint F9 in the
first line of the C# run method in AmortLoanFunctions.
cs (It’s on line 22.) Invoke the browser again and step
the through the code, line-by-line

You may see a popup asking if you want to continue
being notified of automatic step-overs. Click No.

Examine the parameters, step from C# into COBOL
and back again. Stop debugging when you’re finished
and the Azure emulator Windows will close.

Now, we’re going to connect a modern user interface
- a web browser client - to your API.

This browser based UI is written in Javascript and you’ll
need to turn on Javascript debugging.

Select Debug→Options→General from the IDE menu.
Tick the box as shown below:

Use the Add Existing project menu to add the
LoanAmortWebUI project to your solution. Select
LoanAmortWebUI.csproj and click Open.

See an error message about ‘Shared Web extensions
failing’? Restart Visual Studio to resolve the issue.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 22

The API and Web Client project must run
together. So, right click the C# function project
LoanAmortFunctions and select Debug->Start new
instance to launch the Azure emulator.

Now, right click the UI project LoanAmortWebUI.
Select Debug->Start new instance. This should launch
a browser page.

Do you see an exception about part of the path being
missing? Does it point to bin\roslyn\csc.exe?

From the Visual Studio menu select Tools→NuGet
Package Manager→Pacakage Manager Console

and run the following command:

 PM> Update-Package Microsoft.CodeDom.
Providers.DotNetCompilerPlatform–r

to add the necessary project support.

Relaunching the two projects will prompt a browser,
presenting a web UI for your loan application. So, paste
the URL from the Azure emulator into the web browser
end point field. Enter your parameters into the browser
page, set breakpoints in the C# code, and debug.

The new and improved web UI for the loan payment calculator

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 23

The payment schedule for the
loan as returned by the COBOL
application

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 24

Your UI project is a browser-based application using
Javascript to invoke the COBOL API. Check it out—
open the App.js file in the scripts folder, scroll down to
the calculate() function.

Set a breakpoint and debug through the Javascript
to see how it obtains parameters from the form and
sends them to the API.

If Javascript debugging is disabled, enable it. This
will automatically restart the UI project. Re-enter the
parameters in the web page.

Debugging Javascript on the client

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 25

Hey. Nice work.

You have a COBOL program being invoked by a web
browser using a JSON API. That’s pretty cool.

But we can go further. Let’s publish your API to Azure.
Don’t have an Azure subscription? Sign up for free here

The free Azure tier should be sufficient to complete the
walkthrough. But remember to shutdown all resources
once you’re done to avoid unnecessary charges.

The API can be published directly from Visual
Studio. Right click the C# Functions Project
LoanAmortFunctions and choose ‘Publish’.
Click the ‘New Profile’ link and you’ll see this
screen (overleaf). Select the options shown
and click ‘Publish’.

https://azure.microsoft.com/en-gb/free/

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 26

Use the ID you’ve used to connect
to Visual Studio in the subscription.
Your App Name needs to be unique,
so you’ll need to change this.

Choose a hosting plan nearest your
location. Leave the other fields with
their default settings, then click
‘Create’ to deploy the function into
Azure. It may take a few minutes.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 27

Now, using a browser, log into the
Azure portal, check out the All
Resources section and make sure
your Function App is deployed.

https://portal.azure.com

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 28

Click on the link for the type App
Service to display details

*Important step klaxon! Add
some extra configuration to the
function*

Click the ‘Application settings’ link
beneath the ‘Configured features’
section. It’s near the bottom of the
App Service ‘Details’ page.

Make sure you configure your function before going further!

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 29

In Application Settings, click on the ‘New
Application setting’ link and add the following:

Name=MF_DOTNET_PLATFORM
Value=AZURE

Click ‘Update’ and ‘Save’.

Test your function from within the portal by clicking
GetPaymentSchedule, and then Run. Use the
parameters as shown and click Run again.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 30

Want to use a browser to test your API? Grab your
specific function URL from the function app settings
and then paste it into a browser:

https://YOURFUNCTIONURL/api/
GetPaymentSchedule?P=100&T=10&R=5

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 31

[Results from your Azure hosted function.]

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 32

We’re going to test your API using the web project. But you’ll need to
make some configuration changes to the function settings in Azure first.
So open the function and click on ‘Platform Features’ and then CORS.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 33

Now, remove all the end points in the Allows Origins
list and replace. with a single *. Then restart the
function and run the C# web project again. This time,
change the endpoint URL field so it references the
Azure API.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 34

Your browser is now connected
the Azure hosted function.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 35

Hats off. Getting this
far is an achievement.
(But don’t forget to shut down your function when it’s
no longer needed.)

Let’s move on to Azure DevOps

Now, we are going to set up a continuous integration
and continuous deployment using Azure.

This will mean code changes are published
automatically. The CI pipeline will build our code and
run unit tests, while the CD pipeline will update the
Azure function with the built artefacts and newly built
code. So let’s write some unit tests. These are self-
contained test cases that assess a specific capability
of your application in isolation.

They can be created in Visual Studio and run
separately, as part of an automated build of a CI
system. Your unit tests will ensure the COBOL loan
calculator works properly.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 36

So, open the COBOL LOANAMORT.
cbl file in Visual Studio. Right-click
the code in the editor and select
‘Create Unit Test’. Click ‘Finish’
to create a new project named
TestLOANAMORT. Now, we’re
going to review the unit test code.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 37

Your first COBOL unit test. Doesn’t do much yet

Line 5: this program has been automatically generated
based on the LOANAMORT program. You can use this
program to create different test cases

Line 11-22: these are the parameters used in the
LINKAGE SECTION of the LOANAMORT program

Line 28: this is a single test case. This entry point will be
called by the unit testing framework

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 38

To add a reference to your COBOL
project. Right-click the References
Node in the solution explorer and
click ‘Add Reference’ in the unit test
project and add a reference to the
LOANAMORT project.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 39

Let’s create a test case.

Add this code to Test Behaviour
when a zero value loan is
requested.

The OUTTOTINTPAID field should
be zero.

To run the Unit Test, make the test
project the Start Up project and
hit F5.

Results should be in green in the
Unit Test window. Like this…

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 40

So you’ve created a unit test. A single test isn’t going
to get us far but to save you the trouble of writing
any more, we’ve written a bank of tests for you.
Let’s import them. The LoanAmortUnitTests project
includes several unit tests. So add it to the solution.
Make it the Startup project, and run the tests. One test
should fail. We’ll fix this failing test case later.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 41

Step 2 is to set up an Azure DevOps project…

Azure DevOps has most of the software you need to create CI and CD
pipelines. It’s also a source code repository. Now, we will set up a CI/CD
pipeline to build, test and publish the function after successful changes.

You’ll need to sign up for Azure DevOps. It’s free from here.

We’re going to create an Azure repo - a source code management system
for storing your code, and any changes, directly from within Visual Studio.
So let’s add a project.

Click ‘Add to Source Control’ on the solution explorer, and select Git.

You should now see the Team Explorer

Synchronization window. Not there?

Click the number link (0 in the graphic} to the right of the uncommitted
pushes arrow.

http://dev.azure.com

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 42

Click Publish Git Repo under ‘Push to Azure DevOps’.
Enter your Azure DevOps credentials, give your project
a name and click Publish Repository.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 43

Want to see your project in action? Then log in to Azure DevOps.

http://dev.azure.com

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 44

Here’s how your code will look
under Repos…

Want to make a test change to
the code? Add a TODO to the
LOANAMORT.CBL program and
close it in the editor. Save and build
the code. It’ll look like this…

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 45

Commit your code to the repo

Make sure the Team Explorer
is visible. You can find it on the
view menu. Once it’s open, click
the home icon. It’s on top of the
Team Explorer Window. Then click
‘Changes’ and you should see the
modified file. So right-click on the
filename and select Stage.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 46

Your commit log should look something like this.

Now, add a commit message, such as ‘Added a TODO’
and then click Commit Staged and Push

Click Commit Staged and Push to send your changed
file into the repo.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 47

Want to check you can see your Commit? Open Azure DevOps and click
the Commits link in the repo section.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 48

Open Azure DevOps. Then click

The Pipelines Tab

New pipeline

Use Classic Editor.

Once you have chosen Azure
Repos Git, select your project and
click Continue. You’ll go to the next
screen. There, click Empty Job to
create an empty pipeline.

Now, we’ll create the tasks.

Next step – let’s set up a Continuous Integration pipeline to monitor
the source code system and run tasks if the code changes. We’ll create
tasks to extract, build, test and archive the results and a machine for Azure
DevOps to build our code. Here’s the step-by-step guide.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 49

Configuring where your source code is coming from Click empty job to get started.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 50

Let’s get to it and add these tasks to the pipeline.

o add the Nuget task, click the + sign next to Agent
job 1 to add a new task…

…. type ‘nuget’ into the search field on the Add task
dialog….

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 51

.... and click on Add for the NuGet
Restore task....

…. And click on the newly added task
to view it, using the default settings.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 52

To configure the Visual Studio Build Task, click on
the newly added task to open it for configuration.

Add this text to MSBuild Arguments field:

/p:DeployOnBuild=true
/p:DeployDefaultTarget=WebPublish
/p:WebPublishMethod=FileSystem
/p:DeleteExistingFiles=False
/p:publishUrl=”$(Agent.TempDirectory)
\WebAppContent\\”

Add an MSBuild task, click the + sign next to Agent
job 1 again to add a new task, then type “build with
MSBuild” into the search field on the Add task dialog
and click Add.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 53

To configure the Archive Files Task, click on the newly
added task to open it for configuration. Then, add
$(Agent.TempDirectory)\WebAppContent to the
Root folder or file to archive entry field.

To add the Archive Files Task, click the + sign next to
Agent job 1 again to add a new task, then type “archive
files” into the search field on the Add task dialog and
click Add for the Archive Files task.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 54

Now, let’s configure it.

Click on the newly added task to open it. Add the
following text to the Scripts field:

echo Windows Script file to execute Unit Test and
generate junit formatted outputs

echo Execute the rununit and generate the output
as junit format

PATH=%PATH%;C:\Program Files (x86)\Micro Focus\
Visual COBOL\bin

mfurunil -exit-code:false -report:junit
LoanAmortUnitTests.mfu

Then, add LoanAmortUnitTests\bin\Debug under
Advanced in the Working Directory field.

To add the Command Line Task, click the + sign next
to Agent job 1 again to add a new task, then type
“command line” into the search field on the Add task
dialog, and click Add for the Command line task.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 55

Now we’re going to configure the Publish Test
Results Task. So, again, click on the newly added task
to open it for configuration. Check the ‘Fail if there
are test failures’ option to turn it on.

To add the Publish Test Results Task, click the + sign
next to Agent job 1 again to add a new task. Then type
“publish test” into the search field on the Add task
dialog, and click Add for the Publish Test Results task.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 56

To add the Publish Build Artifacts Task, click the +
sign next to Agent job 1 to add a new task.
Type “publish build” into the search field on the
Add task dialog and click Add for the Publish Build
Artifacts task. Click on the newly added task to
view it – we’ll use the default settings.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 57

Now, click on Pipeline and change the Agent pool
setting to Default. Click Save and Queue and select
Save and accept defaults. Like this:

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 58

Let’s perform a test build. Click Queue to start the
pipeline process. Like this:

The build pictured will fail because Azure DevOps
needs a build machine to compile your code. So let’s
set one up.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 59

Step 4: Setting up an Azure DevOps build machine.

The machine we’ll use to create our application will contain the Visual
COBOL compiler tools. Things to note:

Azure will ask this machine to build the source code and run tests. It would
usually be a standalone machine, running Visual COBOL, used specifically
for CI purposes, and either on premise or in Azure

For this tutorial, we’ll configure your machine to act as the CI build machine
for Azure DevOps. You’ll need to install a Build Agent - Microsoft software
Azure DevOps will use to build your code.

Either download it onto your machine. You’ll need to get the Build Agent
from the Azure DevOps site.

Go to the Settings page for your organization - click the link in bottom left
of the portal - and select Agent Pools.

Make sure you click Organization Settings, not Project Settings to find the
Build Agent.

Once you’ve downloaded the Build Agent, extract the files to a folder on
your machine.

Got to the Organization Settings to locate the Build Agent software in the
Agent Pools category.

Open your User Settings in Azure DevOps, click Security and Personal
Access Tokens

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 60

Create a new token and name it
PAT for CI build machine.
The PAT will require Read+Execute
privileges for Build and
Read+Manage for Agent Pools.
Don’t see Build and Agent Pools
in the list? Click the Show all
scopes link at the bottom.
Save the PAT in text file for use
in the next step.

Make sure you give the PAT privileges for Build and Agent Pools

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 61

To configure the build agent, open
a command prompt and navigate
to the directory. Execute config.
cmd and when prompted:

• Server url: <name of your Azure
DevOps organization>

• eg. https://dev.azure.com/
MyName

• Authentication type: PAT
• PAT: <paste your PAT created in

the previous step>
• Enter Agent pool: <default>
• Agent name: VCBuildMachine

You can accept the rest of the
defaults. You do not install as a
service or enable AutoLogon.
Here are the screengrabs.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 62

Let’s start the Build Agent.
From the command prompt, type:
run.cmd. The build agent should
start, and wait for jobs. Open the
Agent Pools page under the
Organization settings in the Azure
DevOps site. Your build agent
should be registered and online.

Now, click Queue on the Build
pipelines page. The build should
execute, and your build agent will
accept the job. Monitor progress
by clicking the build in the Azure
pipelines page. Once everything
has successfully compiled, a failing
test should prompt an error.
We’ll fix this later. For now, click
Tests to see more test run details.
It will look like this.

Results from your build should look like this

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 63

The pipeline will show you the results of your test run

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 64

Take a look through the results of your build logs by clicking on any of the steps

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 65

Let’s step things up a little.
Right now, your CI process is
triggered manually. We are going to
change this to an automated step
whenever the code repo changes.
First step is to edit the pipeline
and change the Triggers section
to enable continuous integration.

So, as you did in a previous step,
make a small code change and
commit this to the Azure Repo.
The CI process should now
automatically trigger. It will look
like this.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 66

You now have a CI system setup that will build and test
your code following each commit.

The next step is to set up a Continuous Delivery
pipeline that will publish the newly committed code
to your Azure function.

Step 5: Setup a continuous deployment pipeline
to automate application deployment.

We’re going to create a second pipeline that will
execute following your CI pipeline.

It’s a relatively straightforward process with very
few steps.

In the Azure DevOps project, click Pipelines,
Releases, New Pipeline.

Kudos.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 67

Type Empty in the search box and
Create and Empty Job

Click Artifacts and specify the
Azure DevOps project containing
your sources

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 68

Click Tasks, then search for
Function, and Add an Azure
Function task

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 69

Configure your task with your
subscription details and your
function’s name.

Click Authorize and log in to the
DevOps portal when prompted.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 70

To automate the pipeline, click the
lightning bolt in the artefacts box
and set the CD trigger to Enabled.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 71

We’re going to queue a build to test your pipeline.
The test failure should cause the CD pipeline to
fail to execute.

Fix it by either amending the code so that the test case
passes and committing it to your repo, or change the
tests step in the CI pipeline to continue on error.

Fix the failing test case by returning -1 if a negative
loan term is requested: like this.

Make the change, run the tests, and commit your code
if they pass.

We can continue with errors by unchecking the Fail is
there are test failures option.

Now, let’s clean up.

Used the consumption plan for your Azure Function?
You will only accumulate charges when the function
is invoked. If you’re done, take if offline or delete it to
prevent invocation.

If you ever want to revisit this work, redeploy your
function straight from Visual Studio.

The Visual COBOL 5.0 Azure DevOps and Serverless Computing Walkthrough 72

You got here!

We’ve come a long way. Let’s review for a second.

• Legacy COBOL program deployed to the .NET
platform and accessible through a C# API

• Running as a serverless function with hardware
and resources automatically provisioned by Azure

• Complete with CI/CD pipelines and unit tests to
complete the DevOps story

Job done.

Need more?
Additional resources are right this way.

http://www.microfocus.com/visualcobol

© 2019 Micro Focus

	Button 21:
	Button 15:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:
	Page 53:
	Page 54:
	Page 55:
	Page 56:
	Page 57:
	Page 58:
	Page 59:
	Page 60:
	Page 61:
	Page 62:
	Page 63:
	Page 64:
	Page 65:
	Page 66:
	Page 67:
	Page 68:
	Page 69:
	Page 70:
	Page 71:
	Page 72:

	Button 16:
	Page 2:
	Page 3:
	Page 4:
	Page 5:
	Page 6:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:
	Page 39:
	Page 40:
	Page 41:
	Page 42:
	Page 43:
	Page 44:
	Page 45:
	Page 46:
	Page 47:
	Page 48:
	Page 49:
	Page 50:
	Page 51:
	Page 52:
	Page 53:
	Page 54:
	Page 55:
	Page 56:
	Page 57:
	Page 58:
	Page 59:
	Page 60:
	Page 61:
	Page 62:
	Page 63:
	Page 64:
	Page 65:
	Page 66:
	Page 67:
	Page 68:
	Page 69:
	Page 70:
	Page 71:
	Page 72:

	Button 17:

