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Abstract

The main goal of this paper is to provide an
overview of a variety of methods for synthesis
of eroded terrain for use in computer games, VR
worlds and the like. Traditionally, such software
uses either predefined terrains or runtime gen-
erated data based on simple fractal noise tech-
niques.

In recent years, the advances in processing power
of average home computers have made it pos-
sible to simulate erosion processes near-realtime
by putting emphasis on speed at the expense of
physical correctness. This paper presents a fast
method to synthesize natural looking fractal ter-
rain and then proceeds to evaluate and suggest
optimizations for two of the most commonly used
erosion algorithms [1l 2]. With some criteria for
applicability in computer games in mind, a new
and much faster algorithm is then proposed. Fi-
nally, a few issues regarding terrain modifications
for maximum playability are discussed.

Figure 1: A rendered view of a synthesized,
eroded terrain created with the techniques dis-
cussed in this paper.

Detfinitions

Data representation

In the algorithms described in this paper, terrain
will be represented by two-dimensional height
maps using floating point values between 0 and 1.
Unless otherwise stated, all examples use square
maps with side length N = 2° = 512, giving a
total of N2 = 218 = 262144 cells, each cell con-
taining a height value.

The height map is denoted H and the individual
cells are addressed as h;,;, where ¢ and j are coor-
dinates ranging from 0 to 511. Some calculations
will address cells outside this range; in this case,
modulo is used to wrap the coordinates around so
that the right neighbour of a right-most cell will
be the left-most cell in the same row etc.

All implementations were done i Java, and all cal-
culation times are from tests executed on a fairly
standard 2.4 GHz Pentium 4 PC.

Defining erosion

The effects of erosion are difficult to describe
mathematically: The term erosion covers many
naturally occurring phenomena, and different ter-
rain types and climates will produce many differ-
ent kinds of changes to a landscape. For sim-
plicity, a set of desirable traits (from a computer
game development perspective) that will be used
to measure how eroded a height map is, is defined.
Overall, most types of erosion dissolve material
from steep slopes, transport it downhill and then
deposit the material at lower inclinations. This
tends to make steep slopes even steeper, and flat-
ten out low-altitude terrain when the transported
material is deposited. To aid in the analysis of the
changes in inclination, the slope map S is defined
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such that

sij = max(|h; ; — hi-1],

|hij — hiv1jl,
|hij = hij—1l,
|hi,j — hij+1])

in other words, the greatest of the height differ-
ences between the cell and its four neighbours in
a Von Neumann neighbourhood.

This paper focuses on the synthesis of eroded ter-
rain for use in computer games; therefore, the
ideal for eroded terrain must suit this applica-
tion. Physical correctness and visual appearance
are secondary, what matters is applicability. In
most computer games and VR environments us-
ing large-scale outdoor terrain, persons or vehicles
move around on the terrain, and various struc-
tures are placed on the terrain. Movement and
structure placing is often restricted to low incli-
nations, which means that a low average value
of a height map’s corresponding slope map is de-
sirable. This rule alone would make a perfectly
flat height map ideal, which is why a second rule
is added saying the greater the standard devia-
tion of the slope map, the better. The ideal for
eroded terrain is therefore a height map whose
corresponding slope map has a low mean value
(reflecting the overall flattening of the terrain due
to material deposition) and a high standard devi-
ation (material is dissolved from steep areas mak-
ing them even steeper, and deposition flattens the
flat areas further). The slope map mean value, §,
and standard deviation, o4, are defined on the
slope map S as follows:

MZ

I
=

7

N—-1N-—

1
Os = 2 § : S%J )2
=0

=0 j

H

Using these, an overall ”erosion score”, ¢, is de-
fined as
Os
E = —
S
(on the assumption that 5 # 0)

Generation of base terrain

A technique often used for fast terrain genera-
tion is simulating 1/f noise (also known as ”pink
noise”) which is characterized by the spectral en-
ergy density being proportional to the reciprocal

of the frequency, i.e.

1

P(f) = a
where P(f) is the power function of the frequency
and a is close to 1. This kind of noise approx-
imates real-world uneroded mountainous terrain
well and has been used widely in computer graph-
ics for the past decades. Two methods for gener-
ating 1/f-like noise, spectral synthesis and mid-
point displacement, are discussed below.
In generating a terrain base for the erosion al-
gorithms to work on, it is worth noting that the
closer the terrain base is to the desired result,
the less work is required by the (often calculation
heavy) erosion algorithm itself. To help create a
terrain base with better characteristics of eroded
terrain, the use of Voronoi diagrams and pertur-
bation filtering are introduced below.

Spectral synthesis

Spectral synthesis simulates 1/f noise by adding
several octaves (layers) together, each octave con-
sisting of noise with all its spectral energy concen-
trated on a single frequency. For each octave, the
noise frequency is doubled and the amplitude A
is calculated by

A=7p

where ¢ is the octave number starting with 0 at
the lowest frequency and p is called the persis-
tence. Letting p = 0.5 will approximate 1/ f noise
because each time the frequency is doubled in the
next octave, the amplitude will be halved.

The octaves themselves are created by filling
in evenly spaced pseudo random numbers corre-
sponding to the octaves’s frequency, and then cal-
culate the remaining values by interpolation - see
Figure [2] for a visual comparison of interpolation
methods. While cubic interpolation gives the best
results, the slightly visible vertical and horizontal
artifacts caused by linear interpolation are an ac-
ceptable trade-off for a computation time reduced
to roughly one fifth.

Midpoint displacement

Another approach at simulating 1/f noise is by
a midpoint displacement method, in this case the
diamond-square algorithm [3, 4, B]. Instead of
calculating every cell in several octaves (up to 9
octaves with N = 27) and then adding together
the octaves, the value of each cell need only be
calculated once.

The midpoint displacement method works by re-
cursively calculating the missing values halfway



Figure 2: Cubic interpolation (left) versus lin-
ear interpolation (right) for the spectral synthesis
algorithm.

between already known values and then randomly
offset the new values inside a range determined
by the current depth of the recursion. With
a persistence of 0.5, this range is halved with
each recursive step, and an approximation of
1/f noise is created. Ideally, the random offsets
should have a gaussian distribution inside the off-
set range, but for the purpose of synthesizing ter-
rain, uniformly distributed values are acceptable
(and much faster to calculate).

The implementation done for this paper is the
square-diamond algorithm, named after the or-
der in which midpoint values are determined (see
Figure [3]).
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Figure 3: Two iterations of the diamond-square
algorithm. Pseudo random number are used for
initial values in step a. In step b (the ”diamond”
step) a new value is found by offsetting the av-
erage of the four values of step a. Step ¢ (the
“square” step) fills in the rest of the midpoint
values also by offsetting the average of the four
neighbours of each new point. Steps d and e show
the next iteration.

Figure [ shows a visual comparison of the two
ways of distributing values inside the random off-
set ranges. Although uniform distribution pro-
duces a more jagged terrain, this can be compen-
sated for by lowering the persistence. Since the
version using gaussian distribution takes 4 times
longer to generate, uniform distribution is to be
preferred.

The midpoint displacement method also allows
for individual adjustments of the random off-
set ranges depending on coordinates or altitude,
which can be used to give the terrain a more

eroded look by multiplying the size of the offset
range with the height average when calculating
new values. This causes low altitude areas to be-
come smoother, thereby simulating deposition of
eroded material. This method is referred to as
smoothed midpoint displacement.

Figure 4: Gaussian (left) versus uniform (right)
distribution of random offsets for the midpoint
displacement algorithm.

Voronoi diagrams

The problem with using 1/f noise for simulating
real world terrain is that it is statistically homoge-
neous and isotropic - properties that real terrain
does not share. One way to break the monotony
and control the major characteristics of the land-
scape are Voronoi diagrams whose use in proce-
dural texture generation has been described by
Steven Worley [6]. Voronoi diagrams can be used
for a variety of effects when creating procedural
textures - most variants resemble some sort of
cell-like structures that can be used to simulate
tissue, sponge, scales, pebbles, flagstones, or in
this case, entire mountains.

The implementation used in this paper works by
dividing the map into regions and then randomly
place a number of ”feature points” in each re-
gion. For each cell in the map, a set of values
dn, n = 1,2,3,... are calculated according to a
defined distance metric so that d; is the distance
to the nearest feature point, ds is the distance to
the next nearest distance point etc. Linear com-
binations of the form

h =cidy + cads 4+ c3ds + - - - + cpdy,

with coefficients ¢;...¢, will then produce
the cellular structures - see Figure [5| for ex-
amples. For creating mountainous features,
the coefficients ¢; = —1 and ¢3 = 1 (with
the rest being zeroes) are used as it can add
distinct ridge lines and connected riverbeds to
the terrain. These values also give the Voronoi
diagrams another useful property which will be



Figure 5: Ezamples of Voronoi diagrams with
coefficients ¢; = —1 (upper left), co = 1 (upper
right), cs = 1 (bottom left), c; = —1 and co = 1
(bottom right).

covered in the section regarding playability issues.

Normally, distances are determined by the Eu-
clidean distance metric

d = +/dz? + dy?

which is quite slow because of the square root.
Changing the distance metric to

d = dz® + dy?

produces a large speedup. As Figure [6]shows, the
difference in the resulting height map is insignif-
icant. This optimization together with a reduc-
tion in search radius when finding nearest feature
points (which occasionally produces minor errors)
reduces calculation time to one third.

Figure 6: Fuclidean distance metric (left) ver-
sus the faster distance metric (right) for Voronoi
diagrams.

Combination and perturbation

Although Voronoi diagrams have some useful
properties that 1/f noise lacks, they are no sub-
stitute for the noise functions. The best results
are achieved with some combination of both; in
this case two thirds smoothed diamond-square
method noise and one third Voronoi diagram with

coefficients ¢; = —1 and ¢y = 1 will be used. This
combination is referred to as the combined height
map.

To crumple the straight lines of the Voronoi di-
agram, a perturbation filter as described in [6]
pages 90-91 is applied. This filter works by us-
ing a noise function (similar to the ones described
above) to calculate a displacement with random
distance and direction for each cell. The com-
bined height map before and after perturbation
can be seen in Figure [7] The magnitude of the
perturbation filtering is set to 0.25, meaning that
a given point in the height map cannot be dis-
placed more than % cells.

The perturbation filtering itself also increases the
erosion score because some areas are stretched
and some are compressed, which increases o.
Figure |8 shows the average relationship between
perturbation magnitude and erosion score for at
large number of test runs on the combined height
map generated from different random seed num-
bers. Erosion score rises to a maximum at a per-
turbation magnitude of 0.25 and then slowly de-
clines.

Figure 7: The combined height map before per-
turbation (left) and after (right).

The final base terrain is shown in Figure [} For
visual comparison, all image examples of various
erosion algorithms in the following sections use
this terrain as a starting point. Figure [I0] shows
a rendered view of this height map.

Analysis

Average calculation times and erosion scores for
the methods discussed in this section can be seen
in Table[Il As can be seen, the implementations
of spectral synthesis and midpoint displacement
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Figure 8: The relationship between perturbation
magnitude and erosion score for the combined
height map.

all achieve nearly the same erosion score, but the
midpoint displacement method with uniform ran-
dom offset distribution is by far the fastest. The
smoothed version is only marginally slower, but
manages to achieve a higher erosion score.

The Voronoi diagrams in themselves do not score
as much as the noise functions, but the faster met-
ric seems to be better suited for the coefficients
used. When combined with the modified version
of the midpoint displacement method, the ero-
sion score almost reaches the level of the modified
midpoint displacement method alone. As shown
in Figure [§ the perturbation filter improves the
erosion score even further.

With V = 512 the base terrain can be synthesized
in less than 1 second. Even with N = 1024, the
synthesis of the base terrain is done in less than
3 seconds.

Erosion algorithms

Two types of erosion algorithms are examined in
this section, namely thermal erosion (sometimes
referred to as thermal weathering) and hydraulic
erosion. These were first described by Ken Mus-
grave et al in 1989 [1], and have since established
themselves as a base from which various improve-
ments (mostly in terms of physical correctness)
have been suggested [2, [7, [8] @] [10].

A reference implementation of each type is com-
pared to speed optimized version that will still
deliver comparable results. For thermal erosion,
the original method suggested in [I] is used, while
a version of hydraulic erosion suggested in [2] is
used because of its speed.

Both methods are iterated cellular automata
meaning that calculations in each iteration are

Figure 9: The base terrain used in image exam-
ples of the erosion algorithms.

done by examining each cell and its neighbour-
hood in turn. Two different types of neighbour-
hoods are used: The Moore neighbourhood which
includes all 8 neighbours of a cell, and the Von
Neumann neighbourhood which only includes 4
of the neighbouring cells (see Figure . With
the currently examined cell having value h and
its neighbours being named h;, the height differ-
ence to each neighbour, d;, is defined as

meaning that lower neighbours produce positive
height differences. For maximum correctness, the
Moore neighbourhood was used in both reference
implementations.

Thermal erosion
Overview

Thermal erosion simulates material braking loose
and sliding down slopes to pile up at the bottom.
The reference implementation works as follows: A
percentage of the material at the top of a slope
whose inclination is above a threshold value - the
talus angle T' - will be moved down the slope until
the inclination reaches T":

B — d; >T: hl—l—c(dZ—T)
v d,LST hl

This is illustrated in Figure At the first
timestep, dy = T and dy > T, which means that
material will be moved from h to he. With ¢ = 1,
the amount of moved material results in do = T



Type N Calc. time Erosion score
Spectral synthesis, cubic interpolation 512 0.783 s 0.425
Spectral synthesis, linear interpolation 512 0.157 s 0.417
Midpoint displacement, Gaussian distribution 512 0.439 s 0.438
Midpoint displacement, uniform distribution 512 0.108 s 0.401
Midpoint displacement, uniform distribution, smoothed 512 0.144 s 0.478
Voronoi diagram, Euclidean metric, long search range 512 1.322 s 0.323
Voronoi diagram, fast metric, short search range 512 0.468 s 0.347
Noise and Voronoi combination 512 0.709 s 0.460
Noise and Voronoi combination, perturbed 512 0.831 s 0.657
Noise and Voronoi combination, perturbed 1024 2.738 s 0.673

Table 1: Calculation times and erosion scores for the methods discussed in the first section. Calculation
times for combinations include time to calculate the noise and Voronoi maps. All numbers are averages

from a large number of test runs.

Figure 10: A rendered view of the base terrain
used in image examples of the erosion algorithms.
For easy comparison, all rendered views use the
same camera position and direction.

and d; < T. However, this is a simplified exam-
ple where material from A only needs to be moved
to one neighbour cell. In the case where several
neighbours whose height difference is above the
talus angle exist, the moved material must be dis-
tributed after the form

d;

dtot al

hi =h; + C(dmax — T) X

where dpax is the greatest of the d; and dioa is
the sum of the d; greater than T'.

A reasonable value for ¢ is 0.5; higher values may
cause oscillation when the changes to the height
map are applied only after completion of an en-
tire iteration, and lower values will simply cause
slopes steeper than T a slower asymptotical ap-
proach to the talus angle. For the talus threshold,
a value of T' = % was chosen.

ha ho hs h1
ha h hs ha h hs
he he hsg ha

Figure 11: Moore (left) and Von Neumann

(right) neighbourhoods for cellular automata.

Optimizations

To produce a speed optimized version of the ref-
erence implementation, four changes were made:

1. A Von Neumann neighbourhood was used in-
stead of the Moore neighbourhood.

2. Material distribution was changed so that
material is only distributed to the lowest
neighbour instead of all lower neighbours.

3. Material distribution was changed to allow
more material to be moved per iteration.

4. The calculations for each cell changes the
height map immediately instead of being
written to a difference map that is applied
after an entire iteration is completed.

The reference implementation maintains values
for dpmax and diota1, which means that for every
neighbour h; of a cell h, the following must be
done:

d; =h—h;
if (d; > talus) :
dtotal = dtotal + di
if (dz > dmax) :
Amax = dz
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Figure 12: A simplified example of thermal ero-
sion: do is greater than the talus angle, so ma-
terial is moved from h to ho until dy equals the
talus angle.

Switching from the Moore neighbourhood to the
Von Neumann neighbourhood will halve the num-
ber of times these conditional checks have to be
done. Since the amount of moved material per
cell is proportional to dpyax, using the Von Neu-
mann neighbourhood will move the same amount
of material 50% of the time. Even if the dmayx of
the Moore neighbourhood is outside of the Von
Neumann neighbourhood, the dpax of the Von
Neumann neighbourhood still tends to be close
to its value.

When the amount of material to be moved has
been calculated, each neighbour h; whose d; > T
receives a fraction proportional to diial (where
diotal is the sum of the d; greater than T'). This
can be simplified a lot by distributing material
to the lowest neighbour only as this renders the
calculation of dioia and the fractions to be dis-
tributed superfluous. A drawback is that less ma-
terial can be moved per cell, which can partly be
compensated for by moving as much material Ah
as possible:

dmax
Ah = 5

This causes h to be levelled with its lowest neigh-
bour if their height difference is greater than 7.

In the reference implementation, only a percent-
age ¢ of the maximum amount of material to be
moved was transfered. This was done to avoid
oscillation, and the same problem applies here:
Four large height values surrounding a deep hole
may not only fill up the hole, but create a tall
spike instead. Oscillations like this occur because

the height map remains unchanged until all cells
have been processed. One way to solve this is to
change the height map immediately when mov-
ing material - in the above example this would
mean that the hole would not receive any more
material once it was raised to a level where the
height differences to the surrounding cells were
below the talus threshold. Another advantage of
direct changes to the height map is a slight in-
crease in calculation speed.

When experimenting with different kinds of
neighbourhoods, it was also noted that a "ro-
tated” version of the Von Neumann neighbour-
hood (see Figure gave slightly better results
both in terms of higher erosion score and less dif-
ference between the two versions.

hy ho

hs ha

Figure 13: The modified Von Neumann neigh-
bourhood used in the speed optimized version of
thermal eroston.

Analysis

Calculation time averages for the first 500 itera-
tions of the two implementations can be seen in
Figure Time required per iteration remains
constant for both implementations, but the ref-
erence implementation takes 6 times longer; 500
iterations are calculated in 60 seconds, while the
speed optimized version does it in 10 seconds.
Figure shows erosion score averages of the
first 500 iterations. The reference implementa-
tion scores 5% better after 500 iterations, but
the speed optimized version seems to be more ef-
fective during the first 80 iterations. To explore
this further, a new graph was created, showing
the height map difference after every 10 iterations
(see Figure [16). The optimized version seems to
stabilize faster, meaning that most of the change
is done during the first 50 iterations. The ref-
erence implementation does more change overall
during the 500 iterations, but does not seem to
be stabilizing until after 150 iterations.

For practical or visual applications, no more than
50 iterations of any of the versions are needed to
change the shape of the terrain to show the dis-
tinct effects of thermal erosion, namely the con-
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Figure 14: Calculation times of the first 500 it-
erations of the reference and optimized implemen-
tation of thermal erosion.
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Figure 15: Erosion scores of the first 500 itera-
tions of the reference and optimized implementa-
tion of thermal erosion.

stant angled slopes. Figure compares height
maps produced by the two versions after 50 it-
erations, and Figure [18| shows rendered views of
these height maps.

The difference between the outputs of the two im-
plementations after 50 iterations is 2% on aver-
age, where a difference of 100% corresponds to a
height map with all height values at 0 versus a
height map with all height values at 1.

While thermal erosion manages to increase the
erosion score by lowering the angle of most slopes,
terrains produced by this kind of erosion does not
resemble the ideal defined earlier since the con-
stant angled slopes leave very little completely flat
area.
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Figure 16: Change per 10 iterations of the first
500 iterations of the reference and optimized im-
plementation of thermal erosion.

Hydraulic erosion
Overview

Hydraulic erosion simulates changes to the ter-
rain caused by flowing water dissolving material,
transporting it and depositing it elsewhere.

For the reference implementation of hydraulic
erosion, a slightly altered version of Benes and
Forsbach’s method [2] has been used. The algo-
rithm is split up into four independent steps:

1. Appearance of new water.

2. Water eroding the underlying terrain and
capturing the dissolved material.

3. Transportation of water and sediment.

4. Evaporation of water and deposition of sedi-
ment.

Apart from the height map, hydraulic erosion also
maintains a water map W and a sediment map M
for keeping track of the flow of water and dissolved
material.

In step 1, a constant amount of water K. is added
to each cell every iteration to simulate rain:

wij = wij + Ky

In step 2, an amount of the height value propor-
tional to the amount of water present in the same
cell is converted to sediment:

hij = hij — Ks X w;
mij = mij+ Ks X wi;
where K is the solubility constant of the terrain.

In step 3, the water and its contents of dissolved
material are transported following a set of rules



Figure 17: Comparison between the reference implementation of thermal erosion (left) and the speed
optimized version (right). Images show the height map after 50 iterations.

similar to the material distribution in thermal
erosion. Only now, water is being distributed to
the neighbour cells instead and the distribution
seeks to level out any height differences of the to-
tal altitude a = h + w so that

a = a;

for each neighbour 4 in the cell’s neighbourhood
whose total height is less than that of the cur-
rently examined cell.
The amount of water moved to the ith neighbour,
Awj, is calculated by

d;

dtotal

Aw; = min(w, Aa) x

where Aa = a—a is the total height of the current
cell minus the average total height of the cells
involved in the distribution, d; = a — a; and dio¢a1
is the sum of all positive d;.

If the total amount of water to be moved away
from the currently examined cell is less than the
amount of water present in this cell, an amount
equalling the difference between the total height
a of the cell and the average total height a af-
ter water distribution, is moved. If more water
needs to be moved away than the cell holds, what-
ever amount of water present will be distributed
among the lower neighbours. These two cases are
illustrated in Figure [I9]

Once the water distribution has been calculated,
sediment distribution follows quite easily. An as-
sumption is made that all dissolved material m is
uniformly distributed within the water w of the

cell. The amount of sediment Am; to be trans-
ported to a neighbouring cell i is therefore

Awi
w

Am; =m x

In step 4, a percentage of the water w deter-
mined by the evaporation coefficient K. evapo-
rates again:

w=wx (1-K)

The maximum amount of sediment m,,,, that
can be carried by the water w is determined by
the sediment capacity coefficient K, such that

Momaz = K X W

Once part of the water has evaporated, the
amount of sediment exceeding the maximum ca-
pacity (if any), Am, is transfered back to h:

Am = max(0, m — Mmax)
m=m—Am
h=h+Am

The various constants and coefficients used in the
reference implementation are:

K, = 0.01
K, =0.01
K.=05

K, =0.01



Figure 18: Renderings from the two height maps shown in Figure[I7 - the left image shows the refer-
ence implementation after 50 iterations, and the right image shows the speed optimized version after 50

iterations.
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Figure 19: Two cases for water distribution in
hydraulic erosion. In the first case, only a frac-
tion of the water w is moved to level out the total
heights, while in the second case all of the avail-
able water is distributed to the neighbours without
reaching level.

Optimizations

To speed optimize the reference implementation,
four changes were made:

1. A Von Neumann neighbourhood was used in-
stead of the Moore neighbourhood.

2. Water distribution was changed so that water
is only distributed to the lowest neighbour
instead of all lower neighbours.

10

3. Instead of maintaining a sediment map, all
water is assumed to contain an equal amount
of dissolved material.

4. The calculations for each cell change the
height and water maps immediately instead
of being written to difference maps that are
applied after an entire iteration is completed.

As with the speed optimizations of thermal
erosion, the change in neighbourhood is done to
halve the number of neighbour cells for which
the following needs to be done for every cell in
each iteration:

di=a—a;

if (d, > 0) :
dtotal = dtotal + dz
Qtotal = Atotal T @;
cells = cells + 1

where a4 and cells are used to calculate a. The
change of neighbourhood stills results in roughly
the same amount of water being transported;
only the distribution differs. This is because the
amounts of water being transported are so small
compared to the height differences between the
cells that the second case in Figure where
w < a — a by far is the most frequently occur-
ring.

This allows for a good approximation of the water
distribution by simply moving water to the low-
est neighbour only, thereby saving the need for
calculating the fractions received by each lower
neighbour.

In the reference implementation, the choice of
coefficients such that K, = K, means that the



amount of material dissolved per water equals the
transport capacity of the water. This causes all
the water to always be at maximum sediment sat-
uration: Any water evaporation is immediately
followed by sedimentation of the material that ex-
ceeds the transport capacity. Since m = K. X w
for every cell, there is no need to maintain a sep-
arate sediment map. Even with K. < K, thisis a
good approximation, since w drops exponentially
which means that maximum saturation is reached
very quickly.

To limit reads and writes to the height and wa-
ter maps further, all changes are written directly
instead of using difference maps that are applied
only after the entire iteration has been completed.

Analysis

Calculation time averages for the first 500 itera-
tions of the two implementations can be seen in
Figure 20] Time required per iteration remains
very close to constant for both implementations,
but the reference implementation takes 5.5 times
longer; 500 iterations are calculated in 148 sec-
onds on average, while the speed optimized ver-
sion does it in 27 seconds.
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Figure 20: Calculation times of the first 500 it-
erations of the reference and optimized implemen-
tation of hydraulic erosion.

Figure[21]shows erosion score averages of the first
500 iterations. Apart from the first 100 iterations,
both versions apparently resemble linear func-
tions with the optimized implementation climb-
ing twice as fast as the reference. Due to the re-
altime requirements, results from more than 100
iterations are irrelevant, but to see how erosion
scores eventually develop, a graph showing scores
for the first 10,000 iterations can be seen in Figure
[22] Here, both curves appear more like logarith-
mic functions, but where the reference implemen-
tation climbs to an erosion score of 2.8 during the
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10,000 iterations, the optimized version reaches a
score of 7.8. However, at this point none of the
height maps resemble the original at all; the op-
timized implementation reaches its high score by
changing the entire height map to a few almost
completely levelled terraces divided by very steep
slopes.

After 100 iterations, the optimized version scores
20% better than the reference and has a much
higher erosion score growth rate during the first
25 iterations where the reference implementation
produces almost no increase in erosion score at
all.

2.57
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2.01
1.81
1.57
1.31
1.01
0.8+
0.5

Erosion score

200 300 400 500

Iterations

0 100

\\ Reference Optimized

Figure 21: FErosion scores of the first 500 itera-
tions of the reference and optimized implementa-
tion of hydraulic erosion.
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Figure 22: FErosion scores of the first 10,000 it-
erations of the reference and optimized implemen-
tation of hydraulic erosion.

Rate of change is shown on the chart in Figure
where change per 10 iterations is plotted. As
opposed to thermal erosion (see Figure , both
curves start out at very low values and quickly
climb to a maximum about one fourth the rate of



change in thermal erosion. From here, the ref-
erence implementation seems to stabilize much
faster than the optimized version: After 500 it-
eration, the rate of change is 3 times higher for
the optimized version.

The difference between the outputs of the two im-
plementations after 100 iterations is 1% on aver-
age, where a difference of 100% corresponds to a
height map with all height values at 0 versus a
height map with all height values at 1.
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Figure 23: Change per 10 iterations of the first
500 iterations of the reference and optimized im-
plementation of hydraulic erosion.

For practical or visual applications, around 100
iterations of both versions are needed to change
the terrain to achieve the desired shape. Figure
[24] compares height maps produced by the two
versions after 100 iterations, and Figure 25 shows
rendered views of these height maps.

A new proposed algorithm

With the overall goal of reaching an erosion score
as high as possible in as short time as possible, the
optimization and analysis of the thermal and hy-
draulic erosion algorithms have shown two things:

1. Because of its low erosion score, thermal ero-
sion is unsuited for use in computer games
where flatness of the terrain is important, but
the speed optimized version is fast enough to
be used for runtime synthesis of terrain.

2. The effects of hydraulic erosion are much bet-
ter suited, but even the speed optimized al-
gorithm is too slow to be used for runtime
synthesis of terrain.

To create an algorithm that combines the speed of
thermal erosion with the high erosion score of hy-
draulic erosion, it has to be as simple as the speed
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optimized version of thermal erosion and at the
same time emulate what causes the hydraulic ero-
sion to reach a high score. This was achieved by
modifying the speed optimized version of thermal
erosion as described below.

Overview

The high erosion score of the speed optimized ver-
sion of hydraulic erosion is caused by two factors:

1. Nearly flat areas tend to be levelled out when
the water flowing downhill is dispersed over a
wider area and evaporates, leaving its carried
sediment to fill up any irregularities. The
flattening lowers § which in turn increases
the erosion score.

2. While the overall height of the terrain re-
mains largely unaffected, the levelling out
leaves less area for the remaining slopes,
making them steeper. This increases o,
which in turn increases the erosion score.

Thermal erosion seems to do the opposite of this:
Instead of levelling out flat areas and making
slopes steeper, it distributes material from steep
slopes across flat areas until every s; ; < T'. The
new proposed algorithm is simply the same as the
speed optimized version of thermal erosion, but
with the conditional check

if (dmax >T)

inverted to
if (dmax <T)

As shown in the example in Figure this causes
slopes steeper than the talus threshold to remain
unaffected while flatter areas are levelled out.
Below is a piece of pseudocode describing the
central part of the algorithm which is run on
every cell each iteration:

dmax =0
for every ¢ in neighbourhood :
d; =h — h;
if (dl > drnax) :
Amax = d;
=1
if (0<dmax <T):
Ah = %dmax
h=h—Ah
h; = h; + Ah

The algorithm was found to work well with a Von

Neumann neighbourhood and values of T between
8 and &
~ and .



Figure 24: Comparison between the reference implementation of hydraulic erosion (left) and the speed
optimized version (right). Images show the height map after 100 iterations.

d<T
ho| | b [h ho || ho| |k

[~ ]

t=0 t=1

Figure 26: Two examples of the new proposed
erosion algorithm. In the first case, do <T so h
and ho are levelled out, while in the second case,
dy > T which leaves both h and hs unaffected. In
both cases hy > h and is therefore ignored.

Analysis

Calculation time averages for the first 500 itera-
tions can be seen in Figure Time required per
iteration remains constant and the 500 iterations
are done in approximately 10 seconds, matching
the speed optimized version of thermal erosion.

Figure [28] depicts erosion score averages for dif-
ferent values of T during the first 500 iterations.
For the three sampled values, a proportional re-
lationship between T' and erosion score seems to
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Figure 27: Calculation times of the first 500 it-
erations of the new proposed algorithm.

exist. Erosion scores rise quickly: After 50 iter-
ations they reach between 70-80% of the level at
500 iterations.

With T' = % an erosion score of 2.15 is reached in
50 iterations, corresponding to 1 second of calcu-
lation time. For comparison, the speed optimized
version of hydraulic erosion does not reach this
score until after 450 iterations, corresponding to
24 seconds of calculation time.

The change per 10 iterations graph shown in Fig-
ure [29| confirms that most of the change happens
during the first 50 iterations after which the al-
gorithm seems to stabilize quickly. Not surpris-
ingly, the rate of change matches that of thermal
erosion whereas hydraulic erosion only changes
at one fourth the speed during the first 50 it-



Figure 25: Renderings from the two height maps shown in Figure[2]] - the left image shows the reference
implementation after 100 iterations, and the right image shows the speed optimized version after 100
iterations.
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Figure 28: FErosion scores of the first 500 itera- Figure 29: Change per 10 iterations of the first
tions of the new proposed algorithm. 500 iterations of the new proposed algorithm.

erations. Together with the quick initial rise in up to 30 seconds are not uncommon,

erosion score, this suggests that the optimal num-
ber of iterations for producing profound erosion
effects as quickly as possible is around 50.

Playability issues

Height maps after 50 iterations with 7' = {- and To explore the use of procedurally generated ter-
T = 1_]\? as well as rendered scenes of these, can rain in computer games a bit further, a few playa-
be seen of Figure [30] and Figure [31] respectively. bility issues for games in the realtime strategy
Larger values of T' creates more levelling of the genre are discussed here. This type of game makes
terrain and leaves less but steeper slopes. more demands to the terrain shape than just vi-
With 50 iterations of this algorithm, an eroded sual appearance, as player units must be able to
terrain meeting the criteria defined at the begin- move around in the terrain, and there must exist a
ning of this paper can be synthesized from scratch decent number of flat spots of a certain minimum
in less than 2 seconds for N = 512 (about one size for various structures to be placed upon.

quarter of a million height values) and in less than
7 seconds for N = 1024 (about one million height
values). This actually makes it possible to use
these techniques for runtime terrain generation The above considerations regarding unit move-
in modern computer games, where loading times ment and building placement can be formalized

Main criteria
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Figure 30: Comparison between T = % (left) and T = % (right) for the new proposed algorithm.
Images show the height map after 50 iterations.

in two criteria:

e Cells with an inclination below a certain
threshold T, allowing unit movement should
be connected in an area as large as possible.

e Cells with an inclination below a certain
threshold T; < T, allowing building place-
ment should cover an area as large as possible
(although not necessarily a connected area).
Only cells included by the first criterion are
considered (i.e. a spot suitable for building
placement is worthless if it is isolated from
the rest of the map).

To analyse height maps according to these crite-
ria, the following binary maps (maps containing
either the value 0 or 1) of the same size as the
height map in question are defined:

e A, the accessibility map, is a binary map
representing the cells h; ; of the height map
whose corresponding slope values s; ; < T,
such that s; ; <1, = a;; = 1.

e U, the unit map, is a binary map containing
the largest connected area of cells from the
A map whose value is 1.

e F. the flatness map, is a binary map repre-
senting the cells h; ; of the height map whose
corresponding slope values s; ; < Tj such
that Sig < T, = fi,j =1.

e B, the building map, is the binary map con-
sisting of all b; j = u;; % fi ;.
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Since both units and buildings may take up more
space than one cell, the variables NV, and N} are
used to denote the side length of the square repre-
senting the space occupied by units and buildings
respectively. For example, N,, = 1 means that a
unit only occupies one cell, while N, = 5 means
that a building occupies a square of 5 x 5 cells.
Taking unit and building size into consideration
means modifying A before calculating U and B,
such that only the cells of value 1 that can form
squares of sizes N, x N, remain 1. When cal-
culating U from A, N, must also be taken into
consideration when determining whether two ar-
eas are connected, e.g. a unit taking up 3 x 3 cells
cannot pass through a narrow connection only 1
cell wide. An illustrated example of how U is
calculated can be seen in Figure

Likewise, B must be modified such that only the
cells of value 1 that can form squares of sizes IV}, X
Ny remain 1.

A 7unit score”, v, and a ”building score”, 3, are
then defined as the fraction of the cells of U and B
whose value are 1 (the same as the average value
of the maps).

Because a completely flat height map (which is
undesirable) would maximize v and [, a final
overall ”game suitability score” =y is defined as

y=exvxpf

i.e. the product of the erosion score, unit score
and building score. The terrain must now achieve
high unit and building scores while retaining a
high erosion score.



Figure 31: Rendered views of the two height maps shown in Figure [30, A much larger part of the

terrain s levelled out when using T = %,

Figure 32: The construction of the unit map U. Step 1 shows an eroded height map H and step 2 its
corresponding accessibility map A based on the threshold value T, = %. In step 3, A is reduced to those
cells that can contain squares of size Ny, x N,, (where N, = 7 in this example). In step 4, the map is
finally reduced to U which is the largest unit-accessible area taking the unit size N, into consideration.

To guarantee that every height map generated
by random seeds meet certain playability criteria
(a unit score v > 0.75 for instance) is impossi-
ble without some sort of iterated feedback system
where the height map is analyzed and changed
repeatedly until the desired criterion is met. This
however requires far too much work to to be done
runtime, so instead the methods for synthesizing
terrains must be adjusted until it can be shown
statistically that the criteria are met in, say, 99%
of the cases.

These adjustments can be done in many ways;
one way is to introduce more flat areas during
synthesis of the base terrain as described below.

Base terrain modifications

Terrain flatness plays an important role in the
evaluation of game suitability, and one very ef-
fective way to control the major features of the
terrain is through the Voronoi diagram used for
the base terrain.
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It was noted earlier that the use of the coefficients
c1 = —1 and ¢ = 1 gave the Voronoi diagram a
useful property. The usefulness lies in the fact
that it allows for individual control of each of the
"hills” of the Voronoi diagram by using a related
domain map.

A domain map is created by assigning a value
to each of the feature points of the Voronoi di-
agram. When the Voronoi diagram is rendered,
the domain map is calculated at the same time
by giving each cell the same value as the closest
feature point. This creates a number of patches
of one colour, whose borders represent the coor-
dinates where d; = d».

The coefficients of the corresponding Voronoi dia-
gram ensure that the values located at the domain
borders are always 0, since

di=dy=>—-1xdi+1xdy=0

This means that each of the hills are exactly cov-
ered by a patch from the domain map; by multi-
plying the Voronoi diagram with the domain map,



the hills can then be scaled individually without
creating sudden jumps in the height values. Fig-
ures [33] and [34] show some examples of how this
can be done.

The fact that these Voronoi diagrams always have
a value of 0 midway between two feature points
also makes it possible to widen the passages be-
tween the hills. This can easily be done by sub-
tracting a constant from all values and clipping
negative values to 0 - see Figure [35| for an exam-
ple.

Any of these modifications only add a about 10
milliseconds to the time required for the synthesis
of the base terrain for N = 512 and 40 millisec-
onds for N = 1024.

L‘

Figure 33: Multiplying a domain map with ran-
dom wvalues (left) with the Voronoi diagram, pro-
duces hills of varying height (right).

ey -

Figure 34: Multiplying a domain map with ran-
domly assigned values of either 0 or 1 (left) with
the Voronoi diagram, produces a mixture of flats
and hills (right).

Analysis

A large number to of test runs were made to de-
termine average game suitability scores for the
different kinds of erosion algorithms described
in this paper. The constants used were similar
to those found in the project described in the
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Figure 35: Subtracting a small amount of the
height values (and clipping negative values to 0)
of the original Voronoi diagram (left) widens the
narrow passages between the hills (right).

Examples of use section:

8
T, = —
N
2
Tb—N
N, =1
Ny =9

With a height scale of 1—]\(2, T, equals an inclination
of 26.6 degrees and T} equals an inclination of 7.1
degrees. A unit takes up only one cell, while a
building covers 9 x 9 cells.

Table [2| show average scores for terrains created
by different erosion methods.

Although most of the base terrain is accessible
by units, almost no flat areas of sufficient size for
building placement exist, resulting in a minimal
game suitability score.

Both versions of thermal erosion manage to flat-
ten 98% of the terrain to an inclination below T,
but the problem with this method is that most of
the terrain will attain ezactly the same inclination
as the algorithm’s talus threshold T = 4+, leaving
no areas with an inclination below T, = %, which
again results in a minimal game suitability score.
The two versions of hydraulic erosion produce
slightly better building scores, but the overall
game suitability scores are still too low for them
to be of any practical use, especially when taking
realtime generation into account. More iterations
would have given them higher scores, but the cal-
culation work would become too demanding. An
interesting observation is that while the reference
and speed optimized version have similar erosion
and unit scores, the optimized version seems to
produce more almost completely flat areas.

The new algorithm is very sensitive to the value of
T. With T = %, it produces so many slopes with
an inclination above T, that the terrains often
are broken up into several large areas inaccessible
from each other, causing a very low unit score.



Terrain type € v 16} 5
Base terrain 0.665 0.713 0.002 0.001
Reference thermal erosion, 50 iterations 0.614 0.980 0.002 0.001
Optimized thermal erosion, 50 iterations 0.626 0.983 0.002 0.001
Reference hydraulic erosion, 100 iterations 0.916 0.834 0.050 0.039
Optimized hydraulic erosion, 100 iterations 1.077 0.828 0.157 0.140
New algorithm, 50 iterations, T' = 8/N 1.339 0.303 0.173 0.070
New algorithm, 50 iterations, T'= 12/N 1.850 0.752 0.393 0.580
New algorithm, 50 iterations, T' = 16/N 2.204 0.905 0.434 0.877
New algorithm, 50 iterations, T' = 20/N 2.340 0.949 0.429 0.953

Table 2: FErosion, unit, building and game suitability scores for terrains created by different erosion

methods.

Test runs with T = 1—]\? and T = 1—]\? produce
much better results: Between 0.75 and 0.90 on
unit scores and around 0.4 on building scores.
Individual scores approximate normal distribu-
tions pretty well, so with standard deviations of
0.23 and 0.20 repsectively, it is safe to assume that
for T = %, 97.5% of all terrains reach a game
suitability score of at least 0.120 and for T' = %,
97.5% of all terrains reach a game suitability score
of at least 0.477.

Although T = % produce even better overall
scores (97.5% of all terrains reach a game suit-
ability score of at least 0.585), T' = 1—]\? was chosen
as the optimum value because it scores better in
the critical building score and because the ter-
rains themselves have a much better visual ap-
pearance.

Table |3 shows scores for various changes to the
Voronoi diagram used in the synthesis of the base
terrain as described above. All examples use 50

iterations of the new erosion algorithm using 7" =
16
W .

Both tested methods (removing a percentage of
the hills as shown in Figure or reducing the
hills by subtracting a constant value from the
Voronoi diagrams and clipping negative values to
0 as shown in Figure increase overall game
suitability scores as the effects are increased. The
greatest impact is seen on the building scores,
since both methods cause more completely flat
areas in the Voronoi diagram.

Overall, changing the Voronoi diagram compo-
nent of the synthesized base terrain makes it pos-
sible to boost the game suitability score a fur-
ther 25% without removing the hills added by the
Voronoi diagram completely.

Applying these modifications will most likely
deduct from the visual appearance of the terrain
as it will become more flat and featureless, but
taken together with adjustments of the thresh-
old value T' and the number of iterations of the
new proposed algorithm, the terrains can easily
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be fine-tuned to meet defined criteria for unit
movement and building placement.

Examples of use

The methods shown in this paper for creating
game-suitable natural looking eroded terrain in
realtime are used in the realtime strategy game
Tribal Troubld] by Oddlab§?} Tribal Trouble is
the first game of its kind to feature a nearly unlim-
ited amount of different terrains by creating them
runtime from a random seed number and a few
adjustable parameters (among these the amount
of Voronoi hills). Figure shows a screenshot
of how these terrains look when shaped into an
island and having some vegetation added.

The game uses height maps of varying size up to
512x 512, meaning that terrain base synthesis and
erosion is done in 2 seconds on a standard PC. For
the terrain creation, procedural techniques are
also used to synthesize 7 different surface textures
and apply these to the terrain according to its
features such as height, slope and relative height
(height values compared to the average of their
surrounding neighbours within a certain radius).
The game uses the same values of N,, Ny, T,
and T} as those used in the analysis of playability
issues. U and B maps as described in this anal-
ysis are used for unit pathfinding and placing of
buildings - see Figures [37] and

Summary

This paper took a new angle on the synthesis of
eroded fractal terrain, namely from a computer
game development perspective. With computer
games of the realtime strategy genre and similar
types in mind, a set of desirable traits were con-
densed into an erosion score that, together with

Uhttp://tribaltrouble.com
2http://oddlabs.com


http://tribaltrouble.com
http://oddlabs.com

Terrain type € v Ié) vy
75% hill coverage 2.280 0.916 0.487 1.017
50% hill coverage 2.337 0.923 0.526 1.134
25% hill coverage 2.371 0.929 0.556 1.225
Vertical offset -0.1 with clipping 2.256 0.910 0.468 0.962
Vertical offset -0.2 with clipping 2.312 0.918 0.511 1.086
Vertical offset -0.3 with clipping 2.346 0.922 0.539 1.166
Vertical offset -0.4 with clipping 2.361 0.926 0.557 1.219
Vertical offset -0.5 with clipping 2.372 0.928 0.567 1.249

Table 3: Erosion, unit, building and game suitability scores for terrains using different modifications to
the Voronoi diagram used in the synthesis of the base terrain.

Figure 37: Screenshot from Tribal Trouble show-
ing the use of the unit map U. The yellow crosses
indicate inaccessible cells of the height map, i.e.
cells whose inclination are above T,,.

the strict realtime requirement, was used to eval-
uate methods of terrain synthesis and implemen-
tations of two of the classical erosion algorithms.
For base terrain synthesis, it was shown that more
natural-looking terrains than just plain 1/f noise
could be synthesized in less than 1 second for
512 x 512 height maps, and in less than 3 sec-
onds for 1024 x 1024 height maps on a standard
PC.

Not even with speed optimizations (at the cost
of physical correctness) that reduced calculation
times to between one fifth and one sixth, did any
of the classical erosion algorithms meet the re-
altime requirement while producing the desired
output: The speed optimized version of thermal
erosion was found to be fast enough, but scored
much too low in evaluation. The output of hy-
draulic erosion scored a lot better, but even the
speed optimized version was too slow.
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Figure 38: Screenshot from Tribal Trouble show-
ing the use of the building map B. When placing
a building, all cells must be green, i.e. none of the
cells covered can have an inclination above Ty.

A new algorithm using the same simple method
as the speed optimized version of thermal erosion,
but modified to change the terrain in another way,
was introduced. When evaluated, the algorithm
was able to triple the terrain’s erosion score in 1
second for 512 x 512 height maps and 4 seconds
for 1024 x 1024 height maps, making it much more
suitable for games.

Finally, two important demands to the terrain
used in realtime strategy games were discussed.
Methods for evaluating terrains according to
these criteria were introduced, and it was shown
that the methods for evaluation together with
modifications to the synthesis of the base terrain
could be used to fine-tune the terrains to meet
playability criteria.



Figure 36: Screenshot from Tribal Trouble, a realtime strategy game using the methods described in this
paper for fast runtime generation of terrains.
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