
Real-time Object Detection
CS 229 Course Project

Zibo Gong1, Tianchang He1, and Ziyi Yang1

1Department of Electrical Engineering, Stanford University

December 17, 2016

Abstract
Objection detection is a key problem in computer vision. We report our work on object

detection using neural network and other computer vision features. We use Faster Region-
based Convolutional Neural Network method (Faster R-CNN) for detection and then match
the object with features from both neural network and features like histograms of gradients
(HoG). We are able to achieve real-time performance and satisfactory matching results.

1 Introduction
Object detection is a challenging and exciting task in Computer Vision. Detection can be diffi-
cult since there are all kinds of variations in orientation, lighting, background and occlusion that
can result in completely different images of the very same object. Now with the advance of deep
learning and neural network, we can finally tackle such problems without coming up with various
heuristics real-time.

We installed and trained the Faster R-CNN model 2 on Caffe deep learning framework. The Faster
RCNN is a region-based detection neural networks method. We firstly used a region proposal net-
work (RPN) to generate detection proposals. Then we employed the same network structure to
Fast R-CNN to classify the object and modified the bounding box. Furthermore we extracted
feature from object detected via algorithm developed by us. At last we matched object detected
with ones stored in database.

2 Related Work
In 2012, Krizhevsky and et al.[1] trained a deep convolutional neural network to classify images in
LSVRC-2010 ImageNet into 1000 kinds of classes with much better precision than previous work,
which marked the beginning of usage of deep learning in computer vision. In 2014, Jia and et al.[2]
created a clean and modifiable deep learning framework: Caffe.

In 2015, Ren et al.[3] proposed faster Region Proposal Network. The network shared convolu-
tional features through the image, which led to almost cost-free regional proposals. Besides faster
R-CNN, there are many other approaches to improve CNN’s performance. More recent approaches
such like YOLO [4] and SSD [5] directly put the whole image into the neural network and get the
predicted boxes with score. Their running time is further reduced compared to faster R-CNN. You
only look once (YOLO) applies a single neural network to the full image. This network divides
the image into regions and predicts bounding boxes and probabilities for each region. Single Shot
Multi-Box Detector(SSD) discretizes the output space of bounding boxes into a set of default boxes
over different aspect ratios and scales per feature map location.

3 Dataset and Features
For general object detection, we used SUN2012 database by MIT SAIL lab, which contains images
with objects labeled by polygons, as shown in Fig.1. For each category of object, we extracted the

1

Figure 1: One database example.

Figure 2: Illustration of Faster R-CNN training process.

bounding box for object detection and further classification tasks. For training, we divided the
images of 3 categories to build up database. Also, we split the whole dataset into training set (90%)
and testing set (10%). What’s more, we tested out detecting automobiles in different perspective.
The images of cars are from the KITTI database, which contains about 14,000 images. We chose
the fully visible and partly occluded automobiles for training and testing. The KITTI database
also provides the observation angle of each object. We used them to label the perspective (front,
back, left, right) of automobiles.

4 Methods

4.1 Faster Region-based Convolutional Neural Network
We trained the Faster Region-based Convolutional Neural Network (Faster R-CNN) model on
Caffe deep learning framework by Python language. The Faster R-CNN is a region based detec-
tion method. It firstly used a region proposal network (RPN) to generate detection proposals, then
used the same network structure as Fast R-CNN to classify object and modify the bounding box.
The strategy is visualized in 2.

The training strategy of this model was as follows: First, we trained the RPN end-to-end by
back-propagation and stochastic gradient descent. We chose the ZF and VGG16 net to extract
features for the RPN and all the layers are initialized by a pre-trained model for ImageNet clas-
sification. We chose the learning rate 0.0001 for 40k mini-batches, a momentum of 0.9 and a
weight decay of 0.0005. Second, we trained a separate detection network by Fast R-CNN using
the proposals generated by the step 1 RPN for 20k mini-batches. This detection network was
also initialized by a pre-trained model. Now the two networks did not share convolutional layers.
Third, we used the detector network to initialize RPN traning for 40k min-batches, but we fixed
the shared convolutional layers. At last, we kept the shared convolutional layers fixed and fine-tune
the unique layers of Fast R-CNN for 20 k mini-batches.

2

4.2 Conventional CV features
a) Color Histograms
After we found the bounding box that gave the outline of object, we could construct three his-
tograms of the RGB values of all the pixels within the bounding box. The color of the object could
be found combining the most frequent RGB values. Usually a clustering algorithm was applied to
find the color, the color histogram is much more computationally efficient. The R, G and B value
of color of object is the peak of each component histogram. Also since the image had already been
segmented by the Faster R-CNN, the color histogram could achieve good performance with less
computation expense.

b) Histogram of Oriented Gradients (HoG)
Histogram of Oriented Gradients (HoG) is a feature descriptor for object detection. It will build
a histogram for localized portions of an image. The histogram is distributed along the angle of
orientation (usually 8 directions) and the height is the magnitude of the gradient. In our project,
usually the image of an object was divided into 16 bins (4 by 4) and the histogram of each bin was
calculated. Then the total length of HOG feature vector would be 16× 8 = 128.

c) Scale Invariant Feature Transform (SIFT) Descriptor
SIFT Descriptor is also a descriptor built from histogram of gradients, however, the SIFT descriptor
has the advantage of being invariant to rotation, translation and resizing.
SIFT descriptor was used to extract keypoint from the image. We first applied Gaussian filter
of different sizes and took their difference. The keypoints were local extrema across each layer of
Difference of Gaussian (DoG). After determining a keypoint location and patch size, the dominant
direction of gradient was decided and we rotated the patch to have its dominant direction aligned
vertically. At last the same procedure of HoG could be carried out to assemble a 128-length feature
vector.

4.3 Matching Algorithm
In our project, we used K-Nearest Neighbor (KNN) to match the extracted features with the
database. The KNN algorithm is a basic unsupervised learning algorithm. It compares the incom-
ing example with all the dataset and output the training example with the smallest distance from
the example.
Note that here the distance function can be defined by multiple ways. The simplest way would be
computing the Euclidean distance of the feature vectors. Another distance definition that is useful
here is the Cosine distance, defined by

d(xi, xj) = 1− xT
i xj

|xi||xj |
. (1)

In our project, we tried out both definitions of distances and use the one which works better and
it is Cosine distance.

5 Results & Discussion

5.1 Object Detection
We successfully achieved detection of backpacks 3(a), towels 3(b), clocks, bottles, and automobile
in different perspectives (front, back, left and right) 3(c). And the detection of automobile is with
high detection precision, as sown in table 5.1:

Perspective Average Precision
Front 81.57%
Back 86.40%
Left 87.56%
Right 79.31%

Table 1: Average precision of detecting cars in different perspective.

3

Figure 3: Object Detection.

In the poster session, we presented a demo of automobile detection. We took a video at parking lot
and detected automobile in every frame. And detected automobile is bounded with box as shown
in video. And the detection is in real-time.

5.2 Color Detection
We have successfully decided the color of object detected via algorithm mentioned above. Or to be
more specific, the color of object in the bounding box. The result is shown in 4. 4[a] is the color
detected, and 4[b] is the object. Judging from naked eyes, those two colors look very alike.

Figure 4: Color Detection.

5.3 Object Matching
First we picked the better distance definition used in kNN. We tested out two definitions of distance
on a set of 400 test images of cars with k=10 in kNN. The features used here were RGB features
and HoG features. The results are shown in Table 5.3. We can see that Euclidean distance gives
better result, we then used Euclidean distance in further experimentation.

Then we tried out different combinations of features. We tested out the combinations on 1000
images of cars. The results are shown in Table 5.3. We can see that the fully connected layer is
better than the HOG features. Also we find that using color as a supplementary feature would
reduce the matching scope and improve the running time and matching precision. An example
of matching result is shown in 5. Also, in the poster session, we showed in the video that after
detection of automobile, we could successfully matched it with one car in our database (RAV 4 in
our demo). And then researched corresponding model and color in car.com.

Distance Definition Precision
Euclidean 70.5%
Cosine 66.3%

Table 2: Precision of different definition of distance.

4

Feature Combination Average Precision
HoG 70.7%

HoG+Color 73.2%
Fully Connected Layer 77.6%

Fully Connected Layer + Color 78.1%

Table 3: Precision of different combinations of features.

5.4 Pipeline
The pipeline for our project goes as the following: The input image/video was fed into a trained
neural network, which will output the object classification and bounding box. Then the features of
the object (including the fully connected layer from CNN and other conventional CV features) are
extracted and compared to the database. The final output is the closest match from the database.

Such a pipeline is not only able to tackle the general task of object detection and recognition,
it can also be utilized by companies such as online shopping sites. Such companies have the man-
power and computational power to build it into a mobile application, which can take real time
image or video and match it on the server. It can also benefit from the fact that they have huge
databases on objects.

6 Conclusion & Future Work
In conclusion, we trained Faster R-CNN to detect objects in real-time. And then we extracted
features, for instance, color, HoG, SIFT descriptors, and result (the last layer of networks) given
by faster R-CNN. Finally, we compared the object detected with those in our database and decided
the matching one, based on the features extracted.

For future work, we can conduct more thorough test of our matching algorithm using larger dataset
and more rigorous diagnostics of the algorithm. For example, we can plot the error rate vs the size
of the dataset or plot the confusion table of the test set, etc.

We tried out feature combinations such as fully connected layer, RGB color and HOG, but more
combinations of other features might be useful. Viable features including rectangle features and
other features from the neural network. However, if we confine our attention to kNN, there are
many other distance functions we can try out. Other distance definitions including the Manhattan
distance, Histogram intersection distance and Chebyshev distance can be implemented with ease.
Matching quality can be improved by better detection. We also recognized that the observation
angle is very important for object matching. It’s essential to do the "car face" alignment. We can
apply the similar algorithm for face recognition in our project.

Figure 5: An example of matching result

5

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[2] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint
arXiv:1408.5093, 2014.

[3] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with
region proposal networks,” in Advances in neural information processing systems, pp. 91–99,
2015.

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time
object detection,” arXiv preprint arXiv:1506.02640, 2015.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, and S. Reed, “Ssd: Single shot multibox detector,”
arXiv preprint arXiv:1512.02325, 2015.

6

	Introduction
	Related Work
	Dataset and Features
	Methods
	Faster Region-based Convolutional Neural Network
	Conventional CV features
	Matching Algorithm

	Results & Discussion
	Object Detection
	Color Detection
	Object Matching
	Pipeline

	Conclusion & Future Work

