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Real-time time-dependent electronic structure theory is one of the most prom-
ising methods for investigating time-dependent molecular responses and elec-
tronic dynamics. Since its first modern use in the 1990s, it has been used to
study a wide variety of spectroscopic properties and electronic responses to
intense external electromagnetic fields, complex environments, and open quan-
tum systems. It has also been used to study molecular conductance, excited
state dynamics, ionization, and nonlinear optical effects. Real-time techniques
describe non-perturbative responses of molecules, allowing for studies that go
above and beyond the more traditional energy- or frequency-domain-based
response theories. Recent progress in signal analysis, accurate treatment of
environmental responses, relativistic Hamiltonians, and even quantized elec-
tromagnetic fields have opened up new avenues of research in time-dependent
molecular response. After discussing the history of real-time methods, we
explore some of the necessary mathematical theory behind the methods, and
then survey a wide (yet incomplete) variety of applications for real-time meth-
ods. We then present some brief remarks on the future of real-time time-
dependent electronic structure theory. © 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Ab initio real-time time-dependent electronic structure
theory seeks to solve the time-dependent Schrödin-

ger equation (TDSE) for quantum systems in order to
predict and simulate the response to any combination of
perturbations, be they electromagnetic fields,1–11 com-
plex environments,12–29 thermal baths,30–37 and so on.
Real-time methods have been applied to many types of
spectroscopy38–52 as well as studies of coherence and
charge-transfer dynamics.25,53–63 They have also proven
effective for studies of molecular conductance.12–20

Recently, they have been extended to ab initio spin
dynamics64,65 as well as relativistic molecular
Hamiltonians.66–69 Continuing improvements in com-
puting power have also renewed interest in explicit
time-propagation of correlated methods such as multi-

configurational self-consistent-field (MCSCF),70–73 con-
figuration interaction,74–80 algebraic diagrammatic
construction,81–84 and equation-of-motion coupled clus-
ter theory.75,76,85–88 Recently, there has been a growing
interest in treating the molecular interaction with a quan-
tized electromagnetic field89–94—a real-time quantum
electrodynamics (QED)—leading to first-principles stud-
ies of photon absorption and emission and simulations
of cavity QED experiments.

Real-time methods, like other ab initio methods,
must numerically approximate the underlying Schrö-
dinger equation through mean-field approximations,
such as density functional theory (DFT), or wave
function-based techniques. Furthermore, real-time
methods distinguish themselves from other
time-dependent approaches, such as time-dependent
(frequency-domain) linear-response theory or equation-
of-motion coupled cluster, in that real-time methods
explicitly consider the time-dependence of the quantum
system and its interactions with itself and its environ-
ment. That is, in addition to numerical approximation
to the Hamiltonian, real-time methods must also
develop robust numerical techniques to explicitly
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propagate the quantum system in time. Given the com-
plexity of the quantum system, as well as the underlying
strongly connected unitary nature of the quantum
propagator (Stone’s theorem95), standard algorithms to
solve time-dependent partial differential equations
(PDEs)—such as the Runge–Kutta class of methods96—
are not always well suited to describe the time evolution
of the TDSE. However, techniques based off the Mag-
nus expansion,97–102 which we will discuss in a later
section, as well as other symplectic integrators,103–114

have proven useful to the development of arbitrarily
accurate quantum propagators.

HISTORICAL DEVELOPMENT
OF REAL-TIME METHODS

Historically, the first ab initio studies of explicitly
time-dependent solutions of the TDSE began in the
field of nuclear physics.115–117 (Here we do not
include solutions of the TDSE-based on Gaussian
wave-packets, see e.g., Ref 118, which do not explic-
itly consider the electronic structure of the system.)
In a series of papers in the 1970s, these numerical
techniques were applied to the study of nuclear colli-
sions and their scattering profiles. Around the same
time, new methods for obtaining ground-state wave
functions were developed, based on the idea of pro-
pagating the systems in imaginary time,119 which
turns a dynamics problem into a wave function
search problem. These imaginary-time methods were
a fruitful way of obtaining a self-consistent ground-
state wave function. Interestingly, a few years prior
similar random-walk imaginary-time techniques were
being developed independently by Anderson while
working on diffusion Monte-Carlo methods.120–122

Regardless, by the 1980s, explicitly time-dependent
methods existed primarily in the nuclear physics
community, and came in two flavors: imaginary-time
for wave function optimization and real-time for
dynamics and computing scattering cross sections.

Why real-time methods were not widely
adopted in the quantum chemistry community? One
reason may be that around the same time, (frequency-
domain) response theory was being developed and
applied to chemical systems with remarkable success.
An excellent overview of the history and status of
response theory has been given in Ref 123. Why prop-
agate a wave function in time to determine its
response when one can directly obtain molecular
response properties (excited states, transition prob-
abilities) directly from the eigenvalues and eigenvec-
tors of the Green’s function? Furthermore, efficient
and accurate response theories had been developed

for correlated wave functions, such as MCSCF and
coupled cluster methods. Although the early ground
work for propagating correlated wave functions was
laid out by Meyer and coworkers during the develop-
ment of the multi-configurational time-dependent
Hartree (MCTDH),124–126 explicit time-propagation
of correlated wave functions remained expensive, and
only recently has matured into a more routine option
in the quantum chemistry community.

However, the field changed in the 1990s with
the advent of usable and accurate-enough DFT
codes. George Bertsch, together with Kazuhiro
Yabana, introduced the first use of so-called real-time
time-dependent DFT (RT-TDDFT) for studies of
dynamic molecular response properties127 in 1996.
Yabana and Bertsch, both nuclear physicists, were
well aware of the explicitly time-dependent techni-
ques in nuclear physics, and saw that DFT could pro-
vide an accurate and affordable route to compute
spectroscopic properties of molecules and small
atomic clusters. Their initial foray into explicitly
time-dependent electronic structure theory proved
successful.128–130 They called these ‘real-time’ meth-
ods, and the name has stuck since.

Since the late 1990s, there has been an explosion
of activity in real-time methods. Applications for real-
time methods span the breadth of spectroscopy and
have found utility in studies of molecular electronics,
electronic coherence, and charge-transfer dynamics.
However, before we turn to the stunning variety of
applications, we must first take a closer look at the
theory behind real-time electron dynamics.

FORMAL THEORY: THE MAGNUS
EXPANSION

The goal of real-time electronic structure theory is to
explicitly solve the TDSE, given by

iℏ
∂

∂t
ψ tð Þ =H tð Þψ tð Þ ð1Þ

where H(t) is the time-dependent Hamiltonian and
ψ(t) is the time-dependent wave function. Because of
the time-dependence in the Hamiltonian H(t), the
TDSE does not have a general closed-form solution.
This problem led Wilhelm Magnus, in 1954, to pro-
pose the Magnus expansion.97 The goal of the Mag-
nus expansion is to find a general solution for the
time-dependent wave function in the case where H is
time-dependent, and, more crucially, when H does
not commute with itself at different times, e.g., when
[H(t1), H(t2)] 6¼ 0. In the following we will follow
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closely the notation of Blanes et al.100 First, for sim-
plicity we redefine eH tð Þ� − i

ℏ H tð Þ and introduce a sca-
lar λ = 1 as a bookkeeping device, so that the TDSE
can be written as

∂

∂t
ψ tð Þ = λeH tð Þψ tð Þ ð2Þ

At the heart of the Magnus expansion is the idea of sol-
ving Eq. (2) by using the quantum propagator U(t, t0)
that connects wave functions at different times, e.g.,

ψ tð Þ =U t, t0ð Þψ t0ð Þ ð3Þ

Furthermore, the Magnus expansion assumes that U
(t, t0) can be represented as an exponential

U t, t0ð Þ = exp Ω t, t0ð Þð Þ ð4Þ

This yields the modified TDSE (where ψ(t0) fac-
tors out)

∂

∂t
U t, t0ð Þ = λeH tð ÞU t, t0ð Þ; U t0, t0ð Þ= I ð5Þ

Now, for scalar eH and U, Eq. (5) has a simple solu-
tion, namely

U t, t0ð Þ = exp λ

ðt
t0

eH t0ð Þ dt0
0@ 1A ð6Þ

However, if eH and U are matrices this is not neces-
sarily true. In other words, for a given matrix A the
following expression does not necessarily hold:

∂

∂t
exp A tð Þð Þð Þ = ∂

∂t
A tð Þ

� �
exp A tð Þð Þ

= exp A tð Þð Þ ∂

∂t
A tð Þ

� �
ð7Þ

because the matrix A and its derivatives do not nec-
essarily commute. Instead, Magnus proved that in
general Ω(t, t0) satisfies

∂

∂t
Ω t, t0ð Þð Þ = λeH tð Þ

+ λ
X∞
k =1

−1ð ÞkBk

k!
½Ω t, t0ð Þ, ½� � �½Ω t, t0ð Þ,
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{k−times eH tð Þ��� � ��;

Ω t0, t0ð Þ= 0 ð8Þ

where Bk are the Bernoulli numbers. This equation
may be solved by integration and iterative substitu-
tion of Ω(t, t0). While it may appear that we are
worse off than when we started, collecting like
powers of λ (and setting λ = 1) allows us to obtain a
power-series expansion for Ω(t, t0)

Ω t, t0ð Þ =
ðt
t0

eH1dt1 +
1
2

ðt
t0

dt1

ðt1
t0

dt2 eH1, eH2

h i

+
1
6

ðt
t0

dt1

ðt1
t0

dt2

ðt2
t0

dt3 eH1, eH2, eH3�
h i

+ eH3, eH2, eH1�
h i

Þ + � � �
hh�

ð9Þ

This is the Magnus expansion, and here we have
given up to the third-order term. We have also made
the notational simplification that eHk = eH tkð Þ. This is
the basis for nearly all numerical methods to inte-
grate the many-body TDSE in molecular physics.
Each subsequent order in the Magnus expansion is a
correction that accounts for the proper time-ordering
of the Hamiltonian.

The Magnus expansion in Eq. (9) immediately
suggests a route to many numerical integrators. The
simplest would be to approximate the first term by

ðt +Δt
t

eH1dt1≈Δt eH tð Þ ð10Þ

leading to a forward-Euler-like time integrator of

ψ t +Δtð Þ= exp Δt eH tð Þ
� �

ψ tð Þ ð11Þ

which we can re-write as

ψ tk + 1ð Þ= exp Δt eH tkð Þ
� �

ψ tkð Þ ð12Þ

where subscript k gives the node of the time-step
stencil. This gives a first-order method with error
O Δtð Þ. A more accurate second-order method can be
constructed by approximating the first term in
Eq. (9) by the midpoint rule, leading to an O Δt2

� �
time integrator

ψ tk + 1ð Þ= exp Δt eH tk+ 1=2
� �� �

ψ tkð Þ ð13Þ

Modifying the stencil to eliminate the need to evaluate
the Hamiltonian at fractional time steps (e.g., change
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time step to 2Δt) leads to the modified midpoint uni-
tary transformation (MMUT) method99,101

ψ tk + 1ð Þ= exp 2Δt eH tkð Þ
� �

ψ tk−1ð Þ ð14Þ

which is a leapfrog-type unitary integrator. Note that
the midpoint method assumes eH is linear over its
time interval, and the higher order terms (containing
the commutators) in this approximation to Eq. (9) go
to zero. There are many other types of integrators
based off the Magnus expansion that can be found in
the literature.98,102 The key point for all of these inte-
grators is that they are symplectic, meaning they pre-
serve phase–space relationships. This has the
practical effect of conserving energy (within some
error bound) in long-time dynamics, whereas non-
symplectic methods such as Runge–Kutta will experi-
ence energetic ‘drift’ over long times.

A final note: in each of these schemes it is nec-
essary to evaluate the exponential of the Hamilto-
nian. In real-time methods, this requires computing a
matrix exponential. This is not a trivial task and
aside from the construction of the Hamiltonian itself,
is often the most expensive step in the numerical
solution of the TDSE. However, many elegant solu-
tions to the construction of the matrix exponential
can be found in the literature.98,131,132

TIME-DEPENDENT EQUATIONS FOR
APPROXIMATE WAVE FUNCTIONS

While the Magnus expansion is formally exact for exact
wave functions, in practice, the working equations that
govern the evolution of a quantum system must be deter-
mined for different approximations to the TDSE. Time-
dependent equations for approximate wave functions
can be derived by invoking the Dirac–Frenkel,133,134

McLachlan,135 or time-dependent variational principles
(TDVP).136 These principles are based off of different
ideas, but have been shown to be equivalent under most
conditions,137,138 leading some authors to collectively
refer to them as the Dirac–Frenkel–McLauchlan
TDVP.71,72

The Dirac–Frenkel variational principle is argu-
ably the simplest of the three139 and states that, start-
ing from the TDSE,

δψ jh H− i
∂

∂t

� �
ψj i =0 ð15Þ

must hold, where δψ denotes possible variations of
the wave function with respect to the parameters

defining it. (We have left off the explicit time depend-
ence of |ψi for brevity.) Notably, this principle also
appears in the quasi-energy formalism used to derive
working equations in response theory.123 McLau-
chlan criticized the Dirac–Frenkel principle for not
being a ‘true’ variational principle and so suggested
solving the minimization problem

minjjHψ − i
∂ψ

∂t
jj2 ð16Þ

This expression can also be rewritten as

Im δψ jh H− i
∂

∂t

� �
ψj i =0 ð17Þ

making it easier to compare with the other varia-
tional principles. The TDVP evaluates the stationary
conditions (δS = 0) of the action integral

S=
ð
dt ψ jh H− i

∂

∂t

� �
ψj i ð18Þ

In practice, this action integral should be a Lagran-
gian including constraints on the approximate wave
function. These should be the same constraints used
to determine the working equations for optimizing
the time-independent wave function. For normalized
wave functions, evaluating the variation in the action
integral is equivalent to saying that

Re δψ jh H− i
∂

∂t

� �
ψj i= 0 ð19Þ

at all times. Broeckhove et al.137 showed that the
McLauchlan and TDVP are equivalent and thus are
equivalent to the Dirac–Frenkel expression.

These principles can be used to derive the
working equations for approximate wave functions.
They will lead to equations of motion for the para-
meters that describe the wave function, such as the
molecular orbital coefficients or configuration inter-
action coefficients. A time-dependent bivariational
principle has also been used to derive the working
equations for an orbital adaptive time-dependent
coupled cluster theory.86

ABSORPTION IN REAL-TIME
TIME-DEPENDENT ELECTRONIC
STRUCTURE METHODS

One of the common uses of real-time methods is to
compute spectroscopic observables. To show how
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real-time time-dependent electronic structure theory
leads to observable spectroscopic properties, we will
derive an expression for the absorption cross
section in terms of time-dependent observables. Here
we follow closely the presentation by Tannor.140 The
absorption cross section σ(ω) can be defined as the
ratio of the average number of photons absorbed
(ΔN(ω)) to the average number of incident photons
per unit area (N(ω)/A) at a given frequency ω,

σ ωð Þ= ΔN ωð Þ
N ωð Þ A ð20Þ

Given an electronic Hamiltonian H with a time-
dependent electric field E(t),

H =H0− E tð Þ�μ ð21Þ

where H0 collects the time-independent terms of the
Hamiltonian and μ is the dipole moment operator
(and we are therefore working in the electric dipole
approximation), and E(t) and μ are vector quantities.
Expressing H in the energy eigenbasis of H0, we have

H =
X
n

Enjψnihψnj−E tð Þ�
X
nm

μnmjψnihψmj ð22Þ

Given this Hamiltonian, and assuming our system is
completely in its ground state, we can compute the
average rate of photons absorbed, dN/dt. In the pres-
ence of a time-dependent electric field, the average
rate of photons absorbed is opposite to the rate of
electronic population leaving the ground state dN0/
dt, where N0 = hψ0|ψ0i:

dN
dt

= −
dN0

dt
= − _ψ0 jψ0i+ ψ0j _ψ0ih Þhð ð23Þ

Since j _ψ0i is given by the definition of the Hamilto-
nian, exploiting complex conjugation symmetry lets
us write

dN
dt

= −2Re ψ0jiE0=ℏjψ0h i−E tð Þ�
X
n

ψnjiμn0=ℏjψ0h i
" #

ð24Þ

Given that the first term on the right-hand side is
totally imaginary, we can simplify the above expres-
sion (explicitly showing the time-dependence of the
states) to give

dN
dt

=
2
ℏ
Im E tð Þ�

X
n

ψn tð Þjμn0jψ0 tð Þh i
" #

ð25Þ

dN
dt

=
2
ℏ
Im E tð Þ�D tð Þ½ � ð26Þ

where D(t) =
P

nhψn(t)|μn0|ψ0(t)i is the time-
dependent transition dipole moment. To find the
average total number of photons absorbed we can
integrate the above to get

ΔN =
2
ℏ
Im

ð∞
−∞

E tð Þ�D tð Þdt = 4π
ℏ
Im

ð∞
−∞

eE ωð Þ�eD ωð Þdω

ð27Þ

where we have utilized the Plancherel theorem, and
the tilde notation indicates the Fourier transform
pairs. We are using the asymmetric definition of the
Fourier transform such that

f tð Þ =
ð∞
−∞

ef ωð Þe− iωtdω ð28Þ

and

ef ωð Þ= 1
2π

ð∞
−∞

f tð Þe+ iωtdt ð29Þ

For the absorption cross section, we can look at sin-
gle frequencies ω, so that the average number of
photons absorbed for a given frequency of incident
light is given by

ΔN ωð Þ = 4π
ℏ
Im eE ωð Þ�eD ωð Þ

h i
ð30Þ

Now, from classical electrodynamics we know that
for a given frequency, the average number of photons
incident per unit area, N(ω)/A, is given by

N ωð Þ
A

= j
eE ωð Þj2c
ℏω

ð31Þ

thus by taking the ratio of Eq. (30) to Eq. (31) in
Eq. (20), we have our absorption cross section

σ ωð Þ= 4πω
c

Im eE ωð Þ�eD ωð Þ
h i
jeE ωð Þj2

ð32Þ

Note that this expression is fundamentally non-
perturbative within the dipole approximation. Practi-
cally, one suitable electric field shape to access σ(ω) is

WIREs Computational Molecular Science Real-Time Electronic Structure Theory

© 2017 Wiley Per iodica ls , Inc. 5 of 19



to consider a delta-impulse function E(t) = δ(t − t0)κ,
where κ collects the intensity of the applied field. In
this case, the Fourier transform of E(t) is given sim-
ply by eE ωð Þ= 1

2πκ. If we consider an impulsive field
along a single axis i, then Eq. (32) takes the form

σii ωð Þ = 4πω
c

Im eDi ωð Þ
h i
κi

ð33Þ

so that when considering three pulses along each
Cartesian axis, we can obtain the rotational (iso-
tropic) average

σ ωð Þ = 4πω
3c

X3
i =1

Im eDi ωð Þ
h i
κi

ð34Þ

In other words, the absorption cross section is the
imaginary component of the Fourier transform of the
time-dependent transition dipole moment, scaled by
the field intensity. In real-time time-dependent elec-
tronic structure theory, if the system is initially in its
ground state, and the perturbing field is sufficiently
weak, eD ωð Þ is given by

eD ωð Þ≈ 1
2π

ð∞
−∞

μ tð Þ− μ 0ð Þð Þeiωtdt ð35Þ

since μ(t) = Tr(P(t)�μ) and the time-dependent density
matrix P(t) is given to first-order perturbation
theory as

P tð Þ = jψ tð Þi ψ tð Þj≈ jψ0h ihψ0j
+
X
n

cn tð Þe− i ωn−ω0ð Þtjψnihψ0j + c:c:
� �

ð36Þ

The first term, when traced with μ gives the static
dipole moment, and the second term when traced
with μ gives the time-dependent transition dipole
moment. The above expression has remarkable utility
for accessing many types of spectroscopic observa-
bles within real-time time-dependent electronic struc-
ture theory.

SIGNAL PROCESSING

One of the challenges with real-time methods is that
a time-dependent observable must be propagated for
long times. Because spectroscopic properties are the
Fourier transform of time-dependent signals, the sig-
nal resolution is limited by the length of the signal:
this is the Heisenberg uncertainty principle. So while

real-time methods often have favorable scaling with
respect to basis size, the cost of the method will be
severely limited if the signal must be propagated for
many time steps. The number of time steps may
drastically increase the prefactor of the real-time
method, such that real-time methods are no longer
computationally attractive. However, several techni-
ques have been adopted from the signal analysis lit-
erature and extended to the analysis of time-
dependent signals in real-time time-dependent elec-
tronic structure theory. This has had the result of
reducing the amount of time a dynamics simulation
needs to be performed in order to obtain useful
spectra. One technique introduced by Andrade
et al.141 is to use compressed sensing methods to
reduce the number of time-points required to recon-
struct a frequency-domain signal. The method
exploits sparsity in the frequency-domain, as many
of the frequency coefficients will be zero. Knowing
this feature about the spectrum allows one to reduce
the number of time points required to generate spec-
tra by recasting the Fourier transform as a system
of under-determined linear equations. Optimizing
the solution to this system in order to maximize
sparsity allows one to reconstruct the Fourier trans-
form with far fewer time points. In the systems stud-
ied by Andrade et al. a fivefold reduction in time
points was observed, although the real savings
depends on the sparsity of the signal. For systems
with a high density-of-states the computational
advantage will be reduced, whereas for sparse
density-of-states systems compressed sensing techni-
ques offer a significant reduction in cost.

More recently, a signal analysis technique based
on Padé transforms of the Fourier transform has
been introduced by Bruner et al.142 This technique,
rather than exploiting sparsity in the frequency-
domain, instead exploits redundancy in the time sig-
nal, leading to significant reduction in the number of
necessary time points. It is also suitable for high
density-of-states systems. The heart of the technique
relies on expressing the Fourier transform of a time-
dependent signal with Padé approximants, then
recasting this expression as a linear system. Done this
way, it is possible to eliminate any frequency-
dependent coefficients from the linear system, and
the Fourier transform can be computed to arbitrary
spectral density. In other words, given a series with
M discrete time signal values μ(tk), we can write the
Fourier transform μ(ω) as

μ ωð Þ =
XM
k = 0

μ tkð Þe− iωtk ð37Þ
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now, for a constant time step tk = kΔt, this can be
rewritten as a power series

μ ωð Þ =
XM
k = 0

μ tkð Þ e− iωΔt
� �k

=
XM
k = 0

ck zð Þk ð38Þ

with ck = μ(tk) and (z)k = (e− iωΔt)k. This can be fit to
a ratio of two power series (the method of Padé
approximants), such that

μ ωð Þ=
XM
k = 0

ck zð Þk =

XN
k = 0

ak zð Þk

XN
k = 0

bk zð Þk
ð39Þ

which can be rearranged to give

XM
k =0

ck zð Þk�
XN
k = 0

bk zð Þk =
XN
k = 0

ak zð Þk ð40Þ

Now, by setting N = M/2 (diagonal Padé scheme),
equating powers, and rearranging, this can be
reduced to a system of linear equations

Gb = d ð41Þ

with Gkm = cN − m + k and dk = −cN + k. The
unknown b values are found by solving the linear
system. Finally, each ak coefficient is computed as

ak =
Xk
m = 0

bmck−m ð42Þ

With the a and b coefficients in hand, the Fourier
transform can be reconstructed from Eq. (39).
Because a and b do not explicitly depend on fre-
quency ω, the above expression can be computed for
an arbitrary frequency density. That is, any selection
of zk = e−iωΔt is valid, resulting in a user-selected
spectral resolution.

Put another way, the method of Padé approxi-
mants allows one to fit a rational function to the
time-dependent signal, and then extrapolate the sig-
nal out to infinite time. Extrapolating a signal is akin
to exploiting the redundancy in the oscillatory behav-
ior of the time signal, and, because the signal is effec-
tively of infinite length in time, arbitrary resolution
of the spectrum is possible. An example of the Padé
accelerated methods compared to traditional Fourier
transform methods can be found in Figure 1. The
methods are compared for the absorption spectrum

of a water molecule, where the fast convergence of
the Padé accelerated techniques over the Fourier
transform can be observed. Note also the high-
spectral density at all simulation time-lengths.

There are several modifications of the Padé
method to make it even more efficient. For example,
decomposing the total dipole signal into molecular-
orbital dipole components allows the Padé approxi-
mant technique to become more efficient by looking
at fewer oscillatory components per time signal, and
then reconstructing the full spectrum by summing
each MO transition dipole signal. Bruner et al. found
that they could achieve a sevenfold reduction in cost
with the combination of Padé transforms and transi-
tion dipole decomposition. Furthermore, actual solu-
tion of the Padé approximant-based method requires
the solution of Ax = b, where A is n × n, and x and
b are n-length vectors, which scales as O n3

� �
using

Gauss–Jordan decomposition. However, because the
matrix structure of G is Toeplitz, it is possible to use
Levinson recursion143,144 to solve the most expensive
portion of the Padé approximant technique in O n2

� �
time. Regardless, the Padé approximant technique is
far less expensive than the real-time dynamics, of
which it saves considerable cost.

Accelerated convergence using padé approximants
PadéFourier
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FIGURE 1 | Comparison of time convergence for Fourier (left
column) and Padé acceleration (right column), for the total z-dipole
contribution to the absorption spectrum (top row), two representative
MO contributions to the spectrum (middle), and the resulting total
absorption spectrum (bottom row). Note the high spectral density in
the Padé accelerated technique, along with the rapid convergence
with respect to simulation time. In all, Padé converges seven times
faster than conventional Fourier transform—a considerable
computational savings. (Reprinted with permission from Ref 142.
Copyright 2016 American Chemical Society.)
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APPLICATIONS

Magnetization dynamics and relativistic
Hamiltonians
In order to study systems where the spin-state may
change over time, real-time methods have been devel-
oped that are based off spin noncollinear references.
Spin noncollinear methods, also known as two-
component or generalized Hartree–Fock/Kohn–Sham
methods, allow smooth transitions between various
spin configurations by allowing each electron to be
described by both spin-up and spin-down basis func-
tions. This is necessary to describe the real-time
response of molecules under the influence of mag-
netic fields. These methods can be further modified
to include relativistic effects, such as spin–orbit cou-
pling, which mixes spin states internally on account
of the spin–orbit operators. In 2014, the first fully
ab initio noncollinear real-time electronic dynamics64

was reported. This work reported systems driven in
time by an external magnetic field, allowing for the
precession of the magnetization vector, giving proof
of concept that spin dynamics could be accessed with
real-time noncollinear methods. Expanding on this,
Peralta et al.65 used real-time spin noncollinear meth-
ods to extract magnetic exchange couplings in several
magnetic systems.

Given this success, real-time methods have been
extended to the relativistic regime, where spin–orbit
coupling operators require noncollinear solutions.
Calculations of absorption spectra from a relativistic
four-component method was first reported by
Repisky et al.66 in 2015, followed by the extension
to exact two-component (X2C) Hamiltonians by
Goings et al.68 in order to study spin-forbidden opti-
cal transitions (Figure 2). Real-time X2C methods
were extended shortly thereafter to the calculation of
nonlinear optical properties by Repisky and cowor-
kers.69 The extension of real-time methods to the rel-
ativistic regime proves critical to the accurate
treatment electronic dynamics for heavy elements.
The spin–orbit coupling, which connects different
spin states, weakly allows otherwise spin-forbidden
processes, leading to qualitatively different electronic
absorption spectra compared to non-relativistic and
even scalar relativistic methods. Only in relativistic
two- and four-component real-time methods can one
observe otherwise spin-forbidden peaks, such as the
singlet to triplet transition in atomic mercury, shown
in Figure 2. Furthermore, as spin–orbit phenomena
becomes more pronounced for inner-shell electrons,
utilizing relativistic Hamiltonians is required to cap-
ture the multiplet structure of L2,3 absorption reso-
nances in X-ray absorption near-edge structure

(XANES). Motivated by this, Kadek et al. reported a
real-time extension of the four-component Dirac–
Kohn–Sham equations to the simulation of XANES
spectra.67

Nonlinear response
A great advantage of real-time approaches is their
ability to describe highly nonlinear phenomena.
Response formalisms are certainly the most cost effec-
tive approaches to describe the lowest order responses
of a system, but higher order responses can only be
determined by first solving for all lower order
responses. This can become quite expensive and
higher order response equations can also be difficult
to converge (although, up to five-photon absorption
has been reported using response theory145,146). Indi-
vidual orders or response can also be extracted from
real-time simulations as shown by Ding et al.39 Using
information from just a few short simulations, one
can determine polarizabilities, hyperpolarizabilities,
and second hyperpolarizabilities in very close agree-
ment with those calculated with response theory. This
approach is generally applicable to all real-time meth-
ods and has been used in the past with RT-TDDFT,
RT-X2C, and TD-CI.39,69,80 Similar techniques have
also been used by other groups, but these were not
applicable to such high-order response.42,147 Since
explicitly time-dependent approaches are able to
describe the response of a quantum system to arbi-
trary order, they have also become the methods of
choice for describing the highly nonlinear process of
high harmonic generation (HHG).

Experimental
1P1 =6.70eV

Experimental
3P1 = 4.89eV

FIGURE 2 | Absorption spectra for atomic mercury obtained with
real-time electron dynamics. The dynamics utilized an X2C
Hamiltonian, which contains an ab initio treatment of spin–orbit
coupling. This allows for the observation of the otherwise spin-
forbidden 3P1 transition. (Adapted from Ref 68 with the permission of
AIP Publishing.)
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HHG occurs when a medium is illuminated
with a laser at a particular frequency and then emits
pulses at integer multiple frequencies of the initial
pulse. It is largely used to generate high-energy atto-
second pulses that can then be used to carry out
ultrafast experiments.148,149 The process of HHG is
often interpreted through a simple three-step model
where the electron escapes the molecule via tunnel
ionization, accelerates away until the sign of the field
changes, and then accelerates back towards the mole-
cule.150,151 The validity of this model is approxi-
mated by the Keldysh parameter152

γ =
I1=2P

2UP
ð43Þ

where IP is the ionization potential and the pondero-
motive energy is UP = I/4ω2 where I is the field inten-
sity and ω the field frequency. It defines both the
multiphoton (γ > 1) and the tunneling regimes
(γ < 1). Simulations that describe HHG aim to keep
the Keldysh parameter γ ≈ 1 to remain close to the
tunneling regime. The three-step model also provides
an estimate for when harmonic generation should
stop, often called the cutoff energy
Ecutoff = IP + 3.17UP.

The HHG power spectrum can be extracted
from the time-evolving dipole moment

P ωð Þ = 1
tf − ti

ðtf
ti
dtμ tð Þe− iωt

				 				2 ð44Þ

after being perturbed by a monochromatic external
field. This expression uses the length gauge form of
the dipole and many have suggested using the accel-
eration gauge to describe the power spectrum
although they should be very similar for reasonably
sized basis sets.153,154 Commonly cos2 or sin2 pulse
envelope functions are used to perturb the sys-
tem76,155 and the envelope can even be optimized to
enhance or damp specific harmonics.156 HHG spec-
tra can also be sensitive to the basis sets used and to
the treatment of continuum states.155

Real-time methods in complex
and nonequilibrium environments
Because of the explicit time-dependence, real-time
methods have been fertile ground for nonequilibrium
phenomena in complex environments. One early use
of real-time methods was in the study of molecular
conductance. Although conductance and studies of
currents through molecules is amenable to steady-

state investigations (e.g., the static Landauer–Bütti-
ker157,158 approach), there are many situations where
the system is not in a steady-state. This may be when
the current is initially applied, driving the system into
a steady-state, or in situations where current drives
various mechanical effects within a molecule. Further-
more, even in a steady-state picture there may be
dynamical instabilities and fluctuations in electron
flow. There have been several studies investigating the
nonequilibrium effects on molecular conductance
with real-time methods,12–20 by either explicitly incor-
porating electronic sources and sinks connected by a
molecular junction or applying an electrical bias
across a molecule. The systems were simulated in
real-time, allowing insight into the nonequilibrium
behavior of the molecules in a complex environment.

The nonequilibrium response of solvent–solute
interactions has been an active area of research in
dynamics. Clearly, incorporating a realistic descrip-
tion of the solvents is challenging on account of the
high number of degrees of freedom of an explicit
solvent. One way is to take a QM/MM approach
and include the molecular environment explicitly
(albeit at reduced cost).21,22 Another way around
this is to embed the molecule in a polarizable con-
tinuous medium (PCM), where the solvent degrees
of freedom are replaced by an effective classical die-
lectric. The dielectric medium and the molecule are
brought into self-consistency, with both the mole-
cule and the medium polarizing each other. This has
been brought into the real-time methods by Li and
coworkers.23–25 One of the challenges, however, has
been that the response of the solvent has been
instantaneous. Realistically, however, the solvent
takes finite time to reorganize and repolarize, and
this has measurable effects on molecular response.
To correct for the nonequilibrium response of sol-
vent and solute, a time-dependent PCM method was
introduced,26,27 which incorporates an equation of
motion for the dielectric polarization, which allows
for descriptions of electronic dephasing and dipole
lifetimes. This same idea was subsequently extended
to TD-CI.28 Very recently, RT-TDDFT was com-
bined with block-orthogonalized Manby–Miller
embedding theory29,159 as a way of cheaply
accounting for a solvated molecular response.

In the past few years, there has been work to
extend similar ideas to embedding molecules in a
thermal bath, in order to study the nonradiative
relaxation and dephasing of molecular systems. The
time-dependent open self-consistent field (OSCF2)
method introduced by Nguyen et al.31,33 is one recent
example. This method adds to the molecular equa-
tions of motion a Markovian dissipative correction,

WIREs Computational Molecular Science Real-Time Electronic Structure Theory

© 2017 Wiley Per iodica ls , Inc. 9 of 19



which has the practical effect of describing nonradia-
tive lifetimes within RT-TDDFT. It furthermore
allows for nonconstant relaxation rates, and, at long-
times, OSCF2 comes to equilibrium with the correct
Fermi–Dirac statistics, a condition that some com-
mon methods for nonadiabatic dynamics
(e.g., Ehrenfest and surface-hopping) do not satisfy.31

Complex absorbing potentials
Most ab initio techniques that describe absorption
spectra are designed to handle bound state transi-
tions, so different strategies are needed for transitions
near and above ionization. These transitions are
characterized by resonance states, which are metasta-
ble and autoionize after a short time, and continuum
states. Resonance states can be thought of as discrete
states strongly coupled to the continuum and are
associated with complex eigenvalues of the Hamilto-
nian, known as Siegert energies160

Eres =ER−
iΓ
2

ð45Þ

where ER is the center of the resonance and Γ is the
width. Obviously, these complex energies are inacces-
sible by Hermitian Hamiltonians, however, a non-
Hermitian Hamiltonian can be formed for which the
Seigert energies are eigenvalues. There are several
ways to accomplish this end, but the most common
approach in real-time simulations is to add a com-
plex absorbing potential (CAP) to the Hamiltonian

H0 tð Þ=H tð Þ− iηW ð46Þ

where W is the absorbing potential and η defines the
strength of the CAP.

A CAP serves as an absorber to prevent reflec-
tions caused by using either a finite basis set or simu-
lation box.161 Essentially it gives electrons
somewhere to go when trying to escape the molecu-
lar system. It must be placed far enough away from
the system so that it does not interact strongly with
the ground state or low lying excited states, but close
enough to perturb the resonance states. This means
that it must be outside the Coulomb well, but still
have sufficient overlap with the maximum extent of
the electrons. Schlegel and coworkers have used
PCM machinery to define this boundary in the
past.162 CAPs are very useful when propagating the
wave function on a finite grid in order to avoid
reflections off the edge of the simulation box. The η
parameter is usually tuned to be strong enough to
prevent this reflection, but weak enough to prevent

reflection off of the CAP.163 These potentials have
been put to good use by Schlegel and coworkers with
TD-CIS using atom centered basis functions in order
to describe time-resolved photoionization and its
angular dependence.79,162,164

Lopata and Govind used similar ideas when
developing their non-Hermitian RT-TDDFT
approach. A non-Hermitian Fock or Kohn–Sham
matrix is constructed with finite lifetimes for each of
the orbitals allowing them to describe transitions to
bound, resonance, and continuum states.8,50 An
example of their work comparing modeled extreme
UV absorption of acetylene is presented in Figure 3,
which shows that this technique performs well even
in regions of the spectrum near many ionization
potentials. Klinkusch et al.165 take a different
approach and directly added finite lifetimes to the
state energies when using TD-CIS to describe ioniza-
tion rates. White et al.155 also used the same
approach to describe HHG with TD-CIS showing a
dramatic reduction in the noise of the spectra.

Real-time molecular quantum
electrodynamics
Nearly all real-time methods describe the interaction
between matter and light semi-classically. In this

FIGURE 3 | Absorption spectra of acetylene modeled with RT-
TDDFT (green) and non-Hermitian RT-TDDFT with an imaginary
absorbing potential (orange) compared with an EELS experimental
spectrum (blue). The gray lines denote DFT Koopmans’ ionization
potentials. The absorbing potential adds a finite lifetime to resonance
states and shows dramatic improvement when compared against the
experimental spectrum. (Reprinted with permission from Ref 8.
Copyright 2013 American Chemical Society.)
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sense, the electromagnetic field affects the molecule,
but the molecule has no effect on the electromagnetic
field. Recently, there have been attempts at treating
light and matter on equal footing in RT-TDDFT. This
area of investigation comes from the growing interest
in combining a quantum description of matter with a
quantum description of the electromagnetic field. This
leads to the well-known field of molecular QED.166

QED sets the foundation for understanding the quan-
tum nature of photon–matter interactions and gives
the most complete theoretical description of absorp-
tion and (spontaneous) emission. Furthermore, cavity
QED experiments, which trap a small number of
photons in close proximity to atoms and molecules
have highlighted the need to understand the interac-
tions between matter and light when the quantum
nature of light becomes important. While quantum
optics has studied two-level systems in the presence of
many-photon fields (Jaynes–Cummings model),167

the extension to realistic multistate systems remains
difficult due to the near-intractability of the underly-
ing equations.

In essence, molecular QED describes the
coupled nature of the electronic Hamiltonian with
quantized electromagnetic field modes that look like
quantum harmonic oscillators. The molecular system
can absorb energy from populated photon states as
well as release energy out through emission to the
electromagnetic field. Moreover, the interaction
between photons and electrons can lead to polari-
tons, which are quasiparticles generated by the
strong coupling of excitons and a photon field. This
leads to new spectroscopic features beyond any semi-
classical treatment. In recent studies by Flick
et al.,94,168 researchers demonstrated how their
extensions of QED to TDDFT (called QEDFT)
showed previously unseen phenomena in the quan-
tum description of the light–matter interaction. While
a detailed description of their QEDFT methods is
beyond the scope of this review (see Refs 89–93 for
details) there are important phenomena arising from
the quantum light–matter interaction that cannot be
captured in the traditional semi-classical techniques
that most real-time methods utilize.

One interesting phenomena that is unique to
the quantized treatment of the photon-molecular sys-
tem is that an initially excited state can periodically
emit and then reabsorb a photon. This is impossible
in semi-classical descriptions of radiation–matter
interaction, because the electromagnetic field is
always external to the system: in QED, the excited
molecule coupled to the quantized electromagnetic
field, emits a photon, which may reflect back in cav-
ity QED experiments, only to be reabsorbed by the

molecular subsystem. Moreover, Flick et al. found
that if the coupling with the photon resonance is
strong enough, the photon mode will actually modify
the bare electronic excited states, leading to split
peaks in the absorption spectrum. This phenomena is
known as a vacuum Rabi oscillation. Because the
real-time time-dependent electronic structure is
extended to the photon–molecule system as a whole,
this is possible within QEDFT. For fields with high
photon number states, this could be extended to a
treatment of multiphoton absorption (and emission)
and nonlinear phenomena without recourse to orders
of response theory.

CONCLUSIONS

Here we have summed up much of the recent prog-
ress in real-time time-dependent electronic structure
theory. Since the late 1990s, there has been an explo-
sion of work into real-time methods. Real-time meth-
ods have been used to simulate many types of
spectroscopic signatures in molecular systems and
with advances in algorithms and signal processing
techniques, seem poised to be competitive with other
techniques such as frequency-domain response the-
ory. Yet the fundamental advantage of real-time
methods lies in both its non-perturbative nature and
its intuitive elegance. To the first point: no matter
what type of system is being studied with real-time
methods, all external interactions are treated non-
perturbatively. Electromagnetic fields have finite
value, electronic and environmental responses back-
react into each other, electron currents flow
dynamically—no steady-state approximations here!
And this is how chemistry is in its full complexity.
We are free to add and remove interactions, be they
fields or thermal baths or solvents or electron sources
and sinks, and the molecule responds, as it wishes,
evolving according to its dynamical laws. This leads
us to our second point: the intuitive elegance of these
methods. The laboratory chemist does not measure
an absorption spectrum by finding the poles and resi-
dues of her test tube of chemicals. Rather, the chem-
ist applies an appropriate laser pulse under carefully
selected conditions and observes the molecular
response. So too with real-time methods. In each sim-
ulation, the molecule and its perturbing interactions
are carefully chosen to observe a molecular response,
and from this response we learn a bit more about
that molecule. Theory imitates experiment.

Over the past several years, we have witnessed
an increase in the types of applications of real-time
methods, and most of them have relied on the

WIREs Computational Molecular Science Real-Time Electronic Structure Theory

© 2017 Wiley Per iodica ls , Inc. 11 of 19



increasing sophistication of the external perturba-
tions. CAPs have allowed us to study ionization pro-
cesses, including a dissipative bath or a
time-dependent solvent response has allowed us to
study excited state lifetimes, including relativistic
interactions has enabled spin-dependent responses,
and strong fields have enabled studies of high-
harmonic generation and nonlinear optical effects. Of
course, each of these new interactions must make
some sort of approximations, and the way forward
seems likely to improve on these approximations. We
would like to suggest three pressing questions relevant
to the future of real-time electron dynamics. First:
‘How can we include a proper treatment of electro-
magnetic fields beyond the electric dipole approxima-
tion?’ Many processes, particularly in the high-energy
(X-ray) regimes require terms beyond the electric
dipole, including electric quadrupole and magnetic
dipole terms. These terms are necessary, but challeng-
ing to include, not for least of which is the gauge-
origin issue.169–171 Along this line, more work needs
to be done to properly include magnetic fields into the
description, to show chemistry driven by magnetic
fields (e.g., magnetic circular dichroism requires a
static magnetic field). The way forward using explicit
London orbitals seems promising,172–176 but a time-
dependent extension remains to be seen. Second,
‘What phenomena can we observe beyond the semi-
classical paradigm of matter–light interactions?’ The
QEDFT of Rubio and coworkers seems promising,
but is still in its infancy. Quantum optics has long
known the importance of using a quantized

electromagnetic field, but the extension to molecular
systems is intriguing. After all, molecules interact with
photons, not classical fields. What might chemistry
look like in the cases where molecules interact individ-
ually with photons? What would a molecular cavity
QED experiment tell us? Finally, ‘How can we go
beyond DFT and HF to properly account for electron
correlation in real time?’ Recent advances in real-time
coupled cluster have made this question more achiev-
able, but more work needs to be done to develop effi-
cient methods for correlated real-time dynamics. One
intriguing possibility is to use time-dependent reduced
density matrices as a way of propagating correlated
systems in time. Beyond a more accurate treatment of
excited state and time-dependent phenomena, corre-
lated wave-function-based methods would allow for
true studies of optimal control,177–179 wherein elec-
tromagnetic field pulses could be shaped and crafted
to drive chemical reactions. Because DFT and HF rely
on a single Slater determinant, such optimal control
studies are challenging,180 if not impossible. The
problem is further compounded in RT-TDDFT, since
most available functionals are adiabatic and designed
for the ground state, leading to many
problems.181–187 Real-time electron dynamics has
come a long way since the first applications to realistic
chemical systems in the late 1990s, and its applica-
tions seem mostly limited only by the creativity of its
practitioners and developers. However, the pace
towards more realistic systems and better descriptions
of complex phenomena show no signs of
slowing down.
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