
MIT Open Access Articles

Real-Time Motion Planning With
Applications to Autonomous Urban Driving

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Kuwata, Y. et al. “Real-Time Motion Planning With Applications to Autonomous Urban
Driving.” Control Systems Technology, IEEE Transactions on 17.5 (2009): 1105-1118. © 2009
Institute of Electrical and Electronics Engineers

As Published: http://dx.doi.org/10.1109/tcst.2008.2012116

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/52527

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher’s policy and may be
subject to US copyright law. Please refer to the publisher’s site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/52527

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009 1105

Real-Time Motion Planning With Applications to
Autonomous Urban Driving

Yoshiaki Kuwata, Member, IEEE, Justin Teo, Student Member, IEEE, Gaston Fiore, Student Member, IEEE,
Sertac Karaman, Student Member, IEEE, Emilio Frazzoli, Senior Member, IEEE, and

Jonathan P. How, Senior Member, IEEE

Abstract—This paper describes a real-time motion planning al-
gorithm, based on the rapidly-exploring random tree (RRT) ap-
proach, applicable to autonomous vehicles operating in an urban
environment. Extensions to the standard RRT are predominantly
motivated by: 1) the need to generate dynamically feasible plans
in real-time; 2) safety requirements; 3) the constraints dictated by
the uncertain operating (urban) environment. The primary novelty
is in the use of closed-loop prediction in the framework of RRT.
The proposed algorithm was at the core of the planning and con-
trol software for Team MIT’s entry for the 2007 DARPA Urban
Challenge, where the vehicle demonstrated the ability to complete a
60 mile simulated military supply mission, while safely interacting
with other autonomous and human driven vehicles.

Index Terms—Autonomous, DARPA urban challenge, dynamic
and uncertain environment, real-time motion planning, rapidly-ex-
ploring random tree (RRT), urban driving.

I. INTRODUCTION

I N NOVEMBER 2007, several autonomous automobiles
from all over the world competed in the DARPA Urban

Challenge (DUC), which was the third installment of a series
of races for autonomous ground robots [1]. Unlike previous
events that took place on desert dirt roads, the DUC course
consisted mainly of paved roads, incorporating features like
intersections, rotaries, parking lots, winding roads, and high-
ways, typically found in urban/suburban environments. The
major distinguishing characteristic of the DUC was the in-

Manuscript received September 12, 2008. Manuscript received in final form
December 23, 2008. First published July 28, 2009; current version published
August 26, 2009. Recommended by Associate Editor C. A. Rabbath. This work
was sponsored by Defense Advanced Research Projects Agency, Program:
Urban Challenge, DARPA Order No. W369/00, Program Code: DIRO. Issued
by DARPA/CMO under Contract HR0011-06-C-0149, with Prof. J. Leonard,
Prof. S. Teller, Prof. J. How at MIT, and Prof. D. Barrett at Olin College as the
principal investigators.

Y. Kuwata was with Department of Aeronautics and Astronautics, Massachu-
setts Institute of Technology, Cambridge, MA 02139 USA. He is now with Jet
Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109
USA (e-mail: yoshiaki.kuwata@jpl.nasa.gov).

J. Teo, E. Frazzoli, and J. P. How are with the Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139
USA (e-mail: csteo@mit.edu; frazzoli@mit.edu; jhow@mit.edu).

G. Fiore was with Department of Aeronautics and Astronautics, Massachu-
setts Institute of Technology, Cambridge, MA 02139 USA. He is now with the
School of Engineering and Applied Sciences, Harvard University, Cambridge,
MA 02138 USA (e-mail: gafiore@alum.mit.edu).

S. Karaman is with the Department of Mechanical Engineering, Massachu-
setts Institute of Technology, Cambridge, MA 02139 USA (e-mail: sertac@mit.
edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2008.2012116

troduction of traffic, with up to 70 robotic and human-driven
vehicles on the course simultaneously. This resulted in hun-
dreds of unscripted robot-on-robot (and robot on human-driven
vehicle) interactions. With a longer term goal of fielding such
autonomous vehicles in environments with coexisting traffic
and/or traffic infrastructure, all vehicles were required to abide
by the traffic laws and rules of the road. Vehicles were expected
to stay in the correct lane, maintain a safe speed at or under
specified speed limits, correctly yield to other vehicles at
intersections, pass other vehicles when safe to do so, recognize
blockages and execute U-turns when needed, and park in an
assigned space.

Developing a robotic vehicle that could complete the DUC
was a major systems engineering effort, requiring the devel-
opment and integration of state-of-the-art technologies in plan-
ning, control, and sensing [2], [3]. The reader is referred to [3]
for a system-level report on the design and development of Team
MIT’s vehicle, Talos. The focus of this paper is on the motion
planning subsystem (or “motion planner”) and the associated
controller (which is tightly coupled with the motion planner).
The motion planner is an intermediate level planner, with inputs
primarily from a high level planner called the Navigator, and
outputs being executed by the low level controller. Given the
latest environment information and vehicle states, the motion
planner computes a feasible trajectory to reach a goal point spec-
ified by the Navigator. This trajectory is feasible in the sense
that it avoids static obstacles and other vehicles, and abide by
the rules of the road. The output of the motion planner is then
sent to the controller, which interfaces directly to the vehicle,
and is responsible for the execution of the motion plan.

The main challenges in designing the motion planning
subsystem resulted from the following factors: 1) complex and
unstable vehicle dynamics, with substantial drift; 2) limited
sensing capabilities, such as range and visibility, in an uncer-
tain, time-varying environment; and 3) temporal and logical
constraints on the vehicle’s behavior, arising from the rules of
the road.

Numerous approaches to address the motion planning
problem have been proposed in the literature, and the reader is
referred to [1], [4]–[8], to name a few. For our motion planning
system, we chose to build it on the rapidly-exploring random
trees (RRT) algorithm [9]–[11], which belongs to the class of
incremental sampling-based methods [7, Sec. 14.4]. The main
reasons for this choice were: 1) sampling-based algorithms
are applicable to very general dynamical models; 2) the incre-
mental nature of the algorithms lends itself easily to real-time,

1063-6536/$26.00 © 2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1106 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

online implementation, while retaining certain completeness
guarantees; and 3) sampling-based methods do not require the
explicit enumeration of constraints, but allow trajectory-wise
checking of possibly very complex constraints.

In spite of their generality, the application of incremental
sampling-based motion planning methods to robotic vehicles
with complex and unstable dynamics, such as the full-size
Landrover LR3 used for the race, is far from straightforward.
For example, the unstable nature of the vehicle dynamics
requires the addition of a path-tracking control loop whose
performance is generally hard to characterize. Moreover,
the momentum of the vehicle at speed must be taken into
account, making it impossible to ensure collision avoidance
by point-wise constraint checks. In fact, to the best of our
knowledge, RRTs have been restricted either to simulation, or
to kinematic (essentially driftless) robots (i.e., it can be stopped
instantaneously by setting the control input to zero), and never
been used in online planning systems for robotic vehicles with
the previous characteristics.

This paper reports on the design and implementation of an
efficient and reliable general-purpose motion planning system,
based on RRTs, for our team’s entry to the DUC. In particular,
we present an approach that enables the online use of RRTs
on robotic vehicles with complex, unstable dynamics and sig-
nificant drift, while preserving safety in the face of uncertainty
and limited sensing. The effectiveness of our motion planning
system is discussed, based on the analysis of actual data col-
lected during the DUC race.

II. PROBLEM FORMULATION

This section defines the motion planning problem. The ve-
hicle has nonlinear dynamics

(1)

where and are the states and inputs of
the system, and is the initial states at . The input

is designed over some (unspecified) finite horizon .
Bounds on the control input, and requirements of various driving
conditions, such as static and dynamic obstacles avoidance and
the rules of the road, can be captured with a set of constraints
imposed on the states and the inputs

(2)

The time dependence of expresses the avoidance con-
straints for moving obstacles. The goal region of
the motion planning problem is assumed to be given by a higher
level route planner. The primary objective is to reach this goal
with the minimum time

(3)

with the convention that the infimum of an empty set is .
A vehicle driving too close to constraints such as lane bound-
aries incurs some penalty, which is modeled with a function

. The motion planning problem is now defined
as follows.

1) Problem II.1 (Near Minimum-Time Motion Planning):
Given the initial states and the constraint sets and ,

Fig. 1. Closed-loop prediction. Given a reference command ���, the controller
generates high rate vehicle commands ��� to close the loop with the vehicle
dynamics.

compute the control input sequence , ,
that minimizes

while satisfying (1)–(3).

III. PLANNING OVER CLOSED-LOOP DYNAMICS

The existing randomized planning algorithms solve for the
input to the vehicle either by sampling an input itself or by
sampling a configuration and reverse calculating , typically
with a lookup table [9], [10], [12]–[14]. This paper presents the
closed-loop RRT (CL-RRT) algorithm, which extends the RRT
by making use of a low-level controller and planning over the
closed-loop dynamics. In contrast to the existing work, CL-RRT
samples an input to the stable closed-loop system consisting of
the vehicle and the controller [15].

Fig. 1 shows the forward simulation of the closed-loop dy-
namics. The low-level controller takes a reference command

. For vehicles with complex dynamics, the dimen-
sion of the vehicle states can be quite large, but the reference
command typically has a lower dimension (i.e.,).
For example, in our application, the reference command is a 2D
path for the steering controller and a speed command profile for
the speed controller. The vehicle model in this case included
seven states, and the reference command consists of a series of
triples , where and are the position of the refer-
ence path, and is the associated desired speed. For urban
driving, the direction of the vehicle motion (forward or reverse)
is also part of the reference command, although this direction
needs to be defined only once per reference path.

Given the reference command, CL-RRT runs a forward sim-
ulation using a vehicle model and the controller to compute the
predicted state trajectory . The feasibility of this output is
checked against vehicle and environmental constraints, such as
rollover and obstacle avoidance constraints.

This closed-loop approach has several advantages when com-
pared to the standard approach that samples the input to the
vehicle [7], [13]. First, CL-RRT works for vehicles with un-
stable dynamics, such as cars and helicopters, by using a sta-
bilizing controller. Second, the use of a stabilizing controller
provides smaller prediction error because it reduces the effect of
any modeling errors in the vehicle dynamics on the prediction
accuracy, and also rejects disturbances/noises that act on the ac-
tual vehicle. Third, the forward simulation can handle any non-
linear vehicle model and/or controller, and the resulting trajec-
tory satisfies (1) by construction. Finally, a single input to
the closed-loop system can create a long trajectory (on the order
of several seconds) while the controller provides a high-rate sta-
bilizing feedback to the vehicle. This requires far fewer samples

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1107

to build a tree, improving the efficiency (e.g., number of sam-
ples per trajectory length) of randomized planning approaches.

IV. TREE EXPANSION

Summarizing the previous section, the CL-RRT algorithm
grows a tree of feasible trajectories originating from the cur-
rent vehicle state that attempts to reach a specified goal set. At
the end of the tree growing phase, the best trajectory is chosen
for execution, and the cycle repeats. This section discusses how
a tree of vehicle trajectories is grown, using the forward simu-
lation presented in Section III, and identifies several extensions
made to the existing work. Algorithm 1 shows the main steps in
the tree expansion (called function). Similar to
the original RRT algorithm, CL-RRT takes a sample (line 1), se-
lects the best node to connect from (line 2), connects the sample
to the selected node (line 4), and evaluates its feasibility (line 7).
Line 6 splits the trajectory between the newly added node and
its parent into (but typically) segments so that
future samples can be connected to such nodes to create new
branches in the tree.

The CL-RRT algorithm differs from the original RRT in sev-
eral ways, including: samples are drawn in the controller’s input
space (line 1); nonlinear closed-loop simulation is performed to
compute dynamically feasible trajectories (line 5); the propaga-
tion ensures that the vehicle is stopped and safe at the end of
the trajectory (line 5); and the cost-to-go estimate is obtained
by another forward simulation towards the goal (line 15).

Algorithm 1

1: Take a sample for input to controller.
2: Sort the nodes in the tree using heuristics.
3: for each node in the tree, in the sorted order do
4: Form a reference command to the controller, by

connecting the controller input at and the sample .
5: Use the reference command and propagate from until

vehicle stops. Obtain a trajectory .
6: Add intermediate nodes on the propagated trajectory.
7: if then
8: Add sample and intermediate nodes to tree. Break.
9: else if all intermediate nodes are feasible then

10: Add intermediate nodes to tree and mark them
unsafe. Break.

11: end if
12: end for
13: for each newly added node do
14: Form a reference command to the controller, by

connecting the controller input at and the goal
location.

15: Use the reference command and propagate to obtain
trajectory .

16: if then
17: Add the goal node to tree.
18: Set cost of the propagated trajectory as an upper

bound of cost-to-go at .
19: end if
20: end for

Fig. 2. Vehicle trajectories are generated using a model of the vehicle
dynamics. The generated trajectories are then evaluated for feasibility and
performance.

Fig. 2 shows an example of a tree generated by the
function of the CL-RRT algorithm. The

tree consists of reference paths that constitute the input to the
controller (orange) and the predicted vehicle trajectories (green
and red). The trajectories found to be infeasible are marked in
red. The large dots () at the leaves of the tree indicate that the
vehicle is stopped and is in a safe state (discussed in detail in
Section IV-E). Given this basic outline, the following subsec-
tions discuss the additional extensions to the RRT approach in
[13] in more detail.

A. Sampling Strategies

In a structured environment such as urban driving, sampling
the space in a purely random manner could result in large
numbers of wasted samples due to the numerous constraints.
Several methods have been proposed to improve the efficiency
[16]–[20]. This subsection discusses a simple strategy that uses
the physical and/or logical environment to bias the Gaussian
sampling clouds to enable real-time generation of complex
maneuvers.

The reference command for the controller is specified by an
ordered list of triples , for ,
together with a driving direction (forward/reverse). The 2-D po-
sition points are generated by random sampling, and
the associated speed command for each point, , is designed
deterministically to result in a stopped state at the end of the
reference command [15]. Each sample point is
generated with respect to some reference position and heading

by

with

where and are random variables with standard Gaussian
distributions, is the standard deviation in the radial direction,

is the standard deviation in the circumferential direction, and
is an offset with respect to . Various maneuvers are

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1108 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

Fig. 3. Various sampling clouds (dots show samples generated in one planning cycle; lines show predicted trajectories).

generated simply by changing these parameters according to the
vehicle location and the rules of the road.

1) Physical Environment as a Bias: On a lane, the sampling
starts with randomly shifting the estimated lane center points
in the lateral direction, to fully exploit the lane shape. After a
few hundred samples, it switches to a long and narrow Gaussian
cloud whose longitudinal axis follows the car heading.

At an intersection, a wide and relatively short Gaussian distri-
bution is used that covers the open space inside the intersection
boundary [see Fig. 3(a)]. The value of in intersections is set
to the distance to the goal and is set at . Note that the
samples do not necessarily lie inside the lane. This is because
they are used only to construct the reference path, while the re-
sultant vehicle trajectory may not track it exactly.

The sample can consist of an ordered set of points ,
, called batch sampling. The input to the con-

troller is generated by connecting these ordered points, and the
first point in the sample is connected to a node in the tree (line
4). Batch sampling is useful when the intended trajectory has
some specific shape, such as arriving at a goal with a certain
heading. By placing the last two points of a batch sample along
the direction of the goal heading, the planner can align the ve-
hicle heading towards the goal heading.

In parking lots, sampling is taken both around the vehicle and
around the parking spot. Around the vehicle, a wide and long
Gaussian distribution in the direction of vehicle heading is used,
while around the parking spot, the sampling is performed along
the center line of the intended parking spot. Fig. 3(b) shows an
example of the parking samples. The values of 50 m and

are used in the parking zones.
2) Logical Environment as a Bias: When passing a stopped

vehicle or obstacles in the lane, a wider Gaussian distribution
is used () compared to the normal lane following
(, or if no trajectory to the goal is found).

For a U-turn, the sampling is biased for a three-point turn,
as shown in Fig. 3(c). The location of the different regions cor-
respond to the different phases of a three-point turn. During a
three-point turn, the vehicle first travels forward left; then re-
verses right, moving into the original lane of travel; and finally

moves forward into the targeted lane with the correct heading.
The parameter values used for each of the three sample sets are

The units are meters for and radians for . Here, the origin
is the car location before initiating the U-turn, and ’s

are measured from the car heading there. Sometimes the car
stops very close to the road blockage, requiring a short reverse
maneuver before initiating a U-turn, so an additional cloud of
reverse samples is also generated behind the vehicle.

B. Feasibility Check and Risk Evaluation

After the forward propagation, the resulting predicted trajec-
tory is tested with obstacles and rules of the road, as shown in
Fig. 2. All the physical and logical constraints, such as static and
moving obstacles, lane boundaries, and standoff distance are en-
coded in a drivability map [3], which is updated at 10 Hz. This
drivability map is a 2-D grid in whose resolution is 20 cm,
which gave enough accuracy with a manageable table size. Each
grid cell stores a drivable/non-drivable flag and the associated
penalty if drivable. This implementation has the advantage of
performing the penalty evaluation at the same time as the binary
collision check without additional computation. When evalu-
ating the feasibility of a rectangular car with a specific heading,
line searches are performed over the 2-D grid along the longi-
tudinal direction of the car.

Fig. 4 shows the three different regions encoded in the driv-
ability map. These are infeasible (red), restricted (blue), and
drivable with penalty (white or gray or black). Infeasible re-
gions represent obstacles and lane boundaries. Restricted re-
gions may be driven through but only if the vehicle can then
drive out of them. They are used to prevent the vehicle from
stopping too close to obstacles, and also to maintain sufficient
standoff distance before a passing maneuver. The risky regions
such as those near obstacles or lane boundaries are marked as
drivable with penalty. By adding the path integral of the penalty

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1109

Fig. 4. Snapshot of the cost map.

to the time to traverse, the CL-RRT does not choose paths that
closely approach constraint boundaries, unless there is no other
option (e.g., narrow passage).

C. Node Connection Strategy

This subsection describe how the nodes in the tree are sorted
on line 2 of Algorithm 1, when connecting a sample to the tree.

1) Distance Metric: RRT attempts to connect the sample
to the closest node in the tree. Because shorter paths have
lower probability of collision, this approach requires minimum
function calls for the computationally expensive collision de-
tection [7]. RRT can thus quickly cover the free space without
wasting many samples. Usually, the two-norm distance is used
to evaluate the “closeness”, but an extension is required when
RRT is applied to a vehicle with limited turning capability. For
example, a car would need to make a big loop to reach a point
right next to the current location, due to the nonholonomic
constraints. The most accurate representation for this distance
would be the simulated trajectory of the vehicle as determined
by the propagation of the vehicle model. However, performing
a propagation step for each node in the tree would impose a
heavy computational burden. Thus the CL-RRT algorithm uses
the length of the Dubins path between a node and the sample.
The use of Dubins path lengths has the advantage of capturing
the vehicle’s turning limitation with a simple evaluation of an
analytical solution. A full characterization of optimal Dubins
paths is given in [21] and a further classification in [22].

The node in the tree has a 2-D position and a heading, and
without loss of generality, it is assumed to be at the origin

, where denotes a special Euclidean
group of dimension . The sample is a 2-D point represented by

. Since for the choice of , the Dubins path
lengths from to the points and are equal, it suf-
fices to consider the case . The minimum
length of a Dubins path from to can be obtained an-
alytically [23]. Let denote the minimum turning radius of the
vehicle. By defining , the
minimum length is given by

for
otherwise

where

and is the distance of from the
point , is the angle of from
the point , measured counter-clockwise from the negative

-axis, is the distance of from the
point , and
is the angular change of the second turn segment of the
Dubins path when . Note that the func-
tion is the four quadrant inverse tangent function with

, and its range must be set to
be to give a valid distance. This analytical calculation
can be used to quickly evaluate all the nodes in the tree for a
promising connection point.

2) Selection Criteria: Several heuristics have been proposed
in the past [13], [24] to select the node to connect the sample
to. Because CL-RRT was designed to be used in a constrained
environment, it attempts multiple nodes in some order (
in our implementation) before discarding the sample. The fol-
lowing presents the heuristics used to sort the nodes in the tree.

Before a trajectory to the goal is found, the tree is grown
mainly according to an exploration heuristic, in which the em-
phasis of the algorithm is on adding new nodes to the tree to
enlarge the space it covers. The nodes are sorted according to
the Dubins distance , as presented above. Once a feasible
trajectory to the goal has been found, the tree is grown primarily
according to an optimization heuristic. To make the new trajec-
tories progressively approach the shortest path, the nodes are
now sorted in ascending order of total cost to reach the sample.
This total cost is given by

where represents the cumulative cost from the root of
the tree to a node , is the sampled speed, and the second term
estimates the minimum time it takes to reach the sample from .

Our experience has shown that, even before having a tra-
jectory that reaches the goal and consequently when the focus
should be on exploration, some use of the optimization heuris-
tics is beneficial to reduce wavy trajectories. Similarly, once a
feasible trajectory to the goal has been found and therefore the
focus should be on refining the available solution, some explo-
ration of the environment is beneficial for example in case an
unexpected obstacle blocks the area around the feasible solu-
tion, or for having a richer tree when the goal location changes.
Thus when implementing the algorithm, the ratio of exploration
vs. optimization heuristics used was 70% versus 30% before a
trajectory to the goal was found, and 30% versus 70% after.

Note that stopping nodes in the tree are not considered as
potential connection points for the samples, unless it is the only
node of the tree or the driving direction changes. This prevents
the vehicle from stopping for no reason and helps achieve
smooth driving behaviors.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1110 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

D. Cost-to-Go Estimate

Every time a new node is added to the tree, CL-RRT
computes estimates of the cost-to-go from to the goal (lines
13–20). There are two estimates of the cost-to-go at each node
in the tree, a lower bound and an upper bound. The lower bound

is given by the Euclidean distance between the vehicle
position at the node and the position of the goal. The upper
bound is obtained differently from [13], which assumed
the existence of the optimal control policy.

For each newly added node , a trajectory from to the goal
is generated and evaluated for feasibility. If it is collision-free,
the cost associated with that trajectory gives the upper bound

at . This upper bound is then propagated from backward
towards the root to see if it gives a better upper bound from
ancestor nodes of . Thus, is given by

: no trajectory to the goal available
: trajectory to the goal available
: node is inside the goal region

where represents the index of each child of this node, is the
cost from the node to the child node , and represents the
upper bound cost at node .

Note that this process adds a node at the goal to the tree if the
goal is directly reachable from , which helps CL-RRT quickly
find a trajectory to reach the goal in most scenarios. As time
progresses, more trajectories that reach the goal are constantly
added to the tree.

These cost estimates are used when choosing the best tra-
jectory to execute (as shown later on line 13 of Algorithm 2).
Once a feasible trajectory to the goal is found, the best sequence
of nodes is selected based on the upper bound . Before a
goal-reaching trajectory is found, the node with the best lower
bound is selected, in effect trying to move towards the goal as
much as possible.

E. Safety as an Invariant Property

1) Safe States: Ensuring the safety of the vehicle is an impor-
tant feature of any planning system, especially when the vehicle
operates in a dynamic and uncertain environment. We define a
state to be safe if the vehicle can remain in that state for
an indefinite period of time

without violating the rules of the road and at the same time is
not in a collision state/path with stationary and/or moving ob-
stacles—where the latter are assumed to maintain their current
driving path. A complete stop is used as safe state in this paper.
More general notions of safe states are available [13], [25]. The
large circles in Fig. 2 show the safe stopping nodes in the tree.
Given a reference path (shown with orange), a speed profile is
designed in such a way that the vehicle comes to a stop at the
end. Then, each forward simulation terminates when the vehicle
comes to a stop. By requiring that all leaves in the tree are safe
states, this approach guarantees that there is always a feasible
way to come to a stop while the car is moving. Unless there is
a safe stopping node at the end of the path, the vehicle does not

start executing it. With stopping nodes at the leaves of the tree,
some behaviors such as stopping at a stop line emerge naturally.

2) Unsafe Node: A critical difference from previous work
[13] is the introduction of “unsafe” nodes. In [13], when the
propagated trajectory is not collision-free, the entire trajectory
is discarded. In our approach, when only the final portion of
the propagated trajectory is infeasible, the feasible portion of
the trajectory is added to the tree. This avoids wasting the com-
putational effort required to find a good sample, propagate, and
check for collision, while retaining the possibility to execute the
portion that is found to be feasible. Because this trajectory does
not end in a stopped state, the newly added nodes are marked
as “unsafe”. When a safe trajectory ending in a stopped state
is added to the unsafe node, the node is marked as safe. This
approach uses unsafe nodes as potential connection points for
samples, increasing the density of the tree, while ensuring the
safety of the vehicle.

V. ONLINE REPLANNING

In a dynamic and uncertain environment, the tree needs to
keep growing during the execution because of the constant up-
date of the situational awareness. Furthermore, real-time execu-
tion requirements necessitate reuse of the information from the
previous computation cycle [26]–[28].

Algorithm 2 Execution loop of RRT.

1: repeat
2: Update the current vehicle states and environmental

constraints
3: Propagate the states by the computation time and obtain

4: repeat
5:
6: until time limit is reached
7: Choose the best safe node sequence in the tree
8: if No such sequence exists then
9: Send E-Stop to controller and goto line 2

10: end if
11: Repropagate from the latest states using

the associated with the best node sequence, and obtain

12: if then
13: Send the best reference path to controller
14: else
15: Remove the infeasible portion and its children from

the tree, and goto line 7
16: end if
17: until the vehicle reaches goal

Algorithm 2 shows how CL-RRT executes a part of the tree
and continues growing the tree while the controller executes the
plan. The planner sends the input to the controller at a fixed
rate of every seconds. The tree expansion continues until a
time limit is reached (line 6). The best trajectory is selected and
the reference path is sent to the controller for execution (line 13).
The expansion of the tree is resumed after updating the vehicle
states and the environment (line 2).

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1111

Note that when selecting the best trajectory on line 7, only the
node sequences that end in a safe state are considered. If none
is found, then the planner will command an emergency braking
maneuver to the controller in order to bring the car to a stop as
fast as possible.

A. Committed Part of the Tree

A naive way to implement an RRT-based planner is to build
a new tree (discarding the old) at every planning cycle, and se-
lect the plan for execution independent of the plan currently
being executed. If the tree from the previous planning cycle
is discarded, almost identical computations would have to be
repeated. In a real-time application with limited computing re-
sources, such an inefficiency could result in a relatively sparse
tree as compared to the case where available computation are
used to add new feasible trajectories to the existing tree. Fur-
thermore, if the tree is discarded every cycle and hence the plan
for execution is selected independently of the plan being exe-
cuted, the planner could switch between different trajectories of
marginally close cost/utility at every planning cycle, potentially
resulting in wavy trajectories.

To address these issues, the CL-RRT algorithm maintains a
“committed” trajectory, the end of which coincides with the
root node. After the first planning cycle, a feasible plan is sent
to the controller for execution. The portion from the root to
the next node is marked as committed. For the next planning
cycle, this node is initialized as the new root node, and all other
children branches from the old root are then deleted because
these branches will never be executed. The tree growing phase
will then proceed with all subsequent trajectories originating
from this new root node. When the propagated vehicle states

(line 3) reach the end of the committed trajectory,
the best child node of the root is initialized as the new root, and
all other children are deleted. Therefore, the vehicle is always
moving towards the root of the tree.

This approach ensures that the tree is maintained from the
previous planning cycle, and that the plan that the controller is
executing (corresponding to the committed part of the tree) is
always continuous. Because the planner does not change its de-
cision over the committed portion, it is important not to commit
a long trajectory especially in a dynamic and uncertain environ-
ment. The CL-RRT ensures that the committed trajectory is not
longer than 1 m, by adding branch points if the best child of the
root is farther than that distance.

B. Lazy Reevaluation

In a dynamic and uncertain environment, the feasibility of
each trajectory stored in the tree should be rechecked whenever
the perceived environment is updated. A large tree, however,
could require constant reevaluation of its thousands of edges,
reducing the time available for growing the tree.

The approach introduced in this paper to overcome this issue
was to reevaluate the feasibility of a certain edge only when it
is selected as the best trajectory sequence to be executed. If the
best trajectory is found infeasible, the infeasible portion of the
tree is deleted and the next best sequence is selected for reeval-
uation. This “lazy reevaluation” enables the algorithm to focus
mainly on growing the tree, while ensuring that the executed

Fig. 5. Repropagation from the current states.

trajectory is always feasible with respect to the latest perceived
environment. The primary difference from previous work [29],
[30] is that the lazy check in this paper is about rechecking of
the constraints for previously feasible edges, whereas the pre-
vious work is about delaying the first collision detection in the
static environment.

C. Repropagation

Although the feedback loop embedded in the closed-loop pre-
diction can reduce the prediction error, the state prediction could
still have nonzero errors due to inherent modeling errors or dis-
turbances. To address the prediction error, one can discard the
entire tree and rebuild it from the latest states. However, this is
undesirable as highlighted in Section V-A.

The CL-RRT algorithm reuses the controller inputs stored in
the tree and performs a repropagation from the latest vehicle
states, as shown in Fig. 5. With a stabilizing controller, the dif-
ference between the original prediction and the repropagation
would converge to zero if the reference path has a sufficiently
long straight line segment.

Instead of repropagating over the entire tree, the CL-RRT al-
gorithm repropagates from the latest states only along the best
sequence of nodes (line 11 of Algorithm 1). If the repropagated
trajectory is collision free, the corresponding controller input is
sent to the controller. Otherwise, the infeasible part of the tree is
deleted from the tree, and the next best node sequence is selected
and repropagated. This approach requires only a few reevalua-
tions of the edge feasibility, while ensuring the feasibility of the
plan being executed regardless of the prediction errors.

VI. IMPLEMENTATION OF THE CONTROLLER

CL-RRT uses the controller in two different ways. One is in
the closed-loop prediction together with the vehicle model, and
the other is in the execution of the motion plan in real time. In
our implementation, the controller ran at 25 Hz in the execution,
and the same time step size was used in the closed-loop simula-
tion. The same controller code was used for both execution and
prediction.

A. Steering Controller

The steering controller is based on the pure-pursuit controller,
which is a nonlinear path follower that has been widely used in
ground robots [31] and more recently in unmanned air vehicles

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1112 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

Fig. 6. Definition of pure-pursuit variables. Two shaded rectangles represent the rear tire and the steerable front tire in the bicycle model. The steering angle in
this figure, ��, corresponds to negative � in (4).

[32]. It is adopted due to its simplicity, as an intuitive control
law that has a clear geometric meaning. Because the DUC rules
restrict the operating speed to be under 30 mph and extreme ma-
neuvers (e.g., high speed tight turns) are avoided, dynamic ef-
fects such as side slip are neglected for control design purposes.

The kinematic bicycle model is described by

(4)

where and refer to the rear axle position, is the vehicle
heading with respect to the -axis (positive counter-clockwise),

is the forward speed, is the steer angle (positive counter-
clockwise), and is the vehicle wheelbase. With the slip-free
assumption, Fig. 6(a) shows the definition of the variables that
define the pure-pursuit control law when driving forwards, and
Fig. 6(b) shows the variables when driving in reverse. Here,
is the radius of curvature, and “ref path” is the piecewise linear
reference path given by the planner. In Fig. 6(a), is the dis-
tance of the forward anchor point from the rear axle, is the
forward drive look-ahead distance, and is the heading of the
look-ahead point (constrained to lie on the reference path) from
the forward anchor point with respect to the vehicle heading.
Similarly, in Fig. 6(b), is the rearward distance of the re-
verse anchor point from the rear axle, is the reverse drive
look-ahead distance, and is the heading of the look-ahead
point from the reverse anchor point with respect to the vehicle
heading offset by rad. All angles and lengths shown in Fig. 6
are positive by definition.

Using elementary planar geometry, the instantaneous steer
angles required to put the anchor point on a collision course with
the look-ahead point can be computed as

forward drive

reverse drive

which gives the modified pure-pursuit control law. Note that
by setting and , the anchor points coincide
with the rear axle, recovering the conventional pure-pursuit con-
troller [31].

A stability analysis of this controller has been carried out in
[15]. It approximates the slew rate limitation of the steering ac-
tuation with a first-order system of time constant , showing that

and for Hurwitz Stability.
This means that in a high velocity regime, larger is required
for stability. Some margin should be added to account for dis-
turbances and modeling error. However, too large degrades
the tracking performance. Through extensive simulations and
field tests, the following numbers were selected:

if
if
otherwise.

with . The same rule is also employed for backward
driving, i.e., . From this point on,
represents the look-ahead distance and . For the reason
elaborated in Section VI-C.I, is scaled with the commanded
speed and not the actual speed .

B. Speed Controller

For speed tracking, a simple proportional-integral-derivative
(PID) type controller is considered. However, our assessment
is that the PID controller offers no significant advantage over
the PI controller because the vehicle has some inherent speed
damping and the acceleration signal required for PID control is
noisy. Hence, the PI controller of the following form is adopted

where is the non-dimensional speed control signal, and
are the proportional and integral gain, respectively.

The controller coefficients and were determined by
extensive testing guided by the parameter space approach of
robust control [33]. Given certain design specifications in terms
of relative stability, phase margin limits, and robust sensitivity;
using the parameter space approach, it is possible to enclose a
region in the plane for which the design specifica-
tions are satisfied. Then, via actual testing, controller param-
eters within this region that best fit the application was iden-
tified. As detailed more in [15], considering a low-bandwidth

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1113

noise-averse control design specification, the following gains
have been selected:

C. Accounting for the Prediction Error

When the controller does not track the reference path per-
fectly due to modeling errors or disturbances, the planner could
adjust the reference command so that the vehicle achieves the
original desired path. However, it introduces an additional feed-
back loop, potentially destabilizing the overall system. When
both the planner and the controller try to correct for the same
error, they could be overcompensating or negating the effects of
the other.

In our approach, the planner generates a “large” signal in the
form of the reference path, but it does not adjust the path due
to the tracking error. It is controller’s responsibility to track the
path in a “small” signal sense. Thus, the propagation of trajec-
tories (line 5 of Algorithm 2) starts from the predicted vehicle
states at the node. One challenge here is that the collision is
checked with the predicted trajectory, which can be as long as
several seconds. Although Section V-C addressed the case when
the prediction error becomes large, it is still critical to keep the
prediction error small in order to have acceptable performance.
This section presents several techniques to reduce prediction
errors.

1) Use of for Scheduling: As discussed in
Section VI-A, the look-ahead distance must increase with
the vehicle speed to maintain stability. However, scheduling

based on the speed means that any prediction error in the
speed directly translates into a discrepancy of the steer com-
mand between prediction and execution, introducing a lateral
prediction error. This is problematic because achieving a small
speed prediction error is very challenging especially during the
transient in the low-speed regime, where the engine dynamics
and gear shifting of the automatic transmission exhibits com-
plicated nonlinearities. Another disadvantage of scaling
with is that the noise in the speed estimate introduces jitters
in the steering command.

A solution to this problem is to use the speed command
to schedule the distance. The speed command is designed by
the planner, uncorrupted by noise or disturbances, so the planner
and controller have the same with no ambiguity. Then,
the same steering gain is used in the prediction and execu-
tion, rendering the steering prediction decoupled from the speed
prediction.

2) Space-Dependent Speed Command: In Section III, the ref-
erence command was defined as a function of time. For the
speed command , however, it is advantageous to associate
it to the position of the vehicle.

When the speed command is defined as a function of time,
the prediction error in the speed could affect the steering per-
formance, even if the look-ahead distance is scaled based
on . Suppose the vehicle accelerates from rest with a ramp
command. If the actual vehicle accelerates more slowly than
predicted, the time-based would increase faster than the
prediction with respect to the travel distance. This means that

increases more in the execution before the vehicle moves
much, and given a vehicle location, the controller places a
look-ahead point farther down on the reference path compared
to prediction.

To overcome this issue, the speed command is associated with
the position of the vehicle with respect to the predicted path.
Then, the steering command depends only on where the vehicle
is, and is insensitive to speed prediction errors.

VII. APPLICATION RESULTS

This section presents the application results of CL-RRT algo-
rithm on MIT’s DUC entry vehicle, Talos.

A. Vehicle Model

The following nonlinear model is used in the prediction:

The inputs to this system are the steering angle command
and the longitudinal acceleration command . These inputs go
through a first-order lag with time constants and for the
steering and acceleration respectively. The maximum steering
angle is given by , and the maximum slew rate for the
steering is . The forward acceleration is denoted by , with
the bounds of maximum deceleration and maximum ac-
celeration .

The term , which did not appear in (4), captures the effect
of side slip

and is a static gain of the yaw rate , i.e., the resulting yaw rate
when the derivative of the side-slip angle and the derivative of
yaw rate are both zero [33]. The parameter is called the
characteristic velocity [33], [34] and can be determined experi-
mentally. This side slip model has several advantages: it does
not increase the model order, and hence the computation re-
quired for propagation; the model behaves the same as the kine-
matic model in the low speed regime; and it requires only one
parameter to tune. Moreover, this model does not differ much
from the nonlinear single track model [33] for the urban driving
conditions where extreme maneuvers are avoided and up to 30
m/hr speeds are considered.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1114 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

The following parameters were used for Talos, a 4.9-m-long
and 2.0-m-wide Land Lover LR3:

rad
rad
s

s

s
m
s

m
s
m

m
s

From the parameters above, the minimum turning radius is
found to be 4.77 m.

B. Race Results

The following subsections present results from the National
Qualification Event (NQE) and the final Urban Challenge Event
(UCE). NQE consisted of three test areas A, B, and C, each fo-
cusingontestingdifferentcapabilities.DuringNQE,theCL-RRT
algorithm was not tuned to any specific test area, showing the
generality of the approach. UCE consisted of three missions,
with a total length of about 60 miles. Talos was one of the six
vehicles that completed all missions, finishing in 5 h 35 min.

In Talos, the motion planner was executed on a dual-core
2.33 GHz Intel Xeon processor at approximately 10 Hz. The
time limit in Algorithm 2 is 0.1 s and the algorithm uses
100% CPU by design. The average number of samples gener-
ated was approximately 700 samples per second and the tree had
about 1200 nodes on average. Notice that because the controller
input is the parameter that is sampled, a single sample could
create a trajectory as long as several seconds.

1) High Speed Behavior on a Curvy Road: Fig. 7 shows
a snapshot of the environment and the plan during UCE. The
vehicle is in the lower left, going towards a goal in the upper
middle of the figure. The small green squares represent the safe
stopping nodes in the tree. The vehicle is moving at 10 m/s,
so there are no stopping nodes in the close range. However,
the planner ensures there are numerous stopping points on the
way to the goal, should intermittently detected curbs or vehi-
cles appear. Observe that even though the controller inputs are
randomly generated to build the tree, the resulting trajectories
naturally follow the curvy road. This road segment is about 0.5
mile long, and the speed limit specified by DARPA was 25 mph.
Fig. 8 shows the speed profile and the lateral prediction error for
this segment. Talos reached the maximum speed several times
on straight segments, while slowing down on curvy roads to ob-
serve the maximum lateral acceleration constraints. The predic-
tion versus execution error has the mean, maximum, and stan-
dard deviation of 0.11, 0.42, and 0.093 m, respectively. Note
from the plot that the prediction error has a constant offset of
about 11 cm, making the maximum error much larger than the
standard deviation. This is due to the fact that the steering wheel
was not perfectly centered and the pure-pursuit algorithm does
not have any integral action to remove the steady-state error.

Fig. 7. Lane following on a high speed curvy section. The vehicle speed is 10
m/s. The green dots show the safe stopping nodes in the tree.

Fig. 8. Prediction error during this segment.

Fig. 9. Tree consisting of many unsafe nodes in the merge test.

Note that when the prediction error happens to become large,
the planner does not explicitly minimize it. This occurs because
the vehicle keeps executing the same plan as long as the reprop-
agated trajectory is feasible. In such a scenario, the prediction
error could grow momentarily. For example, during a turn with
a maximum steering angle, a small difference between the pre-
dicted initial heading and the actual heading can lead to a rel-
atively large error as the vehicle turns. Even with a large mis-
match, however, the repropagation process in Section V-C en-
sures the safety of the future path from vehicle’s current state.

2) Unsafe Nodes in the Dynamic Environment: Fig. 9 is a
snapshot from the merging test in NQE. Talos is in the bottom
of the figure, trying to turn left into the lane and merge into
the traffic. The red lines originating from Talos show the unsafe
trajectories, which do not end in a stopped state.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1115

Fig. 10. Parking maneuver in the parking zone in an Area B test.

Fig. 11. U-turn maneuver at a blocked road in an Area C test.

Before the traffic vehicle comes close to the intersection,
there were many trajectories that reach the goal. However,
as the traffic vehicle (marked with a green rectangle) ap-
proached, its path propagated into the future blocks the goal
of Talos, as shown in Fig. 9, which rendered the end parts
of these trajectories infeasible. However, the feasible portion
of these trajectories remain in the tree as unsafe nodes (see
Section IV-E2), from which the tree is quickly grown to the
goal once the traffic vehicle leaves the intersection.

3) Parking: Fig. 10 shows Talos’ parking maneuver inside
the zone during NQE. Fig. 10(a) shows a superimposed se-
quence of Talos’ pose for the parking maneuver. Fig. 10(b)
shows a tree of trajectories before going into the parking spot.
The purple lines show forward trajectories reaching the goal; the
light brown lines show forward trajectories that do not reach the
goal; the turquoise lines show reverse trajectories; and the red
lines show unsafe trajectories. The motion plan is marked with
two colors: the orange line is the input to the steering controller;
and the green line is the predicted trajectory on which the speed
command is associated.

In Fig. 10(c), Talos is reversing to go out of the spot and in-
tends to exit the parking zone. The goal for the planner is now at
the exit of the zone located in the upper right corner of the figure,
and there are many trajectories that go towards it. Following the
plan selected from these trajectories, Talos successfully exited
the parking zone.

4) Road Blockage: Fig. 11 shows the behavior of Talos
during a U-turn that was required in the Area C test. The
motion planner always tries to make forward progress, but after

Fig. 12. Sequence of events. Talos (maroon) remains stationary between � and
� , and Odin (white) had progressed beyond the view window by � .

50 seconds of no progress, the Navigator declares a blockage
and places the goal in the lane with the opposite travel direc-
tion. Fig. 11(a) shows a sequence of Talos’s pose during the
maneuver. The road to the right is blocked by a number of
traffic barrels. In Fig. 11(b), it can be seen that there are several
trajectories reaching the goal in the destination lane. Fig. 11(c)
shows the last segment of the U-turn. Because of the newly
detected curbs in front of the vehicle, the maneuverable space
has becomes smaller than in (b), resulting in a 5-pt turn.

5) Interaction With Virginia Tech’s Odin: Figs. 12 and 13
show an interaction that occurred between Talos and Virginia

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1116 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

Fig. 13. Talos successfully avoids Virginia Tech’s Odin at an intersection.

Tech’s Odin in the UCE, with the main result being that Talos
took an evasive swerving maneuver to avoid a collision.

Initially, Talos arrived at the intersection and stopped at the
stop line [see Fig. 13(a)]. Odin is approaching the intersection
from the left, and its predicted trajectory goes into the inter-
section. Although Odin did not have a stop line on its lane,
it stopped when it reached the intersection and remained mo-
tionless for about 3 seconds. With the intersection clear, and
all vehicles stopped, Talos assumed precedence over Odin and
started driving through the intersection [see Fig. 13(b)]. Just as
Talos started, however, Odin also started driving, heading to-
wards the same lane that Talos was heading, and blocked Talos’
path [see Fig. 13(c)]. Talos took an evasive maneuver to avoid
collision and stop safely by steering left and applying strong
brake (white circle around Talos). Odin continued along its path,
and once it (and the trailing human-occupied DARPA chase ve-
hicle) cleared the intersection, Talos recomputes a new plan and
proceeds through the intersection [see Fig. 13(d)].

This is just one example of the numerous traffic and intersec-
tion scenarios that had never been tested before the race, and
yet the motion planner demonstrated that it was capable of han-
dling these situations safely. While Talos has demonstrated that
it is generally operating safely even in untested scenarios, it was

nonetheless involved in two crash incidents during the UCE [3].
However, the analysis in [35] indicates that the primary con-
tributing factor in those two instances was an inability to accu-
rately detect slow moving vehicles.

6) Repropagation: Most of the time during the race, the
trajectory repropagated from the latest states and the trajectory
stored in the tree are close. However, there are some instances
when the repropagation resulted in a different trajectory. In
Fig. 13(d), Talos slowed down more than the prediction, so the
trajectory repropagated from the latest states (the pink line shown
with an arrow in the figure) is a little off from the trajectories
stored in the tree. However, as long as the repropagation is
feasible, Talos keeps executing the same controller input. This
approach is much more efficient than discarding the tree when the
prediction error exceeds an artificial limit and rebuilding the tree.

VIII. CONCLUSION

This paper presented the CL-RRT algorithm, a sam-
pling-based motion planning algorithm specifically developed
for large robotic vehicles with complex dynamics and operating
in uncertain, dynamic environments such as urban areas. The
algorithm was implemented as the motion planner for Talos,

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

KUWATA et al.: REAL-TIME MOTION PLANNING WITH APPLICATIONS TO AUTONOMOUS URBAN DRIVING 1117

the autonomous Land Rover LR3 that was MIT’s entry in the
2007 DARPA Urban Challenge.

The primary novelty is the use of closed-loop prediction in the
framework of RRT. The combination of stabilizing controller
and forward simulation has enabled application of CL-RRT to
vehicles with complex, nonlinear, and unstable dynamics. Sev-
eral extensions are presented regarding RRT tree expansion: a
simple sampling bias strategy to generate various different ma-
neuvers; penalty value in addition to the binary check of edge
feasibility; use of Dubins path length when selecting the node to
connect; and guaranteed safety even when the vehicle is in mo-
tion. By retaining the tree during execution, the CL-RRT reuses
the information from the previous computation cycle, which is
important especially in real-time applications. The extensions
made to online replanning include the lazy reevaluation to ac-
count for changing environments and the repropagation to ac-
count for prediction errors.

The advantages of the CL-RRT algorithm were demonstrated
through the race results from DUC. The successful completion
of the race with numerous differing scenarios using this single
planning algorithm demonstrates the generality and flexibility
of the CL-RRT planning algorithm.

ACKNOWLEDGMENT

The authors would like to thank the MIT DARPA Urban
Challenge Team, with particular thanks to Dr. L. Fletcher and
Dr. E. Olson for their development of the drivability map,
D. Moore for developing the Navigator, Dr. K. Iagnemma
for his expert advice, S. Campbell for his initial design and
implementation of the controller, and S. Peters for his technical
support during the development of Team MIT’s vehicle.

REFERENCES

[1] “Special issue on the DARPA grand challenge, Part 1,” J. Field Robot.,
vol. 23, no. 8, pp. 461–652, Aug. 2006.

[2] “Special issue on the 2007 DARPA urban challenge,” J. Field Robot.,
vol. 25, pp. 423–860, 2008.

[3] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L.
Fletcher, E. Frazzoli, A. Huang, S. Karaman, O. Koch, Y. Kuwata, D.
Moore, E. Olson, S. Peters, J. Teo, R. Truax, M. Walter, D. Barrett, A.
Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone, R.
Galejs, S. Krishnamurthy, and J. Williams, “A perception driven au-
tonomous urban vehicle,” J. Field Robot., vol. 25, no. 10, pp. 727–774,
2008.

[4] J.-C. Latombe, Robot Motion Planning. Norwell, MA: Kluwer, 1991.
[5] J. P. Laumond, Robot Motion Planning and Control Springer-Verlag,

Berlin, Germany, 1998. [Online]. Available: http://www.laas.fr/~jpl/
book.html

[6] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algo-
rithms, and Implementations. Cambridge, MA: MIT Press, 2005.

[7] S. M. LaValle, Planning Algorithms Cambridge University Press, Cam-
bridge, U.K., 2006. [Online]. Available: http://planning.cs.uiuc.edu/

[8] “Special issue: Special issue on the DARPA grand challenge, Part 2,”
J. Field Robot., vol. 23, no. 9, pp. 655–835, Sep. 2006.

[9] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
in Proc. IEEE Int. Conf. Robot. Autom., 1999, pp. 473–479.

[10] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Robot. Res., vol. 20, no. 5, pp. 378–400, May 2001.

[11] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random
trees: Progress and prospects,” in Algorithmic and Computational
Robotics: New Directions, B. R. Donald, K. M. Lynch, and D. Rus,
Eds. Wellesley, MA: A K Peters, 2001, pp. 293–308.

[12] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. Computational Geometry Appl., vol. 4,
pp. 495–512, 1999.

[13] E. Frazzoli, M. A. Dahleh, and E. Feron, “Real-time motion planning
for agile autonomous vehicles,” AIAA J. Guid. Control, vol. 25, no. 1,
pp. 116–129, 2002.

[14] T. Howard and A. Kelly, “Optimal rough terrain trajectory genera-
tion for wheeled mobile robots,” Int. J. Robot. Res., vol. 26, no. 2, pp.
141–166, 2007.

[15] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. P. How,
“Motion planning in complex environments using closed-loop predic-
tion,” presented at the AIAA Guid., Nav., Control Conf. Exhibit, Hon-
olulu, HI, Aug. 2008, AIAA-2008-7166.

[16] S. R. Lindemann and S. M. LaValle, “ Incrementally reducing disper-
sion by increasing Voronoi bias in RRTs,” in Proc. IEEE Int. Conf.
Robot. Autom., 2004, pp. 3251–3257.

[17] S. R. Lindemann and S. M. LaValle, “Steps toward derandomizing
RRTs,” in IEEE 4th Int. Workshop Robot Motion Control, 2004, pp.
271–277.

[18] M. Strandberg, “Augmenting RRT-planners with local trees,” in Proc.
IEEE Int. Conf. Robot. Autom., 2004, pp. 3258–3262.

[19] C. Urmson and R. Simmons, “ Approaches for heuristically biasing
RRT growth,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2003,
pp. 1178–1183.

[20] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle, “Dynamic-do-
main RRTs: Efficient exploration by controlling the sampling domain,”
in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 3856–3861.

[21] L. E. Dubins, “On curves of minimal length with a constraint on av-
erage curvature, and with prescribed initial and terminal positions and
tangents,” Amer. J. Math., vol. 79, pp. 497–516, 1957.

[22] A. M. Shkel and V. Lumelsky, “Classification of the dubins set,” Robot.
Autonomous Syst., vol. 34, pp. 179–202, Mar. 2001.

[23] J. J. Enright, E. Frazzoli, K. Savla, and F. Bullo, “On multiple uav
routing with stochastic targets: Performance bounds and algorithms,”
in Proc. AIAA Guid., Nav., Control Conf. Exhibit, San Francisco, CA,
Aug. 2005.

[24] P. Indyk, “Nearest neighbors in high-dimensional spaces,” in Hand-
book of Discrete and Computational Geometry, J. E. Goodman and J.
O’Rourke, Eds., 2nd ed. New York: CRC Press, 2004, pp. 877–892.

[25] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path plan-
ning with implicit safety guarantees,” in Proc. Amer. Control Conf.,
Jun. 2004, vol. 6, pp. 5576–5581.

[26] A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in Proc. IEEE Int. Conf. Robot. Autom., 1994, pp.
3310–3317.

[27] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. IEEE Int. Conf. Robot. Autom., 2005, pp. 3726–3731.

[28] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for rapid
replanning in dynamic environments,” in Proc. IEEE Int. Conf. Robot.
Autom., 2007, pp. 1603–1609.

[29] R. Bohlin and L. Kavraki, “Path planning using Lazy PRM,” in Proc.
IEEE Int. Conf. Robot. Autom., 2000, pp. 521–528.

[30] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Proc. Int.
Symp. Robot. Res., 2001, pp. 403–417.

[31] O. Amidi and C. Thorpe, W. H. Chun and W. J. Wolfe, Eds., “Integrated
mobile robot control,” in Proc. SPIE, Boston, MA, Mar. 1991, vol.
1388, pp. 504–523.

[32] S. Park, J. Deyst, and J. P. How, “Performance and Lyapunov stability
of a nonlinear path-following guidance method,” J. Guid., Control,
Dyn., vol. 30, no. 6, pp. 1718–1728, Nov. 2007.

[33] J. Ackermann, Robust Control: The Parameter Space Approach. New
York: Springer, 2002.

[34] T. N. Gillespie, Fundamentals of Vehicle Dynamics. Warrendale, PA:
Society of Automotive Engineers, 1992.

[35] L. Fletcher, S. Teller, E. Olson, D. Moore, Y. Kuwata, J. How, J.
Leonard, I. Miller, M. Campbell, D. Huttenlocher, A. Nathan, and
F.-R. Kline, “The MIT – Cornel collision and why it happened,” J.
Field Robot., vol. 25, no. 10, pp. 775–807, 2008.

Yoshiaki Kuwata received the B.Eng. degree from
the University of Tokyo, Tokyo, Japan, in 2001, and
the S.M. and Ph.D. degrees in aeronautics and astro-
nautics from Massachusetts Institute of Technology
(MIT), Boston, in 2003 and 2007, respectively.

In 2007, he worked on the DARPA Urban Chal-
lenge as a Postdoctoral Associate at MIT. He then
joined the Robotics Section, Jet Propulsion Labora-
tory, California Institute of Technology, Pasadena, in
2008. His current research interests include cooper-
ative control, vision-based guidance, and path plan-

ning for unmanned aerial/ground/sea-surface vehicles.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

1118 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 17, NO. 5, SEPTEMBER 2009

Justin Teo received the B.Eng. degree from Nanyang
Technological University, Singapore, in 1999, and
the M.Sc. degree from National University of Singa-
pore, Singapore, in 2003.

He joined DSO National Laboratories, Singapore,
in 1999. Since 2005, DSO National Laboratories has
funded his Ph.D. studies in the Department of Aero-
nautics and Astronautics, Massachusetts Institute of
Technology. His research interests include nonlinear
control, adaptive control, and trajectory planning.

Gaston Fiore received the B.S. degree in aerospace
engineering with information technology and the
M.S. degree in aeronautics and astronautics from the
Massachusetts Institute of Technology, Cambridge,
in 2006 and 2008, respectively. He is currently
pursuing the Ph.D. degree in computer science from
the Harvard School of Engineering and Applied
Sciences, Cambridge, MA.

His current research interests include amorphous
computing, computational learning, and computa-
tional neuroscience.

Sertac Karaman received the B.S. degrees in me-
chanical engineering and computer engineering from
the Istanbul Technical University, Istanbul, Turkey, in
2006 and 2007, respectively. He is currently pursuing
the S.M. degree from the Department of Mechanical
Engineering, Massachusetts Institute of Technology,
Cambridge.

His research interests include optimal scheduling,
real-time motion planning, and formal languages.

Emilio Frazzoli (S’99–M’01–SM’08) received the
Laurea degree in aerospace engineering from the
University of Rome La Sapienza, Rome, Italy, in
1994, and the Ph.D. degree in navigation and control
systems from the Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology,
Cambridge, in 2001.

He is an Associate Professor with the Department
of Aeronautics and Astronautics, Massachusetts
Institute of Technology. From 2001 to 2004, he
was an Assistant Professor with the Department

of Aerospace Engineering, University of Illinois at Urbana-Champaign,
Urbana-Champaign. From 2004 to 2006, he was an Assistant Professor with
the Department of Mechanical and Aerospace Engineering, University of
California, Los Angeles. His current research interests include control of
autonomous cyber-physical systems, guidance and control of agile vehicles,
mobile robotic networks, and high-confidence embedded systems.

Dr. Frazzoli was a recipient of the National Science Foundation (NSF) CA-
REER Award in 2002.

Jonathan P. How (SM’05) received the B.A.Sc. de-
gree from the University of Toronto, Toronto, ON,
Canada, in 1987, and the S.M. and Ph.D. degrees in
aeronautics and astronautics from Massachusetts In-
stitute of Technology (MIT), Cambridge, in 1990 and
1993, respectively.

He is a Professor with the Department of Aeronau-
tics and Astronautics, MIT. After 1993, he studied
for two years at MIT as a postdoctoral associate for
the Middeck Active Control Experiment (MACE)
that flew on-board the Space Shuttle Endeavour in

March 1995. Prior to joining MIT in 2000, he was an Assistant Professor
with the Department of Aeronautics and Astronautics, Stanford University,
Stanford, CA. His current research interests include robust coordination and
control of autonomous vehicles in dynamic uncertain environments.

Dr. How was a recipient of the 2002 Institute of Navigation Burka Award. He
is an Associate Fellow of AIAA.

Authorized licensed use limited to: MIT Libraries. Downloaded on November 16, 2009 at 15:10 from IEEE Xplore. Restrictions apply.

