REAL ANALYSIS NOTES
Math 401

Bridgewater State University



Review of Basic Proof Techniques

Recall that

e A statement is a sentence which has a true or false value
e An implication is a statement of the type 'If P then Q' where P and Q are two
given statements.

Address the following:

1. Give an example of a sentence which is not a statement.

2. Give an example of a sentence which is a statement.

3. Given an example of a statement which is an implication



Direct Proof

In order to prove an implication of the type if P then () holds by a direct
proof, we assume that P holds, and use the fact that P is true to derive that
() 1s true as well.

Your notes here

Exercise

Prove (using the direct proof method) that if n is an odd integer, then
4n3 4+ 2n — 1 is odd.




Exercise

1 1
Let n be a natural number. Prove that if n + — < 2 then n? + —5 = 4.
n n




Proof by contrapositive

We recall that the contrapositive of the implication if P then @ is the
statement if not ) then not P. Recall also that an implication and its
contrapositive are logically equivalent. In other words, an implication and its
contrapositive have the same truth value. Thus, an implication is true if and
only if its contrapositive is true as well. Now, a proof by contrapositive is
simply a direct proof of the contrapositive of the given statement. Now, let
us consider our example: If x and y are two consecutive integers then = + y
is odd. We shall now prove that this statement is true by using a proof by

contrapositive.

Your notes here

Exercise

Let z be an integer. Prove that if 52 — 7 is even then x is odd.




Exercise

Let x be an integer. Prove that if 5z — 7 is odd, then 9z + 2 is even.




Proof by contradiction

In order to prove that an implication of the type if P then @ is true by
contradiction, we assume that P and the negation of () both hold, and we
derive a contradiction as a consequence of our assumption.

Notes

Exercise

Prove that if (n + 1)2 — 1 is even then n is even.




Exercise

Prove that 2n? + n is odd if and only if cos 712_71- is even




Warmup Exercises (try these at home)

. Write a direct proof for the following statement: for every integer x and for
every integer y. if z is odd and v is odd then zy is odd.

. Write a proof by contradiction for the following statement: for every integer
x and for every integer y, if x 1s odd and y 1s odd then xy is odd.

. Prove by contradiction that /2 is irrational. (Hint: assume that V2 is
rational.)

. Prove that for every integer x, x +4 is odd if and only if x + 7 is even. (This
is a biconditional statement: you must prove that if r + 4 is odd then x + 7
is even and if z + 7 is even then x + 4 is odd.)




Chapter 1

The set of Natural Numbers

We denote the set {1, 2,3, ...} of all natural numbers by N. Elements
of N will also be called positive integers. Each natural number n has
a successor, namely n + 1. Thus the successor of 2 is 3, and 37 is the
successor of 36. You will probably agree that the following properties
of N are obvious; at least the first four are.

N1. 1 belongs to N.

N2Z. If n belongs to N, then its successor n + 1 belongs to N.

N3. 1 is not the successor of any element in N.

N4. If n and m in N have the same successor, then n = m.

N5. A subset of N which contains 1, and which contains n + 1
whenever it contains n, must equal N.

(Takenfrom ElementaryAnalysis
by KennethA. Ross)

Exercise

Appealing to Peano’s postulates prove the following

1. The number four is not equal to the number one.

2. The number five is not equal to the number four.
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Question

Can we derive Axiom N5 from Axiom N1 through Axiom N4?

Answer here



Axiom N5 is the basis of mathematical induction. Let Py, P5, Ps, . ..
be a list of statements or propositions that may or may not be
true. The principle of mathematical induction asserts that all the
statements Py, P;, P, ... are true provided

(I,) P, is true,
(I:) Puy is true whenever P, is true.

We will refer to (I,), i.e., the fact that P is true, as the basis for
induction and we will refer to (I2) as the induction step. For a sound
proofbased on mathematical induction, properties (I,) and (1;) must
both be verified. In practice, (1) will be easy to check.

(Takenfrom ElementaryAnalysis

Your notes here by KennethA. Ross)
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Exercise 1 (Takenfrom ElementaryAnalysis
- by KennethA. Ross)

Prove 1 + 2+ -- -+ n = zn(n + 1) for natural numbers n.
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Exercise 2 (Takenfrom ElementaryAnalysis
— byKennethA. Ross)

All numbers of the form 7" — 2" are divisible by 5.
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Exercise 3 (Takenfrom ElementaryAnalysis
by KennethA. Ross)

Show that | sin nx| < n}sin x| for all natural numbers n and all real
numbers x.
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Section 2

The Set of Rational Numbers

The set of all integers is defined as
Z={--,-2,-1,0,1,2,---}.

The set of all rational numbers is given by

@:{%:m,neﬂ,n#ﬂ}.

Example 1 Ezplain why % € Q.

Example 2 Explain why 2 ¢ Q.




Problem 3 1. Can you find other examples of numbers which are not
rational. List them here and explain your work

2. Prove that the number
0.23232323 - - -

s a rational number.

3. Prove that
0.123123123 - - -

15 a rational number.




Algebraic Numbers
Taken from Elementary Analysis, Kenneth A. Ross

A number is called an algebraic number if it satisfies a polynomial
equation

anX" +an X"+ +ax+ag =0

where the coefficients ag, ay, . . ., a, are integers, a, # 0 and n > 1.

Exercise 1. Can you explain why any rational number is an algebraic number?

Exercise 2. Prove that v/1/2 is an algebraic number.
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Exercise 3. Prove that

1s an algebraic number.

1—2V3
\/ 5




Rational Zeros Theorem
Taken from Elementary Analysis, Kenneth A. Ross

Suppose that ag, @, . . ., an are integers and that r is a rational number
satisfying the polynomial equation

X" +an X"+t ax+ay =0 1)

wheren > 1, a, #0and ag # 0. Write r = E where p, q are integers
having no common factors and q # 0. Then q divides a, and p divides a,.

Proof



Problem 4 Consider the polynomial equation
2" +ep 2" -tz tep=0
where the coefficients of the polynomaals are winiegers and co s not equal

to zero. Any rational solution must be an integer that divides co. Can you
explain why this is the case?

Answer

Exercise 5 Prove that /5 ¢ Q.




Exercise 6 Prove that

2+ v5

25 not a rational number.




Section 3
The Set R of all Real Numbers

e We equip the real numbers with two operations: addition and multiplication.
e The following sets of axioms will be exploited to derive fundamental well-known facts about real
numbers.

Field structure

The set Q) endowed with addition and multiplication forms a structure
known as a field. We shall list below the axioms that turns the rationals
together with addition and multiplication into a field

Al.a+(b+c)=(a+b)+cforalla,b,ec.

A2. a+b=b+aforalla,b.

A3. a+0=aforalla.

AA4. For each a, there is an element —a such that a + (—a) = 0.

M1. a(bc) = (ab)c for all a, b, c.

M2. ab = ba for all a, b.

M3. a-1=aforall a.

M4. For each a # 0, there is an element a~' such thataa™! =1.
DL a(b +c) =ab +ac forall a, b, c.

The Theory of Calculus, Kenneth Ross (Takenfrom ElementaryAnalysis
by KennethA. Ross)

The set of rationals also has an ordering structure which is described

Order Structure

via the following axioms

O1. Given a and b, eithera <borb < a.
02. Ifa<bandb <a, thena =b.

03. Ifa<bandb <c¢, thena <c.

04. Ifa<b, thena+c<hbh+ec.

05. Ifa<band 0 <c, thenac < be.

The Theory of Calculus, Kenneth Ross  (Takenfrom ElementaryAnalysis
by KennethA. Ross)
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The set of real numbers together with the axioms above forms a structure which we call an
ordered field. The first set of axioms gives us a field structure, and the second set of axioms

provides an ordering of the real numbers.

Let b be a real number satisfying the equation a + b = 0. Then b is unique, we call it the opposite

of a and it is denoted —a.

Exercise Using the axioms above, prove the uniqueness of the opposite of a real number.

Let a be a nonzero real number. The real number b satisfying the equation ba = 1 is called the
inverse of a. This number is unique and is denoted by — or a=".
a

Exercise Using the axioms above, prove the uniqueness of the opposite of a if a is a nonzero real

number.

We say that a number a is positive if a > 0. Next, we say that a > b if and only if a — b is
positive. If a < b or a = b we say that a is less than or equal to b and we write a < b.







The following results are taken from your textbook

3.1 Theorem.

The following are consequences of the field properties:
(i) a+c=b+cimpliesa = b,

(ii) a-0 =0forall a;

(iii) (—a)b = —ab for all a, b;

(iv) (-a)(-b)=abforalla,b;

(v) ac=bcandc# 0implya = b;

(vi) ab = 0 implies eithera =0orb = 0;

fora,b,ceR.

3.2 Theorem.
The following are consequences of the properties of an ordered field:
(i) ifa <b, then —b < —a;
(ii) ifa <bandc <0, then bc < ac;
(iii) if0 <aand 0 < b, then 0 < ab;
(iv) 0 < a’forall a;
(¥) 0 <1
(vi) if0 < a, then0 < a™;
(vii) if0<a<b then0<b ' <a’’;
fora,b,ce R

The Theory of Calculus, Kenneth Ross (Takenfrom ElementaryAnalysis
by KennethA. Ross)

Proof of Theorem 3.1 (i)

Proof of Theorem 3.1 (ii)
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Proof of Theorem 3.1 (iii)

Proof of Theorem 3.2 (i)

Proof of Theorem 3.2 (ii)




Proof of Theorem 3.2 (iii)

Proof of Theorem 3.2 (iv)

Proof of Theorem 3.2 (v)




Proof of Theorem 3.2 (vi)

Proof of Theorem 3.2 (vii)




3.3 Definition.

We define

laj=a if a=0 and |la|=-a if a<0.
|a] is called the absolute value of a.
3.4 Definition.

For numbers a and b we define dist(a,b) = [a — b|; dist(a, b)
represents the distance between a and b.

Taken from the Theory of Calculus, Kenneth Ross

Notes

Taken from Theory of Calculus, Kenneth Ross

3.5 Theorem.
(i) [a| =0 foralla e R
(ii) |ab| = |a| - |b| foralla,b € R.
(iii) la +b| < lal + |b| foralla,b € R.

3.6 Corollary.
dist(a, ¢) < dist(a, b) + dist(b, c) for alla,b,c € R.

3.7 Triangle Inequality.
la + b| < |a| + |b| for all a, b.




Proof of Theorem 3.5







Warm-up Exercises (attempt these exercises at home)

Show that ||a| — |b]| < |a — b], for all a,b € R. (Takenfrom ElementaryAnalysis
by KennethA. Ross)

Show that for every M > 0, |a| < M if and only if ~-M < a < M.

(Takenfrom ElementaryAnalysis
by KennethA. Ross)

Show that if a < b + ¢ for every € > 0, then a < b.

(Takenfrom ElementaryAnalysis
by KennethA. Ross)


voussa
Typewritten Text

voussa
Typewritten Text
(Taken from Elementary Analysis 
by Kenneth A. Ross)

voussa
Typewritten Text

voussa
Typewritten Text

voussa
Typewritten Text

voussa
Typewritten Text
(Taken from Elementary Analysis 
by Kenneth A. Ross)

voussa
Typewritten Text
(Taken from Elementary Analysis 
by Kenneth A. Ross)


Section 4
The Completeness Axiom

Definition 1 Let S be a non-empty subset of R
1. We say that M = max S (the maximum of S) if

(a) M €S

(b) Foranys € S
s< M

2. We say that m = min S (the minimum of S) if

(@) meS
(b) Foranys € S

Exercise

1. Give an example of a subset of R which has a maximum and a minimum.
2. Give an example of a subset of R which as a maximum and no minimum.
3. Give an example of a subset of R which as no maximum but has a minimum.

4. Given an example of a subset of R which has no maximum and no minimum.




We recall that

{xeR:a<x<b}
={xreR:a<x<b}
{xeR:a<x<b}
{xeR:a<x<b}

Write the following set using interval notation

A= ((1,2] U (%3)) A (=00, 0].

Write the following set using interval notation

oo

ﬂ[—%,1+%]

n=1




Example 2 Complete the following tables and justify your answer

sets [ {1,210} | (1,v2] | (1.v2) | [1.v2] | [o,v2

nQ

{n(_l)n n e IN}

max S

min S

Notes here




Definition 4 Lef S be a non-empty subset of the reals.

1. If there exists a real number M such that for any s in S, s < M we say that the set S is
bounded from above.

2. If there exists a real number m such that for any s in the set S, m < s we say that the
set S is bounded from below.

3. We say that a set S is bounded if the set is bounded below and above by some real
numbers m and M respectively. More precisely, a set S is bounded if there exist real
numbers m and M such that S C [m, M].

S
A
— e pt— oot
--—--——-a—‘-——-
9Q Qo e e @ dy Y
7a N
brund

bwer bound Uﬂar

Notes here



Example 5 Decide if the following sets are bounded or not.
1. S=[1,/2]NQ
22.5=NN.
3. The rationals
4. {(n)=V":n € N}

Answer here



Definition 6 (supremum) Let S be a non-empty subset of the reals. If S is bounded above
and has a least upper bound, then we call it the supremum of S and it is denoted by sup S

Definition 7 (infimum) Let S be a non-empty subset of the reals. If S is bounded below and
has a greatest lower bound, then we call this number the infimum of S and it is denoted by

inf S

Example 8 Complete the following tables and justify your answer

Set S

{1,2,---

,10}

(v

(V3]

1,v2

0,2

nQ

{n(*”“ ‘nE IN}

sup S

inf S




Completeness Axiom Every nonempty subset S of the reals that is bounded above
has a least upperbound. In other words, the supremum of S exists and is a real
number.

Example 9 Using the Completeness Axiom prove that every nonempty subset S of the real
which is bounded below has a greatest lower bound: inf S.

Proof




Theorem 10 (Archimedean Property) If a, b are positive numbers then there exists a positive
integer n such that na > b.

Proof




Theorem 11 (Denseness of Q) Let a, b be two real numbers such that a is less than b then
there is a rational number v such that a < r < b.

Proof




Chapter 2

Section 7 Limits of a Sequence

A Sequence is a function whose domain is a subset of the integers or a subset of the set of natural numbers. We
shall generally, regard sequences as functions defined over the natural numbers. As such, we shall adopt the
following notation for sequences (s, )nen Or (Sn)52;

Question

Write down an example of a sequence

As a starting point, let us consider the following toy example. Let (s, ), o be a sequence such that

n+1
Sn = .
n
Calculating the values of
1 1
n+ and n+1l - 1],
for a few natural numbers 1, we obtain the following table
1 n-+ 1l
no| e T
1 2 1

101 | 102/101 = 1.0099 | 0.00990099
201 | 202/201 = 1.00498 | 0.00497512
301 | 302/301 = 1.00332 | 0.00332226
401 | 402/401 = 1.00249 | 0.00249377
501 | 502/501 = 1.002 0.00199601
601 | 602/601 = 1.00166 | 0.00166389
701 | 702/701 = 1.00143 | 0.00142653
801 | 802/801 = 1.00125 | 0.00124844

Question

What do you observe? Base on your observation are you able to make a conjecture?



n

1 2 1

101 | 102/101 = 1.0099 | 0.00990099
201 | 202/201 = 1.00498 | 0.00497512
301 | 302/301 = 1.00332 | 0.00332226
401 | 402/401 = 1.00249 | 0.00249377
501 | 502/501 = 1.002 0.00199601
601 | 602/601 = 1.00166 | 0.00166389
701 | 702/701 = 1.00143 | 0.00142653
801 | 802/801 = 1.00125 | 0.00124844

.seems to suggest that as 1 is getting larger, the corresponding quantity

n+1
n

is getting closer to 1, and
el
n

-1

is getting closer to zero. This is a rather imprecise and intuitive description of what we are observing.
Moreover, this table does not tell us anything about the terms of the sequence when 7 is greater than 801.
So, we are not actually certain that our description is correct. Through a series our questions, we will
exploit this particular example to capture in a very precise way, the concept of convergence of a sequence.

represent?

Problem 1 What does the quantity ‘# -1

Answer

Problem 2 For which natural numbers n is the following true: # = 1' < %?

Answer



Problem 3 For which natural numbers n is the following true:

1,
100

-1/ <

Answer

Problem 4 In general, given any € > 0, is it possible to find a natural number n such that

n+1 l
—— il =r=
n

Answer

between s, and 1 is less than @.7

Problem 5 Without solving an inequality, can you now find at least one natural number n such that the distance

Answer




Problem 6 Is it safe to assert that given any positive number € > 0 there exists a number N > 0 such that if

n > N then
n+1

—1'<e?

Explain your answer

Answer

Problem 7

el and 1 becomes arbitrarily small?

1. Can we conclude that as n gets large, the distance between s, =

2. We are interested in capturing the concept that as n gets large, the distance between the terms s, and s becomes
arbitrarily small. In other words, we would like to turn this imprecise statement into a formal and rigorous
statement. Write down how you would formalize this concept. Do not be discouraged if you struggle with
this, it took almost two centuries of grappling with the concept before a precise definition was formulated.

Answer



Problem 8 Let

. _ 2SS
" 5n+1
. . . ; . . n—3
Part i Given any natural number is it possible to find a positive number N such that the distance between ST

2,
and — is less than € whenever n > N?
Part ii Can the distance between s, and 2/5 be made arbitrarily small?

Answer



Definition 9 (Tuken from Elementary Analysis, Kenneth Ross)

A sequence (s,) of real numbers is said to converge to the real number
§ provided that
>0
for each € > 0 there exists a number N such that
n > N implies [s, — 5| < &

If (s,) converges to s, we will write lim,, s 5, = 8, or 8, — . The
number s is called the Hmit of the sequence (s,). A sequence that
does not converge to some real number is said to diverge.

Problem 10 Answer the following questions

1. Explain why the number N stated in the definition above can be taken to be a natural number?

2. Is the picture below an accurate illustration of the given definition?

QQA

a8 S

-t r‘}.,-arw-’.» ;A,CQ_T:; -

4 & 3N Moo Nopoeo 7'H




Problem 11 Prove that the sequence ((—1)"), N I8 not convergent.

Answer



Practicing epsilon-delta proofs

Exercise 1 Using the e-N definition, give a formal proof for the following statement

2n +5
lim =

n—oo n

25

Scrap work

Proof



Exercise 2 (Your turn) Using the e-N definition, give a formal proof for the following statement

51+2 5

li ;
ng];o n 7

Scrap work

Proof



Exercise 3 Using the e-N definition, give a formal proof for the following statement

2nf1 2

nl—I}c}OSn—FZ_ 5

Scrap work

Proof



Exercise 4 (Your turn) Using the e-N definition, give a formal proof for the following statement
Sn+7 5

o BRI

Scrap work

Proof



Exercise 5 Using the e-N definition, give a formal proof for the following statement

n?+2n+1
im ——— =
n—co n2 4+ n+2

Scrap work

Proof



Exercise 6 (Your turn) Using the e-N definition, give a formal proof for the following statement

2n2+3n+2 2

nSe 32+ 7n+1 3

Scrap work

Proof



Section 8

Writing Correct e-N Proofs

Exercise 1 Using the e-N definition, give a formal proof for the following statement

. 2n+5
lim =

n—o N

2.

Scrap work

Proof


Vignon
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Exercise 2 (Your turn) Using the e-N definition, give a formal proof for the following statement
Sn+2 5

li —.
n1—r>rolo n 7

Scrap work

Proof



Exercise 3 Using the e-N definition, give a formal proof for the following statement
2n+1 2

neo B2 5

Scrap work

Proof



Exercise 4 (Your turn) Using the e-N definition, give a formal proof for the following statement
Sn+7 5

li 2
s 3n+1 3

Scrap work

Proof



Exercise 5 Using the e-N definition, give a formal proof for the following statement

o2 4+2n+1
Iim ———— =
n—00 n2+n+2

Scrap work

Proof



Exercise 6 (Your turn) Using the e-N definition, give a formal proof for the following statement

o 2n243n+2 2
im ——mM = —.
n—eo3n?2+7n+1 3

Scrap work

Proof



Chapter 8 A Discussion about Proofs

Example 1 Prove that
4n3 +3n

lim ———— =4.
im —z—

Scrap work

Proof



Example 2 (Your turn) Prove that
7n° +n?

7
9nd> —1 9

lim

Scrap work

Proof



Example 3 Let (s,), o be a sequence of nonnegative real numbers such that lims, = s. Prove that

lim /5, = /s.

Scrap work

Proof



Example 4 Let (s,), . be a sequence in R. Prove that
lims, = 0 if and only if lim |s,| = 0.

Proof



Section 9: Limit Theorems for Sequences

A sequence (s,),cp Of real numbers is said to be bounded if the set
{sn:n € N}
is a bounded set. In other words, there exists a constant M such that

|sy| < M for all n € IN.

Exercise 1 Let (sy), o be a sequence of real numbers such that

_n3+1
=3

Sn

1. Prove that (s ), s a convergent sequence.

2. Prove that (s,),,cp is @ bounded sequence.

Exercise 2 Can you come up with an example of a convergent sequence which is not bounded?



Theorem 3 Convergent sequences are bounded.




Theorem 4 If (s,,), o is convergent to s and (t, ), converges to t, prove that

lim (s, +t,) =s+t.



Theorem 5 If (s,,), o is convergent to s and (t, ), converges to t, prove that




Theorem 6 If (s,),c i convergent to s, if s, 7 0 for all n and if s # 0, then (1/5n),cn
converges to 1/s.



Theorem 7 Suppose that (s, ), o i convergent to s and (ty), o converges to t. If s, # 0 for
all n and if s # 0, then
. (tn ) t
lim(— ) =-.
Sn s

Example 8 Prove the following results

1. Assume that p > 0

2. Assume that |a| < 1. Then

3. limy e (n¥/") =1

4. Assume that a > 0. Then









Example 9 Let lim;, o0 n®+1.
1. Let M = 100. Find a positive number N such that if n > N then n> +1 > 100

2. Let M = 1000. Find a positive number N such that if n > N then n> +1 > 1000.
3. Let M > 0. Find a positive number N such that if n > N then n*> +1 > M.



Definition 10 For a sequence (s,), cp , we write that
lims, = o

provided that for each M > 0 there is a number N (which may depend on M) such that if n > N
then s,, > M.

Definition 11 For a sequence (sy,) we write that

nelN 7

provided that for each M < 0 there is a number N (which may depend on M) such that if n > N
then s,, < M.

Example 12 Prove formally that
m n®+1
n+2

10



Example 13 (your turn) Prove formally that

n*+1 _

li =
lmn3—|—5 S

Theorem 14 Let (sy),op and (tn), e be sequences such that
lims, = limt, = oo.

Prove that
lim (spt,) = o0

11



Chapter 10 Monotone Sequences and Cauchy Sequences

e A sequence (sy) of real numbers is called a nondecreasing sequence if

Sp < Spoq for all n

e A sequence (s;) of real numbers is called a nonincreasing sequence if

Sy = Spuq for all n

e A sequence that is nondecreasing or nonincreasing will be called a monotone se-
quence or a monotonic sequence.

Notes



Theorem 1 All bounded monotone sequences are convergernt.
8

Proof



Theorem 2 1. If (s,) is an unbounded nondecreasing sequence, then
lim Sp — 0
2. If (sy) is an unbounded nonincreasing sequence, then

h.m Sn = —00




Corollary 3 If (s, ) is a monotone sequence, then the sequence either converges, diverges to oo,
Thus lim sy, is always meaningful.

Limsup and Liminf
Let (s;;) be a sequence of real numbers.
e The limsup of (s,) is defined as

limsups, = }\1{1_r}110 (sup{sy:1n > N})

e The liminf of (s,) is defined as

liminfs, = }\1{1_r>110 (inf{s,:n > N})

Notes



Example 4 Let (s,) be a sequence of real numbers such that

2n
Sy = COSs T

Find lim sup sp and liminfsy

Solutions



Theorem 6 Let (s,) be a sequence of real numbers.
1. If lim sy, is defined, then

liminfs, = lims, = limsups,.

2 If

liminfs, = limsup sy

then lims,, is defined and

limints, = lims, = limsup s;.










Homework (try to solve this problems on your own)

The sequence (z,)nenN ts given as follows.

2
a) mnz(—l)“"‘l(3+;); b) :cn=1+n12(zosr;—7r.

n—oo

compare them.

Determine inf{z,|n € N}, sup{z,|n € N}, liminfz, and limsupz,, and then

Solutions (without details)

a) inf{z.|n € N} = —4, liminfz, = -3, limsupz, =3, sup{z.|n € N} =35

Ti—r 00

b) inf{z,|n € N} =liminfz, =0, sup{z,|n € N} =limsupz, =2.

limsup f, = —liminf(—fy)

TL—+ 00

Solutions (without details)

Let us denote

limsup f, = L, Lé€R. (3.17)

Then for every £ > 0, there are

¢ infimtely many terms f, such that f, > L —¢;

(3.18)
o at most finitely many terms [, such that f, > L +e.

So from relations (3.18) it follows that for every £ > 0 there are

¢ infinitely many terms — f,, such that -f, < —L + ¢;
e at most finitely many terms —f, such that —f, < —L —¢.

The terms — f,, belong to the sequence (— f,,).en. Thus
liminf(—f,) = - L.



Definition 9 A sequence (sn) of real numbers is called a Cauchy sequence if for each € > 0 there
exists a number N such that if m,n > N then

|sn — sm| < €.

Example 10 Prove that

is a Cauchy sequence.

Solutions



Lemma 11 Convergent sequences are Cauchy sequences.

Proof

Lemma 12 Cauchy sequences are bounded

Proof



Theorem 13 A sequence is a convergent sequence if and only if it is a Cauchy sequence.

Proof



Section 11 Subsequences

Let (sy),cn is @ sequence such that

n
n+1

Sy =

Now, let
k:IN —-IN
be an increasing function such that

k(n) =ky =n®>+n.

Then
. kn _ n*+4nm
k) Tk T T T 2 n 41
and
‘ 12+1 2
RIS
2242 6
S S
We say that the new sequence
(Sku)nE]N

1s a subsequence of the given sequence.

Notes here



Definition 1 Suppose that (s, ), o 15 @ sequence. A subsequence of this sequence is a sequence
of the form (ty)cpy Where for each k there is a positive integer ny such that

np<np < - - < Hp <Hpypp < -+

and
tk = Snk.

So (ty) is just a selection of some (possibly all) of the s, s taken in order.

Notes here



Give an example of a sequence with two distinct subsequences. Justify your
answer




Theorem 3 If (sy), o is @ convergent sequence, then every subsequence converges to the same
limit.




The following are fundamental results in real Analysis

Theorem 4 Every subsequence (s, ), has a monotonic subsequence.

Theorem 5 Let (sy), oy i a sequence. There exists a monotonic subsequence whose limit is
lim sup sy, and there exists a monotonic subsequence whose limit is liminf s,

Theorem 6 (Bolzano-Weierstrass Theorem) Every bounded sequence has a convergent subse-
quence.

Example 7 Let (sp), o s a sequence such that

n sin 2nrt
= + 8]
S +1 5

1. Prove that (sn), o is @ bounded sequence

s

2. Find a subsequence of s, which is monotonic

3. Find a convergent subsequence of (sn),cn




Exercise 1 Prove the Bolzano-Weierstrass Theorem

Proof



Definition 2 Let (s,) be a sequence of real numbers. A subsequential limit
is any real number or symbol 0o or —oc that is the limit of some subsequence
of (sn).

: B n+1 2
Example 3 Find a subsequence limit of (s,) where s, = " COS <—

Solutions




Theorem 5 Let (s,) be a sequence of real numbers, and let S be the set of
subsequential limits of (s,)

1. S is nonempty
2. sup S = limsup s, and intf S = liminf s,

3. lim s,, exists if and only if S has exactly one element. namely lim s,,.

Proof






Chapter 12 {Limsup and Liminf)
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(Before Section 17) Preparing for Continuity

Using the graph above solve the inequality |z| < a

Using the graph above solve the inequality |z| > a
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Section 17

Continuity

Lﬁffhﬂ,am&ﬂm&lﬁ%mokw x
.Tﬁm&mmiuv;g {E o 100 sl o all paad mawbes puch that

(x) malls wenw (DT s &%M)o
., z%ﬁm% e@% i‘s%sghﬁa&mﬂww c{*&z

’\’6‘,& %(x) audh 18k xS R &mﬂm@eg _
u\om(-,?): ix{eR rudh TRat wP{x) wafhes wnw:(}
Raw (‘E) = %-g(x) audh Wb xe M(‘E)S

Exercise Find the domain and range of the following function

:2[?{) = _._x.-———

(x-1) (x+2)

Solution



%‘nﬂi{m lst £ be a nedd-valued {jm&im whlose demacn, 1 g
bl @ K. ¢ «guwkm, % is embnaos at X, An c!.m(_-g)
Q gnr ki w;ruum (X4) ix,e dm({)) mwacn%lb Xo
Liw ~$(_>(,,§ = ‘Q[\(,}.

I{ g (3 e num ma&‘)f%wrs ¢ Jm[«?))*}ﬁmwewa
‘}ﬁn\'£!& eonhnams o . hﬁa %ma\im% is god ' be mkmm.tg
A eontinums on ik demair.

Theoem Lt § be @ at-oliad Junchin whow, donain 15 0 sk e R,
fen 1% i« eariwnis ok Ko € Son(%) 1§ exd, m%)%

Foso 3650 whibat xedom(f) ond [X-%o\<§ owblla

W(x) - ‘£U‘o}i< ¢ .

Proof






Exercise

Lot ,‘lez. o+, xeR.

Prove, Yol £ s cotinans o0 R b&
(@) U%&n@ o dfivibion

(b) Usngy Yoo 48 “theorem

Solution






Exercise

Lot ~£m= L - gkﬁ\/% Qm,mh‘m
uma% b-S “Hemem,

Solution
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Proof



Section 18 Properties of continuous functions

April 23, 2016

e Let f: D — R be a real-valued function where D is a subset of the reals.

e We say that f is a bounded function if there exists a real number M such that
|f (2)] < M
for any z € D.
Example 1 Answer the following questions

1. Give an example of a bounded real-valued function.

2. Given an example of an unbounded real-valued function.

Theorem 2 Let f : [a,b] — R be a continuous real-valued function. The following holds
true

1. f is a bounded function

2. f assumes its mazimum and minimum on |[a, b



Proof of Theorem 2






Example 3 Give an example which supports that the theorem above fails if we replace |a, b]
by an open interval.

Theorem 4 (Intermediate Value Theorem) If f is a continuous real-valued function
on I C R then if a,b € I,a < b and y lies between f (a), f (b) then there is at least one
x € (a,b) such that f (x) =y.

Proof of Theorem 4






Exercise 5 Show that a polynomial of odd degree with real coefficients has at least one real
zero.

Proof of Exercise 5

Exercise 6 Let f be a continuous function which maps [0, 1] into [0,1]. Show that f has a
fized point. In other words, there exists xo € [a,b] such that f (x¢) = xo

Proof of Exercise 6





