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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Utrecht University Repository

https://core.ac.uk/display/39700039?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Promotor: Prof.dr. M.J. Moortgat
Utrecht Institute of Lingusitics OTS
Utrecht University

Copyright c© 2002 by Raffaella Bernardi.
Printed and bound by Print Partners Ipskamp.

ISBN: 90-393-3070-0



Contents

Acknowledgments vii

Abstract ix

I Categorial Type Logics 1

1 The Logical Approach in Linguistics 3
1.1 Rule-Based Categorial Grammars . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Classical Categorial Grammar . . . . . . . . . . . . . . . . . . . . 4
1.1.2 Combinatory Categorial Grammar . . . . . . . . . . . . . . . . . 6

1.2 A Logic of Types: Lambek 1958 . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Parsing as Deduction . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Logical Rules and Structural Rules . . . . . . . . . . . . . . . . . 11
1.2.3 Structural Constraints . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 The Composition of Meaning . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Semantic Types and Typed Lambda Terms . . . . . . . . . . . . . 15
1.3.2 Interpretations for the Sample Grammar . . . . . . . . . . . . . . 18

1.4 Putting Things Together . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.1 Rule-Based Approach vs. Deductive Approach . . . . . . . . . . . 21
1.4.2 Curry-Howard Correspondence . . . . . . . . . . . . . . . . . . . 22

1.5 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 The Mathematical Structure of CTL 27
2.1 Capturing Residuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 The Logic of Residuation NL . . . . . . . . . . . . . . . . . . . . . 28
2.1.2 The Residuated Unary Operators NL(3) . . . . . . . . . . . . . . 30
2.1.3 Kripke Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Displaying Residuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Binary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 Unary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iii



2.3 Galois Connected Operations . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Axiomatic Presentation of NL(3,·0) . . . . . . . . . . . . . . . . . 37
2.3.2 Displaying Galois Connected Operations . . . . . . . . . . . . . . 39
2.3.3 Cut-Free Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Derivability Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Reasoning with Modalities 47

3 Modalities for Structural Control 49
3.1 Multimodal Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 Controlling Structural Reasoning . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Movement in CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2.2 Morphological Agreement in CTL . . . . . . . . . . . . . . . . . . 56

3.3 Zooming in on the Semantic Domains . . . . . . . . . . . . . . . . . . . . 58
3.4 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Reasoning with Monotone Functions 61
4.1 Parsing and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Negative Polarity Items and Monotonicity . . . . . . . . . . . . . 62
4.1.2 Monotonicity in Natural Reasoning . . . . . . . . . . . . . . . . . 64
4.1.3 Monotonicity and Polarity . . . . . . . . . . . . . . . . . . . . . . 65

4.2 A Natural Logic based on LP . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Internalizing Polarity Marking in CG . . . . . . . . . . . . . . . . . . . . 72
4.4 Internalizing Monotonicity and Polarity Markers in MCTL . . . . . . . . 75

4.4.1 A Natural Logic based on MCTL+Pol . . . . . . . . . . . . . . . . 77
4.4.2 MCTL+Pol at Work . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.3 Negative Polarity Items in MCTL+Pol . . . . . . . . . . . . . . . 81
4.4.4 Soundness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III Natural Language Typologies 89

5 Composition Relations 91
5.1 Two Sorts of Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Licensing and Antilicensing Relations . . . . . . . . . . . . . . . . . . . . 93
5.3 Calibrating Grammatical Composition Relations . . . . . . . . . . . . . . 95
5.4 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6 Quantifier Scope 101
6.1 Quantifier Scope. The Problem . . . . . . . . . . . . . . . . . . . . . . . 101
6.2 QPs in Type Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 QPs in Generative Grammar . . . . . . . . . . . . . . . . . . . . . . . . . 104

iv



6.3.1 QP Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2 Feature Checking Theory for QP Scope . . . . . . . . . . . . . . . 107

6.4 Controlling Scope Distribution in CTL . . . . . . . . . . . . . . . . . . . 108
6.4.1 Modalities for Feature Checking . . . . . . . . . . . . . . . . . . . 109
6.4.2 Types for Beghelli and Stowell’s QP Classification . . . . . . . . . 110
6.4.3 Exploring the Landscape of QP-types . . . . . . . . . . . . . . . . 115
6.4.4 A Problem of the Minimalist Analysis . . . . . . . . . . . . . . . 116

6.5 Internalizing Feature Checking . . . . . . . . . . . . . . . . . . . . . . . . 118
6.6 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Licensing and Antilicensing Relations 121
7.1 Licensing Relations in CTL . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1.1 Licensing Relations as Features Exchanges . . . . . . . . . . . . . 122
7.1.2 Negative Polarity Quantifiers . . . . . . . . . . . . . . . . . . . . 124

7.2 Crosslinguistic Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.1 Dutch Negative Polarity Items . . . . . . . . . . . . . . . . . . . . 128
7.2.2 Greek Negative Polarity Items . . . . . . . . . . . . . . . . . . . . 129

7.3 (Non)veridical Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.4 Classifications of Negative Polarity Items in CTL . . . . . . . . . . . . . . 135

7.4.1 Types for Dutch Negative Polarity Items . . . . . . . . . . . . . . 137
7.4.2 Types for Greek Negative Polarity Items . . . . . . . . . . . . . . 140
7.4.3 Negative Polarity Items in Italian . . . . . . . . . . . . . . . . . . 141

7.5 Antilicensing Relations in CTL . . . . . . . . . . . . . . . . . . . . . . . . 144
7.5.1 Positive Polarity Items in Dutch . . . . . . . . . . . . . . . . . . . 145

7.6 Key Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

IV Summing up 149

8 Conclusions and Further Research 151
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.2 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A Appendix 155
A.1 Introducing the Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.1.1 The System LP+EPol . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.1.2 Extended MCTL+Pol . . . . . . . . . . . . . . . . . . . . . . . . . 158

A.2 Bridging the Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
A.2.1 Internalizing Markers . . . . . . . . . . . . . . . . . . . . . . . . . 160

Bibliography 171

Index 179

Samenvatting 183

Riassunto 185

Curriculum Vitae 187

v





Acknowledgments

Coming to The Netherlands has been a great event in my life. The five year immersion
in Dutch culture represents a turning point in my personal and academic development.
During these years, almost all the dreams I had as a teenager came true. My biggest
desires were to get to know people and different cultures, to write a book and to get a lot
of diamonds. The Dutch University is certainly a good place to find all these things. It
is extremely international, the quality and quantity of publications is very high, and the
diamonds are all over —though, in my dream the latter were somehow different. I would
like to thank Claudia Casadio for her suggestion to come here, and for introducing me
to Michael Moortgat.

Michael has been the perfect supervisor. Through all these years, he had always time
to meet, to answer tons of my emails, to listen to my craziest ideas, to spot possible
lines of research in my mess of notes. His supervision has been really inspiring on all
sorts of subjects. His suggestions went from how to write a good paper to how to cook
a good Italian dish; from how to give a good talk to where to go on vacation.

I am grateful to the members of the committee, Michele Abrusci, Johan van Benthem,
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Abstract

The research presented in this thesis follows the parsing as deduction approach to lin-
guistics. We use the tools of Categorial Type Logic (CTL) to study the interface of
natural language syntax and semantics. Our aim is to investigate the mathematical
structure of CTL and explore the possibilities it offers for analyzing natural language
structures and their interpretation.

The thesis is divided into three parts. Each of them has an introductory chapter.
In Chapter 1, we introduce the background assumptions of the categorial approach in
linguistics, and we sketch the developments that have led to the introduction of CTL.
We discuss the motivation for using logical methods in linguistic analysis. In Chapter 3,
we propose our view on the use of unary modalities as ‘logical features’. In Chapter 5,
we set up a general notion of grammatical composition taking into account the form
and the meaning dimensions of linguistic expressions. We develop a logical theory of
licensing and antilicensing relations that cross-cuts the form and meaning dimensions.

Throughout the thesis we focus attention on polarity. This term refers both to the
polarity of the logical operators of CTL and to the polarity items one finds in natural
language, which, furthermore, are closely connected to natural reasoning. Therefore,
the title of this thesis Reasoning with Polarity in Categorial Type Logic is intended to
express three meanings.

Firstly, we reason with the polarity of the logical operators of CTL and study their
derivability patterns. In Chapter 2, we explore the algebraic principles that govern
the behavior of the type-forming operations of the Lambek calculus. We extend the
categorial vocabulary with downward entailing unary operations obtaining the full tool-
kit that we use in the rest of the thesis. We employ unary operators to encode and
compute monotonicity information (Chapter 4), to account for the different ways of scope
taking of generalized quantifiers (Chapter 6), and to model licensing and antilicensing
relations (Chapter 7).

Secondly, in Chapter 4, we model natural reasoning inferences drawn from structures
suitable for negative polarity item occurrences. In particular, we describe a system
of inference based on CTL. By decorating functional types with unary operators we
encode the semantic distinction between upward and downward monotone functions.
Moreover, we study the advantages of this encoding by exploring the contribution of

ix



monotone functions to the study of natural reasoning and to the analysis of the syntactic
distribution of negative polarity items.

Thirdly, in Chapter 7, we study the distribution of polarity-sensitive expressions. We
show how our theory of licensing and antilicensing relations successfully differentiates
between negative polarity items, which are ‘attracted’ by their triggers, and positive
polarity items, which are ‘repelled’ by them. We investigate these compatibility and
incompatibility relations from a cross-linguistic perspective, and show how we reduce
distributional differences between polarity-sensitive items in Dutch, Greek and Italian
to differences in the lexical type assignments of these languages.
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Part I

Categorial Type Logics

In this thesis, we use the tools of Categorial Type Logic (CTL) [Moo97] to study natural
language syntax and semantics, and the reasoning patterns that arise from the process
of composing grammatical structure. The primary explanatory devices in categorial
grammar are the type-forming operations, which build structured complex categories out
of a small set of basic types. The analytical force of these type-forming operations derives
from the fact that they come in pairs of opposites —residuated or Galois connected
pairs, to be more precise. We have all become acquainted with these notions in our
elementary math classes, when we learned how to solve algebraic equations like 3×x ≤ 5
by ‘isolating’ the unknown x using the laws connecting (×,÷), producing the solution
x ≤ 5

3
. In categorial grammar, such pair of opposites is used to put together and take

apart linguistic expressions, both syntactically and semantically. An important aspect of
the CTL theory of type-forming operations is the distinction between the mathematical
core meaning of these operations, as given by the laws of opposites just described, and
structural extensions of this core meaning. The mathematical core captures invariants
of the composition of natural language form and meaning. The combination of the core
with its structural extensions makes it possible to study variation in the way natural
languages express the relation between patterns of form and meaning.

In Chapter 1, we introduce the background assumptions of the categorial approach
in linguistics, and we sketch the developments that have led to the introduction of CTL.
We discuss the motivation for using logical methods in linguistic analysis.

In Chapter 2, we study the algebraic principles that govern the behavior of the type-
forming operations. The principle of residuation provides the basic law of opposites for
the unary and binary type-forming operations that have been studied so far. We show
that the mathematical structure of the CTL base component naturally accommodates a
closely related algebraic principle that gives rise to Galois connected pairs of type-logical
operations. We extend the categorial vocabulary with these operations, thus obtaining
the full tool-kit that will be used in the rest of the thesis.





Chapter 1

The Logical Approach in Linguistics

The framework of categorial type logic (CTL) [Moo97] developed out of earlier work in
the tradition of categorial grammar. In this chapter, we briefly present these ancestral
lines of research, and we give the reader an idea of the kind of problems that have led
to the introduction of CTL. Readers familiar with the categorial approach to natural
language syntax and semantics can skip this chapter and go directly to Chapter 2.

The present chapter is organized as follows. We start by introducing classical and
combinatory categorial grammars, two formalisms closely related to CTL (Section 1.1).
Then, by highlighting the differences between these frameworks and the logical approach
assumed in this thesis, we introduce the main aspects of CTL (Section 1.2). Moreover,
we discuss the proof theoretical perspective on form-meaning assembly of linguistic
expressions.

1.1 Rule-Based Categorial Grammars

The categorial tradition of natural language analysis goes back to the pioneering works
of Lesniewski [Les29] and Ajdukiewicz [Ajd35]. The ingredients of a categorial grammar
are extremely simple: a system of syntactic categories (or types), and a set of rules to
compute with these types. The categories are either atomic, or they are structured as
‘fractions’ a

b
. Atomic types categorize expressions that in some intuitive sense are ‘com-

plete’; incomplete expressions are assigned a fractional category. The basic combinatory
rule schema takes the form of a kind of ‘multiplication’: from a

b
×b one obtains the cate-

gory a. The algebraic nature of the schemata for category combination was emphasized
by Bar-Hillel in [BH53].

In the section, we discuss two categorial frameworks: the classical categorial gram-
mars of Ajdukiewicz and Bar-Hillel (CG, also known as AB grammars), and the com-
binatory categorial grammars of Steedman (CCG, [Ste00]). These frameworks have the
same category concept, but they have different sets of rule schemata for category com-
bination: the CCG rule set extends the schemata of CG in order to overcome certain
expressive limitations of the classical categorial approach.

3



4 Chapter 1. The Logical Approach in Linguistics

1.1.1 Classical Categorial Grammar

The type language and the rules of classical Categorial Grammar (CG) are defined as
below.

Definition 1.1. [Type Language and Rules of CG] The language of CG is recursively
built over atomic categories by means of the category forming operators \ and /. The
combinatorial behavior of categories is captured by the left/right application rules.

CG language. Given a set of basic categories ATOM, the set of categories CAT is the
smallest set such that:

i. if A ∈ ATOM, then A ∈ CAT;

ii. if A and B ∈ CAT, then A/B and B\A ∈ CAT.

There are two schemata for category combination, backward application (BA) and forward
application (FA) CG rules.

A/B,B ⇒ A [FA]
B,B\A⇒ A [BA].

[FA] (resp. [BA]) says that when an expression of category A/B (resp. B\A) is concate-
nated with an expression of category B on its right (resp. on its left), it yields a structure
of category A.

To facilitate the comparison between CG and the categorial systems developed by Jim
Lambek (Section 1.2), we present CG as a deductive system (cf. Buszkowski [Bus97]).
Below we define the derives relation, holding between a finite sequence of categories Γ
and a category A.

Definition 1.2. [Derivability Relation] Let ⇒ be the derivability relation between a
finite non-empty sequence of categories Γ and a category B (Γ ⇒ B), fulfilling the
following conditions:

A⇒ A [id]
Γ, A,Γ′ ⇒ B and ∆⇒ A, then Γ,∆,Γ′ ⇒ B. [cut]

In CG⇒ is the smallest relation containing the logical axioms [id], the application rules
[BA] and [FA] as non-logical axioms, and it is closed under [cut].

To obtain a grammar G, we add a lexicon to the deductive part. Let Σ be the terminal
alphabet, i.e. the set of basic natural language expressions. The lexicon LEX assigns
a finite number of types to the elements of Σ, i.e. LEX ⊆ Σ × CAT. We say that G
generates a string w1 . . . wn ∈ Σ+ as an expression of category B if and only if there
are categories A1, . . . , An such that (wi, Ai) ∈ LEX and A1, . . . , An ⇒ B. L(G), the
language of G, is the set of strings generated by G for some designated category, the
start symbol of G.

It was shown in [BGS60] that CG has the weak generative capacity of Context Free
Grammar (CFG). But conceptually, CG already improves on CFG. The structured cate-
gory format allows one to replace a stipulated set of rewrite rules by two simple combi-
natory schemata. In phrase structure grammar, this categorial idea later resurfaced in
the form of the X-Bar Theory [Jac77].
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In order to get a feeling for the kind of phenomena that can be handled by CG, and
for the limitations of this framework, we introduce an extremely elementary fragment of
English in Example 1.3. We will use the phrases given there as a checklist throughout
this chapter, and come back to them later to see how the descendants of CG improve
on the original framework.

Example 1.3. [English Toy Fragment] The fragment contains simple declarative sen-
tences, with intransitive or transitive verbs; proper names and full noun phrases intro-
duced by determiners; nominal and adverbial modifiers; relative clauses with subject
and object relativization.

(1) a. Lori left.
b. Lori knows Sara.
c. Sara wears the new dress.

(2) a. The student left.
b. Some student left.

(3) a. No student left yet.
b. Some student left already.

(4) a. who knows Lori.
b. which Sara wrote.
c. which Sara wrote there.

(5) a. Every student knows one book.
b. Every student knows some book.
c. No student knows any book.

Let us see whether we can come up with a CG that generates the phrases of our toy
fragment.

Example 1.4. [CG Grammar for the Toy Fragment] Let ATOM be {n, s, np} (for com-
mon nouns, sentences and names, respectively) and LEX as given below:

Lori, Sara np the np/n
student, book, dress n left np\s
knows, wrote, wears (np\s)/np some, every, one, any, no (s/(np\s))/n
which, who (n\n)/(np\s) there, yet, already (np\s)\(np\s)
new, tall n/n

Given the lexicon above, our sample grammar recognizes the strings in (1), (2) and (3)
as expressions of category s; the relative clause in (4-a) is recognized as an expression
of type n\n. By way of illustration, we give the derivations of (1-c) and (4-a). We use
the familiar parse tree format, with vocabulary items as leaves and the types assigned
to them in the lexicon as preterminals.

Sara wears the new dress ∈ s? ; np, (np\s)/np, np/n, n/n, n⇒ s?
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Sara
np

wears
(np\s)/np

the
np/n

new
n/n

dress
n

n [FA]

np [FA]

np\s
[FA]

s [BA]

who knows Lori ∈ n\n? ; (n\n)/(np\s), (np\s)/np, np⇒ n\n?

who
(n\n)/(np\s)

knows
(np\s)/np

Lori
np

np\s
[FA]

n\n
[FA]

Turning to the remaining examples, our CG runs into problems. Let us look at the
relative clauses first. The case of subject relativization (4-a) is derivable from the as-
signment (n\n)/(np\s) to the relative pronoun, but this type will not do for object
relativization (4-b), or for (4-c) where the relativized position is a non-peripheral con-
stituent of the relative clause body. To generate these structures, our CG would have
to multiply lexical assignments in an ad hoc way for each case. Writing tv as an ab-
breviation for (np\s)/np, the assignment ((n\n)/tv)/np to the relative pronoun would
produce (4-b); for the non-peripheral case of relativization, yet another type would be
needed —obviously, not a very satisfactory situation. In a similar way, multiple lexical
assignments would be needed to obtain the examples in (5), with full noun phrases in
direct object position: the lexicon, as it stands, only covers the subject case. Writing
iv as an abbreviation for np\s, the determiners some, every, one, any, no could be
assigned a second type (tv\iv)/n for their occurrence in direct object position.

One way of dealing with this failure to express structural generalizations in lexical
type assignments is to extend the inventory of combinatory rules of CG. The framework
of Combinatory Categorial Grammar, developed by Mark Steedman, offers the most
elaborate proposal for this strategy.

1.1.2 Combinatory Categorial Grammar

For an excellent exposition of Combinatory Categorial Grammar (CCG), we refer the
reader to [Ste00]1. The architecture of CCG is the same as that of CG: we can take
over the definitions of the category language, the derives relation, lexicon, grammar
G and the language generated by L(G) from the previous section, with one important
change: instead of having just the forward/backward application rules as non-logical
axioms, CCG introduces a larger set of rule schemata. The name CCG derives from the
fact that these extra schemata are inspired by the combinators of Curry’s Combinatory
Logic [CF68].

1In order to avoid confusion with the notation and facilitate the comparison between CCG and CTL
we replace the “left-result” notation used in CCG, with the “result on top” one we have being using so
far.
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Below we present some of the rule schemata that have been proposed in the CCG

framework, and we return to our toy fragment, to see how they can help in the cases
where CG failed.

Lifting A⇒ B/(A\B) [T]
Forward Composition A/B,B/C ⇒ A/C [B]
Backward Crossed Composition A/B,A\C ⇒ C/B [B×]

Example 1.5. [Wh-Dependencies] Let us look first at the cases of direct object rela-
tivization in (4-b) and (4-c). Suppose we extend the lexicon given in Example 1.4 with
a second type for which and who: (n\n)/(s/np). Intuitively, this type says that the
relative pronoun looks for a clause with an np missing at the right edge. With the com-
binators [T] and [B], we can compose subject and transitive verb in (4-b), and produce
the required type s/np for combination with the relative pronoun as shown in the deriva-
tion below. The [T] combinator lifts the subject np type into a fractional type s/(np\s)
which can then combine with the transitive verb by means of Forward Composition.

which
(n\n)/(s/np)

Sara
np

s/(np\s)
[T] wrote

(np\s)/np

s/np
[B]

n\n
[FA]

The combinators [B] and [T] are not enough to parse the phrase in (4-c): which Sara
wrote there. Here, the missing np in the relative clause body comes from a non-peripheral
position, whereas our lexical entry for non-subject relativization insists on a peripheral
missing np, as indicated by the argument subtype s/np for the relative pronoun. To
derive the non-peripheral case of relativization, our CCG grammar has to rely on the
combinator [B×] as illustrated below.

which
(n\n)/(s/np)

Sara
s/(np\s)

[T]

wrote
(np\s)/np

there
(np\s)\(np\s)

(np\s)/np
[B×]

s/np
[B]

n\n
[FA]

Example 1.6. [Object generalized quantifiers] The next set of examples are the sen-
tences with full noun phrases in direct object position. In our discussion of CG, we
already noticed that the noun phrase some book can be assigned a type which allows it
to combine with a transitive verb by means of Backward Application producing np\s as
a result. A derivation is given in (i) below. In CCG , there is a second option for typing
the direct object: (s/np)\s. This type requires the combination of the subject and the
transitive verb into a constituent of type s/np. This combination, as we have already
seen in the derivation of relative clauses, can be obtained by means of the Composition
combinator [B]. We present the derivations of (5-b) in (i) and (ii). In the discussion
of meaning assembly in Section 1.3, we will come back to these two options for object
generalized quantifiers.
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(i)

every student

s/(np\s)

knows
(np\s)/np

some book
((np\s)/np)\(np\s)

np\s
[BA]

s [FA]

(ii)
every student

s/(np\s)
knows

(np\s)/np

s/np
[B] some book

(s/np)\s
s [BA]

Let us evaluate the CCG strategy. We notice first of all that a combinator like [B×],
which was used in the derivation of non-peripheral cases of extraction, implicitly in-
volves a form of commutativity. It is obvious that such a combinator, if it would be
available in its full generality, would lead to problems of overgeneration. CCG avoids
such problems by restricting the application of combinatory rules to certain categories.
Different languages could impose their individual restrictions on the rules; also, they
can make their individual choices as to which combinators they allow. As for generative
capacity, it is shown in [VW90] that an appropriately restricted version of CCG is weakly
equivalent to linear indexed grammars, which means CCG belongs to the class of mildly
context-sensitive formalisms. Important questions that remain are: What is the set of
combinatory schemata allowed by Universal Grammar? and: Could we refine schemata
in such a way that side conditions on their applicability can be avoided? These questions
will be addressed in the next two sections.

1.2 A Logic of Types: Lambek 1958

At the beginning of this chapter, we commented on the resemblance between complex
categories and fractions in arithmetic, and between the Application schemata and multi-
plication. The crucial insight of Lambek [Lam58] was that one can also see the categories
as logical formulas. The changes introduced by this logical perspective with respect to
the rule-based approach are summarized in Table 1.1. To start with, categories are seen
as formulas and their type forming operators as connectives, i.e. logical constants. As
a result, the rules for category combination can now be formulated as rules of inference
for these connectives, rather than as the non-logical axiom schemata we had in CG and
CCG. Parsing literally becomes a process of deduction in the logic of the categorial type
formulas.

The logical perspective introduces another important theme: the distinction be-
tween proof theory and model theory. In the logical setup, formulas will be assigned
a modeltheoretic interpretation. The syntactic side of derivations (the prooftheoretic
machinery) can then be judged in terms of its soundness and completeness with respect
to the proposed interpretation.
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CG & CCG L

Categories Formulas
Type forming operators Logical constants
Rule schemata Inference Rules
Parsing Deduction

Table 1.1: Rules-based approach vs. logical approach.

1.2.1 Parsing as Deduction

Let us look at the syntax of the Lambek calculus (L) first. Lambek himself presented
his type logic in the format of a Gentzen-style Sequent Calculus [Gen38]. An alternative
(equivalent) presentation2, which is closer to the format we have used in the previous
sections, is the Natural Deduction (N.D.) format.

Definition 1.7. [Natural Deduction Rules for L] Let Γ,∆ stand for finite non-empty
sequences of formulas and A,B,C for logical formulas. The logical rules of L are:

A ` A
[axiom]

∆ ` B/A Γ ` A

∆,Γ ` B
[/E]

Γ ` A ∆ ` A\B

Γ,∆ ` B
[\E]

∆, B ` C

∆ ` C/B
[/I]

B,∆ ` C

∆ ` B\C
[\I]

The rules of Forward and Backward Application in this format take the form of the
familiar inference patterns of Modus Ponens, where we see the ‘fractional’ categories
now as ‘implicational’ formulas. Compiling in the Cut rule of our definition of the
‘derives’ relation, we obtain the Elimination rules for ’/’ and ’\’. But the elimination
rules capture only one half of the inferential possibilities of these connectives: they tell
us how we can use an implicational formula in a derivation. To obtain the other half, we
need inference rules to derive an implicational formula. These are the Introduction rules
for the ’/’ and ’\’ connectives. As rules of inference, they give our grammar logic access
to hypothetical reasoning : to obtain a formula C/B (B\C), we withdraw a hypothesis
B as the rightmost (leftmost) assumption of the antecedent sequence of formulas.

On the modeltheoretic side, we want to interpret formulas (i.e. syntactic categories)
as sets of expressions, and the ‘derives’ relation as settheoretic inclusion at the inter-
pretive level. In the systems considered so far, categorial combination was intuitively
interpreted as concatenation. We can make this interpretation precise by considering
semigroup models. It was shown by Pentus in [Pen95] that the calculus of [Lam88] is
indeed sound and complete with respect to this interpretation.

Definition 1.8. [Semigroup Interpretation]

2See [Res00] for a detailed comparison of the two presentations.
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A B = {xy ∈M | x ∈ A ∧ y ∈ B}
C/B = {x ∈M | ∀y(y ∈ B → xy ∈ C)}
B\C = {y ∈M | ∀x(x ∈ B → xy ∈ C)}.

A pleasant consequence of the shift to the logical perspective is that a number of com-
binators that have the status of non-logical axioms in CCG now turn out to be theorems
of our type logic.

Example 1.9. [Hypothetical Reasoning] We show that the combinatory rules [T] and
[B] of CCG considered above are theorems of L.

The combinator T of CCG. The lifting theorem, which raises a type to a higher
order one3, is a typical application of hypothetical reasoning. Its derivation is illustrated
below.

∆ ` A [(A\B) ` (A\B)]1

∆, (A\B) ` B
[\E]

∆ ` B/(A\B)
[/I]1

The derivation proves that if a structure ∆ is of type A, then it is of type B/(A\B) as
well. The proof is given by hypothetical reasoning: Assume a structure of type A\B,
given ∆ ` A, then ∆ composed with A\B is of type B. Then by withdrawing the
hypothesis by means of the coindexed rule, ∆ is proved to be of the higher order type.
Note that the introduction rule can discharge one hypothesis at a time since we are in
a resource sensitive system..

The combinator B of CCG. The forward composition added in CCG to the function
application of CG is derivable in L as shown below:

∆ ` A/B

Γ ` B/C [C ` C]1

Γ, C ` B
[/E]

∆,Γ, C ` A
[/E]

∆,Γ ` A/C
[/I]1

Similarly to the previous derivation, the combinator is inferred by means of the logical
rules of L. In particular, the derivation is based on the hypothetical reasoning: it starts
by assuming a hypothesis C and it withdraws it once the functions are composed.

Let us turn to the examples of our toy fragment, and present some Lambek derivations
in the sequent-style Natural Deduction format introduced above. The leaves of the
N.D. derivations are axioms A ` A. Some of these leaves correspond to lexical assump-
tions, others to hypothetical assumptions that will have to be withdrawn in the course
of the derivation. To make the derivations more readable, we replace the formula on the
left of ` by the lexical item in the case of lexical assumptions.

3The order of the categories is defined as following: order(A) = 0, if A ∈ ATOM, order(A/B) =
max(order(A), order(B) + 1) and the same holds for (B\A).
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Example 1.10. [Function Application in L] Given the lexicon of our toy grammar, the
expression in (4-a), who knows Lori, is shown to be an expression of type n\n as follows.

who ` (n\n)/(np\s)

knows ` (np\s)/np Lori ` np

knows,Lori ` np\s
[/E]

who, knows,Lori ` n\n
[/E]

As we discussed above, hypothetical reasoning is applied in the derivation of the combi-
nator [B] which is required to account for right-peripheral extraction. We show how the
structure which Sara wrote is proved to be grammatical in L.

Example 1.11. [Right-Peripheral Extraction in L] The string which Sara wrote is de-
rived as an expression of type n\n, by starting from the lexical entries it consists of and
by assuming a hypothetical np taken as object by the transitive verb.

which ` (n\n)/(s/np)

Sara ` np

wrote ` (np\s)/np [np ` np]1

wrote, np ` np\s
[/E]

Sara,wrote, np ` s
[\E]

Sara, wrote ` s/np
[/I]1

which, Sara, wrote ` n\n
[/E]

First, the string ‘Sara, wrote, np’ is proved to be of category s. Then, the hypothesis np
is withdrawn. This is done by means of [/I] which produces the formula s/np required
by the type assigned to the relative pronoun.

The type logic L does not succeed in producing a derivation for the case of non-peripheral
extraction which Sara wrote there. As we saw in our discussion of Backward Crossed
Composition [B×], this combinator involves a form of commutativity. This combinator,
in other words, is not a valid theorem of L —it would violate the concatenation inter-
pretation. Summing up, by making the shift to a type logic, we have gained a better
understanding of the CCG combinators, seeing which ones are indeed valid given the in-
terpretation of the type-forming connectives and which ones are not. But as a linguistic
framework, L is not expressive enough to deal with the phenomena illustrated by our toy
fragment. The proof by Mati Pentus [Pen93] that L grammars are context free provides
the formal underpinnings for this claim.

1.2.2 Logical Rules and Structural Rules

The presentation of the antecedent part Γ in a sequent Γ ` A as a sequence of formulas
hides an implicit structural assumption about grammatical composition, viz. that it is
an associative operation, which ignores the hierarchical constituent structure of type
formulas. Lambek in his [Lam61] paper was the first to notice that this assumption is
too strong, and that it leads to overgeneration. The formulation of his [Lam61] system
removes the implicit structural assumption, which means that structural rules have to
be introduced in a fully explicit fashion. The type logics so obtained have a combination
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of logical rules for the connectives (Introduction and Elimination rules), plus structural
rules of inference for the manipulation of antecedent configurations. Structures are built
from the set of formulas FORM by means of the binary structural operator ◦ as follows.

i. If A ∈ FORM, then A ∈ STRUCT;

ii. If Γ and ∆ ∈ STRUCT, then (Γ ◦∆) ∈ STRUCT.

The separation of logical and structural rules makes it possible to generate a family of
logics with the same logical rules, but different structural rules. We refer to this family
as Categorial Type Logics (CTLs). The base logic for this family is the system presented
in [Lam61]: the type logic with absolutely no structural rules. It is usually abbreviated
as NL, because it is obtained from L by dropping associativity.

Definition 1.12. [The Lambek Family]. Logical rules for the base logic NL:

A ` A
[axiom]

∆ ` B/A Γ ` A

(∆ ◦ Γ) ` B
[/E]

Γ ` A ∆ ` A\B

(Γ ◦∆) ` B
[\E]

(∆ ◦B) ` C

∆ ` C/B
[/I]

(B ◦∆) ` C

∆ ` B\C
[\I]

Structural rules. Let us write Γ[∆] for a structure Γ contaning a distinguished occur-
rence of the substructure ∆. Adding a structural rule of Associativity [ass] to NL , one
obtains L . By adding commutativity [per] to L one obtains LP [Ben88]. The picture is
completed with the non associative and commutative Lambek calculus NLP.

Γ[∆1 ◦ (∆2 ◦∆3)] ` C

Γ[(∆1 ◦∆2) ◦∆3] ` C
[ass]

Γ[(∆2 ◦∆1)] ` C

Γ[(∆1 ◦∆2)] ` C
[per]

Multimodal systems. The structural rules above apply in a global fashion. While
discussing the linguistic application of L and of CCG, we have noted that we need
control over structural options. In the so-called multimodal version of CTL, the required
control is achieved by distinguishing different modes of composition, which can then
live together and interact within one grammatical logic. In the notation, we keep the
different modes apart by indexing the logical and the structural connectives, i.e. we now
write (\i, /i) and ◦i, where i ∈ I and I is a set of mode indices. The different modes
have the same logical rules, but they can differ in their structural properties. Thus, one
can introduce structural rules locally by restricting them to a certain family of logical
constants. Finally, the addition of modes increases the number of logics which can
be obtained from the base logic. Besides associativity and/or commutativity options
for individual composition modes, one can formulate inclusion and interaction rules for
configurations involving multiple modes.

i. Inclusion structural rules (also known as entropy principles), e.g. if Γ[∆ ◦1 ∆′] ` A
then Γ[∆ ◦2 ∆′] ` A;
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ii. Interaction structural rules which mix distinct modes.

For an illustration of interaction principles, we can return to the non-peripheral extrac-
tion example in our toy fragment. Suppose we have the structural rules below for the
interaction between two modes, ◦ and ◦a.

Γ[∆1 ◦ (∆2 ◦a ∆3)] ` C

Γ[(∆1 ◦∆2) ◦a ∆3] ` C
[mixass]

Γ[(∆1 ◦a ∆2) ◦∆3] ` C

Γ[(∆1 ◦∆3) ◦a ∆2] ` C
[diss]

Example 1.13. [Non-Peripheral Extraction] We modify the lexicon in such a way that ◦
is used for regular phrasal composition, and ◦a for extraction. We need a type assignment
to introduce a wh dependency, and a type assignment to eliminate it. In this example,
these are (n\n)/(s/anp) for the relative pronoun, and (np\s)/anp for the transitive verb,
The derivation of which Sara wrote there is then as follows.

which ` (n\n)/(s/anp)

Sara ` np

wrote ` (np\s)/anp [np ` np]1

wrote ◦a np ` np\s
[/aE]

there ` (np\s)\(np\s)

((wrote ◦a np) ◦ there) ` np\s
[\E]

Sara ◦ ((wrote ◦a np) ◦ there) ` s
[\E]

Sara ◦ ((wrote ◦ there) ◦a np) ` s
[diss]

(Sara ◦ (wrote ◦ there)) ◦a np ` s
[mixass]

(Sara ◦ (wrote ◦ there)) ` s/anp
[/aI]

1

which ◦ (Sara ◦ (wrote ◦ there)) ` n\n
[/E]

Note that the application of the structural rules is lexically anchored. The modes la-
belling the connectives of the types assigned to the transitive verb wrote and the relative
pronoun which drive the structural reasoning in the derivation. The structural rule [diss]
brings the np in the peripheral position and [mixass] makes it available to the abstrac-
tion. The application of these rules is restricted to the environments requiring them.

We have seen that in CCG the above expression is parsed by applying the combinator
[B×]. The latter is derivable in NL extended with the structural rules above. However, the
use of modes to account for long distance phenomena is still not completely satisfactory
since the application of the structural rules is tied to the lexical entries both of the
relative pronoun and the transitive verb, which now gets a special lexical entry that
allows its direct object to be extracted: (np\s)/anp in contrast with the linguistic facts.
We will come back to this point in Chapter 3 after we have explored the algebraic
structure of NL.

The example above illustrate how modes and structural rules can be used to account
for differences among contexts within the same languages. Similarly, these logical tools
are used to account for differences holding across languages. By way of illustration, we
look at Italian and English adjectives.

Example 1.14. [Italian vs. English Adjectives] English and Italian adjectives may differ
in their ordering possibilities with respect to a noun.
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(6) a. Sara wears a new dress.

b. *Sara wears a dress new.

(7) a. Sara
Sara

indossa
wears

un
a

nuovo
new

vestito.
dress

tr. Sara wears a new dress.

b. Sara
Sara

indossa
wears

un
a

vestito
dress

nuovo.
new

tr. Sara wears a new dress.

As the examples show, some adjectives in Italian require more freedom with respect
to word order than their English counterparts. This crosslinguistic difference can be
expressed by assigning different logical types to Italian and English adjectives. Since
the exhibited structural property is not shared by all Italian phrases, the structural
freedom of the adjectives must have been lexically anchored. This restriction can be
expressed by means of modes. Let us try to make things more concrete by looking at
the derivation of the relevant structures in (6) and (7). Let qp abbreviate the type of
quantifier phrases.

(i) (ii)

a ` qp/n

new ` n/n dress ` n

new ◦ dress ` n
[/E]

a ◦ (new ◦ dress) ` qp
[/E]

a ◦ (dress ◦ new) ` qp
[per•]

∗

un ` qp/n

nuovo ` n/cn vestito ` n

nuovo ◦c vestito ` n
[/cE]

un ◦ (nuovo ◦c vestito) ` qp
[/E]

un ◦ (vestito ◦c nuovo) ` qp
[per•]

The ∗ on the last step of the derivation in (i) marks where the derivation fails in ac-
counting for (6). On the other hand, the use of a commutative composition operator,
introduced by the lexical assignment of nuovo, allows the permutation required to build
the structures in (7).

The logical and structural modules of CTL have been used to account for the constants
of grammatical reasoning and the structural variations, respectively. In Chapter 2, we
show how NL is interpreted by a universal algebraic structure which can be restricted
so to capture the variations expressed by the other CTLs obtained from NL by adding
structural rules.

In this thesis, attention is focused on the logical module. To this end, in Chapter 2
we investigate the algebraic structure of NL and highlight other logical properties which
have not been investigated so far. When we make use of structural rules (Chapter 4), we
apply them to carry semantic information which are universally shared. On the other
hand, when we assume a crosslinguistic perspective, (Chapter 7), the differences across
languages are reduced to different lexical type assignments exploiting the expressivity
of the logical module.

1.2.3 Structural Constraints

It will be clear from the above that structural rules have an effect on the generative ca-
pacity of CTL systems. The base logic NL is strictly context free. By allowing structural
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rules to copy or delete type formulas, the systems become Turing-complete [Car99]. But
it is shown in [Moo02] that with a linearity restriction on structural rules, one stays
within PSPACE, the complexity class of context-sensitive grammars. The linearity con-
straint requires structural rules to be non-expanding in the sense defined below.

Definition 1.15. [Non-Expanding Structural Rules] Given an antecedent configuration
Σ, the length of Σ is defined as follows:

length(∆1 ◦∆2) = length(∆1) + length(∆2) + 2
length(∆) = 0.

A structural rule

Γ[Σ′[∆1, . . . ,∆n]] ` C

Γ[Σ[∆π1 , . . . ,∆πn
]] ` C

where Σ′ is non empty, is non-expanding if

length(Σ[∆π1 , . . . ,∆πn
]) ≤ length(Σ′[∆1, . . . ,∆n]).

1.3 The Composition of Meaning

Linguistic signs have a form and a meaning component. The discussion so far has con-
centrated on the form aspect of grammatical composition. Let us turn now to meaning
assembly and the relation between natural language form and meaning. See [Gam91]
for an introduction to the field of formal semantics. Montague’s Universal Grammar
program [Tho74] provides a general framework to study these issues. The core of this
program is an algebraic formulation of Frege’s principle of compositionality [Fre84]. In-
tuitively, the principle says that the meaning of a complex syntactic expression is a
function of the meaning of its constituent parts and of the derivational steps that have
put them together. Montague formalizes the principle as a mapping between a syntactic
and a semantic algebra. The mapping is a homomorphism, i.e. it preserves structure in
the following sense [Jan97].

Definition 1.16. [Homomorphism] Let A = (A, F ) and B = (B,G) be algebras. A
mapping m : A → B is called a homomorphism if there is a mapping m′ : F → G s.t.
for all f ∈ F and all a1, . . . , am ∈ A holds m(f(a1, . . . , an)) = m′(f)(m(a1), . . . , m(an)).

1.3.1 Semantic Types and Typed Lambda Terms

The definition above requires the syntactic algebra and the semantic algebra of a gram-
mar to work in tandem. Syntactic combinatorics is determined by the syntactic cate-
gories, similarly the semantic laws of composition are governed by semantic types. To
set up the form-meaning correspondence, it is useful to build a language of semantic
types in parallel to the syntactic type language.



16 Chapter 1. The Logical Approach in Linguistics

Definition 1.17. [Types] Given a non-empty set of basic types Base, the set of types
TYPE is the smallest set such that

i. Base ⊆ TYPE;

ii. (a, b) ∈ TYPE, if a and b ∈ TYPE.

Note that this definition closely resembles the one of the syntactic categories of CG.
The only difference is the lack of directionality of the functional type (a, b). A function
mapping the syntactic categories into TYPE can be given as follows.

Definition 1.18. [Categories and Types] Let us define a function type : CAT→ TYPE

which maps syntactic categories to semantic types.

type(np) = e; type(A/B) = (type(B), type(A));
type(s) = t; type(B\A) = (type(B), type(A));
type(n) = (e, t).

To represent meaning assembly, we use the tools of the typed λ-calculus. Terms are
built out of variables and constants of the various types.

Definition 1.19. [Typed λ-terms] Let VARa be a countably infinite set of variables of
type a and CONa a collection of constants of type a. The set TERMa of λ-terms of type
a is defined by mutual recursion as the smallest set such that the following holds:

i. VARa ⊆ TERMa,

ii. CONa ⊆ TERMa,

iii. (α(β)) ∈ TERMa if α ∈ TERM(a,b) and β ∈ TERMb,

iv. λx.α ∈ TERM(a,b), if x ∈ VARa and α ∈ TERMb.

We represent with αa a term α of type a.

The relevant items are iii. and iv. The former defines function application, the latter
abstraction over variables. The λ is an operator which binds variables following specific
constraints for which it is important to distinguish free and bound variables.

Definition 1.20. [Free and Bound Variables] The set Free(α) of free variables of the
λ-term α is defined by

i. Free(xb) = {xb} if xb ∈ VARb,

ii. Free(cb) = {} if cb ∈ CONb,

iii. Free(α(a,b)(βa)) = Free(α(a,b)) ∪ Free(βa),

iv. Free(λxa.αb) = Free(αb)− {xa}.

A variable v′ is free for v in the expression β iff no free occurrence of v in β is within
the scope of λv′.

Reduction rules determine the equivalence among λ-terms.
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Definition 1.21. [Reduction Rules] The λ-calculus is characterized by the following
reduction rules, where αb([βa/xa])) stands for the result of substituting a term βa for xa

in αb.

(λxa.αb)(βa)⇒ αb[βa/xa] xa is free for βa in αb β-reduction
λxa.α(a,b)(xa)⇒ α(a,b) xa is not free in α(a,b) η-reduction

These rules reduce a term into a simpler one. Applying this re-writing system we can
determine whether two terms are logically equivalent, viz. whether they reduce to a com-
mon result. An important theorem concerning λ-calculus is that reduction eventually
terminates with a term that can no longer be reduced using the above reduction rules.
Such a term is said to be in β, η normal form.

The main novelty introduced by Montague is that the interpretation of the type-
theoretical logical system may also serve as the interpretation of natural language ex-
pressions. To this end, he adopted a model theoretic semantics. When applied to natural
language, model theory can be thought of as a theory designed to explain entailment
relations among sentences and consequently to account for truth conditions of meanings.
In order to capture these relations, meanings are seen as objects in an abstract model. A
bit more formally, this is expressed by saying that natural language sentences refer to or
denote objects in the model. In other words, the denotation assigned to typed lambda
terms serve as a bridge to interpret linguistic expressions. Models are pairs consisting
of a frame and a valuation. They are defined below.

Definition 1.22. [Frame] A frame D consists of the collection of basic domains, i.e.
∪α∈BaseDomα and the domains for functional types. The latter are as follows

Dom(a,b) = DomDoma

b = {f | f : Doma → Domb}.

In words, expressions corresponding to functional types, like verb phrases, denote in the
set of functions from the domain of their argument to the domain of their value. In
our case, given the set of individuals E, the domains of functions are built up from the
primitive ones below:

Dome = E and Domt = {1, 0}.

Besides the set of typed domains, a model must include an interpretation function I
mapping the items of the lexicon to elements of the domains.

Definition 1.23. [Model] A model is a pair M = 〈D, I〉 in which the interpretation
of the constant terms lex in the lexicon Lexicon of a given language are obtained as
follow

i. D is a frame;

ii. The interpretation function is I : Lexicon→ D, s.t. if α is of type a, I(α) ∈ Doma.

The interpretation function over lexical expressions is extended by the denotation func-
tion which recursively assigns an interpretation to all expressions.
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Definition 1.24. [Denotation] The denotation [[αa]]
f
M of a λ-term αa with respect to

the modelM = 〈D, I〉 and assignment f , where f : VARa → Doma, is given by

i. [[xa]]
f
M = f(xa) if xa ∈ VARa.

ii. [[αa]]
f
M = I(αa) if αa ∈ CONa.

iii. [[α(a,b)(βa)]]
f
M = [[α(a,b)]]

f
M([[βa]]

f
M).

iv. [[λxa.αb]]
f
M = g such that g(d) = [[αb]]

f [xa:=d]
M .

where f [xa := d] stands for the assignment that maps xa to d ∈ Doma and maps ya 6= xa

to f(ya).

Intuitively, the denotation of a term formed by the λ-operator says that applying the
denotation of a functional term λx.α to an object d is the result of evaluating α in an
assignment where x takes the value d.

Remark 1.25. The form and meaning components of linguistic signs are inhabitants of
their corresponding syntactic and semantic types, respectively. The definitions above
say that two signs may differ in their form (belong to different syntactic types) despite
being similar in their meaning (belonging to the same semantic type). Consequently,
the two signs receive the same interpretation denoting the same object in the domain.
For instance, this is the case of signs whose forms are in the syntactic type A/B and
B\A and, therefore, their meanings are in the semantic type (type(B), type(A)) and
are interpreted in the domain Dom(b,a).

1.3.2 Interpretations for the Sample Grammar

Natural language expressions can be interpreted by assuming either a relational or a
functional perspective. We briefly illustrate the two approaches and their connection
by discussing some examples. As a notational convention, we represent the constants in
TERM with special fonts. For the ease of presentation, we do not indicate the semantic
types unless necessary. For instance, the individual Lori is assigned a denotation in
the domain of entities, and is represented by the term lori. The meaning of complex
phrases is built out of the meaning of the lexical items. Thus we must start by adding
the semantic information in the lexicon.

Definition 1.26. [Term Labelled Lexicon] Given a set of basic expressions of a natural
language Σ, a term labeled categorial lexicon is a relation,

LEX ⊆ Σ× (CAT× TERM) such that if (w, (A, α)) ∈ LEX, then α ∈ TERMtype(A)

This constraint on lexical entries enforces the requirement that if the expression w is
assigned a syntactic category A and term α, then the term α is of the appropriate type
for the category A.

Example 1.27. [Extended Lexical Entries] Labelled lexical entries are for instance the
ones below,
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Sara np : sara which (n\n)/(np\s) : λxyz.x(z) ∧ y(z)
Pim np : pim which (n\n)/(np\s) : λxyz.x(z) ∧ y(z)
Lori np : lori some (s/(np\s))/n : λxy.∃z(x(z) ∧ y(z))
knows (np\s)/np : know some ((s/np)\s)/n : λxy.∃z(x(z) ∧ y(z))
student n : student some (tv\(np\s))/n : λxyu.∃z(x(z) ∧ y(z)(u))
professor n : professor every (s/(np\s))/n : λxy.∀z(x(z)→ y(z))
tall n/n : tall every ((s/np)\s)/n : λxy.∀z(x(z)→ y(z))

Notice the different term assignment for the logical (the determiners and the relative
pronoun) and the non-logical constants.

The denotations of the linguistic expressions are illustrated by the examples below.

Example 1.28. [Relational Interpretation of Non-Logical Constants] Let our model be
based on the set of entities E = {lori, ale, sara, pim} which represent Lori, Ale, Sara
and Pim, respectively. Assume that they all know themselves, plus Ale and Lori know
each other, but they do not know Sara or Pim; Sara does know Lori but not Ale or
Pim. The first three are students whereas Pim is a professor, and both Lori and Pim
are tall. This is easily expressed set theoretically. Let [[w]] indicate the interpretation of
w :

[[sara]] = sara;
[[pim]] = pim;
[[lori]] = lori;
[[know]] = {〈lori, ale〉, 〈ale,lori〉, 〈sara, lori〉,

〈lori, lori〉, 〈ale, ale〉, 〈sara, sara〉, 〈pim, pim〉};
[[student]] = {lori, ale, sara};
[[professor]] = {pim};
[[tall]] = {lori, pim}.

which is nothing else to say that, for example, the relation know is the set of pairs 〈α, β〉
where α knows β; or that ‘student’ is the set of all those elements which are a student.

Alternatively, one can assume a functional perspective and interpret, for example, know
as a function f : Dome → (Dome → Domt). The shift from the relational to the
functional perspective is made possible by the fact that the sets and their characteristic
functions amount to the same thing: if fX is a function from Y to {0, 1}, then X = {y |
fX(y) = 1}. In other words, the assertion ‘y ∈ X’ and ‘fX(y) = 1’ are equivalent.4

The interpretation of complex phrases is obtained by interpreting the corresponding
lambda terms. For example, if walk ∈ CON(e,t) and x ∈ VARe, then walk(x) expresses
the fact that x has the property of walking, whereas λx.walk(x) is an abstraction over
x and it represents the property itself. Moreover, due to the reduction rules of the
lambda calculus the constant walk(e,t) is equivalent to the term λxe.(walk(x))t. Applying
Definition 1.24 this term is denoted by a function g such that for each entity d ∈ Dome,
gives g(d) = 1 iff [[walk(x)]]

f [x:=d]
M = 1, or in other words iff x has the property expressed

by walk.
The logical constants are interpreted by using set theoretical operations as illustrated

below.

4Consquently, the two notations y(z)(u) and y(u, z) are equivalent.
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Example 1.29. [Logical Constants] By evaluating the lambda expressions in Exam-
ple 1.27 in a model, one obtains the interpretations below:

[[no N]] = {X ⊆ E | [[N]] ∩X = ∅}.
[[some N]] = {X ⊆ E | [[N]] ∩X 6= ∅}.
[[every N]] = {X ⊆ E | [[N]] ⊆ X}.
[[N which VP]] = [[N]] ∩ [[VP]].

Generalized quantifiers have attracted the attention of many researchers working on the
interaction between logic and linguistics [KF85, Eij85]. We will come back to them in
Chapter 6.

Taking advantage of the fact that the denotation of all natural language expressions
can be reduced to sets, we can extend our model with a partial order recursively defined
again by means of types [GS84, Ben86].

Definition 1.30. [Partially Ordered Domains] LetM = 〈D,≤, I〉 be our model, where
≤ is defined recursively as follows

If β, γ ∈ Dome, then [[β]] ≤e [[γ]] iff [[β]] = [[γ]]
If β, γ ∈ Domt, then [[β]] ≤t [[γ]] iff [[β]] = 0 or [[γ]] = 1
If β, γ ∈ Dom(a,b), then [[β]] ≤(a,b) [[γ]] iff ∀α ∈ Doma, [[β(α)]] ≤b [[γ(α)]].

Let us look at our toy-model again and check the order relations holding among its
expressions. Establishing such an order is quite immediate when working with sets, and
only appears more complex when using the recursive Definition 1.30.

Example 1.31. [Order Relations] The set denoting the expression tall student, ob-
tained by taking all elements which are in both the sets [[tall]] and [[student]], viz.
[[tall student]] = {lori}, is clearly a subset of the set denoting student, viz. [[student]] =
{lori, ale, sara}. Using functional denotation the proof of [[tall student]] ≤(e,t) [[student]]
is as follows.

[[tall student]] ≤(e,t) [[student]] iff ∀α ∈ De

[[tall student(α)]] ≤t [[student(α)]] iff
[[tall student]]([[α]]) ≤t [[student]]([[α]]) iff
[[tall student]]([[α]]) = 0 or [[student]]([[α]]) = 1.

Assume this is not true, viz. [[tall student]]([[α]]) = 1 and [[student]]([[α]]) = 0. Then
∃d ∈ Dome s.t. d ∈ [[tall student]], but d 6∈ [[student]], which is obviously impossible.
Note, that the inclusion relation is due to the presence of the intersective predicate tall.

Finally, having a formal definition of the domains of interpretation and a partial order
over them, one can distinguish expressions interpreted in the same domain but which
differ with respect to the partial order. For instance, we can distinguish upward (↑Mon)
and downward (↓Mon) monotone functions, where the former preserve and the latter
reverse the partial order. We illustrate this concept by means of the example below.

Example 1.32. [Monotonicity in Natural Language] Let W be our domain of inter-
pretation. Consider the generalized quantifier every N, which has a syntactic category
s/(np\s). It is interpreted as a function in D(e,t) → Dt, defined by
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[[every N(X)]] = 1 iff card([[N ]] − [[X]]) = 0.

To prove that every N is an ↑Mon function, we have to show that whenever [[X]] ≤
[[Y ]] then [[every N(X)]] ≤ [[every N(Y )]]. Assume [[every N(X)]] = 1, then it holds
that card([[N ]] − [[X]]) = 0 by definition. This implies that for every superset Y of X,
card([[N ]]−[[Y ]]) = 0. Hence [[X]] ≤ [[Y ]] and [[every N(X)]] = 1 implies [[every N(Y )]] = 1
and we are done.

In a similar way, one can prove that, for instance, nobody is a downward monotone
function.

The connection between syntactic categories and semantic types seems to be lost when
looking at the current research in CTL and in the Montagovian school. The catego-
rial grammarians are mostly interested in the grammaticality of linguistic structures,
whereas the Montagovians are focused on their interpretation and entailment relations.
The system presented in Chapter 4 combines again the two traditions by exploiting
their logical connection. In particular, we encode the different monotonicity properties
of GQs in the logical types of a CTL and make use of Definition 1.30 to achieve a proof
theoretical account of natural reasoning.

1.4 Putting Things Together

In this section we explain how the syntactic derivations of the formal grammars discussed
in Sections 1.1 and 1.2 are associated with instructions for meaning assembly.

1.4.1 Rule-Based Approach vs. Deductive Approach

In CG and CCG , the syntactic rules for category combination have the status of non-
logical axioms. To obtain a Montague-style compositional interpretation, we have to
associate them with instructions for meaning assembly in a rule-by-rule fashion. Below
are the combination schemata we have been using paired rule-by-rule with their semantic
interpretation.

Forward Application A/B : f B : x⇒ A : f(x) [FA]
Backward Application B : x B\A : f ⇒ A : f(x) [BA]
Lifting A : x⇒ B/(A\B) : λy.yx [T]
Forward Composition A/B : f B/C : g ⇒ A/C : λx.f(gx) [B]
Backward Crossed Composition A/B : g A\C : f ⇒ C/B : λx.f(gx) [B×]

Example 1.33. [Meaning Assembly in CCG ] Given the lexical assignments of the la-
belled lexicon above, CCG builds the meaning of which Sara wrote as follows.

which
(n\n)/(s/np) : λxyu.x(u) ∧ y(u)

Sara
np : sara

s/(np\s) : λz.z(sara)
[T] wrote

(np\s)/np : λyx.wrote(x, y)

s/np : λy.wrote(sara, y)
[B]

n\n : λyu.wrote(sara, u) ∧ y(u)
[FA]
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Note that in the derivation we have hidden the β-conversion rules.

Example 1.34. [Ambiguous Sentences] Let some, some’ and every abbreviate the
lambda terms from our labelled lexicon λx.∃zstudent(z) ∧ x(z), λxu.∃zstudent(z) ∧
x(u, z), and λx.∀zstudent(z) → x(z), respectively. CCG builds the meaning of every
student knows some book as following.

(i)

every student

s/(np\s) : every

knows
(np\s)/np : know

some book
((np\s)/np)\(np\s) : some′

np\s : some′(know)
[BA]

s : every(some′(know))
[FA]

(ii)

every student

s/(np\s) : every
knows

(np\s)/np : know

s/np : λx.every(know x)
[B] some book

(s/np)\s : some

s : some(λx.every(know x))
[BA]

The derivation in (i) (resp. (ii)) gives the subject wide (resp. narrow) scope reading.

1.4.2 Curry-Howard Correspondence

In the Lambek calculus framework, syntactic rules are replaced by logical rules of in-
ference. Therefore, the semantic rules are obtained deductively by exploiting the corre-
spondence between proofs and terms. The famous Curry-Howard correspondence tells
us that every proof in the natural deduction calculus for intuitionistic implicational logic
can be encoded by a typed λ-term and vice versa [How80]. The categorial interpretation
of derivations can be modelled directly on the Curry-Howard result, with the proviso
that in the absence of structural rules in the categorial systems, the obtainable terms
will be a sublanguage of the full λ-calculus.

Let us define the correspondence between the logical rules of NL and the applica-
tion and abstraction rules of the lambda calculus. In a few words, the elimination of
the functional connectives \ and / produces functional application terms, whereas the
abstraction over variables corresponds to the introduction of the functional operators.

Definition 1.35. [Term Assignment for Natural Deduction] Let Γ ` t : A stand for a
deduction of the formula A decorated with the term t from a structured configuration
of undischarged term-decorated assumptions Γ.

x : A ` x : A

Γ ` t : A/B ∆ ` u : B

Γ ◦∆ ` t(u) : A
[/E]

(Γ ◦ x : B) ` t : A

Γ ` λx.t : A/B
[/I]

∆ ` u : B Γ ` t : B\A

∆ ◦ Γ ` t(u) : A
[\E]

(x : B ◦ Γ) ` t : A

Γ ` λx.t : B\A
[\I]
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The Lambek calculi are fragments of intuitionistic implicational logic [Abr90]. Conse-
quently, the lambda terms computed by it form a fragment of the full language of lambda
terms. First of all, since empty antecedents are not allowed and the Lambek calculi are
resource sensitive, viz. each assumption is used exactly once, the system reasons about
lambda terms with specific properties: (i) each subterm contains a free variable; and (ii)
no multiple occurrences of the same variable are present. The latter could seem to be
too strong constraint when thinking of linguistic applications. However, this is not the
case as we will discuss at the end of this section (Example 1.42). A formal definition of
the lambda calculus fragment corresponding to LP is given below5.

Definition 1.36. [Fragment of the Lambda Terms for LP] Let Λ(LP) be the largest
LAMBDA ⊆ TERM such that

i. each subterm of α ∈ LAMBDA contains a free variable;

ii. no subterm of α ∈ LAMBDA contains more than one free occurrence of the same
variable;

iii. each occurrence of the λ abstractor in α ∈ TERM binds a variable within its scope.

Derivations for the various Lambek calculi are all associated with LP term recipes.
Therefore, we move from an isomorphism to a weaker correspondence. The correspon-
dence between LP proofs and the lambda calculus was given in [Ben87a, Bus87, Wan92].

Theorem 1.37. Given an LP derivation of a sequent A1, . . . , An ` B one can find a
corresponding construction αa ∈ Λ(LP), and conversely. A term αa ∈ Λ(LP) is called a
construction of a sequent A1, . . . , An ` B iff α has exactly the free variable occurrences
x1
type(An), . . . , x

n
type(An).

While introducing the lambda calculus we spoke of terms in normal forms. These terms
are obtained proof theoretically by defining normal form derivations as following.

Definition 1.38. [Normal Form for Natural Deduction Derivations)] A derivation in
natural deduction format is in normal form when there are no detours in it. A detour
is formed when

i. a connective is introduced and immediately eliminated at the next step.

ii. an elimination rule is immediately followed by the introduction of the same con-
nective.

The rules eliminating these two detours are called reduction rules.

Remark 1.39. The reductions of the detours in i. and in ii. correspond to β-reduction
and η-reduction, respectively. Moreover, note that the above rewriting rules hold for all
Lambek calculi, regardless of their structural rules.

5Again, for the sake of simplicity here we restrict attention to product-free Lambek calculi.
See [Moo97] for the definition of the full systems.
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By means of example, we give the reduction rule corresponding to η-reduction. The
reader is referred to [Res00] for an extensive presentation of normalization.

[B ` x : B]1

D1....
Γ ` t : B\A

B,Γ ` t(x) : A
[\E]

Γ ` λx.t(x) : B\A
[\I]1

rewrites to

D1....
Γ ` t : B\A

in the lambda-calculus the reduction above corresponds to the rewrite rule λx.t(x)⇒η t
The correspondence between proofs and lambda terms is completed by the following
theorem [Pra65, Gir87, GLT89].

Theorem 1.40. [Normalization] If D is a normal form derivation of x1 : A1, . . . xn :
An ` α : C, then α is in β, η normal form.

Let us now check how this framework accounts for the assembly of form-meaning pairs.
Starting from the labelled lexicon, the task for the Lambek derivational engine is

to compute the lambda term representing the meaning assembly for a complex struc-
ture as a by-product of the derivation that establishes its grammaticality. The crucial
distinction here is between the derivational meaning and the lexical meaning. The
derivational meaning fully abstracts from lexical semantics: it is a general recipe for
meaning assembly from assumptions of the given types.

Practically, one can proceed in two ways: (i) either one starts labeling the axioms of
a derivation with the actual lambda terms assigned in the lexicon, or (ii) one labels the
leaves of the derivation with variables, computes the proof term for the final structure
and then replaces the variables by the actual lambda terms assigned in the lexicon to
the basic constituents. We illustrate the two methods below in Examples 1.41 and 1.42,
respectively.

Example 1.41. [Lifting] Starting from the type assignment Lori ∈ np : lori, one de-
rives the higher order assignments as following:

Lori ` np : lori [np\s ` np\s : x]1

Lori ◦ np\s ` s : x(lori)
[\E]

Lori ` s/(np\s) : λx.x(lori)
[/I]1

[s/np ` s/np : x]1 Lori ` np : lori

s/np ◦ Lori ` s : x(lori)
[/E]

Lori ` (s/np)\s : λx.x(lori)
[\I]1

First of all, note how the system assigns a variable to the hypothesis. The latter is
discharged by means of [/I] (or [\I]) which corresponds to the abstraction over the
variable. Moreover, note that the higher order types in the two derivations are different,
but they correspond to the same lambda terms, i.e. the two structures are correctly
assigned the same meaning.

This example shows how in the CTL framework, the assembly of meaning is a byproduct
of the proof theoretical analysis. In particular, the type-lifting, stipulated in the Mon-
tagovian tradition and explicitly expressed by the [T] combinator in CCG, is obtained
simply by means of logical rules. See [Oeh99] for a discussion about the advantages of
having the lifting as a derivable theorem in the system.
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The relative clause examples in our toy fragment offer a nice illustration of the divi-
sion of labor between lexical and derivational semantics. Intuitively, a relative pronoun
has to compute the intersection of two properties: the common noun property obtained
from the n that is modified, and the property obtained from the body of the rela-
tive clause, a sentence with a np hypothesis missing. In the logical form, this would
come down to binding two occurrences of a variable by one λ binder. On the level of
derivational semantics, one cannot obtain this double binding: the Lambek systems are
resource sensitive, which means that every assumption is used exactly once. But on the
level of lexical semantics, we can overcome this expressive limitation (which is syntacti-
cally well-justified!) by assigning the relative pronoun a double-bind term as its lexical
meaning recipe: which ∈ (n\n)/(s/np) : λxyz.x(z) ∧ y(z). In this way, we obtain the
proper recipe for the relative clause which Sara wrote, namely λyz.wrote(Sara, z)∧y(z),
as shown below.

Example 1.42. [Relative Clause]

which ` (n\n)/(s/np) : X4

Sara ` np : X3

wrote ` (np\s)/np : X1 [x ` np : X2]
1

wrote ◦ x ` np\s : X1X2
[/E]

Sara ◦ (wrote ◦ x) ` s : (X1X2)X3
[\E]

(Sara ◦ wrote) ◦ x ` s : (X1X2)X3
[ass]

Sara ◦ wrote ` s/np : λX3.(X1X2)X3
[/I]1

which ◦ (Sara ◦ wrote) ` n\n : X4(λX3.(X1X2)X3)
[/E]

Note that the structural rules do not effect the meaning assembly. By replacing the vari-
ables X1, . . . , X4 with the corresponding lexical assignments, and applying the reduction
rules, one obtains the proper meaning of the analyzed structure.

1.5 Key Concepts

The main points of this chapter to be kept in mind are the following:

1. Linguistic signs are pairs of form and meaning, and composed phrases are struc-
tures rather than strings.

2. When employing a logic to model linguistic phenomena, grammatical derivations
are seen as theorems of the grammatical logic.

3. The correspondence between proofs and natural language models, via the lambda
terms, properly accounts for the natural language syntax semantics interface.





Chapter 2

The Mathematical Structure of CTL

In this chapter, we take a closer look at the mathematical structure of the grammatical
base logic. We spell out the logical connection between the binary operators of the
system NL introduced by Lambek in [Lam61] and the unary ones of NL(3) proposed by
Kurtonina and Moortgat [Kur95, KM95, Moo96b]. Moreover, following Dunn [Dun91]
and Goré [Gor98b], we show that the algebraic structure of these systems can accom-
modate downward monotone unary operators as well. We present the extended system
NL(3,·0) and study its formal properties. A very useful survey of the field of substruc-
tural logics is given in [Res00].

We start by introducing the algebraic principle of residuation which lies at the heart
of NL and NL(3). We then present the Gentzen-style sequent calculus and the Kripke in-
terpretation for these systems (Section 2.1). In Section 2.2, by means of Display Calculi,
we clarify how the logical rules of NL and NL(3) actually encode the definition of resid-
uated operators. The same method is applied to explore the related Galois connected
operators (Section 2.3). Again, we start by introducing the algebraic principle, and
show its relation with the one of residuation. We then give the axiomatic presentation
of the logical system of residuated and Galois connected operators NL(3,·0), proving its
soundness and completeness with respect to Kripke frame semantics. Furthermore, we
study the proof theoretical behavior of these systems beginning with Display Calculi,
compiling in the Galois connection law and then moving to a cut-free Gentzen sequent
presentation. Finally, we investigate the abstract derivability patterns that arise in
NL(3,·0) (Section 2.4).

The results presented here draw on work done in collaboration with Carlos Areces
and Michael Moortgat [AB01, ABM01].

2.1 Capturing Residuation

The property of residuation arises in the study of order-preserving mappings [Fuc63,
BJ72]. Let us look at the definition of the principle. The notion of residuated functions
can be generally introduced for maps of arbitrary arity, however, here, we restrict our
attention to unary and binary functions.

Definition 2.1. [Residuation] LetA = (A,vA), B = (B,vB) and C = (C,vC) be three
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partially ordered sets. A pair of functions (f, g) such that f : A → B and g : B → A
forms a residuated pair if [RES1] holds.

[RES1] ∀x ∈ A, y ∈ B

(

fx vB y iff

x vA gy

)

.

A triple of functions (f, g, h) such that f : A×B → C, g : A× C → B, h : C ×B → A
forms a residuated triple if [RES2] holds.

[RES2] ∀x ∈ A, y ∈ B, z ∈ C







f(x, y) vC z iff

y vB g(x, z) iff

x vA h(z, y)






.

In both cases the function f is said to be the head of the residuated pair or triple.

Remark 2.2. An equivalent characterization is obtained in terms of the monotonicity
properties of the functions. Saying that (f, g) is a residuated pair is equivalent to the
conditions i) and ii) below, where we write f is a [↑]-function (f is a [↓]-function) mean-
ing that f is upward (downward) monotone in its argument. An upward (downward)
monotone function is a function which preserves (reverses) the order holding among its
arguments.

i. f and g are [↑]-functions.

ii. ∀y ∈ B(fgy vB y) and ∀x ∈ A(x vA gfx).

Similarly, saying that (f, g, h) is a residuated triple is equivalent to requiring

i. f is a [↑, ↑]-function, g is an [↓, ↑]-function and h is an [↑, ↓]-function.

ii. ∀x ∈ A, y ∈ B, z ∈ C((f(x, g(x, z)) vC z) & (y vB g(x, f(x, y)))
& (f(h(z, y), y) vC z) & (x vA h(f(x, y), y))).

In what follows we focus on type forming operations Oi : FORMi → FORM —where
i marks the arity and FORM is the set of formulas— and we will investigate their
behavior with respect to the poset 〈FORM,−→〉 where −→ is the derivability relation
among types.

2.1.1 The Logic of Residuation NL

As we anticipated in Chapter 1, the base system for the binary type forming operators
is the non-associative and non-commutative Lambek calculus NL [Lam61]. We present
its axiomatic presentation and the original sequent calculus given by Lambek.

Definition 2.3. [Formula Language of NL] Given a set ATOM of atomic propositional
formula, the language of NL is defined recursively as

FORM ::= ATOM | FORM/FORM | FORM\FORM | FORM • FORM.

An axiomatic presentation of NL is given as follows.
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Definition 2.4. [NL: Axiomatic System] The system NL is defined by the axioms below.
Given A,B,C ∈ FORM

[REFL] ` A −→ A,
[TRANS] If ` A −→ B and ` B −→ C, then ` A −→ C,

[RES2] ` A −→ C/B iff ` A •B −→ C iff ` B −→ A\C.

NL is commonly called the pure logic of residuation, and rightly so as we can see from
its axiomatic presentation. [REFL] and [TRANS] define essential properties for the
derivability relation −→ while [RES2] characterizes (\, •, /) as a residuated triple1.

The axiomatic presentation of NL clearly shows that residuation directly governs the
behavior of its type forming operators. Unfortunately, it is not well-suited proof the-
oretically . In particular, the [TRANS] and [RES2] rules above violate the subformula
property, introducing non determinism in the proof search. As with classical propo-
sitional logic, an alternative is the formulation of an equivalent Gentzen presentation,
in which the use of the counterpart of [TRANS], the cut-rule, can be shown to be re-
dundant (cut-elimination) and the [RES2] is compiled in the logical rules. The sequent
presentation is well behaved proof theoretically: it enjoys the subformula property and
it yields backward-chaining decision procedure [Lam58, Lam61].

Sequent Calculus

While in the axiomatic presentation the derivability relation holds between formulas of
the logical language, in a Gentzen system it is stated in terms of sequents: pairs Γ⇒ A
where Γ is a structured configuration of formulas or structural term and A is a logical
formula. The set STRUCT of structural terms needed for a sequent presentation of NL

is very simple.

STRUCT ::= FORM | (STRUCT ◦ STRUCT).

The logical rules of the Gentzen system for NL are given in Figure 2.1. In the figure,
A,B,C are formulas, Γ,∆ are structural terms and the notation Γ[∆] is used to single
out a particular instance of the substructure ∆ in Γ.

As we can see from inspecting these rules, it is not immediately obvious that they are
characterizing the same derivability relation as the one characterized by the axiomatic
presentation of NL. To establish the equivalence between the two formats, define the
translation ·t : STRUCT→ FORM as

(Γ1 ◦ Γ2)
t = (Γt

1 • Γt
2),

At = A, for A ∈ FORM.

Proposition 2.5. [See [Lam58, Lam61]] If ` A −→ B is a theorem of the axiomatic
presentation of NL then there is a Gentzen proof of A ⇒ B. And for every proof of a
sequent Γ⇒ B, ` Γt −→ B is a theorem.

1[RES2] could also be understood as a kind of deduction theorem. But while a deduction theorem is
better seen as a link between the meta-language and the object language, [RES2] relates three operators
in the object language.
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A⇒ A
[axiom]

∆⇒ A Γ[A]⇒ C

Γ[∆]⇒ C
[cut]

∆⇒ B Γ[A]⇒ C

Γ[(A/B ◦∆)]⇒ C
[/L] Γ ◦B ⇒ A

Γ⇒ A/B
[/R]

∆⇒ B Γ[A]⇒ C

Γ[(∆ ◦B\A)]⇒ C
[\L] B ◦ Γ⇒ A

Γ⇒ B\A
[\R]

Γ[(A ◦B)]⇒ C

Γ[A •B]⇒ C
[•L] Γ⇒ A ∆⇒ B

(Γ ◦∆)⇒ A •B
[•R]

Figure 2.1: Gentzen sequent calculus for NL.

The system presented in Figure 2.1 includes the cut-rule, but Lambek proved also in
[Lam58], that the rule is admissible, in the sense that it does not increase the set of
theorems that can already be derived using just the other rules.

Proposition 2.6. [Cut-elimination and Decidability] The cut-rule is admissible in NL,
and the system is decidable.

2.1.2 The Residuated Unary Operators NL(3)

The system NL(3) introduced in [Moo96b, Moo97] is obtained by adding unary residu-
ated operators 3 and 2

↓ to NL. The logical language of NL is extended with formulas
formed by 3 and 2

↓ and consequently the 〈·〉 is added to the structural language.

Definition 2.7. [Formulas and Structures of NL(3)] Given a set ATOM of atomic
propositional symbols, the logical and structural languages of NL(3) are obtained ex-
tending the set of FORM and STRUCT of NL.

FORM ::= ATOM |FORM/FORM | FORM\FORM | FORM • FORM |
3FORM | 2↓FORM.

STRUCT ::= FORM |( STRUCT ◦ STRUCT) | 〈STRUCT〉.

Its axiomatic presentation is obtained by simply adding to the axioms in Definition 2.4
the one below.

[RES1] ` 3A −→ B iff ` A −→ 2
↓B

which defines the pair (3,2↓) as a residuated pair of operators (Definition 2.1).
As in the case of [RES2], the axiom above is compiled in the logical rules to obtain

a well behaved proof system. The logical rules in Gentzen sequent format are as in
Figure 2.2.
As in the case of the base logic of binary operators, NL(3) can be extended with struc-
tural rules obtaining a family of multimodal categorial type logics. The structural
constraints given in Definition 1.15 are extended straightforwardly to the multimodal
systems. The extended multimodal systems are proved to be in PSPACE in [Moo02].
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Γ[A]⇒ B

Γ[〈2↓A〉]⇒ B
[2↓L]

〈Γ〉 ⇒ A

Γ⇒ 2
↓A

[2↓ R]

Γ[〈A〉]⇒ B

Γ[3A]⇒ B
[3L] Γ⇒ A

〈Γ〉 ⇒ 3A
[3R]

Figure 2.2: Logical rules for residuated unary operators of NL(3).

2.1.3 Kripke Models

The Lambek calculi and their modern extensions are modal logics. Standard models for
modal logics are Kripke models, or relational structures. These structures are rather
simple, they only consist of a set together with a collection of relations on that set, but
they turn out to be extremely expressive and have found several interesting applications
(see [BRV01] for an introduction to modal logic and an overview of the field). In this
thesis we will use Kripke models to reason with linguistic resources.

Definition 2.8. [Kripke Models] A model for NL(3) is a tuple M = (W,R3
•, R

2
3
, V )

where W is a non-empty set, R3
• ⊆ W 3, R2

3
⊆ W 2, and V is a valuation V : ATOM →

P(W ). The R3
• relation governs the residuated triple (\, •, /), the R2

3
relation governs the

residuated pair (3,2↓). Given a model M = (W,R, V ) and x, y ∈ W , the satisfiability
relation is inductivly defined as follows2.

M, x  A iff x ∈ V (A) where A ∈ ATOM.

M, x  3A iff ∃y[R3xy &M, y  A].

M, y  2
↓A iff ∀x[R3xy →M, x  A].

M, x  A •B iff ∃y∃z[R•xyz & M, y  A & M, z  B].

M, y  C/B iff ∀x∀z[(R•xyz & M, z  B)→M, x  C].

M, z  A\C iff ∀x∀y[(R•xyz & M, y  A)→M, x  C].

Given an arrow A −→ B, a model M = (W,R, V ) and x ∈ W , we say that M, x |=
A −→ B iff M, x  A implies M, x  B. M |= A −→ B iff for all x ∈ W , M, x 

A −→ B. We say that A ⇒ B is valid (notation |= A −→ B) iff for any model M,
M |= A −→ B.

Theorem 2.9. [Soundness and Completeness [Dos92, Kur95] ] NL(3) ` A −→ B iff
|= A −→ B

It is easy to show that the [RES1], and [RES2] preserve validity in all Kripke models
establishing soundness. The proof is by induction on the length of the derivation of

2Note that the unary operators 3 and 2
↓ can be thought of as the possibility in the past (P) and

the necessity in the future (G) operators of temporal logic [Pri67], therefore their interpretation moves
in the opposite directions along the accessibility relation R3. The downarrow on the universal operator
is there to highlight this fact.
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A −→ B. For completeness, one uses a simple canonical model, which effectively falsifies
non-theorems. The canonical model Mc = (W c, Rc

•, R
c
3
, V c) is as below

W c = FORM (the set of all formulas in the language),
Rc
•(ABC) iff ` A −→ B • C
Rc

3
(AB) iff ` A −→ 3B, and

A ∈ V c(p) iff ` A −→ p.

To show that the canonical model is adequate, one proves the Truth Lemma below.

Lemma 2.10. [Truth Lemma] For any formula B,Mc, A  B iff ` A −→ B.

With this lemma, we can prove completeness with respect to a class of models. Suppose
6` A −→ B. Then by Lemma 2.10Mc, A 6 B. AsMc, A  A, we haveMc 6|= A −→ B
and hence 6|= A −→ B.

In order to maintain completeness in the presence of structural rules, one has to
impose restrictions on the interpretation of the accessibility relations R• and R3. The
above completeness result is extended to stronger logics by restricting the attention to
the relevant classes of frames. In [Kur95] it is shown that one can use the tools of
modal Correspondence Theory [Ben84] to generalize the completeness result above to a
family of logics. A useful class of structural rules with pleasant completeness properties
is characterized by Weak Sahlqvist structural rules.

Definition 2.11. [Weak Sahlqvist Structural Rules]A weak Sahlqvist structural rule is
a rule of the form

Γ[Σ′[Φ1, . . . ,Φm]] ` C

Γ[Σ[∆1, . . . ,∆n]] ` C

subject to the following conditions:

i. both Σ and Σ′ contains only the structural operators ◦, 〈·〉;

ii. Σ′ contains at least one structural operator;

iii. there is no repetition of variables in ∆1, . . . ,∆n;

iv. all variables in Φ1, . . . ,Φm occur in ∆1, . . . ,∆n.

Proposition 2.12. [Sahlqvist Completeness ([Kur95])] If P is a weak Sahlqvist struc-
tural rule, then (i) NL(3) +P is frame complete for the first order frame condition
corresponding to P , and (ii) L+ P has a canonical model whenever L does.

2.2 Displaying Residuation

In this section we clarify the residuation principle hidden in the logical rules of NL(3) by
means of Display Calculi (DCs). This will give us a general method to compile algebraic
principles into Gentzen sequents.

Display calculus, introduced by Belnap in [Bel82], is a general Gentzen style proof
theoretical framework designed to capture many different logics in one uniform setting.
DCs generalize Gentzen’s notion of structures, by using multiple, complex, structural
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connectives. One of the main characteristics of DCs is a general cut-elimination theorem,
which applies whenever the rules of the display calculus obey certain, easily checked,
conditions.

We will base our presentation on the system introduced by Goré in [Gor98b]. The
main innovation of Goré’s system over Belnap’s concerns the use of additional structural
connectives to capture the inherent duality of every logic, by means of dual sets of
display postulates. Building on these features, DCs obtain the fundamental property
which gives them their name, ‘display property’: any particular constituent of a sequent
can be turned into the whole of the right or left side by moving other constituents to
the other side. This property is strongly used in the general cut-elimination method.
But for our approach more interesting than the display property is the ability of DCs to
define the behavior of their logical operators in terms of structural properties —sequent
rules involving only structural operators.

2.2.1 Binary Operators

Let us introduce the appropriate logical and structural language for the DC we want to
investigate. We start by the logic of residuation based only on binary operators.

Definition 2.13. [DC Language] Given a set ATOM of atomic propositional symbols
and the sets OPs = {; , <,>} and OPl = {•, /, \} of structural and logical operators
respectively, the set FORM of logical formulas and the set STRUCT of structural formulas
are defined as

FORM ::= ATOM | FORM • FORM |
FORM/FORM | FORM\FORM.

STRUCT ::= FORM | STRUCT; STRUCT |
STRUCT < STRUCT | STRUCT > STRUCT.

The behavior of the structural operators is explicitly expressed by means of display
postulates. In what follows, we will use variables ∆,Γ,Σ,Φ,Ψ to denote structures, and
reserve A,B,C for logical formulas. In the case of residuation, we can directly express
that (; , <,>) is a residuated triple by the following structural rule [rp]. In order to
avoid confusion between the logical rules of CTL and DC we mark the latter as L’ and
R’.

Γ⇒ ∆ > Σ
∆; Γ⇒ Σ

[rp]

∆⇒ Σ < Γ
[rp]

What remains to be done is to project the residuation behavior of (; , <,>) into the
corresponding logical operators (•, /, \). The general methodology is described in detail
in [Gor98a]. In a nutshell, it works as follows. We are in search of a right and left
introduction rule for each of the logical operators, we can obtain [•L’], [/R’] and [\R’]
directly from [rp] by projection. In the literature on DCs these rules are usually called
rewrite rules (see Figure 2.3).
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To obtain the still missing rules we have to work only slightly harder. As we pointed
out in Remark 2.2, from the fact that (; , <,>) are residuated we know their monotonicity
behavior, and this is exactly what we need.

Let s be a structural operator and l its corresponding logical counterpart. In the
schemata below we will select whether the consequent of the rule is s(∆,Γ) ⇒ l(Φ,Ψ)
or l(∆,Γ)⇒ s(Φ,Ψ) depending on the rule needed.

Φ⇒ ∆ Ψ⇒ Γ
[l, s](∆,Γ)⇒ [s, l](Φ,Ψ)

if s is [↓, ↓] ∆⇒ Φ Γ⇒ Ψ
[l, s](∆,Γ)⇒ [s, l](Φ,Ψ)

if s is [↑, ↑]

∆⇒ Φ Ψ⇒ Γ
[l, s](∆,Γ)⇒ [s, l](Φ,Ψ)

if s is [↑, ↓] Φ⇒ ∆ Γ⇒ Ψ
[l, s](∆,Γ)⇒ [s, l](Φ,Ψ)

if s is [↓, ↑]

Applying the schemata above, we obtain [•R’], [/L’], and [\L’]. The full set of rules is
shown in Figure 2.3.

A⇒ ∆ Γ⇒ B
A/B ⇒ ∆ < Γ

[/L’] Σ⇒ A < B
Σ⇒ A/B

[/R’]

A;B ⇒ Σ
A •B ⇒ Σ

[•L’] Γ⇒ B ∆⇒ A
Γ; ∆⇒ B • A

[•R’]

∆⇒ A B ⇒ Γ
A\B ⇒ ∆ > Γ

[\L’] Σ⇒ A > B
Σ⇒ A\B

[\R’]

Figure 2.3: DC logical rules for residuated binary operators.

The rules will immediately encode the proper tonicity of the operator. It is also easy to
prove that the logical operators indeed satisfy the residuation property. We show two
of the required four derivations below.

B ⇒ A\C
A⇒ A C ⇒ C
A\C ⇒ A > C

[\L’]

B ⇒ A > C
[cut]

A;B ⇒ C
[rp]

A • B ⇒ C
[•L’]

A⇒ A B ⇒ B
A;B ⇒ A •B

[•R’]
A •B ⇒ C

A;B ⇒ C
[cut]

B ⇒ A > C
[rp]

B ⇒ A\C
[\R’]

And in a similar way we can prove the “composition property” we mentioned in Re-
mark 2.2.

As we can see, DC provides guidance in our logic engineering task of designing a se-
quent calculus characterizing the behavior of a triple of residuated operators. Moreover,
we can readily verify the conditions specified by Belnap and conclude that the cut is
admissible.

If we compare the calculus just obtained with the one introduced in Figure 2.1 we
immediately notice similarities, but also important differences, the most relevant being
the presence of only one structural operator, and the restriction to a single formula in
the right hand side of sequents. It is not too difficult to restrict the language to obtain
a perfect match (but of course, in doing so we would be giving up the display property,
and “abandoning” DC and its general theorem concerning cut-elimination). Consider,
for example, the [\L’] rule



2.2. Displaying Residuation 35

∆⇒ A B ⇒ C
A\B ⇒ ∆ > C

[\L’] by [rp]

∆⇒ A B ⇒ C
A\B ⇒ ∆ > C

[\L’]

∆;A\B ⇒ C
[rp] hence ∆⇒ A B ⇒ C

∆;A\B ⇒ C
.

By replacing ; by ◦ and adding structural contexts (which are now required given that
we have lost the display property) we obtain [\L]

∆⇒ A Γ[B]⇒ C

Γ[∆ ◦ A\B]⇒ C
[\L].

2.2.2 Unary Operators

By spelling out the law of residuation for unary functions, we derive a sequent calculus
that can be compiled into the standard calculus for NL(3). Let us start by defining the
proper logical and structural languages.

Definition 2.14. [Logical and Structural Languages for a DC Presentation of NL(3))]
Given a set ATOM of atomic propositional symbols and the sets OPs = {•, ◦} and
OPl = {3,2↓} of structural and logical operators3, the set FORM of logical formulas
and the set STRUCT of structures for a display calculus presentation of NL(3) are
defined as

FORM ::= ATOM | 3FORM | 2↓FORM.

STRUCT ::= FORM | • STRUCT | ◦ STRUCT.

Again we start by specifying the residuated behavior of the structural pair (◦, •),

•∆⇒ Γ
∆⇒ ◦Γ

[rp].

And we obtain the rules for the logical operators by projection and monotonicity be-
havior. The full set of rules is given in Figure 2.4.

A⇒ ∆
2
↓A⇒ ◦∆

[2↓L’] ∆⇒ ◦A
∆⇒ 2

↓A
[2↓R’]

•A⇒ ∆
3A⇒ ∆

[3L’] ∆⇒ A
•∆⇒ 3A

[3R’]

Figure 2.4: DC logical rules for residuated unary operators.

We can prove that (3,2↓) is a residuated pair.

A⇒ 2
↓B

B ⇒ B
2
↓B ⇒ ◦B

[2↓L’]

A⇒ ◦B
[cut]

•A⇒ B
[rp]

3A⇒ B
[3L’]

A⇒ A
•A⇒ 3A

[3R’]
3A⇒ B

•A⇒ B
[cut]

A⇒ ◦B
[rp]

A⇒ 2
↓B

[2↓R’]

3Note that the ◦ of DC is not the same as the binary one used in NL(3).
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Now we “compile” the structural postulate [rp] to obtain the logical rules in the standard
Gentzen presentation of NL(3) as we did in the case of binary operators. We spell out
the needed steps for the 2

↓ operator and obtain the rules [2↓L] and [2↓R] as presented
in [Moo97] —by replacing • by 〈·〉.

A⇒ B

2
↓A⇒ ◦B

[2↓L’] by [rp]

A⇒ B

2
↓A⇒ ◦B

[2↓L’]

•2↓A⇒ B
[rp] by compilation

Γ[A]⇒ B

Γ[〈2↓A〉]⇒ B
[2↓L].

Γ⇒ ◦A
Γ⇒ 2

↓A
[2↓R’] by [rp]

•Γ⇒ A
Γ⇒ ◦A

[rp]

Γ⇒ 2
↓A

[2↓R’] by compilation
〈Γ〉 ⇒ A

Γ⇒ 2
↓A

[2↓R].

The logical rules of the 3 are obtained straightforwardly.

2.3 Galois Connected Operations

The algebraic structure of the base logic can also accommodate a pair of order-reversing
Galois connected operators, which in this thesis we will write as 0·, ·0 following Goré’s
notation. To understand the relation between these two concepts, it may be useful to
situate them in their natural algebraic context. Residuated and Galois connected pairs
of mappings were studied in the work of Birkhoff [Bir67] and Ore [Ore44], among others.
The relevance of this early work for current research on substructural logics has been
emphasized by Michael Dunn, from whose [Dun91] we draw the following definitions.
For the ease of exposition we repeat the definitions of residuated pairs as well.

Definition 2.15. [Residuated and Galois connected pairs] Consider two posets A =
(A,vA) and B = (B,vB), and functions f : A→ B, g : B → A. The pair (f, g) is said
to be residuated iff

[RES1] fx vB y iff x vA gy.

The pair (f, g) is said to be Galois connected iff

[GC] y vB fx iff x vA gy.

Keeping the posets A and B distinct helps understanding the connection between resid-
uated and Galois connected pairs of mappings. Let us introduce a third poset B′ =
(B, (vB)−1) where (vB)−1 = {(b, a) | a vB b}, and consider a function h : B → A. Fol-
lowing [RES1] the functions f, h form a residuated pair iff the biconditional fa (vB)−1 b
iff a vA hb holds. But now, replacing (vB)−1 by vB , we obtain that b vB fa iff a vA hb,
i.e. the pair f, h is Galois connected with respect to the orders vB and vA. As Dunn
[Dun91] puts it, the Galois connected pair is obtained by turning around the inequality
vB in the characterization of residuation.

Finally, notice that the definition of Galois connected operators given in Defini-
tion 2.15 can be extended further considering their duals.
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Definition 2.16. [Dual Galois Connections] Let A = (A,vA) and B = (B,vB) be two
partially ordered sets. Consider a pair of functions f : A→ B and g : B → A. The pair
(f, g) is called a dual Galois connection if [DGC] below holds.

[DGC] ∀x ∈ A, y ∈ B

(

fx vB y iff

gy vA x

)

.

As with residuation, there is an equivalent formulation of these properties in terms of
their monotonicity behavior and a composition rule. [GC], for example, is equivalent to
require that f and g are both [↓]-functions, and that for all x, x v fgx, and x v gfx
(here again, we just consider f and g as functions defined on the same poset). Recall
that, when we cast this algebraic discussion in terms of categorial type logics the objects
we will be considering are types ordered by their derivability relation.

Galois connected operators have been also studied in the context of Linear Logic,
see [Lam93, Abr91, Gor98b, Res00], where they are intended to exhibit negation-like
behavior. This means that the Galois properties have to be mixed with extra features
guaranteeing, for example, a double negation law 0(A0) = A = (0A)0. In related work,
Lambek [Lam99, Lam01] considers algebraic structures he calls pregroups, where each
element a has a left and a right adjoint, written al and ar. Also in these structures,
one has alr = a = arl. In this thesis, we do not consider these stronger notions, but
we concentrate on the pure Galois properties and investigate the effects of adding 0·, ·0

to the base multimodal logic NL(3). Rember that we are interested in the base logic
because we think it opens a window on the invariants of grammatical composition —the
laws of the base logic are universals in the sense that they do not depend on structural
postulates (that is, non-logical axioms).

2.3.1 Axiomatic Presentation of NL(3,·0)

There are two ways to extend the standard axiomatic presentation of NL(3) with Galois
operators to obtain NL(3,·0). A system in Hilbert style Hil-NL(3,·0) can be obtained
by extending NL(3) with the axioms [A1], [A2] and the rules [R1], [R2] below. It is
easy to show that [GC] is a derived rule in this setting. Alternatively, one adds [GC] to
NL(3). It can be shown then that [A1], [A2] and the rules [R1], [R2] are derivable4.

[A1] ` A −→ 0(A0).
[A2] ` A −→ (0A)0.
[R1] From ` A −→ B infer ` B0 −→ A0.
[R2] From ` A −→ B infer ` 0B −→ 0A.

[GC] ` A −→ 0B if and only if ` B −→ A0.

The Kripke style semantics of NL(3) can be straightforwardly extended to NL(3,·0). A
model for NL(3,·0) is a tupleM = (W,R3

•, R
2
3
, R2

0, V ), where W,V and the accessibility

relations R3
• and R2

3
are as before. The new binary relation R2

0
governs the Galois

4Note that a similar alternative presentation could have been given while introducing NL(3). There
as well, we could obtain a Hilbert style system based on the composition of residuated type forming
operators and on their monotonicity properties.
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connected pair (0·, ·0). For simplicity, in what follows we will restrict ourselves to models
M = 〈W,R, V 〉 where R is the relation governing the Galois operators.

Given a modelM = (W,R, V ) and x, y ∈ W we define

M, x  A0 iff ∀y(Rxy →M, y 6 A).
M, x 

0A iff ∀y(Ryx→M, y 6 A).

It is easy to show that the axioms [A1], and [A2] are true in all Kripke models, and that
the rules [R1] and [R2] preserve validity, establishing soundness. For completeness, we
can extend the formula-based canonical construction for NL(3). The canonical model
Mc = (W c, Rc, V c) has

W c = FORM (the set of all formulas in the language),
¬Rc(AB) iff ` A −→ B0, and
A ∈ V c(p) iff ` A −→ p.

Notice that we define when two elements of W are not related by R. This, of course,
defines also which elements are related. But we can do even better than Mc. Given
an arrow A −→ B, we can restrict W c to be simply W c = Sub(A) ∪ Sub(B) (the set of
subformulas of A and B) and prove the following truth lemma.

Lemma 2.17. [Truth Lemma] Given A −→ B, then for all C,D ∈ Sub(A) ∪ Sub(B)
Mc, C  D iff ` C −→ D.

With this lemma, we can prove completeness with respect to a class of finite models,
and hence obtain also decidability (actually, even an upper bound on complexity).

Proof. The proof proceeds by induction on the complexity of the consequent formula.
For B ∈ ATOM, Mc, A  B iff A ∈ V c(B) iff, by definition of V c, ` A −→ B. We
assume as induction hypothesis (IH) that the lemma is true for formulas of lower or
equal complexity than B.

We consider 0B (the case for B0 being even simpler).

[⇒] direction. Mc, A 
0B iff for all D ∈ W c if RcDA then Mc, D 6 B. By contra-

position and definition of Rc, for all D, Mc, D  B implies ` D −→ A0. By definition
of W c, D is in Sub(A) ∪ Sub(B) and we can apply IH to obtain that for all D ∈ W c,
` D −→ B implies ` D −→ A0. In particular, B ∈ W c and by [REFL] ` B −→ B,
hence ` B −→ A0. By [GC], ` A −→ 0B.

[⇐] direction. Assume ` A −→ 0B to proveMc, A 
0B. Take D such that RcDA, we

should prove Mc, D 6 B. Notice that by definition of Rc, we have that 6` D −→ A0.
For contradiction, suppose Mc, D  B, then by IH, ` D −→ B, but then we can prove
` D −→ A0 as follows

` A −→ 0B
` D −→ B
` 0B −→ 0D

[R2]

` A −→ 0D
[TRANS]

` D −→ A0
[GC]

(2.1)

qed
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Theorem 2.18. [Completeness] Given A −→ B, then |= A −→ B implies ` A −→ B.

Proof. Suppose 6` A −→ B. Then by Lemma 2.17 Mc, A 6 B. As Mc, A  A, we
have Mc 6|= A −→ B and hence 6|= A −→ B. qed

As we already said, Lemma 2.17 actually establishes a strong finite model property
(an arrow A −→ B is valid iff B is satisfied in Mc, A, a (pointed) model whose size
is polynomial in |A| ∪ |B|). From this, an NP upper bound in the complexity of the
validity problem for NL(3,·0) follows.

Theorem 2.19. Given A −→ B ∈ NL(3,·0), deciding whether A −→ B is valid can be
done in non-deterministic polynomial time.

2.3.2 Displaying Galois Connected Operations

The method we have used above when looking at the logics of residuation can handle
other kinds of algebraic properties, assuming that they can be encoded in terms of
display rules. In this section we apply this method to the Galois connections.

The steps we will take to provide a DC encoding [GC] should be familiar by now.
We start by explicitly writing the algebraic property characterizing a Galois connection
for a pair of structural operators (\, [).

Γ⇒ [∆
∆⇒ \Γ

[gc].

We now project this behavior into the logical operators (0·, ·0) as it is shown in Figure 2.5.

Σ⇒ A
0A⇒ [Σ

[0·L’] Σ⇒ [A
Σ⇒ 0A

[0·R’]

Σ⇒ A
A0 ⇒ \Σ

[·0L’]
Σ⇒ \A

Σ⇒ A0
[·0R’]

Figure 2.5: DC logical rules for Galois connected unary operators.

To move closer to standard sequent presentations of CTL, we need to compile [gc] into
the logical rules. We can take [0·L] and [·0L] as they are. To obtain [0·R] and [·0R] we
need to apply [gc].

Σ⇒ [A
Σ⇒ 0A

[0·R’] by [gc]

A⇒ \Σ

Σ⇒ [A
[gc]

Σ⇒ 0A
[0·R’] by compilation

A⇒ \Σ

Σ⇒ 0A
[0·R].

Σ⇒ \A

Σ⇒ A0
[·0R’] by [gc]

A⇒ [Σ
Σ⇒ \A

[gc]

Σ⇒ A0
[·0R’] by compilation

A⇒ [Σ
Σ⇒ A0

[·0R].
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Σ⇒ A
0A⇒ [Σ

[0·L]
A⇒ \Σ

Σ⇒ 0A
[0·R]

Σ⇒ A
A0 ⇒ \Σ

[·0L] A⇒ [Σ
Σ⇒ A0

[·0R]

∆⇒ Γ Γ⇒ Σ
∆⇒ Σ

[cut]

Figure 2.6: Compiled logical rules for Galois connected unary operators.

The full set of rules obtained is shown in Figure 2.6. Notice that given the nature of
Galois connections (which involves a permutation in the order of the poset), it is not
possible to eliminate the structural operators from the right hand side of the sequents.
This is an important difference with respect to what we obtained in the previous section.
The proofs below show that the 0· and ·0 operators are indeed Galois connected,

A⇒ B0

B ⇒ B
B0 ⇒ \B

[·0L]

A⇒ \B
[cut]

B ⇒ 0A
[0·R]

A⇒ 0B
B ⇒ B

0B ⇒ [B
[0·L]

A⇒ [B
[cut]

B ⇒ A0
[·0R]

That is, the rule [gc] holds for 0· and ·0. Moreover, the operators satisfy the appropriate
Galois composition laws [gcl].

A⇒ A
A0 ⇒ \A

[·0L]

A⇒ 0(A0)
[0·R]

A⇒ A
0A⇒ [A

[0·L]

A⇒ (0A)0
[·0R]

From these, the fact that the operators are [↓]-functions follows immediately.

A⇒ B
A⇒ 0(B0)

[gcl]

B0 ⇒ A0
[gc]

A⇒ B
A⇒ (0B)0

[gcl]

0B ⇒ 0A
[gc]

The system so obtained does not enjoy cut-elimination. When interested in computa-
tional aspect of the system, this is an essential property to achieve. In the next section
we present a solution to this problem.

2.3.3 Cut-Free Sequent Calculus

In this section we show how the cut-rule of the system we have reached by applying our
method can be eliminated yielding a decidable proof search.

In the Gentzen presentation, we want to compile away the display postulate [gc], but
also part of the cut-rule, so to obtain a cut-free system. Because the Galois connected
operators are order-reversing, we have to distinguish positive and negative contexts in
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the statement of the cut-rule. We write Γ[∆] for a structure Γ with a substructure ∆ in
an isotone position (dominated by an even number of occurrence of [ or \), and Γ{∆}
for a structure Γ with ∆ in an antitone position (dominated by an odd number of [ or
\). In (2.2) we give the four instances of the cut-rule we have to consider.

∆⇒ A Γ[A]⇒ ∆′

Γ[∆]⇒ ∆′ [cut1]
∆′ ⇒ Γ[A] A⇒ ∆

∆′ ⇒ Γ[∆]
[cut2]

∆⇒ A ∆′ ⇒ Γ{A}

∆′ ⇒ Γ{∆}
[cut3]

Γ{A} ⇒ ∆′ A⇒ ∆

Γ{∆} ⇒ ∆′ [cut4]

(2.2)

The logical rules we have obtained in the previous section (Figure 2.6) swap around
antecedent and succedent of a sequent. For cut-elimination to go through, we also
need contextual versions of the rules, compiling in the axiom schemata [A1]/[A2] with
[cut2]/[cut4]. The full system NL(3,·0) is given in Figure 2.7. We will call Seq-NL(3,·0)
the Gentzen system introduced in this section, to distinguish it from its Hilbert-style
axiomatization Hil-NL(3,·0) . When the difference on the presentation is irrelevant we
will use the unmarked NL(3,·0).

Theorem 2.20. [Cut-Elimination] In Seq-NL(3,·0), every valid sequent A −→ B has a
cut-free proof.

The proof proceeds by induction on the complexity of the cut-inferences. Below, we
present the principal cases of the cut-elimination transformation: the cases where a cut
on a complex cut-formula is replaced by a cut on its sub-formula, thus decreasing the
complexity. The other cases follow the same ideas.

In (2.3) and (2.4), isotone cuts [cut1], [cut3] on the complex formula A0 are replaced
by antitone cuts [cut4], [cut2]. Similarly for cuts on 0A. (We use double lines for the
instantiation of the premise that makes a logical rule applicable.)

A⇒ [∆
∆⇒ A0

[·0R]

Γ{A} ⇒ ∆′

Γ{[(A0)} ⇒ ∆′
[·0L+]

Γ[A0]⇒ ∆′

Γ[∆]⇒ ∆′
[cut1]

Γ{[∆} ⇒ ∆′
;

Γ{A} ⇒ ∆′ A⇒ [∆

Γ{[∆} ⇒ ∆′
[cut4]

(2.3)

A⇒ [∆
∆⇒ A0

[·0R]

∆′ ⇒ Γ[A]

∆′ ⇒ Γ[[(A0)]
[·0R−]

∆′ ⇒ Γ{A0}

∆′ ⇒ Γ{∆}
[cut3]

∆′ ⇒ Γ[[∆]
;

∆′ ⇒ Γ[A] A⇒ [∆

∆′ ⇒ Γ[[∆]
[cut2]

(2.4)

In (2.5) and (2.6), antitone cuts [cut4], [cut2] are replaced by isotone cuts [cut1], [cut3].
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A⇒ A
[axiom]

∆⇒ B Γ[A]⇒ C

Γ[(A/B ◦∆)]⇒ C
[/L] Γ ◦B ⇒ A

Γ⇒ A/B
[/R]

∆⇒ B Γ[A]⇒ C

Γ[(∆ ◦B\A)]⇒ C
[\L] B ◦ Γ⇒ A

Γ⇒ B\A
[\R]

Γ[(A ◦B)]⇒ C

Γ[A •B]⇒ C
[•L] Γ⇒ A ∆⇒ B

(Γ ◦∆)⇒ A •B
[•R]

Γ[A]⇒ B

Γ[〈2↓A〉]⇒ B
[2↓L]

〈Γ〉 ⇒ A

Γ⇒ 2
↓A

[2↓ R]

Γ[〈A〉]⇒ B

Γ[3A]⇒ B
[3L] Γ⇒ A

〈Γ〉 ⇒ 3A
[3R]

∆⇒ A
0A⇒ [∆

[0·L]
A⇒ \∆

∆⇒ 0A
[0·R]

∆⇒ A
A0 ⇒ \∆

[·0L] A⇒ [∆
∆⇒ A0

[·0R]

Γ{A} ⇒ ∆

Γ{\0A} ⇒ ∆
[0·L+]

∆⇒ Γ[A]

∆⇒ Γ[\0A]
[0·R−]

Γ{A} ⇒ ∆

Γ{[A0} ⇒ ∆
[·0L+]

∆⇒ Γ[A]

∆⇒ Γ[[A0]
[·0R−]

∆⇒ Γ[[A]

∆⇒ Γ[0A]
[0·L−]

Γ{[A} ⇒ ∆

Γ{0A} ⇒ ∆
[0·R+]

∆⇒ Γ[\A]

∆⇒ Γ[A0]
[·0L−]

Γ{\A} ⇒ ∆

Γ{A0} ⇒ ∆
[·0R+]

Figure 2.7: Logical rules of NL(3,·0).
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Γ{\A} ⇒ ∆′

Γ{A0} ⇒ ∆′
(·0L−)

∆⇒ A
A0 ⇒ \∆

[·0L]

Γ{\∆} ⇒ ∆′
[cut4] ;

∆⇒ A Γ{\A} ⇒ ∆′

Γ{\∆} ⇒ ∆′
[cut1]

(2.5)

∆′ ⇒ Γ[\A]

∆′ ⇒ Γ[A0]
[·0R+]

∆⇒ A
A0 ⇒ \∆

[·0L]

∆′ ⇒ Γ[\∆]
[cut2] ;

∆⇒ A ∆′ ⇒ Γ[\A]

∆′ ⇒ Γ[\∆]
[cut3]

(2.6)

We can also establish soundness and completeness on the basis of the sequent presenta-
tion.

Soundness and completeness Seq-NL(3,·0)

We start by proving the following.

Proposition 2.21. LetM = 〈W,R, V 〉 be a model, and x ∈ W then

1. M, x |= ∆ −→ ∆′[A] and |= A −→ B then ∆ −→ ∆′[B].

2. M, x |= ∆[A] −→ ∆′ and |= B −→ A then ∆[B] −→ ∆′.

3. M, x |= ∆ −→ ∆′{A} and |= B −→ A then ∆ −→ ∆′{B}.

4. M, x |= ∆{A} −→ ∆′ and |= A −→ B then ∆{B} −→ ∆′.

Proof. By induction on the number of operators surrounding A. qed

Now define the following forgetting function.

Definition 2.22. We define the translation Tr : STRUCT→ FORM as follows,

Tr(p) = p for p ∈ ATOM

Tr(0(A)) = 0(Tr(A)) Tr([(A)) = 0(Tr(A))

Tr((A)0) = (Tr(A))0 Tr(\(A)) = (Tr(A))0.

Theorem 2.23. [Soundness of Seq-NL(3,·0)] The sequent presentation of NL(3,·0) is
sound.

Proof. Given a rule
A⇒ B
C ⇒ D

we prove that if |= Tr(A) −→ Tr(B) then |= Tr(C) −→ Tr(D), and similarly for rules
with two premises.

Notice that Proposition 2.21 proves soundness of the cut-rules. For rules [0·R+],
[·0R+] it is trivial, [0·L] For rules [0·R], [·0R], [0·L] and [·0L] use the fact that the [GC]
rule is sound. For rules [0·R−], [·0R−], [0·L+] and [·0L+] use Proposition 2.21 plus the
fact that axioms [A1] and [A2] are valid. qed

Theorem 2.24. [Equivalence of Seq-NL(3,·0) and Hil-NL(3,·0)] If A −→ B is a theo-
rem of Hil-NL(3,·0) then there is a proof of A −→ B in Seq-NL(3,·0). And for every
proof of a sequent Γ⇒ ∆ in Seq-NL(3,·0), Tr(Γ)⇒ Tr(∆) is a theorem of Hil-NL(3,·0).
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Relating Galois connected and Residuated Operations

The families of residuated unary and binary operators and unary Galois connected
operators of NL(3,·0) (Figure 2.7) are totally independent and there is no interaction
among them. Each family is interpreted by its own accessibility relation R3

•, R
2
3

and
R2

0
. If we want to create some interaction among the operators there could be different

ways of relating them. The interaction could be established by means of structural
postulates. (See Dunn’s work on Gaggle Theory [Dun91] for a discussion of semantics for
residuation and (dual) Galois connections, and [Gor98a] for a general presentation in the
framework of display calculi). In this thesis we leave this question open and investigate
the expressivity of the pure logic of Galois connected and residuated operators. In the
next section we discuss the derivability relation among types that we will explore in the
next chapters.

2.4 Derivability Patterns

We have seen that the binary and unary logical connectives of NL(3,·0) are governed by
the same algebraic principles of residuation and of the related ones of Galois connections.
In this section, we highlight some useful derivability relations among types determined
by these algebraic properties. Let us start presenting some theorems of the part of the
system which is already well known, namely NL.

First of all, notice that (X/·, ·\X) is a pair of Galois connected operators, therefore
the algebraic principle [GC] discussed in this chapter was already hidden in the base logic
of the binary residuated operators. All the derivability relations which hold for this pair
hold for the unary Galois connected operators and vice versa. In particular, in [Lam88]
it is pointed out that the lifting of a category to a higher order type, A −→ B/(A\B),
is a closure operation, as it obeys Definition 2.25 below.

Definition 2.25. [Closure] Let A = (A,v) be a partially ordered set. Any correspon-
dence

a v a∗

which associates with each element a some other element a∗ in A shall be called a closure
operation provided it satisfies the three conditions below:

a v a∗, a∗ v b∗ if a v b, a∗∗ v a∗.

By exploring NL(3,·0) one soon realizes that the definition above characterizes the
behavior not only ofX/(·\X), (X/·)\X, but also of 0(·0), (0·)0, 2

↓
3(·), when considering

v as the derivability relation (−→) and A as the set of types FORM.
First of all, we have already seen how residuated and Galois connected operators

compose (Section 2.1), viz. A −→ 2
↓
3A, A −→ 0(A0) and A −→ (0A)0. Morever, we

know that 3· and 2
↓· are upward monotone, whereas ·0 and 0· are downward monotone.

By the monotonicity calculus it follows that their compositions, 2
↓
3· and 0(·0), (0·)0

are upward monotone operators. Finally, the derivability relations below can easily be
proved,
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2
↓
32

↓
3A −→ 2

↓
3A and (0((0A)0))0 −→ (0A)0.

Note that since closure operations are upward monotone the above derivability relation
are in fact equivalences.

Another interesting property regards triples of Galois connected operators, as com-
mented in [Ore44]. The same behavior is exhibited by residuated pairs. Let (f1, f2)
be either the residuated or Galois connected operators, f1f2f1A iff f1A, and similarly
f2f1f2A iff f2A.

0((0A)0)←→ 0A and (0(A0))0 ←→ A0
32

↓
3A←→ 3A and 2

↓
32

↓A←→ 2
↓A.

From these simple relations an interesting net of derivability patterns can be derived.
The ones we will explore in this thesis are summarized in the picture below.

I �
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2.5 Key Concepts

In this chapter by explaining why CTLs are also known as “logics of residuation”, we
have introduced modern extensions of the Lambek calculi. The fundamental points to
be emphasized are:

1. NL(3) is the pure logic of residuation. In other words, its operators are governed
by the algebraic principle of residuation. All theorems provable in NL(3) are
consequences of this principle.

2. The algebraic structure of NL(3) provides room for a pair of order-reversing op-
erators, Galois connected operators (0·, ·0). The whole system NL(3,·0) is sound
and complete with respect to Kripke models and is at least in NP.
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3. Similarly, the same algebraic structure could accommodate dual Galois connected
operators. One could extend the logic presented here with those operators.

4. By means of Display Calculi we have described a method to explore a landscape
of other kinds of algebraic properties, assuming that they can be encoded in terms
of structural rules.



Part II

Reasoning with Modalities

In the first part of this thesis, we have looked at the mathematical principles that govern
residuated and Galois connected pairs of unary connectives, and the relation between
these unary operations and the more familiar binary connectives of categorial grammar.
In this part of the thesis, we put our extended type language to use in linguistic analysis.

In Chapter 3, we review the main linguistic applications for unary modalities pro-
posed so far in the literature. We then identify other possible uses of the unary operators
which have not been considered yet. We present these possibilities on a theoretical level
and look at unary operators as ‘logical features’. In particular, we propose to employ
them to capture distinctions within the domains of interpretation of linguistic signs.

In Chapter 4, we move to a concrete applications focusing on the role of monotone
functions in natural language reasoning. By decorating functional types with unary
operators we encode the semantic distinction between upward and downward mono-
tone functions. Furthermore, we study the advantages of this encoding by exploring
their contribution to the study of natural reasoning and of the syntactic distribution of
negative polarity items.





Chapter 3

Modalities for Structural Control

In this chapter we investigate the linguistic applications of the logical tools that come
with the move from unimodal to multimodal logics. We present the different ways
in which unary modalities have been used in the literature. In particular, we focus
attention on their use to control structural reasoning in the derivation of long distance
dependencies and to enforce morphological agreement (Section 3.2). In Section 3.3, by
abstracting away from the actual implementations, we summarize the logical properties
used so far and we identify the potentialities of the logical system which have not been
exploited yet.

3.1 Multimodal Systems

The mathematical structure of the Lambek systems studied in Chapter 2 provides new
logical tools which can be employed in the modelling of linguistic composition. In par-
ticular, it provides us with structure-building operations of different arities and it makes
it possible to distinguish different modes of composition for these operators. Multimodal
systems have found several applications in different fields [BRV01]. In computer science
they have been widely used; the accessibility relations, in this case, are seen as tran-
sitions among states of a computation and the labels stand for programs. In the case
of Categorial Type Logic (CTL), the accessibility relation for the binary operators is
used to model linguistic composition; the modes stand for the different ways linguistic
signs compose. In other words, the new systems can accomodate different composition
relations as living together, which is a desirable property for a logical system employed
to model linguistic phenomena. Moreover, the accessibility relation of the unary op-
erators can been seen as a feature checking relation which is a widely used concept in
linguistic theories. Finally, the interplay between the logical and the structural module
allows the use of modes and unary modalities to control grammatical resource man-
agement. The full picture can be summarized by saying that the logical rules of the
binary residuated operators offer a logical analysis of the merging of linguistic signs;
the packages of structural rules give a logical perspective on structural variation; and
modes and unary operators enable fine-grained control on the application of structural
reasoning. In this chapter, we illustrate the linguistic applications of the unary oper-
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ators introduced in [KM95, Kur95, Moo96b] by reviewing how they have been used in
the literature so far. Moreover, we introduce the tasks they will carry out in this thesis.

The natural deduction logical rules of the residuated unary operators (3,2↓) are as
below where the t, u and v labelling the rules stand for the meaning representation. In
this chapter we will concentrate of the form dimension of linguistic composition, whereas
in Chapter 4 we will take into consideration the meaning dimension as well.

Γ ` t : 2
↓A

〈Γ〉 ` ∨t : A
[2↓E]

〈Γ〉 ` t : A

Γ ` ∧t : 2
↓A

[2↓I]

∆ ` u : 3A Γ[〈v : A〉] ` t : B

Γ[∆] ` t[∪u/v] : B
[3E] Γ ` t : A

〈Γ〉 ` ∩t : 3A
[3I]

Let us look at their linguistic applications.

3.2 Controlling Structural Reasoning

The main property of the unary operators which has been exploited so far is their
ability to lexically control structural reasoning. The trade-off between logical types and
the structural configuration of a sequent allows one to model dependencies involving
precedence, dominance and agreement relations. We briefly discuss two illustrations
of this use of modalities: the treatment of wh-dependencies by means of structural
control modalities (Subsection 3.2.1) and morphological agreement via modal inclusion
postulates (Subsection 3.2.2).

3.2.1 Movement in CTL

Relative clause formation gives rise to a dependency between the relative pronoun which
introduces the clause and a hypothetical noun phrase resource (a ‘gap’) somewhere
within the relative clause body. We have seen in Chapter 1 that this kind of depen-
dency can be established by a higher-order type assignment to the relative pronoun,
such as (n\n)/(np\s) or (n\n)/(s/np). The challenge, for a type logical account, is to
adequately characterize which structural positions are ‘accessible’ for extraction. Recall
that in English extraction can be performed from the main subject position (1-a), or an-
other noun phrase position, which can be right-peripheral (1-b), or non-peripheral (1-c).
The subject case (1-a) can be derived in the base logic, using (n\n)/(np\s) as relative
pronoun type. The derivations of (1-b) and (1-c) require a controlled form of struc-
tural reasoning, involving both rebracketing and reordering. Obviously, global form of
associativity or commutativity would wildly overgenerate.

(1) a. who knows Lori.

b. which Sara wrote [. . .].

c. which Sara wrote [. . .] there.
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It is shown in [Moo99] that the structural rules in 3.1 perform the required task, together
with a lexical type assignment (n\n)/(s/32

↓np) generalizing over the (1-b) and (1-c)
cases.

Γ[∆1 ◦ (∆2 ◦ 〈∆3〉)] ` C

Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C
[ass3]

Γ[(∆1 ◦ 〈∆3〉) ◦∆2] ` C

Γ[(∆1 ◦∆2) ◦ 〈∆3〉] ` C
[diss3]

(3.1)

Note, that these rules are available only for marked formulas, where the latter are
introduced only due to information stored in the lexical entries. Let us first look at the
derivation of (1-b) where the extraction is performed from a peripheral position.

which ` (n\n)/(s/32
↓np)

[32
↓np ` 32

↓np]2

Sara ` np

wrote ` (np\s)/np

[2↓np ` 2
↓np]1

〈2↓np〉 ` np
[2↓E]

(wrote ◦ 〈2↓np〉) ` np\s
[/E]

Sara ◦ (wrote ◦ 〈2↓np〉) ` s
[\E]

(Sara ◦ wrote) ◦ 〈2↓np〉 ` s
[ass3]

(Sara ◦ wrote) ◦ 32
↓np ` s

[3E]1

(Sara ◦ wrote) ` s/32
↓np

[/I]2

which ◦ (Sara ◦ wrote) ` n\n
[/E]

Note how the re-bracketing is controlled by the pronoun type assignment which requires
a sentence missing a noun phrase occurring in a special position 32

↓np. This forces
the assumption of a marked noun phrase 2

↓np. This marker is then passed from the
logical to the structural language by means of [2↓E], to allow the required re-bracketing
[ass3]. However, abstraction can take place only from atomic structural formulas (i.e.
logical formulas). Therefore, once 〈2↓np〉 has fulfilled its task on the structural level, it
is replaced by the corresponding logical formula by means of [3E]1. This rule substitutes
the co-indexed hypothesis with a second one, which is finally discharged building the
type suitable for the pronoun.

The interaction structural rule [ass3] required by the derivation of right-branch ex-
traction in peripheral position in itself is not enough to express the proper structural
generalization of wh-dependencies in English. In particular, this structural rule does
not help deriving (1-c). To account for right-branch extraction from a non-peripheral
position one needs the interaction structural rule [diss3] as well.

which ` wh/(s/32
↓np)

[32
↓np ` 32

↓np]2

[2↓np ` 2
↓np]1

....
Sara ◦ ((wrote ◦ 〈2↓np〉) ◦ there) ` s

Sara ◦ ((wrote ◦ there) ◦ 〈2↓np〉) ` s
[diss3]

(Sara ◦ (wrote ◦ there)) ◦ 〈2↓np〉 ` s
[ass3]

(Sara ◦ (wrote ◦ there)) ◦32
↓np ` s

[3E]1

Sara ◦ (wrote ◦ there) ` s/32
↓np

[/I]2

which ◦ (Sara ◦ (wrote ◦ there)) ` n\n
[/E]
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This derivation can be read in a similar way than the previous one. The only difference
is the application of [diss3] which brings the hypothesis in a peripheral position.

These examples are meant only as an illustration of the method used in CTL to ac-
count for long distance phenomena. A detailed discussion can be found in [Moo99], where
unary operators and structural reasoning are also exploited to deal with crosslinguistic
variations. In particular, the lexical type assignments and structural packages required
to model English relative clauses are compared with the ones required by subject-object-
verb language like Dutch. In a few words, the structural variation between the two lan-
guages with respect to relative clauses is captured by combining a universal base logic
with different structural packages.

The categorial account of structural control is surprisingly close to ‘feature-driven’
structural reasoning in generative grammar, especially within the minimalism program
[Cho95] formalized in [Sta97]. We briefly discuss this correspondence, using Stabler’s
algebraic version of minimalism and Vermaat’s type logical translation of Stabler-style
grammars [Ver99], as our point of reference. First we sketch the main ideas of the
minimalist program for readers not familiar with this framework.

The minimalist program

Minimalism is a recent development of generative grammar (See Radford [Rad97] and
Haegeman [Hae94] for an introduction to its background assumptions). As in many other
linguistic theories, in the minimalist program the way sentences are structured out of
words and phrases is determined by the specific categories assigned to such constituents.
The two basic structure-building operations, Merge and Move, are both driven by
feature checking. The system generates structures which will be given an overt form
(the phonetic form PF) when the required conditions for grammaticality are met. Covert
movement can still be applied to interpret the syntactic structure once built, yielding
the logical form (LF).

Lexicon
↓

Merge & Move

↓
Spell out → PF

↓
covert Move

↓
LF

Categories can be either lexical categories, e.g. nouns, adjectives, adverbs, and prepo-
sitions (the words belonging to these categories have lexical/descriptive content), or
functional categories, e.g. determiners, pronouns and complementizers (the words be-
longing to these categories have essentially a grammatical function). Moreover, besides
these overt constituents, syntactic structures may contain empty (covert, or null) cate-
gories as well, i.e. categories which have no overt phonetic form, and hence which are
inaudible or silent —empty categories are used for example in gapping. Furthermore,
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a distinction is made among grammatical features which are interpretable (at LF) by
virtue of having semantic content (e.g. person, gender, tense, etc.), and uninterpretable
(at LF) by virtue of having no semantic content (e.g. wh, case, etc.). LF-representation
may contain only (semantically) interpretable features. Finally, categories can have
‘strength’ features which determine whether they trigger over (strong) or cover (weak)
movement.

Phrases are formed by merging (combining) two expressions together provided their
categories match. Every phrase has a head word which determines the nature of the
overall phrase and selects for the constituents it can combine with. For instance, an
expression such as help you is a verb phrase (VP), because its head word help is a verb
(V). The verb phrase headed by help with complement you and with specifier we is
represented as the following tree.

VP

DP

we

V’

V

help

DP

you

The different words in a sentence carry grammatical features which are guaranteed to be
compatible with those of other words in the same sentence by means of a feature checking
mechanism [Cho95]. If a derivation (the sequence of steps of Merge and Move used to
build a complex expression from lexical expressions) gives rise to an LF-representation
containing only (semantically) interpretable features, the relevant derivation is said to
converge (at LF); if it gives rise to an LF-representation containing one or more (se-
mantically) uninterpretable features, the derivation is said to crash (at LF), and the
corresponding sentence is ill-formed. Grammatical features are checked in the course of
a derivation, and uninterpretable features are erased once checked.

Long distance dependency in the minimalist grammar

By focusing attention on Merge and Move, Stabler has captured the basic ideas of the
minimalist syntax in a derivational system known as Minimalist Grammar (MG) [Sta97].
Briefly, he shows that Merge corresponds to functional application accounting for
predicate-argument relations, whereas Move deals with the restructuring of built struc-
tures. The clear distinction between these two operations is made possible by the use
of an algebraic grammar format where different sorts of features are clearly defined.

First of all, the lexicon of MG is a finite set of trees lexical head seen as a sequence
of syntactic features. The latter are defined as below.

Definition 3.1. [Syntactic Features of MG] The language of MG is built over the set of
base features BASE, given by the union of syntactic categories (SynCate) and functional
categories (FunCate) as below, where the complex features operators can be interpreted
as in Table 3.1.

BASE ::= SynCate ∪ FunCate.
Feature ::= BASE | =BASE | + BASE | − BASE.
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Feature Interpretation
= x selection requirement
+x assignment of x to specifier (licensor)
−x requirement of x (licensee)

Table 3.1: Features in MG.

The two structure building operators of MG are called merge and move since they are
intended to capture the operations of the minimalist program. The former is a binary
operation over sequences of features merge(S1, S2) = S, where S1 has an accessible
feature =x and S2 has an accessible feature x; = x and x are cancelled out in S. On the
other hand, move is a unary operation on sequences with an accessible feature +f and an
accessible link with root labelled −f. S = move(S1) is the tree obtained by moving the
subtree with the accessible feature −f to the specifier position of S1, and cancelling −f
and +f. Finally, the information concerning the head/complement/specifier positions is
marked by < and > labelling the nodes in the tree. The two labels point to the head of
the projection, and consequently they mark the specifier and complement which are at
the left and right of the head, respectively.

We illustrate how the grammar works by looking at a derivation of the structure
involving a wh-dependency. Let the set of syntactic categories be SynCate := {n, v}
which stand for ‘noun’ and ‘verb phrase’ and the set of functional categories FunCate :=
{ip, cp, d} which stand for ‘inflection phrase’, ‘complementizer phrase’ and ‘determiner
phrase’. The lexical entries used to derive which book the student write are given below
where ε stands for the empty phrases1.

which::= [=n d−wh] ε::= [=v ip]
book ::= [n] ε ::= [=ip +wh cp]
student ::= [n]
the::= [=n d]
write::= [=d =d v]

For instance, the sequence of features assigned to the relative pronoun which expresses
that (a) it combines with a noun =n to yield a determiner phrase d, and (b) the composed
phrase has the feature −wh to be checked against a functional category providing +wh.

which book
[=n d -wh] [n]

;Merge
<

which:[d -wh] book

The connection between MG and CTL is spelled out in [Ver99]. In particular, it is shown
how the elimination rules [/E] and [\E] of CTL play the role of merge. On the other
hand, the features driving the move operation are encoded by means of modes carried by
the unary operators, viz. (3s,2

↓
s), with s ∈ {wh, nom, acc, fut, past, . . .}. For instance,

1Note that this example taken from [Sta01] is a pseudo-English phrase since it ignores the tense.
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the lexical assignment of which is decorated with 2
↓
wh requiring ‘to be checked’ by 3wh.

The merging of the lexical entries which and book is obtained by applying [/E].

which ` 2
↓
whd/n book ` n

which ◦ book ` 2
↓
whd

[/E]

In MG the uninterpretable feature -wh carried by the relative pronoun forces the ap-
plication of move as illustrated below. The wh-phrase moves from the position where
it occurs at the surface structure to the complementizer position deriving for example
which book the student write.

<

ε:[+wh cp] >

the student <

write >

which book:[-wh]

Alternatively, the tree above can be represented in a natural deduction format which
facilitates the comparison with the CTL approach.

ε::=ip +wh cp

ε::=v ip

write::=d =d v
which::=n d -wh book::n

(which book):d -wh
merge1

(write):=d v, (which book):-wh
merge2

the::=n d student::n
(the student):d

merge1

(the student write):v, (which book):-wh
merge3

(the student write):ip, (which book):-wh
merge3

(the student write):+wh cp, (which book):-wh
merge3

(which book the student write):cp
move

In the derivation we distinguish different merge operations: merge1 is the simple function
application explained above; merge2 has as second argument an expression carrying a
feature which requires to be checked, hence it must be left accessible for feature checking;
merge3 operates on sequences such that the second argument is composed of a chain of
sequences. The final step is the move operation which can be applied since the feautre
carried by the wh-phrase is licensed. See [Sta01] for a detailed discussion.

In the analysis proposed in [Ver99], this second part of the derivation is taken care of
by the unary operators. The restructuring of the derived phrase performed by the move
operation is accounted for by means of interaction structural rules. Without going into
the details of this analysis, we would like to draw attention to the way ‘requirements’
vs. ‘production’ of a syntactic feature are expressed in the two approaches. First of
all, note how in CTL the selection requirement expressed by the = is captured by the
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logical properties of the /. Similarly, the different polarities + and − displayed on
the features in MG are captured by the logical relation between the unary operators.
Let us explain this by looking back at the derivation in CTL of which book the student
write given in the previous section. The assumed np is decorated with 2

↓ requiring
a feature to be checked. The 3 carried by which provides the means to perform the
required feature-checking. In other words, the structural reasoning place the role of the
overt movement of the hypothesis ‘gap’, whereas the residuated relation between 3 and
2
↓, and between • and / establish the wh-dependency driving the restructuring and

checking the feature agreement. Finally, note how the MG and CTL are very similar in
the recursive definition of their language, and in the distinction between the two sorts
of rules to build trees and restructure them. However, they diverge essentially in two
ways: (i) in MG the interplay between features is purely stipulated, whereas in CTL it
derives from the logical properties of the operators; and (ii) since MG is based only on
modus ponens, it lacks a rule performing the hypothetical reasoning.

In addition to overt movement the minimalist framework also provides one with
covert movement, viz. movement which is not visible at the surface structure or at the
phonological level, but which determines the scope distribution of the moved expression
at LF. Quantifier phrases are an example of the class of phenomena analyzed in terms of
covert movement. In the CTL framework they have been modelled by means of (inter-
action) structural rules [Mor94, Moo96a] exploiting the Curry-Howard correspondence
(Section 1.3). Chapter 6 is dedicated to the analysis of these phenomena and it also
contains a comparison of the categorial type logical approach with the analysis proposed
within the minimalist program.

3.2.2 Morphological Agreement in CTL

Unary operators have also been employed to encode morphological information. The
type logical analysis of morphological agreement worked out by Heylen [Hey99] pro-
vides a categorial alternative for the unification and subsumption based approach of
framework like Head Driven Phrase Structure Grammar, and Lexicalized Functional
Grammar. In order to recast their mechanisms in logical terms, underspecification and
overspecification are expressed via inclusion postulates and the law of residuation is ex-
ploited to account for the subsumption relation among expressions of the same syntactic
category. Moreover, interaction postulates involving unary and binary operators govern
the way information is distributed through phrase structure. In our exposition of the
linguistic applications of the unary operators, Heylen’s proposal is of particular interest
for the use of the inclusion postulates and more generally for the application of inclusion
relations among types.

The following postulates exemplify the encoding of underspecification. We indicate
the modes as indexes, where ‘pl’ and ‘sg’ stand for ‘plural’ and ‘singular’, respectively
and ‘num’ identifies underspecification.

Inclusion Postulates

[PL] 3numA −→ 3plA and [SG] 3numA −→ 3sgA



3.2. Controlling Structural Reasoning 57

These postulates can be read as saying that a phrase of syntactic category A under-
specified for its number, 3numA, could be either plural 3plA, or singular, 3sgA. The
alternative presentation with structural rules is given below.

Γ[〈∆〉pl] ` C

Γ[〈∆〉num] ` C
[pl]

Γ[〈∆〉sg] ` C

Γ[〈∆〉num] ` C
[sg]

Morphological agreement is required, for instance, for the combination of the definite
article with its noun in Italian. Differently from English, Italian uses definitive arti-
cles sensitive to the number of the noun they combine with, e.g. i pomodori (tr. the
tomatoes) is correct, whereas i pomodoro (tr. the tomato) is not. On the other hand,
transitive verbs are underspecified regarding the number of their object, e.g. both il gatto
mangia i pomodori (tr. the cat eats the tomatoes) and il gatto mangia il pomodoro (tr.
the cat eats the tomato) are correct Italian sentences. When encoding morphological
information into lexical assignments, the relation holding among expressions of the same
syntactic category but with different morphological properties, must be taken into ac-
count. For this specific case, it must be stated that the expression taken as argument by
the transitive verb can be either plural or singular. In [Hey99], this information would
be expressed by the unary operators labelling the lexical type assignments as shown by
the example below.

il ∈ 2
↓
sgnp/2

↓
sgn pomodori ∈ 2

↓
pln

i ∈ 2
↓
plnp/2

↓
pln mangia ∈ (2↓

sg
np\s)/2↓

num
np

The type assignment of the article i (resp. il) specifies that it combines with a plural
(resp. singular) noun, to give a plural (resp. singular) noun phrase, whereas the verb
mangia is sensitive to the number of its subject, but is underspecified for the number of
the noun phrase taken as object.

The assembly of the plural article i with the singular noun pomodoro is blocked
simply by the mismatch of their types. On the other hand, the possibility of the verb
mangia to combine both with the plural and singular noun phrases i pomodori and il
pomodoro, is carried out by means of the inclusion relations [pl] and [sg]. In a top-down
reading the derivation below can be read as saying that a structure which is specified for
its number can also be underspecified if required by the constituent it composes with.

mangia ` (2↓
sg
np\s)/2↓

num
np

i ◦ pomodori ` 2
↓
plnp

〈i ◦ pomodori〉pl ` np
[2↓

plE]

〈i ◦ pomodori〉num ` np
[pl]

i ◦ pomodori ` 2
↓
num
np

[2↓
num

I]

mangia ◦ (i ◦ pomodori) ` 2
↓
sg
np\s

[/E]

Note how once again the residuation law makes possible a division of labor between the
logical and structural languages; the former takes care of feature checking, whereas the
subsumption relation is checked by the latter. Moreover, notice how in the enforcing
of the agreement relation a crucial role is played by the monotonicity of the binary
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operators. This can be better understood by abstracting away from the details of the
derivation and looking at the general schema below. Let C −→ B, then in natural
deduction there is a derivation from Γ ` C to Γ ` B, therefore

∆ ` A/B

Γ ` C....
Γ ` B

∆ ◦ Γ ` A
[/E]

Put differently, one could say that since / is downward monotone in its second argument
position, a structure of type A/B will combine with any structure of a type C smaller
than or equal to B.

3.3 Zooming in on the Semantic Domains

Generalizing over the analyses we have outlined, one could say that unary operators
allow us to express distinctions among members of the same semantic type which are
relevant for the syntactic composition. In other words, the unary operators express
distinctions similar to the ones expressed by the directional functional implications \
and / at the level of meaning assembly, where the directionality information plays no
role anymore2.

In a similar way, the unary operators encode in the type assignments fine-grained dis-
tinctions both within and across languages which are not distinguishable in the meaning
assembly. For instance, both the plural and singular Italian articles are interpreted in
the domain Dom((e,t),e), viz. the set of functions from nouns to noun phrases. However,
their contributions to the linguistic composition differ: the plural article i is unable to
compose with a singular noun, whereas the singular il can. The unary operators encode
this difference which is not visible on the level of the domains of interpretation. Simi-
larly, the crosslinguistic contrast between the way adjectives may combine with nouns
in Italian and in English does not play any role in the assignment of the meaning to
their composition, but it is relevant for their syntactic assembly in the two languages.

Let us now summarize the logical properties of CTL which have been exploited so far.
In all the accounts we reviewed a crucial role has been played by the residuation law of
both the binary and unary operators. Moreover, structural reasoning has been lexically
anchored to account for linguistic composition of items sensitive to either word order
or morphological features. Finally, lexical type distinctions and structural rule pack-
ages have been used to account for crosslinguistic differences regarding these sensitive
properties.

In our investigation of the mathematical structure of CTL we discussed other logical
properties. First of all, residuated operators could be identified also by their way of
composing. Recall the patterns

32
↓A −→ A and A −→ 2

↓
3A.

2Technically, we assume that in the mapping from syntactic to semantic types, the unary operators
are ‘forgotten’: type(3A) = type(2↓A) = type(A).
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Moreover, NL(3,·0) offers a second pair of unary operators (0·, ·0) which exhibit different
logical behavior

A −→ 0(A0) and A −→ (0A)0

and such that 0(A0) 6←→ 2
↓
3A, and (0A)0 6←→ 2

↓
3A. Finally, the Galois connected

operators introduce a way to reverse the derivability relations holding among types, e.g.
if A −→ B, then 0B −→ 0A.

In this thesis we will make use of these other logical properties of NL(3,·0) which
have not been exploited yet. As in the previous accounts, we employ the residuated
unary operators as well as the Galois connections to zoom in on the domains of inter-
pretation encoding differences not visible otherwise. However, attention is focused on
different sorts of features distinguishing the members of the same semantic type. In par-
ticular, we look at the monotonicity and nonveridicality properties of expressions in the
functional domains, as well as at the difference between, for instance, distributive and
non-distributive quantifier phrases. These properties are also crucial to identify modes
of linguistic composition. However, these different composition relations are not sensi-
tive to the internal structure of the constituents, but only to their distribution. We will
show how NL(3,·0) can account for the sentences in our original checklist (Example 1.3)
which the grammars discussed so far fail to recognize. We repeat those sentences below
indicating their interprations by means of [X > Y], viz. X has scope over Y.

(2) a. Every student knows one book. [Every > One], [*One > Every]
b. Every student knows some book. [Every > Some], [Some > Every]
c. No student knows any book. [No > Any], [*Any > No]

(3) a. No student left yet.
b. Some student left already.

The challenge one has to face to account for these sentences is to have a language
expressive enough to distinguish the scope behavior of the quantifier phrases, and the
different distribution of the adverbs yet and already. Moreover, the grammar has to
account for the ungrammaticality of the sentences below:

(4) a. *A student knows any book.
b. *No student left already.
c. *Some student left yet.

Briefly, we use the unary operators to carry semantic features distinguishing the types
of, for instance, the upward and downward monotone quantifiers some student and no
student, respectively, and study the advantages of expressing this distinction when mod-
elling both linguistic composition and natural reasoning (Chapter 4). Moreover, we
exploit the different compositions of the unary operators to differentiate the sentential
levels on which quantifiers may or may not take scope accounting for their different ways
of scoping (Chapter 6). Furthermore, the same property is used to embody the subset
relation holding inside a domain between members enjoying different but related prop-
erties. For instance, in the domain of quantifiers one could distinguish the antiadditive
quantifier nobody and the downward monotone one few n, where the set of antiadditive
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functions is a subset of the downward monotone ones. In Chapter 7, we take advan-
tage of fine-grained type assignments to model polarity items which are in a licensing
condition with some semantic property. Finally, we show how the downward monotone
property of the Galois operators could have a role in dealing with antilicensing relations.

The Leitmotiv of all these analyses is the simple schema given in the previous section
and repeated here. Let C −→ B,

∆ ` A/B

Γ ` C....
Γ ` B

∆ ◦ Γ ` A
[/E]

An important aspect to underline is that differently from the analysis of morphological
agreement, in our approach the derivation from Γ ` C to Γ ` B will be carried out
only by logical rules with no application of structural reasoning. Therefore, our analysis
stays within the borders of the base logic given by the algebraic principles of Galois
connections and residuation.

3.4 Key Concepts

The relevant lesson to keep in mind about unary operators is that they can be thought
of as logical tools which can be employed to:

1. Lexically anchor linguistic composition.

2. Distinguish items which belong to the same semantic category, but differ in some
other aspects relevant for grammaticality.

3. Express subset relations within the domains of interpretation.

4. Mark the presence of sensitive items, and pass the information through the deriva-
tion.



Chapter 4

Reasoning with Monotone Functions

In this chapter we present a proof theoretical account of natural reasoning using linguistic
structures as the vehicle of inference. Following [Sup79, Ben86], we refer to this system
as a Natural Logic. In particular, we focus attention on monotone inference. The notion
of monotonicity is closely related to that of negative polarity items (NPIs). We aim to
develop a system which, while marking the linguistic structures with the information
required to model natural reasoning inferences, accounts for NPI distribution.

We start by showing the link between NPIs and natural reasoning (Section 4.1).
While discussing this connection, we give the background behind the natural logic pro-
posed by van Benthem [Ben86] and further studied by Sánchez [SV91] (Section 4.2). By
looking at an alternative system proposed by Dowty in [Dow94], we show that a logical
account of NPIs requires the use of internalized polarity markers (Section 4.3). Finally,
in Section 4.4 we describe a natural logic based on a multimodal categorial type logic
(MCTL). We show that MCTL has the required expressivity to account for NPIs and
produce marked structures ready for deriving natural reasoning inferences.

4.1 Parsing and Reasoning

The task of accounting for the role of language in drawing inferences is commonly
considered to belong to the domain of formal semantics. Most of the literature in
natural reasoning assumes a model theoretic perspective, and uses a formal language
as an intermediate step into which natural language expressions are translated. In this
translation information is lost about natural language structures which might be relevant
when drawing inferences. It is an interesting question whether a system can be developed
which is able to compute natural reasoning inferences taking into consideration the
information human beings rely on when reasoning. In particular, we are referring to the
syntactic and semantic information obviously involved in reasoning. This is the task that
the construction of a natural logic is supposed to tackle as explained in [Ben86, Ben87b]
inspired by [Sup79], where the name indicates that instead of employing logical forms
as vehicles of inference, natural language expressions are used directly.

In this approach, the applicability of an inference pattern is read off from a derivation.
The advantage gained by assuming such proof theoretical perspective is that one can
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study how natural language structures contribute to natural reasoning. It is, of course,
an ambitious project, given the high complexity of sentences, the richness of ambiguity
which is a hallmark of any human language, and the variety of natural reasoning forms.
In order to make it more tractable, we focus on specific inference patterns selected
together with a restricted set of linguistic structures. Following [Ben86, SV91] we will
look at monotonicity inferences. See [FWF00] for an interesting natural logic involving
conservativity in addition to monotonicity.

Besides contributing to natural reasoning, monotonicity also plays an important
role in establishing the grammaticality of some forms of linguistic composition. In
natural language one finds expressions known as negative polarity items (NPIs), whose
syntactic distribution is determined by the monotonicity property of the phrases they
are in construction with. A system employed to model the composition of linguistic signs
must be able to take monotonicity information into consideration when working with
these expressions. In this chapter we show how the two aspects of parsing and reasoning
can be accounted for within the categorial type logic framework. In particular, we
present a system which can deal with the distribution of NPIs and produce marked
parsed output from which monotone inferences can be drawn.

4.1.1 Negative Polarity Items and Monotonicity

The study of negative polarity items (NPIs) started with the work by Klima [Kli64]
who looks at them as expressions which must be ‘in construction with’ a trigger or
licensor , where the latter is either negation or an “affective element”, e.g. a verb like
surprised. However, no explicit references to the existence of a phenomenon of negative
polarity were made, yet. The move to a conceptualization of it and the introduction
of the terminology now in use is due to Baker [Bak70]. In that work, the notion of
licensing elements made an implicit appearance, since the distribution of polarity items
is seen as a matter of being in the scope of a suitable element, though “scope” and
“suitable element” are not properly defined yet. Fauconnier [Fau75] looked at NPIs
as denoting extreme elements among a set of alternatives. In doing so, he introduced
a semantic perspective on the issue. This work inspired Ladusaw [Lad79], who gave
a precise semantic interpretation to the vague idea of affective licensors proposed by
Klima, identifying them with downward monotone expressions. Since then, negative
polarity items have been studied from various perspectives, some more syntactically
oriented [Lin81, Pro88], others more semantic in nature [Zwa86, Wou94, Gia97] and yet
others more focused on the pragmatic aspects [KL89, KL93, Chi02]. In Chapter 7, we
analyze the distributional behavior of NPIs in detail, but for now it is sufficient to define
them as follows.

Definition 4.1. [Negative Polarity Items] Negative polarity items are expressions which
can appear felicitously only in the scope of monotone decreasing functions.

This definition calls for another one used to identify NPIs’ licensors.

Definition 4.2. [Monotone Functions] Let f : A → B be a function and let ≤A, ≤B

be partial orders on A and B, respectively. Then,
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a. f is monotone increasing (↑Mon) iff ∀x, y ∈ A, x ≤A y implies f(x) ≤B f(y).
b. f is monotone decreasing (↓Mon) iff ∀x, y ∈ A x ≤A y implies f(y) ≤B f(x).

The ↑Mon functions are also referred to as upward monotone and the ↓Mon functions
as downward monotone. Let us illustrate the meaning of these definitions when applied
to linguistic data.

In the classical categorial grammar (CG) approach to natural language, the derivation
of sentences is seen as a sequence of function applications starting from the categories
assigned to the lexical items in the lexicon. The original references [Ajd35, BH53]
deal mainly with syntax, and treat composition as type combination. However, the
framework lends itself so naturally to the formal analysis of monotonicity phenomena,
that the categorial grammar literature about the application of the monotonicity calculus
to natural language is quite broad. A classic reference is [Zwa86] where these kinds of
semantic properties are investigated from an algebraic perspective. This methodology
permits very sharp semantic analyses of monotonicity phenomena, such as generalized
quantifiers. Let us first recall the definition of partially ordered domains we discussed
in Section 1.3, which can be used to check the monotonicity property of linguistic signs.

Definition 4.3. [Partially Ordered Domain] Let Doma be a domain of type a, where
a ∈ TYPE and TYPE is built over the set {e, t}.

If β, γ ∈ Dome, then [[β]] ≤e [[γ]] iff [[β]] = [[γ]].
If β, γ ∈ Domt, then [[β]] ≤t [[γ]] iff [[β]] = 0 or [[γ]] = 1.
If β, γ ∈ Dom(a,b), then [[β]] ≤(a,b) [[γ]] iff ∀α ∈ Doma, [[β(α)]] ≤b [[γ(α)]].

Once we know the monotonicity of linguistic expressions, we also know how to deal with
NPIs. For instance, Definition 4.1 correctly predicts the data below where the NPI yet
and anybody are licensed by the ↓Mon function nobody (1-a) and doubt (1-c) and are
ungrammatical in the scope of the ↑Mon function everybody (1-b) and think (1-d).

(1) a. Nobody left yet.

b. *Everybody left yet.

c. John doubts that anybody left.

d. *John thinks that anybody left.

As soon as we move to consider more complex sentences, an important information about
monotone functions, is the way they compose. For example, in (2-a) anybody is ungram-
matical since didn’t and doubt compose yielding an upward monotone function [Tov96].
Similarly, in (2-b) the two downward monotone functions not and all compose together
and therefore cannot license anything [Hoe86].

(2) a. *John didn’t doubt that anybody left.

b. *Not all students who know anything about logic know Modus Ponens.

Formally, monotone functions compose as follows.

Proposition 4.4. [Monotone Functions Composition] It is straightforward to prove that
the composition of monotone functions follows a sign rule. Let A+ → B (A− → B) stand
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for an upward (resp. downward) monotone function f : A → B. For g : Ax → B and
f : By → C, f ◦ g : Asg(x,y) → C, where sg(x, y) = + for x = y, and − otherwise.
Expressed as a table:

f ◦ g = h h : Az → C

↑Mon ◦ ↑Mon = ↑Mon h : Asg(+,+) → C
↓Mon ◦ ↓Mon = ↑Mon h : Asg(−,−) → C
↑Mon ◦ ↓Mon = ↓Mon h : Asg(+,−) → C
↓Mon ◦ ↑Mon = ↓Mon h : Asg(−,+) → C

Finally, Linebarger [Lin81] shows that negative polarity items must occur in the imme-
diate scope of their licensor with no logical elements intervening, where logical elements
are expressions able to entering into scope ambiguities. For instance, in (3-a) the read-
ing with every as an intervener between the negation and the negative polarity item is
ungrammatical. However, there also exist harmless interveners like the bridge predicate
think which does not block the link between the NPI and its licensor (3-c). Moreover,
multiple NPIs can be licensed by the same trigger as in (3-d) taken from [Lad92]. Let
[X > Y] mean ‘X has scope over Y’, and let % mark awkward sentences.

(3) a. Mary didn’t wear any earrings to every party. [Neg > Any > Every].

b. %Mary didn’t shout that John had any problems.

c. Mary didn’t think that John had any problems.

d. Nobody said anything to anybody.

The contrast between (3-b) and (3-c) has been explained by assuming that non-bridge
verbs like shout are essentially quotational and hence embed a structure that contains
an illocutionary operator [Kri95]. These examples show that in addition to the logical
composition of monotone functions, what matters is the way in which linguistic signs
are actually assembled. Therefore, a deductive account of negative polarity items must
allow for controls on the way functions compose. We will come back to this point in
Sections 4.3 and 4.4. First, let us look at the role monotone functions play in drawing
inferences.

4.1.2 Monotonicity in Natural Reasoning

Looking at the definition of monotone functions, it can be seen that monotonicity is
closely tied to natural reasoning, since the partial order ≤ (Definition 4.3) can be in-
terpreted as the entailment relation. Let us clarify this connection by means of an
example.

Example 4.5. [Natural Reasoning Patterns] Consider these intuitively correct infer-
ences:
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Everybody (left something expensive)

Everybody (left something)
(A1)

Nobody (left yet)

Nobody (left in a hurry yet)
(B1)

Some boy will run fast

Some boy will run
(A2)

No boy will run

No boy will run fast
(B2)

Not every good logician wanders

Not every logician wanders
(A3)

Every logician wanders

Every good logician wanders
(B3)

These inferences are valid only because something is “more general” than something
expensive; left is “more general” than left in a hurry ; and run and logician are more
general than run fast and good logician, respectively. Formally, they involve replacing
one expression by another, the denotation of which is a superset (as in A) or a subset
(as in B) of the denotation of the original expression.

We aim to derive the above inferences proof theoretically from parsed marked sen-
tences. In order to achieve this goal, first of all we need to have a clearer picture of the
kind of inferences we need to model. A substitution of an expression with something
more or less general could in fact be done in any position in a sentence. Therefore, the
described behavior can be expressed in more general terms by the following inference
schemas. Let P and Q stand for linguistic expressions, and let ≤ be a partial order
between their denotations, respecting their degree of “generality” (see Example 1.31).
Then, if [[P ]] ≤ [[Q]],

N [P ]

N [Q]
(A) or

N [Q]

N [P ]
(B)

The examples (A1), (A2) and (A3) instantiate (A), while (B1), (B2) and (B3) exem-
plify (B). The question which arises at this point is whether these schemas can always
be applied, and how we can decide which of the two produces a valid inference. An
answer to this question is given by the monotonicity calculus, and its connection to the
computation of the polarity of the position in which the expression occurs.

Before looking at the relation between monotonicity and polarity in formal languages,
we want to draw attention on the fact that there exist also environments which do not
allow inferences in any direction [Hoe86]. These contexts are created by nonmonotone
functions like exactly three boys. For example, from exactly three boys were skating, one
cannot derive either exactly three boys were moving nor exactly three boys were skating
fast. There are two sorts of nonmonotone functions: those which block any kind of
substitution, also known as opaque or intentional contexts like believe, and those which
still allow substitution of equivalent expressions. In the remainder of the chapter we will
not take the nonmonotone functions into consideration, but the systems described here
could be extended to include them as well.

4.1.3 Monotonicity and Polarity

Monotonicity and polarity are well-known notions in mathematics [Lyn59]. We have
already anticipated the definition of monotone functions, what we need to make explicit
is the flow of information from the function to its argument.
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Definition 4.6. [Monotone Argument Positions] The argument of an ↑Mon function
f : A→ B is said to be in an increasing monotone position, whereas the argument of a
↓Mon function is in a decreasing monotone position.

When interpreting linguistic expressions as functions and the construction of sentences
as function composition, the monotonicity calculus gives us the required information
to decide which one of the inference schemas given above can be applied for drawing
correct inferences: an expression in an increasing (resp. decreasing) monotone position is
substituted with a more (resp. less) general one following (A) (resp. (B)). Let us go back
to Example 4.5 and consider again the inference in (B2), trying to apply the intuitions
we just discussed.

Example 4.7. Suppose we take a functional perspective and consider the linguistic
phrases no boy and will as functions represented as no boy and will and the sentence
No boy will run as the result of the functional application of the composed function
no boy ◦ will to run. Using the standard linguistic categories, the function representing
run is of category iv (intransitive verb), and the whole sentence is s (sentence).

no boy : iv− → s (1) no boy will run−

will : iv+ → iv
no boy ◦ will : ivsg(+,−) → s
no boy ◦ will : iv− → s

no boy ◦ will ◦ run : s

no boy will run−

no boy will run fast

The monotonicity of the composed function no boy ◦ will gives us the information
required to derive the inference above. But suppose we want to derive no boy or no
girl will run from (1). The monotonicity calculus does not help us there, as we are
substituting in a function position, instead of in an argument position. We need to
extend the monotonicity calculus, so that it will also yield marked positions for these
cases, and this is not as straightforward as it seems, because we need a way to refer
explicitly to the functions. We need to compute the polarity of the position where the
function occurs.

In first order logic (FOL) polarity is defined in terms of the number of negations
surrounding a subformula [Lyn59]. But FOL does not capture the compositional behav-
ior needed for formalizing natural language functional application. In Section 1.3, we
have seen that a way of properly speaking about functions is provided by the lambda
calculus [Chu40]. By introducing it into the picture we have the final missing ingredient.

Briefly, the set of typed lambda terms is defined as follows. For any type a, let CONa

be a set of constants of type a and VARa be a set of variables of type a, then the set of
typed lambda TERMa expressions over CONa and VARa is given by

TERMa := ca | xa | (TERM(b,a) TERMb)
TERM(b,a) := λxb.TERMa.
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where ca ∈ CONa and xa ∈ VARa. The operator λ is said to bind x; unbounded
variables are said to be free, we abbreviate with FV (M) the set of free variables in M .
For this language it is now possible to define both monotone and polarity positions. The
definitions were originally given in [Ben86] and further explored in [SV91].

Definition 4.8. [Monotone Occurrence] Let N ′
a be a lambda term like Na except for

containing an occurrence of M ′
b where Na contains Mb (viz. N ′

a = Na[M
′
b/Mb]), where

a, b stand for the type of the indexed terms.

i. Na is upward monotone in Mb iff for all models M and assignments f : [[M ]]fM ≤b

[[M ′]]fM entails [[N ]]fM ≤a [[N ′]]fM;

ii. Na is downward monotone in Mb iff for all modelsM and assignments f : [[M ]]fM ≤b

[[M ′]]fM entails [[N ′]]fM ≤a [[N ]]fM.

Definition 4.9. [Polarity of Occurrences] Given a lambda term N and a subterm M
of N . A specified occurrence of M in N , is called positive (negative) according to the
following clauses:

i. M is positive in M .

ii. M is positive (negative) in PQ if M is positive (negative) in P .

iii. M is positive (negative) in PQ if M is positive (negative) in Q, and P denotes an
upward monotone function.

iv. M is negative (positive) in PQ if M is positive (negative) in Q, and P denotes a
downward monotone function.

v. M is positive (negative) in λX.P if M is positive (negative) in P and X 6∈ FV (M).

Having added the lambda notation we can complete Example 4.7. The sentence no
boy will run can be represented by (no boy will)run, where no boy, will and run are
constants: the first one is a downward monotone function and the others two are upward
monotone. By Definition 4.9, the function (no boy) receives a positive polarity, and given
than no boy or no girl is more general that no boy we are allowed to monotonically
conclude no boy or no girl will run from no boy will run.

The relation between monotonicity and polarity in lambda terms has been studied
in [Ben86, Ben91, SV91] where it is proved that the polarity of the occurrences implies
their monotonicity.

Proposition 4.10. If Mb is positive (resp. negative) in Na, then Na is upward (resp.
downward) monotone in Mb.

Corollary 4.11. If Xa is positive (resp. negative) in Nb, then λXa.Nb denotes an
upward (resp. downward) monotone function.

The differences between monotonicity and polarity could be summarized in a few words
by saying that monotonicity is a semantic property of functions which is dynamically
passed to the argument positions while building a formula. On the other hand, polarity
is a static syntactic notion which can be computed for all positions in a given formula.
This connection between the semantic notion of monotonicity and the syntactic one of
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polarity is what one needs to reach a proof theoretical account of natural reasoning and
build a natural logic.

Categorial type logic (CTL) derivations can be interpreted as lambda terms due
to the Curry-Howard correspondence [CF68, How80, Ben88] (see Section 1.4). This
correspondence makes it possible to associate CTL derivations with the notion of polarity
on lambda terms (Definition 4.9) and consequently, by Proposition 4.10, with their
monotone positions [Ben86]. In other words, CTL derivations can supply the information
required for deriving monotone inference from the parsed linguistic structures.

By linking up the two topics here introduced, we recall that our aim is twofold. We
want to encode monotonicity information and compute the polarity positions within
parsed structures so as to account for negative polarity distribution and produce struc-
tures readily available for deriving monotone inferences.

4.2 A Natural Logic based on LP

In [SV91] Sánchez works out the proposal of van Benthem [Ben86]. The syntactic
issues of function composition is connected to the semantic features of monotonicity
inference. This link is obtained extra-logically by means of an algorithm working on
derivations of the associative and commutative Lambek calculus (LP) (Section 1.2),
which is able to correctly mark the parsed strings determining the different polarity
positions. Due to the use of an external algorithm to compute the polarity of the nodes
in LP derivations, we will refer to this system as LP+EPol . For the ease of presentation
here we use our notation while describing LP+EPol derivations. As a consequence we
use two implicational operators \, / though in LP they collapse into one. The original
presentation is given in Appendix A, where LP+EPol is embedded into a multimodal
categorial type logic.

Given a derivation, the algorithm starts from marked leaves and propagates these
markers through the proof by labelling the nodes of the logical rules. First, the logical
types in each leave are enriched with monotonicity markers encoding the monotonicity
property of the corresponding linguistic entry. Let A/B be the type assigned to an
upward (resp. downward) monotone function, then A/B+ (resp. A/B−) is the marked
type. Similarly for B\A. Types corresponding to variables in the lambda terms are
left unspecified A/B, (A\B). From this information, the algorithm proceeds by propa-
gating the monotonicity markers +,− from the leaves through the derivation. Finally,
the polarity of the nodes in the derivation is computed: a negative marker flips the
monotonicity of all nodes above it in the derivation, viz. + becomes − and vice versa, as
required by Proposition 4.4 and Definition 4.9. An unmarked node breaks the polarity
assignment leaving the nodes above it in the branch unspecified. The final result is
a parsed output in which polarity positions are correctly displayed, and which can be
used as a vehicle of natural reasoning inference. The formal definition of the algorithm
consists of the two parts below.

Monotonicity Markers: LetD be a derivation of LP, andD′ be the derivationD with
the types of the lexical items marked according to their monotonicity properties. The
monotonicity markers are copied from the functions to their arguments in the derivation
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∆ ` B/A Γ ` A

∆ ◦ Γ ` B
[/E] rewrites to

∆ ` B/A
+

Γ ` A

∆ ◦ Γ ` B
[/E]

∆ ` B/Ax Γ ` A

∆ ◦ Γ ` B
[/E] rewrites to

∆ ` B/Ax

+
Γ ` A

x

∆ ◦ Γ ` B
[/E]

[A ` A]i
....

Γ ◦ A ` B
Γ ` B/A

[/I]i
rewrites to

[A ` A]i
....

Γ ◦ A ` B
+

Γ ` B/Ay [/I]i

Figure 4.1: Monotonicity algorithm of LP+EPol.

by means of the rewrite rules in Figure 4.1 where x ∈ {+,−}. Similar rules hold for \.
The value of y in [/I]i is determined as follows: y is − (resp. +) if all the nodes in the
path from Γ ◦ A ` B to [A ` A] are marked, and the number of nodes marked with −
in the path is odd (resp. even). As a last step, the monotonicity algorithm marks the
root of the derivation with +.

Polarity Markers: Given a marked derivation D a node is assigned a polarity marker
+ or − if all the nodes in the path from the node to the root are marked. The node is
− if the number of nodes marked with − in the path is odd, and + otherwise.

Note that unspecified polarity nodes will occur only in derivations involving abstraction.
They are in fact produced when the formula corresponding to the node is taken as
argument by variables, or in other words when it is the minor premise of a functional
application [/E] or [\E] having a hypothesis (or a subformula of a hypothesis) in the
major premise. Let us see this algorithm at work.

Example 4.12. [LP+EPol Functional Applications] Given the set of lexical entries {not ∈
s/s,wanders ∈ np\s, good logician ∈ n, every ∈ (s/(np\s))/n}, the sentence not every
good logician wanders is proved to be of type s in LP as follows:

not ` s/s

every ` (s/(np\s))/n good logician ` n

every ◦ good logician ` s/(np\s)
[/E]

wanders ` np\s

(every ◦ good logician) ◦ wanders ` s
[/E]

not ◦ ((every ◦ good logician) ◦ wanders) ` s
[/E]

Now, we need to encode the monotonicity information for the lexical entries, namely
the leaves of the derivation. From formal semantics, we know that not and wanders
are downward and upward monotone functions, respectively; whereas every is down-
ward monotone in its first argument and upward monotone in its second argument.
The derivation is labelled accordingly by replacing the functional types at the leaves of
the above derivation with the corresponding marked ones: s/s−, (s/(np\s)+)/n− and
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np+\s. These monotonicity markers are then propagated through the derivation as il-
lustrated below in (a). Finally, the polarity positions of the nodes are computed from
the monotone ones in (b). We give below the skeleton of the marked derivations.

(a) Monotonicity markers (b) Polarity markers

s/s−

+

(s/(np\s)+)/n−

+

n
−

s/(np\s)+

+

np+\s
+

s
−

s
+

s/s
+

(s/(np\s))/n
−

n
+

s/(np\s)
−

np\s
−

s
−

s
+

Note how in (a) the negative marker carried by ‘not’, being a downward monotone func-
tion, is passed to the expression taken as argument, ‘every good logician wanders’. This
reflects what was expressed in Definition 4.6. Moreover, in (b) the negative monotonic-
ity marker assigned to the corresponding node flips (reverses) the markers assigned to
the nodes above it, mirroring Definition 4.9-(iv). For each node in the polarity marked
derivation, if a node is labelled with a + (−), the corresponding term in the final
lambda term representing the whole sentence, Not((Every good logician) wanders),
is in a positive (negative) position. For instance, the node n is assigned a + and the
lambda term corresponding to it, good logician, is in a positive polarity position. Fi-
nally, note that the root of the derivation receives a positive polarity marker, resembling
the first point of Definition 4.9, M is positive in M .

We can now display the polarity markers on the linguistic structures correspond-
ing to each node obtaining a marked parsed string: (not+((every− good logician+)−

wanders−)−)+. Due to the link between polarity and monotonicity (Proposition 4.10
and Definition 4.8), this structure can be used to derive monotone natural reasoning
inferences. For instance, the inference (A3) in Example 4.5 can be derived by replacing
‘good logician’ with the more general term ‘logician’. We use the thick inference line to
distinguish this new inference from the logical and structural rules of the logical system.

(not+((every−good logician+)−wanders−)−)+ ` s

(not+((every−logician+)−wanders−)−)+ ` s

Note that the information regarding the partial order holding among the expression
involved in the substitution is still based on formal semantics and it is computed on the
corresponding lambda terms. See [FWF00] for a natural logic where the order relation
is computed within the system.

Besides functional applications, LP derivations can contain abstraction rules. As an
example of the latter, we look at the lifting of an np to a higher order type.

Example 4.13. [Abstraction in LP+EPol] Let mary ∈ np be our lexicon entry. The
lifted type s/(np\s) is obtained as follows:
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mary ` np [x ` np\s]1

mary ◦ x ` s
[\E]

mary ` s/(np\s)
[/I]1

Following the algorithm, since x is a variable, it is an unspecified monotone function
and its type is left unmarked.

(a) Monotonicity markers (b) Polarity markers

np [np\s]1
+

s
+

[\E]

s/(np\s)+
[/I]1

np [np\s]1
+

s
+

[\E]

s/(np\s)+

+

[/I]1

The point of interest in this case is the role played by the assumed function x. Since
its monotonicity could be either positive or negative, the monotone argument position
where ‘mary’ occurs is also unspecified. Furthermore, when the hypothesis is discharged
an upward monotone function is built: the abstraction is over a variable in a positive
polarity position (Corollary 4.11).

The role of the hypothetical reasoning in the assignment of polarity positions can be
better illustrated by looking at an example involving coordination of an np with a higher
order type, requiring the application of the lifting theorem above.

Example 4.14. [Coordination] The coordination and is an upward monotone function
in both arguments. Its lambda term representation is: λRQZ.QZ ∧ RZ. The lambda
term of the coordinated phrase is built as follows.

m ` m....
mary ` λP.Pm

and ` λRQZ.QZ ∧ RZ every logician ` Every logician

(and ◦ every logician) ` λQZ.QZ ∧ Every logician Z

mary ◦ (and ◦ every logician) ` λZ.Zm ∧ Every logician Z

In the final lambda term the polarity of ‘mary’, represented by m, is still unspecified.
It depends on the monotonicity of the verb phrase which will be taken as an argument
and will replace the variable Z. For instance, if the coordinated structure is applied
to the verb phrase left it yields mary and every logician left represented by: Left m ∧
Every logician Left where m is in a positive polarity position.

Monotonicity Marking
mary ` np

....
mary ` s/(np\s)+

+

and ` ((s/(np\s))+\(s/(np\s)+))/(s/(np\s))+
+

every logician ` s/(np\s)+
+

(and ◦ every logician) ` (s/(np\s))+\(s/(np\s)+)
+

(mary ◦ and) ◦ every logician ` s/(np\s)+

+
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Sánchez’ algorithm does not assign a polarity to ‘mary’, leaving it unspecified even after
the application of the coordinated structure to a verb phrase, since the assignment of
the polarity requires that all the nodes must be marked and the leaf ‘mary ` np’ is not.

By extending the result in [Ben91] Sánchez proves in [SV91] the soundness of LP+EPol.
By interpreting derivations as lambda terms, marked functional nodes will correctly
correspond to monotone functions, and polarity markers will correctly correspond to
polarity positions in the lambda terms1. Therefore, LP+EPol properly accounts for the
tasks it was built for: it generates marked parsed outputs ready for deriving monotonicity
inference. But this was not our original aim. Let us look back at what we wanted to
achieve.

Our project was to build a system able to (i) encode monotonicity information, (ii)
compute polarity positions, (iii) use this information while parsing (to verify correct
use of NPIs) and (iv) produce marked output from which monotonicity inferences can
be derived. Though LP+EPol can account for (i),(ii) and (iv), it does not account for
(iii). This shortcoming is due to the fact that the monotonicity and polarity algorithms
are external to the logic: they mark the derivation only after the grammaticality of
the linguistic structure is established. Hence, polarity markers do not play an active
role in the derivation and cannot be used to control the grammaticality of linguistic
structures as required by the NPIs. A solution can be obtained by internalizing the
marking algorithms.

4.3 Internalizing Polarity Marking in CG

Dowty [Dow94] proposes a natural logic based on classical categorial grammar (CG+Pol),
in which the independent steps of monotonicity and polarity marking collapse into a
syntactic derivation. In this approach the markers ‘+’ and ‘–’ are used to indicate the
final polarity. The main characteristics of Dowty’s system are:

a. Since one and the same word can appear with positive polarity in one derivation
and with negative polarity in another, most lexical items —with the important
exception of negative polarity items2— will have both a ‘+’ and a ‘–’ marked
category, with the same interpretation.

b. ↑Mon functions are assigned categories of the forms A+/B+ and A−/B−, meaning
that they preserve the polarity markers. We will mark them as Ax/Bx.

c. ↓Mon functions are assigned categories of the forms A+/B− and A−/B+, since
they reverse the polarity markers. We will mark them as Ax/By.

For complex categories we use the convention: (A/B)x =def (Ax/B)x =def (Ax/B), and
similarly for (A\B)x)3.

1The case discussed in the Example 4.14 does not constitute a problem for the soundness proof
which only concerns marked nodes.

2Dowty considers also positive polarity items, as expressions required to occur in a positive polarity
context.

3This definition is based on the fact that in a function-argument combination the function always
has the same polarity as the combination as a whole.
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Functional application respects the polarity markers in the following way. Let x, y ∈
{+,−}, then

Ax/By By

Ax

where ‘x’ and ‘y’ coincide when the major premise Ax/By is an ↑Mon function, and
differ when is a ↓Mon function.

The grammar thus defined generates sentences of category S+ or S−. The former is
the category of independent (grammatical) sentences, the latter of sentences embedded
inside a ↓Mon function. We will assume the lexical entries below. Let x ∈ {+,−}, let y
be the “opposite” of x, and let V P = NP\S,

Lexical Entries

walks = V P x a = (Sx/V P x)/CNx

reads = V P x/NP x no = (Sx/V P y)/CNy

John = Sx/V P x every = (Sx/V P x)/CNy

doesn’t = V P x/V P y any = (S−/V P−)/CN−

We present some examples of Dowty-style polarity marking.

Example 4.15. [Polarity Marking]

1. John walks.

John
S+/V P+

walks
V P+

S+

2. John doesn’t walk.

John
S+/V P+

doesn’t
V P+/V P−

walk
V P−

V P+

S+

Comparing these two derivations, note how the polarity of the V P is changed by the
presence of the ↓Mon function ‘does not’. Using a bottom-up reading, the inference says
that if ‘John doesn’t walk’ is a well-formed independent sentence S+, then ‘John’, the
last function applied, has to have S+ as a value. Since ‘John’ is an ↑Mon function, this
means its argument must be marked with a ‘+’ as well. This requires ‘doesn’t walk’
to be of category V P+. Therefore, the value of the ↓Mon function ‘doesn’t’ must be
marked with the ‘+’ as well, and consequently its argument is marked negatively.

To deal with more complex sentences in which a generalized quantifier occurs in the
object position, Dowty includes in the lexicon for each determiner (Sx/V P y)/CN z an
object counterpart, of category (TV y\V P x)/CN z, where TV y = (NP y\Sy)/NP y. The
object counterparts of the above given lexical entries ‘a’, ‘no’ and ‘any’ are as follows:
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a = (TV x\V P x)/CNx no = (TV x\V P y)/CNx

any = (TV −\V P−)/CN− every = (TV x\V P x)/CNy

Example 4.16. [Negative Polarity Item]

1. No boy reads any book.

no
(S+/V P−)/CN−

boy

CN−

S+/V P−

reads
TV −

any

(TV −\V P−)/CN−

book
CN−

TV −\V P−

V P−

S+

If we replace ‘no’ with a determiner which is upward monotone in its second argument,
e.g. ‘every’, the derivation fails. In order to match the V P− category of reads any book,
‘every’ has to be considered of category (S−/V P−)/CN+ and the whole expression every
boy reads any book would be proved to be of category S− rather than S+, where S− is
the category of the embedded sentence in the scope of the ↓Mon function.

This example brings us to look at NPIs in embedded sentences. Remember from Sec-
tion 4.1 that NPIs in embedded sentences may be licensed by a downward monotone
function in the matrix clause in two cases: either they are the object of a negative
predicate (1-c), or there is a predicate bridging the NPI to its licensor (3-c). On the
other hand, the composition of a negative predicate with another downward monotone
function cancels their licensing property by yielding an upward monotone function (2-a),
and an intervener blocks the licensing relation (3-a).

The polarity marking of CG+Pol correctly predicts (1-c) and (2-a) as shown by the
example below, where the lexical entry for doubt is V P y/Sx (as it is a ↓Mon function).

Example 4.17. [Embedded NPIs]

1. John doubts anybody left.

John
S+/V P+

doubts
V P+/S−

anybody

S−/V P−

left
V P−

S−

V P+

S+

2. *John didn’t doubt anybody left.

John
S−/V P−

didn’t
V P−/V P+

doubts anybody left....
V P+

V P−

S−

However, the marking does not correctly account for the sentence in (4) since every
boy reads any book is assigned category S− which can be taken as argument by doubts
contrary to linguistic reality: the quantifier every boy works as an intervener blocking
the licensing of the NPI.
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(4) John doubts every boy reads any book. [*Doubt > Every > Any].

Furthermore, NPIs in the scope of two downward monotone functions do not always
result in ungrammatical constructions, as exemplified by the sentences below [Hoe86].

(5) a. If he knows anything about logic, he will know modus ponens.
b. If he doesn’t know anything about logic, he will not know modus ponens.

Again, CG+Pol makes wrong predictions in this case as well, blocking (5-b).

By internalizing the monotonicity and polarity information into the logical types, Dowty
increases the expressivity of a CG so as to deal with NPIs and compute the polarity of
the node required for the natural logic task. On the other hand, the flow of the markers
from the argument to the functional types expressed by CG+Pol lexical type assignments
is too strong to model linguistic facts. This causes the failure of CG+Pol in dealing with
NPIs in embedded sentences and in controlling functional composition. Finally, note
that although Dowty’s system makes a first step towards a system with internalized
monotonicity and polarity markers, it does not accomplish this change completely: the
marking of a linguistic structure must still be done ‘externally’ by propagating the
marker in the formula.

4.4 Internalizing Monotonicity and Polarity Mark-

ers in MCTL

In this section, we present a natural logic based on a multimodal categorial type logic
with (polarity) structural rules (MCTL+Pol) where the latter are used simply as a tool
for computing polarity position. Since the polarity of any position is positive unless
modified by downward monotone functions, we leave the upward monotone functions
unmarked and employ the unary operator 3 to mark downward monotone functions4.
Consequently, the corresponding unary structural connective 〈·〉− marks a structure in a
downward monotone argument position. Due to the logical relation holding between 3

and 2
↓ (Section 2.1.2), and the link between monotonicity and polarity (Section 4.1.3),

2
↓ encodes (negative) polarity information, as we will show below.

The dynamic flow of information from the function to the argument (Section 4.1.3)
is directly accounted for by the logical rules without the need of an external monotonic-
ity marking algorithm. Similarly, structural rules allow us to internalize the polarity
algorithm producing marked structures instead of marking the corresponding nodes. A
first clear advantage of the move from LP to MCTL is that the marked structures are
readily available for deriving monotone inference, improving on the natural logic based
on LP+EPol where the polarity marker were ‘externally’ displayed on the structures
once read off the nodes. Furthermore, NPI distribution can be controlled, since polarity
information is encoded in the logical types.

For the sake of simplicity we consider a product-free logic, similar to the systems
considered so far. We repeat below the logical and structural languages of MCTL. The

4Note that the mode index is simply used to emphasize its role as a downward monotone marker.
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full system is presented in Chapter 2, and an introduction of the linguistic application
of the binary and unary operators is given in Sections 1.2 and 3.1.

Definition 4.18. [Languages] Logical Language: Given a set of basic categories ATOM,
the set of categories FORM is built over \, /,3 and 2

↓

FORM := ATOM | FORM/FORM | FORM\FORM | 3 FORM | 2↓FORM.

Structural Language: The set of structures STRUCT is built over the set of logical
categories, by means of ◦, and 〈·〉−.

STRUCT := FORM | 〈STRUCT〉− | STRUCT ◦ STRUCT.

These languages are used to encode monotonicity and polarity information as summa-
rized in Table 4.1.

To express that: type
A structure Γ is an ↑Mon function Γ ` B/A or Γ ` A\B

A structure Γ is a ↓Mon function Γ ` B/3A or Γ ` 3A\B

A structure Γ has polarity − 〈Γ〉−

A structure Γ has polarity + Γ 6= 〈Γ′〉−

A structure Γ must have a polarity − Γ ` 2
↓A

Table 4.1: Encoding of monotonicity and polarity information

To express this encoding it is enough to use a fragment of the logical language of MCTL.
In the next section we will show that the use of types outside this fragment could lead
to incorrect polarity assignments.

Definition 4.19. [Safe Types] To account for NPI distribution and monotone inferences
it is enough to mark only downward monotone functions and leave the upward monotone
ones unmarked. Therefore, we need to work only with lexical type assignments from the
set FORM1 defined below,

FORM1 = ATOM |FORM1/3FORM1 |3FORM1\FORM1 |
FORM1\FORM1 |FORM1/FORM1 |2

↓
3 FORM1 |

2
↓
3 FORM1/2

↓
3FORM1 |2

↓
3 FORM1\2

↓
3 FORM1.

where 2
↓
3FORM1/2

↓
3FORM1 (and 2

↓
3 FORM1\2

↓
3 FORM1) will be used for lexi-

cal assignments of negative polarity items. The prefix 2
↓
3 on the argument formula will

allow multiple NPI occurrences, whereas on the value formula it will allow the marking
of the context where the NPI occurs, the attraction of a licensor and the rejection of an
upward monotone function. In Section 4.4.4 we will discuss how the use of this fragment
of the logical language effects the possible derivations the system can make.



4.4. Internalizing Monotonicity and Polarity Markers in MCTL 77

Based on the selection of this set of formulas we can identify a set of types which
properly represent the polarity of the corresponding structure; we refer to them as safe
types.

SAFE = FORM1 | 3 FORM1.

Note that the set of safe types is the same as the set of all subformulas of the formulas
in FORM1.

Lemma 4.20. Given a derivation D of Γ ` A, if A ∈ FORM1 and all the formulas in Γ
are in SAFE, then all nodes in D are labeled by safe types.

Proof. The lemma is a consequence of the subformula property of MCTL+Pol [Sza69,
Moo97] and the definition of safe types. qed

In the remainder of the chapter we will consider only derivations with safe types, unless
explicitly stated otherwise.

Sánchez’ polarity marking algorithm is carried out by the structural rules in Fig-
ure 4.2. The [Pol−] rule simply distributes markers into the substructures, and [Pol−−]
cancels them out.

∆[〈Γ1 ◦ Γ2〉
−] ` A

∆[〈Γ1〉
− ◦ 〈Γ2〉

−] ` A
[Pol−]

∆[〈〈Γ〉−〉−] ` A

∆[Γ] ` A
[Pol−−]

Figure 4.2: Structural Rules of MCTL+Pol.

The structural rule [Pol−] is not in the class of those structural rules which guarantee
the logical grammar to be in PSPACE, since it increases the length of the structure
(Definition 1.15). However, in a normalized derivation [Pol−−] always precedes [Pol−].
This is possible because the two rules are confluent. Therefore, when no other structural
rules apply to mode -, the total maximum space for an MCTL+Pol sequent is linear with
respect to the end-sequent, and hence MCTL+Pol is in PSPACE [Moo02]5.

Proposition 4.21. [Complexity of MCTL+Pol ] MCTL+Pol is decidable at most in de-
terministically polynomial space.

4.4.1 A Natural Logic based on MCTL+Pol

In Definition 4.23 we will formally define the intuitive encoding of polarity marked
structures given in Table 4.1. First we need the definition below.

Definition 4.22. [Normal Form for Sequents] A sequent is said to be in normal form
if no polarity structural rules can be applied to it.

Note that any sequent Γ ` A can be normalized by applications of polarity structural
rules reaching a unique sequent Γ′ ` A in normal form.

5This complexity property of MCTL+Pol was pointed out to me by Richard Moot.
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Definition 4.23. [Polarity of Structures] The polarity of a structure is defined in terms
of 〈·〉−. Let ∆ ` B be a normalized sequent and Γ a substructure of ∆,

(a) Let Γ = 3A, where A ∈ FORM1. Γ is said to have negative polarity in ∆ iff Γ is
surrounded by no 〈·〉−, and positive polarity otherwise.

(b) Let Γ = 〈A〉−, where A ∈ FORM1. Γ is said to have positive polarity in ∆ iff A is
of the form 3A′, and negative polarity otherwise.

(c) Let Γ = (Γ1 ◦Γ2). Γ is said to have negative polarity in ∆ iff both Γ1 and Γ2 have
negative polarity; positive polarity if both Γ1 and Γ2 have positive polarity, and
undetermined polarity otherwise6.

To understand the way polarity is carried out by the structural language, one has to
keep in mind that 〈·〉− is the structural connective corresponding to 3, the operators
which we used to denote decreasing monotone argument positions, and that polarity is
linked to monotonicity (Definition 4.9).

Definition 4.24. [Monotonicity Rules] Given a derivation D of a sequent ∆ ` N : C
in normal form. Let MA be a subterm of N corresponding to a substructure Γ in ∆ such
that Γ 6= 〈Γ′〉−, viz. in D there is a subderivation D′ of Γ ` M : A. Let M ′,M ′′ be two
terms such that [[M ′′]] ≤A [[M ]] ≤A [[M ′]], and let Γ1,Γ2 be two structures corresponding
to M ′,M ′′, respectively. Then the following inference can be derived.

(a)
∆[Γ+] `N :C

∆[Γ+

1 ] `N ′:C
(b)

∆[Γ−] `N :C

∆[Γ−2 ] `N ′′:C

where N ′ = N [M ′/M ] and N ′′ = N [M ′′/M ], Γ+
i (resp. Γ−i ) stand for a structure with

positive (resp. negative) polarity.

Note how the formal definition of the monotonicity rules, intuitively described earlier in
our discussion of LP+EPol, sheds light on the use of the lambda terms to compute the
substitution of the marked structures. In the discussion of the examples we will skip the
lambda terms and concentrate on the structures on which the inference is performed.

4.4.2 MCTL+Pol at Work

As in Sánchez’ approach, to determine the polarity at the sentence level, we start by
assigning monotonicity markers to the entries in the lexicon. From the semantic infor-
mation we know the monotonicity property of a functional lexical entry. We distinguish
↓Mon functions by prefixing their argument with 3. For instance, since doubt is ↓Mon
in its first parameter, it is of type: (np\s)/3 s. Note that it can be represented by the
lambda term λxs.λynp.(doubt x) y, where doubt is a downward monotone (functional)

6As observed while discussing Dowty’s system, the polarity of a function-argument combination is
equivalent to the polarity of the function. In a multimodal system, the information about the function-
argument position could be encoded by means of modes on the binary operators [MM91]. In a system so
extended it would be possible to define also the polarity of a structure composed out of two substructures
with different polarity. We leave this out for the sake of simplicity.
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constant in its first argument. Hence the lambda operator abstracts over a variable
x which occurs in a negative position, and by Corollary 4.11 it correctly represents a
downward monotone function. Similarly, since doubt is an ↑Mon function in its second
argument, the y is in a positive position and the second abstraction yields an upward
monotone function. Both facts are encoded in the logical type assignment. Let us see
the rules at work step by step, focusing on the flow of information from the logical to
the structural formulas.

• Application of a downward monotone function implies the propagation of the
marker from the function to the argument:

∆ ` B
〈∆〉− ` 3B

[3 I]
Γ ` 3 B\A

〈∆〉− ◦ Γ ` A
[\E]

This embodies (part of) Definition 4.9-iv: M is negative (positive) in PQ if M is
positive (negative) in Q, and P denotes a downward monotone function. For the
missing part (the computation of the polarity of M in Q) we need to compute the
polarity of the structure corresponding to M in the structure corresponding to Q.
This is done by means of the structural rules.

• Functions are built by applying [\I], [/I]. Upward and downward monotone func-
tions abstract over positive and negative positions, respectively, as shown below
looking at [/I] by means of an example. Let C 6= 3C ′,

D....
Γ ◦ C ` A
Γ ` A/C

[/I]

D....
Γ ◦3B ` A
Γ ` A/3B

[/I]

• The polarity information is passed from the structure to the logical type (a) and
vice versa (b).

(a) (b)

〈∆〉− ` A

∆ ` 2
↓A

[2↓I] ∆ ` 2
↓A

〈∆〉− ` A
[2↓E]

• The substitution of a structure with negative polarity by another one with the same
polarity is performed by [3 E]. The soundness proof (Section 4.4.4) guarantees the
correctness of this substitution.

∆ ` 3A Γ[〈A〉−] ` B

Γ[∆] ` B
[3E]
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We now look at some concrete examples. In Example 4.14, we consider the case of
coordinated phrase for the system LP+EPol. Unlike there, we cannot leave (functional)
variables unspecified for their monotonicity property, since in MCTL+Pol the mono-
tonicity marking is not assigned ‘externally’. Let us see what differences this will make.

Example 4.25. [Coordination] As we have seen, coordination of a noun phrase with a
quantifier involves the lifting of the np. In MCTL+Pol the type np can be lifted to a
higher order one, by assuming a unmarked type or a marked one.

(a) (b)

mary ` np [x ` np\s]1

mary ◦ x ` s
[\E]

mary ` s/(np\s)
[/I]1

mary ` np

〈mary〉− ` 3np
[3 I]

[x ` 3np\s]1

mary ◦ x ` s
[\E]

〈mary〉− ` s/(3np\s)
[/I]1

The lambda term corresponding to the lifted type is λP.P m, where P represents an
upward monotone function in (a) and a downward monotone function in (b). Hence m

is in a positive position in (a) and so is its corresponding structure, whereas in (b) it is
in a negative position and it is marked by 〈·〉−. This lifted type can now be coordinated
with a quantifier phrases. The conjunction and receives a polymorphic type (X\X)/X
which respects the monotonicity properties of the coordinated phrases as illustrated by
the derivation below.

....
〈mary〉− ` s/(3 np\s)

and ` ((s/(3 np\s))\(s/(3 np\s)))/(s/(3 np\s)) every boy ` s/(3 np\s)

and ◦ every boy ` (s/(3np\s))\(s/(3 np\s))
[\E]

〈mary〉− ◦ (and ◦ every boy) ` s/(3 np\s)
[/E]

The argument of this function must be of type 3np\s, hence it can only be a downward
monotone function, let it be R. The lambda term corresponding to the whole structure is
λZ.((λP.P m) Z∧Every boy Z) R. By β-reduction the term reduces to R m∧Every boy R,
where m is in a negative polarity position. Hence, the corresponding structure is properly
marked. If and had been composed with the derivation in (a) above, the verb phrase
could have been only ↑Mon and again the polarity would have been correctly assigned
in the structure. In other words, the type (and therefore the monotonicity property) of
the assumed variable depends on the monotonicity property of the expression it will be
replaced with.

The example above is also interesting for a second reason. From a closer look at the
‘lexical’ type of every boy we see that if we represent the lexical semantics of the constant
every boy as λQ.∀x.Boy(x)→ Q(x), the polarity of the second occurrence of x depends
on the monotonicity of Q (or the term replacing it by β-conversion). In Example 4.25,
Q is replaced by a downward monotone function R, hence x is in a negative polarity
position. The type matching forces Q to have the same monotonicity property. This
is reflected by the logical type of the quantifier s/(3np\s) —which would have been
s/(np\s) in case R was an upward monotone function. In Chapter 7, we will discuss the
behavior of NPIs with respect to coordination.
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Finally, before looking at how MCTL+Pol can work with structure containing NPIs
we want to clarify the relevance of using a selected fragment of the logical language.
Note that lexical assignments from outside the set FORM1 may generate unsafe types in
the derivation. The example below shows that this can lead to an incorrect computation
of polarity positions. This is why we restrict ourself to a selected fragment of the logical
language.

Example 4.26. [Unsafe Types] In the derivations (a) and (b) below the types in the
boxes are not in SAFE. In (a) the structure ∆ is assigned a negative polarity though it
is not in a decreasing argument position. In (b) the structure Γ◦∆ is assigned a positive
polarity, though it is the argument of a downward monotone function.

(a) (b)

Γ ` A

∆ ` 2
↓(A\B)

〈∆〉− ` A\B
[2↓E]

Γ ◦ 〈∆〉− ` B
[\E]

Γ ` A ∆ ` A\3B

Γ ◦∆ ` 3B
[\E]

Σ ` 3B\C

(Γ ◦∆) ◦ Σ ` C
[\E]

4.4.3 Negative Polarity Items in MCTL+Pol

Because monotonicity information is available on-line during parsing, MCTL+Pol can
control NPI distribution. The type assignment of an NPI must encode three pieces of
information: (i) the structure where the item occurs must have negative polarity; (ii)
the structure containing the NPI must be taken as an argument by a structure of type
A/3B or 3B\A (as negative polarity is assigned by downward monotone functions);
(iii) NPIs must be in the immediate scope of their licensor. Using the encoding in
Table 4.1 this means that the the whole structure containing the NPI must be headed
by 2

↓
3 and the NPI must have wide scope in the corresponding lambda term. Let us

look at the adverb yet by means of an example.

Example 4.27. [Negative Polarity Items] Let 2
↓
3 iv\2↓diaminusiv be the type as-

signment of yet. It denotes that it must occur in a negative polarity position which it
passes to its argument.

1. Nobody left yet.

nobody ` s/3 iv

left ` iv
〈left〉− ` 3 iv

[3 I]

left ` 2
↓
3 iv

[2↓I]
yet ` 2

↓
3 iv\2↓

3 iv

left ◦ yet ` 2
↓
3 iv

[\E]

〈left ◦ yet〉− ` 3 iv
[2↓E]

nobody ◦ 〈left ◦ yet〉− ` s
[/E]

If we replace the quantifier nobody with an ↑Mon quantifier, e.g. everybody, the derivation
fails: everybody has type s/iv which does not provide the needed negative feature to
match the type assigned to left yet.
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Example 4.28. [NPIs in Embedded Sentences]

1. John doubts anybody left.

John ` np

doubts ` (np\s)/3 s

anybody ` 2
↓
3 s/2↓

3 iv

....
left ` 2

↓
3 iv

anybody ◦ left ` 2
↓
3 s

[/E]

〈anybody ◦ left〉− ` 3 s
[2↓I]

doubts ◦ 〈anybody ◦ left〉− ` np\s
[/E]

John ◦ (doubts ◦ 〈anybody ◦ left〉−) ` s
[\E]

The negative auxiliary didn’t receives a polymorphic type X/X. The different instan-
tiation of the variable type, must encode the monotonicity property of the expression.
Furthermore, by decorating the X differently with unary operators, we can control the
ways didn’t composes with the bridge and non-bridge predicates.

2. *John didn’t doubt anybody left.

Starting from the lambda term λPxy.¬(P x) y representing didn’t, the phrase didn’t
doubt has term λxy.¬(doubt x) y and hence P is ↓Mon. The polarity of x is positive
since it is in the scope of two downward monotone constants ¬ and doubt. Therefore,
the function λxy.¬(doubt x) y is ↑Mon. This makes the whole sentence semantically ill-
formed, which is correctly predicted by MCTL+Pol: By simply applying our encoding,
the type for didn’t is (iv/s)/3(iv/3 s) from which it follows that the phrase didn’t
doubt is of type (iv/s) which fails to compose with anybody left.

3. John didn’t think anybody left.

Similarly to the example above, the monotonicity properties of think and didn’t motivate
the type assignments of the items involved here, and in particular of didn’t. The term
λxy.¬(think x) y represents a downward monotone function, since think is an upward
monotone function. Therefore, type matching requires the assignment to didn’t of a
term λPxy.¬(P x) y where P denotes an ↑Mon function, and consequently the type
(iv/3 s)/3(iv/s). The composed function ‘didn’t think’ of type (iv/3 s) licenses the
occurrence of the NPI anybody.

Example 4.29. [Multiple Negative Polarity Occurrences] Multiple occurrences of neg-
ative polarity items can be licensed by the same licensor, as illustrated by anybody and
at all and their trigger doubts.

1. John doubts anybody came at all.

John ` np

doubts ` (np\s)/3 s

....
anybody ◦ came ` 2

↓
3 s at all ` 2

↓
3 s\2↓

3 s

((anybody ◦ came) ◦ at all) ` 2
↓
3 s

[\E]

〈(anybody ◦ came) ◦ at all〉− ` 3 s
[2↓E]

doubts ◦ 〈(anybody ◦ came) ◦ at all〉− ` np\s
[/E]

John ◦ (doubts ◦ 〈(anybody ◦ came) ◦ at all〉−) ` s
[\E]
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We close this section with an example that is still problematic for our system as it stands
—we return to it in Chapter 6. The problem relates to generalized quantifier expres-
sions, which in natural language can have varying scopal possibilities. For instance, the
sentence Three good referees read few abstracts can be assigned two different represen-
tations: either (Three good referees (Few abstract Read)) or (Few abstracts

(Three good referees Read)). The different scope of the downward monotone func-
tion Few abstract modifies the polarity of the subterm in the whole term. In the first
case, the constant Three good referees has positive polarity; whereas in the second
case, it is in negative positions. From this it follows that different inferences will be
drawn from the sentence Three good referees read few abstracts, depending on the inter-
pretation assigned to it.

(a)

(Three good referees)+ read few abstracts `s

Three referees read few abstracts `s

(b)

(Three good referees)− read few abstracts `s

Three good dutch referees read few abstracts `s

where (a) would be logically correct in the interpretation (Three > Few) and (b) in the
wide scope reading (Few > Three). However, while (a) is a correct natural reasoning
inference, (b) is not. This example shows that natural reasoning, and in particular
monotone inference, also uses other information than the semantic information discussed
so far. Though monotonicity plays a crucial role in the derivation of inference, properties
of different nature may also interact with it and affect natural reasoning inference.
In Chapter 6, we will explore the properties affecting the interpretation of linguistic
structures containing quantifier phrases (such as the one in the premises of the inferences
above) and give an deductive analysis within the CTL framework.

4.4.4 Soundness

We have to guarantee that our natural logic does not derive inferences which are not
valid model theoretically, i.e. we need to prove that the natural logic is sound.

We use φ `MON ψ to denote that a marked parsed structure ψ is inferred from
the marked structure φ by means of the monotonicity rules given in Definition 4.24.
Formally, proving that the natural logic fragment is sound means to prove that for all
modelsM and assignments f ,

if φ `MON ψ then [[φ]]fM ≤ [[ψ]]fM

where [[φ]]fM and [[ψ]]fM stand for the denotations of the lambda terms corresponding to
the structures φ and ψ inM under f , respectively.

Proving the above claim reduces to proving that monotonicity in lambda terms is
tied up with the syntactic notion of polarity, and consequently to the markers assigned
to the parsed structures. The link between monotonicity and polarity is given by Propo-
sition 4.10 and its Corollary 4.11 as we have already commented. Our task is now to
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prove that if a substructure in the conclusion of a (sub)derivation has positive (resp.
negative) polarity, then the corresponding lambda term is in a positive (resp. negative)
position in the term corresponding to the whole conclusion (see Definition 4.8).

Proposition 4.30. [Soundness] Let D be a derivation of Γ ` M : A with A ∈ SAFE

and Γ built on SAFE. Let (B/C)/
→

D denote (((B/C)/D1) . . .Dn) with n ≥ 0. Then7,

(a) If A is of the form (B/C)/
→

D or 3((B/C)/
→

D) (modulo occurrences of 2
↓
3), then

M is ↓Mon in the argument corresponding to C if C is of the form 3C ′, and ↑Mon
otherwise.

(b) If Γ contains a logical formula (B/C)/
→

D or 3((B/C)/
→

D) (modulo occurrences of
2
↓
3), then the lambda term in M corresponding to this substructure is ↓Mon in

the argument corresponding to C if C is of the form 3C ′, and ↑Mon otherwise.

(c) If A ∈ FORM1, then for any substructure Γ′ in Γ, if Γ′ has positive (resp. negative)
polarity in Γ then the corresponding lambda term is in a positive (resp. negative)
position in M .

(d) If A is of the form 3A′, then for any substructure Γ′ in Γ, if Γ′ has negative (resp.
positive) polarity in Γ then the corresponding lambda term is in a positive (resp.
negative) position in M .

Proof. The proof goes by induction on the length of the derivation.

1. Base case. Assume Γ `M : A is a leaf. Then (a), (b), (c) and (d) hold trivially.

2. I.H. Let [R] be the last rule applied. Assume (a), (b), (c) and (d) hold for the
premises of [R], we have to show that they hold also in its conclusion.

(i) (i1) [R] = [Pol−]; (i2) [R] = [Pol−−].

Neither the polarity of the structures, nor the lambda term, nor the formula
on the right side of the ` changes. Hence, the proposition holds by I.H.

(ii) (ii1) [R] = [3 I]; (ii2) [R] = [2↓I]; (ii3) [R] = [2↓E].

(ii1)

D1....
Γ′ `M : A′

〈Γ′〉− ` ∩M ′ : 3A′
[3 I]

(a) and (b) are preserved8. Since A ∈ SAFE, we know that A′ ∈ FORM1. By
I.H. (c) holds in the premise, hence (d) holds in the conclusion of [3 I].

The same applies in case [R] = [2↓I], or [R] = [2↓E].

7We simplify the proof by considering only /. The directionality of the functional implication does
not affect the proof.

8The terms M and ∩M have the same monotonicity property. The same holds for terms decorated
by the other unary operators introduced by the logical rules of 3 and 2

↓, ∪, ∨ and ∧.
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(iii) [R] = [/I].

D1....
Γ ◦ C `M : B

Γ ` λx.M : B/C
[/I]

(a) Let B′, C ′,
→

D be such that A = ((B′/C ′)/
→

D). If n  0, then (a) follows
directly from I.H. Otherwise B ′ = B and C ′ = C. Since B/C ∈ SAFE,
B ∈ FORM1. Hence (c) applies to the premise of [/I]. Therefore, the lambda
term corresponding to C is in a positive (resp. negative) position in M , if
C 6= 3C ′′ (resp. C = 3C ′′). By Corollary 4.11, λx.M denotes an ↑Mon
(resp. ↓Mon) function in x (the variable corresponding to C).

The points (b) and (c) follow directly by I.H., and (d) holds trivially.

(iv) [R] = [/E].

D1....
∆ ` t : A/B

D2....
Γ ` u : B

∆ ◦ Γ ` t(u) : A
[/E]

The points (a) and (b) apply by I.H. and (d) holds trivially. We have to
consider (c).

Let Γ′ be in ∆ ◦ Γ, we have to consider three cases: 1. Γ′ is in ∆, 2. Γ′ is in
Γ, and 3. Γ′ = ∆ ◦ Γ.

1. If Γ′ ⊆ ∆, then (c) applied to Γ′ follows directly from I.H. applied to the
major premise.

2. If Γ′ ⊆ Γ, then
(2’) Suppose Γ′ has positive polarity in Γ, then it has positive polarity
also in ∆ ◦ Γ. If B ∈ FORM1, then by (a) t denotes an ↑Mon function,
and by (c) applied to the minor premise of [/E], the lambda term cor-
responding to Γ′ occurs in a positive position in u. By Definition 4.9,
it is in a positive position in t(u). If B = 3B ′, then by (a) t denotes
a ↓Mon function, and by (d) applied to the minor premise of [/E], the
lambda term corresponding to Γ′ occurs in a negative position in u. By
Definition 4.9, it is again in a positive position in t(u).
(2”) Similarly for Γ′ with negative polarity in Γ.

3. If Γ′ = ∆ ◦ Γ, then (c) holds trivially.

(v) [R] = [3 E].

D1....
∆ ` u : 3A

D2....
Γ[〈v : A〉−] ` t : B

Γ[∆] ` t[∪u/v] : B
[3E]
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First of all, observe that by I.H. on (a) and (b), the monotonicity property of
u and v are both completely determined by the form of A in exactly the same
manner. Thus, substituting u for v in t does not affect any monotonicity
related property. Let us refer to this as (*).

(a) The claim in (a) follows directly from (*) and the I.H. on the minor
premise of [3E].

(b) For Γ′ in Γ (b) applied to Γ′ follows from (*) and the I.H. on the minor
premise. For Γ′ in ∆ (b) follows directly by I.H. on the major premise of
[3E].

(c) B ∈ FORM1. If Γ′ in Γ or Γ′ = Γ′′[∆], then (c) applied to Γ′ follows from
(*) and the I.H. on the minor premise of [3 E]. For Γ′ in ∆,

1. If ∆ is surrounded by an odd number of 〈·〉− in Γ[∆], then A has
positive polarity in the minor premise (it is surrounded by an even
number of 〈·〉−). Then by I.H. on (c) v is in an positive position
in t. Furthermore, if Γ′ in ∆ has positive polarity in ∆ then it
has negative polarity in Γ[∆]. By I.H. on (d) applied to Γ′, the
term z corresponding to Γ′ in u is in a negative position, and by
Definition 4.9, since v is in a positive position in t, z is in a negative
position in t[∪u/v]. Similarly, for Γ′ with negative polarity in ∆.

2. If ∆ is surrounded by an even number of 〈·〉− in Γ[∆], then A has
negative polarity. The proof is similar to the previous case, apart
from the fact that v is in a negative position and A is surrounded by
an odd number of 〈·〉−.

(d) B = 3B, the proof is similar to the one of case (c).

qed

4.4.5 Summary

We have already commented on some of the differences between the three systems
LP+EPol, CG+Pol and MCTL+Pol, the most important being that the first system
obtains polarity markers extra-logically, while in CG+Pol and MCTL+Pol the marking
is obtained on-line as part of the logical derivations. Now let us analyze carefully the
effects that these differences have on the final aim of the project: the design of a natural
logic to account for negative polarity items.

To start with, all three formalisms should be able to determine the grammaticality
of linguistic structures. This is a basic requirement, even if we are not interested in ana-
lyzing monotonicity phenomena. Here already, LP+EPol and CG+Pol are outperformed
by MCTL+Pol, since LP does not take syntactic structure into account, while CG+Pol

lacks hypothetical reasoning and needs multiple lexical entries to compensate for this
deficiency (Chapter 1).

More interesting to the subject discussed in this chapter is the difference in dealing
with polarity intra-logically and extra-logically. LP+EPol implements polarity marking
as a rewriting algorithm which takes a proof tree as input and decorates it with markers.



4.5. Key Concepts 87

It is crucial to note that this approach leaves out the possibility of polarity information
actually taking active part in the derivation. In CG+Pol and MCTL+Pol, in contrast,
the monotonicity information stored in the lexicon plays a fundamental role during the
construction of the derivation. The presence of monotonicity markers enables or blocks
the possibility of applying specific derivation rules. In other words, beside working as
markers for making valid inferences at the natural reasoning level, they contribute to
determine grammatical structures.

Moreover, the analysis of NPIs in embedded sentences shows that the way monotone
functions compose in natural language can be effected by other constraints, and some
control on functional application is necessary in order to properly model this linguistic
phenomenon. Neither LP nor CG has the right expressivity to tackle this problem. On
the other hand, MCTL provides us with the required logical tool kit to obtain fine-grained
type assignments that lexically anchor the way structures are built.

Furthermore, there are also other things to be gained by analyzing polarity phenom-
ena in MCTL. Negative polarity phenomena are observed in many languages. Being able
to account for them in terms of the base logic opens the door to a comparative study
of both NPIs and natural reasoning. Crosslinguistic variations could be accounted for
in terms of different type assignments and structural rule packages. An interesting area
for future research is how structural rules interact with the computation of the polarity
positions and how they effect the distribution of negative polarity items. LP+EPol is
too flexible, and CG+Pol is too strict to tackle this question.

Finally, a last remark concern the correctness of the marking mechanisms used by
the three systems. While LP+EPol and MCTL+Pol are proven to be sound, no analogous
result is known for CG+Pol. Note that the soundness of the marking algorithm does
not fully guarantee the correct modelling of natural reasoning inference, since natural
language may diverge from formal language in the combinatorial scope possibilities of
its scoping elements. An important constraint the parser must satisfy is therefore that
it produces as output only the available readings of the parsed linguistic structure. For
the reasons discussed so far MCTL+Pol seem to be most promising in this respect.

4.5 Key Concepts

The analysis discussed in this chapter shows that:

1. Monotonicity and polarity information can be encoded into CTL syntactic type
assignments by means of unary operators.

2. CTL can be employed to achieve a proof theoretical account of semantic issues.

3. A system in which semantic information relevant for grammaticality is internalized
into the logical language presents several advantages with respect to a system based
purely on functional types where semantic information is post hoc by and extra-
logical marking mechanism. In particular, it can account for the distribution of
items sensitive to such information.
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4. MCTL seems to provide a natural devision of labor between the tasks of reasoning
and parsing. The latter is handled in the logical part of a sequent, the former in
the structural part.



Part III

Natural Language Typologies

The assembly of meaning is governed by a systematic correspondence between semantic
types and the domains of denotation where expressions find their semantic value. Many
natural language phenomena show that successful composition is dependent on finer dis-
tinctions within the denotation domains standardly assumed. In this part of the thesis,
we argue that the extended vocabulary of type-logical constants introduced in Chapter 2
provides the means to encode the required distinctions in lexical type assignment.

In Chapter 5, we introduce the analytical concepts we need to carry out this task.
We set up a general notion of grammatical composition taking into account the form
and the meaning dimensions of linguistic expressions. We develop a logical theory of
licensing and antilicensing relations that cross-cuts the form and meaning dimensions.

In Chapters 6 and 7, we show how these relations can be type-logically expressed in
concrete linguistic analyses. In Chapter 6, we investigate lexical differences in the scope
construal possibilities for generalized quantifier expressions. We present the minimalist
analysis of these phenomena which is based on structural notions of functional projec-
tions and feature checking. We then develop a type-logical account of scope construal
which recasts the feature-checking mechanisms in purely deductive terms.

In Chapter 7, we study the distribution of polarity-sensitive expressions. We show
how our theory of licensing and antilicensing relations successfully differentiates between
negative polarity items, which are ‘attracted’ by their triggers, and positive polarity
items, which are instead ‘repelled’ by them. Finally, we investigate these compatibility
and incompatibility relations from a cross-linguistic perspective, showing how we reduce
distributional differences between polarity-sensitive items in Dutch, Greek and Italian
to differences in the lexical type assignments of these languages.





Chapter 5

Composition Relations

In the discussion of natural reasoning in Chapter 4, we have noticed that natural lan-
guage quantifiers do not realize the full set of combinatorial possibilities for scope depen-
dencies predicted by their semantic type assignment as sets of properties. As a result,
certain monotonicity inference substitutions that would be logically valid are not avail-
able in natural reasoning. Furthermore, we have seen that the syntactic distribution
of certain expressions depends on the semantic properties of other expressions in their
syntactic environment, which act as licensors. In this part of the thesis, we investigate
these phenomena in more detail switching the focus from natural reasoning inferences
to the study of grammatical composition relations.

Linguistic composition is affected by several aspects of the constituents involved.
In Chapter 6, we investigate logico-semantic properties of quantifier phrases, and how
they influence their different scope behavior. In Chapter 7, we focus attention on the
composition relations based on the sensitivity of an item with respect to a certain se-
mantic property shared by other expressions called ‘triggers’. Following [Gia97], we
consider the relation between a sensitive item and the trigger to be either a licensing
or an antilicensing relation. From this it follows that a structure can be ungrammatical
either because the sensitive item is not provided with the required property, or because
it occurs in a context supplying the property the item is allergic to. Categorial Type
Logic (CTL) helps us clarify these differences among composition relations and the ways
scope elements interact.

The behavior both of quantifier phrases and sensitive items provides the informa-
tion required to reach a classification of such expressions. These classifications can be
thought of as reflecting distinctions within the domains of interpretation of the linguistic
signs. By means of CTL we spell out the link between the subset relations holding at
the semantic level and the way the interpreted items behave syntactically. Using our
extended vocabulary of type-forming operators, the subset relations within semantic
domains are captured by syntactic derivability relations between types. As a result, we
gain a proof theoretical understanding of the syntactic licensing/antilicensing relations.

91
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5.1 Two Sorts of Deviations

In her discussion of scopal possibilities [Sza97], Szabolcsi makes an important distinction
between coherent and incoherent deviations, illustrated by the two examples below.

(1) a. Three referees read few abstracts. [Three > Few, *Few > Three].

b. Few referees read three abstracts. [Three > Few, Few > Three].

(2) a. *How didn’t Fido behave?

b. Who didn’t Fido see?

The difference between (1-a) and (1-b) shows that no incoherence results when few n
takes scope over three N. This reading, though blocked in (1-a), is available in (1-b).
The reason for this contrast is to be found on the syntax-semantic interface and has
been described by saying that ‘counting’ quantifier phrases take scope locally [BS97], or
in other words that they cannot have scope wider than where they occur overtly.

The sentences in (2) form a different case of deviation. The inability of the wh-
phrase how to take scope over didn’t (2-a) is traditionally thought of as the effect of a
syntactic constraint: the so-called weak island constraint of Ross [Ros67]. Recently, weak
islands have been explained in terms of algebraic semantic characterizations of scope
interaction [SZ97], which would explain the incoherence of the interpretation needed
in (2-a) and the availability of it in (2-b).

Szabolcsi and Zwarts [SZ97] consider wh-phrases as items sensitive to weak islands,
or more specifically, sensitive to the property of the scope elements which form the
island. For instance, how is said to be sensitive to the weak island formed by didn’t
and the extraction from it is blocked (2-a). Moreover, Szabolcsi and Zwarts show that
different wh-phrases are sensitive to weak-islands of different strength.

In the Szabolcsi and Zwarts’ account, for a wh-phrase to take wide scope over some
scope element (SE) the definition/verification of the answer involves specific operations
associated with the SE. For instance, not corresponds to taking the complement of a set
(¬), universal quantifiers are associated with intersection (∩), and existential quantifiers
with union (∪). If the wh-phrase ranges over a semantic domain corresponding to an
algebraic structure which is not closed under such an operator, it is unable to have scope
over the SE. One could say that a wh-phrase is allergic to a property particular to the
SE or more generally that it is sensitive to the weak-island formed by the SE. Briefly,
the different distributional behavior of wh-phrases receives a semantic explanation: A
classification of weak-islands and hence of the extractees can be given based on the
properties of their domains of interpretation.

Let us illustrate this theory by looking at an example. From the fact that how
ranges over manner adverbial which denote on an algebraic structure closed under ∪,
namely semilattices (SL), it follows that how is sensitive to weak islands created by SEs
involving ∩ and ¬ (e.g. it cannot have scope over universal quantifier and negation).
Similarly, since how many ranges over numbers —lattices (LA) which are closed under
∪ and ∩— and who over individuals —boolean structures (BO) which are closed under
∪,∩ and ¬ — it follows that how many is sensitive to SEs associated with ¬ (2-a), and
who can extract from all weak islands (2-b). Note that since a set inclusion relation
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holds among these three algebraic structures, SL ⊆ LA ⊆ BO, a wh-phrase sensitive to a
weak island corresponding to a certain structure will be sensitive to a richer one as well,
where ‘richness’ is defined in terms of the operations which are defined in the structure.
For instance, how is sensitive to the weak island built by the universal quantifier (which
denotes over LA) and also fails to extract from a weak island built by negation (which
denotes over BO).

(3) a. *How did no kid behave?
b. How did everyone behave? [Every > How] [*How > Every]

The behavior of wh-phrases with respect to weak-islands can be described in more
general terms by considering licensing and antilicensing relations.

5.2 Licensing and Antilicensing Relations

In the discussion of negative polarity distribution in Section 4.1, we have seen that they
are items in a licensing relation with downward monotone functions. One could say
that they are attracted by the monotonicity property of their licensor and incompatible
with functions which do not share this feature. On the other hand, assuming Szabolcsi
and Zwarts’ analysis of wh-phrases, how could be said to be repelled by the property
of ‘having the complement operation’, shared by the scope elements interpreted over
boolean structures. In other words, the wh-phrase can be said to be in an antilicensing
relation with such property. The linguistic classification of Dutch positive polarity items
given in [Wou94] could be interpreted in a similar way. We clarify these two composition
relations by reviewing the analysis of Dutch negative and positive polarity items.

Recall from Section 4.1 that the polarity of a context is closely connected to the
monotonicity of its constituents. The concept of monotonicity is linked to the concept
of negation identified by the De Morgan’s laws. The connection between negation and
monotonicity has been deeply studied [KF85, Zwa83] and it turns out that the set
of antimorphic functions (AM) —negation-like expressions— is a subset of the set of
downward monotone functions (DM). Moreover, it is possible to identify in the set DM

the subset of antiaddive functions (AA), satisfing the first De Morgan law and half of
the second one. This classification of downward monotone expressions is summarized
in Table 5.1 together with the part of the De Morgan’s laws they satisfy. Clearly,
an inclusion relation holds among the sets of functions of different negative strength:
AM ⊆ AA ⊆ DM1.

antimorphic antiadditive downward monotone
f(X ∩ Y ) = f(X) ∪ f(Y ) f(X) ∪ f(Y ) ⊆ f(X ∩ Y ) f(X) ∪ f(Y ) ⊆ f(X ∩ Y )
f(X ∪ Y ) = f(X) ∩ f(Y ) f(X ∪ Y ) = f(X) ∩ f(Y ) f(X ∪ Y ) ⊆ f(X) ∩ f(Y )

not nobody, never, nothing few, seldom, hardly

Table 5.1: Monotone functions classification.

1Notice that the table could include also a fourth subset, namely the one characterized by the second
De Morgan law and half of the first one (antimultiplicative). However, these functions seem to have no
relevant role in the distribution of polarity items in Dutch [Wou94].
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In [Wou94], it is shown that a classification of both Dutch positive and negative
polarity items can be given in terms of their sensitivity to (downward) monotonicity
properties. The following examples illustrate their different relations with such functions.
The monotone functions are emphasized, whereas the polarity items are underlined. We
take weinig (tr. few), niemand (tr. nobody) and niet (tr. not) as representative of the
sets DM, AA and AM, respectively; the determiner ook maar (tr. any) and the idiomatic
mals (tr. tender) are examples of negative polarity items (NPIs) whereas allerminst (tr.
not-at-all) and een beetje (tr. a bit) exemplify their positive counterparts. We indicate
with % mildly ungrammatical sentences.

(4) a. %Weinig
Few

monniken
monks

zullen
will

ook maar iets
anything

bereiken.
achieve.

[%DM > ook maar].

tr. Few monks will achieve something.

b. Niemand
Noboy

zal
will

ook maar iets
anything

bereiken.
achieve.

[AA > ook maar].

tr. Nobody will achieve anything.

c. Ik
I

denk
think

niet
not

dat er
that

ook maar iemand
anybody

zal
will

komen.
come.

[AM > ook maar].

tr. I don’t think that anybody will come

d. *Van
Of

weinig
few

monniken
monks

was
was

de
the

kritiek
criticism

mals.
tender.

[*DM > mals].

tr. The criticism of few monks was tender.

e. *De
The

kritiek
criticism

van
of

vader
father

abt
abbot

was
was

nooit
never

mals.
tender.

[*AA > mals].

tr. The criticism of father abbot was never tender.

f. De
The

kritiek
criticism

zal
will

niet
not

mals
tender

zijn.
be.

[AM > mals].

tr. The criticism will be harsh.

(5) a. *Weinig
Few

monniken
monks

zijn
are

allerminst
not-at-all

gelukkig.
happy.

[*DM > allerminst].

tr. Few monks are not-at-all happy.

b. Weinig
Few

monniken
monks

zijn
are

een beetje
a bit

gelukkig.
happy.

[DM > een beetje].

tr. Few monks are a bit happy.

c. %Niemand
Nobdy

is
is

een beetje
a bit

gelukkig.
happy.

[%AA > een beetje].

tr. Nobody is a bit happy.

d. Niemand
Nobody

wil
wants

nog
still

Donne
Donne

lezen.
read.

[AA > nog].

tr. Nobody wants to read Donne anymore.

e. *Jan
Jan

wil
wants

niet
not

nog
still

Donne
Donne

lezen.
read.

[*AM > nog].
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tr. Jan does not want to read Donne anymore.

From a comparison of the sentences in (4) and (5), it follows that positive polarity
items (PPIs) mirror the behavior of their negative relatives. The whole picture is sum-
marized in Table 5.2 taken from [Wou94]. The + and – indicate grammaticality and
ungrammaticality, respectively.

Negation NPIs PPIs

Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
– – +
– + +
+ + +

mals ook maar hoeven
(tender) (anything) (need)

strong medium weak
– + +
– – +
– – –

allerminst een beetje nog
(not-at-all) (a bit) (still)

Table 5.2: Polarity items distribution in Dutch.

Table 5.2 can be read as saying that NPIs are licensed, where PPIs are antilicensed
by a certain property among the ones characterizing downward monotone functions.
From this it follows that a NPI licensed by the property of a function in DM will be
grammatical also when composed with any functions belonging to a stronger set. On
the other hand, if a PPI is ‘allergic’ to one specific property shared by the functions
of a certain set, it will be ungrammatical when composed with them, but compatible
with any other function in a weaker set which does not have this property. In the next
section we introduce the general method we will work out in detail in the next chapters
to reach a CTL analysis of licensing and antilicensing relations.

5.3 Calibrating Grammatical Composition Relations

Our aim in the next chapters is to obtain a deductive account of the linguistic clas-
sifications discussed above. In particular, we account for the scope deviations among
quantifier phrases, and the licensing/antilicensing relations using modalities as ‘logical
features’ controlling composition relations.

We claim that a type logical approach sheds light on the distinction between (a) an
element sensitive to the function which can taken it as argument, and (b) a functional
expression sensitive to its argument, e.g. NPIs. Thus, in a function-argument structure
the function can be either (a) the trigger or (b) the sensitive item. Moreover, in each
case the sensitive item and the trigger can be either in a licensing or in an antilicensing
relation. These distinctions call for a general definition of the ways in which linguistic
expressions containing sensitive items are composed.

Recall from Section 1.3 that linguistic signs are structured objects and their com-
position is driven by the way their components interact. In particular, we can think of
an expression as a pair consisting of a form component α, and a meaning component
α′, represented as [αA : α′a], where A and a are the syntactic and semantic types, re-
spectively. Expressions with the same semantic type take their denotation in the same
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domain, though their forms and therefore their syntactic types may be different. In
particular, a sensitive item can be interpreted in the same domain of a non-sensitive
item of the same type, but the two expressions show different distributional behavior.
We illustrate this difference in the example below.

Example 5.1. Let us consider to sentences with the same structure, which differ only
on the signs they are composed of.

(6) a. John didn’t read anything.
b. Didn′t(Anything(λy.((read y)x)))

(7) a. John didn’t read something.
b. *Didn′t(Something(λy.((read y)x)))

The sign anything hase the same semantic type as something. However, the latter is
ungrammatical in (7) with the meaning in (b) and similarly anything would be ungram-
matical if we replace (6) didn’t with did. The difference is due to the way something
and anything are effected by the semantic property of didn’t : anything is licensed by
this property, whereas something is incompatible with it.

The example shows the importance of distinguishing the form and meaning components
of an expression and hence their syntactic and semantic type. Moreover, by looking
at the way the sensitive item anything is in construction with the trigger didn’t, we
can reach a general representation of the relation of be in construction with. Let us
give a global definition of grammatical composition which abstract away from irrelevant
details.

C([γ : γ′], [α : α′], [β : β ′]) iff R(γ, α, β) ∧M(γ′, α′, β ′)

where R(γ, α, β) stands for the syntactic composition of a structure γ out of α and β
and possibly other constituents —it is intended to be a reminiscent of the grammatical
composition relation R• of the Kripke models (Definition 2.8)— and M(γ ′, α′, β ′) stands
for the semantic composition of a term γ ′ out of α′ and β ′ and possibly of other terms
—it is meant to generalize the meaning assembly carried out by the operation of the
semantic algebra (Definition 1.16). We say that [α : α′] is in construction with [β : β ′]
in [γ : γ′]. Based on this assembly of forms and meanings, we can define the licensing
and antilicensing relations holding between a sensitive item and the semantic property
of its triggers.

Definition 5.2. [Composition Relations] The following composition relations can hold
between two signs.

i. A sign [α : α′] is in a compatibility relation with a sign [β : β ′], if the relation below
holds. Notation: [[β ′]] ∈ P stands for [[β ′]] has the property P .

If [[β ′]] ∈ P, then∃[γ : γ′] s.t. C([γ : γ′], [α : α′], [β : β ′]).

ii. A sign [α : α′] is in a licensing relation with a sign [β : β ′], if

[[β ′]] ∈ P iff ∃[γ : γ′] s.t. C([γ : γ′], [α : α′], [β : β ′]).
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iii. A sign [α : α′] is in a incompatiblity relation with a sign [β : β ′], if the relation
below holds:

If [[β ′]] ∈ P, then¬∃[γ : γ′] s.t. C([γ : γ′], [α : α′], [β : β ′]).

iv. A sign [α : α′] is in an antilicensing relation with a sign [β : β ′], if

[[β ′]] ∈ P iff ¬∃[γ : γ′] s.t. C([γ : γ′], [α : α′], [β1 : β ′1]).

We will alternatively say that a sign is licensed by the property which is licensor must
have. Finally, as commented above in a function-argument structure, we can distinguish
two cases:

(a) [α : α′] is an element sensitive to the property of a function, then in the points
above M is such that β ′ has immediate scope over α′ in γ′;

(b) [α : α′] is a function sensitive to the property of its argument, then in the points
above M is such that α′ has immediate scope over β ′ in γ′2.

Remark 5.3. Some logical consequences derive from the definition above. In particular,
if a sign [α : α′] is licensed by a sign [β : β ′] that has a property P , it will be compatible
(resp. incompatible) with any sign [β1 : β ′1] that has a property equal to or stronger
(resp. weaker) than P . Similarly, if a sign [α : α′] is antilicensed by a sign [β : β ′] that
has a property P , it will be incompatible (compatible) with any sign [β1 : β ′1] that has
a property equal to or stronger (resp. weaker) than P .

Intuitively, one could think of the composition of a sensitive item with a trigger as
a relation which ‘must’ or ‘must not’ hold, and the grammatical and ungrammatical
construction which follows as relations which ‘can’ or ‘cannot’ hold. Based on this
definition we can identify the sensitive items and their triggers as below.

Definition 5.4. [Sensitive Items and their Triggers]

i. An expression A := [α : α′] is a sensitive item if it is in a licensing or antilicensing
relation.

ii. A sign B := [β : β ′] is a direct trigger of A sensitive to P , if [[β ′]] ∈ P and for any
other stronger property P ′ [[β ′]] 6∈ P ′.

iii. A sign B1 := [β1 : β ′1] is an indirect trigger of A if [[β ′1]] ∈ P and also [[β ′1]] ∈ P
′ for

P ′ ⊆ P .

Let us now check how these definitions apply to the linguistic phenomena we have
introduced in the previous section. In the case of Dutch negative polarity items, the
relevant sets of licensors are identified by the properties of ‘antimorphic’, ‘antiadditive’

2Note that the definition of antilicensing relation we propose differs from the definition given
in [Gia97] where it is seen as the negation of a licensing relation. Her definition of antilicensing relation
correponds to what we refer to as incompatiblity relation: it is a negative information from which no
positive relation can be derived.
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and ‘downward monotone’, which we have represented as the sets AM, AA, and DM. A
negative polarity item, licensed by a certain property, will have as direct triggers the
expressions displayed in Table 5.1 as representative of the corresponding set.

Consider the weak negative polarity item ook maar (tr. any) which is licensed by
‘antiadditivity’. Let ook maar be represented by A := [α : α′]. For any function B :=
[β : β ′] which belongs to a set stronger than or equal to AA ∃C := [γ : γ ′] C(C,A,B);
whereas for any function B1 which does not belong to AA such C does not exist. For
instance, niemand (tr. nobody) and niet (tr. not) are in AA and ook maar is grammatical
when in construction with them, whereas weinig n (tr. few n) does not belong to AA

and ook maar is not grammatical in its (immediate) scope. Moreover, niemand is a
direct trigger whereas niet is an indirect one.

The definition of antilicensing relation can be illustrated by looking at (a) Dutch pos-
itive polarity items and their relation with respect to monotone functions, and (b) the
behavior of wh-phrases with respect to the scope elements forming weak-islands. The
first case exemplifies Definition 5.2-(iva), whereas the second instantiates Definition 5.2-
(ivb). A weak positive polarity item like nog (tr. still) is antilicensed by ‘antimorphicity’:
it is incompatible with the characteristic function identifying the set AM, and is compat-
ible with all the other functions building bigger sets. In other words, it is ungrammatical
in construction with its triggers, but it is grammatical with the functions belonging to
bigger sets and which are not in AM.

Similarly, in English the wh-phrase how many is antilicensed by the property of
‘having the complement operation’. Consequently, its application to scope elements
which take their denotation over domains of elements having this property is undefined.
Again, how many is compatible with the characteristic function identifying bigger sets,
i.e. it can be in construction with elements belonging to bigger sets3.

Finally, an example of an expression in a compatibility relation with a semantic
property is given by the adverb almost which can modify universal quantifiers (8-a), but
not the existential ones (8-b).

(8) a. Almost every student came.
b. *Almost some student came.
c. He almost missed the train.

Almost is compatible with the property ‘being universal’ and it is incompatible with the
one of ‘being existential’. Note that the compatibility relation is weaker than the licens-
ing one, since it does not require the item to be incompatible with all the expressions
which do not have the property it is compatible with (8-c). Similarly, the incompatibil-
ity relation differs from the antilicensing one, since it does not say anything about how
the item behaves with respect to other weaker properties4.

3Note that, the subset relation holding among the algebraic structures is reversed when considering
the sets of the expressions which denote over them. For example, the set of the expressions with the
property of ‘having the complement’ (which denote over BO) is smaller than the set of the expressions
with the property of ‘having the intersection’ (which denote over LA).

4In [Gia99] the English negative polarity item any is claimed to be incompatible (accordingly to our
terminology) with veridicality. Therefore, it may be grammatical with nonveridical functions, but not
necessarily with all of them.
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5.4 Key Concepts

In this chapter we have prepared the ground for this part of the thesis. We have seen
that,

1. Linguistic theories offer classifications of items based on semantic differences or on
the different interactions of syntactic and semantic properties. In particular,

2. Items can deviate in their ways of scope taking, e.g. quantifier phrases.

3. Composition of linguistic signs may be driven by licensing or antilicensing condi-
tions, e.g. negative and positive polarity items with respect to downward monotone
functions.

4. We have calibrated the definition of composition relations distinguishing the ways
a sensitive item relates with a certain semantic property.





Chapter 6

Quantifier Scope

In this chapter, we study the scopal behavior of quantifier phrases using the unary
modalities of NL(3), we show how we can lexically enforce different scopal possibilities
for subclasses of the general class of quantifier phrases.

In Section 6.1, we present the empirical data we have to account for. In Sections 6.2
and 6.3 we look at earlier analyses within the type logical tradition and within generative
grammar. The core of our proposal is in Section 6.4 where we present modally decorated
type assignments making the right empirical prediction. Finally, we suggest a refinement
of the minimalist analysis of the feature checking suggested by the comparison with the
logical approach (Section 6.5)1.

6.1 Quantifier Scope. The Problem

Quantified noun phrases (QPs), e.g. nobody, a N, every N, offer interesting challenges
for the treatment of the syntax/semantic interface. First of all, they can take scope
wider than where they occur overtly as illustrated by the examples below.

(1) a. John wants to marry a Canadian princess.

b. Every boy read two books.

c. John didn’t marry a Canadian princess.

In all these sentences the QPs can have either narrow or wide scope with respect to the
other emphasized expressions giving rise to scope ambiguities. The sentence in (1-a) is
a case of existence presupposition: if the existentially quantified indefinite a Canadian
princess falls under the scope of want, then the speaker needs not be committed to
the existence of any Canadian princess (de dicto reading); on the other hand, if the
QP scopes over it, then the speaker understands that such an individual exists (de re
reading). Sentence (1-b) regards the distributivity property of the two QPs involved.
If the indefinite QP two books outscope every boy, then the sentence is interpreted
as referring to two specific books which every boy read. On the other hand, if two

1The results presented in this chapter are partially based on joint work with Richard Moot [BM00].
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books falls under the scope of the distributive quantifier every boy, the total number
of books involved is potentially much greater than two. In the latter case, the QP
having wide scope is called the distributor and the narrow-scope indefinite the distributed
share [Cho87]. In (1-c) the ambiguity is given by the scopal interaction between logical
operators: the negation and existential quantifier. In one reading (¬∃), it is not the
case that John married a Canadian princess (maybe he married a Dutch one); in the
second case (∃¬), there is a specific person, namely a Canadian princess, who John did
not marry.

The second challenge has to do with quantifiers is the lexical differences with respect
to the ways of scope taking [BS97]. We use [X > Y] to mean ‘X has scope over Y’.

(2) a. John didn’t read a book. [Not > A], [A > Not].

b. John didn’t read every book. [Not > Every], [*Every > Not].

(3) a. Every boy read a different book. [Every > A], [*A > Every].

b. *All the boys read a different book.

(4) a. Three referees read few abstracts. [Three > Few], [*Few > Three].

b. Few referees read three abstracts. [Three > Few], [Few > Three].

In (2) the preferred reading is for negation to scope over the existential QP in (2-a) and
over the universal QP in (2-b). However, while the existential QP is free to scope over
negation (2-a), the universally quantified object can scope over negation only if focussed.
The contrast in (3) shows that while every has the distributivity property, all lacks it
as emphasized by the presence of different. Finally, (4) illustrates the inability of few
abstracts to take scope over a QP preceding it in the surface structure (s-structure).

6.2 QPs in Type Logic

In [Tho74] Montague gives a solution to the first problem presented by quantifier scope,
namely the ability of QPs to take scope wider than where they occur at s-structure. His
proposal was to use syntactic rules of quantification. We look at the simplest case which
helps reaching a more formal description of the problem at hand.

Definition 6.1. [Quantifying-In] If α ∈ P(e,t),t and φ ∈ Pt, then Fn(α, φ) ∈ Pt, and
Fn(α, φ) = φ′, where φ′ is the result of the following substitution in φ:

i. If α is not a syntactic variable hek, then replace the first occurrence of hen or
himn with α, and the other occurrences of hen or himn with appropriate anaphoric
pronouns;

ii. if α = hek, then replace every occurrence of hen with hek and of himn with himk.

This approach has been criticized in [Coo83], because it creates unnecessary (deriva-
tional) syntactic ambiguities. As an alternative, Cooper proposes a storage mechanism
aiming to eliminate the quantifying-in operation from the syntactic level, thus isolating
the effects of quantification in the semantics. In [Hen93] Hendriks proposes a flexible
type assignment strategy which leads to a more adequate division of labor between the
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syntactic and semantic components, making both quantifying-in and storage mechanism
superfluous.

The starting point of Hendriks’ approach is loosen the traditional functional corre-
spondence between syntactic categories and semantic types (see Section 1.3) and assume
a flexible type assignment. The system so obtained shares Cooper’s idea of using a set of
interpretations. However, differently from the interpretation used in the storing mech-
anism, the sets are obtained by means of general type-shifting rules. Consequently,
contrary to Montague’s approach of generalizing to the worst case2 Hendriks’ flexible
type assignment can start from the best case, viz. the minimal type adequate for that
expression. The recursive nature of the type-shifting rules, in fact, excludes the exis-
tence of a ‘worst case’. The type-shifting rules required to account for the full sets of
scope possibilities of a QP are the ones given below.

Definition 6.2. [Type-Shifting Rules] Let (
→
a, b) stand for (a1, (. . . (an, t) . . .)), where

a1 . . . an are arbitrary types and n ≥ 0. The type-shifting rules are: Value Raising (VR),
Argument Lowering (AL), and Argument Raising (AR)3.

VR (
→
a, b) −→VR (

→
a, ((b, d), d));

AL (
→
a, (((b, d), d), (

→
c , d))) −→AL (

→
a, (b, (

→
c , d)));

AR (
→
a, (b, (

→
c , d))) −→AR (

→
a, ((((b, d), d), b), (

→
c , d))).

On closer inspection, it turns out that with the exception of AR, the directional versions
of Hendriks’ type-shifting schemata are in fact derivable within the categorial base logic

NL. The specific instances of AR (in their directional version) where the sequence
→
c is

empty are valid in NL too. But the general version of AR needed for scope construal
requires a structural extension of the base logic.

Moortgat [Moo91] provides such an extension in the form of a three-place bind-
ing type constructor q. The intuitive interpretation of the subtypes is the following:
syntactically, an expression of type q(A,B,C) occupies the position of an expression
of type A within a structural context of type B; using the q connective turns the
B domain into an expression of type C. Semantically, the category q(A,B,C) maps
to ((type(A), type(B)), type(C)). An expression of that type binds a variable of type
type(A) within a domain of type type(B), producing a meaning recipe of type type(C)
as a result of functional application. The N.D. rule below encapsules this combined
syntactic/semantic behavior. With a typing q(np, s, s) for generalized quantifier expres-
sions, one derives the Montagovian Quantifying-In rules, or the instances of Hendriks’
type shifting rules, as special cases.

Γ ` α : q(A,B,C) ∆[x : A] ` β : B

∆[Γ] ` α(λx.β) : C
[qE]

In the multimodal setting of Chapter 2, the q connective of course cannot be a primitive
connective: the challenge is to show how it can be synthesized in terms of logical and

2Worst case type approach: the highest type required by some expression in a certain syntactic
category is uniformly assigned to all members of that category.

3For expository purposes, we give a simplified version which does not include the intensional type s
associated with the set of possible worlds considered in [Hen93].
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structural rules for the primitive operations 3,2↓, /, •, \ with appropriate mode distinc-
tions. Such a decomposition of q is in fact proposed in [Moo96a]. The exact details of
the decomposition are not directly relevant to the issues dealt with in this thesis. In
what follows, we will use the simple format of [qE] as a derived rule of inference.

In multiple quantifier environments, the type shifting rules of Hendriks as well as
the account in terms of the q binding operation deliver the full set of combinatorially
possible scope relations. The accounts, in other words, solve the problem of non-local
scope discussed in Section 6.1, but they do not address the problem of non-uniform scope
possibilities for generalized quantifier expressions. The vocabulary of the extended type
language we have introduced in Chapter 2 provides logical tools to replace the type
assignment q(np, s, s) by refined versions where the subtypes are decorated with unary
modalities. The modal prefixes studied in Chapter 2 and the derivability patterns among
them are repeated in the figure below.
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332
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↓
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6
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6

(02
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Let us take a closer look at the linguistic data by presenting the analysis they have
received in the minimalist program.

6.3 QPs in Generative Grammar

The standard theory of quantifier scope in generative grammar (see May [May77], Rein-
hart [Rei97], among others) is based on two central assumptions: (i) Quantifier scope
is determined by the constituent command relation (c-command) holding at the level of
Logical Form (LF)4; (ii) QPs are assigned scope by undergoing movement to their scope
positions in the derivation of the LF representations. Let us illustrate these two claims
by means of an example.

A generative grammar can produce different LF-structures for the same (ambiguous)
well-formed clause. Due to the different c-command relations at the level of LF the
surface structure (s-structure) receives different meanings. For example, a structure with
two quantifiers, every boy read two books, would be interpreted by means of the following
LF structures, where QPi and QPj abbreviate every boy and two books, respectively.

4A node a c-commands a node b if the first branching node dominating a dominates b too.
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1) QPi > QPj 2) QPj > QPi

S2

QPi S2’

S2
0 S1

QPj S1’

S1
0 S

ti VP

V tj

S2

QPj S2’

S2
0 S1

QPi S1’

S1
0 S

ti VP

V tj

Quantifiers are raised from their surface positions (i.e. where the traces ti, tj are) to
their scope position adjoining to S. For expository reasons we have used indexes on
the sentential categories but they are not meant to mark any difference between the
functional category S1 and S2. Therefore, the two QPs can move to the specifier Spec

of either of the two S-nodes, resulting in two different interpretations. Movement takes
a s-structure and returns LF representations that are unambiguous with respect to
quantifier scope relations: the c-command relations between the adjoined quantifiers
determine which is in the scope of which. For instance, in 1) since QPi c-commands
QPj, the reading assigned to the original surface structure is the direct one with QPi

having wide scope over QPj. The inverse scope reading, with two books having wide
scope, is obtained by moving the quantifiers in the opposite ways as illustrated in 2).

The movement operation marked by the arrows introduces a variable (a trace) which
is bound by the moved constituent (the quantifier). Recalling what we said when intro-
ducing the q(np, s, s) type —the np is the bound expression in the sentential domain,
and the whole operation returns a sentence— it becomes clear that the [qE] rule of CTL

achieves the effects of the movement operation spelled out above. In Section 6.4, we will
work this out in more detail.

In this approach, lexical elements carry two sorts of information: (i) one regarding
the category they select, and (ii) one about the features they require to be checked.
Consequently, a successful movement must satisfy two requirements: (i) the expression
which moves must land to the Spec of the node dominating the selcted sister-node,
and (ii) the Head of the node must be labelled with the appropriate feature, matching
the one carried by the expression to be moved. In the minimalist approach, these two
mechanisms corresponds to two different operations: (i) Merge which takes care of the
first request (category selection) and Move driven by features checking.

In the generative grammar tradition, the standard way of controlling movement
operations is by means of features. Beghelli and Stowell [BS97] apply this method to
account for different QP distributions. Scope is seen as the by-product of agreement
processes checked via Spec-Head agreement, and mismatches in agreement give rise to
ungrammatical sentences. They distinguish five classes of QPs and indicate membership
to any of the QP-groups by some syntactic properties which are morphologically encoded
in the determiner position. They claim that for certain combinations of quantifier types
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the grammar simply excludes certain logically possible scope construals. Let us first
look at the analysis they propose.

6.3.1 QP Classification

In [BS97] it is shown that (i) scope interaction is determined by the need to respect
the contribution of distributivity and (ii) the availability of the inverse scope reading
depends on the interaction between the scope elements involved. Following these criteria,
Beghelli and Stowell propose a classification of quantifier phrases.

First of all, QPs can be distinguished by considering whether they introduce a dis-
course referent. If they do, then the discourse referent must be bound/checked by some
logical operator hosted in the Head of a functional projection (FP) (see Section 3.2),
therefore the QP must move to the Spec of such a FP. If they do not, movement is not
required and the QP takes scope locally in its case-position. Counting quantifier phrases
(CQPs) like few referees belong to the latter class, the other QPs to the former one.

A second distinction concerns the sort of variables introduced: either individual
variables denoting groups, or set variables. Indefinites and definites quantifiers like a
book and the books are instances of the first case referred to as group quantifier phrases
(GQPs); distributive quantifiers like every and each form the second group (DQPs).
These two classes can be further subcategorized by considering the way their members
behave with respect to distributivity and negation.

GQPs are either referentially dependent —they range over individuals whose exis-
tence is presupposed— or they are referentially independent (e.g. the definite quantifier
the books). In the last case, besides introducing a group of referents, they fulfill the
function of being the logical subject of predication. Therefore, one could say that the
latter subclass has an extra feature with respect to the former one. QPs of the sec-
ond group cannot work as a distributed share of DQPs since they introduce discourse
referents which cannot be multiplied (5-a), while members of the first group can (5-b).
Finally, there are indefinites and bare-numeral GQPs which can alternatively be inter-
preted non-specifically, in this case they lack the feature particular to GQPs and take
scope locally like CQPs (5-c).

(5) a. Every student read the books. [The > Every].

b. Every student read a book. [Every > A], [A > Every].

c. Every boys read two books about India. [Every > Two], [Two > Every].

Among the DQPs, Beghelli and Stowell distinguish each from every. The former is
said to introduce a set of variables which must be bound by a distributive operator.
Hence (6-a) is awkward, and (7-a) does not have a generic reading. On the other hand,
the set of variables introduced by every can be bound by negative (6-b) and generic
operators (7-b) as well as by the distributive operator (5-b). This contrast gives rise to
different scope possibilities.

(6) a. %John didn’t read each book.
b. John didn’t read every book. [Not > Every]
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(7) a. Each dog has a tail.
b. Every dog has a tail.

Recall that all is similar to every for its universal force, but cannot work as a distributive
operator as emphasized by the presence of different in (8-a,b). Therefore, it is considered
to be part of GQPs group since it behaves like them with respect to negation (9-a,b),
though it differs from the other members for not being able to work as distributed share
of DQPs (5-b) and (9-c).

(8) a. *All the boys read a different book.

b. Every boy read a (different) book. [Every > A book].
c. All the boys read a book. [A > All], [All > A].

(9) a. John didn’t read all the books. [Not > All], [All > Not].

b. John didn’t read a book. [Not > A], [A > Not].

c. Every boy read all the books. [All > Every].

Besides these three groups, Beghelli and Stowell consider negative quantifier phrases
(NQPs) and interrogative quantifier phrases (WhQPs), where the former needs to be
bound by the negative operator and the latter by the interrogative one. The full picture
of the different main groups is shown below.

Group-denoting QPs (GQPs): e.g. a N, some N, all N, the N ;

Interrogative QPs (WhQPs): e.g. what, which N, how ;

Counting QPs (CQPs): e.g. few N, exactely n N, at most n N ;

Distributive-Universal QPs (DQPs): e.g. every N, each N ;

Negative QPs (NQPs): e.g. nobody, no N.

6.3.2 Feature Checking Theory for QP Scope

In order to account for the facts illustrated above, Beghelli and Stowell consider the
clausal structure as including, among others, a hierarchy of functional projections which
are the landing sites for QPs. Each quantifier acquires its scope by moving into the
specifier of that functional projection which suits its semantic and/or morphological
properties. For instance, the landing site of DQPs (Spec-DistP) must have the dis-
tributive operator ∀ (hosted in Head-DistP), and the functional category DistP must
select for a distributed share phrase (ShareP) where GQPs can land. In a similar
way, the order among the other FPs is obtained reaching the full functional structure in
Figure 6.1 where the head-positions are compiled in for the ease of presentation.

Movement is driven by the need of checking the features carried by the QPs. For
example, negative quantifiers like nobody bear a feature [+Neg] and therefore they must
move to the Spec of the negative phrase (NegP) hosting the negative operator ¬. From
this it follows that NQPs cannot have scope over quantifiers which must land on a level
higher than the functional category NegP, e.g. the definite the books which moves to
the specifier of the referential phrase (Spec-RefP) (10-a.), but can have scope on QPs
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RefP

GQP CP

WhQP AgrS-P

CQP DistP

DQP ShareP

GQP NegP

NQP AgrO-P

CQP VP

Figure 6.1: Phrase structure for QPs.

which are on a lower level, e.g. few books which stay in its case position, Spec-AgrO-

P (10-b).

(10) a. John didn’t read the books. [The > Not].

b. John didn’t read few books. [Not > Few].

The different positions assigned to the subject agreement phrase (AgrS-P) and the
object agreement phrase (AgrO-P), reflect the asymmetric behavior exhibited by CQPs
when occurring in the two positions (4-a) and (4-b). Notice that since all quantifiers
carry information about their case, they might need to reconstruct under a lower level to
check their scope features after having cancelled their case features at Spec-AgrS-P.

Finally, notice that each of the levels hosts an operator. For example, ¬, ∃, ∀ are
hosted in the heads Neg0, Share0 and Dist0, respectively5. These operators attract the
features carried by the QPs. From this, it follows that the different features which
characterize the classes of QPs carry logico-semantic information and the functional
structure above corresponds to a hierarchy of operators.

6.4 Controlling Scope Distribution in CTL

The aim of this section is to obtain the scope constraints discussed above deductively
by means of modally refined type assignments. We start by comparing the movement
operation used within the minimalist framework with the [qE] rule used in CTL. Via
this comparison we learn how to decorate the type assignment q(np, s, s) with unary
modalities as to control the scope distribution of the different QPs. Once the method

5The existential operator ∃ is hosted in the referential head (Ref0) as well. Ref0 differs from Share0 in
having an extra feature which attracts those quantifiers introducing referentially independent variables,
e.g. definite quantifiers.
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has been explained, we look back at the possible types at our disposal and start exploring
the landscape of natural language quantifiers.

6.4.1 Modalities for Feature Checking

In Section 6.2, we have seen that the type q(np, s, s) assigned to QPs in [Moo91] can
be read as saying that (i) the quantifier is a binder of an np type variable, (ii) the
binding relation is within a sentential domain, and (iii) the whole resulting structure is
a sentence. Translating this into the minimalist approach, we have that (i) the QP is
an expression undergoing movement, (ii) its trace is within a sentential phrase, (iii) the
landing site of QP is again a sentential phrase. For the ease of exposition we distinguish
the binding domain s by the resulting one s′: q(np, s, s′). We can think of the [qE] rule
of use as producing the replacement of the np represent below:

S:s’

QP S:s

np

where the s′ and s can be thought of as features carried by the head of the functional
projection. Let us now take a structure containing two quantifiers QPi and QPj and let
q(np, si, s

′
i) and q(np, sj, s

′
j) be their types, respectively. Applying what we have said to

generate the simple tree above, we obtain

S:s’j

QPj S:si’/sj

QPi S:si

npi npj

which can be read as saying QPj selects for s′i and carries a feature which must be
checked against the Head of S : s′j by moving to its Spec position. Notice that though
QPj does not carry the type (feature) s′i in its q-type, one could say that it has a type
(feature) sj such that s′i derives (agrees with) it, i.e. s′i −→ sj. In other words, the scope
constraints forced by the functional projection hierarchy are accounted for deductively.

This discussion shows that the different ways of scoping exhibited by QPs can be
controlled by differentiating their sentential types: a QP will have scope over a second
one if a derivability condition among types is satisfied. In Section 6.2, we have presented
the full scale of derivability patterns at our disposal. The simplest cases are repeated in
Figure 6.2.

With these four sentential types, sixteen different QP-types can be obtained. Taking
into consideration what we said above, one can establish a classification of QP-types
based on their scope possibilities. The strongest quantifier type —the one which will
have wide scope in most of the cases— is q(np,2↓

3s,2↓
3s): it is able to take scope
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s1 : 32
↓s

s2 : ss4 : 2
↓
332

↓s

s3 : 2
↓
3s

Figure 6.2: Basic sentential levels.

over all QP-types (since all sentential types derive 2
↓
3s), and there are only four QP-

types which can take scope over it, those with 2
↓
3s as binding domain. For symmetric

reasons, the weakest QP-type is q(np,32
↓s,32

↓s). Let us now see these QP-types at
work by considering the linguistic data presented by Beghelli and Stowell. Our QP-type
hierarchy gives us a way to situate the classification proposed within the minimalist
program. Moreover, it predicts the existence of further subclasses of quantifier phrases.

6.4.2 Types for Beghelli and Stowell’s QP Classification

From the analysis of the linguistic data, it follows that negation and distributivity play
a fundamental role in determining the scope possibilities of QPs. Therefore, we start by
focusing the attention on the functional categories NegP and DistP.

Negative quantifiers and negation can have scope over all quantifiers with the excep-
tion of each and the ones landing to RefP, e.g. the books. We repeat the relevant data
below.

(11) a. %John didn’t read each book.

b. John didn’t read the book. [The > Not].

c. John didn’t read all the books. [Not > All], [All > Not].

d. John didn’t read a book. [Not > A], [A > Not].

e. John didn’t read every book. [Not > Every].

Moreover, as the data show among the QPs considered, every and each are the only two
quantifiers which cannot have scope over negation. Beghelli and Stowell explain this
fact by saying that they need the distributed share phrase ShareP to be filled in, in
order to generate grammatical structures. The sentence below is taken as evidence for
this claim.
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(12) One boy didn’t read each book. [Each > One > Not].

The second important borderline in Beghelli and Stowell’s functional projection hierar-
chy is DistP. Not all the QPs can work as distributed share for DQPs, from this fact
scope distinctions follow. In particular, every and each cannot take scope over NQPs,
all and those QPs landing to Spec-RefP.

The scope possibilities, particular to the natural language quantifiers studied so far,
are expressed by the QP-types listed in Table 6.1. We refer to the types using the
corresponding abbreviations si given in Figure 6.2. Recalling what said in Section 6.4.1
about the scoping strength degree of QP-types, the lexical assignments say, for instance,
that definite GQPs will always have wide scope: their QP-type can take scope over all
the others QP-types and none of the ones used in the lexicon manage to take (immediate)
scope over it.

NQPs q(np, s2, s2) e.g. nobody ;
pure DQPs q(np, s4, s4) e.g. each n;
universal DQPs q(np, s4, s1) e.g. every n;
universal GQPs q(np, s3, s2) e.g. all n;
definite GQPs q(np, s3, s3) e.g. the n;
indefinite and bare numeral GQPs q(np, s3, s1) e.g. a n, one n.

Table 6.1: Lexicon.

Let us check how these scope constraints are actually derived in CTL. We start by
considering the interaction of QPs with negation and show how the data in (11) follow
from the lexical assignments in Table 6.1 and the types (np\s2)/(np\s2) and (np\s1)/np
assigned to didn’t and read, respectively. In the derivations in Figure 6.3, the QP-type is
represented by a variable-type q(np, sx, s

′
y) which must be instantiated by the different

QP-types given above to check their scope possibilities. A derivation from ∆ ` si to
∆ ` sj (i.e. si −→ sj) is abbreviated as [Di]. Finally, recall that due to the Curry-
Howard correspondence (see Section 1.3) while determining the grammaticality of the
linguistic structures, the logical rules build their meaning as well and a unique lambda
term is assigned to each syntactic derivation. For instance, the derivation in Figure 6.3
builds the lambda terms as shown in Figure 6.4, where the Q is a variable to be replaced
by the actual term representing the quantifier in the structure.

The first derivation in Figures 6.3 and 6.4 gives the direct scope reading [Not >
QP]: the QP is in the semantic scope of the negation and the latter c-commands the
former at the surface structure. The types given in Table 6.1 block this derivation in
case the QP is each book or the book since s′y is instantiated as s4 and s3, respectively
and s4 : 2

↓
332

↓s 6−→ s2 : s, and s3 : 2
↓
3s 6−→ s2 : s. Therefore, the derivations fail in

applying [Dy]. On the other hand, the direct scope is derived when any of the other QPs
occur, since in all the other cases the s′y is instantiated with sentential types deriving
s2. Notice that [D1] will be a correct inference for any type instantiating sx, since s1 is
the lower type in the patterns we are considering.

The second derivation gives the inverse scope reading [QP > Not]: the negation is
in the semantic scope of the quantifier, but the latter does not c-command the former
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[Not > QP]

John ` np

didn’t ` (np\s2)/(np\s2)

QP ` q(np, sx, s
′
y)

[y ` np]2
read ` (np\s1)/np [x ` np]1

read ◦ x ` np\s1
[/E]

y ◦ (read ◦ x) ` s1
[\E]

y ◦ (read ◦ x) ` sx
[D1]

y ◦ (read ◦QP) ` s′y
[qE]1

y ◦ (read ◦QP) ` s2
[Dy]

read ◦QP ` np\s2
[\I]2

didn’t ◦ (read ◦QP) ` np\s2
[/E]

John ◦ (didn’t ◦ (read ◦QP)) ` s2
[\E]

John ◦ (didn’t ◦ (read ◦QP)) ` s3
[D2]

[QP > Not]

QP ` q(np, sx, s
′
y)

[x ` np]1
....

John ◦ (didn’t ◦ (read ◦ x)) ` s2

John ◦ (didn’t ◦ (read ◦ x)) ` sx
[D2]

John ◦ (didn’t ◦ (read ◦QP)) ` s′y
[qE]1

John ◦ (didn’t ◦ (read ◦QP)) ` s3
[Dy]

Figure 6.3: Wide and narrow scope negation.

[Not > QP]

j : np

λP.¬P : (np\s2)/(np\s2)

Q : q(np, sx, s′y)

....
(Read x) y : sx

Q(λx.(Read x) y) : s′y
[qE]1

Q(λx.(Read x) y) : s2
[Dy]

λy.Q(λx.(Read x) y) : np\s2
[\I]2

λz.¬Q(λx.(Read x) z) : np\s2
[/E]

¬Q(λ.x(Read x)j) : s2
[\E]

¬Q(λx.(Read x)j) : s3
[D2]

[QP > Not]

Q : q(np, sx, s
′
y)

[x : np]1
....

¬((Read x)j) : s2

¬((Read x)j) : sx
[D2]

Q(λx.¬(Read x)j) : s′y
[qE]1

Q(λx.¬(Readx)j) : s3
[Dy]

Figure 6.4: Meaning assembly.
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[QPsub > QPobj]

QP ` q(np, sx, s
′
y)

QP ` q(np, su, s
′
v)

[x ` np]2 [y ` np]1
....

x ◦ (TV ◦ y) ` s1

x ◦ (TV ◦ y) ` su
[D1]

x ◦ (TV ◦QP) ` s′v
[qE]1

x ◦ (TV ◦QP) ` sx
[Dv]

QP ◦ (TV ◦QP) ` s′y
[qE]2

QP ◦ (TV ◦QP) ` s3
[Dy]

[QPobj > QPsub]

QP ` q(np, su, s
′
v)

QP ` q(np, sx, s
′
y)

[x ` np]2 [y ` np]1
....

x ◦ (TV ◦ y) ` s1

x ◦ (TV ◦ y) ` sx
[D1]

QP ◦ (TV ◦ y) ` s′y
[qE]2

QP ◦ (TV ◦ y) ` su
[Dy]

QP ◦ (TV ◦QP) ` s′v
[qE]1

QP ◦ (TV ◦QP) ` s3
[Dv]

Figure 6.5: Structures with multiple QPs.

at the s-structure. First of all notice, that the relevant point here is the derivation
holding between s2 and sx —all the sentential levels we are considering derive s3, hence
the inference [Dy] s

′
y −→ s3 : 2

↓
3s, holds for any QP-types. This derivation fails at

[D2] in case the QP we are considering is either every book or each book—since sx is
instantiated by s4 and s2 : s6−→s4 : 2

↓
332

↓s; while it is derivable when considering
the other QPs. We have shown that the derivations in Figure 6.3 correctly account for
the data in (11), and we can now move to consider multiple quantifiers contexts sharing
the structure [QP [TV QP]].

Comparing the derivations in Figure 6.5 with the tree given in Section 6.4.1 one sees
that similar results are obtained: given two quantifiers QPi, QPj, QPi has scope over
QPj [QPj > QPi] iff s′i −→ sj and the s′j is a grammatical sentential level, s′j −→ s3.
Again by replacing the variable-types used in the derivations one can easily check that
the data in (5) and (8-c) are correctly predicted. Now that we have illustrated how CTL

assigns scope to constituents which in the generative grammar undergo movement, we
can consider the class of those QPs which take scope locally.

Accordingly to Beghelli and Stowell, CQPs differ from the other QPs since they
must take scope in their case position. Moreover, they show an asymmetric behavior
when occurring in subject/object position, which motivates the different placements of
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AgrS-P and AgrO-P in the phrase structure in Figure 6.1.

(13) a. Some student visited few girls. [Some > Few].

b. Every student visited few girls. [Every > Few].

(14) a. Few girls visited some student. [Few > Some], [Some > Few].

b. Few girls visited every student. [Few > Every].

These sentences show that CQPs are unable to take inverse scope. For instance, we
cannot construe (13-a) to mean that for few girls it is the case that some student visited
her. On the other hand, the structures in (14) with the CQP in subject position do
allow for the reading with few girls having wide scope.

Before studying the type assignment for those QPs, notice that linguistic reality
seems to be more complex than we could express differentiating subject and object
types. In [Swa98] de Swart points out that at least in the case of negative polarity
items, e.g. anything, the difference in the scope possibilities with respect to negation
cannot be explained in terms of subject/object asymmetries as shown by the cases
below.

(15) a. Phil would not give me anything.

b. *Anything Phil would not give me.

The fact that CQPs cannot have wide scope over expressions preceding them at s-
structure can be rephrased in CTL terms, by saying that the type of these QPs should
not have the same freedom as the others quantifiers, freedom given by the q-operator.
Therefore, a proper type assignment for them can be given by using the classical func-
tional types. The behavior of CQPs is described by s2/(np\s4) where the directional
implication blocks them to take inverse scope, and the sentential types express their
direct scope possibilities summarized in the example below.

(16) a. Few students read each book. [Few > Each].

b. Few students didn’t go to the party. [Few > Not].

c. Few students read the books. [*Few > The], [The > Few].

d. A student read few books. [A > Few], [*Few > A].

e. John didn’t read few books. [Not > Few].

In order to account for the composition of the verb phrase with these QPs in postverbal
position, transitive verbs are assigned a lifted type which enables them to compose with
local scoping QPs. Given that s2/(np\s4) −→ s2/(np\s1) and np −→ s2/(np\s1) a
proper type for transitive verbs is (np\s1)/(s2/(np\s1)): they will compose with both
CQPs when occurring in a postverbal position and with simple noun phrases. Moreover,
since the types assigned to each n and the n don’t derive s2/(np\s1), the analysis dis-
cussed so far is not modified by the introduction of the new type for the verb phrases.
The quantifiers each n and the n are the only QPs which might cause ungrammaticality
as narrow scope takers.
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6.4.3 Exploring the Landscape of QP-types

Now that we have identified the QP-types deriving the behavior of the quantifiers studied
in [BS97], we can start exploring the full set of types generated by the basic derivability
patterns in Figure 6.2 and see which other QP-(sub)classes they predict to exist. We
look back at the types assigned to the subclasses of the GQP group, which is the one
more extensively studied by Beghelli and Stowell.

As we have seen, GQPs can be divided in three subclasses distinguishing (i) the
QP-a n type which can work as the share distributed phrase for DQPs, but can also
have wide scope over them moving to Spec-RefP, (ii) QP-all n type which cannot land
into Spec-ShareP, (iii) the QP-the n which must land into Spec-RefP. These three
subclasses correspond to the QP-types, (i) q(np, s3, s1) (ii) q(np, s3, s2), (iii) q(np, s3, s3),
respectively. From this it follows that the QP-classification we have obtained could
express a fourth type with s3 as sentential binder, namely q(np, s3, s4). This type can be
in the immediate scope of DQPs and CQPs in subject position, since s4 −→ s4, and will
be ungrammatical in the scope of NQPs, since s4 6−→ s2. In minimalist terms, this would
mean that the new GQP can move to Spec-ShareP, but cannot have scope locally in
AgrO-P. This behavior is indeed exhibited by the positive polarity item some n as
illustrated by the example below.

(17) a. Each student read some book. [Each > Some], [Some > Each].
b. No student read some book. [Some > No].
c. Few students read some book. [Few > Some], [Some > Few].
d. At most five students read some book. [At most 5 > Some], [Some > At

most].

The full cases of QP-types with sentential binder s3 are now exhausted and they express
the behavior of the (sub)classes of GQPs. Similarly, one could explore the other classes
and search for quantifiers matching the predicted behavior. For instance, the contrast
in (18) between few n and exactly five n [SZ97] seems to suggest that CQPs should be
further subcategorized.

(18) a. *How did few people think that you behaved?
b. How did exactly five people think that you behaved?

Finally, notice that in Beghelli and Stowell’s QP-classification interrogative phrases are
considered as carrying a feature which must be checked against the Head-CP by moving
to its Spec position. The whole class is referred to as WhQPs and no subclasses are
considered. However, as we have briefly discussed in Section 5.1, wh-phrases exhibit
different behavior with respect to weak islands. In particular, while who can escape
islands formed by negation (19-a), how cannot (19-b). We repeat the data below [SZ97].

(19) a. Who didn’t Fido see?
b. *How didn’t Fido behave?

Again, these data seem to suggest that a family of WhQP-types could be used to rep-
resent interrogative quantifier behaviors. We will come back to this point in the next
chapter. We now move on to consider the type classification obtained by extending
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the derivability patterns used so far. The whole picture given in Section 6.2 offers types
which do not derive the sentential type assigned to grammatical sentences s3. Therefore,
our analysis predicts the existence of QPs which require to be in the scope of another
scope element returning s3 (or a lower type) for grammaticality. This is the case of
QP-types like q(np, sx, (

0sy)
0) or q(np, sx,

0(s0y)), where sx and sy stand for any of the
sentential types in our derivability patterns.

Natural languages make use of these sorts of quantifiers. A classical example is given
by negative polarity items like anybody. Recall from Section 4.1 that anybody is ungram-
matical in anybody left but grammatical if the same structure is a subordinate clause
preceded by a proper licensor, e.g. doubts: John doubts that anybody left. In Chap-
ter 7, we will explore the whole landscape of polarity items and derive their distribution
properties.

Finally, CTL types predict that QPs might behave differently with respect to coor-
dination. In particular, as we will show in the next chapter, it is predicted that NPIs
cannot occur in any of the two constituents of the conjunction whereas the other QPs
can (20) and (21). On the other hand, the standard c-command analysis fails to predict
these data as discussed in [Pro00, Hoe00].

(20) a. *No student and any professor came to the party.

b. *Any professor and no student came to the party.

c. *Mary chased nobody and anybody’s dog.

(21) a. No student and no professor came to the party.

b. A student and some professor came to the party.

c. Every student and some professor came to the party.

d. Every student and/but no professor came to the party.

e. Mary chased nobody and nobody’s dog.

6.4.4 A Problem of the Minimalist Analysis

An interesting problem encountered when using Beghelli and Stowell’s phrase structure
is the analysis of sentences like the one below, where two quantifiers of the same class
interact with a third one6.

(22) Every student gave some teacher every book (he had).

a. Every > Some > Every,

b. Some > Every > Every,

c. Every > Every > Some.

The problem comes from the fact that quantifiers of the same class must land in the same
Spec position. Therefore, when these two quantifiers co-occur in a sentence together
with a third one, the only readings which can be derived are the ones with the two
quantifiers of the same class having scope one immediately over the other. This means

6This failure of the Beghelli and Stowell’s analysis has been noted by Ø. Nilsen (p.c.).
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that the reading (a) cannot be derived. These cases are not problematic for the CTL

account.

The example above can be connected with the one given in (12) and repeated in
(23-a), where a GQP intervenes at LF between negation and the distributive quantifiers,
allowing each to outscope negation. Similarly, as observed in [Sza01], negation can
outscope the positive polarity item someone if there is an intervener (24-b).

(23) a. One boy didn’t read each book. [Each > One > Not].

b. %John didn’t read each book.

(24) a. John didn’t meet someone. [Some>Not], [*Not>Some].

b. John didn’t always meet someone. [Some>Not>Alw.], [Not>Alw.>Some].

In all these cases, the presence of an intervener modifies the scope possibilities of the
elements involved. This cannot be easily accommodated into a sequence of functional
projections since extended projection lines are fixed and a constituent, e.g. a quantifier,
must move to the suitable Spec position regardless of interveners7. Let us look at the
way the sentence (24) can be interpreted in the minimalist framework.

In order to block the negation to have wide scope over someone (24-a), the latter must
land to a node higher than NegP. Following the minimalist analysis we have presented
above, we can consider RefP to be this node. The positive polarity item must carry a
feature [+] which will force it to move higher than NegP and the Head-RefP must
have this feature attracting the positive polarity item. This analysis correctly predicts
the interpretation of (24-a) as schematically illustrated by the trees below.

(a1) (a2)

RefP

Some NegP

Not VP

ti

NegP

Not AgrO-P

Some[+] VP

ti

The derivation in (a1) converges at LF since no features are left to be checked, and
the structure John didn’t meet someone is interpreted with some outscoping negation.
Instead, the derivation in (a2) crashes since it still has a feature to be checked. In other
words, the reading with not having wide scope cannot be given, since someone cannot
take scope locally in AgrO-P. This same feature of the positive polarity item unables
not to outscope it, even though an intervener occurs, whereas linguistic data show that
the presence of an intervener modifies the scope possibilities (24-b). The failure of

7An account of PPIs into functional projection terms has been given in [Pro01]. There, however,
the case of a scope element intervening between negation and PPI is not considered. See [Sza01] for an
alternative solution.
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this analysis to predict the linguistic data is exemplified by the derivation below which
cannot be interpreted since it contains the feature [+].

NegP

Not TP

Always AgrO-P

Some[+] VP

ti

In the CTL framework scope possibilities are determined dynamically in the step by step
construction of the derivation: what matters is the derivability relation holding between
the type of a constituent and the one of the element in its immediate scope. As a
consequence interveners change the ways QPs take scope, and (24-b) above are correctly
predicted as illustrated by the derivation below. Recall that the type of positive polarity
quantifiers like someone is q(np, s3, s4).

[Not > Alw. > Some]

didn’t ` (np\s2)/(np\s2)

always ` (np\s1)/(np\s3)

....
meet ◦ someone ` np\s4

meet ◦ someone ` np\s3
[D4]

(always ◦ (meet ◦ someone)) ` np\s1
[/E]

(always ◦ (meet ◦ someone)) ` np\s2
[D1]

didn’t ◦ (always ◦ (meet ◦ someone)) ` np\s2
[/E]

6.5 Internalizing Feature Checking

The preceding discussion suggests a way to refine feature checking by rethinking func-
tional projections in terms of a deductive calculus of syntactic features. As suggested
above, the reason why the functional projection hierarchy fails to deal with interven-
ers is the fact that the features are checked after the tree has already been derived.
The operation building the phrase structure, Merge, and the one taking care of fea-
ture agreement Agree are separated. Making things more explicit one could say that
phrases carry two sorts of features: (i) features determining the selected node and (ii)
features driving movement. For instance, the functional projection DistP selects for
ShareP and attracts a quantifiers specified for distributivity. Schematically, this can
be expressed by assigning to DistP the features [ShareP → DistP] and [∀] in charge of
(i) and (ii), respectively. A solution to the problems pointed out in the previous section
can be found by internalizing the Agree operation into Merge and work with only
one sort of feature carrying both types of information.

Feature checking can be seen as an asymmetric process [BN02] where the two ex-
pressions involved play different roles. The checker, has two features α1, α2 whereas
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the checked expression, has one feature β. Checking can apply when β agrees with
α1 [Cho99]. If this holds, the two categories can Merge, yielding an expression with the
feature α2 (feature valuation, cf. [Cho99]). If α1 6= α2, it is crucial to know which of
them enters into agree with β. By considering α1, α2 as the antecedent and consequent
of the logical implication →, we have used to express the ‘selecting’ features, we achieve
this. In this way, the feature of the checker becomes α1 → α2 and feature checking
together with merge reduces to an application of modus ponens. In order for modus
ponens to apply to α1 → α2 and β, β must derive (agree) with α1. In other words,
agree is reduced to a derivability relation in a deductive calculus of syntactic features.
Let us look at an example to clarify matters.

Suppose the tense phrase TP has the feature T1 which derives three other tense
levels T2, T3, T4, where T2 and T4 derives T3. We can now control the order with which
elements merge to TP by attributing different features to the QPs. The contrast in (23)
is predicted by assigning [T2 → T2] to didn’t, [T4 → T4] to each and [T3 → T1] to one.

The reading in (23-a) is derived as follows: the negation merges with TP, yielding
[TP not. . .] with the feature [T2]. Since T2 agrees with T3, one can merge with this
phrase yielding [TP one [TP not . . .]] with the feature [T1] which can be merged with
each since [T1] agrees with its antecedent feature [T4]. On the other hand, if one tries
to merge each directly with [TP not. . .] the derivation fails, since the feature of this
expression [T2] does not agree with the antecedent features of each [T4]. Similarly, the
other cases are predicted by this deductive feature mechanism which dynamically builds
the phrase structure of the minimalist program. The reading (22-a) is obtained by the
phrase structure below where the features carried by the Head-TP are displayed on
the TP nodes.

TP:T1

Everyj :T4→T1 TP:T1

Somez:T3→T1 TP:T1

Everyi:T4→T1 TP:T1

tj gave tz ti

The phrase structure results to be correctly built because Spec-Head agreement is
satisfied.

We conclude this section by noticing that the comparison we have given between
the CTL and generative grammar approach to QPs has shown that modelling linguistic
phenomena often requires a way of encoding (semantic) differences between items of the
same syntactic category. In the generative grammar tradition this is done by means of
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features, whereas in CTL one can exploit the logical properties of the unary operators.
An important difference between the two solutions consists in the nature of the tools
employed: in the first case the features assigned to QPs do not have any intrinsic logical
properties, whereas in the second case they are logical constants of the system for which
we have well defined rules of inference.

Furthermore, the discussion of quantifier scopes shows how CTL can profit from the
studies of the empirical data done in the generative grammar tradition. On the other
hand, the change of perspective, from the generative framework to the type logical
one, sheds light on some problems of the minimalist analysis otherwise hidden into the
system. Finally, it helps gain a better understanding of the linguistic phenomena and
reach a refinement of the theory.

6.6 Key Concepts

In this chapter, we have given a type logical account of the different scope distribution
of quantifier phrases. We have

1. Surveyed the classification of QPs presented by Beghelli and Stowell [BS97].

2. Given modally decorated types to account for the different ways QPs take scope.

3. Shed light on new classes of QPs not considered in the linguistic theory.

4. Shown how the comparison between a logical framework and a more linguistically
oriented one can be advantageous for both systems.



Chapter 7

Licensing and Antilicensing Relations

The aim of this chapter is to investigate the licensing and antilicensing relations holding
between a sensitive item and a trigger. By using categorial type logic we shed light on
the effects of the inclusion relations holding among a trigger and the other elements of
the same semantic domain.

We start by presenting a type logical analysis of the licensing relation (Section 7.1).
We then present a cross linguistic comparison of this composition relation by looking
at Dutch and Greek negative polarity items (Section 7.2). In Section 7.3, we formally
characterize the family of contexts where these items must occur. The subset relations
holding among these contexts are encoded by means of the derivability relation among
type assignments which lexically anchor the distribution of Dutch and Greek negative
polarity items. The analysis is then extended to Italian (Section 7.4). Finally, the same
logical approach is applied to model antilicensing relations by looking in particular at
Dutch positive polarity items (Section 7.5).

7.1 Licensing Relations in CTL

Linguistic signs of a same semantic type may differ in their distribution behavior. This
is expressed by differentiating the composition relation which governs the assembly of
linguistic expressions. In particular, some items are compatible or incompatible with a
certain semantic property. Thus, they are grammatical or ungrammatical when in con-
struction with expressions having such a property. Moreover, there exist items which
are in a licensing or antilicensing relation with a certain property. Therefore, they are
grammatical only when in construction with the expressions having this property; or
ungrammatical when in construction with these expressions and grammatical in con-
struction with the signs which do not have the property they repel. In a slogan an
item ‘can’ or ‘cannot’, or ‘must’ or ‘must not’ be in construction with a trigger having
a certain property.

In this chapter, we show how these forms of composition can be expressed by cate-
gorial types. To express this demands of the items we need something more than simple
function application and abstraction. By way of illustration, we look at negative and
positive polarity items as a case of expressions in a licensing and antilicensing relation

121
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with their triggers, respectively. In both cases, we make use of the unary operators of
CTL.

A first reason to be interested in sorting out these different composition relations
is that they provide a classification of items belonging to the same semantic domain.
The property an item can be sensitive to may be shared by several expressions creating
a net of licensing relations. In other words, the licensing relation, holding between an
item and a trigger having that specific property attracting the item, is inherited by the
others expressions sharing that same property with the (direct) trigger. Semantically,
the connections among phrases sharing some property is expressed in terms of inclusion
relations of the domain of interpretation. Syntactically, the same link can be captured by
derivability relations among their types and the inheritance relations among the direct
trigger and its relatives is determined deductively. More specifically, due to the logical
property of the functional connectives a structure of type A/B (or B\A) composes with
a structure of any type C such that C −→ B. This will be the main property we exploit
in our analysis of licensing and antilicensing relations.

A second interesting fact about these phenomena is that these compositional relations
differ across languages. For instance, while possibly does not license any, their Greek
counterparts are in a licensing relation. CTL helps clearly grasp these differences simply
by means of lexical assignments. In this chapter, we will look at Greek and Dutch
negative polarity items and build a lexicon for the two fragments of natural languages.
Furthermore, based on this analysis, we look at some Italian data and suggest a first
classification of the negative polarity items taken into consideration.

7.1.1 Licensing Relations as Features Exchanges

In Chapter 4, we already encountered negative polarity items and gave a first analysis
of them in connection with monotone functions. There we focused on natural reasoning
and the account of polarity items was a side effect of the feature marking carried by the
downward monotone functions’ types and of the computation of the polarity positions
exerted by the structural language. In this chapter, we want to shed light on the licensing
relation between the NPIs and their triggers —which traditionally are considered to be
downward monotone functions [Lad79]. Therefore, we can leave out the computation of
the polarity carried by the structural marking and modify the types accordingly.

Recall that the downward monotone quantifier nobody and the negative polarity
adverb yet were assigned the type s/3(np\s) and 2

↓
3(np\s)\2↓

3(np\s), respectively.
The 2

↓
3 in the argument position of the yet-type was employed to allow multiple

occurrences of NPIs, whereas the 2
↓ on the value formula was intended to mark the

structure where the item occurs before being taken as argument by the licensor. For the
reason just explained, we do not need this marking process here, and we can replace the
type of the negative quantifier with s/2↓

3(np\s), so that no flow of polarity information
from the logical to the structural level is performed as illustrated by the derivation below.
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nobody ` s/2↓
3(np\s)

left ` (np\s)

〈left〉 ` 3(np\s)
[3I]

left ` 2
↓
3(np\s)

[2↓I]
yet ` 2

↓
3(np\s)\2↓

3(np\s)

left ◦ yet ` 2
↓
3(np\s)

[\E]

nobody ◦ (left ◦ yet) ` s
[/E]

(7.1)

Recall also that upward monotone functions were left unmarked, e.g. everybody: s/(np\s).
Therefore, the type assigned by yet to the structure left yet would not match the one
required by everybody.

In [Fry99], an account of negative polarity items is given within the framework of
Lexical Functional Grammar (LFG) where multiplicative linear logic (MLL) is used as the
semantic ‘glue’ language. See [Ber00] for a comparison between the approach described
here and the one proposed in [Fry99]. The metaphor used there can help us explaining
our type logical account of licensing relations. Polarity can be considered as a “resource”
required by the NPI and produced by the licensor. In MLL this resource represented as
a proposition ` carried by the type assignments. Let B/A and C\D be the standard
logical types of the licensor and the NPI, respectively, the resource is added to them in
the following way:

Licensor: B/((A • `)/`) NPI: (C • `)\(D • `)

The licensor’s type introduces the resource hypothetically and can “clean it up” type-
internally if it is not required elsewhere. The NPI’s type, on the other hand, has the
resource in both its antecedent and its succedent, therefore it simply “borrows” with-
out really consuming the resource. This correctly predicts the behavior of NPIs. For
example, the simple structure Nobody left yet is derived as shown below using CTL

notation.

nobody ` s/((iv • `)/`)

left ` iv [x ` `]1

left ◦ x ` iv • `
[•I]

yet ` (iv • `)\(iv • `)

(left ◦ x) ◦ yet ` iv • `
[\E]

left ◦ (x ◦ yet) ` iv • `
[Ass]

left ◦ (yet ◦ x) ` iv • `
[Per]

(left ◦ yet) ◦ x ` iv • `
[Ass]

left ◦ yet ` (iv • `)/`
[/I]1

nobody ◦ (left ◦ yet) ` s
[/ E]

(7.2)

Comparing the derivation in 7.2 with the one given by CTL (7.1) we see a first desirable
consequence brought by the switch from the use of binary to unary operators to carry
special features: no structural rules are needed to prove the grammaticality of simple
structures as the one above. By using unary operators in the type assignments of the
licensor and the NPI, there is no need of a “phantom resources” as `: The property of the
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licensor of being a downward monotone function is not represented using a propositional
formula as if it is comparable with the linguistic categories. Having the unary operators
makes it possible to treat some items as having a specific property not shared with other
items of the same linguistic class.

7.1.2 Negative Polarity Quantifiers

Negative polarity items can belong to different syntactic categories. In particular, in
addition to the adverb yet there are also negative polarity quantifiers like anybody.
Quantifier phrases (QPs) exhibit a particular scope behavior. We have largely studied
them in Chapter 6 explaining how CTL accounts for the fact that QPs take wide scope
over a structure while locally behaving as an np. In particular, we have discussed the
application of the rule of use below

Γ ` α : q(A,B,C) ∆[x : A] ` β : B

∆[Γ] ` α(λx.β) : C
[qE]

Given QPs of type q(np, s, s), the rule above performs the replacement of the hypo-
thetical np with the quantifier, while the lambda term accounts for the QP taking wide
scope on the semantic level. Therefore, the type q(np, s, s) assigned to QPs means that
a quantifier is a binder of an np type variable within a sentential domain s, returning a
sentence s. Finally, we have shown that QPs differ in their scope possibilities requiring
more fine-grained type assignments obtained by differentiating their sentential types.

The scope distribution of negative polarity quantifiers differs from the one of the
other quantifiers for being governed by the licensing relation we have discussed above.
Therefore, their logical type assignment must encode this relation. Applying the general
method proposed for differentiating QP scope distribution, we consider any n to be of
type q(np, (0s)0, (0s)0). This type allows us to extend the lexicon described in Section 6.4
maintaining the types for the other QPs as discussed there. The only types which must
be modified are the ones assigned to the NPIs’ licensors. The type assigned to didn’t,
(np\s)/(np\s), is replaced with (np\s)/(np\(0s)0) and similarly the type of nobody is
now q(np, (0s)0, s). This change does not effect our previous analysis since s −→ (0s)0,
and therefore the new types derive the old ones. The type of the adverb yet considered
above changes consequently as in Figure 7.1.

any n q(np, s′2, s
′
2) nobody q(np, s′2, s2);

each n q(np, s4, s4) every n q(np, s4, s1);
all n q(np, s3, s2) the n q(np, s3, s3);
a n q(np, s3, s1) left np\s1;
didn’t (np\s2)/(np\s

′
2) yet (np\s′2)\(np\s

′
2).

Figure 7.1: Lexicon.

From now onwards, we will use s′2 to abbreviate (0s)0, and the other labels are used
as in the previous chapter (Figure 6.2), and as repeated here. The box in the figure
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emphasizes the new derivability relation we exploit in this chapter.

I �

� I

s1 : 32
↓s

s2 : s −→ s′2 : (0s)0s4 : 2
↓
332

↓s

s3 : 2
↓
3s

Let us now look at some data. Recall from Section 4.1 that NPIs can be either in the
same clause of their trigger, or in an embedded sentence while the trigger is in the matrix
sentence (1-c). Moreover, the general claim about the relation of a negative polarity item
and its licensor (or trigger) is that the former is licensed by the latter when occurring
in its immediate scope [Lin81]. However, there are also harmless interveners, like think,
which function as a bridge between the NPI and its licensor (1-f) [ES73].

(1) a. *Anybody left.

b. John didn’t read anything. [Not > Any], [*Any > Not].

c. John doubts anybody left. [Doubt > Any], [*Any > Doubt].

d. *John didn’t doubt that anybody left.

e. *John didn’t shout that anybody left.

f. John didn’t think that anybody left. [Not > Think > Any].

From the types in Figure 7.1 the ungrammaticality of sentences (1-a) and the grammat-
icality of (1-b) follow immediately.

We give the derivation in Example 7.1 where the relevant steps are highlighted with
boxes. The [Di] abbreviates a derivation from a type si to the type in the conclusion,
while [D∗] marks where the derivation fails.

Example 7.1. [Licensing of Negative Polarity Items]

1. *Anybody left.

anybody ` q(np, s′2, s
′
2)

[x ` np]1 left ` np\s1

x ◦ left ` s1
[\E]

x ◦ left ` s′2
[D1]

anybody ◦ left ` s′2

anybody ◦ left ` s3
[D∗]

[qE]1

2. John didn’t read anything.
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[Not > Any]

John ` np

didn’t ` (np\s2)/(np\s′2)

anything ` q(np, s′2, s
′
2)

[y ` np]2 [x ` np]1
....

y ◦ (read ◦ x) ` s1

y ◦ (read ◦ x) ` s′2
[D1]

y ◦ (read ◦ anything) ` s′2
[qE]1

read ◦ anything ` np\s′2
[\I]2

didn’t ◦ (read ◦ anything) ` np\s2
[/E]

John ◦ (didn’t ◦ (read ◦ anything)) ` s2
[\E]

John ◦ (didn’t ◦ (read ◦ anything)) ` s3
[D2]

[*Any > Not]

anything ` q(np, s′2, s
′
2)

[x ` np]1
....

John ◦ (didn’t ◦ (read ◦ x)) ` s2

John ◦ (didn’t ◦ (read ◦ x)) ` s′2
[D2]

John ◦ (didn’t ◦ (read ◦ anything)) ` s′2
[qE]1

John ◦ (didn’t ◦ (read ◦ anything)) ` s3
[D∗]

The case of embedded sentences is more involved. It requires a distinction of the lexical
assignments of the predicates. In particular, one has to distinguish negative predicates
like doubts, from the positive ones. Moreover, among the latter the bridge predicates
like think must be distinguished from the non-bridge ones like shout. Following the
argumentation discussed in Chapter 4 while studying monotone functions composition,
we consider the negative auxiliary didn’t to have a polymorphic type and exploit again
the derivability relations among sentential types to differentiate the predicates. The
instantiation required here for the type of didn’t is ((np\s2)/s

′
2)/((np\s2)/s1).

negative predicates (np\s3)/s
′
2 e.g. doubts;

bridge predicates (np\s2)/s1 e.g. think ;

positive predicates (np\s3)/s1 e.g. shout.

These lexicon assignments predict the data in (1) with the NPI in the embedded sen-
tence as illustrated in Figure 7.2. The first derivation is easily readable. To check the
derivability of the second derivation one has to replace the VP-type with the appro-
priate ones. The derivation abbreviated by [Dx,y] will fail in case VP is replaced with
doubts or shout, since sy is instantiated with s3 and s3 6−→ s2. On the other hand,
the derivation succeeds in the case of think since the types already match. Finally, the
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third derivation fails in [D2] when replacing the VP with shout and think : since they
are not downward monotone function they do not provide the NPI with the required
feature (s′2 : (0s)0 6−→ s1 : 32

↓s). On the other hand, doubts carries this feature
licensing anybody, but the composed structure cannot be taken as argument by didn’t
(s3 : 2

↓
3s 6−→ s′2 : (0s)0), as required by the linguistic data.

John ` np

doubts ` (np\s3)/s
′
2

....
anybody ◦ left ` s′2

doubts ◦ (anybody ◦ left) ` np\s3
[/E]

John ◦ (doubts ◦ (anybody ◦ left)) ` s3
[\E]

John ` np

didn’t ` ((np\s2)/s
′
2)/((np\s2)/s1)

VP ` (np\sy)/sx

VP ` (np\s2)/s1
[Dx,y]

didn’t ◦ VP ` (np\s2)/s
′
2

[/E]
....

anybody ◦ left ` s′2
(didn’t ◦ VP) ◦ (anybody ◦ left) ` np\s2

[/E]

John ◦ ((didn’t ◦ VP) ◦ (anybody ◦ left)) ` s2
[\I]

John ◦ ((didn’t ◦ VP) ◦ (anybody ◦ left)) ` s3
[D2]

didn’t ` (np\s2)/(np\s
′
2)

VP ` (np\sy)/sx

anybody ◦ left ` s′2
anybody ◦ left ` sx

[D2]

VP ◦ (anybody ◦ left) ` np\sy
[/E]

VP ◦ (anybody ◦ left) ` np\s′2
[Dy]

didn’t ◦ (VP ◦ (anybody ◦ left)) ` np\s2
[/E]

Figure 7.2: NPIs in embedded sentences.

Finally, recall from Section 6.4.3 that a negative quantifier in the constituent of conjunc-
tion cannot license a NPI occurring in the other constituent. This is predicted by our
types. Again conjunction is assigned a polymorphic type; when used to coordinate quan-
tifiers phrases the required instantiation is and : ((s3/(np\s1))\q(np, s1, s3))/(s3/(np\s1)).
It will fail to coordinate a quantifier NPI with any of the other QPs, whereas will succeed
with all the other QP-types. For the sake of simplicity, we abbreviate the arguments of
the conjunction with X.

QP1 ` q(np, sx, sy)

QP1 ` s3/(np\s1)
[Dx,y]

and ` (X\q(np, s1, s3))/X

QP2 ` q(np, su, sv)

QP2 ` s3/(np\s1)
[Du,v]

and ◦QP2 ` X\q(np, s1, s3)
[/E]

QP1 ◦ (and ◦QP2) ` q(np, s1, s3)
[/E]

As the reader can check q(np, s′2, s
′
2) 6−→ s3/(np\s1), while for all the other QP-types in

our lexicon the derivation holds.
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7.2 Crosslinguistic Comparison

The distribution of negative polarity items differs within and across languages. Within a
same language, it is possible to reach a classification of negative polarity items based on
the property licensing them. On a crosslinguistic level one can obtain natural language
typologies based on the licensing relations they satisfy. We look at Dutch and Greek by
way of example.

7.2.1 Dutch Negative Polarity Items

As anticipated in Section 5.2, a classification of Dutch NPIs can be given based on the
strength of the downward monotone functions they require as licensor [Wou94]. Strong
negative polarity items (SNPIs) are licensed by functions characterized by the two laws
of De Morgan1, i.e. antimorphic functions (AM); their medium relatives (MNPIs) are
felicitous also in ‘less negative’ contexts, being licensed by functions which satisfy the
first De Morgan law and half of the second —antiadditive functions (AA); finally, their
weaker versions (WNPIs) require half of both laws, hence they are licensed in the scope
of all downward monotone functions (DM). The full array of Dutch NPIs is illustrated
below. The idiomatic mals (tr. ‘tender’), the quantifier ook maar iets (tr. anything)
and the predicate hoeven (tr. need) are taken as representative of SNPIs, MNPIs, and
WNPIs, respectively. The quantifiers weinig n (tr. few n) and niemand (tr. nobody)
represent the DM and AA functions respectively, while niet (tr. not) is an antimorphic
function. The data are summarized in Table 7.1.

(2) a. Weinig
Few

studenten
students

hoeven
need

hard
hard

te
to

studeren.
study

[DM].

Few students need to study hard.

b. Niemand
Nobody

hoeft
needs

te
to

fietsen.
bike.

[AA].

Nobody has to bike.

c. Hij
He

hoeft
needs

niet
not

te
to

roepen.
shout

[AM].

He doesn’t need to shout.

(3) a. *Weinig
Few

monniken
monks

zullen
will

ook maar iets
anything

bereiken.
achieve.

[*DM].

tr. Few monks will achieve something.

b. Niemand
Nobody

zal
will

ook maar iets
anything

bereiken.
achieve.

[AA].

tr. Nobody will achieve anything.

c. Ik
I

denk
think

niet
not

dat er
that

ook maar iemand
anybody

zal
will

komen.
come

[AM > ook maar]

tr. I don’t think that anybody will come.

1The laws of De Morgan are: 1. f(X ∪ Y ) = f(X) ∩ f(Y ), 2. f(X ∩ Y ) = f(X) ∪ f(Y ).
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(4) a. *Van
Of

weinig
few

monniken
monks

was
was

de
the

kritiek
criticism

mals.
tender.

[*DM].

tr. The criticism of few monks was tender.

b. *De
The

kritiek
criticism

van
of

vader
father

abt
abbot

was
was

nooit
never

mals.
tender.

[*AA].

tr. The criticism of father abbot was never tender.

c. De
The

kritiek
criticism

zal
will

niet
not

mals
tender

zijn.
be.

[AM].

tr. The criticism will be harsh.

NPIs

Positive
Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
– – –
– – +
– + +
+ + +

mals ook maar hoeven
(tender) (anything) (need)

Table 7.1: Negative polarity items distribution in Dutch.

Giannakidou observes that the (medium) negative polarity item ook maar iets (tr. any-
thing) is grammatical also in questions (5-a) and in as soon as clause (5-b) when in-
terpreted as habitual [SWZ93, Gia97]. Based on these observations and on her study
of Greek data, she proposes to enlarge the scale of the licensors’ classification to the
broader concept of nonveridicality. We do not take a position here on which of the two
analyses would be the correct one for Dutch NPIs. If such a switch to nonveridicality
should be taken, it would be necessary to give a more detailed analysis accounting for
the differences shown by the wide range of Dutch data studied in [Wou94].

(5) a. Heb
have

je
you

ook maar iets
anything

gezien?
seen

tr. Did you see anything?

b. De
the

kinderen
children

vertrokken
left.3pl

zodra
as soon as

zij
they

ook maar iets
anything

ontdekten.
discovered.3spl

tr. The children used to leave as soon as they saw anything.

7.2.2 Greek Negative Polarity Items

Greek negative polarity items are shown to be in a licensing condition with nonveridi-
cality [Gia97], where intuitively a nonveridical expression (NV) is such that when com-
posed with a proposition p it does not entail the truth of p. Here as well, a classifi-
cation of negative polarity items can be given based on the inclusion relations holding
among nonveridical functions. In particular, the required distinction, inside the set
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of nonveridical functions, is among negation-like operators referred to as antiveridi-
cal functions (AV), e.g. dhen (tr. not), and the intensional ones creating opaque con-
texts [Qui60, Qui61, Tho74]2, e.g. isos (tr. perhaps) and bori (tr. may). These two
groups of functions form subsets of the set of nonveridical functions, but do not exhaust
it. Examples of nonveridical contexts which are neither antiveridical nor intensional are
questions, or downward monotone functions like few.

In [Gia97], it is shown that a classification of Greek polarity items can be given based
on their different behavior with respect to nonveridical functions. In particular, one can
distinguish (i) ‘emphatic negative polarity items’ which can only occur in AV contexts
and therefore are referred to as NPIs; (ii) ‘Idiomatic expressions’ (or minimizers (Min))
like ipe leksi (tr. say a word) also qualify as NPIs, though they are more flexible as
we will comment when discussing their type; (iii) ‘Affective polarity items’ (APIs), e.g.
kanena (tr. anybody) which are felicitous in construction with (all) NV contexts; and
(iv) free choice items (FCIs) (i.e. items with a universal force) which are ungrammatical
in AV contexts, and felicitous in nonveridical opaque contexts. Differently from English,
Greek employs special words for FCIs, e.g. opjosdhipote (tr. anybody) [Gia01]. For our
comparative purposes and study of licensing conditions the emphatic polarity items are
not interesting since they involve prosodic aspects which interfere with the licensing
relation. Therefore, we concentrate on APIs, FCIs, and Min.

(6) a. Dhen
not

idha
saw.perf.1sg

kanenan.
any-person.

[AV].

tr. I didn’t see anybody.

b. Isos
perhaps

na
subj

irthe
came.perf.3sg

kanenas.
anybody.

[Opaque].

tr. Perhaps somebody came.

c. Pote
when

ekanes
did.2sg

esi
you

tipota
anything

ja
for

na
subj

me
me

voithisis?
help.perf.2sg

[Question].

tr. Have you ever done anything to help me?

(7) a. *Dhen
not

idha
saw.perf.1sg

opjondhipote.
FCI-anybody

[AV].

tr. I didn’t see FCI-anybody.
b. Isos

perhaps
o
the

Pavlos
Paul

milise
subj talked.3sg

me
with

opjondhipote.
anybody-FCI.

[Opaque].

tr. *Perhaps Paul talked to anybody.

c. *Aghorases
bought.perf.2sg

opjodhipote
FCI-any

vivlio?
book

[Question].

tr. Did you buy any book?

2Opaque contexts are those contexts having different denotations depending on the point of reference
(or: situation, possible world, index). They do not satisfy the extensionality principle, where the latter
says that given s = t then |= φ ↔ φ′ where φ = φ′[t/s]. The name ‘opaque’ is meant to distinguish
these contexts from the transparent ones for which this substitution principle holds [Gam91]. Example
of ‘opaque contexts’ are those formed by modal verbs, habituals, generics, imperatives, intensional
verbs, future particle.
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(8) a. Dhen
not

ipe leksi
say word

oli
all

mera.
day

[AV].

tr. He didn’t say.perf a word all day.

b. *Bori
may

na
subj

pi leksi.
say a word

[Opaque].

tr. May say a word.

c. *Pjos
who

ipe leksi?
said.perf.3sg word

[Question].

tr. Who said a word?

The full picture is summarized in Table 7.2.

NPI API FCI Min
Veridical – – – –
Antiveridical + + – +
Opaque – + + –
Nonveridical – + – –

Table 7.2: Negative polarity distribution in Greek.

Note that FCIs must always occur in contexts which provide them alternatives (worlds or
situation). This motivates the fact that they are felicitous in opaque contexts, whereas
are ungrammatical in veridical and episodic contexts [Gia01]. This point can be clarified
by the contrast between (9-a) and (9-b).

(9) a. *Elaxisti
Very few

fitites
students

ipan
say.perf

otidhipote.
FCI-anything.

Few students said nothing.

b. Elaxisti
Very few

fitites
students

lene
say.imp

otidhipote
FCI-anything

sto
in

mathima.
class

Few students usually say anything in class.

The grammaticality of (b) is due to the use of the imperfective lene which gives the
habitual interpretation licensing the FCI.

7.3 (Non)veridical Contexts

As emphasized by Giannakidou the two analyses described in the previous section about
Dutch and Greek data are not incompatible. First of all, polarity items might show
different sensitivity properties across languages. Moreover, for the two languages at
hand, the properties which have been investigated are logically related. In this section,
we explore this relation in more formal terms. Let us start by introducing the definition
of nonveridical functions given in [Zwa95].



132 Chapter 7. Licensing and Antilicensing Relations

Definition 7.2. [(Non)veridical Operators (I)] Let O be a truth-conditional operator,

i. O is veridical iff O(p)⇒ p is logically valid. Otherwise O is nonveridical ;

ii. A nonveridical operator O is antiveridical iff O(p)⇒ ¬p is logically valid3.

In other words, the set of nonveridical functions contains as subset the one formed by
antiveridical expressions (AV) which are negation-like operators. We will refer to these
two sets as NV and AV, respectively, and use NV and AV to refer to their members.
Giannakidou extends Definition 7.2 to other operators, namely to those denoting deter-
miners [Gia99], and propositional verbs [Gia98]4. The extended definitions are based
on a set theoretical interpretation of natural language expressions given in terms of
relations. Following them, we now introduce a more general definition of nonveridical-
ity which holds for n-ary functions. The new perspective could shed light on further
investigations of nonveridical contexts in natural language.

Notice that since the veridicality property of a function is defined in terms of the
truth-values, only boolean functions can be defined to be (non)veridical. Moreover, they
can be (non)veridical only in their boolean arguments5. This means that, for example,
functions of the type (e, t) are not in the class we are interested in since their argument
is not boolean.

Definition 7.3. [(Non)veridical functions (II)] Let (
→
a, t) stand for a boolean type

(a1, (. . . (an, t) . . .)) where a1, . . . , an are arbitrary types and 0 ≤ n. Let f
(
→

a ,t)
be a

constant.

1. The expression represented by f is veridical in its i-argument, if ai is a boolean

type, i.e. ai = (
→

b , t), and ∀M, g

[[f(xa1 , . . . , xai−1
, x

(
→

b ,t)
, xai+1

, . . . , xan
)]]gM = 1 entails [[∃

→
y→

b
.x

(
→

b ,t)
(
→
y→

b
)]]gM = 1.

Otherwise f is nonveridical.

2. A nonveridical function represented by f
(
→

a ,t)
is antiveridical in its i-argument, if

ai = (
→

b , t) and ∀M, g

[[f(xa1 , . . . , xai−1
, x

(
→

b ,t)
, xai+1

, . . . , xan
)]]gM = 1 entails [[¬∃

→
y→

b
.x

(
→

b ,t)
(
→
y→

b
)]]gM = 1.

Notice that the base case of ai = t is obtained by taking
→
y empty.

3In the original definition Zwarts used the term averdical, which has been replaced with antiveridical
in [Gia99].

4For instance, the definition of nonveridical determiners says that: A determiner is veridical wrt its
N argument iff it holds that [[DET N VP]] = 1→ [[N]] 6= {}; otherwise DET is nonverdical.

5The set of boolean type is is built from the set of types TYPE as following: TYPE :=
ATOM, (TYPE, TYPE) and BTYPE := t, (TYPE, BTYPE) [KF85].
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In [Zwa95], it is shown that the concept of nonveridicality is connected to the one of
monotonicity. For truth-functional operators it holds that the set of the downward
monotone ones is a proper subset of the one formed by nonveridical operators.

Fact 7.4. [Downward Monotonicity entails Nonveridicality (I)] Given a unary or binary
truth conditional operator O, if O is downward monotone, then O is a nonveridical
operator.

Given our definition of nonveridical functions, we can extend this fact to n-ary boolean
functions.

Fact 7.5. [Downward Monotonicity entails Nonveridicality (II)] Given a n-ary function
f , if f is downward monotone in its i-argument, then f is nonveridical.

Proof. The proof goes by contradiction. Assume f is downward monotone and veridi-

cal, to prove falsum: For all boolean types (
→

b , t), write ⊥
(
→

b ,t)
for the function h such

that for all M, g [[∃
→
y .h(

→
y )]] = 0. Then observe that (i) if f is downward monotone

then for all x [[f(x1, . . . , xi, . . . , xn)]] ≤t [[f(x1, . . . ,⊥, . . . , xn)]]; (ii) if f is veridical then

[[f(x1, . . . ,⊥, . . . , xn)]] = 1 entails ∃
→
y . ⊥ (

→
y ) = 1. Contradiction. qed

For the analysis of Greek data discussed in the previous section it is relevant to emphase
that the set NV contains AV as subset. Moreover, nonveridical contexts can be opaque
as well; we refer to this second subset of NV, as NVI. One can prove that antiveridical
operators are extensional, hence AV 6⊆ NVI6.

A further study of the inclusion relation among the sets identified by nonveridicality,
intensionality and monotonicity could help reach a deeper understanding of negative
polarity phenomena, pointing out the precise properties required by the single items and
formally combine the analysis of Dutch and Greek data7. In Table 7.3, we give some
example of nonveridical contexts underlining their monotone and intensional properties.
Examples of veridical functions are and, the determiner a in its both arguments, without
in its first argument, and yesterday. We now look at some example illustrating the
definition given above.

An interesting case to look at are determiners. It can be surprising to note that no
antiveridical determiners have been found. At first sight a possible candidate could be
the determiner no. The fact that this is not the case can be illustrated by means of the
following example taken from [Gia99].

6In [Gia97], Giannakidou gives a more fine-grained definition of nonveridical contexts relativizing
them to individuals’ models. This definition justify the fact that APIs are excluded from the comple-
ments of, for instance, weak intensional verbs like believe. The idea is that sentences are not true or
false in isolation, but they are true or false with respect to an individual’s epistemic state.

7Note that as they are defined the sets of antiveridical and antimorphic have a non empty intersection,
but are not in a subset relation. For instance (¬p∨¬q) is antimorphic in p (and q) but is not antiveridical
in them (it is nonveridical) [Zwa95]. If the definition of antiveridicality is considered as an iff condition
than the set of these functions would be included in AM.
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Nonveridical
AV: AM: ⊆ AA: ⊆ DM: ⊇ IDM:
not p not p or not q nobody few p impossible p
without p forbid p
neither p nor q exclude p

UM: ⊇ IUM:
p or q will p
if ·, p may p

suggest p
before p
usually p
perhaps p

Table 7.3: (Non)veridical contexts.

Example 7.6. [Determiner] No denotes a two-argument function f ∈ TERM((e,t),((e,t),t).
Let us look at the first argument. We want to check whether f is antiveridical in it.
Its type is (e, t). Assume f is antiverdical, then by Definition 7.3 [[f(x1

(e,t)x
2
(e,t))]]

g
M = 1

entails ¬∃d ∈ Dome[[x
1
(e,t)ze]]

g[z/d]
M = 1. But this is not true as shown by the fact that a

cross sentential anaphoric link can be established in the sentence below:

No students came to the meeting. They preferred to stay at home.

The pronoun they can refer to the discourse referent introduced by no student. Hence
there is a model and an assignment for which ∃d ∈ Dome[[student(e,t) ze]]

g[z/d]
M = 1.

However, since we cannot entail that such z exists for all models and assignments, the
function is nonveridical.

Having assumed the functional perspective in defining (non)veridical contexts has al-
ready a first positive effect: it extends the case of linguistic items to be considered. For
example, we can consider the case of coordination of quantifier phrases.

Example 7.7. [Connectives] The different behavior of the connectives and vs. or with
respect to the veridicality of their arguments is easily checked applying Definition 7.3.
The two connective are represented by λPQR.P R ∧ Q R and λPQR.P R ∨ Q R,
respectively. It is easy to see that and is veridical in its both arguments P andQ, whereas
or is not: [[((((λPQR.(P R)∧(Q R)) x1) x2) x3)]]

g
M = 1 then ∃d ∈ D(e,t)[[(x1 z)]]

g[z/d]
M = 1

namely g(z) = g(x3), and the same holds for Q. Whereas this is not the case for or in
neither of the two arguments. Let us consider the sentence below.

1. Some student and every professor came to the party.
2. Some student or every professor came to the party.

Assume some student and every professor came to the party is true, than some student
came to the party is true as well. On the other hand, in the case of or such conclusion
cannot be drawn: the expression some student or every professor came to the party is
valid also in case no student came to the party but every professor did.
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Finally, notice that the veridicality of and versus the nonveridicality of or predicts
the distributional behavior of negative polarity items occuring in one of their con-
stituents [Hoe00]. Recall that these facts are instead problematic for a syntactic ap-
proach in terms of c-command relations (see Section 6.4.3). The example in (11) illus-
trates how the semantic approach instead correctly analyzes the behavior of Greek APIs
in the constituent of disjunction8.

(10) a. *No student and any professor came to the party.

(11) a. I
or

bike
entered.3sg

kanenas
anyone

mesa
in

i
or

afisame
left.1pl

to
the

fos
light

anameno.
lit

tr. Either somebody broke into the house or we left the light on.

b. Bike
entered.3sg

kanenas
anyone

mesa
in

ke
and

afisame
left.1pl

to
the

fos
light

anameno.
lit

tr. Somebody broke into the house and we left the light on.

7.4 Classifications of Negative Polarity Items in CTL

In this section, we show how the unary operators of NL(3,·0) can be used to account for
the linguistic typologies presented in the previous section, and clarify their differences
and similarities. Abstracting away from the different classifications of the licensors of
Dutch and Greek NPIs, the two analyses can be summarized as below. Recall from
Section 5.3 that the relation between a sensitive item and a trigger is accounted for by
considering a definition of a composition relation more general than the one expressed
by R• and function application. We defined the relation as C([γ : γ ′], [α : α′], [β : β ′]),
which is equivalent to the combination of (i) the syntactic assembly of the forms α and
β, and possibly other forms, yielding γ, and (ii) the meaning assembly of the terms α′,
β ′, and possibly other terms, yielding γ ′. Moreover, we said that in the case of items
sensitive to the semantic property of the function they can be in the scope of, the term
of the trigger β ′ has immediate scope over the term α′ of the sensitive item. NPIs are
in this class of sensitive items.

To express this schematically in sequent notation, we use the following convention:
∆dNPIie stands for ∆[NPIi] ` C : α′(δ′), where NPIi is the logical type assigned to
the negative polarity item occuring in the whole structure ∆, α′ is the lambda term
representing it and δ′ the lambda term corresponding to the structure on which the
negative polarity has wide scope. The * marks ungrammatical compositions.

Let Li1, Li2 stand for two functions such that the set of functions represented by Li1
is included in the one formed by the function represented by L2: L1 ⊆ L2. And let NPIi
stand for a negative polarity item which requires the property enjoyed by Lii.

(a) Li1 ◦∆dNPI1e (c) Li2 ◦∆dNPI2e
(b) Li1 ◦∆dNPI2e (d) ∗Li2 ◦∆dNPI1e

8In Greek as well as in Italian, FCI can occur in the constituent of disjunction [Gia01], though the
letter does not create an opaque context. This is justified by the fact that in those cases the disjunction
is modalized (i.e. it expresses as far as meaning) (p.c.).
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Since the polarity item has scope over the structure it occurs in, it determines the type
assigned to it (see the examples in Section 7.1.2). We represent this fact by assigning npii
to the whole structure ∆dNPIie ` npii. The inclusion relation holding among the sets
of licensors is expressed by considering the type of Li1 and Li2 so that the former derives
the latter (but not vice versa). Furthermore, since the Lii can take ∆dNPIie ` npii as
argument, Li1 : A/npi1 and Li2 : A/npi2, where A/npi1 −→ A/npi2, and hence, from
the monotonicity property of the functional operator /, npi2 −→ npi1. We leave the
general formula A on the value of the licensors’ type, since it is not relevant for the
understanding of the main idea. Summing up, the derivability relation −→ among the
logical types, simply encodes the inclusion relation ⊆ among the sets of expressions of
the same semantic type. From this encoding the compositions above derive as follows:

(b) (d)

Li1 ` A/npi1

∆[NPI2] ` npi2....
∆[NPI2] ` npi1

Li1 ◦∆[NPI2] ` A
[/E]

Li2 ` A/npi2

∆[NPI1] ` npi1
∆[NPI1] ` npi2

∗

∗Li2 ◦∆[NPI1] ` A
[/E]

The ∗ marks where the derivation fails. The compositions in (a) and (c) above are
obtained simply by functional application. Let us now make things more concrete by
means of an example and start exploiting the logical properties of NL(3,·0) to model
the analysis sketched above.

In Section 7.3, we have seen that a student, few student and nobody all have their

denotation in the domain D
D(e,t)

t . Hence, their semantic type is ((e, t), t). However, they
differ with respect to monotonicity: a student is an upward monotone function, whereas
at most three woman ∈ DM and nobody ∈ AA, where AA ⊆ DM. In order to account
for NPIs distribution, we need to differentiate these expressions as just explained. In
Chapter 6, we have seen that unary operators give us the right expressivity to account
for such distinctions. Following the type assignments obtained in Section 7.1, we can
consider nodoby : q(np, s′2, s2), and a student : q(np, s3, s1). The type of at most three
women has to be derivable from the one of nobody encoding the subset relation; we
consider it to be of type q(np, s′1, s2). Hence, npi2, npi1 are s′1 : (0(32

↓s))0 and s′2 : (0s)0,
respectively.

The derivability relations sketched above follow from the logical properties of the
unary operators. These types correctly block a structure containing a strong NPI or
a weaker one to compose with the upward monotone expression a student (12-a-b),
and predict the different behavior between the idiomatic expression say a word and
the weaker negative polarity item anybody with respect to contexts like at most three
women (13-a-b).

(12) a. *A student saw anybody.

b. *A student said a word.

(13) a. At most three women said anything.

b. *At most three women said a word.
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The examples above can be taken to illustrate the comment we made while introducing
licensing and antilicensing relations (Remark 5.3). We are in the case of an item in a
licensing relation with a function. The inference schema involved is the one given below.
Given g −→ f ,

∆[f ] ` C

∆[g] ` C.

For instance, in the case of anybody the type of its direct licensor at most three women is
derivable from the type of nobody, then from (13-a) it follows that Nobody said anything
is derivable as well. Schematically, given that AA : q(np, s′2, s2) −→ DM : q(np, s′1, s2),

∆[q(np, s′1, s2)] ` C

∆[q(np, s′2, s2)] ` C.

The cube of derivability relations given in Section 2.4 and repeated in Figure 7.3 offers
a much richer hierarchy of types which allow us to make more fine-grained distinctions
among negative polarity items. We now move to investigate their applications to the
crosslinguistic data presented in Section 7.2.

I �

� I

32
↓A

A2
↓
332

↓A

2
↓
3A

6

6

6

6

(02↓
332

↓A)0

(02↓
3A)0

(0A)0

(032
↓A)0

� I

I �

Figure 7.3: Some derivability patterns in NL(3,·0).

7.4.1 Types for Dutch Negative Polarity Items

The analysis of Dutch data showed that the inclusion relation relevant to describe a
classification of NPIs is the one holding among antimorphic, antiadditive and downward
monotone functions: AM ⊆ AA ⊆ DM. The order relation among the sets of NPIs is
WNPI ⊆ MNPI ⊆ SNPI, where the inclusion should be read in terms of the demands of
the items, e.g. a weak negative polarity item requires a weaker property than a medium
one. Applying the type logical method illustrated above this means that in this case we
need a linear derivability relation among three types. Let us take, s′1 : (032

↓s)0 −→
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s′2 : (0s)0 −→ s′3 : (02↓
3s)0. For the sake of simplicity now we do not take into account

the different ways Dutch quantifiers may scope, and assign a uniform output sentential
type s2 : s to all of them; the same holds for the clause negation niet (tr. not). For the
same reason, we take grammatical sentences to be of type s2 : s.

Lexicon

WNPI: q(np, s′1, s
′
1), hoeven (tr. need) DM: q(np, s′1, s2), weinig (tr. few);

MNPI: q(np, s′2, s
′
2), ook maar iets (tr. anything) AA: q(np, s′2, s2), niemand (tr. nobody);

SNPI: np\s′3, is mals (tr. is tender) AM: (np\s2)/(np\s′3), niet (tr. not).

Example 7.8. [Derived Negative Polarity Items Distribution] We look at ook maar n
(tr. any n) by means of example. Since it is a medium NPI its direct licensor is an
antiadditive function (14-a) and therefore it is also grammatical in construction with
the antimorphic ones (14-b), whereas it refuses to compose with downward monotone
functions (14-c).

(14) a. Niemand zal ook maar iets bereiken.
tr. Nobody will achieve anything.

b. Ik denk niet dat er ook maar iemand zal komen.
tr. I don’t think that anybody will come

c. *Weinig monniken zullen ook maar iets bereiken.
tr. Few monks will achieve something.

QP ` q(np, sx, s2)

ook maar iets ` q(np, s′2, s
′
2)

[y ` np]2 [x ` np]1
....

y ◦ zullen/zal ◦ x ◦ bereiken ` s′2

y ◦ zullen/zal ◦ ook maar iets ◦ bereiken ` s′2
[qE]1

zullen/zal ◦ ook maar iets ◦ bereiken ` sx
[D∗]

QP ◦ (zullen/zal ◦ ook maar iets ◦ bereiken) ` s2
[qE]2

niet ` (np\s2)/(np\s
′
3)

....
dat er ◦ ook maar iemand ◦ zal komen ` np\s′1
dat er ◦ ook maar iemand ◦ zal komen ` np\s′3

[D1]

niet ◦ dat er ◦ ook maar iemand ◦ zal komen ` np\s2
[/E]

The first derivation fails when replacing the QP with the downward monotone function
weinig n: sx is instantiated by s′1 which is not derivable from the sentential type carried
by the medium negative polarity item ook maar n: s′2 : (0s)0 6−→ s′1 : (032

↓s)0. On the
other hand, the antiadditive quantifier niemand provides the right property required
by ook maar n, as reflected on the types: sx is replaced by s′2 and the derivation goes
through. Similarly, one can derive the other licensing relations discussed while presenting
the Dutch data.

Finally, notice that the derivability patterns have room for a type s′4 : (02↓
332

↓s)0

derivable from s′1 : (032
↓s)0 and deriving the type s′3 : (02↓

3s)0. In other words,
the types could express a subset of DM whose intersection with AA is empty. This
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is the set of antimultiplicative functions (Am), like niet altijd (tr. not always), which
license even (tr. equally). As mentioned in Section 5.2, the antimultiplicative functions
seem to have a restricted linguistic application. Notice, however, that their behavior
is correctly predicted by our types since their licensee can occur also with antimorphic
functions (15-a) but not with the antiaddive ones (15-b). Moreover, weak negative
polarity items can occur also in their scope (16).

(15) a. We
We

zijn
are

niet
not

allemaal
all

even
equally

gelukkig
happy

met
with

dit
this

voorstel.
proposal.

[AM].

tr. We are not all that happy with this proposal.

b. *Niemand
Nobody

is
is

even
equally

gelukkig
happy

met
with

dit
this

voorstel.
proposal.

[AA].

tr. Nobody is that happy with this proposal

c. Ik
I

heb
have

niet altijd
not always

even
equally

veel
much

geluk
luck

in
in

de
the

loterij.
lottery.

[Am].

tr. I am not always that happy in the lottery.

d. *Weinig
Few

mensen
people

zijn
are

even
equally

gelukkig
happy

met
with

dit
this

voorstel.
proposal.

[DM].

tr. Few people are that happy with this proposal.

(16) a. Hij
He

hoeft
needs

niet altijd
not always

te
to

roepen.
shout

[AM > WNPI].

He doesn’t need always to shout.

Summing up, the full derivability patterns expressing the inclusion relations holding
among the sets of downward monotone functions and the ones among the sets of Dutch
negative polarity items are as in Figure 7.4.

I �

� I

s′1: WNPI/DM

s′2: MNPI/AAs′4: Even/Am

s′3: SNPI/AM

Figure 7.4: Types for Dutch NPIs.
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Notice, that though the inclusion relation among the licensors’ types seems to be
reversed (e.g. DM −→ AA), this is not the case due to the fact that the sentential types
in point occur in a downward monotone position in the QP-types.

7.4.2 Types for Greek Negative Polarity Items

In contrast to the situation in Dutch, the licensors of negative polarity items in Greek
are not in a linear order relation. Recall in fact that the relevant inclusion relations in
this case is among antiveridical functions and nonveridical ones, and among nonveridical
intensional functions and the nonveridical ones: AV ⊆ NV and NVI ⊆ NV, where NVI 6⊆
AV and AV 6⊆ NVI. This is reflected on the relations among the items licensed by these
functions, namely API ⊆ FCI, and API ⊆ Min: affective polarity items are felicitous
in contexts with less or weaker properties than the others two. Moreover, FCIs are
not felicitous in antiveridical contexts, and minimizers are ungrammatical in opaque
contexts. This split in the demands of the polarity items is captured by the types:
s′1 : (032

↓s)0 −→ s′4 : (02↓
332

↓s)0, and s′1 : (032
↓s)0 −→ s′2 : (0s)0 where s′4 :

(02↓
332

↓s)0 6←→ s′2 : (0s)0 (Figure 7.3). Again, we do not pay attention to the different
ways quantifiers may take scope in Greek and consider s2 : s to be the sentential type
of grammatical sentences. For the sake of simplicity, we give a simplified type for the
intensional functions which does not take into consideration the intensional category.

Lexicon

API: q(np, s′1, s
′
1), kanenan (tr. anybody) Min: np\s′2, ipe leksi (tr. say a word)

AV: s2/(np\s
′
2), dhen (tr. not) NVI: s2/s

′
4, isos (tr. perhaps)

FCI: q(np, s′4, s
′
4), opjosdhipote (anybody-FCI)

Example 7.9. [Derived Distribution of Greek NPIs] We look at the different distribu-
tion exhibited by the affective polarity item kanena (tr. anybody) and the free choice
item opjondhipote (tr. anybody-FCI). Since the latter requires to be in opaque contexts
it is not grammatical in construction with antiveridical operator like dhen (tr. not).

(17) a. Dhen idha kanenan.
tr. I didn’t see anybody.

b. *Dhen idha opjondhipote.
tr. I didn’t see FCI-anybody.

Dhen ` s2/(np\s
′
2)

QP ` q(np, sz, sy)

[y ` np]2 [x ` np]1
....

y ◦ idha ◦ x ` sz

y ◦ idha ◦QP ` sy
[qE]1

y ◦ idha ◦QP ` s′2
[Dy]

idha ◦QP ` np\s′2
[\I]

Dhen ◦ idha ◦QP ` s2
[/E]
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Applying the method that will be familiar by now, one can check that the data in (17)
are correctly predicted. In particular, the second derivation fails when replacing the QP
with the free choice item opjondhipote, whereas it is derivable in the case of kanenan.

If we look back at the derivability relations holding within the logic, we notice that
the split of the types converges in s′3 : (02↓

3s)0. Therefore, there could be room for a
context where all the different items would be grammatical. This prediction is satisfied
by the if-clauses as illustrated by the following examples from [Gia97].

(18) a. An
if

dhis
see.2sg

kanenan,
anybody,

na
subj

tu
him

pis
say.2sg

na
subj

me
me

permeni.
wait.3sg

tr. If you see anybody, tell him to wait for me.

b. An
if

pis leksi
say.perf.2sg

tha
word

se
will

skotoso.
you kill.perf.1sg

tr. If you say a word, I will kill you.

c. An
if

kimithis
you sleep.2sg

me
with

opjondhipote,
FC-person

tha
fut

se
you

skotoso.
kill.1sg

If you sleep with FCI-anybody, I’ll kill you.

The type for the conditional an (tr. if) is (s2/s
′
3)/s3: it can have any kind of negative

polarity item in its antecedent. Our type logical analysis of the Greek data is summarized
in Figure 7.5.

I �

� I

s′1: API/NV

s′2: Min./AVs′4: FCI/NVI

s′3: If

Figure 7.5: Types for Greek NPIs.

7.4.3 Negative Polarity Items in Italian

Italian is a negative concord language (NC), viz. it allows double negation. In the
literature there has been an ongoing debate over the exact classification of its negative
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constituents. The reason is that they exhibit the behavior of both NPIs and negative
quantifiers (NQs). In other words, Italian uses a single negative constituent nessuno as
both an existential quantifier NPI on par with English anyone and as a NQ on par with
English no one. See [Lad79, Lin81, Lin87, Mug90, Pro94, Gia00], for an approach in
which n-words across languages are considered as NPIs since like other NPIs can occur
in the polarity environments. The problem of this approach is to explain how negative
constituents, like nessuno, can also occur outside the traditional polarity environments
and yield negative context, thereby behaving like NQ. On the other hand [Zan91, Riz82,
Acq92] treat negative constituents of NC languages as negative quantifiers, like English
nobody. The problem this approach has to solve is to explain why n-words can also
occur in NPI environments where they do not yield negative force and are interpreted
existentially.

We do not enter in this discussion here, since what matter to us is the licensing
relation holding among items like nessuno when behaving as NPIs and their licensors,
non (tr. not). In Italian the negative polarity mai (tr. ever) shows a different strength
than the NPIs nessuno, granché (tr. all that much) and mica (tr. at all). Following the
analysis of the Dutch data we can refer to them as WNPI and SNPI, respectively. Fur-
thermore, like in Greek, the quantifier chiunque (tr. anybody) as well as the determiner
qualsiasi (tr. any) express the universal force of FCIs. Similarly to its Greek counterpart,
chiunque and qualsiasi cannot occur in the scope of AV functions, and can be in opaque
contexts like the modal può (tr. can), but they are ungrammatical in questions. On the
other hand, mai which is felicitous in questions, is ungrammatical in construction with
può, and in general in opaque contexts.

(19) a. Non
Not

gioco
play

mai.
ever

[AV > WNPI].

tr. I never play.

b. Non
Not

ho visto
saw.1sg1

nessuno.
nobody

[AV > SNPI].

tr. I didn’t seen anybody.

c. *Non
Not

ho visto
saw.sg1p

chiunque.
anybody-FCI.

[*AV > FCI].

tr. I didn’t seen anybody.

(20) a. *Puoi
Can

giocare
play

mai.
ever.

[*Modal > WNPI].

tr. You can never play.

b. *Puoi
Can

prendere in prestito
borrow.1pl

nessun
no

libro.
book

[*Modal > SNPI].

tr. You cannot borrow any book.

c. Chiunque
Anybody-FCI

può
can

risolvere
solve

questo
this

problema.
problem.

[Modal > FCI].

tr. Anybody can solve this problem.
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(21) a. Se
If

verrai
come.sub1pl

mai
ever

a
to

trovarmi,
visit me,

portami
bring me

Sara.
Sara.

[If > WNPI].

tr. If you ever come to visit me, bring me Sara.

b. *Se
If

vedrai
see.sub2sg2

nessuno,
nobody,

torna
come back

qui.
here.

[*If > MNPI].

tr. If you don’t see anybody, come back here.

c. *Se
If

vedrai
see.sub2sg2

chiunque,
anybody-FCI,

torna
come back

qui.
here.

[*If > FCI].

tr. If you see anybody-FCI, come back here.

(22) a. Hai
Have

sognato
dreamed.sg2

mai
ever

la
the

luna?
moon?

[Question].

tr. Have you ever dreamed the moon?
b. Hai

Have
visto
saw.2sg

nessuno?
nobody?

[Question].

Have you seen anybody?

c. *Hai
Have

visto
saw.2sg

chiunque?
anybody-FCI?

[Question].

Have you seen anybody?

Chiunque (FCI) Mai (WNPI) Nessuno (SNPI)
Veridical – – –
AV – + +
Opaque + – –
Conditional – + –
Question – + +

The Italian lexicon items given above are expressed by different types than the ones
used for Dutch and Greek. In particular, they require the use of the third sentential
level given by A −→ 0(A0). Before looking at the type assignments it is interesting
to note that a positive polarity item like qualcuno (tr. somebody) refuses to be in the
scope of non, but is felicitous when composed with the others nonveridical contexts as
exemplified below.

(23) a. *Non
Not

ho
have

visto
seen.sg1

qualcuno.
somebody

[*AV > PPI].

I didn’t see anybody.

b. Se
If

vedrai
see.subjsg2

qualcuno,
somebody,

fallo
let him

venire
come

qui.
here.

[If > PPI].

If you see anybody, let him come here.

c. Qualcuno
Somebody

di
of

noi
us,

può
can

risolvere
solve

questo
this

problema.
problem.

[Modal > PPI].

Some of us can solve this problem.
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d. Hai
Have

visto
you

qualcuno?
seen

[Question].
somebody.

Did you see anybody?

Again, the types are summarized by labelling the cube of the derivability relations and
the lexical assignments are given below using the standard abbreviations.

I �

� I

6

6

6

6

s′4: If

Q

s′2: SNPI/AV

s′1: WNPI

� I

I �

s4: PPI

?

s′′4: FCI/Modal
Lexicon

PPI: q(np, s4, s4), qualcuno AV: (np\s1)/(np\s
′
2), non

SNPI: q(np, s′2, s
′
2), nessuno If: (s1/s

′
1)/s

′
4, se

FCI: q(np, s′′4, s
′′
4), chiunque Modal: (((s′′4/np)\s

′′
4)\s1)/(np\s

′′
4), può

WNPI: (np\s1)\(np\s
′
1), mai

7.5 Antilicensing Relations in CTL

In addition to the composition relations we have been studying so far, in natural lan-
guages there are expressions which are in an antilicensing relation with some semantic
property. In other words, expressions which ‘must not’ occur in construction with some
other items because they are allergic to some of their properties. This relation can hold
either between a functional type sensitive to the property of its argument or between an
item sensitive to the property of a function. In the first case, the sensitive item cannot
have (immediate) scope over its trigger, in the second case the sensitive item cannot
be in the (immediate) scope of its trigger. In Section 5.3, we have shown how positive
information derives from this incompatibility relations. The schema representing the
antilicensing relation is given below.

Let ∆ be a structure containing a sensitive item in construction with an expression
f which does not have the property the item is allergic to. Let f be the type of this
expression and g the type of an expression g having a weaker property than f. Given
f −→ g

∆{f} ` C

∆{g} ` C
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where {·} stand for a negative contexts (Section 2.3). The distribution of English wh-
phrases and Dutch positive polarity items are an example of these phenomena. The
former are sensitive to the semantic property of the scope element forming a weak
island, whereas the latter are sensitive to the semantic property of the function which
can take them in its scope. We look at Dutch PPIs by means of example.

7.5.1 Positive Polarity Items in Dutch

As anticipated in Section 5.2, Dutch positive polarity items are in an antilicensing re-
lation with downward monotone functions. The following data from [Wou94] illustrate
this statement and Table 7.4 summarizes the PPIs’ distribution. The triggers are em-
phasized, whereas the PPIs are underlined.

(24) a. *Weinig
Few

monniken
monks

zijn
are

allerminst
not-at-all

gelukkig.
happy.

[*DM > allerminst].

tr. Few monks are not-at-all happy.

b. *Niemand
Nobody

is
is

allerminst
not-at-all

gelukkig.
happy

[*AA > allerminst].

tr. Everybody is at least a bit happy.

c. *De
The

schoolmeester
teacher

is
is

niet
not

allerminst
not-at-all

gelukkig.
happy

[*AM > allerminst].

The teacher is quite happy.

(25) a. Weinig
Few

monniken
monks

zijn
are

een beetje
a bit

gellukkig.
happy.

[DM > een beetje].

tr. Few monks are a bit happy.

b. %Niemand
Nobdy

is
is

een beetje
a bit

gelukkig.
happy.

[%AA > een beetje].

tr. Nobody is a bit happy.

c. *De
The

schoolmeester
teacher

is
is

niet
not

een beetje
a bit

gelukkig.
happy.

[*AM > een beetje].

tr. The teacher is happy.

(26) a. Weinig
Few

kinderen
children

wil
want

nog
still

Donne
Donne

lezen.
read

[DM > nog].

tr. Few children still want to read Donne.

b. Niemand
Nobody

wil
wants

nog
still

Donne
Donne

lezen.
read.

[AA > nog].

tr. Nobody wants to read Donne anymore.

c. *Jan
Jan

wil
wants

niet
not

nog
still

Donne
Donne

lezen.
read.

[*AM > nog].

tr. Jan does not want to read Donne anymore.
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PPIs

Positive
Minimal (DM)
Regular (AA)
Classical (AM)

strong medium weak
+ + +
– + +
– – +
– – –

allerminst een beetje nog
(not-at-all) (a bit) (still)

Table 7.4: Positive polarity items distribution in Dutch.

From Section 7.4, we know that the types of the PPIs’ triggers are logically related.
Moreover, we have seen that the subset relation AM ⊆ AA ⊆ DM is captured by the
derivability relation among the types assigned to antimorphic, antiadditive and down-
ward monotone functions. A PPI antilicensed by a certain property is ungrammatical
when constructed with the functions having such a property, but is compatible with
any functions of a weaker set (Remark 5.3). In CTL terms this means that the PPIs
reverse the subset relation holding among monotone functions. This requirement must
be expressed in their type logical assignments.

Recall that to account for the licensing relation we have used the downward mono-
tonicity property of the / and \, namely the fact that a function of type A/B (B\A)
composes with any expression of type C −→ B. Now, notice that a function of type
A/0C composes with any expression of type 0B such that C −→ B. This is due to
the downward monotonicity of the Galois operator 0· which reverses the derivability
relation among types. We exploit this logical property to obtain the effect required by
the antilicensing relation.

Let AM,AA,DM be the types of the functions in the sets AM, AA and DM, where
AM −→ AA −→ DM . A weak PPI is antilicensed by antimorphicity, therefore it can
be constructed with any expression in a set equal to or bigger than AA, B/0AA. A
medium PPI is antilicensed by antiadditivity, therefore it can be in construction with
any expression in a set equal to or bigger than DM, B/0DM . From these types the
following inferences derive.

MPPI ` B/0DM
DM ` DM

0DM ` 0DM
[↓ Mon]

MPPI ◦ 0DM ` A

MPPI ` B/0(DM)
AA ` AA

0AA ` 0DM
∗

∗MPPI ◦ 0AA ` B

WPPI ` B/0AA
AA ` AA

0AA ` 0AA
[↓ Mon]

WPPI ◦ 0AA ` A

WPPI ` B/0AA

DM ` DM
0DM ` 0DM....
0DM ` 0AA

[↓ Mon]

WPPI ◦ 0DM ` B

Note that the type of WPPIs derives the one of MPPIs. This correspond to an inclusion
relation among the corresponding sets: WPPI ⊆ MPPI. In line with the interpretation
assigned to the order holding among NPIs, this inclusion can be read as holding among
sets of expressions allergic to stronger properties. Finally, since the PPIs are sensitive
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to the property of the functions they are in the scope of, the lambda terms assigned to
them have to express this relation. Thus, the term, e.g., of a MPPI is λP.(P MPPI).

This linguistic application of the Galois operators seems to be promising. However,
to reach a better understanding of their use to model linguistic composition two aspects
should be further studied. First of all, it is not known yet what would be an appropriate
Curry-Howard interpretation for these connectives. Moreover, the antilicensing analysis
given here seems to suggest the need of an interaction between the accessibility relation
of the binary operators with the one of the Galois connections. We leave these two
problems open for further research.

7.6 Key Concepts

In this chapter we have presented a logical approach to licensing and antilicensing rela-
tions holding between a sensitive item and a trigger.

1. The compositional relation is shown to be inherited by expressions in subset or
superset relation to the (direct) trigger.

2. Semantic types are seen as sets of expressions. Among such sets there can be an
inclusion relations. The grammaticality of constructions involving sensitive items
depends on the inclusion relation holding among the triggers.

3. The inclusion relation among the sets has been captured in terms of derivability
relation among the type assignments achieving a deductive account of licensing
relations.

4. The study of licensing and antilicensing relation has been carried out on a crosslin-
guistic level, looking at Dutch negative and positive polarity items; and at Greek
and Italian negative polarity items.





Part IV

Summing up

We started this thesis by observing the intuitive connections between the pair of op-
posites one finds in arithmetics and the binary operators of the logical grammar used
throughout this thesis. Moreover, we have explored the mathematical structure of such a
logic and shown that it has room for upward and downward monotonic unary operators
as well.

In the second and third part of the thesis, we have investigated the expressivity of the
extended logic to model linguistic composition. In particular, we have used the unary
operators as ‘logical features’ to encode distinctions among items associated with the
same domain of interpretation. Furthermore, we have exploited the logical properties of
the unary operators to account for subset relations holding among these items within
their domain. The subset relations have been encoded as derivability relations among
the corresponding types. In other words, we have proposed a deductive feature checking
mechanism to account for the distribution of quantifier phrases as well as polarity items.

In this last part, we draw some general conclusions, comment on some problems we
left open and point out some directions for further research suggested by our studies.





Chapter 8

Conclusions and Further Research

8.1 Conclusions

In this thesis we have assumed a logical perspective on linguistic analysis and developed
a ‘logical grammar’ to reason about linguistic resources. More specifically, our thesis
offers a proof theoretical perspective on the tasks of reasoning with linguistic signs
(Chapter 1).

Our aim has been to investigate the expressivity of the core system of Categorial
Type Logics (CTLs), namely the logic characterized by pure algebraic principles with
no addition of non-logical axioms. To this end, we explored the mathematical structure
of CTLs. In particular, in Chapter 2 we studied the expressivity of a multimodal logical
grammar based on the two simple algebraic principles characterizing residuated opera-
tors and Galois connected operators. The idea of using the pure residuated operators to
model linguistic phenomena traces back to Lambek [Lam58], who proposed to interpret
the functional connectives of Classical Categorial Grammar as logical constants, empha-
sizing the importance of having both elimination and introduction rules to compose and
decompose structures. On the other hand, the idea of using residuated unary opera-
tors was first introduced by Moortgat and Kurtonina [KM95]. The addition of Galois
connections was inspired by the works of Dunn [Dun91], and Goré [Gor98b]. These
works show that the algebraic structure of the base logic has room for Galois connected
operators which reverse the derivability relation among the formulas. By considering
both residuated and Galois connected operators, we focused on the role of the tonicity
of the logical operators in the derivability relation among types.

After introducing the multimodal logic framework, in Chapter 3, we distinguished
the role played by the binary and unary operators in the task of modelling linguistic
phenomena. The linguistic application of the binary residuated operators is widely
known (Chapter 1). Their accessibility relation R• in the Kripke models can be thought
of as (syntactic) composition of linguistic signs. The operators \ and / build syntactic
categories corresponding to functional semantic types. The latter identify the functional
domains of interpretation where the corresponding signs denote. Therefore, the logical
rules of the binary operators account for the form-meaning assembly of natural language.
Syntactic types are systematically associated with the semantic types. This mapping is
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not an isomorphism, but a weaker (homomorphic) correspondence: signs of the syntactic
type A/B and A\B have the same semantic type and hence are interpreted in the same
domain. The directionality information carried by the \, / connectives is relevant for
the syntactic assembly of expressions; at the meaning level, it is enough to know that
they are functions. More generally, signs of the same semantic type can differ in their
syntactic distribution. The work presented in this thesis focuses on this aspect of natural
language.

We looked at some semantic differences which effect syntactic composition, but which
are no longer relevant in the meaning assembly. Moreover, we zoomed in on the domains
of interpretation and highlighted subset relations holding among sets of objects enjoying
properties of different strength. We accounted for these difference by means of unary
operators used as ‘logical features’. Finally, we exploited the derivability of the compo-
sition of unary operators to capture the subset relations among members of the same
semantic type. The final logical grammar consists of a logical mechanism to merge
linguistic forms while building their meanings, and a deductive feature-checking mech-
anism which controls the merge operation and expresses the fine grained distinctions
required by linguistic composition. We implemented this general idea to tackle different
tasks and account for several linguistic phenomena.

In Chapter 4, we considered the differences within functional domains between up-
ward and downward monotone functions. The role of monotonicity in natural language
is twofold: it effects both the reasoning and the parsing process. On the one hand, the
monotonicity properties of the constituents of a linguistic structure determine the infer-
ences one can draw from it. On the other hand, they influence the syntactic distribution
of negative polarity items. Summing up, we exploited the logical properties of the resid-
uated pair of operators to develop a (fragment of a) natural logic: a system which uses
parsed linguistic structures to draw inference [Ben86]. In particular, we took advantage
of the modular architecture of the categorial type logical framework: the logical lan-
guage propagates the monotonicity information from the functions to the arguments,
and the structural language stores and computes the polarity positions relevant to ac-
count for natural reasoning. Moreover, the composition of the unary operators models
the behavior of negative polarity items by marking the structure the negative polarity
item occurs in, and by requiring to compose it with a downward monotone function.

In Chapter 6, we investigated the distributional behavior of quantifier phrases. In
particular, we discussed their classification as proposed by Beghelli and Stowell [BS97].
We used the composition of unary operators to identify different sentential levels where
the quantifiers can or cannot take scope. The logical perspective unveils new classes
of quantifiers which were not considered in the original classifications. Moreover, we
compared our categorial type logical analysis of quantifier scope distribution with the
one proposed within the minimalist framework and pointed out some problems of the
latter. Finally, by looking at the comparison between the two frameworks, we proposed
some refinements of the minimalist analysis which overcome its limitations.

In Chapter 7, we enlarged the scale of the monotone function classification and iden-
tified other subsets. Following Zwarts [Zwa83], we identified the sets of antimorphic and
antiadditive functions which are in a subset relation with the set of downward monotone
functions. In [Wou94], this subset relation is shown to be relevant for the distribution of
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negative polarity items in Dutch. Similarly, the identification of the sets of antiveridical
expressions as a subset of the nonveridical ones gives the distinction required to account
for the distributional behavior of Greek negative polarity items [Zwa95, Gia97]. We as-
sumed a logical perspective on these linguistic analyses and proposed a categorial type
logical account of the licensing relation holding between a negative polarity item and its
triggers.

The logical perspective enabled us to discover new dependencies between linguistic
phenomena. In particular, it helped carry out crosslinguistic comparisons and illustrate
the possibilities of identifying linguistic typologies based on the licensing relation be-
tween the sensitive items and their triggers. Finally, it helped define an antilicensing
relation holding between an item and a semantic property, where the former is ‘allergic’
to the latter. The definition of the licensing and antilicensing relations and their cate-
gorial type logical account showed the correspondence between the behavior of negative
and positive polarity items in Dutch where the latter mirror the former. Moreover, they
highlighted the similarity between the relation holding between positive polarity items
and downward monotonicity, on the one hand, and wh-phrases and the properties of the
scope elements forming weak-islands, on the other hand.

Briefly, the licensing and antilicensing relations hold between an item and a seman-
tic property. Thus, the sensitive item can or cannot compose with all those expressions
having the property they require or they repel, respectively. The definition we gave
of antilicensing relation entails some positive information regarding the expressions the
sensitive item can compose with, namely all those expressions which do not have the
property the item repels. In particular, the sensitive item can compose with an ex-
pression of any weaker property than the one it is allergic to. Thus the composition of
items in an antilicensing relation mirrors the one of the items in a licensing relation with
certain triggers. The categorial modelling of these mirror-effects requires the reversal of
the order relations of the type assigned to the triggers. In other words, it requires the
use of the Galois connected operators.

8.2 Further Research

This thesis provides further evidence for the need of using unary modalities in a cate-
gorial account of linguistic phenomena. Besides answering questions, it also raises new
ones.

First of all, we have used the unary operators purely as syntactic control devices:
modally decorated types are assigned the same interpretation domains as their undeco-
rated versions. We could have set up the syntactic-semantics interpretation in a differ-
ent way by differentiating the domains of interpretation of the items decorated with the
unary operators and by looking for a proper interpretation of the corresponding enriched
lambda terms. It is plausible to think that an answer to this question could be found
by looking for different interpretation of the functional implications, and by bringing in
the issue of directionality for the unary residuated pair as well, namely by considering
also the second pair of residuated operators.

A similar question can be raised about the Galois connected operators. Moreover,
for these operators no study has been carried out yet about their Curry-Howard in-
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terpretation and their logical rules in natural deduction format. Finally, the linguistic
applications we have looked at seem to suggest that there are opportunities for interac-
tion between the binary residuated operators and the Galois unary connections. Thus,
it would be interesting to study the structural properties which could be added to the
system, while preserving its soundness and completeness with respect to Kripke models
with the appropriate frame constraints.

In addition to these logically oriented questions, the work presented in this thesis
raises also some questions of a more linguistic nature. First of all, the crosslinguistic
study of negative polarity items sheds light on the possibility of identifying typologies of
languages characterized by different licensing relations. It could be interesting to check
whether there are any reasons for the different interactions of syntax and semantics
exhibited across languages. We believe that the categorial grammar approach proposed
here can help answering this question. Moreover, the antilicensing analysis, though
is intuitively correct and formally defined, has not been implemented in its full details.
The answers to the logical questions raised above about the Galois connections may help
find a solution to this problem. Finally, the categorial type logical analysis of quantifier
scope and the one of the antilicensing relation should be integrated. In particular, an
interesting point of interaction is provided by wh-phrases which are included in the
classification of quantifier phrases we looked at, and can be considered to be in an
antilicensing relation with the scope elements forming weak islands of different strength.
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Appendix

In Chapter 4 we have presented a natural logic based on NL(3) extended with polarity
structural rules. The described system has been obtained by internalizing the mono-
tonicity and polarity algorithm developed in [Ben86, SV91]. In other words, by replacing
LP+EPol with NL(3) and polarity structural rules (henc. MCTL+Pol). In this appendix,
we shed light on the differences between the two systems by embedding LP+EPol into
an extended version of MCTL+Pol. This translation might help the reader familiar with
LP+EPol to gain a better understanding of MCTL+Pol.

We start in Section A.1 by formally introducing the systems, and analyzing their
similarities and differences. We will prove that LP+EPol can be embedded into an
extended version of MCTL+Pol (EMCTL+Pol) by means of an intermediate system which
we introduce in Section A.21.

A.1 Introducing the Frameworks

We briefly introduce the system presented in [SV91] to obtain polarity markings on
parsed strings, and the extended version of the system MCTL+Pol described in Chap-
ter 4.

A.1.1 The System LP+EPol

The approach proposed by Sánchez separates the logical derivation of a type for a
sentence, from the assignment of polarity markers to the different parts. Types are
assigned by using LP, Lambek calculus with permutation [Ben88]. The logical system
is very simple, with just the Modus Ponens [MP] rule for functional application and an
Abstraction Rule [Ab] for functional abstraction. Polarity is dealt with extra-logically,
by means of an algorithm that when runs over a proof of LP, first computes monotonicity
values for nodes in the proof tree, and then transforms them into polarity markers.

Definition A.1. [The System LP] Let ATOM be the set {e, t, p}. Define the well formed
formulas of LP as

1The work presented in this appendix has been carried out in collaboration with Carlos Areces.
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FORM := ATOM | (FORM→ FORM).

ATOM is chosen to represent the atomic linguistic categories: e for the category of noun
phrases, p for nouns and t for sentences. Complex categories are built recursively by the
function operator →. The inference rules of LP are

α→ β α

β
[MP]

[α]
....
β

α→ β
[Ab]

.

The formulas in the leaves of a proof tree are called the assumptions of the proof. Those
assumptions marked by the [Ab] rule are said to be discharged , those assumptions which
have not been discharged are called open. An important condition is that an assumption
can only be discharged once. Given a proof tree T , we say that a node α in T is closed
if the subproof ending in α has no open assumptions.

Let Γ ∪ B ∪ {α} ⊆ FORM, then Γ ` α iff there is a proof of LP ending in α with
Γ∪B as set of assumptions and all formulas in B and only those have been discharged.

This logical formalism needs to be tied up to natural language expressions. To do so, a
well formed formula of LP (its type) is assigned to each word in the lexicon.

Definition A.2. Let w1w2 · · ·wn be a non empty sequence of words from the lexicon,
and let T = {w1 ∈ α1, · · · , wn ∈ αn} be an assignment of types (i.e. {α1, · · · , αn} ⊆
FORM) and let A = {α1, · · · , αn}. We say that w1w2 · · ·wn has type α iff {α1, · · · , αn} `
α. Furthermore, any proof D of {α1, · · · , αn} ` α is called an analysis of w1w2 · · ·wn.
A node in an analysis of w1w2 · · ·wn, is analysis closed if its set of open assumptions is
a subset of A.

To find the polarity markers of a sentence Sánchez’ algorithm works over an analysis
of the sequence of words. Each different analysis represents a possible reading of the
sentence, and polarity is determined on their account. Recall from Chapter 4 that in
LP+EPol hypothesis are left unmarked. This is not relevant for the porpouse of this
appendix, therefore in order to simplify the embedding we consider them as upward
monotone functions and mark their logical types accordingly. The traslation we give
could be easily extended to conver the case of unmarked hypothesis.

Monotonicity Markers: Let D be an analysis of a sentence w1 . . . wn with T = {w1 ∈
α1, · · · , wn ∈ αn} the type of w1 . . . wn. Let B be the set of discharged assumptions used
in D and A = {α1, · · ·αn}. The set Am is obtained by decorating functional types in A
with {+,−}, according to their monotonicity behavior, while Bm is obtained marking
all functional types as denoting upward monotone functions.

Starting from D′, which is D with Bm and Am instead of the original leaves, we
obtain Dm by means of the following rewriting rules:
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αx → β α

β
[MP] rewrites to

αx → β
+

α
x

β
[MP]

where x ∈ {+,−},
and

[α]
....
β

α→ β
[Ab]

rewrites to

[α]
....
β
+

αy → β
[Ab]

where the value of y is determined as follows. Let [MP−] be an application of [MP] with
the minor premise marked with a −, then y is − if the number of [MP−] in the branch
from β to α is odd, and y is + otherwise. As a last step, the monotonicity algorithm
marks the root of the derivation with a +.

Polarity Markers: By concentrating on monotone functions by construction all nodes
in Dm are marked as + or −. For analysis closed nodes in Dm we define polarity as
follows: the node is − if the number of nodes marked with − in the path from the node
to the root is odd, and + otherwise2.

We now illustrate the algorithms by repeating the examples discussed in Chapter 4,
but using the above notation.

Example A.3. Let Not every logician wanders be the sequence of words of the
lexicon we want to parse. Let B = {not ∈ t → t, every ∈ p → ((e → t) →
t), good logician ∈ p,wanders ∈ e → t}. We obtain the following analysis proving
that the string is of type t.

not ∈ t→ t

every ∈ p→ ((e→ t)→ t) good logician ∈ p

(e→ t)→ t
[MP]

wanders ∈ e→ t
t

[MP]

t
[MP]

Following the algorithm we obtain:

Monotonicity markers

t− → t
+

p− → ((e→ t)+ → t)
+

p
−

(e→ t)+ → t
+

e→ t
+

t
−

t

2Note that in the original presentation the polarity marker algorithm included the constraint of
having all the nodes in the branch marked. However, since we also mark the hypotheses all derivations
have all nodes marked.
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Polarity markers

t→ t
+

p→ ((e→ t)→ t)
−

p
+

(e→ t)→ t
−

e→ t
−

t
−

t
+

Summing up the parsed string will be polarity marked as: (not+((every− good logician+)−

wanders−)−)+.

As an example of how the algorithm treats an [Ab] rule we look at the lifting of e to
(e→ t)→ t.

Example A.4. Let mary be our lexicon entry. Let A = {mary ∈ e} and let the B =
{P ∈ e → t} be the set of discharged assumptions. We obtain the following analysis
proving that the string is of type (e→ t)→ t.

mary ∈ e [P ∈ e→ t]1

t
[MP]

(e→ t)→ t
[Ab]1

Following the algorithm:

Monotonicity markers Polarity markers

e
+

[e+ → t]1
+

t
+

(e→ t)+ → t

e
+

[e→ t]1
+

t
+

(e→ t)→ t
+

A.1.2 Extended MCTL+Pol

In order to mimic the monotonicity and polarity marking of LP+EPol into a CTL, we
need an extended version of the system MCTL+Pol described in Chapter 4.

First of all, note that since LP is the associative and commutative version of NL,
the embedding of LP+EPol requires to take these two properties into consideration. We
will do it by adding the corresponding structural rules. Moreover, in order to mimic the
polarity marking algorithm, all the strucutures at each node in the derivation must be
marked. This is done by heading with 2

↓ all the atomic and functional logical types.
This generates information which is superflus for the final goal of building a natural logic
and accounting for negative polarity items distribution, but it is relevant for obtaining a
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proper embedding of LP+EPol. Similarly, [/I] and [Pol−] are modified so to add 〈·〉+ in
their conclusion, we refer to the modified versions as [/I+] and [Pol+−]. Finally, the 〈·〉+

surrounding the conclusion of [Pol+−] requires the application of [Esc] rule which enables
the application of [/I].

With this comment in mind we can now introduce the extended version of MCTL+Pol

on which we can map the algorithms described above for marking LP derivations.

Definition A.5. [Logical and Structural Languages] Given ATOM = {np, n, s}, the
well formed formulas of EMCTL+Pol are

FORM := ATOM | FORM/FORM | 3FORM | 3 FORM | 2↓FORM | 2↓FORM.

STRUCT := FORM | 〈STRUCT〉− | 〈STRUCT〉+ | STRUCT ◦ STRUCT.

The calculus is presented as a set of sequence rules, where a sequent is a pair (Γ, A) ∈
STRUCT× FORM, which we will note as Γ ` A. The rules of the calculus are given in
Figure A.1.

Again we illustrate EMCTL+Pol by repeating the examples discussed in Chapter 4.

Example A.6. For the sake of simplicity we use linguistic items in the place of the
corresponding structural formulas.

[Q ` 3 2
↓(2↓s/32

↓np)]2

[P ` 2
↓(2↓s/32

↓np)]1

〈P 〉+ ` 2
↓s/32

↓np
[2↓E]

mary ` 2
↓np

〈mary〉+ ` 3 2
↓np

[3 I]

〈P 〉+ ◦ 〈mary〉+ ` 2
↓s

[/E]

Q ◦ 〈mary〉+ ` 2
↓s

[3E]1

〈〈mary〉+〉+ ` 2
↓s/32

↓(2↓s/32
↓np)

[/I+]2

〈mary〉+ ` 2
↓(2↓s/32

↓(2↓s/32
↓np))

[2↓E]

Example A.7.

not`2
↓(2↓s/32

↓s)

〈not〉+`2
↓s/32

↓s
[/E]

every`2
↓(2↓(2↓s/3 2

↓(2↓s/32
↓np))/32

↓n)

〈every〉+`2
↓(2↓s/32

↓(2↓s/32
↓np))/32

↓n
[2↓E]

good logician`2
↓n

〈good logician〉−`32
↓n

[3 I]

〈every〉+◦〈good logician〉−`2
↓(2↓s/32

↓(2↓s/32
↓np))

[/E]

〈〈every〉+◦〈good logician〉−〉+`2
↓s/32

↓(2↓s/3 2
↓np)

[2↓E]
wanders`2

↓(2↓s/32
↓np)

〈wanders〉+`32
↓(2↓s/3 2

↓np)
[3 I]

〈〈every〉+◦〈good logician〉−〉+◦〈wanders〉+`2
↓s

[/E]

〈〈〈every〉+◦〈good logician〉−〉+◦〈wanders〉+〉−`32
↓s

[3 I]

〈not〉+◦〈〈〈every〉+◦〈good logician〉−〉+◦〈wanders〉+〉−`2
↓s

[/E]

A.2 Bridging the Gap

In order to build a bridge between the two systems we will proceed in two steps. We first
define a new system LP+SPol which remains close to LP+EPol but internalizes the meta-
logical markers used by Sánchez. We then prove that the polarity markers obtained in
the new system coincide with those computed by Sánchez. Finally, we define a functional
embedding of LP+SPol into EMCTL+Pol.
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Logical Rules for the Binary Operators Structural Rules

Γ ` A/B ∆ ` B

Γ ◦∆ ` A
[/E]

[B ` B]i
....

Γ ◦ B ` A
〈Γ〉+ ` A/B

[/I+]i
Γ[∆1 ◦ (∆2 ◦∆3)] ` C

Γ[(∆1 ◦∆2) ◦∆3] ` C
[Ass]

Γ[∆2 ◦∆1] ` C

Γ[∆1 ◦∆2] ` C
[Perm]

Logical Rules for the Unary Operators Structural Polarity Rules

∆ ` s3 A Γ[〈A〉s] ` B

Γ[∆] ` B
[ s3E]†

Γ ` A
〈Γ〉s ` s3A

[ s3 I]†
Γ[〈∆1 ◦∆2〉

s] ` C

Γ[〈〈∆1〉
s ◦ 〈∆2〉

s〉+] ` C
[Pol+s ]†

Γ ` s2
↓A

〈Γ〉s ` A
[ s2

↓E]†
〈Γ〉s ` A

Γ ` s2
↓A

[ s2
↓I]†

Γ[〈〈∆〉s1〉s2 ] ` C

Γ[〈∆〉sg(s1,s2)] ` C
[Pols1s2 ]

†

†where s ∈ {+,−}.

Γ[〈∆1 ◦ 〈∆2〉
s〉+] ` C

Γ[〈∆1〉
+ ◦ 〈∆2〉

s] ` C
[Esc]

†where s, s1, s2 ∈ {+,−}, and
sg(s1, s2) = + if s1 =s2,
sg(s1, s2)=− otherwise.

Figure A.1: Rules of EMCTL+Pol.

A.2.1 Internalizing Markers

In LP+SPol we provide an explicit encoding of the monotonicity and polarity marking
algorithms used in LP+EPol. Also, looking forward to the embedding into EMCTL+Pol,
we already take the first step to achieve a collapsing of the monotonicity and polarity
marking algorithms. We do so by using both a logical language and a structural language
in the rewriting algorithm.

Definition A.8. [The Languages of LP+SPol] Given ATOM = {e, t, p}, define the well
formed (marked) formulas of LP+SPol as

MFORM := ATOM | (MFORM)+ → MFORM | (MFORM)− → MFORM.

The structural language of LP+SPol is generated by the following grammar built over
a set VAR of auxiliary variables and the set LEX of lexical entries

MSTRUC := s(VAR) | s(LEX) | s(MSTRUC) | s({MSTRUC,MSTRUC}),

where s ∈ {+,−}.
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We are now ready to define explicit algorithms that mimic over MSTRUC the external
monotonicity and polarity algorithms of LP+EPol. We define two recursive functions
Coll (for collapse) and Comp (for compute) which will produce polarity marked struc-
tures. Coll will be used on the premise of the [Ab] rule, before discharging a hypothesis,
to collapse all the markers around it; whereas Comp will take the final marked structure
of a proof as input and compute the markers for the single substructure of it.

Definition A.9. [Coll and Comp Functions] Coll : MSTRUC × VAR → MSTRUC and
Comp : MSTRUC→ MSTRUC are recursive functions defined as follows. Let si ∈ {+,−}
and sg be the sign function,

Coll(s1({s2(A), s3(B)}), x) = if x ∈ s2(A) & x ∈ s3(B)
then +({Coll(sg(s1, s2)(A), x),Coll(sg(s1, s3)(B), x)})
elseif x ∈ s2(A) & x 6∈ s3(B)
then +({Coll(sg(s1, s2)(A), x), s1(s3(B))})
elseif x 6∈ s2(A) & x ∈ s3(B)
then +({s1(s2(A)),Coll(sg(s1, s3)(B), x)})
else s1({s2(A), s3(B)});

Coll(s1(s2(A)), x) = if x ∈ s1(s2(A))
then Coll(sg(s1, s2)(A), x)
else s1(s2(A));

Coll(s1(A), x) = s1(A), for A ∈ VAR ∪ LEX.

Comp(s1({s2(A), s3(B)})) = s1({Comp(sg(s1, s2)(A)),Comp(sg(s1, s3)(B))});
Comp(s1(s2(A))) = Comp(sg(s1, s2)(A));

Comp(s1(A)) = s1(A), for A ∈ VAR ∪ LEX.

Some remarks concerning the Coll and Comp functions are in order. First, notice that
neither of the two functions modifies the bracketing {·, ·} in a structure, only the + and
− signs are altered. The role of Coll and Comp is similar to the role of the [Pol] rules
in EMCTL+Pol, and to the counting of [MP−] rules in a branch of a proof in LP+EPol.
The main difference between Coll and Comp is that the first computes markers only
in the structures surrounding a given variable x. Because Coll can be applied many
times to the same structure, we need to transform signs into + once the value has been
computed. Comp instead will be applied only once, to the final structure at the root of
the proof, and hence we can retain the information concerning polarity of the external
structures.

Rewriting Algorithm: Let D be an analysis of a sentence w1 . . . wn with T = {w1 ∈
α1, · · · , wn ∈ αn} are assignment of types to w1 . . . wn. Let B be the set of discharged
assumptions used in D and A = {α1, · · · , αn}. The sets Bm and Am are obtained by
decorating functional types in B and A with {+,−}, according to their monotonicity
behavior. Starting from D′, which is D with Bm and Am instead of the original leaves,
we obtain Dm by means of the following rewriting rules. For a leaf αi, rewrite it as
+(Si) ` αi if the leaf corresponds to one of the types in A, and +(x) ` αi otherwise,
where we choose a new variable x for each leaf.
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S1 ` α
s → β S2 ` α

β
[MP] rewrites to

S1 ` α
s → β S2 ` α

+({+(S1), s(S2)}) ` β
[MP]

where s ∈ {+,−},

[x ` α]
....

S1[s1({s2(S2), s3(x)})] ` β

α→ β
[Ab]

rewrites to

[x ` α]
....

Coll(+(S1), x)[+({s′2(S2), s
′
3(x)})] ` β

Coll(+(S1), x)[s
′
2(S2)] ` α

s′3 → β
[Ab]

where s′2, s
′
3 are the markers assigned to S2 and x after the application of Coll to

(+(S1), x). Finally, apply Comp to the final structure of the root of the proof.

Again, some comments will help understand how the rewriting algorithm works. Notice
that the [Ab] rule only withdraws the assumption which was recorded in the structure
S1 by the variable x associated to α. Furthermore, previous rewritings by the Coll do
not alter this information, as Coll only modifies + and − signs. Finally, abstraction
can be performed only once on a leaf. Hence we can uniquely identify the substruc-
ture s1({s2(S2), s3(x)}) containing x in S1. Applying Coll on the pair (+(S1), x) will
compute new signs for S2 and x, and change the s1 sign to a +. Again, by properties
of Coll we can uniquely identify the new substructure +({s′2(S2), s

′
3(x)}) surrounding

x in Coll(+(S1), x) and copy the sign assigned to x into the logical type. Finally, we
eliminate x (and perform in this way the abstraction in the structure) by replacing
+({s′2(S2), s

′
3(x)}) in Coll(+(S1), x) by s′2(S2).

In the proof of Theorem A.12 we will need the following simple but important prop-
erties of the rewriting algorithm.

Proposition A.10.
i. Let β be an analysis closed node in a proof of Γ ` α in LP with L its set of

undischarged assumptions. Then the structure assigned to β by the rewriting
algorithm does not contain variables and is built over L without repetitions.

ii. Let S be any substructure of the structures assigned to the premises of a rewritten
[MP] rule, and let S ′ be the structure assigned to the conclusion of [MP]. Then S
is a substructure of S ′.

iii. Let S be any substructure of the structure assigned to the premise of a rewritten
[Ab] rule not containing variables, and let S ′ be the structure assigned to the
conclusion of [Ab]. Then S is a substructure of S ′.

The new rewriting algorithm above computes polarity markers by means of a recursive
function in a way which is similar to the algorithm used in MCTL+Pol. The step we
should take now is to prove that in the relevant cases, viz. the closed nodes, the polarity
values obtained in LP+SPol are the same as those computed in LP+EPol. To start with,
we prove that the marked logical types assigned by LP+EPol and LP+SPol coincide.
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Proposition A.11. Let D be a proof in LP ending in α, with set of assumptions A
(including discharged assumptions). And let Dm

1 ending in α1, and Dm
2 ending in S `

α2 be the marked proofs obtained by running the monotonicity marking algorithm of
LP+EPol and the rewriting algorithm of LP+SPol on D with marked assumptions Am,
respectively. Then α1 = α2.

Proof. The proof is by induction on the complexity of D.

For the base case, suppose that no inference rule has been applied in D. Hence D is
simply α, and α is in A. By definition Dm

1 is αm, and Dm
2 is +(wi) ` α

m, where αm is
α marked with monotonicity information.

For the inductive case, we assume that the proposition holds for any proof E where less
than n inference rules have been applied. We consider different cases according to which
is the last inference rule applied in D,

Case [MP]: Let [MP] be the last rule applied in D

E1

α→ β
E2
α

β
[MP]

.

By induction hypothesis the markers assigned to α → β as the root of E1 by LP+EPol

and LP+SPol coincide, and in particular the markers assigned to β, which is the root of
D.

Case [Ab]: Let [Ab] be the last rule applied in D

[α]
....
β

α→ β
[Ab]

Let E be the subproof of D ending in β, and Em
1 and Em

2 the marking of E by LP+EPol

and LP+SPol, respectively. By induction, the markings of αm and βm are equivalent
in LP+EPol and LP+SPol. When rewriting the [Ab] rule by any of the two algorithms
the only change in the marking of αm and βm will be on choosing s ∈ {+,−} to obtain
(αm)s → βm and (αm)s → βm, respectively.

Now, αm will be marked as (αm)− by LP+EPol, if the number of [MP−] in the branch
from βm to αm is odd, and as (αm)+ otherwise. We will prove that LP+SPol assigns the
same marker. Formally, for structures S1 and S2, and variable x, S1[s1({s2(S2), s3(x)})] `
βm is the root of Em

2 , by induction. We will prove that the sign that x receives in
Coll(+(S1), x), which is the sign passed to αm during the rewriting in LP+SPol, coincides
with the marker assigned by LP+EPol. This is implied by the following observations.

Notice from the rewriting algorithm, that the sign of the simple components of the
structure is modified only when rewriting an [MP−] rule, as this is the only rule that
introduces a negative sign in the structure. In addition, all [MP−] rules (and only those)
in the branch from βm to αm, modify the sign of x, as they add a − sign to a structure
containing x. From this, a simple counting argument forces the sign of x to be − in
Coll(+(S1), x) if the number of [MP−] is odd, and + otherwise, as required. qed
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Theorem A.12. [Embedding LP+EPol into LP+SPol ] Let T = {w1 ∈ α1, . . . , wn ∈
αn} be a type of w = w1, . . . , wn, let A = {α1, . . . , αn} and let D be a proof of A ` α in
LP, with set of discharged assumptions B.

Let Dp
1 be the polarity marked proof obtained by running the monotonicity and

polarity algorithms of LP+EPol with initial markings Am and Bm. And let Dp
2 ending

in S ` α′ be the proof marked by the algorithm in LP+SPol.
Let β in Dp

1 be an analysis closed node with set L of undischarged assumptions.
Then there is a substructure S ′ of Comp(S) such that

i. S ′ is built over L (without repetitions) and does not contain variables.

ii. The sign of S ′ coincides with the marker assigned to β.

Proof. Let β be a node as in the hypothesis. Let Sβ ` β be the corresponding node
in Dp

2. Because β is analysis closed, Sβ does not contain variables and is built over L
without repetitions. Furthermore, as the rewriting algorithm preserves substructures
without variables, Sβ will be a subterm of S. Comp might modify the signs in Sβ

producing a substructure S ′, but S ′ will still satisfy condition i).
What remains to be proved ii) is that the sign of S ′ coincides with the polarity

marker assigned to β. Now, the sign of S ′ in Comp(S) is determined by the original
sign of Sβ together with the number of − in substructures of S properly containing Sβ.
Let Dm be the polarity marked proof obtained by running the monotonicity algorithm
of LP+EPol with initial markings Am and Bm.

We claim that:
1. The sign of Sβ coincides with the monotonicity marker assigned to β in Dp

1.
2. The number of − in substructures of S properly containing Sβ coincides with the

number of nodes marked as − in the path from the root to β.

The proof of 1) is simple. First of all, notice that because Sβ does not contain
variables, its sign will not be affected by the application of a Coll function occurring
further down in the proof of A ` α. Hence, we only need to verify that the monotonicity
signs assigned to nodes by the algorithm of LP+EPol coincide with those assigned to
structures by LP+SPol. This can be seen immediately for the [Ab] rule which always
assigns a + symbol. For the [MP] rule use Proposition A.11 to verify that signs of logical
types in Dp

1 and Dp
2 coincide.

The proof of 2) uses a similar argument. Consider the negative nodes in the path from
the root of Dp

1 to β. As we see from the monotonicity marking algorithm of LP+EPol,
the only nodes that can receive a negative marker are the minor premises of an [MP]
inference where the major premise is of type (γ)− → δ. Again, by Proposition A.11, all
logical types in Dp

2 coincide with the marked types of Dp
1. Now, the rewriting rule of

[MP] in LP+SPol will copy this sign around Sβ, all other signs around Sβ being positive.
qed

Half of the job is done by now. We only need to proceed with the second half of the
embedding by mimicking LP+SPol into EMCTL+Pol. We define the embedding through
translation functions from the logical and structural languages of LP+SPol into those of
EMCTL+Pol.
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Definition A.13. [Translation Functions] We define the translation functions ltr :
MFORM→ FORM and str : MSTRUC→ STRUCT by recursion as follows:

ltr((ψ1)
s → ψ2)=2

↓(ltr(ψ2)/ s3 ltr(ψ1)); str(s({S1, S2}))= 〈str(S1) ◦ str(S2)〉
s;

ltr(e) =2
↓np; str(s(S)) = 〈str(S)〉s;

ltr(p)=2
↓n; str(A) = ltr(α), forA ∈ VAR ∪ LEX

ltr(t) =2
↓s; and A ` α in LP+SPol.

Proposition A.14. Let T = {w1 ∈ α1, . . . , wn ∈ αn} be the types of w = w1, . . . , wn,
let A = {α1, . . . , αn} and let D be a proof of A ` α in LP, with set of discharged
assumptions B.

Let Dp ending in +(S) ` αm be the polarity marked proof obtained by running the
algorithm of LP+SPol with initial markings Am and Bm. Then there is a derivation D′

in EMCTL+Pol which given str(wi) ` ltr(αi) as axioms derives str (S) ` ltr (αm).

Proof. The proof is by induction on the complexity of D

For the base case, suppose that no inference rule has been applied in D. Hence D
is simply +(wi) ` α

m
i and str(wi) ` ltr(αm

i ). Notice that the (positive) polarity of the
node can be displayed simply by applying the [2↓E] rule.

For the inductive case, we assume that the proposition holds for any proof where
less than n rules have been applied. We consider different cases according to which is
the last inference rule applied in D.

Case [MP]: Let [MP] be the last rule applied in D, then the corresponding node in Dp

is
....

S1 ` (α)s → β

....
S2 ` α

+({+(S1), s(S2)}) ` β
[MP]

.

By induction we have: str(S1) ` ltr((α)s → β) and str(S2) ` ltr(α). The proof in
EMCTL+Pol continues as follows

str(S1) ` 2
↓(ltr(β)/ s3 ltr (α))

〈str(S1)〉
+ ` ltr(β)/ s3 ltr(α)

[2↓E]
str(S2) ` ltr(α)

〈str(S2)〉
s ` s3 ltr(α)

[ s3 I]

〈str(S1)〉
+ ◦ 〈str(S2)〉

s ` ltr(β)
[/E]

.

which is str (({+(S1), s(S2)})) ` ltr(β). Again the final + will be displayed by means of
[2↓ E].

Case [Ab]: Let [Ab] be the last rule applied in D, then the corresponding node in Dp

is

[x ` α]
....

Coll(+(S1), x)[s1({s2(S2), s3(x)})] ` β

Coll(+(S1), x)[s2(S2)] ` α
s3 → β

[Ab]
.
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By induction we have str(+(S1)) ` ltr(β). We have to show that we can imitate both
(1) the effect of the Coll function, and (2) the abstraction rule in EMCTL+Pol.

To prove (1), we need only to analyze the cases in the definition of the Coll function.
We describe the more complex case, S1 = s1({s2(S

′
2), s3(S3)}) and x ∈ s2(S

′
2), then

〈〈str(S ′2)〉
s2 ◦ 〈str(S3)〉

s3〉s1 ` ltr(β)

〈〈〈str(S ′2)〉
s2〉s1 ◦ 〈〈str(S3)〉

s3〉s1〉+ ` ltr(β)
[Pol+s1

]

〈〈str(S2)〉
sg(s2,s1) ◦ 〈〈str(S3)〉

s3〉s1〉+ ` ltr(β)
[Pols2s1]

.

These rules can be applied on the S2 structure till arriving to compute the final mark
assigned to the variable. This result will be equivalent to one obtained by applying
Coll(S1, x). Notice that the induction argument goes through because the structural
rules [Pol+s1

] and [Pols2s1 ] can be applied in any context.

We turn now to prove (2). If we observe the rewriting condition for the abstraction
rule in LP+SPol, we see that it records information stored in the structural component
into the logical type. In EMCTL+Pol we have to mimic this behavior, and in addition,
perform the logical abstraction to create the functional type. For this reason, in EM-

CTL+Pol we will apply first the [ s3E] rule to record the computed polarity marking,
followed by an application of [/I+] to perform the abstraction. The complete proof will
be as below. To facilitate the comparison we use x and y for assumed logical formulas.

[y ` s3 ltr(α)]2

[str(x) ` ltr(α)]1
.... ←−−− (a)

str(S1) ` ltr(β)
.... ←−−− (b)

Sc[〈x〉
s] ` ltr(β)

.... ←−−− (c)
S ′c ◦ 〈x〉

s ` ltr(β)

S ′c ◦ y ` ltr(β)
[ s3E]1

〈S ′c〉
+ ` ltr(β)/ s3 ltr(α)

[/I+]2

S ′c ` 2
↓(ltr(β)/ s3 ltr(α))

[2↓I]

(a) is the original proof obtained by induction, with str(S1) ` ltr (β) the inference
corresponding to the node before the abstraction. In (b) we use the polarity structural
rules as we explained in (1) to simulate Coll(+(S1), x). In (c) we use the [Esc] rule
which together with the rules of permutation and associativity let us push variables to
the outside of the structure. Notice how the [Esc] rule let us perform the substitution
of str(Coll(+(S1), x)[+({s2(S2), s3(x)})]) by str(Coll(+(S1), x)[s2(S2)]).

From then onwards, the proof is straightforward. The application of [ s3 E] calls for
an assumption with the appropriate polarity marker in the type ( s3 ltr(α)), which will
be introduced in the argument position of the type by the [/I+] rule. Notice that since in
LP+EPol the associative rule is implicit in the system, open nodes might differ from the
ones in LP+SPol and EMCTL+Pol where the markers on the variable have to ‘collapse’,
before the abstraction can be executed. qed
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The last step in our embedding of LP+SPol into EMCTL+Pol is to show that the latter
system can account also for the Comp function. This last fact together with Theo-
rem A.12, shows that the polarity markers obtained by LP+EPol for analysis closed
nodes can be obtained in a purely logical formalism. The proof is similar to the mimick-
ing of the Coll function we performed in Proposition A.14. We only need to take care
of the fact that EMCTL+Pol is more “economic” than LP+EPol: it computes polarities
on-demand. Formally,

Proposition A.15. Let S ` α be a derivation in LP+SPol, and let D, ending in
str(S) ` ltr(α) be the corresponding proof in EMCTL+Pol which exists by Proposi-
tion A.14. Let z(S1) be a substructure of Comp(S), then either str(z(S1)) is already in
str(S) or it can be obtained from str(S) ` ltr (α) by application of structural polarity
rules.

The proof of Proposition A.15 relies on the fact that the polarity of a substructure
S1 in the structure S in EMCTL+Pol is determined when the structural rules have
eliminated all the unary structural operators surrounding S1 but one. This can always
be achieved by the application of the structural polarity rules, following the operation
of Comp, as we did with Coll in Proposition A.14.

We are now ready to put all the pieces together and define the final embedding of
LP+EPol into EMCTL+Pol. Given a structure S ∈ STRUCT and S ′ a substructure of S,
we say that S ′ has polarity s in S if S ′ = 〈S1〉

s, S1 is in FORM or is of the form S2 ◦ S3

and there is no structure S4 = 〈S5〉
− in S containing S ′.

Theorem A.16. [Embedding LP+EPol into EMCTL+Pol ] Let T = {w1 ∈ α1, . . . , wn ∈
αn} be a type of w = w1, . . . , wn, let A = {α1, . . . , αn} and let D be a proof of A ` α in
LP, with set of discharged assumptions B.

Let Dp ending in αm be the polarity marked proof obtained by running the mono-
tonicity and polarity algorithms of LP+EPol with initial markings Am and Bm. And let
β in Dp be an analysis closed node, with set L of undischarged assumptions, receiving
polarity s.

Then there exists a structure S such that S ` ltr(αm) can be derived in EMCTL+Pol,
and there is a substructure S ′ of S, with polarity s, built over L without repetitions or
variables.

Proof. Let +(S1) ` α
′ be the last node obtained by running the algorithm in LP+SPol.

By Proposition A.11 we know that α′ = αm. Then, by Theorem A.12 we know that there
is a substructure S2 of Comp(+(S1)) such that S2 is built over L without repetitions and
variables, and the sign of S2 coincides with the marker assigned to β, i.e., S2 = s(S3).
By Proposition A.14 there is a proof in EMCTL+Pol ending in str(+(S1)) ` ltr (αm). By
Proposition A.15, either str(s(S3)) is already in str(+(S1)) or it can be obtained from
str(S1) ` ltr(α

m) by the application of structural polarity rules (which only modify the
structural part of the sequent). But str(s(S3)) is 〈str(S3)〉

s, which has polarity s and is
built over L without repetitions or variables. Hence, 〈str(S3)〉

s is the polarity marked
structure corresponding to β. qed
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The proof of Theorem A.16 shows that EMCTL+Pol can mimic any proof of LP while
assigning to closed nodes in the proof the same polarity obtained by means of the
monotonicity and polarity rewriting rules of LP+EPol. The embedding of LP+EPol into
EMCTL+Pol is proved using LP+SPol as a bridge. In fact, on the one hand LP+SPol is
closely connected to LP+EPol as regarding the logical types, and on the other it records
polarity markers on the structures similarly to EMCTL+Pol.

We give two examples to help the reader understand how the three systems relate.
In the first one only [MP] rules are involved, in the second we focus on [Ab].

Example A.17. Let us consider again the proof D given in Example A.3. We show that
for any closed node in D the polarity marker assigned to it by the marking algorithms of
LP+EPol coincides with the one assigned by LP+SPol and EMCTL+Pol. To facilitate the
comparison we repeat the final output obtained by LP+EPol after applying the polarity
markers rewriting rules:

Polarity markers

not ∈ t→ t
+

every ∈ p→ ((e→ t)→ t)
−

good logician ∈ p
+

(e→ t)→ t
−

wanders ∈ e→ t
−

t
−

t
+

Starting from the assignment T = {not ∈ (t → t), every ∈ (p → ((e → t) →
t)), good logician ∈ p,wanders ∈ (e→ t)}, LP+SPol gives the following proof.

not ∈ t− → t

every ∈ p− → ((e→ t)+ → t) good logician ∈ p

+({+(every), −(good logician)}) ` (e→ t)+ → t
[MP]

wanders ∈ e→ t

+({+({+(every), −(good logician)}), +(wanders)}) ` t
[MP]

+({+(not), −(+({+({+(every), −(good logician)}), +(wanders)}))}) ` t
[MP]

Let us consider as an example the node (e → t) → t negatively marked by LP+EPol.
In LP+SPol the final polarity markers assigned to a node is computed by applying the
Comp algorithm to the marked output of the proof. In the case we are considering the
result is obtained as follow:

Comp(+({+(not), −(+({+({+(every), −(good logician)}), +(wanders)}))})) =

+({Comp(sg(+, +)(not)),Comp(sg(+, −))(+({+({+(every), −(good logician)}), +(wanders)}))}) =

+({+(not), −(Comp(sg(−, +)(+({+(every), −(good logician)}))),Comp(sg(−, +)(wanders)))}) =

+({+(not), −(−({Comp(sg(−, +)(+(every), −(good logician)))}), −(wanders))}) =

+({+(not), −(−({Comp(−(+(every), −(good logician)))}), −(wanders))})

As the last line in the computation shows the final marker assigned to the substructure
every good logician which corresponds to the node (e → t) → t we are considering,
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is − as expected. The same result is obtained in EMCTL+Pol as shown by the Ex-
ample A.7. In this system the polarity substructure is defined in terms on the unary
structural operator and is computed by means of structural polarity rules. In case of
the substructure we are interested in, the proof has to be completed as follows:

....
〈not〉+◦〈〈〈every〉+◦〈good logician〉−〉+◦〈wanders〉+〉−`2

↓s

〈not〉+◦〈〈〈〈every〉+◦〈good logician〉−〉+〉− ◦ 〈〈wanders〉+〉−〉+`2
↓s

[Pol+−]

〈not〉+◦〈〈〈every〉+◦〈good logician〉−〉− ◦ 〈〈wanders〉+〉−〉+`2
↓s

[Pol−+]

In this example in LP+SPol there has been no need of applying the Coll algorithm,
since no abstraction rule had been applied in the proof given in LP+EPol. For a better
understanding of this algorithm and the way it interacts with the Comp one, we will
show a second case where this rule is needed.

Example A.18. Let No student attended all lectures be the sequence of words
from the lexicon we want to parse. Let T = {no student ∈ (e→ t)→ t, attended ∈ e→
(e→ t), all lecture ∈ (e→ t)→ t} be its assignment of types. In LP+EPol the string is
proved to be of type t by the following analysis:

no student ∈ (e→ t)→ t

attended ∈ e→ (e→ t)[x ∈ e]1

e→ t
[MP]

t
[MP]

e→ t
[Ab]1

all lecture ∈ (e→ t)→ t

t
[MP]

Following the algorithm:

Monotonicity markers ⇒ Polarity markers

(e→ t)− → t
+

e+ → (e+ → t)
+

e
+

e+ → t
−

t
+

e− → t
+

(e→ t)+ → t
+

t

(e→ t)− → t
+

e+ → (e+ → t)
−

e
−

e+ → t
−

t
+

e− → t
+

(e→ t)+ → t
+

t
+

Applying the rewriting algorithm of LP+SPol we obtain the following polarity marker
assignments. We focus our attention on the relevant part of the proof where the “count-
ing” has to be done, namely where the abstraction is applied.

no student ` (e→ t)− → t

attended ` e+ → (e+ → t) [x ` e]1

+({+(attended), +(x)}) ` e+ → t
[MP]

+({+(no student), −(+({+(attended), +(x)}))}) ` t
[MP]
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Before applying [Ab] the algorithm Coll has to run over the reached conclusion so to
collapse the markers surrounding the variable on which the abstraction takes place.

Coll(+({+(no student), −(+({+(attended), +(x)}))}), x) =

+({+(+(no student)),Coll(sg(+, −)(+({+(attended), +(x)})), x)}) =

+({+(+(no student)),Coll(sg(−, +)({+(x), +(attended)}), x)}) =

+({+(+(no student)), +({−(+(attended)),Coll(sg(−, +)(x), x)})}) =

+({+(+(no student)), +({−(+(attended)), −(x)})}) =

Now the proof can go on starting from the output of Coll

Coll(+(S1), x)[+({− (+(attended)),−(x)})] ` t

Coll(+(S1), x)[−(+(attended))] ` e− → t
[Ab]1

where S1 stands for ({ + (no student),−(+({ + (attended),+(x)}))}). Notice again
that the marker assigned to the type (e→ t) in the conclusion of [Ab] results from this
computation and it coincides with the one obtained by the “manual” counting done in
LP+EPol.

In EMCTL+Pol too some counting has to be done before discharging the hypothesis.
This task is carried out by the polarity structural rules which assign to the assumed
structure a negative polarity marker. However, the conclusion so obtained is not ready
for applying the [/I+], yet. This rule can be applied only over structures not surrounded
by any (·) or 〈·〉s. The first request is satisfied by the application of the [Ass] rule which
re-brackets the structure of its premises, togheter with the [Esc] rule which distribute
the 〈·〉+ making possible the final computation of the polarity of x. The second one
is obtained by means of the [3E] rule, which replaces on the the structural side the
original hypothesis of type 2

↓np with a new one of type 32
↓np. This substitution is

motivated by the correspondence between 〈·〉− and the 3 mentioned when introducing
EMCTL+Pol (Chapter 2). At this point the abstraction can take place discharging the
new assumption and giving a properly marked function, viz. a function with negatively
marked argument. Again, we give only the part of the proof involving the abstraction
and the computation.

[y ` 32
↓np]2

[x ` 2
↓np]1

....
〈〈no student〉+ ◦ 〈〈〈attended〉+ ◦ 〈x〉+〉+〉−〉+ ` 2

↓s

〈〈no student〉+ ◦ 〈〈attended〉+ ◦ 〈x〉+〉−〉+ ` 2
↓s

[Pol+−]

〈〈no student〉+ ◦ 〈〈〈attended〉+〉− ◦ 〈〈x〉+〉−〉+〉+ ` 2
↓s

[Pol−]

〈〈no student〉+ ◦ 〈〈〈attended〉+〉− ◦ 〈x〉−〉+〉+ ` 2
↓s

[Pol+−]

〈〈no student〉+ ◦ (〈〈〈attended〉+〉−〉+ ◦ 〈x〉−)〉+ ` 2
↓s

[Esc]

〈(〈no student〉+ ◦ 〈〈〈attended〉+〉−〉+) ◦ 〈x〉−〉+ ` 2
↓s

[Ass]

〈(〈no student〉+ ◦ 〈〈〈attended〉+〉−〉+)〉+ ◦ 〈x〉− ` 2
↓s

[Esc]

〈(〈〈no student〉+〉+ ◦ 〈〈attended〉+〉−)〉+ ◦ y ` 2
↓s

[3 E]1

〈〈〈〈no student〉+〉+ ◦ 〈〈attended〉+〉−〉+〉+ ` 2
↓s/32

↓np
[/I+]2

〈〈〈no student〉+〉+ ◦ 〈〈attended〉+〉−〉+ ` 2
↓(2↓s/3 2

↓np)
[2↓E]
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putational Linguistics, pages 68–95, NY, 1997. Springer-Verlag (Lectures Notes in
Computer Science).

[Sta01] E. Stabler. Recognizing head movement. 2001.

[Ste00] M. Steedman. The Syntactic Process. Cambridge, MA: MIT Press, 2000.

[Sup79] P. Suppes. Logical inference in English: A preliminary analysis. Polska Akademia
Nauk. Institut Filozofii i Socijologii. Studia Logica, 38(4):375–391, 1979.

[SV91] V. Sánchez-Valencia. Studies on Natural Logic and Categorial Grammar. PhD
thesis, University of Amsterdam, 1991.

[Swa98] H. de Swart. Negation, polarity and inverse scope. Lingua, 105(3):175–200, 1998.

[SWZ93] V. Sánchez-Valencia, T. van Wouden, and F. Zwarts. Polarity, veridicality and
temporal connectives. In P. Dekker and M. Stokof, editors, Proceedings of the 9th
Amsterdam Colloquium, pages 587–606. ILLC, University of Amsterdam, 1993.

[SZ97] A. Szabolcsi and F. Zwarts. Weak islands and an algebraic semantics for scope
taking. In A. Szabolsci, editor, Ways of Scope Taking, chapter 7, pages 217–262.
Kluwer, 1997.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-Holland,
1969.

[Sza97] A. Szabolsci. Strategies for scope taking. In A. Szabolsci, editor, Ways of Scope
Taking, chapter 4, pages 109–154. Kluwer, 1997.

[Sza01] A. Szabolcsi. Positive polarity - negative polarity. Manuscript, 2001.

[Tho74] R. Thomason, editor. Formal Philosophy: Selected papers of Richard Montague.
Yale University Press, New Haven, 1974.

[Tov96] M. L. Tovena. Studies on Polarity Sensitivity. PhD thesis, University of Edinburgh,
1996.

[Ver99] W. Vermaat. The minimalist move operation in a deductive perspective. Language
and Computation, 1999. To appear.

[VW90] K. Vijay-Shanker and D. Weir. Polynomial time parsing of CCG. In Proceedings
ACL, pages 1–8, 1990.

[Wan92] H. Wansing. Formulas-as-types for a hierarchy of sublogics of intuitionistic propo-
sitional logic. In D. Pearce and H. Wansing, editors, Non-Classical Logics and
Information Processing. Springer Lecture Notes in AI 619, Berlin, 1992.



Bibliography 177

[Wou94] T. van der Wouden. Negative Contexts. PhD thesis, University of Groningen, 1994.

[Zan91] R. Zanuttini. Syntactic Properties of Sentential Negation: A Comparative Study of
Romance Language. PhD thesis, University of Pennsylvania, Philadelphia, 1991.

[Zwa83] F. Zwarts. Three types of polarity. In F. Hamm and E. Hinrichs, editors, Plural
Quantification, pages 177–238. Kluwer, Dordrecht, 1983.

[Zwa86] F. Zwarts. Categoriale Grammatica en Algebraische Semantiek. PhD thesis, Uni-
versity of Groningen, 1986.

[Zwa95] F. Zwarts. Nonveridical contexts. Linguistic Analysis, 25:286–312, 1995.





Index

λ-calculus
Curry-Howard, see Lambek calculus
fragment, 23
normal form, 17
reduction rules, 16
typed, 16
variables, 16

bound, 16
free, 16
free for, 16

affective, see polarity
antilicensing, see composition relation

bridge predicate, 64, 74, 125

categories, 4
applications rules, 4
atomic, 3, 4
empty, see minimalism
functional, see minimalism
lexical, see minimalism
mapping, see Montague
operators, 4

classification, 91, 122
coherent, 92
incoherent, 92
quantifiers, 106

closure, 44
composition relation, 49, 58, 91, 95, 121,

135
antilicensing, 93, 97, 121, 144
compatibility, 96, 121

incompatibility, 93, 97, 121
licensing, 93, 96, 121

coordination, 71, 79, 116, 127, 134

derivability, 4, 59, 91, 136
patterns, 27, 44, 104, 109

Display Calculi (DCs), 32
display postulates, 33
rewrite rules, 33

features
checking, see minimalism
interpretable, 53
logical, 95, 127
strenght, 53
uninterpretable, 53, 55

Galois connections, 36, 39, 59, 146
composition, 40
dual, 37
monotonicity, 36, 37
negative contexts, 40

grammar, 4
Categorial (CG), 4

meaning, 21
Combinatory (CCG), 6

combinators, 6
meaning, 21

generative, 52, 104
c-command, 104, 135
movement, see minimalism
traces, 105, 109

HPSG, 56

179



180 Index

LFG, 56, 123
logic, 9
minimalism, see minimalism
Montague, see Montague

incompatibility, see compisition relation
internalized, 72

feature checking, 118
monotonicity markers, 72, 75
polarity markers, 75

intervener, 74, 117, 125

Lambek calculus, 8
associative (L), 9, 12
associative and commutative (LP), 12,

155
base logic (NL), 12
commutative (NLP), 12
Curry-Howard, 22, 56, 68, 111

correspondence, 95
isomorphism, 23

language
logical, 8, 28
modes, 12
structural, 12, 29

logical rules, 9
model theory, 9

Kripke, 31
semigroup, 9

proof theory, 9
axiomatic, 28
cut-rule, 29
natural deduction, 9
normalization, 23
sequent, 9, 29
subformula property, 29

properties
complexity, 15
generative capacity, 14
sound and complete, 8, 9, 31

resource sensitive, 10
structural reasoning, see reasoning
structural rules, 12

globally, 12, 50
inclusion, 12, 56
interaction, 13, 56

linearity, 15
locally, 12, 50
non-expanding, 15
polarity, 75

lexicon, 4
labelled, 18
logical constants, 20
non-logical constants, 19
toy fragment, 5

licensing, see composition relation
licensor, see polarity
lifting, 24, 44, 70, 80
Linear Logic, 37, 123

minimalism, 52
agree, 118
categories

empty, 52
funcional, 52
lexical, 52

derivation, 53
converge, 53, 117
crash, 53, 117

feature checking, 52, 57, 105, 107
features, see features
logical form, 52
merge, 52, 118
minimalist grammar (MG), 53

polarity, see polarity
syntactic features, 53

move, 52, 105
movement, 52, 104

CTL, 109
covert, 52, 56
landing site, 107
overt, 53

phonetic form, 52
projection, 106

complement, 53
head, 53
specifier, 53

monotonicity
antiadditive, 93
antimorphic, 93
antimultiplicative, 93
argument position, 66



Index 181

binary operators, 57
calculus, 63
downward (↓Mon), 63, 93
in natural language, 20
markeres, 156
markers, 68
nonmonotone, 65
occurrence, 67
polarity, 65
residuation, see residuation
upward (↑Mon), 28, 62

Montague, 15
compositionality, 15
denotation, 18

functional, 19
relational, 19

domain, 17, 58, 122
partially ordered, 20, 63

frame, 17
grammatical composition, 15

form, 15, 18, 95
homomorphism, 15
mapping, 16
meaning, 15, 95

lambda terms, see λ-calculus
model, 17
quantifiers, see quantifiers
types, 15

morphology, 56
multimodal, 12, 49

MCTL, 61
base logic (NL(3)), 30, 36
base logic (NL(3,·0)), 37, 41, 60
binary residuated, see residuation
model theory

canonical, 32, 38
Kripke, 31, 37

modes, 12, 49, 56
module, 49
proof theory

axiomatic, 30, 37, 41
cut-rule, 41
natural deduction, 50
negative contexts, 40
sequent, 30

properties
complexity, 30, 39, 77
Sahlqvist, 32
sound and complete, 31, 43

unary operators, 30, 58, 123

natural logic, 61
monotonicity rules, 78
normal form, 77
with CG, 72
with L, 68
with NL(3), 77

negative concord, 141
nonveridical, 130, 131

antiveridical, 130, 132
opaque, 130
veridical, 131, 132

opaque, 65, 130
extensional, 133

polarity
crosslinguistic, 135
direct trigger, 97
immediate scope, 64
in MG, 56
item

affective, 62, 130
crosslinguistic, 128
direct licensor, 137
Dutch, 93, 94, 97, 128
free choice, 130, 142
Greek, 129
indirect trigger, 97
Italian, 141
licensor, 62, 97
negative, 62, 81
positive, 93, 115, 143, 145
sensitive, 95, 97
trigger, 62, 95

markers, 69, 157
occurrences, 67
structures, 78

polymorphic, 80, 82, 127

quantifiers, 6, 20, 56, 73
q-operator, 103



182 Index

ambiguity, 22, 101, 104
de dicto, 101
de re, 101
direct, 111
inverse, 105, 111

conservativity, 62
distributivity, 101

distributed share, 102, 107
flexible, 102
generative grammar, 104
in CCG, 7
in CG, 6
monotonicity, 21, 122
Montague, 102

reasoning
hypothetical, 9, 10, 71

close node, 156
discharge, 156
hypothesis, 56, 156
open assumption, 156

natural, 61
structural, 11, 56

residuation, 27, 56, 57
composition, 28, 44
head, 28
monotonicity, 28, 34, 35

tonicity, 34
pair, 28, 35
triple, 28, 33

safe type, 76
unsafe, 80

scope
ambiguity, see quantifiers
immediate, see polarity

trigger, see polarity

unification, 56

weak island, 92, 115, 145
algebraic semantics, 92
sensitive, 92
wh-phrases, 92

wh-dependencies, 6, 50
in CCG, 7

in CG, 6
in L, 11
in MG, 54
in NL(3), 51
non-peripheral, 13, 50

wh-phrases, 92, 107, 145



Samenvatting

Deze dissertatie volgt de parsing as deduction lijn van taalkundig onderzoek. We ge-
bruiken het gereedschap van Categoriale Typenlogica (CTL) om de interface tussen de
syntax en de semantiek van natuurlijke taal te onderzoeken. Ons doel is het onderzoeken
van de mathematische structuur van CTL en het verkennen van de expressiviteit van
CTL voor het analyseren van structuren in natuurlijke taal.

Deze dissertatie is onderverdeeld in drie delen met elk een inleidend hoofdstuk. In
hoofdstuk 1 introduceren we de achtergronden van de categoriale visie op taalkunde en
schetsen we de ontwikkelingen die hebben geleid tot de introductie van CTL. We motiv-
eren ook het gebruik van logische methoden voor taalkundige analyse. In hoofdstuk 3
geven we onze visie op het gebruik van unaire modaliteiten als logische ‘features’. In
hoofdstuk 5 geven we een algemene notie van grammaticale compositie, die rekening
houdt met zowel de vorm als de betekenis van taalkundige expressies. We ontwikkelen
een logische theorie van licensing en antilicensing relaties, die de vorm- en betekenis-
dimensies doorkruist.

We zullen ons vooral bezighouden met polariteit. Deze term verwijst zowel naar de
polariteit van de logische operatoren van CTL als naar de polariteitsgevoelige expressies
die in natuurlijke taal voorkomen en die bovendien nauw samenhangen met natuurlijk
redeneren. De titel van dit proefschrift, ‘Redeneren met Polariteiten in Categoriale
Typenlogica’, heeft daarom drie interpretaties.

Ten eerste redeneren we met de polariteit van de logische operatoren en bestuderen
we hun afleidbaarheidspatronen. In hoofdstuk 2 bestuderen we de algebräısche principes
die het gedrag van de operatoren van de Lambek calculus bepalen. We breiden het cate-
goriale vocabulaire uit met neerwaarts implicerende unaire operaties om zo de volledige
verzameling logische hulpmiddelen te verkrijgen die we de rest van dit proefschrift zullen
gebruiken. We gebruiken unaire operatoren om monotoniciteitsinformatie te represen-
teren en te berekenen (hoofdstuk 4), om een verklaring te geven voor verschillen in het
bereik van gegeneraliseerde kwantoren (hoofdstuk 6), en om licensing en antilicensing
relaties te modelleren (hoofdstuk 7).

Ten tweede modelleren we in hoofdstuk 4 inferenties van natuurlijk redeneren met
behulp van structuren met ‘negative polarity items’. Specifiek beschrijven we een rede-
neersysteem gebaseerd op CTL. Door functionele typen met unaire operatoren te verri-
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jken, geven we een weergave van het semantische verschil tussen opwaarts en neerwaarts
monotone functies. Verder bestuderen we de voordelen van deze codering door de con-
tributies van monotone functies tot natuurlijk redeneren en de syntactische distributie
van negative polarity items te onderzoeken.

In hoofdstuk 7, tenslotte bestuderen we de distributie van polariteitsgevoelige ex-
pressies. We laten zien hoe onze theorie van licensing en antilicensing relaties het juiste
onderscheid maakt tussen negative polarity items die ‘aangetrokken’ worden door hun
triggers, en positive polarity items die door hen worden ‘afgestoten’. We onderzoeken
deze compatibiliteits- en incompatibiliteitsrelaties vanuit een meertalig perspectief en
laten zien hoe de verschillen in de distributies van polariteitsgevoelige woorden in het
Nederlands, Grieks en Italiaans gereduceerd kunnen worden tot verschillen in de lexicale
typetoekenningen in deze talen.



Riassunto

In questa tesi l’autore si avvale degli strumenti logici delle Grammatiche Categoriali (GC)
per analizzare la sintassi e la semantica del linguaggio naturale. Obiettivo prinicipale
che ha dato avvio alla ricerca, oggetto della tesi, è potenziare l’espressività delle GC.

La tesi è suddivisa in tre parti, ciascuna delle quali si apre con un’introduzione alle
motivazioni e problematiche affrontate nei successivi capitoli. Nel Capitolo 1, l’autore
introduce i concetti principali dell’approccio categoriale alla linguistica e le motivazioni
che soggiaciono a tale approccio. Inoltre, presenta i limiti delle Grammatiche Categoriali
classiche e come gli stessi vengono superati dalle logiche multimodali ottenute estendo
il vocabolario logico delle GC tramite operatori unari. Nel Capitolo 3, l’autore propone
un nuovo uso degli operatori unari ai fini dell’analisi di fenomeni linguistici. Infine,
nel Capitolo 5, viene introdotto il metodo deduttivo sviluppato in dettaglio nei capitoli
succesivi e si illustrano a livello teorico i vantaggi di tale approccio per la comprensione
di classificazioni proposte in linguistica formale.

Nel corso della tesi l’attenzione è sempre rivolta al concetto di polarità. Il termine
è usato in modo ambivalente: si riferisce sia alla polarità degli operatori logici, sia al
fenomeno linguistico, noto come negative polarity items (NPI), esemplificato da esspres-
sioni come mai, ancora ed alcuno che risultano grammaticali soltanto se utilizzate nel
contesto corretto. Il titolo Uso delle Polarità nella Grammatica Categoriale esprime
questo doppio significato.

Nel Capitolo 2, l’autore illustra il ruolo svolto dalle polarità degli operatori nella
derivazione dei teoremi validi nella logica modale. Partendo dallo studio dei principi
algebrici che governano il comportamento degli operatori della logica di base elaborata
da Lambek [Lam58] e poi estesa da Moortgat e Kurtonina [KM95, Kur95, Moo96b], si
mostra come la stessa struttura algebrica possa esprimere operatori unari con polarità
inversa. Le proprietà logiche del sistema sono utilizzate per ottenere un sistema in grado
di formalizzare le inferenze di un frammento del ragionamento naturale (Capitolo 4);
inoltre le stesse proprietà sono impiegate per differenziare i quantificatori (Capitolo 6),
e per rendere conto del comportamento sintattico dei NPI (Capitolo 7).

Nel Capitolo 4, l’attenzione è rivolta allo studio di inferenze basate su sostituzioni
monotone. In particolare, l’autore descrive una logica naturale che si avvale delle analisi
svolte dalla logica modale per dimostrare la grammaticalità delle strutture linguistiche
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da cui derivare le inferenze.
Infine, nel Capitolo 7, l’autore studia il fenomeno linguistico delle polarità. Le carat-

teristiche che contraddistinguono i contesti che favoriscono la presenza di espressioni
quali mai, ancora ed alcuno, da quelli che invece la bloccano, sono proprietà seman-
tiche [Lad79, Gia97]. Un dato interessante che emerge da questi studi è che, sebbene
tali proprietà semantiche siano constanti linguistiche (vale a dire non variano da lingua
a lingua), i NPI mostrano diversi comportamenti sintattici, e.g. l’avverbio possibilmente
in greco permette la presenza di NPI, a differenza del suo equivalente inglese. Nella
tesi, l’autore riporta uno studio comparativo di questo fenomeno, prendendo in consid-
erazione il greco, l’italiano e l’inglese.

Al fine di ottenere una chiara rappresentazione delle differenze tra i linguaggi naturali
relativamente ai NPI si è assunta una prospettiva deduttiva, utilizzando la logica modale.
Da questi studi è emerso che i comportamenti sintattici dei NPI possono essere corret-
tamenti formalizzati e predetti assegnando appropiati tipi lessicali e applicando semplici
regole logiche che stanno alla base delle Grammatiche Categoriali. Le differenze tra i
linguaggi naturali sono pertando ridotte a pure differenze dei tipi lessicali.
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