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Abstract—Diverse fault types, fast re-closures and complicated
transient states after a fault event make real-time fault location
in power grids challenging. Existing localization techniques in
this area rely on simplistic assumptions, such as static loads, or
require much higher sampling rates or total measurement avail-
ability. This paper proposes a data-driven localization method
based on a Convolutional Neural Network (CNN) classifier using
bus voltages. Unlike prior data-driven methods, the proposed
classifier is based on features with physical interpretations that
are described in details. The accuracy of our CNN based
localization tool is demonstrably superior to other machine
learning classifiers in the literature. To further improve the
location performance, a novel phasor measurement units (PMU)
placement strategy is proposed and validated against other
methods. A significant aspect of our methodology is that under
very low observability (7% of buses), the algorithm is still able
to localize the faulted line to a small neighborhood with high
probability. The performance of our scheme is validated through
simulations of faults of various types in the IEEE 68-bus power
system under varying load conditions, system observability and
measurement quality.

Index Terms—Fault Location, Deep Learning, Phasor Mea-
surement Unit (PMU), Real-Time, PMU Placement, Feature
Extraction

I. INTRODUCTION

Efficient fault localization is an integral part of the system
restoration, and it is necessary for improving power system
stability and reliability. Although the status of circuit breakers
(CBs) or relays are commonly utilized to locate the fault in the
transmission system, many mis-operations of CBs and other
devices have been reported to cause system-wide blackouts [1].
As increasing number of phasor measurement units (PMU)
and smart meters are installed in power system, and large-
scale datasets are generated, it becomes clear that data-driven
methods can be used to automatically detect, locate and
identify events in the power system.

Prior work on fault localization can be categorized into
three groups, albeit with inherent limitations: (1) impedance-
based methods that often assume the load to be static and
are also sensitive to topology changes [2], [3]; (2) traveling-
wave-based methods that typically require high sampling rates
and accuracy of measurements [4]; (3) existing Artificial
Intelligence methods that are data intense due to measurements
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with high sampling rates, like 2400 Hz [5], [6] and storage-
wise expensive because of large dictionary [7]. Prior works
on data-driven methods were also limited in scope due to
DC flow model-based assumption with small power variations
[8], [9], validity for the single type of faults [7], due to
requirement of complete system observability [10] or three
phase measurements [11], [12]. Several of such approaches
also suffer from low physical interpretability.

Meanwhile, machine/deep learning algorithms have pro-
duced encouraging improvements in the fields of computer
vision [13], natural language [14] and speech recognition
[15], through the selection of correct data-features to use in
classification and identification. Motivated by that, we discuss
neural network based fault localization methods in power grids
utilizing voltage data collected from PMUs. In particular, we
show that Convolutional Neural Network (CNN) has much
superior fault localization capability when compared with
standard methods. The improvements are especially impressive
at low system observability. This is important given that the
presence of PMUs in current grids is not yet ubiquitous.

In the regime of low observability, the performance of any
classifier used for localization greatly depends on the data
features containing signatures of considered event’s location.
In the past, researchers have applied relative voltage angles
variations as features to locate line outages through a classifier,
but such methods are based on the DC power flow model with
small power flow variations [9], clearly not appropriate for
detection of the faults. In contrast, we base our newly proposed
scheme on the recently reported observations [6], [10], [16]
that significant fault currents are sparse and moreover located
close to the faulted element of the system. The aforementioned
“sparse fault current” phenomenon was explored in [16] under
the assumption that PMU observations are available at all the
terminal buses, and under partial observability via sparsity-
enforcing l1-regularized approach in [6], [10]. Even though
sparsity of the fault current observations and strong correla-
tions between location of the significant fault current and fault
location was explored in [6], [10], the methods still suffer
from complexity of tuning optimization parameters and non-
uniqueness of optimal solutions when the PMU placement is
sufficiently sparse.

We claim in this manuscript, by means of empirical exper-
imentation, that the shortcomings of the previous approaches
can be overcome through the use of the neural networks. We
define the location feature by the estimation of the sparse fault
current, which is explained in details in Section II, and train a
CNN classifier to learn the correlations between the location
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features of a large number of datasets and the fault locations.
Our CNN classifier outputs a fault probability score for all

lines, among which the one with the highest probability score
suggests location of the fault. We consider both symmetric
and asymmetric faults with different impedance in IEEE test
networks and show successful location by the classifier under
varying load settings and availability of voltage measurements.
We also show that the performance of CNN is significantly
better than of the traditional classifiers, like Support Vector
Machines (SVMs), especially when only a small number of
buses are measured. At extremely low observability (7% buses
monitored), our classifier is still able to assign the correct
faulted line a score that is within the top 2-3 highest ranked
lines. Furthermore, we show that lines with the high rank
(high probability score) are consistently located within a small
neighborhood of the correct fault. Therefore, despite much
lower data requirements, our classifier is able to approximately
localize the faulted line where others cannot. We relate this
remarkably strong performance of the CNN classifier to the
right selection of the feature vector based on fault current for
the task at hand.

We also boost the fault location approach to solving another,
even more challenging problem – designing a greedy algorithm
suggesting a sparse PMU placement. We juxtapose the newly
introduced CNN-enhancing placement-boosting algorithm to
other topology-based placement strategies reported in the
literature [17].

To summarize, we propose a data-driven CNN-based
scheme which is capable to localize failures in power grids
in the challenging case of an extremely low observability. Our
work demonstrates that careful selection of proper system-
based features and objective-aware placement of PMUs can
enable advances in data analytics to significantly improve the
performance of detection and estimation tools in power grids.

The organization of the rest of the paper is as follows:
in the Section II the feature vector for the problem of fault
localization is defined, based on the substitution theory, with
proper physical interpretation provided. In Section III and
IV, our newly-designed CNN classifier and the PMU place-
ment booster are explained in details. Section V validates
the effectiveness of the proposed methods through extensive
simulations based on data synthetically generated for the case
of the IEEE 68-bus power system. Finally, Section VI contains
conclusions and discussions of the path forward.

II. FEATURE SELECTION FOR FAULT LOCALIZATION

We consider a power grid of n buses (see Fig. 1) with a
single line fault that may either be one of the following: three
phase short circuit (TP), line to ground (LG), double line to
ground (DLG) and line to line (LL) faults. Assuming that
fault detection through known techniques [18] is successful,
we are interested in real-time fault localization using PMU
measurements collected before and during the fault from a
subset of the grid buses. To this end, we propose to use a
neural network based fault localization method using power-
system features derived from the collected data. As mentioned
in the Introduction, selection of right features play a critical

role in the success of data-driven classification methods. We
now describe the selection of the physical model driven feature
vector ψ, first under complete and then under partial system
observability.

Note: Vectors are marked as bold font or ~· and the real
number and complex number sets are respectively represented
by R and C.

A. Substitution Theory and Features for Full Observability

In the case of a n-bus power system without un-transposed
lines1, we apply the substitution theory [16] to derive the
equations related to pre and during-fault system variables.
Given that three phase measurements may not be available
from all the meters, we use only positive sequence data to
represent the quantities.

In the steady state regime prior to the fault, bus voltages
U0 ∈ Cn×1 = [U0

1 , · · · , U0
n]T , currents I0 ∈ Cn×1 =

[I0
1 , · · · , I0

n]T and bus admittance matrix Y 0 ∈ Cn×n satisfy
the Ohm’s law in (1), where the jth entry in the ith row of
Y 0 is Y 0

ij , i, j = 1, · · · , n, denoting the admittance between
the bus i and j,.

I0 = Y 0U0 (1)

When the line between the bus i and j is faulted at point F,
the during-fault admittance matrix, Y F ∈ C(n+1)×(n+1), with
the fault point F as the (n+ 1)th node can be constructed as

Y F =



Y11 · · · · · · · · · Y1,n
· · · · · · · · · · · · · · ·
· · · Y ′

ii · · · Y ′
ij · · ·

· · · · · · · · · · · · · · ·
· · · Y ′

ji · · · Y ′
jj · · ·

· · · · · · · · · · · · · · ·
Yn,1 · · · · · · · · · Yn,n

yf1

yTf1 yf2


=

[
Y ′ yf1
yTf1 yf2

]
,

(2)

where Y ′ ∈ Cn×n is the during-fault admittance matrix of n
buses, yf1 = [Y F1,n+1, · · · , Y Fn,n+1]T ∈ Cn×1 is the admittance
between the F and other buses, yf2 = Y Fn+1,n+1 ∈ C is the
self-admittance of the faulted point F.

During-fault current and voltage I ′ ∈ Cn×1, U ′ ∈ Cn×1 of
the buses, the fault point current and voltage If , Uf satisfy the
relationship[

I ′

I ′f

]
= Y F

[
U ′

U ′f

]
=

[
Y ′ yf1
yTf1 yf2

] [
U ′

Uf

]
(3)

⇒ I ′ = Y ′U ′ + yf1Uf (4)

Replacing the Y ′ by Y ′ = Y 0−Y u, where Y u is a 4-sparse2

matrix that only has four nonzero entries Y uii = Yii−Y ′ii, Y uij =
Yij − Y ′ij , Y uji = Yji − Y ′ji, Y ujj = Yjj − Y ′jj , we obtain

I ′ = (Y 0 − Y u)U ′ + yf1Uf = Y 0U ′ −∆Iu (5)

where the unbalanced current ∆Iu = Y uU ′ − yf1Uf is a
2-sparse vector with nonzero entries ∆Iui ,∆I

u
j given in (6).

1The un-transposed lines have different mutual impedance between buses
and are beyond our analysis.

2k-sparsity means there are only k nonzero entries.
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Notice that these nonzero entries are just the terminal buses
i, j of the faulted line.

∆Iui = (Y ′ii − Y 0
ii)U

′
i + (Y ′ij − Y 0

ij)U
′
j − Y ′i(n+1)U

′
n+1 (6)

∆Iuj = (Y ′ji − Y 0
ji)U

′
i + (Y ′jj − Y 0

jj)U
′
j − Y ′j(n+1)U

′
n+1 (7)

If we define variations of voltage and current as ∆U =
U ′ − U0, ∆I = I ′ − I0 and combine (1) and (5), then their
relationships with the pre-fault admittance Y 0 become:

Y 0∆U = ∆Iu + ∆I (8)

The feature vector ψ ∈ Cn×1 is defined according to (9)
in terms of the bus voltages variations ∆U before and during
the faults and the admittance matrix Y 0 before the faults

ψ = Y 0∆U. (9)

Because both imaginary and real parts of ψ can reflect the
location, and the imaginary parts show a better performance
in a large number of classification experiments, we choose the
imaginary part ψ as the feature input to the classifier to avoid
unnecessary complication.
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Fig. 1: IEEE 68-bus system with five coherence groups [19].

B. Physical Interpretation of the Features

Physical interpretation of ψ is revealed by the two com-
ponents in (8). The dominant component is ∆Iu, which is a
2-sparse vector with nonzero values exactly corresponding to
the terminal buses of the faulted line. Distribution of the ψ’s
entries is indicative of the faulted line location.

Consider the line between bus i and j as faulted. The kth
( k 6= i, j) entry ψk is not related directly to the faulted line,

ψk = ∆Ik + ∆Iuk = Σj∈Nk
Y 0
kj∆Uj = Σj∈Nk

∆Ikj (10)

where Nk denotes the neighbor of the bus k, and Ikj is the line
currents between the bus k and j. Therefore, ψk is nonzero if
line currents variations in its neighborhood are nonzero. The
minor components in ∆I are therefore useful indicators in
the neighborhood of the faulted line. (This conjecture will be
post-factum validated below.)

Numerical Example: We simulate in the power system
toolbox (PST), based on nonlinear models [20], a three phase
short circuit fault lasting 0.2 seconds at the line 5-6 in the
IEEE 68-bus power system. The feature vector ψ is computed
according to (9). The imaginary parts of ∆Iu and ψ ∈ C68×1

shown in Fig. 2 demonstrate that ∆Iu is a sparse vector with
nonzero entries corresponding to the two terminal buses (5 and
6) of the faulted line, while ψ5 and ψ6 have relatively large
values than others. Further, many other buses (7, 8, 37, 53) and
(54−68) have nonzero values. These buses are either some PV
buses [21] with large current variations or in the neighborhood
of the faulted line.
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Fig. 2: The imaginary parts of the unbalanced currents ∆Iu(left)
and of the feature vector ψi, i = 1, · · · , 68 (right) after a three
phase short circuit fault on the line 5-6 in Fig. 1

C. Feature Extraction under Partial Observability

Assume that only s < n buses are measured and their pre-
fault and during-fault voltages are provided, then we derive
at the observed buses, ∆Ū = Ū0 − Ū ′. The feature vector
ψ̄ ∈ Cn of s buses is defined as:

ψ̄ = Ȳ 0∆Ū (11)

where Ȳ 0 ∈ Cn×s denotes the submatrix of the pre-fault
admittance matrix. The main reason to select ψ̄, and not ∆Īu,
as the feature vector is that otherwise measurements of all
buses need to be known to ensure the nonzero entries of ∆Īu

are included, but in reality not all the buses are measured
by PMUs. After representing all faults in the dataset by their
feature vectors, we label them by their locations. For the
system of m lines, we label the dataset into (m + 1) classes
with the (m+1)th class denoting the normal condition. In the
next Section, we examine performance of the classifier.

III. CLASSIFICATION

With features ψ extracted, a number of machine learning
classifiers, e.g. support vector machine (SVM) and fully-
connected neural network (NN), were tested in [22]. We use
a CNN [23] because, as will be shown below, it results in a
better classification.

A. CNN classifier

Although there is no uniform way of designing the structure
of CNN, and novel architectures are frequently proposed,
several basic components are typically considered together for
better classification accuracy in a wide range of applications.
These components include convolutional, ReLU, Pooling, and
fully connected operators. The size of the kernel matrices in
these operators and the number of layers are hyper-parameters
that are designed to fit the input. In this manuscript we
follow the common practical suggestion - to adopt a scheme
which has already shown a competitive advantage in other
applications. We choose to work with the AlexNet model [13].
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1) Architecture: We input the imaginary parts of the ex-
tracted feature vectors ψj and labels yj , j = 1, · · · , N , then
the CNN optimizes all the parameters layer by layer.

Let the input of the kth convolutional layer (k = 1, · · · , l)
be Xk ∈ Rwk×hk×dk , then the feature vector ψj of the jth
dataset is the input of the first layer X1 = ψj .

Cjk = Xk ⊗Wk, (12)

where the output of the kth convolutional layer is Cjk, which
is locally connected with the entries of Xk through kernels
Wk ∈ Rck,rk,mk by the convolution operator ⊗ in (12) [24].
These kernels element-wise multiply local parts of Xk and also
move with the user-defined stride size over the entire input Xk.
To maintain uniform operations in boundary elements, zeros
may be padded to Xk.

Rjk = max(Cjk, 0) (13)

The convolutional layer is followed by the non-linear ReLU
activation function in (13), which discards the negative items
of Cjk without changing the size.

P jk = Pooling(Rjk) (14)

In order to reduce the size of the input at the next layer,
the max pooling operator is applied to Rjk in (14). Kernels
in the pooling operator pick the maximum within a small
neighborhood of Rjk and then move to the next neighborhood
with a user-defined stride similar to the convolution operator.
Likewise, the user also can pad the Rjk with zeros to make
sizes of the neighborhood and of the kernel equal.

The P jk is delivered to the next layer as input Xk+1 = P jk .
Applying these operators form (12) to (14) in all the l layers,
the final output P jl is vectorized into a long vector ~P j ,

ȳj = g(WT
o
~P j +Bo) (15)

where Wo, Bo are the output kernel and the bias respectively,
and g(·) is the softmax function g(x) = ex

1+ex . ~P j is fully
connected with the output probability ȳji , i = 1, · · · ,m of m
lines by (15). The line with the highest probability determines
the output class or the fault location.
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Fig. 3: The structure of our CNN

2) Training Process: We denote the set of all the CNN
parameters Θ. The optimal Θ is found by minimizing a loss
function. Interpreting the output of different classes related
to different lines as probabilities of a fault, the cross-entropy
loss function [23] together with a regularization term λ‖Θ‖2F
to avoid overfitting is the common recipe (16):

l(Θ) =
1

N
ΣNj=1Σni=1y

j
i log fΘ,S(ψ̄j) + λ‖Θ‖2F (16)

where S is the set of measured buses, ψ̄j is defined in (11)
with s ∈ S , yji ∈ Rm is unity if the label of the j-th dataset
is i, and it is zero otherwise, and ȳji = fΘ,S(ψ̄j) is the
output probability of CNN for the fault location of the j-th
dataset to be at line i. fΘ,S(·) denotes functions of (12) ∼ (15)
parameterized by Θ given the set S to estimate the probability.
λ is the regularization coefficient.

To solve this optimization problem, the stochastic gradient
descent method or some of its extensions like Adam [25]
and RMSprop [26], are shown to achieve high classification
accuracy in a number of tests. Although rigorous convergence
proofs of gradient-descent based methods are lacking, there
are many techniques that are useful in reducing the effects
of initial conditions and also improving the classification
accuracy. Examples are “early stop” terminating iterations if
the loss function does not decrease for l∗ times [27]; “batch
normalization” is effective to the issue of covariance shift [28].

In the next Section we describe how PMU placement
helps to reduce fault localization error in the case of partial
observability.

IV. PMU PLACEMENT FOR FAULT LOCALIZATION UNDER
PARTIAL OBSERVABILITY

If the number of PMUs is limited, their correct placement
can play a significant role in keeping the quality of the fault
localization algorithm described in the preceding Section III.
In this Section we propose a greedy algorithm to place K
PMUs. PMU placement algorithms discussed in the literature,
e.g. [6], [29], [30], are devised to guarantee complete system
observability. However, locating faults may work well with
some but not necessarily complete observability. Since the
accuracy of the fault localization in our case is determined
by the loss function of the classifier in (16), we suggest
optimizing PMU placement to reduce the loss function (17).

min
Θ,S

l(Θ,S) (17)

s.t. |S| = K (18)

We propose a data-driven placement algorithm that is aware
of both the fault localization and the learning mechanism
(optimization of the loss function of CNN). To optimize the
PMU placement for fault location, the optimal set S can be
obtained by minimizing loss function (17) satisfying (18), but
to find the optimal set S of size K is an NP-complete problem.
Thus we propose an algorithm to greedily increase the number
of measured buses until the total number K is reached in
Algorithm 1.

Given the total number of measured buses K, this algorithm
greedily increases the size of the set S from the initial set S0
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Algorithm 1 Greedy Algorithm for PMU Placement

1: Input: K, yj , ψ̄j , di, β,S0, j ∈ [1, N ], i ∈ [1, n]
2: Initialize : S = S0, l =∞
3: while |S| is less than K do
4: for bus i /∈ S do
5: Let Si = {S ∪ i}, and compute the loss function

li = minΘ l(Θ,Si)
6: end for
7: i∗ = arg mini(

β
di

+ li), where di is the degree of bus
i, β is a weight parameter.

8: if li∗ < l then
9: S = Si∗

10: l = li∗

11: end if
12: end while
13: Output: S

one by one until K, where S0 includes a few buses having the
largest degree di or being significantly crucial. For each step,
the set S is updated by adding the i∗th bus that minimizes
the loss function li plus the item of β/di. Note that the item
β/di is added to the loss function to account for the effect
of grid topology in determining the selected bus. The weight
coefficient β ∈ (0, 1) adjusts the significance of the bus degree
and of the loss function to prioritize the buses with large
degree. This item takes effect obviously when the set S is
large and the difference of the loss function li becomes small.
Meanwhile, a number of experimental results show that adding
a bus with larger degree tends to have better performances.
Based on all of the above, our algorithm tries to enforce the
selected buses to achieve a larger degrees by minimizing the
loss function augmented with the β/di item.

V. NUMERICAL RESULTS

Four types of line faults, including three phase short circuit
(TP), line to ground(LG), double line to ground (DLG) and
line to line (LL) faults, with different fault impedance are
simulated in the IEEE 68-bus power system by PST [20]. In
order to mimic the ambient data, active and reactive loads
are introduced to generate fluctuations around the initial base
condition with random values ε drawn from the normal distri-
bution, ε ∼ N (0, 0.1I) where I ∈ Rn×n is the n× n identity
matrix. These random load fluctuations are simulated by
adding random number ε to the active and reactive modulation
controls through the function mlsig and rmlsig respectively.
The fault impedance is calculated by the negative sequence
impedance, Z2, and the zero sequence impedance, Z0, [21].
The fault is cleared after 0.1 seconds.

Given voltage measurements and admittance matrix in the
normal condition, the complete feature vectors ψ in (9) or
partial ψ̄ in (11) are computed. The fault location performance
is evaluated by the location accuracy rate (LAR) η defined in
(19).

η =
The number of faults correctly located

total number of faults
(19)

A. Dataset Selection

There are a total of 86 different locations of faults in the
system and one normal condition, thus total 87 classes are
labeled. We take the data rate of PMU to be 30 samples per
second. As mentioned, the initial conditions of each fault in
the dataset is varying due to load fluctuations. We assume that
active and reactive loads z ∈ R2n are drawn from the Gaussian
distribution N (µ,Λ) with mean µ ∈ R2n and covariance
matrix Λ ∈ R2n×2n, where the mean value of the load µ
is given by the standard dataset and the covariance matrix is
defined as Λ = diag(0.1µ). There is a total of 1428 training
datasets and 884 (about 221 for each type) testing datasets that
cover the four types of faults with zero sequence impedance
changing from 0.05 to 0.0001.

B. Structural Parameters of CNN

Table I: The Size of Layers of the Designed CNN

Layer Operator Kernel Stride Padding Output
The 1st Convolution 4 @ 5 1 VALID 4 @ 64

Max Pooling 2×1 2 SAME 4 @ 32
The 2nd Convolution 8 @ 5 1 VALID 8 @ 28

Max Pooling 2×1 2 SAME 8 @ 14
The 3rd Convolution 8 @ 3 1 VALID 8 @ 12

Max Pooling 2×1 2 SAME 8 @ 6
The 4th Convolution 8 @ 3 1 VALID 8 @ 4

Max Pooling 2×1 2 SAME 8 @ 2
Fully Vectorize - - - 16

Output Regression 16 × 87 - - 87

For this 68-bus power system, a CNN with four convolu-
tional layers is designed to classify the feature vectors. The
specific parameters are summarized in the Table I, where “4
@ 5 ” denotes that there are four kernels of the size 5 by
1, “4 @ 64” denotes that the output volume is four vectors
of the size 64 by 1, and in the column of “ Padding”, the
notations “VALID” and “SAME” mean not padding zeros and
padding zeros respectively. The size of the kernels is mainly
determined by the size of each layer input.

C. Performance under complete PMU Observability

When the system is fully observable, we compare the
LAR (19) of CNN with that of two other machine learn-
ing classifiers, including multi-class support vector machine
(MSVM) [31], [32] and “fully-connected” neural network
(NN). The MSVM classifier is based on the coupling pair-
wise or “one vs one” method with the radial basis function
kernel to find the global solution. NN of two ∼ four layers
are tested and the two-layer NN is selected as it achieves
the optimal performance as discussed later in Fig. 5. The
parameter and bias matrices for the first layer of NN are
W 1
NN ∈ R68×32, b1NN ∈ R32 and for the second layer are

W 2
NN ∈ R32×16, b2NN ∈ R16, and the activation function is

ReLU function f(x) = max(x, 0). The RMSprop optimizer
with decay coefficient α = 0.9 is employed to train both
NN and CNN after comparing with Adam and stochastic
gradient descent methods. The “early stop” is applied if the
loss function does not increase for 10 consecutive iterations.



6

Table II: The LAR η ( %) of different classifiers on the different faults
with various fault impedance

Z0 η of MSVM (%) η of NN (or CNN) (%)
(p.u.) TP LG DLG LL TP LG DLG LL
0.05 100 100 98.6 98.6 100 100 100 100
0.01 100 100 100 99.6 100 100 100 100

0.001 100 100 99.5 94.6 100 100 100 100
0.0001 100 100 94.5 93.6 100 100 100 100

The LAR of MSVM for the four types of faults with
different fault impedances is shown in Table II. In general, the
LAR is greater than 95%, while that of CNN or NN are all
100%. Although CNN performs slightly better than MSVM,
the advantage of CNN so far does not look overwhelming.
However, in the next Section, we will see that in the regime
of a partial observability CNN outperforms other methods by
a large amount.

D. Performance under Partial Observability

Real-world PMU deployment is not ubiquitous. We consider
scenarios where only 15% ∼ 30% of the buses are covered
by PMUs. Under such partial observability, the LAR of the
MSVM, two-layer NN and CNN are compared for the four
types of faults in Fig. 4. The observed buses for each classifier
are selected according to the principles of algorithm 1 using
their corresponding loss functions to demonstrate optimal
performance. To elucidate the selection of two-layer NN in
Fig. 4, performances of NN with different layer depths are
compared in Fig. 5, which demonstrates that the two-layer
NN has better performance than other schemes.
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Fig. 4: The LAR of the CNN, MSVM, NN on the four types of faults
in terms of different percentage of measured buses

The results in Fig. 4 demonstrate that when only 15% ∼
30% buses are observed, fault localization by CNN is much
better for the four types of faults than that shown by the
other two classifiers. Observe that when 30% of buses are
measured, CNN can reach an impressive fault localization
accuracy of more than 95% for faults of the four types. It
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Fig. 5: The LAR of NN classifier with different layer depths in terms
of different percentage of measured buses

is worth investigating the performance of the CNN classifier
when less than 15% of all buses are measured. In this case
one would guess that LAR of CNN cannot be better than
90%. However we observe that even if the CNN does not
predict the fault location exactly, it is still able to associate a
relatively large probability of failure (though not the largest)
to the correct faulted line. To analyze this, we sort the lines
according to the output probability ȳj of CNN in descending
order and then record the rank rj of the correct line of the jth
fault. We define a new performance metric “average rank of the
correct line” (ARC) for the N testing faults as r̄ = 1

NΣNj=1rj .
The ARC indicates how many high-probability lines need to
be considered on average to show the correct faulted line. Note
that a lower ARC reflects better average performance with the
ARC of exact localization being 1.

E. The ARC of CNN under ≤ 15% of nodal observability

Table III: The ARC of CNN for different type of faults when the ratio
of measured buses is less than 15%

Measured Ratio TP LG DLG LL
7% 1.32 1.48 1.92 1.56
10% 1.38 1.28 1.66 1.54
15% 1.38 1.23 1.57 1.54

The ARC of the four types of faults is shown in the Table III
when no more than 15% of buses are measured. It is significant
that the ARC for all types of faults is less than 3 when only 7%
to 15% of buses are measured. This observation suggests that
despite the low PMU coverage, the operator needs to check
only a few lines to identify the fault. Crucially, as discussed
next, under low PMU coverage, CNN is also able to localize
the fault to a small graphical neighborhood of its true location.

F. Neighborhood property of high probability lines
The lines with high output probability ȳji demonstrate

neighborhood property in Fig. 6, where the line between bus
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Fig. 6: The lines of top-5 high probability (above) from CNN are
marked in red IEEE 68-bus power system

5 and 6 has a three phase short circuit fault. All lines are
sorted according to ȳji from high to low, then those with the
top-5 probabilities, marked as red, are in the neighborhood
of the faulted line. Furthermore, we have verified that this
neighborhood property is not a special case for this fault but
extends to the majority of the tested faults. Moreover, this
neighborhood property is determined by the feature vector
in (10) and as such also applies to other tested classifiers,
e.g. NN. Since, ψk(k 6= i, j), defined in Section II-B as the
total line currents in the neighborhood of bus k, lines in the
neighborhood of the fault are identified with high probability.

Low ARC and neighborhood localization properties appear
very useful to guide initial dispatch of a recovery/maintenance
crew. Moreover, it should also be advantageous to use these
features to determine the order of triggering relays or circuit
breakers automatically for protection in the post-fault grid. We
plan to study these directions in the future.

G. Comparison with other PMU placement algorithms

In this Subsection, we discuss the performance of the
algorithm 1 for PMU placement. The proposed algorithm
is compared with the “2-hop Vertex Cover (VC)” and the
Random placement algorithms. The “2-hop VC” is a topology-
based algorithm for PMU placement [17]. It places PMUs on
a set of buses such that each edge in the graph is at-most two
hops away from a PMU. The baseline of Random algorithm
selects arbitrarily s buses. The LAR for faults of the four
tested types is compared in Fig. 7 where the measured buses
are suggested by the three placement algorithms.

As there are at least 12 buses that can satisfy the ob-
jective of “2-hop vertex cover” for this 68-bus power sys-
tem, these three algorithms are compared when s = 12.
The 12 buses selected by the Random algorithm include
[31, 3, 65, 46, 43, 28, 15, 44, 23, 58, 9, 57], one solution of the
2-hop VC algorithm is obtained by solving a linear pro-
gramming approximating the 2-hop VC formulation, and the
selected buses are [3, 6, 13, 19, 23, 26, 30, 31, 36, 40, 44, 52],
and the 12 buses selected by the method proposed in the
manuscript are [1, 9, 16, 30, 36, 23, 42, 61, 51, 57, 6, 37]. Com-
pared with the Random algorithm, the improvements of the
proposed algorithm for different types of faults varies, however
it always shows about 10% improvement in average over
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Fig. 7: The LAR of CNN when 12 measured buses are selected by
three algorithms

the other methods. The 2-hop VC method also has higher
LAR than that of the Random algorithm, however it is still
lagging behind the proposed algorithm showing the average
improvement of 8%.

H. Sensitivity to noise
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Fig. 8: (a) The LAR for different types of faults when 30% of buses
measured with different SNR; (b)The Averaged LAR of all types of
faults when 20% ∼ 30% of buses measured with different SNR

The IEEE Standard C37.118 only defines the measurement
accuracy but does not specify the signal-noise-ratio(SNR) of
PMU measurements [33], and the SNR of PMUs in different
regions can vary. We select the experimental range of SNR
from 40 dB to 100 dB [18], [34], [35] to test our method.
Gaussian noise of the same SNR is added both to the training
and testing datasets. The structure of the CNN is the same as
before but the hyper-parameter decay coefficient, α, is changed
from 0.9 to 0.7 in the noisy regime. Other parameters are kept
the same.

The (a) of Fig. 8 demonstrates the LAR with different SNR
when 30% of buses are observed, and the (b) indicates the
average LAR of all types of faults when 20% ∼ 30% of buses
are observed. Results in (a) indicate that the sensitivity of
different types of faults to noise is different, and the three
phase short circuit faults are relatively more robust to the
noise. When SNR is higher than 60 dB, LAR for faults of
all the types can achieve 90% or higher. The (b) reveals that,
as expected, when more buses are measured the robustness to
noise can be strengthened. Furthermore, when SNR is higher
than 60 dB, the influence of the noise is contained and the
performance does not improve or degrade noticeably.
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VI. CONCLUSIONS

This manuscript builds a data-driven CNN classifier applied
to the problem of fault localization under complete and partial
PMU measurement availability. The performance of CNN
is validated on IEEE test system, and it is shown to be
better than of other data-driven approaches. The improvement
is especially significant when PMUs are limited to a small
number of (less than 30%) buses. At low observability, the
CNN is able to localize the fault to a small region around
the actual faulted line. The success is related to a proper
choice of the input features for the learning algorithm. We
also present a location and learning aware PMU placement
scheme which maximizes performance of the CNN classifier
compared to other placement options such as random and
vertex cover based ones. The CNN is verified on faults of
various types, load settings, measurement noise levels and
system observability to benchmark its performance.

In the future, we will extend this work not just to locate
the faulted line but also identify exact location of the fault
along the line. Furthermore, we are interested in designing
mitigation and protection strategies that take into account the
data-driven approach proposed here. Testing the methodology
on real-data (as opposed to synthetically generated data) is
another direction for our future work.
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pairwise support vector machines for fault classification,” Control En-
gineering Practice, vol. 13, no. 6, pp. 759–769, 2005.

[32] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass
support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 2,
pp. 415–425, 2002.

[33] K. E. Martin, “Synchrophasor measurements under the ieee standard
c37. 118.1-2011 with amendment c37. 118.1 a,” IEEE Trans. Power
Del., vol. 30, no. 3, pp. 1514–1522, 2015.

[34] M. Brown, M. Biswal, S. Brahma, S. J. Ranade, and H. Cao, “Char-
acterizing and quantifying noise in PMU data,” in Power and Energy
Society General Meeting (PESGM), 2016. IEEE, 2016, pp. 1–5.

[35] W. Li, M. Wang, and J. H. Chow, “Real-time event identification
through low-dimensional subspace characterization of high-dimensional
synchrophasor data,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 4937–
4947, 2018.

http://www.deeplearningbook.org
http://cs231n.github.io/convolutional-networks/

	I Introduction
	II Feature Selection for Fault localization
	II-A  Substitution Theory and Features for Full Observability
	II-B Physical Interpretation of the Features
	II-C Feature Extraction under Partial Observability

	III Classification
	III-A CNN classifier
	III-A1 Architecture
	III-A2 Training Process


	IV PMU Placement for Fault Localization under Partial Observability
	V Numerical Results
	V-A Dataset Selection
	V-B Structural Parameters of CNN
	V-C Performance under complete PMU Observability
	V-D Performance under Partial Observability
	V-E The ARC of CNN under  15% of nodal observability
	V-F Neighborhood property of high probability lines
	V-G Comparison with other PMU placement algorithms
	V-H Sensitivity to noise

	VI Conclusions
	References

