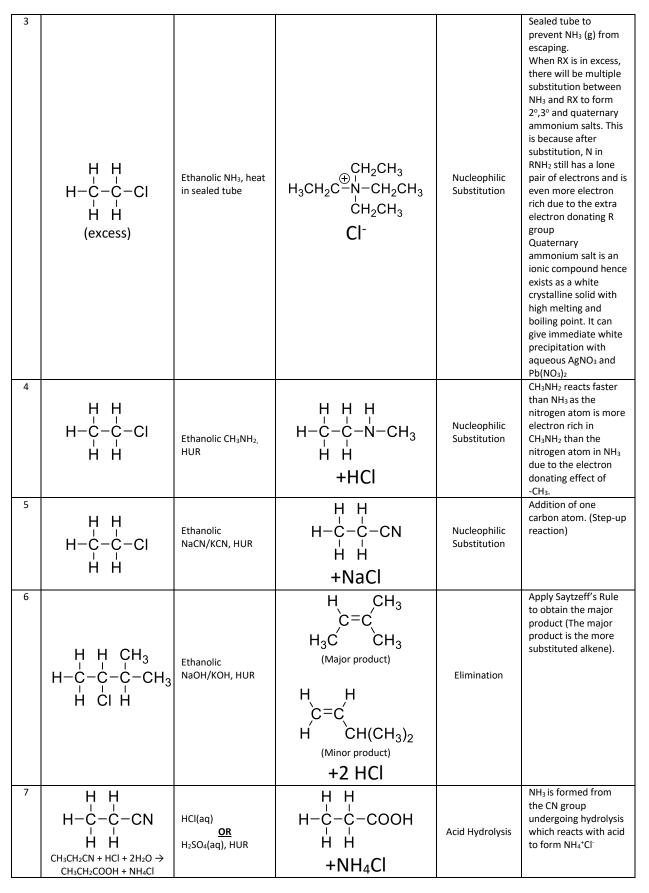

	Alkanes								
N	Reactants	Reagents and Conditions	Products	Type of Reaction	Remarks				
1	CH₄	Heat in Excess O ₂	CO ₂ + 2H ₂ O	Oxidation	Combustion Very exothermic but with high activation energy (requires heat/spark)				
2	CH₄	X ₂ , UV light/heat, X = Halogens	CH₃X + HX	Free Radical Substitution	Limited X ₂ will cause mono-substitution. Limited CH ₄ will cause multiple substitution				
		I	Alkenes	-					
N	Reactants	Reagents and Conditions	Products	Type of Reaction	Remarks				
1	$\begin{array}{c} H \\ H \\ H - C \\ -C \\ C = CH_2 \\ H \end{array}$	H ₂ (g), Ni Catalyst, heat M ₂ (g), Pt or Pd catalyst, room temperature	H H H-C-C-CH ₃ H H	Reduction	Hydrogenation Ni/Pt/Pd is acting as a heterogeneous catalyst. This is not an electrophilic addition reaction as H ₂ is non- polar.				
2	H H H-Ċ-Ċ=CH ₂ H	HX(g) room temperature. X = Cl, Br, I	H X H-C-C-CH ₃ H H (Major product) + X H H-C-C-C-CH ₃ H H (Minor product)	Electrophilic Addition	Apply Markonikov's rule. (More stable carbocation intermediate will be the major product) Reactivity: HI > HBr > HCI HI has the highest reactivity as the H-I bond is weakest (lowest bond energy) HF is not included as the H-F bond is too strong, hence, this reaction is not feasible. One of the common mistakes is to assume that decreasing electronegativity is the main factor. HCI > HBr > HI Electronegativity does affect the rate but only to a small extent.				

Reagents and Conditions (RnC)

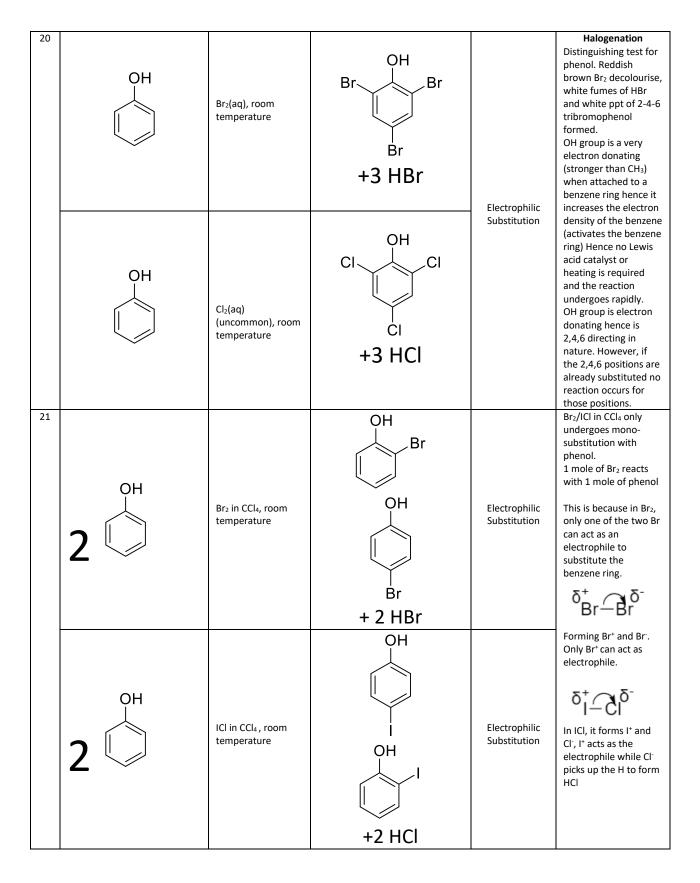


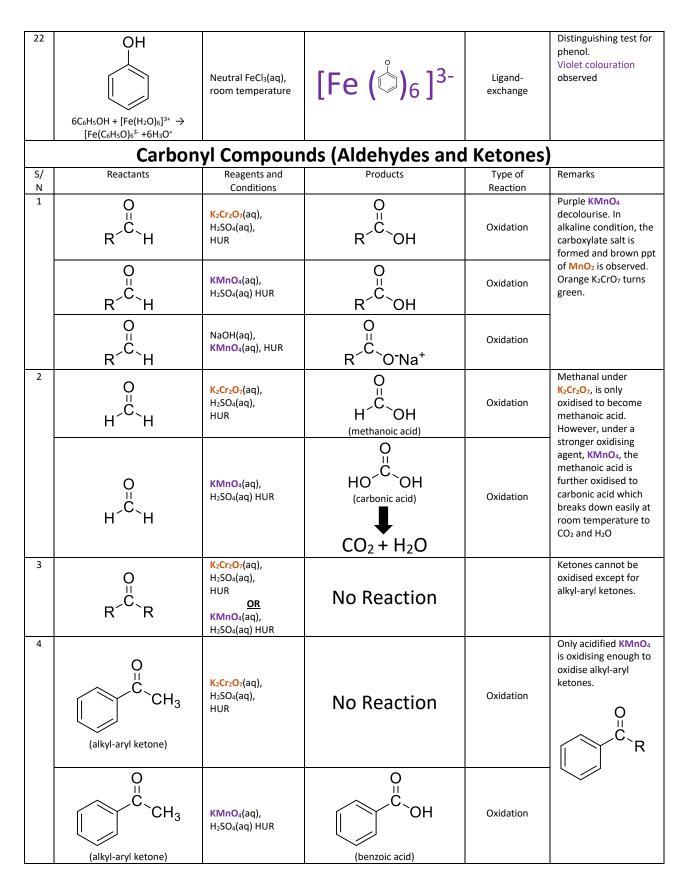
			Arenes		
N	Reactants	Reagents and Conditions	Products	Type of Reaction	Remarks
1		X ₂ (X = Cl or Br) Anhydrous AlX ₃ , FeX ₃ , room temperature <u>OR</u> Finely divided iron and Cl ₂ gas (forms FeX ₃)	+ HX	Electrophilic Substitution	Halogenation Chlorination Bromination The Lewis acid catalyst (AIX ₃ /FeX ₃) must be anhydrous as it undergoes hydrolysis when in contact with water due to the high charge density of the metal cation. (+3) The Lewis acid catalyst will cease to work.
2		Conc. H_2SO_4 , Conc. HNO ₃ , 55°C HNO ₃ + 2H ₂ SO ₄ \rightleftharpoons 2HSO ₄ ⁻ + NO ₂ ⁺ + H ₃ O ⁺	+ H ₂ O	Electrophilic Substitution	Nitration At a higher temperature, further substitutions may occur at 3 positions relative to the NO ₂ group due to the electron withdrawing effect of NO ₂
3	CH ₃	Conc. H_2SO_4 , Conc. HNO ₃ 30·C HNO ₃ + 2H ₂ SO ₄ \rightleftharpoons 2HSO ₄ + NO ₂ ⁺ + H ₃ O ⁺	$ \begin{array}{c} CH_{3} \\ NO_{2} \\ CH_{3} \\ NO_{2} \\ H_{2}O \end{array} $	Electrophilic Substitution	Nitration Electron donating methyl group increases electron density in the benzene (activates the ring), making methyl benzene more reactive and more susceptible to an electrophilic attack, hence lower temp is used. Substitution would be at the 2-4 position as -CH ₃ is electron donating on a benzene ring.
4	COOH (benzoic acid) (white ppt)	Conc. H ₂ SO ₄ , Conc. HNO ₃ 90°C HNO ₃ + 2H ₂ SO ₄ \rightleftharpoons 2HSO ₄ ⁻ + NO ₂ ⁺ + H ₃ O ⁺	COOH NO ₂ +H ₂ O	Electrophilic Substitution	Nitration Carboxylic group on a benzene ring is electron withdrawing in nature hence decreases electron density (deactivates the ring) making benzoic acid less reactive and less susceptible to an electrophilic attack, hence a higher temperature (>60°C) is needed Substitution would be at the 3 positions as COOH is electron withdrawing on a benzene ring.

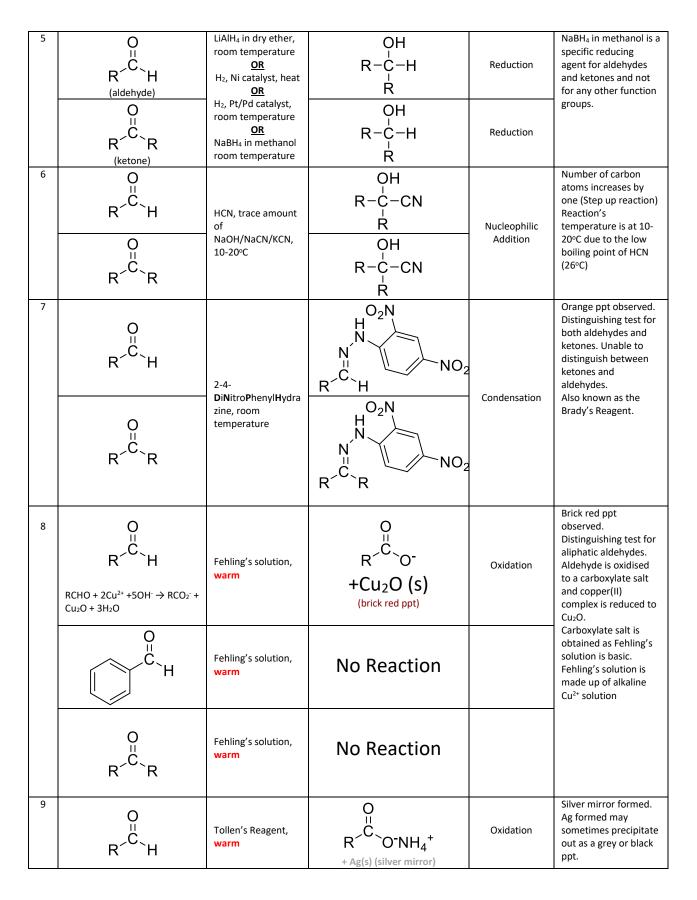
	CH ₃ H+C-CH ₃	KMnO₄ (aq), H₂SO₄(aq) HUR <u>OR</u> KMnO₄(aq), NaOH(aq), HUR	СООН +2CO ₂ + 3H ₂ O	Oxidation	alkaline condition, a brown precipitate of MnO ₂ is also observed, and benzoate ion is formed instead.
	CH ₃ H ₃ C-C-CH ₃	KMnO₄ (aq), H₂SO₄(aq) HUR <u>OR</u> KMnO₄(aq), NaOH(aq), HUR	No reaction		(benozoate) Benzoate is soluble while benzoic is a white ppt in H ₂ O
		KMnO₄ (aq), H₂SO₄(aq) HUR <u>OR</u> KMnO₄(aq), NaOH(aq), HUR		Oxidation	
9		RX (X = Cl or Br), Anhydrous FeX ₃ /AlX ₃ , room temperature <u>OR</u> RX, Fe in X ₂ gas (forms FeX ₃), room temperature RX + FeX ₃ \rightarrow R ⁺ + FeX ₄ ⁻	R +HX	Electrophilic Substitution	Friedel Craft Alkylation Lewis acid catalyst is used to generate a stronger electrophile R ⁺
		R^{-C} X (X = Cl or Br) Anhydrous FeX ₃ , AlX ₃ , room temperature <u>OR</u> RCOX, Fe in X ₂ gas (forms FeX ₃), room temperature FeX ₃ + RCOX → RCO ⁺ + FeX ₄ ⁻	O C R + HX	Electrophilic Substitution	Friedel Craft Acylation Lewis acid catalyst is used to generate a stronger electrophile RCO ⁺

	Halogen Derivatives (Alkyl halides and aryl halides)							
Ν	Reactants	Reagents and Conditions	Products	Type of Reaction	Remarks			
1	H H H-C-C-CI H H	NaOH/KOH(aq), HUR	нн H-C-C-H Н Он +NaCl	Nucleophilic Substitution	KOH(aq) can also be used When 2 or 3 -OH groups (germinal diols) attached to the same carbon. This compound is unstable, and one molecule of			
	H H H-C-C-CI H CI	NaOH/KOH(aq), HUR	$H H$ $H - C - C - OH$ $H OH$ $H OH$ $H OH$ $H_{3}C^{-C} H$ $+2NaCI$	Nucleophilic Substitution	water will be eliminated			
	H CI H-C-C-CI H CI	NaOH/KOH(aq), HUR	H OH H-C-COH H OH H OH H ₃ C ^C OH +3NaCl	Nucleophilic Substitution				
2	H H H-C-C-CI H H	Excess ethanolic NH ₃ , heat in sealed tube	$ \begin{array}{c} H H \\ H - C - C - NH_2 \\ H H \\ + HCI \end{array} $	Nucleophilic Substitution	Sealed tube to prevent NH ₃ (g) from escaping. When NH ₃ is in excess, there will be mono- substitution between NH ₃ and RX.			

8	$H H H$ $H - C - C - CN$ $H H$ $CH_3CH_2CN + NaOH + 2H_2O$ $\rightarrow CH_3CH_2COO^-Na^+ + NH_3$	NaOH/KOH(aq), HUR	H H H-C-C-COO ⁻ H H + NH ₃	Alkaline Hydrolysis	NH ₃ is formed from the CN group undergoing hydrolysis. Pungent gas, NH ₃ is evolved. Can be used as a distinguishing test for CN.
9	H H H-C-C-CN H H	LiAlH₄ in dry ether, room temp <u>OR</u> Na in ethanol, room temp <u>OR</u> H ₂ , Pt or Pd catalyst room temp <u>OR</u> H ₂ , Ni catalyst heat	$\begin{array}{ccc} H & H \\ - & - \\ H - C - C - C - C H_2 N H_2 \\ - & - \\ H & H \end{array}$	Reduction	Na in ethanol is a reducing agent that is specific to the CN group. (only for CN group) LIAIH₄ must be in dry ether and not water as it reacts very exothermically with water (explodes)
10	×	NaOH(aq), Heat under reflux	No Reaction		The p orbital of X overlaps with the pi orbital of the benzene carbon resulting in the delocalisation of the lone pair of electrons on X into the benzene ring. This strengthens the C-X bond by
	X = F, Cl, Br	Excess ethanolic NH₃, heat in sealed tube	No Reaction		forming a partial double bond character in the C-X bond. The high electron density of the benzene ring repels
		Ethanolic NaCN, HUR	No Reaction		potential nucleophiles from attacking. Therefore, halogenoarenes (aryl halide) are resistant to nucleophilic substitution
11	X X = F, Cl, Br	Conc. H₂SO₄, Conc. HNO₃, 90°C	$X = NO_2$ $X = V$ $V = V$	Electrophilic Substitution	Nitration Electron withdrawing halogen group reduces the electron density of the benzene ring and deactivates the benzene ring; thus, higher temperature is needed. Electron-withdrawing halogen group is 2-4 directing. (Different from the rest of the electron-withdrawing groups)

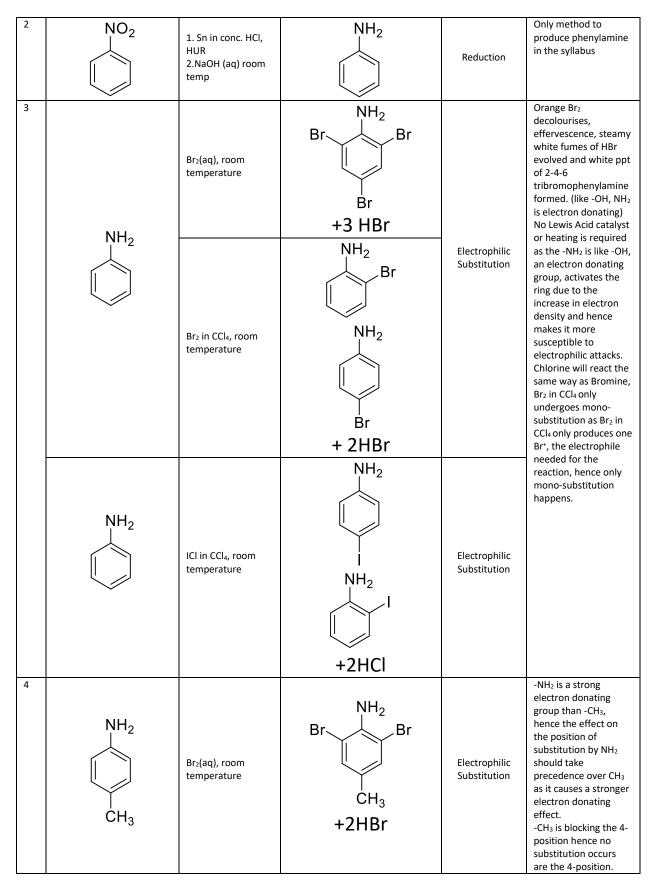

	Hydroxyl Compounds (Alcohols and Phenols)							
S/ N	Reactants	Reagents and Conditions	Products	Type of Reaction	Remarks			
1	H H H-C-C-OH H H	Excess O ₂	2CO ₂ + 3H ₂ O	Oxidation	Combustion			
2	H H H-C-C-OH H H H H	Na(s), room temperature	H H H−C−C−O⁻Na ⁺ H H + ½ H₂	Reduction/ Acid-metal	This reaction is similar to strong acid such as HCl reacting with metals. Effervescence of H ₂ gas evolved which produces a pop sound with lighted split. (test for H ₂ gas)			
3	H H H-C-C-OH H H	NaOH/KOH(aq) <u>OR</u> Na₂CO₃(aq) <u>OR</u> NaHCO₃(aq), room temperature		No Reaction	Alcohol is not acidic enough to react with alkali or carbonates			
4	$\begin{array}{c} H H \\ H - C - C - OH \\ H - H \\ H - C - C - OH \\ H $	PCI₅/SOCI₂, room temperature <u>OR</u> NaCI, conc. H₂SO₄, HUR (forms HCI) <u>OR</u> PCI₃ room temperature <u>OR</u> HCI(g), heat <u>OR</u> ZnCI₂ in conc. HCI	H H H-C-C-CI H H	Nucleophilic Substitution	Steamy white fumes of HCl evolved when using SOCl ₂ /PCl ₅ (not with PCl ₃). Heating NaCl with conc. H ₂ SO ₄ generates HCl which undergoes nucleophilic substitution with OH group.			
5	$H H$ $H - C - C - OH$ $H H$ $H H$ $H H$ $CH_{3}CH_{2}OH + PBr_{3} \rightarrow CH_{3}CH_{2}Br$ $+ H_{3}PO_{3}$	PBr3 room temperature <u>OR</u> NaBr, conc. H ₂ SO ₄ , HUR (forms HBr) <u>OR</u> HBr(g), Heat	H H H-C-C-Br H H H H	Nucleophilic Substitution	Heating NaBr with conc. H₂SO₄ generates HBr which undergoes nucleophilic substitution with OH group			
6	H H H-C-C-OH H H CH ₃ CH ₂ OH + PI ₃ \rightarrow CH ₃ CH ₂ I + H ₃ PO ₃	Red phosphorus, I _{2,} heat-in-situ	H H H-C-C-I H H	Nucleophilic Substitution	Red phosphorus when heated in situ with I ₂ produces PI ₃ which immediately undergoes nucleophilic substitution with alcohol to form iodoalkane. PI ₃ is not used directly as PI ₃ is unstable at room temperature.			
7	$ \begin{array}{ccc} H & H \\ $	K₂Cr₂O⁊ (aq), H₂SO₄(aq) HUR <u>OR</u> KMnO₄ (aq), H₂SO₄(aq) HUR	H = O H = C = C' H = OH (carboxylic acid)	Oxidation	Purple KMnO ₄ decolourises. Alkaline conditions can also be used, Brown ppt of MnO ₂ will be formed.			


					Orango K Cr. O. turns
	OH R-C-H R (2° alcohol)	<mark>K₂Cr₂O₂</mark> (aq), H₂SO₄(aq) HUR <u>OR</u> KMnO₄ (aq), H₂SO₄(aq) HUR	O II R ^C (ketone)	Oxidation	Orange K ₂ Cr ₂ O ₇ turns green
8	H H H-C-C-OH H H (1° alcohol)	K2Cr2O7(aq), H2SO4(aq) Heat with immediate distillation	H H C H H H H H	Oxidation	Controlled Oxidation This is the only way to produce an aldehyde in the syllabus. KMnO₄ cannot be used as it is too strong an oxidising agent which will oxidise alcohol to carboxylic acid too quickly
9	$\begin{array}{ccc} H & CH_3 \\ H - C - C - OH \\ H & CH_3 \\ (3^\circ \text{ alcohol}) \end{array}$	<mark>K₂Cr₂O</mark> ⁊(aq), H₂SO₄(aq), HUR <u>OR</u> KMnO₄(aq), H₂SO₄(aq) HUR	No Reaction		3º alcohol cannot be oxidised
10	H H CH ₃ H-C-C-C-CH ₃ H OHH	Excess concentrated H ₂ SO ₄ ,170°C <u>OR</u> Al ₂ O ₃ 350°C	$H CH_{3}$ $C = C H_{3}$ $H_{3}C CH_{3}$ $(Major product)$ $H H C = C C$ $H CH(CH_{3})_{2}$ $(Minor product)$ $+2H_{2}O$	Elimination	Dehydration One H ₂ O molecule is eliminated as a by- product. The key to identifying elimination reaction is the formation of double bond (C=C in this case) Use Saytzeff's rule to determine the major product (more substituted alkene is preferred)
11	H H 	CH ₃ COOH Concentrated H ₂ SO ₄ (catalyst), HUR	н о H ₃ C-Ċ-O-Ċ-CH ₃ H +H₂O	Condensation	Esterification Phenol is unable to undergo condensation with carboxylic acids as it is not nucleophilic enough. This is a reversible and
	OH (phenol)	CH ₃ COOH Concentrated H ₂ SO ₄ (catalyst), HUR	No Reaction	Condensation	slow reaction. H ₂ SO ₄ acts as an acid catalyst as well as a dehydrating agent which removes H ₂ O, shifting the POE to the right and increasing the yield of the ester formed.
12	H H H-C-C-OH H H	CH ₃ COCI room temperature	$H O H_3C-C-O-C-CH_3$ H HCI	Condensation	Esterification Both alcohol and phenol can react with acyl chlorides to form esters as the carbon in acyl chloride is more electron deficient in


	OH (phenol)	CH ₃ COCI room temperature	O O C C H ₃	Condensation	acyl chloride than in carboxylic acid. Hence it is more susceptible to a nucleophilic attack. Condensation in this case is also known as Nucleophilic Acyl Substitution and Addition-Elimination.
13	$\begin{array}{c} & CH_{3} \\ I \\ C - OH \\ H \\ CH_{3}CH(OH)R + 4I_{2} + 6NaOH \rightarrow \\ RCO_{2}\cdot Na^{+} + CHI_{3} + 5NaI + 5H_{2}O \end{array}$	Alkaline I2(aq), warm	O R ^{∕C} O⁻Na ⁺ +CHI ₃ (yellow ppt)	Oxidation	Tri-iodomethane /lodoform test This is a distinguishing test for the methyl alcohol, methyl ketone, methyl aldehyde function groups. Yellow
	CH₂I ⊢ − − − − − − 0 H	Alkaline l₂(aq), warm	O II R ^C O'Na ⁺ +CHI ₃ (yellow ppt)	Oxidation	precipitate of CHI₃ will be observed. O II R ^C CH₃ (methyl ketone)
	CHI₂ R−C−OH H	Alkaline l₂(aq), warm	O R ^{∕C} ∕O ⁻ Na ⁺ +CHI ₃ (yellow ppt)	Oxidation	O H C C (methyl aldehyde) This is a one of the two-step-down
	CI ₃ ⊢C−OH ⊢	Alkaline l₂(aq), warm	O H C O ⁻ Na ⁺ +CHI ₃ (yellow ppt)	Oxidation	reaction as the product has one less carbon atom. CH ₂ I, CHI ₂ and CI ₃ can all undergo the same reaction as they are all intermediates of the
	R-C-O-CH ₃ H (ester)	Alkaline I2(aq), warm	No reaction		formation of CHI ₃ Methyl alcohol attached as part of an Ester or an Amide cannot be oxidised under this reagent and
	$\begin{array}{c} O \\ H \\ R - C - N + C - OH \\ H \\ (amide) \end{array}$	Alkaline l₂(aq), warm	No reaction		condition. However, after hydrolysis, it is possible to get a positive test.
14	OH	Na(s), room temperature	O ⁻ Na ⁺ + ½ H ₂	Reduction/ Acid-Metal	Effervescence of H ₂ gas is evolved which gives a pop sound with lighted splint.

15					Dhonol is many asidir
15	OH	NaOH/KOH(aq), room temperature	O ⁻ Na ⁺	Acid-Base	Phenol is more acidic than alcohol hence will be able to react with NaOH/KOH
16	OH	Na2CO3(aq), room temperature <u>OR</u> NaHCO3(aq), room temperature	+H₂O No Reaction		Unlike carboxylic acid, phenol is not acidic enough to react with carbonates.
17	OH	CH₃COOH, concentrated H₂SO₄, HUR	No Reaction		The lone pair of electron on the O atom is delocalised into the benzene ring, making the oxygen atom not nucleophilic enough to attack the carbon of COOH group.
18	OH	1.NaOH(aq) / Na(s), room temperature 2. CH ₃ COCl, room temperature	O C C H ₃	Condensation	NaOH and Na is added to react with phenol to produce phenoxide which is a stronger nucleophile which reacts more readily with acyl chloride
19	OH	Dilute HNO ₃ , room temperature	OH NO_{2} OH H H NO_{2} H H H H H	Electrophilic Substitution	Nitration The p orbital of the oxygen atom and the pi orbitals of the benzene ring overlap resulting in the lone pair of electrons on the oxygen atom to delocalise into the benzene ring. This increases the electron density of the benzene ring which activates the benzene ring making more it susceptible to electrophilic attacks.
	OH	Concentrated HNO3, room temperature <u>OR</u> Dilute HNO3, heat	O_2N NO_2 NO_2	Electrophilic Substitution	electrophilic attacks. Since the benzene ring is now more susceptible, there is no need for conc. H ₂ SO ₄ to act as catalyst. In concentrated HNO ₃ or heating, multiple substitutions can occur

Organic Chemistry Summary H2 Chemistry/9729



	O= C_H	Tollen's Reagent, warm	O U O NH4+ + Ag(s) (silver mirror)	Oxidation	Distinguishing test for presence of all aldehydes. The aldehyde is oxidised to carboxylate salt and silver(I) diamine complex reduced to
	0 [⊔] R∕ ^C ∖R	Tollen's Reagent, warm	No Reaction		silver Ag(s). Carboxylate salt is obtained as Tollens' reagent is basic. Tollens' reagent is made up of diamine silver complex. [Ag(NH ₃) ₂]*. Tollens' reagent is known as ammoniacal silver nitrate.
10	R ^C CH ₃	Alkaline I₂(aq), warm	O ^{II} R ^{∕C} O⁻Na ⁺ + CHI ₃ (yellow ppt)	Oxidation	Tri-iodomethane test/lodoform test Distinguishing test for CH_3 R-C-OH H
	O U CH₂I	Alkaline I2(aq), warm	O	Oxidation	(Methyl alcohol) O II R ^C CH ₃ (Methyl ketone)
	$R-O-C-CH_3$	Alkaline I₂(aq), warm	No Reaction		Yellow precipitate of CHI ₃ is formed. This is a step-down reaction as the product has one less carbon. RCOCH ₂ I, RCOCHI ₂ and RCOCI ₃ can all react as they are intermediates of RCOCH ₃
	H R-N-C-CH ₃	Alkaline I₂(aq), warm	No Reaction		

		Carboxylic	Acids and Derivati	ves	
N	Reactants	Reagents and Conditions	Products	Type of Reactions	Remarks
1	о ^П R ^{-C} ОН	Na(s), room temperature	0 ["] R ^{-C} O ⁻ Na ⁺ ₊ ½ H ₂	Reduction/ Acid-Metal	Effervescence of H ₂ gas evolved, test with lighted splint, produces pop sound.
2	R ^C OH	NaOH(aq), room temperature	0 [″] R ^{∕[°] O⁻Na⁺ + H₂O}	Acid-Base	Carboxylate salt is formed.
3	о ^{"С} он	Na2CO3(aq) <u>OR</u> NaHCO3(aq), room temperature	0 R ^{∕^C} `0 ⁻ Na⁺ + CO ₂ + H ₂ O	Acid-Base	Carboxylate salt is formed. Effervescence of CO ₂ is produced when passed through limewater, produces white precipitate. Distinguishing test for carboxylic acids.
4	о ^{"С} он	PCl ₅ (s) or SOCl ₂ (l), room temperature <u>OR</u> PCl ₃ (l) room temperature	R ^C CI	Nucleophilic Substitution	HCl(g) generated from NaCl + conc, H₂SO₄ is no longer able to undergo substitution of the -OH.
5	о "Сон	LiAlH₄ in dry ether, room temperature	H R-C-OH H (1° alcohol)	Reduction	LiAlH₄ is the only reducing agent that can reduce carboxylic acid in the syllabus
6	о ^{II} R ^{^С} ОН	<mark>KMnO₄(aq),</mark> H₂SO₄(aq) HUR	No Reaction		All Carboxylic acid is unable to further oxidise except methanoic acid, carbonic acid and ethanedioic acid.
7	H ^I COH (methanoic acid)	<mark>KMnO₄(</mark> aq), H₂SO₄(aq) HUR	$HO^{-C}OH$ (carbonic acid) $+CO_2 + H_2O$	Oxidation	Methanoic, Ethanedioic and Carbonic acid are the only carboxylic acids that can be oxidised to form CO ₂ and H ₂ O. Acidified K ₂ Cr ₂ O ₇ is unable to oxidise them as K ₂ Cr ₂ O ₇ is not
	O II C OH (carbonic acid)	<mark>KMnO₄(</mark> aq), H₂SO₄(aq) HUR	$CO_2 + H_2O$	Oxidation	oxidising enough for this reaction. The chemical formula of ethanedioic acid is C ₂ H ₂ O ₄ has only one
	O C HO (ethanedioic acid)	<mark>KMnO₄(</mark> aq), H₂SO₄(aq) HUR	2CO ₂ + H ₂ O	Oxidation	way of drawing the compound. Whenever the formula C ₂ H ₂ O ₄ is shown, think of ethanedioic acid.
8	R ^C OH	CH ₃ CH ₂ OH, Conc.H ₂ SO ₄ (catalyst) HUR	R^{U}	Condensation (Addition- Elimination)	Ester bond/Ester linkage is formed. Phenol do not undergo condensation with carboxylic acid.

	ОСОН	CH₃CH₃OH Conc.H₂SO₄ (catalyst) HUR	O CH ₂ CH ₃	Condensation (Addition- Elimination)	This is a reversible and slow reaction. Conc. H ₂ SO ₄ is used as a catalyst as well as a dehydrating agent to remove H ₂ O on the right-hand side of the equation to shift the POE to the right and yield more of the products.
9	$R^{H}_{C}^{H}_{C}^{C}_{C}^{C}H_{2}CH_{3}$	HCl(aq) or H₂SO₄(aq) HUR	о ^{К^{/ С}`ОН ₊ СН₃СН₂ОН}		The first reaction is a reversible reaction as the alcohol produced can react with carboxylic acid to form back ester, while the second reaction is
	C, CH ₂ CH ₃	HCl(aq) or H₂SO₄(aq) HUR		Acid Hydrolysis	irreversible as phenol is unable to react with carboxylic acid to form back an ester.
			CH ₃ CH ₂ OH		
10	0 R ^{-C} , CH ₂ CH ₃ R ^{- 'O}	NaOH(aq) HUR	O R ^C O⁻Na⁺ ₊ CH₃CH₂OH	Alkaline Hydrolysis	Carboxylate and Phenoxide anions are formed due to basic conditions. The carboxylic acid and phenol formed will
	O C, O C CH ₂ CH ₃	NaOH(aq) HUR	O C O Na ⁺ + CH ₃ CH ₂ OH	Alkaline Hydrolysis	undergo neutralisation with NaOH to give carboxylate and phenoxide. Carboxylate is unable to react with both phenoxide and alcohol to produce an ester hence both reactions here are irreversible.
11	R ^C CI	CH₃CH₂OH, room temperature	R ^C CH ₂ CH ₃ +HCl		Ester bond is formed. NaOH/Na is added to phenol to produce phenoxide, which is a stronger nucleophile to react with the acyl
	R ^C CI	in NaOH(aq)	R ^{-C} O +HCl	Condensation (Addition- Elimination)	chloride 1 mol of HCl is eliminated in the reaction. The way to identify condensation reaction is similar to
	O CI	CH₃CH₂OH, room temperature	CH ₂ CH ₃		identifying elimination reaction, through the double bond.
	~		+HCl		

O CI	in NaOH(aq) room temperature		Condensation (Addition- Elimination)			
		+HCl				
R ^C CI	H₂O room temperature	о ^{"С} он +HCl		A highly acidic solution of HCl(aq) is formed. Ph of final solution is very low due to the HCl(aq). Acyl chloride is more		
CI	H₂O room temperature	о С +HCl	Hydrolysis	acidic than carboxylic acid.		
				Ester bond is broken,		
$R_1 \xrightarrow{O} R_2$	LiAlH₄ in dry ether, room temperature	$R_{1} - C - OH$ H $+$ H $R_{2} - C - OH$ H	Reduction	and carboxylic acid is reduced to a 2° alcohol.		
	LiAlH₄ in dry ether, room temperature	H R-C-OH H + OH	Reduction			
Nitrogen Compounds						
Reactants	Reagents and	Products	Type of Reaction	Remarks:		
R-NH ₂ NH ₂	HCl(aq) <u>OR</u> H ₂ SO ₄ (aq), room temperature	R−NH ₃ ⁺ Cl ⁻ NH ₃ ⁺ Cl ⁻	Acid-Base	1°,2°,3° amines and phenyl amines undergo this reaction		
	$ \begin{array}{c} $	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	$\begin{array}{c c} & & & & & & & \\ & & & & & & \\ & & & & $	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$		

				1	
5	O ^{II} R-C-OH	RNH ₂ , room temperature	0 R-C-0-+ R-NH ₃ +	Acid-Base	Amide cannot be formed from carboxylic acid and amine as they undergo acid-base reaction instead. The only way to form an amide in the syllabus is through acyl chloride and amines
6	0	NH ₃ , room temperature RNH ₂ (1º amine) room temperature	$ \begin{array}{c} 0 \\ R^{-C} - NH_2 + HCI \\ 0 \\ R^{-1} \\ R^{-C} - NH + HCI \end{array} $	Condensation (Addition- Elimination)	This is the only method in the syllabus to form an amide bond through acyl chloride and amine or ammonia. Amide bond and peptide bond is the same, however when discussing normal organic chemistry, we use amide bonds/amide linkage to describe the bond while for proteins and amino acids we use peptide bonds. For the 3° amine, they are unable to react as the C-R Bond Is much stronger and harder to break than the C-H Bond.
	R-C-CI (acyl chloride)	R ₁ R ₂ NH (2° amine) room temperature	$ \begin{array}{c} $		
		R ₁ R ₂ R ₃ N (3° amine) room temperature	No reaction		
	O II R-C-CI (acyl chloride)	, room temperature	O R-C-N H +HCl	Condensation	
7	$R-C-NH_2$		0 R−C−OH _{+ NH₃⁺CI⁻}		Under acidic condition, carboxylic acid and ammonium salt is formed.
	0 H R-C-N-R	HCl(aq), HUR OR H2SO4(aq), HUR	O R−C−OH _{+ NRH2} ⁺CI⁻	Acid Hydrolysis	Ammonium salt is formed from the neutralisation of amine/ammonia and the acid.
			О R-С-ОН + NH ₃ ⁺ СГ		
8	$R = C + NH_2$ (1° amide)	NaOH(aq), HUR	O ^{II} R−C−O⁻Na ⁺ _{+ NH₃}	Alkaline Hydrolysis	Under alkaline conditions, a carboxylate salt and ammonia or amine is formed.
	O H H R-C+N-R (2° amide)	NaOH(aq), HUR	O R−C−O⁻Na ⁺ _{+ RNH₂}	Alkaline Hydrolysis	When ammonia is formed, a pungent gas will be detected. It can

	O R-C-N H	NaOH(aq), HUR	$R - C - O Na^{+}$	Alkaline Hydrolysis	be used as a distinguishing test for primary amide. Only ammonia is a pungent gas, not the other amines.
9	$\mathbf{R} - \mathbf{C} - \mathbf{NH}_2$	LiAlH₄ in dry ether, room temperature	H R-Ċ-NH ₂ H +H ₂ O	Reduction	Reduction of an amide produces an amine. Unlike esters, which the breaks the ester linkage and reduces the carboxylic acid into an alcohol, only the C=O bond of an amide is reduced to a CH ₂ group.
	O II H R-C-N-R		H R-C-N-R H +H ₂ O		
	O R-C-N H		$ \begin{array}{c} H H \\ R \\ C \\ H \\ H \\ +H_2O \end{array} $		
10	$H_{3}N - C - COO - H_{1}$	HCl(aq) <u>OR</u> H ₂ SO₄(aq), room temperature	$\begin{bmatrix} R \\ ^{+}H_{3}N - \overset{-}{C} - COOH \\ H \end{bmatrix}_{CI}$	Acid-Base	Zwitterions can react with both acid and bases hence they can be used as a buffer. Zwitterions are amphoteric
	$^{+}H_{3}N - \overset{I}{\overset{I}{}_{}{}_{}{}_{}{}$	NaOH(aq), room temperature	R H ₂ N−C−COO⁻Na⁺ H	Acid-Base	

11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			Condensation (Addition- Elimination)	The formation of polypeptides/proteins take place in the presence of enzyme catalyst. Hence, COOH and NH ₃ can react directly (not usually the case in the syllabus) to give the peptide bond. Usually, COOH and NH ₃ only undergo acid-base reaction and not condensation. By convention, when drawing amino-acids and proteins, the N - terminal is always drawn on the left and the C-terminal is always drawn on the right. Amide bonds/linkages and peptide bond is the same thing, peptide bond is used when discussing amino acids and proteins while amide linkages/bonds are used during general organic chemistry.
12	H R10 R20 	HCl(aq) <u>OR</u> H ₂ SO4(aq), HUR for several hours	$ \begin{array}{c} H & R_1 & O \\ - & - & - \\ - & - & - \\ - & - & - & - \\ H & + & + & \\ & + & R_2 & O \\ - & - & - & - & - \\ \hline - & & - & - & - \\ - & & H & \\ \hline H & R_1 & O \\ \end{array} $	Acid Hydrolysis	Heating under reflux for several hours is only for proteins/poly peptides to ensure the complete hydrolysis as multiple peptide bonds are not so easy to break If polypeptide/protein is not mentioned, HUR would suffice.
13	H R10 R20 	NaOH (aq), HUR for several hours	$ \begin{array}{c} H & R_{1} \\ & R_{1} \\ & H \\ & H_{2} \\ & H_{2} \\ & H_{2} \\ & H \\ $	Alkaline Hydrolysis	Heating under reflux for several hours is only for proteins/poly peptides to ensure the complete hydrolysis as multiple peptide bonds are not so easy to break If polypeptide/protein is not mentioned, HUR would suffice.