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Abstract
Extensive testing is performed when a new aircraft is developed. Flight testing is
costly and time consuming but there are aspects of the process that can be made
more e�cient. A program that estimates aerodynamic parameters during flight
could be used as a tool when deciding to continue or abort a flight from a safety
or data collecting perspective. The algorithm of such a programmust function in
real time, which for this application would mean a maximum delay of a couple of
seconds, and it must handle telemetric data, which might have missing samples
in the data stream.

Here, a conceptual program for real-time estimation of aerodynamic parameters
is developed. Two estimation methods and four methods for handling of missing
data are compared. The comparisons are performed using both simulated data
and real flight test data.

The first estimation method uses the least squares algorithm in the frequency do-
main and is based on the chirp z-transform. The second estimation method is
created by adding boundary terms in the frequency domain di↵erentiation and
instrumental variables to the first method. The added boundary terms result in
better estimates at the beginning of the excitation and the instrumental variables
result in a smaller bias when the noise levels are high. The second method is
therefore chosen in the algorithm of the conceptual program as it is judged to
have a better performance than the first. The sequential property of the trans-
form ensures functionality in real-time and the program has a maximum delay
of just above one second.

The four compared methods for handling missing data are to discard the missing
data, hold the previous value, use linear interpolation or regard the missing sam-
ples as variations in the sample time. The linear interpolation method performs
best on analytical data and is compared to the variable sample time method us-
ing simulated data. The results of the comparison using simulated data varies de-
pending on the other implementation choices but neither method is found to give
unbiased results. In the conceptual program, the variable sample time method
is chosen as it gives a lower variance and is preferable from an implementational
point of view.
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Sammanfattning
Omfattande provning genomförs när ett nytt flygplan utvecklas. Flygprov är dy-
ra och tidskrävande men det finns aspekter i processen som kan e↵ektiviseras.
Ett program som skattar aerodynamiska derivator under flygning skulle kunna
användas som ett verktyg för att avgöra omman ska avbryta eller fortsätta en flyg-
ning ur ett säkerhets- eller datainsamlingsperspektiv. Algoritmen för ett sådant
program måste fungera i realtid, vilket för detta användningsområde innebär en
maximal fördröjning på ett par sekunder, och den måste hantera telemetrerad
data, vilken kan ha sampel som saknas i dataströmmen.

Här har ett konceptuellt program för realtidsskattning av aerodynamiska para-
metrar utvecklats. Två skattningsmetoder och fyra metoder för att hantera sak-
nad data jämförs. Jämförelserna görs både med hjälp av simulerad data och riktig
flygprovdata.

Den första skattningsmetoden använder minstakvadratmetoden i frekvensdomä-
nen och baseras på chirp z-transformen. Den andra skattningsmetoden skapas
genom att lägga till extra termer i deriveringen i frekvensdomänen och instru-
mentvariabler till den första metoden. De extra termerna resulterar i bättre skatt-
ningar i början av excitationen och instrumentvariablerna resulterar i en mindre
bias vid höga brusnivåer. Den andra metoden väljs därför som algoritmen i det
konceptuella programmet då den bedöms prestera bättre än den första. Den se-
kventiella egenskapen hos transformen säkerställer programmets funktionalitet
i realtid och det har en maximal fördröjning på drygt en sekund.

De fyra metoder för att hantera saknad data som jämförs är att bortse från den
saknade datan, hålla föregående värde konstant, använda linjär interpolation el-
ler att se de saknade samplen som variationer i sampeltiden. Linjärinterpolations-
metoden presterar bäst på analytisk data och jämförs med variabel sampeltids-
metoden på simulerad data. Resultaten från jämförelsen varierar beroende på öv-
riga implementationsval men ingen avmetoderna ger väntevärdesriktiga resultat.
I det konceptuella programmet väljs variabel sampeltids-metoden då denna ger
en lägre varians och är att föredra ur ett implementationshänseende.
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1
Introduction

This is the report of a master’s thesis work in control conducted at saab and
examined at Linköping University. In this thesis, two methods for parameter esti-
mation in real time are compared. The intended application is for flight testing at
saab. Both of the methods use the Least Squares (ls) algorithm in the frequency
domain and a frequency transformation called the Chirp z-Transform (czt). One
of the methods also include Instrumental Variables (iv), a method for handling
noisy data. Additionally four methods for handling of missing data in real time
are compared. For this application, real-time would mean a maximum delay of a
couple of seconds, regardless of the length of the experiment. The final result is
an implemented conceptual real-time parameter estimation program.

In this first, introductory chapter, some background to the thesis is presented
along with its purpose, goal, problem formulation and limitations. The chapter
also includes the approach used to reach the specified goal and the outline of the
thesis. Throughout the thesis, the application will be used to refer to the applica-
tion of flight testing at saab whereas this work refers to the implementation and
results presented in this thesis.

1.1 Background
Svenska aeroplan aktiebolaget (saab) is a Swedish company that provides a range
of defence and security products. This thesis work is conducted at the busi-
ness area within saab that concerns the aviation products, saab Aeronautics, in
Linköping. The main product of saab Aeronautics is the jas 39 Gripen aircraft.
In the process of developing the next generation of Gripen, called Gripen E, ex-
tensive testing will be performed. Flight testing is costly and time consuming
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2 1 Introduction

but there are aspects of the process that can be made more e�cient. One possible
way to improve the flight testing is investigated in this work.

An aircraft such as the jas 39 Gripen constitutes a system that is highly nonlinear
and unstable (Ahlstöm and Torin, 2002). Such an aircraft needs a Flight Control
System (fcs) in order to execute the pilot’s commands and stabilise the aircraft
to ensure safe flying. The fcs uses feed-forward with mathematical models of
the aircraft, together with feedback of the measured output, to calculate input
signals to the aircraft’s control surfaces (Ahlstöm and Torin, 2002). Models are
also used in simulators that are used for training and to augment the e�ciency in
the process of designing the fcs. Both of these applications therefore need highly
accuratemodels of the aircraft. Themodels are initially derived from calculations
andwind tunnel data. Flight tests are performed in order to evaluate and validate
the derived models, and to increase the accuracy of the estimated parameters
(Stavöstrand, 2011).

Two aspects are considered when a flight test is performed. The first is the safety
issue and the second is to maximise the information content in the data to enable
post-flight analysis with good results. During a flight, several signals are mon-
itored in real time to ensure that the aircraft does not leave the flight envelope
and that the actual output does not diverge too much from the expected, simu-
lated output. If the model used in the design of the fcs di↵ers too much from the
reality, the fcs might need to be updated and proper safety measures should be
taken.

In the current flight test process at saab, the information content of the data
from the flight test is not analysed until after the flight. If the data is found to be
inadequate at this point, the flight must be redone. If there was a tool available,
able to determine if the data is su�cient in near real time during the flight test,
specific manoeuvres could be redone directly instead of having to schedule a new
flight. This would reduce both cost and time spent on flight testing.

By performing parameter estimation in real time, information regarding both the
information content of the data and the consistency with existing models can be
obtained. One method for this, a recursive ls method in the time domain, is
analysed in Andersson (2013). However, this method does not work in real time
as intended due to the cost of performing an estimation in each iteration and in
Andersson (2013), a frequency domain method is suggested instead. In Larsson
(2013), improvements to a sequential frequency domain method presented in
Klein and Morelli (2006) are suggested. This method should be better adapted
to the real-time application due to the sequential property of the digital Fourier
transform and the two methods are therefore compared in this work.

1.2 Purpose
The purpose of this thesis work is to verify whether the specific sequential fre-
quency domain method presented in Klein and Morelli (2006) together with the
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improvements suggested by Larsson (2013) can be used for real-time parameter
estimation. Furthermore, the extent to which the suggested modifications change
the results is evaluated and analysed. The purpose of this verification in turn is
to make the flight test process more e�cient and thereby to reduce the cost and
time spent on flight testing.

1.3 Goal
The goal of this thesis work is to produce a program that uses the given method
in order to perform parameter estimation in real time. The program should also
handle telemetric data to ensure functionality in real time. To reach this goal, a
number of partial goals are set. These are listed below.

• The two estimationmethods of Klein andMorelli (2006) and Larsson (2013)
should be implemented.

• The two estimation methods should be evaluated and compared on simu-
lated data.

• The two estimation methods should be evaluated and compared on real
flight test data.

• Methods for handling of telemetric data with missing samples should be
chosen and implemented.

• The methods for handling of telemetric data should be evaluated and com-
pared on simulated data.

• A conceptual real-time parameter estimation program should be implemen-
ted with methods chosen based on the results of the performed evaluations.

• The final program should be evaluated on telemetric data.

1.4 Limitations
This work only concerns the estimation of parameters in a linearised model of the
jas 39 Gripen aircraft’s aerodynamic properties. The algorithm is implemented
in Matlab in a saabmodule called StellaRT. The final algorithm is not evaluated
live during flight test but on recorded telemetric data.

1.5 Problem Definition
Several questions are addressed in this thesis. One question is how the proposed
method should be used on a system using aerodynamic coe�cients instead of an
ordinary state-space model. Larsson (2013) shows that the suggested improve-
ments result in a more accurate estimator for the state-space model. Are similar
results obtained when using the aerodynamic coe�cients model?
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Another question is how the telemetric data should be handled when aiming
to minimise the information loss in the data. The telemetric data received in
real time imposes problems that need to be overcome. The data does not arrive
sample by sample but in batches of irregular size, at irregular times. There might
also be sequences of data that are missing in the data stream. How does this a↵ect
the implementation and performance of the estimation algorithm?

1.6 Approach
The tools used throughout this project are Matlab, Simulink and Matlab tool-
boxes available at saab.

In order to verify the functionality of the methods, a simulation model with
known parameters is implemented. After implementation of the algorithm, it
is tested on simulated data from the known model. The method is then tested on
real flight test data.

An analysis of the telemetric data is performed to be able to simulate a telemetric
data flow. Using the simulated telemetric data, solutions to the related problems
are developed, implemented and tested.

1.7 Thesis Outline
In Chapter 2, a brief introduction to system identification is given, followed by a
more thorough presentation of each of the methods used in this work. In Chap-
ter 3, the model that contains the unknown parameters is derived. For the in-
terested reader, the flight mechanical models are derived and explained in Sec-
tion 3.2. However, the results of this work can be understood given only the
expressions in (3.5) and (3.9) together with the presentation of the aerodynamic
model i Section 3.3. In sections 4 and 5, the practical details of this work are
presented. These include a description of the simulation model used for compar-
ing the di↵erent methods, the requirements on the final estimation program, a
description of the utilised software and some properties of the flight test data.

The results of this work are presented in chapters 6 to 8. The comparison between
the two estimation algorithms is presented in Chapter 6. In Chapter 7, the com-
parisons of the di↵erent methods for handling missing data are presented. The
implementation of the final conceptual program is presented in Chapter 8 to-
gether with the results and performance when using simulated, real-time flight
test data. The results are discussed in Chapter 9 before the conclusions och future
work are presented in Chapter 10.
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In this chapter, the basic concept of system identification is presented along with
the mathematical tools needed in this particular application. The two specific
algorithms studied in this work use the Complex Least Squares (cls) parameter
estimation method. The Least Squares (ls) regression is transformed into the
frequency domain using a transform method called the Chirp z-Transform (czt).
The cls and the czt are therefore presented initially, before describing the two
estimation algorithms. Then details regarding telemetric data and data quality
at saab are presented along with the di↵erent methods for handling of missing
data investigated in this thesis. Lastly, the goodness of fit, which is the valida-
tion metric used, is presented. Initially, however, a brief introduction to system
identification is provided.

For further details and deeper understanding, a number of references are avail-
able. The specific method investigated is taken from Klein and Morelli (2006)
and the suggested modifications come from Larsson (2013). Ljung (1999) gives
an introduction to the area of system identification in general while Pintelon and
Schoukens (2001) focus on the frequency domain methods.

2.1 Introduction to System Identification
System identification is the problem of finding a description of the system S by
observing its input u and output y. In accordance with Klein and Morelli (2006),
this is one of the three main problems of aircraft dynamics and control, the other
two being control and simulation. Control is the problem of finding the proper
input u to create a desired output y from a known system S. Simulation is the
problem of finding the expected output y that a given input u to a known system
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6 2 System Identification

S will create. In both problems above, the known system S is required, making
system identification an essential part of both control and simulation.

The system of interest in applications of aircraft dynamics and control is the air-
craft itself. The aircraft is influenced by measurable inputs such as pilot com-
mands, and non-measurable inputs, called disturbances, such as wind or turbu-
lence. All these inputs together create outputs from the system.

The relationship between observed inputs and outputs of a system is called a
model. There are three types of models and using the framework of Ljung (1999)
these are mental, graphical and mathematical models. Mental models are intu-
itive models learnt from experience and with no mathematical formulation. An
example of a mental model is the knowledge required to ride a bike. A graph-
ical model is a model where the system is described by using tables or plots of
numerical data from the system. A graphical model does not include any math-
ematical relation between an input and an output, only an association between
the two. The mathematical model however, describes the relationship between
inputs and outputs analytically, typically, for dynamic systems, using di↵erential
equations. The process of deriving a model using physical laws and other pre-
vious knowledge of the system is called modelling. If this is not possible, data
from the system can be used instead. The process of finding a mathematical or
graphical model of a system by observing and analysing data from the system is
called system identification. In Gripen, all three model types are used. The pilot
uses a mental model to steer the plane whereas the fcs uses both graphical and
mathematical models. More details about these are presented in Chapter 3.

If no a priori knowledge about the system is available, it is possible to use sev-
eral techniques known as black box techniques that use standard models with
parameters without physical meaning and fit them to the data. In this applica-
tion, however, the model structure is known but contains physical parameters
for which the true values are unknown. A model with known structure such as
this is called a grey box model. The ls method is used to estimate the unknown
parameters. The estimation method is described in the coming sections and the
physical model structure is described in Chapter 3.

2.2 Parameter Estimation Using Complex
Least-Squares

The estimation method used in the studied algorithms is the Complex Least
Squares (cls). The cls is the equivalent of the ordinary ls but used in the
frequency domain. The ordinary ls is found for example in Ljung (1999) and
Söderström and Stoica (1989). It is a method for estimating linear parameters in
a relation such as

y = �✓ (2.1)
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where y is the measured output, � contains the regressors and ✓ contains the
parameters to be estimated. For example, the regressors can be the measurable
inputs and states that influence the system. With one output, np unknown pa-
rameters and N observed data points of the output and regressors, y is an N -
dimensional column vector and � is an N ⇥ np matrix. The method finds the
estimate that gives the best fit between the estimated and the real output by min-
imising the cost function

J(✓) =
NX

i=1

✏2i =
NX

i=1

(yi � �i✓)
2 = (y � �✓)T (y � �✓) (2.2)

where ✏i is the prediction error for the ith sample and yi and �i indicate the ith

row of y and � respectively. Since (2.2) is quadratic in ✓, it can be minimised
analytically by putting its derivative to zero. The parameter estimate can then in
principle be calculated as

✓̂ =

0
BBBBB@

NX

i=1

�T
i �i

1
CCCCCA

�1 NX

i=1

�T
i yi =

⇣
�T�

⌘�1
�T y. (2.3)

If the ls estimate is calculated using this batch algorithm, the matrices will grow
as N grows, making the computations in (2.3) more time consuming. This is not
ideal for a real-time application where the estimation shall be done at regular
intervals. However, there is a recursive ls algorithm, described, for example, in
Ljung (1999) and Klein and Morelli (2006). This algorithm uses the previous
estimate together with the newest data points to make a new estimate, meaning
that an estimation is performed every time new data is presented. This algorithm
was used in Andersson (2013) but was still found too time consuming for the real-
time application used at saab and a frequency domain approach was suggested
as a remedy.

The use of a frequency domain method has two advantages with regard to a time
e�cient calculation of the ls estimate. Firstly, as explained later in Section 2.3.1,
the number of frequencies nf can be fixed meaning that the matrices y and �
will have fixed sizes of nf ⇥ 1 and nf ⇥ np , respectively. As is the case with the re-
cursive ls algorithm, this fixates the complexity, and the computation time, also
when using the batch ls algorithm. Secondly, as explained later in Section 2.3.2,
the transform can be calculated using a sequential method. Using this method,
the value of the transform is updated every time new data arrives and no previ-
ous data points need to be saved. This makes the algorithm less time consuming
since a new estimate does not have to be calculated each time new data is pre-
sented, unlike when using the recursive ls algorithm. Instead, the transform is
calculated each time new data is presented and the estimation is only performed
at specified times using the batch ls algorithm. In the frequency domain, the cls
method is used. The cls estimator is the same as the ls estimator for real num-
bers but with complex conjugate transposes instead of only transposes (Klein and
Morelli, 2006).
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2.3 Frequency Domain Estimation Methods
The two estimation methods that are compared in this work are presented in
Section 2.3.2 and Section 2.3.3. They are both sequential frequency domain esti-
mation methods and the first is taken from Klein and Morelli (2006). The second
method is presented in Larsson (2013). It is based on the first method but in-
cludes two modifications. The first method, from Klein and Morelli (2006), is
referred to as Morelli’s method and the other, from Larsson (2013), is referred to
as Larsson’s method. In both identification methods, a special transform method
called the Chirp z-Transform (czt) is used. This method has a fixed number
of frequencies which eliminates the resolution’s dependence on the number of
samples in the time domain. Additionally, it limits the frequency interval to
the actual interval of interest. A description of the czt that relates it to more
conventional transform methods is therefore given first in Section 2.3.1 before
presenting the two estimation methods.

2.3.1 The Fourier Transform and the Chirp z-Transform
The czt is obtained by slightly modifying the finite Fourier transform. The re-
sulting transform has two properties that make it suitable for the identification
of aircraft aerodynamics. The first property is that it is finite, coming from the
finite Fourier transform, and the second is that it allows for arbitrary choices
of frequencies. Sundararajan (2001) explains the basic concepts of the Fourier
transform, while Cooley et al. (1969) describe the finite Fourier transform and
the discrete Fourier transform (dft). The czt is defined in Rabiner et al. (1969a)
and discussed in further detail in Rabiner et al. (1969b).

The finite Fourier transform of a continuous-time signal that is sampled at time
intervals Ts can be approximated as

f̃ (!) =
Z T

0
f (t)e�j!tdt ⇡ Ts

N�2X

k=0

fke
�j!kTs (2.4)

using a zeroth-order Euler approximation in accordance withMorelli (1997). The
constant N is the total number of samples, meaning that T = (N � 1)Ts. When
integrating from 0 to T , the final sample does not contribute to the integral and
the final index of the summation becomes N � 2, as illustrated in Figure 2.1.

The summation in (2.4) can be compared to the z-transform

x̃(z) =
1X

k=�1
x[k]z�k (2.5)

where x[k] are samples of a discrete signal x with index k and z 2 C. The summa-
tion in (2.4) corresponds to the summation in (2.5) mulitipied with Ts, only with
the summation limited to go from 0 to N � 2 and with z limited to values ej!Ts ,
meaning the unit circle, since fk and x[k] are the sample values of the two signals
respectively.
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If the frequencies !i are chosen as

!i = 2⇡fi = 2⇡
i

(N � 1)Ts
, i = 0, 1, . . . , N � 2 (2.6)

which is conventional, the approximation in (2.4) becomes

f̃ ( 2⇡i
(N�1)Ts ) ⇡ Ts

N�2X

k=0

fke
�j(2⇡i/(N�1))k , i = 0, 1, . . . , N � 2 (2.7)

which is the discrete Fourier transform (dft) for N � 1 samples multiplied with
the sampling interval Ts. Thedft is consequently a special case of the z-transform
with N � 1 values of z evenly spaced around the unit circle with an interval of
2⇡/(N � 1). As can be seen in (2.6), however, the frequency resolution and the
number of frequencies are given by Ts and N . This means that for a low N , the
frequency resolution is low, and for a high N many frequencies are outside the
interval of interest.

Although the above choice of contour that gives the dft is the most commonly
used, other contours in the z-plane could be chosen instead. Rabiner et al. (1969a)
present a method that allows for the calculation of the z-transform on any spi-
ral, or circle, with arbitrary starting point. This is called the Chirp z-Transform
(czt). In this application, an arc of the unit circle is chosen and the number of
frequencies is fixed which eliminates the resolution’s dependance on the number
of samples in the time domain. A su�cient number of samples is however still
needed for the estimation quality. Additionally, the frequency interval is limited
to the actual interval of interest. According to Morelli (1999), a frequency band

!(")#-$%"

"

0         1         2         3         4       N-2      N-1

0         1         2         3         4         5         6

Figure 2.1: The approximation of the continuous-time Fourier transform.
The area under the graph is approximated by summing the area of each rect-
angle with height f (t)e�j!t and width Ts. In this example, T = 6 seconds
and N = 7 samples. In order for the area to be correct, the summation ends
at the second last sample, having the index N � 2 meaning that only N � 1
sample values are used.
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of [0.1 1.5] Hz with a resolution of 0.04 Hz is adequate for this application. How-
ever, according to Klein and Morelli (2006), the frequency interval of interest for
rigid body aircraft dynamics is [0.01 2.0] Hz. Larsson (2013) uses the frequency
band [0.1 2] Hz and the same frequency band is chosen also in this work to make
the results comparable. This gives a frequency vector ! of fixed length nf = 48,
which also has other advantages as previously discussed in Section 2.2.

Using (2.4) normalised with 1/Ts and the 48 chosen frequencies within [0.1 2.0]
Hz, the final czt transform used in this work becomes

FCZT(f (t)) = F̃(!i ) =
N�2X

k=0

fke
�j!i kTs , !i 2 ! = {0.10, 0.14, . . . , 1.98}. (2.8)

2.3.2 Morelli’s Sequential Frequency Domain Method
In this section, the original sequential frequency domain method taken from
Klein and Morelli (2006) is presented.

The transform of (2.8) can be calculated sequentially as

F̃(!i ) =
N�2X

k=0

fke
�j!i kTs =

N�3X

k=0

fke
�j!i kTs + fN�2e

�j!i (N�2)Ts =

= F̃�1(!i ) + fN�2e
�j!i (N�2)Ts , !i 2 ! (2.9)

where the �1 subscript denotes the previously calculated transform. This sequen-
tial property is what makes the frequency domain approach suitable for a real-
time application. The transform is simply updated every time new data arrives.
By using the czt to transform the linear relation of (2.1), the complex regression
becomes

Ỹ = �̃✓ (2.10)

where Ỹ and �̃ are the transformed output and regressor matrices, respectively.
The parameter vector ✓ remains the same due to the linearity of the transform.
Due to the transform, the dimensions of the matrices change. The output vec-
tor that in the time domain is an N -dimensional column vector becomes an nf -
dimensional column vector in the frequency domain. The regressor matrix � is
an N ⇥ np matrix in the time domain and an nf ⇥ np matrix in the frequency
domain.

The cls estimate is calculated as

✓̂ =
⇣
�̃
⇤
�̃

⌘�1
�̃
⇤
Ỹ (2.11)

which, according to Klein and Morelli (2006), can be simplified to

✓̂ =
⇣
Re

⇣
�̃
⇤
�̃

⌘⌘�1
Re

⇣
�̃
⇤
Ỹ
⌘

(2.12)

since the parameter vector is known to be real in the aircraft application. Simi-
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larly, the estimated covariance matrix is also simplified and becomes

Ĉov(✓̂) = �̂2
⇣
Re

⇣
�̃
⇤
�̃

⌘⌘�1
(2.13)

where the estimate of the residual variance is

�̂2 =
1

nf � np
((Ỹ � �̃✓̂)⇤(Ỹ � �̃✓̂)). (2.14)

By taking the square root of the diagonal elements of the estimated covariance
matrix, the standard deviations of the parameters can be calculated as

ŝi =
q
Ĉovi i (✓̂), i = 1, . . . , np (2.15)

and these are used to quantify the quality of the estimates.

When calculating the czt of a derivative, the approximation

˜̇F(!i ) =
N�2X

k=0

ḟk e
�j!i kTs ⇡ j!i F̃(!i ) (2.16)

is used in Klein and Morelli (2006), which is the relation that holds for the ordi-
nary Fourier transform of a derivative.

2.3.3 Larsson’s Improved Sequential Frequency Domain Method
Larsson (2013) suggests two improvements to the previously presented method
from Klein and Morelli (2006). These consist of a correction of the frequency
domain di↵erentiation of (2.16) and the addition of Instrumental Variables (iv).

Corrected Differentiation in the Frequency Domain

As described in Larsson (2013), the transform of the derivative in (2.16) is true
only for the ordinary Fourier transform but not for the finite Fourier transform.
By using integration by parts

˜̇f (!) =
Z t1

t0

ḟ (t)e�j!tdt = j!

Z t1

t0

f (t)e�j!tdt + [f (t)e�j!t]t1t0 (2.17)

the ordinary Fourier transform of a derivative, ˜̇f (!) = j!f̃ (!) is obtained if t0 =
�1 and t1 = +1. Since this is not the case for the finite Fourier transform, the
second term in (2.17) must be kept. This gives

˜̇f (!) = j!f̃ (!) + f (t1)e�j!t1 � f (0) (2.18)

since t0 = 0 here. Using the normalised transform in (2.8), the final transform
with added extra terms becomes

˜̇F(!i ) = j!i F̃(!) +
1
Ts

⇣
f (t1)e�j!i t1 � f (0)

⌘
, !i 2 !. (2.19)

Larsson (2013) found that the approximation in (2.16) results in a bias during the
excitation. For a state space model, this bias was shown to be reduced by adding
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the extra terms. It is investigated in this work whether the same improvement
can be found for a model using aerodynamic coe�cients.

Instrumental Variables

For a ls estimate to be consistent, the noise has to be white and uncorrelated
with the regressors (Ljung, 1999). This is not true in the Gripen case for three
reasons as described in Larsson (2013). Firstly, the atmospheric turbulence, that
accounts for most of the process noise, is not white. Secondly, the fcs will try to
compensate for the turbulence and thereby create a correlation between the dis-
turbances and the control surface displacements, which are regressors. Thirdly, a
correlation between measurement noise and regressors is created since the states
are approximated from the measurements. These problems are shown in Larsson
(2013) to result in biased estimates for noise levels corresponding to medium and
severe atmospheric turbulence. The consistency is however improved by using
Complex Instrumental Variables (civs), or Instrumental Variables (ivs) for short.

Instrumental variables ⇠ are any variables that are correlated with the regressors
but uncorrelated with the noise. Using ivs will then give the iv estimator

✓̂ =
⇣
⇠T�

⌘�1
⇠T y (2.20)

that can be compared to the estimator in (2.3) (Ljung, 1999). When transformed
to the frequency domain using the czt, the iv estimator becomes

✓̂ =
⇣
Re

⇣
⌅̃
⇤
�̃

⌘⌘�1
Re

⇣
⌅̃
⇤
Ỹ
⌘
. (2.21)

In this application, a parallel simulation is used to create the instrumental vari-
ables. The existing simulation model is run in parallel with the flight test us-
ing the true pilot commands as inputs. This creates regressors that approximate
the true regressors but that are uncorrelated with the process and measurement
noise. Other examples of instrumental variables and further theory can be found,
for instance, in Söderström and Stoica (1983).

In Larsson (2013), the estimated standard deviation of the estimates is incorrectly
calculated. According to Pintelon and Schoukens (2001) the estimated covariance
matrix when using ivs is calculated as

Ĉov(✓̂) = �̂2
⇣
Re

⇣
⌅̃
⇤
�̃

⌘⌘�1
Re

⇣
⌅̃
⇤
⌅̃
⌘ ⇣
Re

⇣
⌅̃
⇤
�̃

⌘⌘�T
(2.22)

and this calculation is used in this work. If the regression vector is chosen as the
ivs, the results of Morelli’s algorithm presented in Section 2.3.2 are obtained once
again. In that case, the only di↵erence between Larsson’s andMorelli’s algorithms
consists of the corrected di↵erentiation in Larsson’s algorithm.



2.4 Telemetric Data and Missing Data 13

2.4 Telemetric Data and Missing Data
There are several possible reasons for data to be missing in collected data sets.
Wallin (2004) gives the examples of temporary faults in data transmission and
temporary sensor failure, which are both common in applications. The missing
data causes di�culties when extracting information from the data set. Several
solutions to the related problems are suggested, for example in Wallin (2004)
and Pintelon and Schoukens (1999). This section will describe the data quality
at saab and thereby the conditions that the chosen algorithm must handle along
with some examples of di↵erent algorithms.

2.4.1 Telemetric Data at SAAB

The following details regarding the telemetric data at saab have been provided
by Mats Svensson who works at the department Instrumentation and software
systems at saab Aeronautics (Svensson, 2015).

During flight tests at saab, all sensor data is saved locally in the aircraft and
is accessible after the flight is finished. The locally saved data is complete and
contains all data except for data missing due to sensor failure. However, sensor
failure is rare and not specifically handled in post flight analysis. Some of the
local data is transmitted from the aircraft to the control room during the flight to
allow for real-timemonitoring. This data is called telemetric data. The telemetric
data can have additional missing data points due to errors in the radio transmis-
sion. The transmitted data is packed, encrypted and sent at a frequency of 16
Hz in frames of 16 kbyte. Each frame has a check sum in order to verify correct
transmission. If the check sum is wrong, the entire frame is disregarded. Since
all signals are sent in the same frame, all data, both in- and output, is missing at
a disruption. For a 60 Hz sensor signal, this means that about four samples are
missing for each disregarded frame. This gives the lower limit for the amount of
missing data when there is a disruption.

The upper limit for the amount of missing data, however, cannot be determined
exactly. The quality of the transmission depends on many factors including the
alignment between the transmitter on the aircraft and the antenna. For this rea-
son, more than one antenna is used for reception of data. Only one antenna, the
one giving the best results, is used at a time and all antennas are monitored and
switched manually. However, an antenna switch generates a loss of at least one
frame. The transmission gets worse at certain heights, if you fly further away
from the antenna or in direct alignment with the antenna. It also gets worse if
several aircraft are monitored at a time since this disables the use of multiple
antennas. Even though there is no exact measure of what is a standard amount
of data loss, the algorithm is expected to have to tolerate that there are between
4 and 16 frames of lost data in one manoeuvre, meaning as much as 64 missing
samples at worst.
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2.4.2 Parameter Estimation with Missing Data
There are three alternatives when handling missing data. You can throw away
the data set and redo the experiment, divide the data into several data sets that
are each complete and then combine them, or you can estimate the missing data.
Since experiments in this application, flight tests, are costly and have high safety
requirements, the alternative of throwing away the data set is not an alternative.
Because of the additional constraints of more sophisticated methods and the fact
that this is an initial study, four simple methods are chosen for study in this work.
Ljung (1999) presents a method for combining several data sets. The method
weighs the estimates of the separate sets with their respective inverse covariance
matrices. The method might be useful in this application but for simplicity, the
study is limited to four methods that are even more straight forward.

An overview of the four chosen methods is presented in Figure 2.2. According to
Wallin (2004), one simple method is to ignore the rows in the vectors of the linear
regression of (2.1) where data is missing. This method is presented in Figure 2.2a.
As the samples after a disruption are shifted to fill the positions of the missing
samples, this results in a distortion of the signal. This is not a problem in the time
domain, where the time vector has no part of the estimation, and the method per-
forms well for low numbers of missing data (Wallin, 2004). The performance in
the frequency domain, however, needs to be investigated, and this is further dis-
cussed in Section 7.2. Another simple method is some sort of interpolation of the
missing data. Although interpolation methods always result in biased estimates
according to Wallin (2004), the advantages of simplicity might be greater than
the disadvantages. Two interpolation methods are chosen for study in this work.
The simplest is to hold the previous value constant until new data arrives. This
method is illustrated in Figure 2.2b. The other method is to linearly interpolate
the missing data points between the last sample before interruption and the first
new sample. The linear interpolation is illustrated in Figure 2.2c.

The fourth method takes place in the conversion from the time domain to the
frequency domain where the missing samples are considered as variations in the
sample time. An illustration of this method is presented in Figure 2.2d. The new
equation for calculation of the transform becomes

FCZT(f (t)) = F̃(!i ) =
N�2X

k=0

�k fke
�j!i tk , !i 2 ! = {0.10, 0.14, . . . , 1.98}. (2.23)

where �k denotes the distance to the next sample in number of Ts and kTs has
been replaced by tk compared to (2.8). This means that when no samples are
missing �k = 1 and when samples are missing, �k = nm + 1, where nm is the
number of missing samples. This method is referred to as the Variable Sample
Time (vst) method.

There are several sophisticated techniques that, at first glance, could seem suit-
able for this application but that have not been chosen for further study. These
have other constraints when it comes to the amount of missing data or compu-
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(a) Discard: all lines with missing
samples are ignored. This results in
a distortion of the signal in the time
domain.

!(")

"
0         1         2         3         4         5         6

#� #�
(b) Hold: new samples are interpo-
lated in the time domain by keeping
the previous value until new sam-
ples arrive.
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(c) Linear interpolation: new sam-
ples are interpolated linearly in the
time domain between the last sam-
ple before disruption and the first
new sample to arrive.
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(d) Variable sample time: missing
samples are regarded as variations
in the sample time in the conversion
to the frequency domain. See Fig-
ure 2.1 for comparison.

Figure 2.2: The four methods for handling of missing data that are investi-
gated are presented in (a) to (d). The fourth sample is missing in all figures.
The solid line is the true signal without missing samples and the dashed line
represents the interpolated signal.

tational e↵ort. For example, Pintelon and Schoukens (1999) present a frequency
domain method that treats the missing data as unknown parameters and esti-
mates the model parameters and the missing data simultaneously using a max-
imum likelihood estimator. In the case where both input and output data are
missing, however, Pintelon and Schoukens (1999) show that parameter estima-
tion can become impossible. When the number of missing samples is equal to or
greater than the order of the system, the cost function becomes ill-conditioned.
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The condition number grows fast with an increasing number of missing samples,
and within a few samples, the model becomes non-identifiable. The system of
interest in this case is of order six, meaning that there cannot be more than just
above six samples missing. This method is therefore not useful as the algorithm
must tolerate as much as 64 missing samples.

Another example is found in Wallin (2004), where several methods for parame-
ter estimation with missing data are compared. The Expectation Maximisation
(em) algorithm is designed to handle missing data and gives unbiased results.
Wallin (2004) compares the original em algorithm with two modified versions
from Isaksson (1993) and Wallin et al. (2000). However, all of these methods are
computationally heavy, which makes them time consuming and not suitable for
a real-time application.

2.5 Validation
For validation of estimations on simulated data, the goodness of fit is used. The
goodness of fit can be calculated using the Normalised Root Mean Square Error
(nrmse) as

nrmse(✓̂) =
 
1 � |y � ŷ||y � ȳ|

!
(2.24)

where ✓̂ is the parameter estimate, y is the measured signal, ŷ is the simulated
signal using ✓̂ and u, and ȳ is the mean of the measured signal. The measured
signal y has to be di↵erent from the one used to estimate the parameters. The
nrmse is a value between minus infinity and one, where one means perfect fit.
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Flight Mechanical and Aerodynamic

Models

When performing system identification with a grey box model, some information
about the system is already known, as described in Chapter 2. In this application,
a well known mathematical model for the flight mechanics is available. The aero-
dynamic properties, however, are more di�cult to model and a linear grey box
model with unknown parameters is used in this work. The two models, the flight
mechanical and the aerodynamic, are presented in this chapter. The assumptions
and approximations made in the models are also presented.

3.1 Assumptions and Approximations
In order to simplify the models, some assumptions and approximations are made.
For example, according to Larsson (2013), the assumption that the earth is flat
and non-rotating is made in most practical applications. The specific approxima-
tions made at saab are found in Kastman (2004) and presented below.

• Position equations:

– Flat and non-rotating earth

• Force equations:

– Flat and non-accelerating earth

– No time derivative of the mass

• Moment equations:

– Non-rotating earth

– No time derivative of the moments of inertia

17
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Note that even though the time derivatives are neglected for the mass and mo-
ments of inertia, they are not regarded as constant. The mass and moments of
inertia used in the equations change, for example due to the consumption of fuel,
but these changes are slow.

3.2 Flight Mechanical Model Equations
The flight mechanical model equations describe the complete motion of the air-
craft and consist of twelve equations. The first six are needed to relate the motion
experienced on board the aircraft to the absolute motion in relation to a fixed ref-
erence frame. The remaining six equations describe the forces and moments that
act upon the aircraft and their resulting motions. In order to write the force and
moments equations, the relation between the reference frames is needed and this
is therefore presented initially.

The equations of motion of an aircraft can be found for example in Roskam
(1995), Etkin and Reid (1996) and Nelson (1998) and have been verified against
internal documentation and code at saab. The equations are derived from New-
ton’s equations of motion and these only hold for an inertial system. The mea-
surements of the aircraft’s states, speed and angular velocities, etc., however, are
made on the aircraft. For this reason, two coordinate systems are needed, one
fixed to the earth (xf , yf , zf ), that is considered an intertial system, and one fixed
to the aircraft (x, y, z). The earth-fixed system (xf , yf , zf ) has the directions north,
east and down, respectively. The body-fixed system (x, y, z) is centred at the air-
craft’s centre of gravity and pointing towards the front, over the right wing and
down through the aircraft body respectively, as can be seen in Figure 3.1. The two
coordinate systems are related as described in Figure 3.2 by the angles known as
the Euler angles, roll �, pitch ✓ and yaw  .
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2.2 External Forces
The particular flight path or motion of a rigid body is the result of these external forces
and moments acting on the body. Thus the applied forces and moments may be
considered as the ”driving functions” to be used with the equations of motion of the
aircraft. Solution of these equations then provides the motion or response of the aircraft
to the applied forces and moments. Inversely the problem may be formulated to find
the force and moment input required to accomplish a specific motion.

The real forces and moments involved in the motion of a body through the atmosphere
in the gravitational field of the earth may be separated into contributions of gravity,
direct thrust force and aerodynamic force. Components of these forces are usually
resolved along the aircraft body axes.

2.2.1 Gravity-Force components
The gravitational force acting on an aircraft is most naturally given in terms of the earth
axes. With respect to these axes the gravity vector m g  is directed along the ze-axis.
Components along aircraft body axes can be obtained by coordinate transformation
using the Euler angles  and .

F m g

F m g

F m g

xg

yg

xg

sin

cos sin

cos cos

There are no moments resulting from the gravity force when the origin of the body
system coincides with the aircraft center of gravity.

!

"

#

Figure 3.1: The coordinate system fixed to the aircraft together with the
forces and moments working on it. The picture is taken from Stavöstrand
(2011) with permission from saab.
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(a) The coordinate system xf , yf , zf is fixed to the earth in the directions
north, east and down. The first rotation  is about the zf -axis.
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(b) The second rotation ✓ is about
the y0-axis of the intermediate sys-
tem x0 , y0 , z0 .
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(c) The third rotation � is about the
x00-axis of the intermediate system
x00 , y00 , z00 and gives the final system
x, y, z fixed to the aircraft.

Figure 3.2: The three rotations that relate the aircraft’s orientation to the
earth-fixed coordinate system are given in (a) to (c). They are called the
Euler angles. Note that the order of the rotations is important.

Using the Euler angles, the velocities of the aircraft in the body-fixed system, u, v
and w, can be transformed to velocities in the inertial system as

2
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ẋf
ẏf
żf

3
77777775
=

2
6666664

c✓c s�s✓c � c�s c�s✓c + s�s 
c✓s s�s✓s + c�c c�s✓s � s�c 
�s✓ s�c✓ c�c✓

3
7777775

2
6666664

u
v
w

3
7777775 (3.1)

where cx = cos(x) and sx = sin(x).
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Similarly, the body-fixed angular velocities p, q and r are transformed into angu-
lar velocities in the inertial system as

�̇ = p + q sin� tan ✓ + r cos� tan ✓

✓̇ = q cos� � r sin�
 ̇ = (q sin� + r cos�) sec ✓

(3.2)

where sec ✓ = 1/ cos ✓.

The equations in (3.1) and (3.2) are the first six of the twelve equations that fully
describe the flight mechanical motion. Newton’s second law of forces and mo-
ments is used to complete the equations of motion. Since the forces are written
for a non-inertial system centred at the body centre of gravity, the force equation
can be rewritten using the angular velocity. The total of all forces can then be
written as

P
F f = d

dt (mvf ),
P

FB = d
dt (mvB) + ! ⇥ (mvB) ⇡ mv̇B + ! ⇥ (mvB) (3.3)

where the time derivative of the mass is neglected,

vf =

2
66666664

ẋf
ẏf
żf

3
77777775
, ! =

2
6666664

p
q
r

3
7777775 and vB =

2
6666664

u
v
w

3
7777775 . (3.4)

The velocity vector vf is the aircraft’s velocity expressed in the inertial, earth-
fixed, system while vB denotes the velocity expressed in the body-fixed system.
The angular velocity is always expressed in the body-fixed system and has there-
fore no subscript. Expressed as the forces in the di↵erent directions, (3.3) be-
comes

Fx = m(u̇ + qw � rv) (3.5a)
Fy = m(v̇ + ru � pw) (3.5b)

Fz = m(ẇ + pv � qu) (3.5c)

in body-fixed coordinates.

Newton’s second law of moments is rewritten for the body fixed system in the
same way as the force equation and becomes

P
M f = d

dtH f ,
P

MB = d
dtHB + ! ⇥ HB ⇡ I!̇ + ! ⇥ (I!) (3.6)

where the time derivative of the inertia matrix is neglected,

! =

2
6666664

p
q
r

3
7777775 and HB = I! =

2
66666664

Ixx �Ixy �Ixz
�Ixy Iyy �Iyz
�Ixz �Iyz Izz

3
77777775
!. (3.7)

Note that when flying in a trimmed condition, the angular rates and total mo-
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ments acting on the aircraft are zero. The moments of inertia are calculated as

Ixx =
R
m
(y2 + z2)dm, Iyy =

R
m
(x2 + z2)dm, Izz =

R
m
(x2 + y2)dm,

Ixy =
R
m
(xy)dm, Iyz =

R
m
(yz)dm, Ixz =

R
m
(xz)dm

(3.8)

which are given in body-fixed coordinates. The total moment equation then be-
comes

Mx = ṗIxx � q̇Ixy � ṙ Ixz + qr(Izz � Iyy) + (r2 � q2)Iyz � pqIxz + rpIxy (3.9a)

My = �ṗIxy + q̇Iyy � ṙ Iyz + rp(Ixx � Izz) + (p2 � r2)Ixz � qrIxy + pqIyz (3.9b)

Mz = �ṗIxz � q̇Iyz + ṙ Izz + pq(Iyy � Ixx) + (q2 � p2)Ixy � rpIyz + prIxz . (3.9c)

The equations (3.1), (3.2), (3.5) and (3.9) together give the complete flight me-
chanical model.

3.3 Aerodynamical Model Equations
The complete flight mechanical model presented in the previous section contains
all forces and moments that influence the aircraft. These consist of di↵erent con-
tributions from the gravity, the aerodynamics and the engine thrust. The gravita-
tional components are easily calculated using standard theory. The contribution
from the engine is calculated using an existing model at saab. This model is
not of interest for investigation in this work and is therefore considered to be
accurate. The remaining contributions come from the aerodynamic model. The
aerodynamic model has an established structure with aerodynamic coe�cients
and unknown parameters. It is these parameters that this work aims to find. The
standard aerodynamic model can be found for example in Nelson (1998). The
model structure and the parameters of interest will be presented in this section.

3.3.1 Aerodynamic Model Structure
The aerodynamical model used in this work is a linear model of the form

y = �✓ (3.10)

where the outputs

y =
h
CT CC CN Cl Cm Cn

iT
(3.11)

are non-dimensional versions of the aerodynamic forces and moments, called
aerodynamic coe�cients.

In reality, the aerodynamics is non-linear and it is di�cult to formulate a com-
plete analytical model of the aerodynamics (Stavöstrand, 2011). Therefore, at
saab, a combination of a mathematical and graphical model (see Section 2.1) of
the aerodynamics is used instead. This model consists of a multidimensional look-
up table where the coe�cients can be found given the flight condition (height,
mach number, etc.), inputs and states of the aircraft. The di↵erent points in the ta-
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ble correspond to di↵erent conditions in the flight envelope where the behaviour
is considered linear between adjacent points and the values between points are
found using interpolation. The table therefore has di↵erent point density in dif-
ferent regions depending on the region’s linear or non-linear properties.

Even though a linear analytical model cannot be formulated for the entire flight
envelope, a linearised model for small disturbances around a specific trimmed
condition can be found using a Taylor series expansion. All but the first deriva-
tives of the coe�cient with respect to the dependent variables are neglected. The
estimation of these derivatives is the purpose of the investigated methods. Which
dependent variables to include in the model depend on the level of complexity
of the model. For example, the cross coupling derivatives are needed only with
an asymmetric aircraft configuration. With a symmetric aircraft, a pure longitu-
dinal motion would result in only a longitudinal response. However, if the centre
of gravity is displaced toward one wing, there would be a lateral response as well.
As an example, an elevator deflection intended to give a pitch moment would
result in a roll moment as well if the centre of gravity is displaced towards the
wing.

3.3.2 Aerodynamic Model Inputs
The choice of which dependent variables to use as inputs to the model is pre-
sented in this section. It is also presented how these are calculated, if they are
not existing signals from the aircraft or the surrounding software.

The aerodynamics influencing an aircraft depend on the one hand on the geom-
etry and aerodynamical properties of the aircraft’s structure. On the other hand,
it depends on the orientation of the aircraft in relation to the incoming wind and
the deflection of the aircraft’s di↵erent control surfaces. These last two are con-
sidered as inputs to the aerodynamic model. The notation and sign convention
for the aircraft’s orientation and control surfaces are presented in Figure 3.3.

Most inputs are measured and/or calculated on board the aircraft, or calculated
directly on arrival to the control room by surrounding software and are available
as real-time signals. Due to the delta wing configuration of the Gripen fighter it
does not have specific ailerons �a and elevators �e. Instead, there are four elevons
(�loe, �l ie, �rie and �roe) which serve as both ailerons and elevators. The elevator
deflection is calculated as

�e =
1
4
(�loe + �l ie + �rie + �roe) (3.12)

and the aileron deflection is calculated as

�a =
1
4
(�loe + �l ie � �rie � �roe). (3.13)

The canard deflection is not given as a signal either but calculated by adding the
contributions from the two sides as

�c =
1
2
(�lc + �rc). (3.14)
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Figure 3.3: The picture shows the notation and sign convention used in this
work and at saab. Full names of the parameters can be found in the no-
tation list on page xii. The picture is taken from Stavöstrand (2011) with
permission from saab.

In the aerodynamic model, the angular roll, pitch and yaw rates (p, q and r) are
not used directly as inputs. Instead, normalised, non-dimensional versions of the
angular rates are used. These are called the normalised roll, pitch and yaw rates
and are calculated as

p̂ =
b
2V

p, q̂ =
c
2V

q and r̂ =
b
2V

r (3.15)

where V is the wind speed, c is the mean aerodynamic chord of the wing and b is
the wing span.

The dependent variables have been chosen after discussions with Helena Johans-
son and Fredrik Ljungberg at the Aerodynamics section at saab Aeronautics (Jo-
hansson and Ljungberg, 2015). The ones that are chosen are the ones that are
included in the aerodata model today at saab and that are possible to measure.
These are the angle of attack ↵, the side slip angle �, the normalised angular rates
p̂, q̂ and r̂, and the canard �c, elevator �e, aileron �a, rudder �r and leading edge
flap �le deflections. This gives the total regressor vector

� =
h
↵ � p̂ q̂ r̂ �c �e �a �r �le

i
. (3.16)

The air brake deflection �br and the landing gear are examples of inputs that also
influence the aerodynamics. However, these cannot be measured with today’s
measurement configuration and are only used in certain manoeuvres. They are
therefore not included in the model.
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3.3.3 Calculation of the Aerodynamic Coefficients
The aerodynamic coe�cients that are given as outputs in (3.11) are not measured
but calculated from other signals. To formulate the aerodynamic model, the aero-
dynamic contributions to the force andmoment equations in the previous section
must therefore be isolated. By removing the contributions from the gravity and
the thrust in the force equation, the aerodynamic force is given as

Fa = mv̇B + ! ⇥ (mvB) � Fg � F e (3.17)

where Fg is the gravity force vector and F e is the thrust force vector. Using stan-
dard notation, the aerodynamic forces for each direction become

Fax := X = m(u̇ + qw � rv) + mg sin ✓ � Fex
Fay := Y = m(v̇ + ru � pw) � mg cos ✓ sin� � Fey
Faz := Z = m(ẇ + pv � qu) � mg cos ✓ cos� � Fez

(3.18)

where Fey = 0 in the engine model at saab due to the placement of the engine
in the y�symmetry plane. The gravity contribution in (3.18) has been converted
to the body-fixed system using Euler angles. The notation at saab is slightly
di↵erent from that in the literature and to be consistent with Stavöstrand (2011)

T = �X, C = �Y, and N = �Z (3.19)

are used instead to denote the aerodynamic forces.

When calculating these forces at saab, a measurement of the load factors is used.
The load factor is all forces except the gravity, divided by the aircraft’s weight. It
is a unit-less quantity but often said to have the unit g. The load factor has the
opposite sign of the force and can be thought of as the weight perceived by the
pilot. For example, if the lift is in the negative z�direction, pressing the aircraft
upwards, the pilot will feel heavier, as if he is being pressed down into the seat.
The load factor will therefore be pointing down and having a positive sign. This
gives the relation

n = �Fa + F e

mg
, Fa = �mgn � F e (3.20)

where n is the load factor vector and g is the gravity constant.

The same reasoning as for the force equation is applied to the moment equation
and all contributions except for the aerodynamics are removed. The gravity how-
ever, does not contribute to the moment as the body-fixed coordinate system is
centred at the aircraft’s centre of gravity. Instead, the aerodynamic forces Fa
result in a moment as these have their point of attack in the aerodynamic cen-
tre, which does not generally coincide with the centre of gravity. By removing
this component and the contributions from the thrust, the aerodynamic moment
equation becomes

Ma = I!̇ + İ! + ! ⇥ (I! + He) �M e � (rac,cg ⇥ Fa) (3.21)

where He is the angular momentum caused by the spinning rotors of the engine,
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M e is the moment contribution from the thrust due to the engine not being in
the centre of gravity and ra.c,c.g is the distance from the centre of gravity to the
aerodynamic centre. In applications at saab, the derivatives of the moments of
inertia are neglected as stated in Section 3.1, eliminating the term İ! from (3.21).
Note however that the moments of inertia matrix is not constant. Both the inertia
matrix and the position of the centre of gravity change depending on the fuel
consumption and distribution. The gyroscopic e↵ect from the engine only gives
a contribution in the x-direction and is therefore given as He = [ He 0 0 ]T and the
thrust moment is given as M e = [Mex Mey Mez ]T . Inserting these in (3.21) and
introducing the standard notation L,M,N give the moment equations

Max := L = ṗIxx � q̇Ixy � ṙ Ixz + qr(Izz � Iyy) + (r2 � q2)Iyz � pqIxz + rpIxy�
Mex �

⇣
(cgy � acy)Faz � (acz � cgz)Fay

⌘
, (3.22a)

May :=M = �ṗIxy + q̇Iyy � ṙ Iyz + rp(Ixx � Izz) + (p2 � r2)Ixz � qrIxy + pqIyz+

Her �Mey �
⇣
(acz � cgz)Fax � (cgx � acx)Faz

⌘
(3.22b)

and

Maz := N = �ṗIxz � q̇Iyz + ṙ Izz + pq(Iyy � Ixx) + (q2 � p2)Ixy � rpIyz + prIxz�
Heq �Mez �

⇣
(cgx � acx)Fay � (cgy � acy)Fax

⌘
. (3.22c)

At saab, the positions of the centre of gravity and the aerodynamic centre are
not given in the body-fixed coordinate system but in the main construction coor-
dinate system (the S85 system) (Stavöstrand, 2011). This coordinate system has
its centre at the nose of the aircraft and its x85� and y85�axes are pointing in the
negative direction of the body-fixed x� and y�axes, respectively. This is the rea-
son for the changed order of (cgx � acx) and (cgy � acy) in (3.22). Note thatMx , L
since it is the total of all moments whereas L is only the aerodynamic moment.

Now that the aerodynamic forces andmoments are isolated, the non-dimensional
aerodynamic coe�cients can be calculated as

CT =
T
qaS

, CC =
C
qaS

, CN =
N
qaS

,

Cl =
L

qaSb
, Cm =

M
qaSc

, Cn =
N

qaSb

(3.23)

where

qa =
1
2
⇢V 2 (3.24)

is the dynamic pressure, ⇢ is the air density, V is the wind speed, S is the wing
area, c is the mean aerodynamic chord of the wing and b is the wing span. Note
the di↵erence in notation between N , which is the normal force, and N , which is
the aerodynamic yaw moment.
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Given the results from the previous sections, the complete linear aerodynamic
model can be formulated as

y = ✓T�T ,

2
66666666666666666664

CT
CC
CN
Cl
Cm
Cn

3
77777777777777777775

=
1

qaS

2
66666666666666666664

�1 0 0 0 0 0
0 �1 0 0 0 0
0 0 �1 0 0 0
0 0 0 1

b 0 0
0 0 0 0 1

c 0
0 0 0 0 0 1

b

3
77777777777777777775

2
66666666666666666664

X
Y
Z
L
M
N

3
77777777777777777775

=

2
666666666666666666666664

CT0 CT↵ CT� 0 0 0 CT�c
CT�e

CT�a
CT�r

CT�le
CC0 CC↵ CC� 0 0 0 0 0 CC�a

CC�r
0

CN0 CN↵ CN� 0 CNq̂
0 CN�c

CN�e
0 0 CT�le

Cl0 Cl↵ Cl� Clp̂ 0 Clr̂ 0 0 Cl�a
Cl�r

0
Cm0 Cm↵

Cm�
0 Cmq̂

0 Cm�c
Cm�e

Cm�a
0 Cm�le

Cn0 Cn↵ Cn↵ Cnp̂ 0 Cnr̂ 0 0 Cn�a
Cn�r

0

3
777777777777777777777775

2
666666666666666666666666666666666666666664

1
↵
�
p̂
q̂
r̂
�c
�e
�a
�r
�le

3
777777777777777777777777777777777777777775

(3.25)

where the matrices on the right-hand side have been transposed only to make the
expressions fit on the page. The model includes all cross coupling derivatives to
make it as complete as possible. This allows for it to also handle asymmetric air-
craft configurations. The model is analogous to the one presented in Stavöstrand
(2011) except that the derivatives Clq̂ , Cmp̂

and Cnq̂ have been removed. These
are not part of the aerodata model according to Helena Johansson and Fredrik
Ljungberg (Johansson and Ljungberg, 2015).

As explained previously, the model is only valid for small disturbances from a
trimmed condition. This means that the output and regressor vectors in reality
become

y =
h
�CT �CC �CN �Cl �Cm �Cn

iT
(3.26)

and

� =
h
�↵ �� �p̂ �q̂ �r̂ ��c ��e ��a ��r ��le

i
(3.27)

respectively, where � denotes a deviation from a trimmed condition. Since the
first element of the regressor vector in (3.25) is constant, this and the first column
of the parameter matrix in (3.25) are not part of the estimation model.
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Two Degrees of Freedom Simulation

Model

The implementation of a simulation model is described in this chapter. The air-
craft model is implemented in Simulink as a tool to analyse the two estimation
methods described in Section 2.3 and the four methods for handling of miss-
ing data described in Section 2.4.2. The simulation model gives an environment
where all coe�cients are known exactly and process and measurement noise lev-
els can be adjusted. The simulated flight data can also be modified and missing
data can be introduced. This makes it possible to compare the di↵erent algo-
rithms and methods for handling of missing data since the true model is known.
Since the data quality can be modified, the comparisons can be made for a wider
range of cases than would have been the case if only real flight test data was stud-
ied. This allows for a more extensive analysis even though a limited amount of
real datasets are available for study.

The implemented model is a simplification based on an F-16 fighter since the
numerical values for this aircraft are public. The conclusions drawn from the
simulation results are, however, assumed to be applicable for the case of Gripen
as well. The simplified model together with the made approximations are pre-
sented in Section 4.1 and the final simulation model with numerical values from
the F-16 is presented in Section 4.2.

4.1 The Short-Period Approximation
The implemented simulation model is a simplified version of a complete flight
mechanical model. The method used for this simplification is called the short-
period approximation and is described in this section.

In order to generate simulated data in Simulink, the required model structure is

27
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a state-space representation such as

ẋ = Ax + Bu + w (4.1a)
y = Cx + v (4.1b)

where x denotes the states, u denotes the inputs, y denotes the measured out-
puts, w denotes the process disturbance vector and v denotes the measurement
noise vector. To obtain such a model, the flight mechanical equations are used.
The complete rigid-body aircraft model has six degrees of freedom (dof) and
nine states. In order to get a lower order model that is more easily handled, only
longitudinal motion is considered, (x-, z- and pitch-motion). Then only the lon-
gitudinal equations, namely (3.5a), (3.5c) and (3.9b), are used.

Having only a longitudinal motion, these equations reduce to

Fx = m(u̇ + qw), (4.2a)

Fz = m(ẇ � qu) (4.2b)

and

My = q̇Iyy (4.2c)

where all parameters describing the lateral motion have been set to zero. This
representation can be simplified further by limiting the study to the short-period
mode, in accordance with Nelson (1998). For a more detailed description of the
short-period approximation, Etkin and Reid (1996) or Nelson (1998) are recom-
mended.

The short-period is a highly damped oscillatory motion in angle of attack with
short period time. The short-period approximation is obtained by assuming that
the motion takes place at constant altitude and with constant speed V . The mo-
tion is further assumed to consist of small deviations in angle of attack from a
trimmed flight condition parallel to the earth’s surface, that is ✓0 = 0. The equa-
tions are therefore linearised around this trimmed state. The changes in angle of
attack are considered so small that the force in the x-direction and variation of
the speed u are neglected entirely. The small angle assumption also allows for
the approximation �w = u0 sin�↵ ⇡ u0�↵. Applying all these assumptions to
(4.2) gives

�Fz = mu0(�↵̇ � �q) (4.3a)

and

�My = �q̇Iyy (4.3b)

where u0 is the trimmed speed in the x-direction and � denotes the deviation
from the trimmed condition. Note that u0 = V as a result of the approximations.

The force and moment in (4.3) include all forces and moments acting on the air-
craft. The thrust is assumed to be constant and the variation in pitch angle �✓ is
assumed small enough to consider the gravitational contribution as constant. The
result is that the only forces and moments to be considered are the aerodynamic
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contributions. The conversions from force and moment into the dimensionless
aerodynamic coe�cients are

�Fz = �Faz = ��N = ��CNqaS (4.4a)

and

�My = �May = �M = �CmqaSc (4.4b)

where qa = 1
2⇢V

2 is the dynamic pressure.

The aerodynamic coe�cients are then expressed as linear combinations of the
angles, accelerations and control surface deflection angles that are part of the
simplified model. By removing the lateral elements in (3.25) and linearising, the
simplified aerodynamic coe�cients become

�CN = CN↵�↵ + CNq̂
�q̂ + CN�e

��e (4.5a)

and

�Cm = Cm↵
�↵ + Cmq̂

�q̂ + Cm�e
��e (4.5b)

where q̂ = qc
2V and the aerodynamic derivatives depend on the trimmed flight

condition.

By combining (4.3), (4.4) and (4.5), the state-space formulation becomes

�↵̇ = � Sqa
mu0

 
CN↵�↵ +

 
CNq̂

c
2V
� mu0

Sqa

!
�q + CN�e

��e

!
(4.6a)

and

�q̇ =
Scqa
Iyy

✓
Cm↵

�↵ + Cmq̂

c
2V

�q + Cm�e
��e

◆
(4.6b)

which has the desired structure of (4.1) but with only two dof. To summarise,
(4.6) is the state-space representation used in Simulink to drive the simulation
while (4.5) is the linear model whose parameters are estimated.

The desired input to the system is a pulse in order to maximise the frequency
content. However, a perfect pulse cannot be obtained in a fighter aircraft. This
is partly due to the dynamics between the pilot command �se and the control
surface �e and partly due to the presence of an fcs, constantly trying to stabilise
the aircraft. In order to make the simulated data more realistic, these aspects are
added to the Simulink model in addition to the state-space model, as can be seen
in Figure 4.1. The transfer function of the servo is assumed to be

Gservo(s) =
0.0495

0.0495s + 1
(4.7)

which can be found in Stevens and Lewis (2003). For simplicity, the closed loop
is implemented only as a feedback in ↵ with gain 1.
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Gservo(s) n⌃ n⌃ ẋ = Ax + Bu
y = Cx

n⌃- - - - - -

6

?
w

?
v

�se �e y

↵

Figure 4.1: The implementation of the two dof-aircraft model in Simulink
follows the structure above with a servo, process and measurement distur-
bances and a feedback in ↵.

4.2 Numerical Simulation Model
For the generation of simulated data, a model of the F-16 fighter is used. The
state-space model and numerical values for this aircraft are taken from Morelli
(1999). The model has the desired structure of (4.1) with the states, input and
outputs

x =
"
↵
q

#
, u =

h
�e

i
, and y =

"
↵
q

#
(4.8)

and the numerical values

A =
"
�0.6 0.95
�4.3 �1.2

#
, B =

"
�0.115
�5.157

#
and C =

"
1 0
0 1

#
. (4.9)

The numerical values of the aerodynamic derivatives can be calculated as

CN↵ = � A11mu0
qaS

, CNq̂
=
2Vmu0
Scqa

(1 � A12) , CN�e
=
�B1mu0

Sqa
,

Cm↵
=

A21Iyy
Scqa

, Cmq̂
=

A222V Iyy
Sc2qa

and Cm�e
=

B2Iyy
Scqa

(4.10)

where Aij and Bi are the elements of the A and B matrices. These calculated
values are presented in Table 4.1.

According to Roskam (1995), the short-period approximation is only valid for
inherently stable airplanes. The F-16 is an unstable aircraft in its conventional
configuration (Frawley and Thorn, 1996), and the approximation would therefore
not be valid. However, the particular F-16 from Morelli (1999) used in this appli-
cation has a forward centre of gravity position (0.2c) which makes it inherently
stable and the short-period approximation can therefore be used.

The numerical values of all remaining parameters used in the simulation model
are presented in Table 4.2. The parameter values associated with the specific
trimmed condition (height, mach number and angle of attack) are taken from
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Table 4.1: The calculated numerical values for the aerodynamic derivatives.

Parameter Calculated value Unit
CN↵ 3.6268 [-]
CNq̂

21.2876 [-]
CN�e

0.6951 [-]
Cm↵

-0.5046 [-]
Cmq̂

-9.9176 [-]
Cm�e

-0.6051 [-]

Morelli (1999) and the parameters associated with the aircraft (mass, wing area,
etc.) are taken from Stevens and Lewis (2003). The atmospheric parameters (tem-
perature, density and lapse rate) follow the International Standard Atmosphere
(isa) and can be found in iso (2533:1975). The remaining parameters are conven-
tional constants or derived using the expressions

T = T0 + �h � h0, (4.11)

⇢ = ⇢0

 
T
T0

!�(1+g/(R�))
, (4.12)

a =
p
�RT (4.13)

and

M =
V
a

(4.14)

from Nelson (1998).

The numerical model presented above is used to generate simulated flight test
data. However, in order to fully investigate Larsson’s algorithm, data to use as
ivs is needed as well. Therefore, a second model is run in parallel with the first
to simulate a parallel simulation. The numerical values for the parameters of
the second model are modified with 5% in comparison to those in the A and B
matrices of (4.9) and it lacks process and measurement noise. This way, the true
case where the simulation model is similar to, but not the same as, the aircraft, is
simulated.
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Table 4.2: The numerical values used in the two dof-longitudinal aircraft
model of the F-16.

Parameter Value Unit Description

Ts 1/60 [s] Sampling time
h 3048 [m] Altitude of flight
h0 0 [m] Reference altitude
T 268.348 [K] Temperature at altitude of flight
T0 288.16 [K] Temperature at reference altitude
⇢ 0.9045 [kg/m3] Air density at altitude of flight
⇢0 1.225 [kg/m3] Air density at reference altitude
↵0 7 [deg] Trimmed angle of attack
R 287 [m2/Ks2] Gas constant of air
� 1.4 [-] Ratio of specific heats

dT /dh, � -0.0065 [K/m] Temperature gradient (Lapse rate)
g 9.81 [m/s2] Gravity constant
M 0.37 [-] Mach number
a 328.36 [m/s] Speed of sound at temperature of flight
V 121.5 [m/s] Airspeed
S 28.0 [m2] Wing area
c 3.45 [m] Mean aerodynamic chord
m 9 300 [kg] Mass
Iyy 75 674 [kgm2] Moment of inertia about the y axis



5
Requirements, Constraints and

Evaluation Conditions

In this chapter, the details regarding the implementation constraints posed by the
surrounding software and the requirements of the final algorithm are presented.
The di↵erent alternatives and conditions for the evaluation are also presented.
Firstly, the ideal functionality of the algorithm is presented in order to formulate
the requirements for the algorithm. This presentation also includes a descrip-
tion of the visualisation of the results used throughout this work. Secondly, the
surrounding software at saab is described to give an understanding of the frame-
work in which the algorithm is working. This framework has limitations and puts
constraints on the implementation and performance of the algorithm. Lastly, the
data used in this work is described. This gives an understanding of the evalua-
tion conditions when analysing the di↵erent methods and the limitations given
the available data.

5.1 Ideal Real-Time Parameter Estimation Algorithm
For the real-time parameter estimation algorithm to be fully functional and us-
able in flight tests at saab, some basic elements are needed. In this section, the
functionality requirements of the ideal algorithm are presented.

The purpose of the real-time parameter estimation algorithm is to estimate aero-
dynamic derivatives in real time and compare these to the aerodynamic deriva-
tives of the existing aerodynamic model. A visual comparison of the estimated
parameter and the model parameter is needed and it must be good enough to
draw conclusions upon. The visualisation must therefore include the quality of
the data used for the estimation and the quality of the estimated parameter.

Figure 5.1 shows an example of what the ideal algorithm might output. For sim-
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Figure 5.1: A theoretical example of what the output from the real-time
estimation program might look like. The three graphs show the regressor,
the output and the estimates, respectively. The value of an estimate is indi-
cated by a circle and its quality is indicated by two times its estimated stan-
dard deviation, visualised by a vertical line. The current model parameter
is indicated by a horizontal dashed line for comparison. The excitation and
telemetry disruptions, which indicate the quality of the data, can be seen in
the plots of the output and regressor. Disruptions are visualised by a vertical
dashed line.

plicity, the example has one regressor �, one output y and one parameter ✓. The
regressor is a state or input, the output is a coe�cient and the parameter is the
aerodynamic derivative with respect to the regressor. The time progress of the
signals is shown to be able to study the manoeuvre and see when di↵erent modes
are excited. In this example, the excitation starts just before three seconds. A
disruption in the data stream is indicated in the graph, for example by a dashed
vertical line. In this example, only the presence of a disruption is indicated and
not its length. This is the presentation used in the real-time presentation system
today to indicate data loss. The estimation is performed at regular intervals, in
this example every second. The estimate is indicated by a circle. The accuracy
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of the estimate is indicated by two times its estimated standard deviation, cal-
culated using (2.15) and visualised by a vertical line. This accuracy measure is
chosen in order to be consistent with Larsson (2013) and Morelli (1999). The
dashed horizontal line indicates the current value of the parameter in the aerody-
namic model. Since more and more data is used in the estimator it is expected
to converge and give more accurate values. Before excitation, there is little infor-
mation in the data. Ideally, this is visible in the variation of the estimates and
in their standard deviations. The true parameter should, however, be included
in the interval. After excitation, the standard deviation should become smaller
and the estimate should converge towards the true value. In this example, the
true value appears to be the same as the model value as the estimates converge
towards the dashed line. Missing data could also be visible in the estimation by
giving a higher standard deviation.

5.2 Surrounding Software at SAAB

The final parameter identification algorithm is not stand alone but integrated
with existing software for real-time monitoring at saab. The algorithm is imple-
mented in a Matlab shell called StellaRT that allows for communication with the
real-time data server. This server also communicates with the program for paral-
lel simulation that in turn uses the complete aircraft model. All this surrounding
software puts constraints on the parameter identification algorithm and a↵ects
the implementation choices. To understand these constraints, the software is pre-
sented below.

5.2.1 VuSoftNT
The real-time presentation system at saab is called VuSoftNT and is described in
Andersson et al. (2002). It decodes the telemetry data streams and communicates
with other programs such as romac and StellaRT, which are presented below. All
telemetry data and simulated data are transferred to VuSoftNT for presentation
on screen. VuSoftNT is also capable of real-time calculations. Some signals are
calculated within VuSoftNT and available just as any telemetry signal.

5.2.2 ARES

The complete saab aircraft model is called Aircraft Rigid body Engineering Sim-
ulation (ares). It is a six dof, non-linear state-space model that contains all
sub-models such as the aerodynamic model (Andersson et al., 2002).

5.2.3 ROMAC

As described in Andersson et al. (2002), the internal saab tool for real-time paral-
lel simulation is called Real-time On-line Model and Aerodata Control (romac).
The true pilot commands are sent to romac via VuSoftNT, and romac uses ares
to make a parallel simulation with the true pilot commands. The outputs from
this simulation are sent back to VuSoftNT where they are presented as any real-
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time data. The outputs have a delay of about 0.5 seconds but the resulting signals
still have the correct timestamp.

The model contains filters that cannot handle telemetric interruptions. This is
handled by romac in two ways, either by restarting the filter or by linear inter-
polation. Except for in the filter algorithms, however, there are no procedures for
handling missing data.

romac also allows for analysis of aerodynamic coe�cients. This is done by the
two scripts arcoft and wt. Arcoft calculates the aerodynamic coe�cients by do-
ing the calculations described in Chapter 3 while wt performs a search in the
look-up tables of the aerodynamic database. When calling Arcoft or wt, all pa-
rameters are low pass filtered and a di↵erentiation filter is used in the calculation
of the coe�cients. These filtrations are found to result in a 35 sample delay of
the coe�cients with respect to the other signals. Each signal has a corresponding
time vector where each sample is associated with a time. The aerodynamic coef-
ficients are delayed also with respect to their own time vector, meaning that the
samples also have the wrong timestamp.

In the current release of romac, not all internal parameters are returned to Vu-
SoftNT and thereby available in StellaRT. Additional parameters cannot easily be
added to VuSoftNT since romac has reached the limit for how many parameters
that can be returned.

5.2.4 StellaRT
Stella Real-Time (StellaRT) is a Matlab toolbox developed at saab for performing
customised real-time evaluation, and is documented in saab ab (2012). StellaRT
is a shell that contains a Graphical User Interface (gui). StellaRT connects to the
VuSoftNT server and loads the telemetric data and romac data into the Matlab
workspace as it arrives. By adding personal scripts to this framework, users can
create customised real-time evaluation programs. StellaRT also has a simulation
mode where recorded telemetry data is replayed instead of getting data from
VuSoftNT.

5.3 Description of the Data
In this section, the di↵erent types of data used in this work are presented along
with their purpose and constraints. The di↵erent types of used data are analytical
data, simulated data, post-processed flight test data and recorded real-time flight
test data.

5.3.1 Created Data
For some analysis, an analytical signal is used since such a signal is clean from
noise, can be designed to have specific properties and can be di↵erentiated an-
alytically. An analytical signal is used as a first stage analysis of parts of the
algorithm.
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Simulated data is used to determine general properties of the algorithm by per-
formingMonte Carlo (mc) simulations. When doing amc simulation, the means
of the estimates and the means of their estimated standard deviations are pre-
sented along with the standard deviations over all simulations. This allows to
evaluate the bias and variance properties of the estimator.

The simulated data is generated by the two dof simulation model described in
Chapter 4. The simulated data is used as a complete set or with randomly intro-
duced missing data points. The model also allows for varying noise levels, which
is required in order to study the influence of the instrumental variables.

5.3.2 Flight Test Data
Two types of flight test data are used in this work. These are post-processed flight
test data and recorded real-time flight test data. All flight test data and numerical
values in this work have been distorted for security reasons.

The post-processed flight test data is used to evaluate the algorithm under ideal
conditions. This data is the recorded data taken from the aircraft after flight and
processed using a software called Bas39. This means that the data is complete,
with no disruptions. All signals are synchronised to a common frequency of 60
Hz and the data is processed to remove outliers. Some signals are also low pass
filtered. In the post-processed data, all delays due to filters are compensated for.
Since the data only includes flight data and no simulated data, no analysis using
ivs is performed using post-processed flight test data in this work, even though
simulated data could be created afterwards.

The recorded real-time data is used to give an example of what results to expect
when running the algorithm in real time. The data is recorded during flight test
using a software called Nyreg and contains all telemetry disruptions and sim-
ulated signals. In the recording, all signals are synchronised to a common fre-
quency of 60 Hz. Other than that, the data is not processed and no delays are
compensated for. This means that there is a delay di↵erence between the coe�-
cients of the post-processed data and the recorded real-time data. This delay can
be seen in Figure 5.2.

For studies using flight test data, only one data set was available. This data set
comes from a roll manoeuvre, and the roll moment coe�cient Cl is therefore
mostly studied for flight test data. The states and outputs for this data set are
presented in Figure 5.3. As can be seen, the manoeuvre starts from a trimmed
condition and the roll command arrives after about 13 seconds.
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Figure 5.2: Illustration of the delay of the real-time coe�cient Cl compared
to the coe�cient from the post-processed data.
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Figure 5.3: Flight test data for a roll manoeuvre from trimmed condition.
The states and inputs shown are those included in the aerodynamic model.
The time scale is given in seconds.
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Evaluation of Larsson’s and Morelli’s

Algorithms

In chapters 2 and 3, the tools and models used in this work are presented in a
general way and the adaptions made for this particular application are described.
In this chapter, the results from these two chapters are tied together and the
challenges and alternatives in the implementation of the real-time algorithm are
presented. The final choice among these implementation alternatives depends
on their performance and on their suitability from an implementation point of
view. The implementation alternatives and their properties are presented ini-
tially. Then, the results using the di↵erent implementation alternatives for Lars-
son’s and Morelli’s algorithms are presented. The presentation of the results fol-
low the description of the example in Section 5.1 where the ideal estimation algo-
rithm is presented.

6.1 Formulating the Linear Regression
In this section, the di↵erent alternatives for formulating and implementing the
linear regression are presented along with their challenges and constraints. There
are several alternatives when using the aerodynamic model of (3.25) to formulate
the complex regression of (2.10). Additionally, the aerodynamic coe�cients that
constitute the output of the model can be calculated in di↵erent ways and one of
these must be chosen.

The linear regression is formulated by using the czt to transform the expression
in (3.25). Since not all coe�cients have the same inputs and the cls is imple-
mented to handle parameter vectors, not matrices, one regression is formulated
for each coe�cient.
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6.1.1 Choosing Outputs
The force coe�cients can be calculated using (3.20) and (3.23) either in the Ar-
coft script or in the estimation algorithm. When calculated in the Arcoft script,
the coe�cients get a delay of 35 samples. Besides the delay, the calculated coe�-
cients are equivalent and calculation in the algorithm is preferred since no delay
compensation is needed in that case.

The moment coe�cients can similarly be calculated either in the Arcoft script or
in the estimation algorithm by combining (3.21) and (3.23). The final equation
becomes

CM =
I!̇ + İ! + ! ⇥ (I! + He) �M e � (rac,cg ⇥ Fa)

qaSlref
(6.1)

where CM is a vector containing the moment coe�cients (Cl, Cm, Cn) and lref
denotes the reference length, either b or c depending on the direction of the mo-
ment. As described in Chapter 3, the term İ! is normally neglected at saab and
the transform becomes

C̃M = FCZT

 
I!̇ + ! ⇥ (I! + He) �M e � (rac,cg ⇥ Fa)

qaSlref

!
(6.2)

where FCZT denotes the czt. Due to the presence of a di↵erentiation in the
calculation of the moment coe�cients, there are several alternatives for how to
calculate them using di↵erent approximations.

Calculation of the Moment Coefficients within the Algorithm

In order to use either of Morelli’s or Larsson’s methods, described in Section 2.3.2
and Section 2.3.3, to transform the derivative, the di↵erentiated term !̇ must
be isolated. For simplicity, the notation ⇣num = ! ⇥ (I! + He) � M e � (rac,cg ⇥
Fa), for the rest of the numerator, and ⇣denom = qaSlref , for the denominator, is
introduced. Since neither ⇣num, ⇣denom or I are constant, neither can be isolated
directly. The isolation can be done in several ways and these are presented below.

Approximating the inertia and dynamic pressure as constant: The simplest so-
lution would be to neglect the variations of the inertia and dynamic pressure and
put these as constant. The coe�cients would then become

C̃M = FCZT

 
I0!̇

qa0Slref

!
+ FCZT

 
! ⇥ (I! + He) �M e � (rac,cg ⇥ Fa)

qa0Slref

!
(6.3)

where I0 and qa0 denote the initial values of the inertia and dynamic pressure,
respectively. Whether this approximation is valid or not depends on how much
the variations of the inertia and dynamic pressure influence the coe�cients.

Convolution: Another alternative is to transform all including parts separately
and convolute them together. This gives the transformed coe�cients

C̃M = (FCZT(I) ⇤ FCZT(!̇) + FCZT(⇣num)) ⇤ FCZT(
1

⇣denom
) (6.4)
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where

FCZT(I) ⇤ FCZT(!̇) = FCZT(I) ⇤
 
j!f FCZT(!) +

1
Ts

⇣
!t1e

�j!f t1 � !0
⌘!
. (6.5)

Confusion between the angular rates vector and the frequency vector has been
avoided by adding the subscript f to the frequency vector. The vector !0 de-
notes the angular rates at time 0 and !t1 those at the evaluation time. Since the
transform is finite, circular convolution should be used. However, this method is
not preferable from an implementation point of view due to its complexity and a
simpler solution is preferred.

Modified regressors: One simpler solution is to move the denominator to the
right hand side of the regression and create new regressors as

�0 =
h
↵ � p̂ q̂ r̂ �c �e �a �r �le

i
· (qaSlref). (6.6)

However, this still leaves the convolution FCZT(I) ⇤ FCZT(!̇). By reintroducing
the term İ!, which is usually neglected, this convolution can be avoided as well
since

d
dt

(I!) = I!̇ + İ! (6.7)

and the di↵erentiation becomes

FCZT(
d
dt

(I!)) = j!f FCZT(I!) +
1
Ts

⇣
(I!)t1e

�j!f t1 � (I!)0
⌘
, (6.8)

still with the modified regressors. In this case, I! is considered as one signal.

Calculation of the Moment Coefficients within Arcoft

The last alternative is to use the already available coe�cients calculated in Arcoft
and transform these without performing any di↵erentiation within the algorithm.
In that case, a compensation for the delay is needed in the implementation. As
mentioned in Section 5.2.3, the coe�cients are calculated using a di↵erentiation
filter. The angular accelerations ṗ, q̇ and ṙ are calculated using a 10th order asym-
metric Finite Impulse Response (fir) filter. Whether this is a good alternative or
not depends on the quality of this filter compared to the quality of the transform
di↵erentiation.

Another aspect to take into account in the implementation is the limitations of
the surrounding software. As explained in Section 5.2.3, not all internal parame-
ters are returned to VuSoftNT and thereby available in StellaRT. The parameters
that are not available in today’s release include I and Fa. Without these, none
of the alternatives where the moment coe�cients are calculated within the algo-
rithm can be used with today’s version of romac.
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6.2 Sensitivity Analysis for Changes in the Dynamic
Pressure and Inertia Matrix

As described in Section 6.1, the simplest solution for transforming the moment
coe�cients would be to neglect the variations in the dynamic pressure and mo-
ments of inertia. To be able to make this approximation, the resulting error in the
coe�cients must be significantly smaller than the existing margin of error in the
coe�cients at saab. This margin is in the order of 10%. The sensitivity analysis
is performed on post-processed flight test data.

The approximation is done by assuming that the dynamic pressure and inertia
matrix are constant with the same values as for the trimmed condition. Since the
model is valid for small disturbances from a trimmed condition, the variations of
the dynamic pressure and moments of inertia might be small and the approxima-
tion might be valid.

For this analysis, the real data set from the roll manoeuvre is studied. The varia-
tions

� = 100
|Imax � Imin|
|I |min

(6.9)

of the di↵erent signals are calculated in percent. The moments of inertia are
fairly constant during this particular manoeuvre and Ixx, Iyy and Izz vary with
2.8%, 0.6% and 0.9% respectively. The products of inertia vary more, 160 %, 2.2
% and 266 % for Ixy , Ixz and Iyz respectively. These do not, however, contribute
to a great extent to the total moments. As defined in (3.9), the moments are
calculated as

Mx = ṗIxx � q̇Ixy � ṙ Ixz + qr(Izz � Iyy) + (r2 � q2)Iyz � pqIxz + rpIxy

My = �ṗIxy + q̇Iyy � ṙ Iyz + rp(Ixx � Izz) + (p2 � r2)Ixz � qrIxy + pqIyz

Mz = �ṗIxz � q̇Iyz + ṙ Izz + pq(Iyy � Ixx) + (q2 � p2)Ixy � rpIyz + prIxz .

The contribution from the first three terms to the total roll moment is presented
in Figure 6.1. The main contribution comes from the roll acceleration and Ixx.
The contribution to the pitch moment looks similar to Figure 6.1, where the pitch
acceleration and Iyy are the main contributors. The yaw moment, however, looks
di↵erent. It can be seen in Figure 6.2 that in addition to the yaw acceleration and
Izz , the roll acceleration and Ixz give a large contribution.

In order to study the worst-case scenario, the maximum and minimum values of
the moments are calculated in the same way as

Mxmax = ¯̇pIxxmax � ¯̇qIxymin � ¯̇rIxzmin + q̄r̄(Izzmin � Iyymax) + (r̄2 � q̄2)Iyzmin

� p̄q̄Ixzmax + r̄ p̄Ixymax (6.10)

where the bar denotes the mean value and max or min have been chosen depend-
ing on whether they give a positive or negative contribution.
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Figure 6.1: The contribution from the di↵erent angular accelerations and
moments of inertia to the roll moment.

The variations are calculated using (6.9) and become 10.7 %, 6.5 % and 4.8 % for
roll, pitch and yaw respectively.

The dynamic pressure qa defined in (3.24) vary with 7.2 %. In order to investigate
how the changes in dynamic pressure and inertia a↵ect the coe�cients, these
are approximated. It is assumed that the aerodynamic moments are the only
moments acting on the aircraft and the coe�cients are calculated by dividing the
roll and yaw moments by qaSb and the pitch moment by qaSc. The variations of
the coe�cients Cl, Cm and Cn then become 18.6 %, 14.6 % and 12.5% respectively.
This is considered too much for the approximation of constant dynamic pressure
and moments of inertia to be likely to give good results.
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Figure 6.2: The contribution from the di↵erent angular accelerations and
moments of inertia to the yaw moment.

6.3 Analysis of Differentiation Methods
In this section, the accuracy of the di↵erentiation filter and the accuracy of the dif-
ferentiation in the frequency domain are analysed. An analytical signal which is
analytically di↵erentiated and transformed using the czt is used in the analysis.
This gives a true reference of the derivative, which is not available for simulated
or real flight test data. The same analytical signal is di↵erentiated with the fir
di↵erentiation filter and transformed, and di↵erentiated within the transform us-
ing Larsson’s algorithm. Also Morelli’s algorithm contains a di↵erentiation but
since this is approximated and neglects more terms than Larsson’s algorithm, it is
assumed to give worse results. Only Larsson’s algorithm is therefore considered
in this analysis.

Both Larsson’s algorithm and the fir filter are limited to a frequency interval of
0.1 to 2.0 Hz. The analytical signal is therefore a multisine constructed within
this frequency interval. The signal is chosen as

y = A1 sin(!1t) + A2 sin(!2t) (6.11)

with !1 = 0.3 · 2⇡, !2 = 1.5 · 2⇡ and the analytical derivative

ẏ = A1!1 cos(!1t) + A2!2 cos(!2t). (6.12)
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Figure 6.3: The magnitude and phase for the transformed analytical signal
y di↵erentiated using Larsson’s algorithm, analytically and using the saab
fir filter for di↵erentiation.

The di↵erentiated and transformed analytical signals are presented in Figure 6.3.
It is clear that Larsson’s method of di↵erentiation in the frequency domain is
better than the fir filter since it has a closer resemblance to the analytically dif-
ferentiated signal. The weakness of the fir filter is mainly in holding down the
frequencies not present in the signal. For a real signal with a more continuous
frequency content, the di↵erence should be smaller. Figure 6.4 shows the trans-
formed real data of the pitch angular acceleration q̇ for which the di↵erence is
most clear. There is a visible di↵erence between the two di↵erentiation methods
also for real data, but it is smaller than for analytical data as expected. However,
since the true derivative q̇ is not known, no conclusion as to which is better can
be drawn from this.

How the di↵erence in di↵erentiation method a↵ects the estimates can be seen in
Figure 6.5. Estimation results using the di↵erentiation in the frequency domain
and the di↵erentiation using the fir filter are compared using post-processed
flight test data. The excitation of the di↵erent signals is given together with the
description of the data in Figure 5.3. The estimates using the two di↵erentiation
methods are generally very similar, especially at the end of the excitation. In
the beginning of the excitation, the di↵erence is bigger. The fir filter estimates
are better than the ones using Larsson’s di↵erentiation for example at the 14th

time-step in the estimation of Cl�a
and Cl�r

, and the 15th and 16th time-steps
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Figure 6.4: The magnitude and phase of the transformed pitch angular ac-
celeration q̇ di↵erentiated using Larsson’s algorithm and using the saab fir
filter for di↵erentiation.

in the estimation of Cl↵ . For both Clp̂ and Clr̂ , Larsson’s di↵erentiation gives
better estimates at the 14th time-step but the fir filter di↵erentiation gives better
estimates at the 15th time-step. The results are not conclusive and no method
can be said to have a better general performance than the other based on this
single data set. However, it can be concluded that the significant weakness of the
fir di↵erentiation seen on analytical data does not appear to have a significant
negative a↵ect on the estimates using flight test data.
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Figure 6.5: Estimation using Larsson’s algorithm and with the inertia and
dynamic pressure approximated as constant. The black circles are esti-
mates where the di↵erentiation is performed within the algorithm. The grey
squares are estimates that use the coe�cient calculated using the fir filter.
The vertical lines indicate two standard deviations of the estimate. No ivs
are used in the algorithms.

6.4 Comparison of Algorithms Using Simulated Data
In this section, the results from the evaluation of Larsson’s and Morelli’s algo-
rithms on simulated data are presented. The simulated data is generated using
the simulation model described in Chapter 4 and 200 mc simulations with vary-
ing noise are used for all evaluations. Since the simulation model assumes the
moments of inertia and dynamic pressure to be constant, the moment coe�cient
expression can be di↵erentiated within the algorithm without taking the issue
described in Section 6.1.1 into account.

Figure 6.6 shows the simulated regressors and the estimated parameters using
Larsson’s and Morelli’s algorithms. There are no estimates using Larsson’s algo-
rithm before excitation since the instrumental variables are noise free and there-
fore zero before excitation. Since the force coe�cient contains no di↵erentiation,
the only di↵erence between the two algorithms for CN is the presence of the ivs
in Larsson’s algorithm. For low levels of measurement noise and process dis-
turbances, such as in Figure 6.6, the ivs give a negligible contribution and the
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Figure 6.6: Estimation using Larsson’s (black) and Morelli’s (grey) algo-
rithms on simulated data with low noise. The moment coe�cient Cm is
di↵erentiated within the algorithms. The circles/squares are the mean es-
timates over 200 simulations and the vertical lines are the mean of their
estimated two standard deviations. The dashed black and grey lines are the
two standard deviations based on the mc simulations. These can be hard to
see in the figure because the standard deviations are so small for low noise.
The straight horizontal dashed lines indicate the true parameters used in the
simulation model.

estimates of CN↵ , CNq̂
and CN�e

are the same using the two methods. This can
be seen in Table 6.1 as well, where the mean value of the last estimate is pre-
sented. For the moment coe�cient, however, the di↵erence in accuracy due to
the correction of the di↵erentiation is clearly visible. For all three derivatives
Cm↵

, Cmq̂
and Cm�e

, Larsson’s algorithm gives better estimates. This is especially
clear at the beginning of the excitation before the two methods converge towards
the true model value. By the end of the excitation, the di↵erence becomes signif-
icantly smaller. In Table 6.1, the mean of the last estimates are presented. There
is a small di↵erence in the estimates of Cmq̂

and Cm�e
, where Larsson’s gives the

smaller bias. Morelli’s algorithm also results in a slightly larger estimated stan-
dard deviation for the last estimate of the moment derivatives. The true param-
eter is, however, included in the interval of two estimated standard deviations
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Table 6.1: The mean value of the last estimates using Larsson’s and Morelli’s
algorithms compared to the true value used in the simulation model.

Parameter Model Larsson Morelli Unit
CN↵ 3.6268 3.6271 ± 0.0003 3.6271 ± 0.0003 [-]
CNq̂

21.2876 21.2879 ± 0.0105 21.2879 ± 0.0105 [-]
CN�e

0.6951 0.6952 ± 0.0003 0.6952 ± 0.0003 [-]
Cm↵

-0.5046 �0.5052 ± 0.0016 �0.5052 ± 0.0018 [-]
Cmq̂

-9.9176 �9.9255 ± 0.0513 �9.9276 ± 0.0593 [-]
Cm�e

-0.6051 �0.6054 ± 0.0015 �0.6055 ± 0.0017 [-]
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Figure 6.7: The mean goodness of fit for the pitch moment coe�cient. The
mean is calculated over all estimates for themc simulation presented in Fig-
ure 6.6.

for all parameters using both algorithms. The di↵erence between the algorithms
can also be seen in the goodness of fit, calculated using the nrmse and presented
in Figure 6.7. The goodness of fit is visibly better using Larsson’s method for the
first three estimates after the start of the excitation before both methods converge
towards perfect fit.

To summarise, both algorithms give a small bias for low noise. For the force
coe�cient, the results are the same using both algorithms indicating that the
ivs do not have a negative e↵ect on the estimates in this case. For the moment
coe�cient, Larsson’s algorithm gives better estimates, especially at the beginning
of the excitation. This result is comparable to what was found in Larsson (2013)
for the state space model. It is the corrected di↵erentiation that results in better
estimates during the excitation. This is explained in Larsson (2013) to be caused
by the fact that the added last sample becomes a correction term for the czt.

Figure 6.8 shows the result of 200 mc simulations with high disturbance lev-
els and using already calculated moment coe�cients instead of di↵erentiation
within the algorithms. When calculated coe�cients are used, the only di↵erence
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Figure 6.8: Estimation using Larsson’s (black) and Morelli’s (grey) algo-
rithms on simulated data with high noise. The moment coe�cient Cm is
calculated before transformation and no di↵erentiation is therefore part of
the algorithms. The circles/squares are the mean estimates over 200 simu-
lations and the vertical lines are the mean of their estimated two standard
deviations. The dashed black and grey lines are the two standard deviations
based on the mc simulations. The straight horizontal dashed lines indicate
the true parameters used in the simulation model.

between the two algorithms consist of the ivs and this allows to isolate the e↵ect
of the ivs. At low disturbance levels, Larsson’s and Morelli’s algorithms give the
same results and only the result with high disturbance levels is presented.

When the disturbance levels are increased, the standard deviation of the esti-
mates becomes significantly larger as can be seen when comparing Figure 6.8 to
Figure 6.6. The estimated standard deviation follows the standard deviation over
the mc simulations. This suggests that the estimated standard deviation can in
fact be used as a measure of the reliability of the estimates.

A zoom of Figure 6.8 is presented in Figure 6.9 to illustrate the di↵erences be-
tween the algorithms. For high disturbance levels, Larsson’s algorithm performs
better than Morelli’s due to the ivs. Both methods result in estimates with a
larger bias for high disturbance levels than for low disturbance levels. However,
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Figure 6.9: Estimation using Larsson’s (black) and Morelli’s (grey) algo-
rithms on simulated data with high noise and calculated coe�cients. A zoom
of the graph presented in Figure 6.8.

the bias of Larsson’s method is smaller than that of Morelli’s for all derivatives.
Also this result is comparable to what was found in Larsson (2013).

6.5 Determining the Reference Derivatives
When Larsson’s and Morelli’s algorithms are compared using simulated data, the
true parameters are known since they are used in the simulation model creating
the data. In the final application, however, one goal is to evaluate the quality
of the simulation model and the true aerodynamic derivatives are unknown. The
model derivatives used for comparison are called the reference derivatives. These
should be taken from the aerodynamic model for the trimmed condition right
before the start of the manoeuvre. However, the aerodynamic model does not
generally include aerodynamic derivatives explicitly. Instead, they must be cal-
culated from the look-up table of the model. The simplest solution, a first order
Euler approximation, is used for this purpose in this work. In order to access the
aerodynamic model in real time, romacmust be used. However, as explained in
Section 6.1.1, romac has reached the limit for how many parameters that can be
returned and this cannot be realised with today’s version of romac.
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6.6 Comparison of Algorithms Using Post-Processed
Flight Test Data

A comparison between Larsson’s and Morelli’s algorithms is performed using
post-processed flight test data and the results are presented in this section. The
states and inputs are given in Figure 5.3 together with the presentation of the
data. Since post-processed flight test data is used for the comparison, no ivs are
available, as explained in Section 5.3.2. The reference derivatives used in the
comparison are obtained as described in Section 6.5.

Larsson’s and Morelli’s algorithms are compared with the moments of inertia
and dynamic pressure approximated as constant. The result is presented in Fig-
ure 6.10. Note that some of the estimates using Morelli’s algorithm are outside
the borders of the graph. Since the true parameters are unknown, it is di�cult to
evaluate the result but it is clear that Larsson’s algorithm gives better estimates at
the beginning of the excitation. Later during the excitation, the estimates using
the two algorithms converge and give similar values. For the estimation at the
20th time-step, however, the estimates using Morelli’s algorithm deviate slightly
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Figure 6.10: A comparison between Larsson’s (black) and Morelli’s (grey)
algorithms on post-processed flight test data. The moments of inertia and
dynamic pressure are approximated as constant and no ivs are used. The
circles/squares are the estimates and the vertical lines are their estimated
two standard deviations. The straight horizontal dashed lines indicate the
reference derivatives taken from the model.
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Figure 6.11: A comparison between the estimates using regression A (grey
square), B (black circle) and C (black triangle). For all estimations, Larsson’s
algorithm is used. The vertical lines are the estimated two standard devia-
tions and the straight horizontal dashed lines indicate the reference deriva-
tives taken from the model. A zoom of this figure is given in Figure 6.12.

and inexplicably.

The estimated standard deviation has a generally small value and it is di�cult
to determine from the figure when the excitation starts. This property is non-
desirable when trying to draw conclusions from a data collecting perspective.
Unlike for simulated data, the final estimate is not included in the interval of the
estimated standard deviations of previous estimates. Since the estimated stan-
dard deviation is so small, this could result in the wrong conclusions from a safety
perspective as well. The small estimated standard deviation could be caused by
the fact that the data is processed.

In Figure 6.11, three of the di↵erent ways to calculate the outputs and formulate
the regressors discussed in Section 6.1 are compared. These will be called regres-
sion A, B and C. For all variants of the regression, the estimates are calculated
using Larsson’s algorithm. Regression A uses previously calculated coe�cients
and the ordinary regressors of (3.27). Regression B uses di↵erentiation within
the algorithm, the ordinary regressors and the moments of inertia and dynamic
pressure approximated as constant. Regression C uses di↵erentiation within the
algorithm and the true moments of inertia and dynamic pressure. As described
in Section 6.1.1, this requires a modification of the regressors and the reinstating



54 6 Evaluation of Larsson’s and Morelli’s Algorithms

14 16 18 20 22
-0.02

-0.01

0

0.01

0.02
p1 : Clα [ ]

14 16 18 20 22

-0.15

-0.1

-0.05

p2 : Clβ [ ]

14 16 18 20 22

S
qu

ar
e=

n
o
d
iff
,
C
ir
cl
e=

d
iff
,
co
n
st
an

t,
T
ri
an

gl
e=

w
it
h
d
iff
,
n
ot

co
n
st
an

t

-0.35

-0.3

-0.25
p3 : Clp̂ [ ]

14 16 18 20 22

-0.2

0

0.2

p4 : Clr̂ [ ]

14 16 18 20 22
0.07

0.075

0.08

0.085

0.09
p5 : Clδa [ ]

14 16 18 20 22

×10-3

-5

0

5

10

15
p6 : Clδr [ ]

Figure 6.12: A zoom of the comparison in Figure 6.11. Estimation using
regression A (grey square), B (black circle) and C (black triangle).

of the term İ!. The modified regressors of (6.6) become

�0 = [�(↵qaSlref ) �(�qaSlref ) �(p̂qaSlref ) �(q̂qaSlref )...

...�(r̂qaSlref ) �(�cqaSlref ) �(�eqaSlref )...

...�(�aqaSlref ) �(�r qaSlref ) �(�leqaSlref )]

(6.13)

when linearised. As described previously, � denotes the disturbance from the
trimmed condition and the new, calculated regressors are considered as single
signals and not multiplications of several signals.

A zoom of Figure 6.11, where the results are more clearly visible, is presented
in Figure 6.12. Both graphs are limited to the interval of excitation. For Clr̂ and
Cl�r

, the variations between the estimates is greater than the variations using the
di↵erent methods and no conclusions can be drawn. However, for the remain-
ing derivatives the approximation of constant moments of inertia and dynamic
pressure results in a greater bias from the reference derivatives. Note that the
reference derivatives are taken from the model and not necessarily true but judg-
ing by the sensitivity analysis and the size of the di↵erence, it is likely that the
estimates of regression A and C are closer to the truth. Regression A and C result
in similar estimates and no conclusion can be drawn as to which is better.



7
Evaluation of Methods for Handling of

Missing Data

In this chapter, the di↵erent methods for handling of missing data presented
in Section 2.4 are compared. The final choice of method depends on its perfor-
mance and on its suitability from an implementation point of view. The di↵erent
implementations and their advantages and disadvantages are presented initially.
Secondly, an evaluation of the methods using analytical data is presented. Lastly,
the results when two of the methods are compared using simulated data are pre-
sented.

7.1 Implementation
The four investigated methods for handling of missing data have di↵erent suit-
ability from an implementation and computation perspective. These a↵ect the
simplicity and the run-time of the estimation algorithm. Their complexity de-
pend on how the czt is implemented. The czt can be implemented to use
multiples of the sampling interval and assume all samples to be spaced by Ts,
previously defined in (2.8) as

FCZT(f (t)) = F̃(!i ) =
N�2X

k=0

fke
�j!i kTs , !i 2 ! = {0.10, 0.14, . . . , 1.98}.

Alternatively, it can be implemented to use the true times and spacing between
the samples, previously formulated in (2.23) as

FCZT(f (t)) = F̃(!i ) =
N�2X

k=0

�k fke
�j!i tk , !i 2 ! = {0.10, 0.14, . . . , 1.98}.

55



56 7 Evaluation of Methods for Handling of Missing Data

The simplest method is the discard method as it requires no implementation pro-
vided that (2.8) is used to implement the czt. The hold method requires a cal-
culation of the number of missing samples. It also requires the last value of all
signals to be saved but this is not a problem given the functionality of StellaRT.

The linear interpolation method requires the most implementation and the most
computations. All used signals must be linearly interpolated. This could mean
as many as 60 signals, depending on how the regression is formulated and the
outputs are calculated. The variable sample time method requires no extra im-
plementation provided that (2.23) is used. This implementation of the czt does,
however, require an extra calculation compared to that of (2.8) since the spacing
between samples �k is needed. In reality, the spacing between samples is calcu-
lated using all metods except the discard method as it is used to decide whether
samples are missing or not.

7.2 Initial Evaluation Using Analytical Data
In this section, the di↵erent methods for handling of missing data are compared
by removing samples from an analytical signal. The di↵erence between the trans-
forms of the reconstructed signals and the original signal are presented for a
varying number of missing samples. The analytical signal used is the same as in
the di↵erentiation analysis, namely

z = A1 sin(!1t) + A2 sin(!2t)

with !1 = 0.3 · 2⇡ and !2 = 1.5 · 2⇡ that are both within the frequency spectra
of the czt. The sample frequency is 60 Hz which means that one data frame
consists of three to four samples since the data is sent in 16 Hz, as explained in
Section 2.4.

Figure 7.1 shows the signals Z1x � Zref where Z = FCZT(z) and the subscript x in-
dicates the method for handling the removed samples. The subscript 1 indicates
that one frame, that is four samples, has been removed. The figure thus shows
the magnitude and phase for the di↵erence between the transformed original sig-
nal and the transformed signal with missing data, using all four methods. The
2-norm of this di↵erence is presented in Table 7.1.

Both the hold method and the linear interpolation method diverge little from the
reference signal. Surprisingly, the hold method gives a smaller di↵erence than
the linear interpolation method when only one frame is missing. The di↵erence
from the reference signal is also uniform for the entire frequency interval using
the hold method and the linear interpolation method. This is not the case for
the other two methods. The discard method gives the greatest di↵erence and
has peaks that show that the di↵erence is larger at the frequencies present in the
signal.

The same comparison but with four consecutive missing frames is presented in
Figure 7.2. The 2-norm of the di↵erence is presented in Table 7.2. The discard
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Figure 7.1: Magnitude and phase for the czt of the signals with one missing
data frame compared to the czt of the original signal. The di↵erent com-
pared methods for handling the missing data are hold, linear interpolation,
discard and vst.

Table 7.1: The 2-norm of the di↵erence between the czt of the complete
analytical signal and the czt of the analytical signal with one missing data
frame. The specified methods are the ones used to handle the missing data.

Method 2-Norm of di↵erence
Discard 5.6 · 103

Hold 2.6
Linear interpolation 5.1
vst 41

method has even larger peaks compared to when only one frame is missing and
is more uneven in general. The remaining three methods are quite similar in
shape but the size of the di↵erence vary. The linear interpolation method gives
the smallest di↵erence followed by the hold method and the vstmethod.

Figure 7.3 shows the comparison when eight consecutive frames have been re-
moved. The 2-norm of the di↵erence is presented in Table 7.3. The changes are
similar to those between one and four frames where the discard method performs
even worse, and the remaining three methods have become more similar. The lin-
ear interpolation method still gives the smallest di↵erence, followed by the hold
method and the vstmethod.

When sixteen frames are removed, the hold method gives a significant dip as
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Figure 7.2: Magnitude and phase for the czt of the signals with four missing
data frames compared to the czt of the original signal. The di↵erent com-
pared methods for handling the missing data are hold, linear interpolation,
discard and vst.

Table 7.2: The 2-norm of the di↵erence between the czt of the complete
analytical signal and the czt of the analytical signal with four missing data
frames. The specified methods are the ones used to handle the missing data.

Method 2-Norm of di↵erence
Discard 1.7 · 104

Hold 1.8 · 102

Linear interpolation 88
vst 3.6 · 102

shown in Figure 7.4. The 2-norm of the di↵erence compared to the complete sig-
nal is presented in Table 7.4. The discard method still performs the worst. The
linear interpolation and the vst methods give more uniform di↵erences com-
pared to the others. However, the linear interpolation still has the smallest di↵er-
ence, followed by the hold method and the vstmethod.

To summarise, the linear interpolation method gives the smallest di↵erence for
all cases except when only one frame is missing. In this case, the hold method
gives the smallest di↵erence. However, as described i Section 2.4, the method
needs to be able to handle at least four to sixteen frames of missing data, so this
first case where only one frame is missing is of less interest. The discard method
gives the largest di↵erence for all cases and is also the method for which the di↵er-
ence has the greatest variation throughout the frequency band. The vst method
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Figure 7.3: Magnitude and phase for the czt of the signals with eight miss-
ing data frames compared to the czt of the original signal. The di↵erent
compared methods for handling the missing data are hold, linear interpola-
tion, discard and vst.

Table 7.3: The 2-norm of the di↵erence between the czt of the complete
analytical signal and the czt of the analytical signal with eight missing data
frames. The specified methods are the ones used to handle the missing data.

Method 2-Norm of di↵erence
Discard 1.2 · 104

Hold 6.2 · 102

Linear interpolation 3.7 · 102

vst 8.4 · 102

gives a greater di↵erence than both the linear interpolation and hold methods
for all cases. For all cases except the first, where only one frame is missing, the
di↵erence using vst is fairly uniform. This makes vst preferable over the hold
method for a higher number of missing data. Additionally, both hold and lin-
ear interpolation are interpolation methods and are therefore expected to give
similar results in estimations. Since the linear interpolation method suggests a
better performance, the hold method is not chosen for further study. The discard
method is not chosen either due to its poor performance. The vst is chosen for
further study as it gives fairly good results and is structurally di↵erent to the
linear interpolation which makes it interesting for a comparison.
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Figure 7.4: Magnitude and phase for the czt of the signals with sixteen
missing data frames compared to the czt of the original signal. The di↵er-
ent compared methods for handling the missing data are hold, linear inter-
polation, discard and vst.

Table 7.4: The 2-norm of the di↵erence between the czt of the complete
analytical signal and the czt of the analytical signal with 16 missing data
frames. The specified methods are the ones used to handle the missing data.

Method 2-Norm of di↵erence
Discard 2.0 · 104

Hold 9.0 · 102

Linear interpolation 5.0 · 102

vst 1.9 · 103

7.3 Evaluation Using Simulated Data
The result when evaluating the general properties of the estimators using the lin-
ear interpolation and vstmethods for handling of missing data are presented in
this section. The simulation model described in Chapter 4 is used in the evalua-
tion by performingmc simulations. To make the study more limited, only one of
the algorithms is studied. Larsson’s algorithm is chosen for the comparison since
this includes the e↵ect of the ivs.

Figure 7.5, with a zoom in Figure 7.6, and Figure 7.7, with a zoom in Figure 7.8,
show the results from 200 simulations where six consecutive frames of data have
been removed randomly within the interval of excitation. The vertical lines on
the estimates indicate the mean of the estimated two standard deviations. The
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Figure 7.5: Comparison between estimates with all data present (grey) and
using the linear interpolation method (black) to handle missing data. The re-
sult of 200 mc simulations with six consecutive data frames randomly miss-
ing during excitation. The algorithm used is Larsson’s algorithm with di↵er-
entiation within the algorithm. The circles/squares are the mean estimates
over 200 simulations and the vertical lines are the mean of their estimated
two standard deviations. The dashed black and grey lines are the two stan-
dard deviations based on themc simulations. The straight horizontal dashed
lines indicate the true parameters used in the simulation model.
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Figure 7.6: A zoom of the moment coe�cients in Figure 7.5. Estimation with
all data present (grey) and using the linear interpolation method (black) to
handle missing data.
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Figure 7.7: Comparison between estimates using the linear interpolation
method (black) and the vstmethod (grey) to handle missing data. The result
of 200 mc simulations with six consecutive data frames randomly missing
during excitation. The algorithm used is Larsson’s algorithm with di↵erenti-
ation within the algorithm. The circles/squares are the mean estimates over
200 simulations and the vertical lines are the mean of their estimated two
standard deviations. The dashed black and grey lines are the two standard
deviations based on themc simulations. The straight horizontal dashed lines
indicate the true parameters used in the simulation model.
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Figure 7.8: A zoom of the moment coe�cients in Figure 7.7. Estimation
using the linear interpolation method (black) and the vst method (grey) to
handle missing data.
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black and grey dashed lines indicate the two standard deviations over all mc
simulations. Figure 7.5 shows the comparison between estimates where all data
is present and estimates where the linear interpolation method is used. Fig-
ure 7.7 shows the comparison between the linear interpolation method and the
vstmethod.

When data is missing in the data set, the estimates have a larger bias. For the
force coe�cient derivatives, this bias is similar using both methods and so small
that it is not visible in the figures. The bias of the moment coe�cient derivatives
is larger. A zoom of the moment coe�cient derivatives of Figure 7.7 is presented
in Figure 7.8. In this figure, the bias is clearly visible. The size of the bias is of the
same magnitude as that of the bias for high noise levels presented in Figure 6.9.
The moment derivatives, especially Cmq̂

, appear to be more di�cult to estimate
accurately and show a greater di↵erence between the methods, where the vst
method gives a greater bias. These estimates also have a larger variance for both
methods compared to the estimates where all data is present. The estimates using
the vst method have a larger variance than the ones where the linear interpola-
tion method is used. The fact that the estimates for the force are more accurate
than those for the moment suggests that the di↵erentiation a↵ects the estimates
in a negative way when data is missing. The e↵ect of the di↵erentiation seems to
be larger when using the vst method since there are small di↵erences between
the methods when studying the force coe�cient.

Figure 7.9, with a zoom in Figure 7.10 and Figure 7.11, with a zoom in Figure 7.12
show the corresponding estimates using previously calculated moment coe�-
cients. This means that no di↵erentiation is performed within the algorithms.
The results are from 200 simulations where six consecutive frames of data have
been removed randomly within the interval of excitation. These simulations have
a slightly lower variance for the moment derivative estimates using the linear in-
terpolation method, compared to those in Figure 7.7. Using the vst method, the
variances are significantly smaller compared to those in Figure 7.7. When using
already calculated coe�cients, the vst method gives smaller variances than the
linear interpolation method, as opposed to in Figure 7.7, where the linear inter-
polation method performs better.

On real flight test data, however, the improvement using calculated coe�cients
is expected to be smaller. In this simulation, the removed samples do not a↵ect
the quality of the remaining samples. In reality, the filters used to calculate the
coe�cients are reset or use linear interpolation in order to function where data is
missing. This might have a negative a↵ect also on values surrounding the missing
data. An analysis of this behaviour cannot currently be performed since romac
cannot return additional parameters.

To summarise the observations of these results, the method of choice for handling
of missing data appears to depend on the presence of a di↵erentiation within the
algorithm. If di↵erentiation within the algorithm is used, the results indicate
that the linear interpolation method has a better performance. With previously
calculated coe�cients, the results indicate the vstmetod instead.
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Figure 7.9: Comparison between estimates with all data present (grey) and
using the linear interpolation method (black) to handle missing data. The re-
sult of 200 mc simulations with six consecutive data frames randomly miss-
ing during excitation. The algorithm used is Larsson’s algorithm with pre-
viously calculated coe�cients. The circles/squares are the mean estimates
over 200 simulations and the vertical lines are the mean of their estimated
two standard deviations. The dashed black and grey lines are the two stan-
dard deviations based on themc simulations. The straight horizontal dashed
lines indicate the true parameters used in the simulation model.
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Figure 7.10: A zoom of the moment coe�cients presented in Figure 7.9.
Estimation with all data present (grey) and using the linear interpolation
method (black) to handle missing data.
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Figure 7.11: Comparison between estimates using the linear interpolation
method (black) and the vst method (grey) to handle missing data. The re-
sult of 182 mc simulations with six consecutive data frames randomly miss-
ing during excitation. The algorithm used is Larsson’s algorithm with pre-
viously calculated coe�cients. The circles/squares are the mean estimates
over 200 simulations and the vertical lines are the mean of their estimated
two standard deviations. The dashed black and grey lines are the two stan-
dard deviations based on themc simulations. The straight horizontal dashed
lines indicate the true parameters used in the simulation model.

0 5 10
-2

-1

0

1

2
x1 : α[deg]

0 5 10
-0.05

0

0.05
x2 : q̂[deg]

0 5 10
-2

-1

0

1

2
u1 : δe[deg]

0 5 10

L
in

=
b
la
ck
,
V
S
T

=
gr
ey

3.5

3.6

3.7

3.8
A11 : CNα

[]

0 5 10
20

21

22

23
A12 : CNq̂ []

0 5 10
0.5

0.6

0.7

0.8

0.9
B11 : CNδe

[]

0 5 10
-0.6

-0.5

-0.4

-0.3
A21 : Cmα

[ ]

0 5 10
-13

-12

-11

-10

-9

-8
A22 : Cmq̂ [ ]

0 5 10
-0.7

-0.65

-0.6

-0.55

-0.5
B21 : Cmδe

[ ]

Figure 7.12: A zoom of the moment coe�cients presented in Figure 7.11. Es-
timation using the linear interpolation method (black) and the vst method
(grey) to handle missing data.





8
The Final Implementation

The final implementation choices among the alternatives presented in Chapter 6
and Chapter 7 are presented in this chapter. The choices are made based on the
results presented in the same chapters. Along with the motivations for these
choices, a summary of the final implementation is presented. The chapter also
contains the output from the program and its performance with respect to the
time constraints.

8.1 Motivations
A conceptual program to investigate and illustrate the feasibility of the ideal pro-
gram described in Section 5.1 is implemented. The implementation choices for
this program are presented below.

• Larsson’s algorithm is chosen as the estimation algorithm for the program
since the simulation results indicate that it performs better than Morelli’s.

• Already calculated coe�cients using Arcoft are chosen as outputs in the
regressions since not all the parameters that are required to calculate the
coe�cients within the algorithm are available. The study of the di↵eren-
tiation fir filter also shows that the expected results when using already
calculated coe�cients are not worse than when di↵erentiation within the
algorithm is used. When data is missing in the estimation, the fir filter
di↵erentiation might even give better results.

• The vstmethod is chosen for the handling of themissing data. Based on the
results using simulated data, the vstmethod is the method of choice when
previously calculated coe�cients are used. Additionally, the vst method
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is preferable from a time performance and implementation point of view.
Contrary to the linear interpolation method, the vstmethod requires no ex-
tra calculations in addition to the calculation of the distance between sam-
ples. This makes the algorithm more easily implemented, the code more
readable and the execution-time shorter.

• Only the regression for the roll moment coe�cient Cl is implemented. Since
the implementation of the di↵erent regressions is analogous, only with dif-
ferent dependent variables, time has not been spent on implementing all of
them. However, all the required signals for the remaining coe�cients are
loaded and initialised as a first preparatory step towards a final program.
The roll moment coe�cient Cl is chosen since the studied data set comes
from a roll manoeuvre.

• The implementation has been done for the simulation mode of StellaRT
only, given the limitations of this work. In the recording of real-time data,
all parameters are synchronised to a common sample frequency of 60 Hz.
The program does, therefore, not include any synchronisation, filtering or
resampling of any parameters.

• No reading of the reference derivatives from the aero data model is imple-
mented since romac cannot return additional parameters. The reference
derivatives for the specific case studied have been taken manually from the
aerodynamic model using a first order Euler approximation. This approxi-
mation is used since it is the simplest alternative. The reference derivatives
are then hard-coded into the program in order to get the desired appear-
ance of the output plot.

8.2 Summary of Algorithm
The final algorithm is implemented in Matlab within the program StellaRT. New
data from VuSoftNT is loaded into the workspace through StellaRT in batches
each time new data arrives. The outputs and regressors are transformed sequen-
tially using the czt each time new data arrives and the entire batch is added at
once.

The outputs used are the coe�cients calculated by the Arcoft script. Each second,
or as close to as possible, depending on when the data arrives, a parameter esti-
mate is computed. The parameter estimation method used is Larsson’s algorithm.
This method uses the batch cls algorithm and iv. The improved di↵erentiation
of Larsson’s method is not used since the calculated coe�cients of Arcoft are used
instead. Since the calculated coe�cients are used, a compensation for their delay
is done within the program. The parameters from the romac parallel simulation
are used as instrumental variables and interruptions in the data stream are han-
dled by using the vstmethod. Since romac does not handle disruptions, this is
applied to the simulated signals as well as the flight test signals.

The transform and estimator are implemented for the roll moment coe�cient Cl
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only. However, all initialisations of parameters needed for the remaining coe�-
cients are implemented as well. The implementation also include one real-time
plot of all states and inputs present in the aerodynamic model and one of the six
estimated derivatives of Cl . This plot includes the estimates’ estimated standard
deviations and the reference derivatives taken from the model. The reference
derivatives of the specific studied data set are hard-coded into the algorithm.

8.3 Results Using Recorded Real-Time Flight Test
Data

The output from the implemented real-time program is presented in this section.
The estimates are presented in Figure 8.1 and the states and inputs are given
in Figure 8.2. In this data set, telemetric disruptions occur four times during
excitation and a total of 47 samples are missing.

The algorithm succeeds in performing parameter estimation on real-time data.
As expected, the estimates are not as smooth as on complete, post-processed flight
test data. The variations of the estimates and the standard deviations are larger,
especially before excitation. It is clearly visible when the excitation starts and
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Figure 8.1: The resulting estimate by the real-time program. The squares
indicate each new estimate and the vertical lines are the estimated standard
deviations corresponding to each estimate.
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when enough data to make a good estimate is present. Conclusions as to whether
the model parameters appear to be conservative or not from a stability perspec-
tivemight also be drawn from the results. Thanks to the clear distinction between
the quality of the estimates before and after excitation, the real-time program ap-
pears more practically useful than what is indicated using post-processed data.

8.4 Time Constraints and Performance
Real-time for this application is defined to mean a maximum delay of a couple of
seconds, regardless of the length of the experiment. This means that the initial
delay of the real time program cannot exceed a couple of seconds and that the
execution-time on average has to be shorter than the time between arrivals of
new data. This means that there is no additional delay build-up dependent on
the length of the data set. Since the data is transmitted in 16 Hz, the average
execution time needs to be shorter than 1/16 = 0.0625 seconds. In reality, several
frames might arrive simultaneously, making this time constraint longer.

The initial delay of the program is caused by two factors. The first is the 0.5
seconds delay of the signals caused by the calculations in romac. The second is
the 35 sample delay of the calculated coe�cients. This results in a delay of about
0.5 seconds as the program has to wait before the coe�cient values arrive. In
total, the initial delay of the program is just above one second.

A typical execution time of the program run over the entire data set is presented
in Table 8.1. As can be seen, the execution time of the calculations is well within
the limit and it is the plotting that take the longest time. Even with the two
plots of the final implementation, however, the mean execution time is within
the limit even though the maximum time is too long. When the time of one
execution is longer than the time between arrivals of new data, the new data will
be bu↵ered making the next batch to process bigger. Since the implementation of
the transform adds the entire batch in one command, regardless of size, this has
little negative e↵ect on the execution time. Therefore, the execution time might
even be longer than 0.0625 seconds and still not result in a build-up delay of the
program.

Table 8.1: The execution time of a typical run.

Execution time With plots Without plots
Mean 0.054s 0.0024s
Max 0.15s 0.011s
Min 0.021s 0.0010s
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9
Discussion

The results obtained and presented throughout this work are discussed in this
chapter.

9.1 Aerodynamic Model
The aerodynamic model used in this work contains all the relevant and available
dependent variables as discussed in Section 3.3.2. The air brake and the land-
ing gear, for example, are not possible to include with the current measurement
equipment on Gripen. If, in the future, these are included, the model can easily
be modified to take them into account.

Some model inputs have a very high correlation. This means that they can be
hard to separate in the estimation. To separate them, specific manoeuvres might
be needed. This also means that knowledge of the inputs, derivatives and the spe-
cific studied manoeuvre is needed. Some caution when interpreting the results
of derivatives that cannot be properly separated is also required.

9.2 Real-Time Parameter Estimation Algorithm
The results when comparing Larsson’s and Morelli’s algorithms are comparable
to those found in Larsson (2013) for the state space model. The corrected di↵er-
entiation appears to result in better estimates at the beginning of the excitation.
This is explained in Larsson (2013) to be caused by the fact that the added last
sample becomes a correction term for the czt. The presence of the iv in the al-
gorithm improves the estimates by reducing the bias for high noise levels. Also
this result is analogous to what was found in Larsson (2013). The result is, how-
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ever, only shown using simulated data in this work since only one data set of real
data was available. Since this real data has low noise levels, the e↵ect cannot be
studied.

There is a significant di↵erence in the size of the estimated standard deviation
before excitation using real-time data and post-processed data. The only obvi-
ous di↵erences between the post-processed data and the recorded real-time data
are the presence of telemetric disruptions in the real-time data and the low-pass
filtering of certain signals in the post-processed data. Since the telemetric disrup-
tions all occur during excitation, the filtering is assumed to be the reason for the
di↵erence. However, one single data set is not enough to draw any real conclu-
sions.

When coe�cients calculated using Arcoft are used as outputs, the vst method
gives the best results when data is missing. However, these results are only shown
on simulated data. On real data, the missing samples a↵ect the remaining sam-
ples due to the filters. An additional study where the vst and the linear interpo-
lation method are compared on real data is therefore needed to see if the results
of the real-time program can be improved.

9.3 Real-Time Parameter Estimation Program
All aspects of the ideal program are not reached in this work for various reasons,
but the main concept is still shown. The main reasons why some goals are not
reached are constraints posed by, and limitations in, the surrounding software.
With the information presented in this work of what these constraints and lim-
itations are, these can be solved in the future. These changes, however, require
modifications of software that a↵ect many other operations and cannot be per-
formed within the scope of a master’s thesis work. This work can be continued
when a new version of, for example, romac is available.

Even though a final program will be able to function as decision support when
deciding to continue or abort the flight from a safety or data collecting perspec-
tive, the importance of experience and savoir-faire of the operators shall not be
underestimated. Based on the results of this thesis and the number of aspects to
take into account when assessing the quality of the estimates, the judgement of
the operator is needed to draw the right conclusions and it is unlikely that such
conclusions can be automated.

As previously explained, the linear model is a Taylor expansion where all higher
order terms are neglected. This means that it is only valid for small deviations
from the trimmed condition. This, in turn, means that the real-time estimation
program will only function on certain manoeuvres. In today’s flight tests, far
from all manoeuvres are pulses where the flight condition is aimed to be kept
constant. The di↵erent manoeuvres serve di↵erent purposes. For example, a
long manoeuvre spanning over several heights and speeds helps the pilot feel
the behaviour and manoeuvrability of the aircraft. His or her assessment is also
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important in the overall result of the flight test. Also during these manoeuvres,
monitoring of the signals is important. A program such as this could therefore
not change the flight test manoeuvres or replace existing software for monitoring,
but serve as a compliment. For specific studies using this software, however,
special manoeuvres that are well suited might be performed. An example of such
a manoeuvre is when an automatic pulse, or other manoeuvre, is used instead of
a pilot command. This creates a more ideal manoeuvre than what the pilot can
create and would be useful for this type of study.





10
Conclusions

The goal of this thesis was to produce a program that uses either Larsson’s or
Morelli’s algorithm to perform real-time parameter estimation. The two meth-
ods should be implemented and compared on both simulated and real flight test
data. Additionally, the final program should handle telemetric data. Several alter-
native methods for handling of missing data should be chosen and analysed on
simulated data. Based on these results, the final program should be implemented
and evaluated on telemetric data.

All of these goals have been reached within this work. The conclusion is that
Larsson’s algorithm performs better than Morelli’s and that it might be used for
real-time parameter estimation together with the vst method for handling of
missing data. For this application, real-time means a maximum delay of a couple
of seconds. Estimating aerodynamic derivatives in real-time during flight testing
could reduce the number of flights. Reducing the number of flights is positive
both from a financial and an environmental perspective as they are both costly,
time consuming and fuel consuming.

The final program uses the vstmethod to handlemissing data, ensuring function-
ality on recorded telemetric data. The vst method was compared to three other
methods, namely discard, hold and linear interpolation. Given the other imple-
mentation choices made, the vst performed best among the compared methods.
None of the methods investigated on simulated data, the vst and linear interpo-
lation, gave unbiased estimates. The final estimator used on telemetric data is
therefore biased.
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10.1 Future Work
In this work, a conceptual real-time estimation program has been implemented
and it has been shown that the algorithms have the potential of working in a
decision support program for flight testing at saab. This is one step further,
building on the works of Andersson (2013) and Larsson (2013), towards a final
program. However, to continue this work and to reach the final goal, additional
work is needed.

An update of romac is needed to continue this work. This is a prerequisite both
to implement the wanted functionality and to conduct further analysis. Since no
additional parameters can be returned with today’s version, the reference deriva-
tives cannot be obtained in real time. The possibility to return these parameters
as well as internal parameters needed for the calculation of the moment coe�-
cients is needed. Additionally, a module within romac needs to be implemented
that can obtain, and return, the reference derivatives. In this work, a first order
Euler approximation is used to calculate the reference derivatives. There might
be other methods that are more sophisticated and better suited for this purpose.

If the internal parameters needed to calculate the moment coe�cients were avail-
able, further investigations regarding the di↵erentiation methods and the com-
parison between the vst and linear interpolation methods could be performed
on real data. Given the results in this work, the vst performs better when cal-
culated coe�cients are used. When the di↵erentiation can be performed in the
algorithm using telemetric data, the linear interpolation method might perform
better. Given this comparison, the e↵ect of the missing data on the filters in ro-
mac can also be studied.

A compensation for the delay caused by the filters is needed in romac. Since
the filters can be changed and modified, the delay is not necessarily constant
and should not be hard-coded into the estimation algorithm. This hard-coded
compensation also greatly complicates the implementation and deteriorates the
readability of the estimation program. These are aspects that should be priori-
tised in a final program as they are important in the integration and maintenance
of the software.

Further studies of methods for handling of missing data could be performed in or-
der to find a final estimator that is unbiased. However, there might be a tradeo↵
between the quality of the estimates and the real-time suitability of the estima-
tor. Even though a method for handling of missing data is available that gives
unbiased estimates, it is not certain that it would work in this application.

For a final program that can be used as decision support, the estimation program
must be extended to include all six aerodynamic coe�cients. This would give
a total of 36 estimated derivatives. It serves no purpose to study all of these
derivatives at once for all manoeuvres. Additionally, the plotting has a negative
a↵ect on the execution time. Therefore, a good solution for the user to choose
which plots are of interest, and to easily change the view of the plots, is needed.
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The final appearance of the plots regarding size, visualisation and highlighting
of di↵erent e↵ects must also be decided in cooperation with the final users. The
functionality in real time might become a challenge as more plots are added and
investigations regarding di↵erent plotting alternatives might be needed.

For a future program to function not only on recorded real-time data, but on real
telemetric data, signals of di↵erent sample frequencies must be handled. The
synchronisation of the real-time data to a common frequency results in delays
in the signals. These delays must be compensated for in such a way that the
real-time functionality is ensured.

In order for the parallel simulation to better follow the flight path of the real
aircraft, a pilot model or manual reset of the error to zero, is used (Andersson
et al., 2002). These solutions, and especially the manual reset of the model states,
distort the signals used as iv. It is not known how this a↵ects the estimates. The
manual error handling is mostly used between manoeuvres and one alternative
could be to simply not allow any reset of the error during estimations. However,
an analysis of the e↵ect on the estimates might still be interesting.
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